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The modern world is a world of numbers, many of which peo-
ple need to remember: social security numbers, phone num-
bers, flight numbers, credit-card numbers, locker-combination 
numbers, and so on. Memory for numbers is strongly related 
to school grades and achievement-test scores, which is why it 
is included on many IQ tests.

The experiments we report here demonstrate a surprising 
influence on memory for numbers: representations of the num-
bers’ magnitudes. A wide range of behavioral and neuroscience 
evidence indicates that both children and adults represent  
numbers on something akin to a mental number line (Ansari, 
2008; Case, Okamoto, Henderson, McKeough, & Bleiker, 
1996; Dehaene, 1997). Individual differences in the linearity of 
numerical-magnitude estimates—the extent to which estimates 
increase linearly with the number being estimated—are 
strongly, positively related to children’s and preadolescents’ 
arithmetic proficiency, mathematics achievement-test scores, 
and mathematics course grades (Booth & Siegler, 2006; Laski 
& Siegler, 2007; Schneider, Grabner, & Paetsch, 2009). The 
present findings indicate one source of this relation: Accurate 
numerical representations aid memory for numbers.

Children’s numerical representations appear to progress 
from an initial period in which children do not associate 

number names with their magnitudes (Le Corre, Van de Walle, 
Brannon, & Carey, 2006; Sarnecka & Carey, 2008), to a period 
in which number names are associated with their magnitudes 
via a logarithmically increasing function (Laski & Siegler, 
2007; Siegler & Booth, 2004), to a period in which number 
names are associated with their magnitudes via a linearly 
increasing function (Opfer & Thompson, 2008; Thompson & 
Opfer, 2008). The main improvement occurs during preschool 
for the numbers 0 through 10 (Berteletti, Lucangeli, Piazza, 
Dehaene, & Zorzi, 2010; Le Corre & Carey, 2007; Opfer, 
Thompson, & Furlong, in press), between kindergarten and 
second grade for 0 through 100 (Geary, Hoard, Nugent, & 
Byrd Craven, 2008; Siegler & Booth, 2004), between second 
and fourth grade for 0 through 1,000 (Booth & Siegler, 2006), 
and between third and sixth grade for 0 through 10,000 
(Thompson & Opfer, in press).

Similar patterns of developmental and individual differ-
ences have been found on a variety of tasks measuring 
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Abstract

We investigated the relation between children’s numerical-magnitude representations and their memory for numbers. Results 
of three experiments indicated that the more linear children’s magnitude representations were, the more closely their memory 
of the numbers approximated the numbers presented. This relation was present for preschoolers and second graders, for 
children from low-income and middle-income backgrounds, for the ranges 0 through 20 and 0 through 1,000, and for four 
different tasks (categorization and number-line, measurement, and numerosity estimation) measuring numerical-magnitude 
representations. Other types of numerical knowledge—numeral identification and counting—were unrelated to recall of the 
same numerical information.  The results also indicated that children’s representations vary from trial to trial with the numbers 
they need to represent and remember and that general strategy-choice mechanisms may operate in selection of numerical 
representations, as in other domains.
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numerical-magnitude representations. For example, Booth 
and Siegler (2006) found that for the 0-through-1,000 range, 
three types of estimation—number line, measurement, and 
numerosity—undergo parallel transitions from predominant 
use of a logarithmic representation to predominant use of a 
linear representation between second and fourth grade and that 
linearity of individual children’s estimates is highly correlated 
across the three tasks. These relations are not limited to this 
age or numerical range or to estimation tasks; similar develop-
mental and individual differences have been found for numeri-
cal categorization between kindergarten and second grade for 
the 0-through-100 range (Laski & Siegler, 2007).

In the present study, we tested four theoretical predictions 
regarding the relation between numerical representations and 
memory for numerical content. First, use of a linear represen-
tation of numerical magnitudes should be associated with 
superior memory for numbers. As illustrated in Figure 1, for 
the largest 85% of numbers, the subjective distance between 
successive numbers is greater in a linear than in a logarithmic 
representation. This greater mental distance between succes-
sive numbers should increase the discriminability of numbers 
and thus improve recall accuracy.

Second, other numerical processes, such as counting and 
numeral identification, should be less closely related to mem-
ory for numbers. If magnitudes are indeed the gist of numbers 

(Siegler & Ramani, 2009), then tasks that directly measure 
understanding of numerical magnitudes should be more 
closely related to memory for numbers than other numerical 
tasks are.

Third, memory for small numbers should be superior to 
memory for larger ones. Within a logarithmic representation, 
small numbers are spaced further apart than large ones (see 
Fig. 1). Older children and adults who are able to use linear 
representations of numerical magnitude also use logarithmic 
representations when that is appropriate or convenient (Banks 
& Coleman, 1981; Holyoak & Mah, 1982). Given the gener-
ally adaptive quality of strategy choices (Siegler, 1996), it 
seemed likely that even children who can use linear represen-
tations will use logarithmic representations to remember small 
numbers. This prediction (and the next one as well) rests on 
the assumption that children who use linear representations on 
numerical-magnitude estimation tasks also possess logarith-
mic representations and use them if there is reason to do so, 
but that children who use logarithmic representations on tasks 
for which linear representations would yield greater accuracy 
cannot use linear representations, at least for larger numbers.

Fourth (and least intuitive), large numbers should be 
recalled more accurately by children who use linear represen-
tations on tasks assessing representations of numerical magni-
tudes, but small numbers should be recalled equally accurately 
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Fig. 1.  Logarithmic and linear representations of numerical magnitude. When logarithmic and linear 
functions are constrained to pass through 0 and 1,000, the distance between the values generated 
by the two functions (i.e., the difference between the predicted number-line estimates) is greatest 
at 150. This means that the values generated by the logarithmic function increase more than those 
generated by the linear function between each successive pair of numbers up to 150, but the values 
generated by the logarithmic function increase less than those generated by the linear function between 
each successive pair of numbers above 150. Thus, numbers below 150 are more discriminable in the 
logarithmic representation, and numbers above 150 are more discriminable in the linear representation.
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regardless of whether children use logarithmic or linear repre-
sentations on tasks assessing magnitude representations. In a 
distribution from 0 through 1,000, in which the linear and log-
arithmic functions must both pass through 0 and 1,000, num-
bers above 150 are spaced further apart in the linear function 
than in the logarithmic one (Fig. 1). Therefore, children who 
use linear representations should show superior recall of num-
bers above 150 (relative to children who use logarithmic rep-
resentations), because those numbers’ magnitudes are more 
distinct within the linear representation. In contrast, it is useful 
to rely on a logarithmic representation for purposes of remem-
bering numbers between 0 and 150. The reason is that num-
bers below 150 are spaced further apart in the logarithmic 
function, which yields more discriminable, and presumably 
easier-to-remember, magnitude representations. Therefore, we 
assumed that both groups of children would use logarithmic 
representations for remembering numbers below 150. This led 
to the prediction that the two groups would recall numbers 
below 150 equally well. Note that although greater exposure 
to smaller numbers might explain those numbers being  
more memorable, it does not predict this number-size-by- 
representation interaction.

Experiment 1
Experiment 1 tested our first and third predictions: that indi-
vidual differences in the linearity of numerical-magnitude rep-
resentations are related to individual differences in children’s 
memory for numerical content, and that smaller numbers are 
remembered better than larger ones.

Method
Participants. Participants were 18 children (mean age = 5.17 
years, SD = 0.40; 56% males, 44% females; 94% Caucasians) 
attending two prekindergartens near Pittsburgh, Pennsylvania. 
The school districts considered these children at risk for school 
failure, in most cases because of low incomes. The experi-
menter was a Caucasian female.

Tasks. Numerical-magnitude representations were assessed 
with number-line estimation and numerical categorization 
tasks. Memory for numbers was assessed with a numerical 
recall task.

For the number-line estimation task, the children received 
sheets of paper, each of which had a 20-cm horizontal line 
with “0” below the left end and “20” below the right end. After 
being shown where 0 and 20 went, the children were asked to 
estimate the positions of 1 through 19, presented in random 
order, one number per number line.

For the numerical categorization task, the children were 
presented three equal-sized boxes, labeled “small,” “medium,” 
and “big,” respectively. The experimenter said that 0 was a 
small number and should go in the box labeled “small” and 

that 20 was a big number and should go in the box labeled 
“big.” Then, the children were orally presented the numbers 1 
through 19 in random order; they were asked whether each 
number was small, medium, or big and asked to point to the 
box representing where each number belonged. This task  
has been found to be a useful measure of young children’s 
numerical-magnitude representations (Laski & Siegler, 2007).

For our assessment of numerical recall, the children lis-
tened to six short vignettes (adapted from Brainerd & Gordon, 
1994). Each included two “small” numbers (1, 2, 3, or 4), two 
“medium” numbers (9, 10, 11, or 12), or two “big” numbers 
(17, 18, 19, or 20). After each vignette, the children named 
four cartoon characters and then were asked to recall the num-
bers in the story. For example, one story stated, “Colleen 
washes the dishes at a restaurant. She washed N1 forks and N2 
plates.” After the interpolated task, the children were asked, 
“How many forks did Colleen wash? How many plates  
did Colleen wash?” Table S1 in the Supplemental Material 
available online presents all the vignettes and questions. Num-
bers were presented in counterbalanced order within vignettes, 
and each number was presented equally often with each 
vignette.

Results
Recall was measured by number correct, by percentage of 
variance accounted for by the best-fitting linear function relat-
ing the number that was presented to the number that was 
recalled (R2

lin), and by percentage of absolute error (PAE) on 
each trial. PAE was calculated as follows: (|recalled number – 
presented number|)/20 × 100 (20 was used as the denominator 
because the numbers being estimated ranged from 0 through 
20). Quality of numerical-magnitude representations was 
measured by PAE and R2

lin on the number-line estimation task 
and by R2

lin on the numerical categorization task.
As predicted, numerical recall and numerical-magnitude 

representations were related (Table 1). This was especially the 
case for the linearity-of-recall measure, which was correlated 
(r = |.56| or r = |.57|) with all three measures of numerical-
magnitude knowledge. (Table 1 also presents the strong  
correlations among the tasks measuring linearity of numerical-
magnitude representations.)

Also as predicted, the smaller the number, the more likely 
it was to be recalled correctly, r = −.60, p < .05. Children cor-
rectly remembered far more small numbers (39%) than 
medium ones (6%), t(17) = 3.69, p < .01, d = 0.98, or large 
ones (17%), t(17) = 2.20, p < .05, d = 0.54. Correct recall of 
medium and large numbers did not differ significantly.

Analyses of PAE indicated that distance of the recalled 
number from the correct answer also varied with numerical 
size, F(2, 34) = 3.43, p < .05, η2 = .17. PAE tended to be 
smaller for small than for large numbers (22% vs. 40%), t(17) = 
2.00, p = .06, d = 0.46; PAE for medium-size numbers was in 
between (28%).
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Experiment 2

Results of Experiment 1 were consistent with the hypothesis 
that the linearity of numerical-magnitude representations is 
closely related to memory for numerical information. However, 
it was possible that any type of numerical knowledge would be 
equally strongly related to numerical memory. To test this alter-
native hypothesis, in Experiment 2, we presented not only the 
memory and magnitude representation tasks from Experiment 
1, but also two other numerical tasks that did not directly mea-
sure magnitude representations: numeral identification and 
counting. Our prediction was that counting and numeral identi-
fication would be less strongly correlated with numerical recall 
than would the measures of magnitude representation. Experi-
ment 2 also tested whether the Experiment 1 findings held for a 
different population—children from middle-income rather than 
low-income backgrounds—and for a stimulus set in which the 
numbers that needed to be remembered were continuously dis-
tributed throughout the 0-through-20 range, rather than falling 
into discrete categories of small, medium, and large.

Method
Nineteen preschoolers (mean age = 4.96 years, SD = 0.52; 68% 
male, 32% female; 68% Caucasian, 32% Asian American) 

recruited from three preschools serving middle-income popu-
lations in the Pittsburgh, Pennsylvania, area participated. They 
were presented the same number-line estimation, numerical 
categorization, and number-recall tasks as in Experiment 1, 
the only differences being that the numbers were 1, 2, 3, 5, 7, 
9, 10, 11, 13, 15, 17, and 19, and all numbers were paired with 
all other numbers in the vignettes. Also presented were a 
counting task that involved counting 20 blue poker chips 
attached to a thin strip of cardboard and a numeral identifica-
tion task that involved reading Arabic numerals (the same 
ones used for the estimation, categorization, and recall tasks), 
presented in random order on flash cards. Analyses were con-
ducted on the percentage of numbers between 1 and 20 counted 
before the first error and the percentage of correctly identified 
numerals. The experimenter was a Caucasian female.

Results
Greater linearity of responses on the tasks that measured 
numerical-magnitude representations (number-line estimation 
and categorization) was associated with superior numerical 
recall, as measured by both PAE and R2

lin (Table 2). In contrast, 
performance on both tasks that measured other types of 
numerical knowledge (counting and numeral identification) 
was not correlated with performance on either measure of 

Table 2.  Correlations Among Tasks and Measures in Experiment 2

Task and measure Memory: PAE Memory: R2
lin Number line: PAE Number line: R2

lin Categorization: R2
lin

Counting: %  
correct

Memory: R2
lin −.92**

Number line: PAE .38 −.39
Number line: R2

lin −.47* .53* −.82**
Categorization: R2

lin −.68** .66** −.71** .78**
Counting: % correct .04 −.09 −.11 .28 .16
Numeral identification: % 

correct
−.40 .39 −.41 .52* .53* .61**

Note: R2
lin = percentage of variance accounted for by the best-fitting linear function relating the number that was presented to the number that was estimated 

or recalled or the category that was chosen; PAE = percentage of absolute error. Only 18 participants contributed data for R2
lin for memory because 1 

participant answered “5” on every trial. For all other correlations, 19 participants contributed data.
*p < .05. **p < .01.

Table 1.  Correlations Among Tasks and Measures in Experiment 1

Task and measure Memory: PAE Memory: R2
lin Number line: PAE    Number line: R2

lin

Memory: R2
lin −.78**

Number line: PAE .25 −.57*
Number line: R2

lin −.39 .56* −.80**
Categorization: R2

lin −.57* .57* −.54* .56*

Note: R2
lin = percentage of variance accounted for by the best-fitting linear function relating the number 

that was presented to the number that was estimated or recalled or the category that was chosen; PAE = 
percentage of absolute error.
*p < .05. **p < .01.
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numerical recall. Moreover, the three measures of numerical-
magnitude representations were more strongly correlated with 
each other (rs = |.71|–|.82|) than any of them were correlated 
with either counting or numeral identification (rs = |.11|–|.53|) 
The greater relation between the measures of linearity of 
numerical-magnitude representations (including linearity of 
categorization) and recall (relative to the relation between 
other types of numerical knowledge and recall) was predicted, 
but the lack of any significant correlation between numeral 
identification and recall was not expected and differed from 
findings in another recent study (Berteletti et al., 2010). Table 2 
presents the correlations among all tasks and measures used in 
the experiment.

As in Experiment 1, the larger the number, the less likely it 
was to be recalled correctly, r = −.81, p < .01. Number of 
answers recalled correctly was greater for the smaller half of 
numbers than for the larger half (37% vs. 23%), t(18) = 2.45, 
p < .05, d = 0.56, and the numbers recalled were closer to the 
correct answer when the answer was small (PAE = 17% vs. 
27%), t(18) = 2.48, p < .05, d = 0.54.

These results replicated the Experiment 1 findings that lin-
earity of numerical-magnitude representations are signifi-
cantly related to numerical recall. Experiment 2 also showed 
that this relation is not limited to low-income children or to 
stimuli clustered into qualitatively distinct groups of numbers, 
and demonstrated that other numerical competencies are not 
as closely related to recall of numerical information.

Experiment 3
Experiment 3 tested our fourth prediction: that large numbers 
are recalled more accurately by children who use linear rep-
resentations of numerical magnitudes than by children who 
use logarithmic representations, but that small numbers are 
recalled equally accurately by the two groups. Children in 
the two groups were expected to remember numbers from 0 
through 150 equally well, because both would most often 
rely on the logarithmic representation for remembering those 
numbers. In contrast, children who used linear representa-
tions of numerical magnitudes were expected to recall num-
bers greater than 150 more accurately than the other group, 
because linear representations, on which those children 
would more often rely, make those larger numbers more 
discriminable.

A second issue addressed in Experiment 3 concerned 
whether children’s memory for numerical information focuses 
on the gist of the numbers or is literal. If children extract the 
gist of numbers, they should more often correctly remember 
the 100s value in three-digit numbers than the 10s or 1s 
values.

A third issue involved the generality of the effects observed 
in Experiments 1 and 2. Would the relation between numerical-
magnitude representations and memory for numerical infor-
mation hold with older children (7- and 8-year-olds), with a 
wider range of numbers (0 through 1,000), and for two  

additional tasks that have been used previously to measure 
numerical-magnitude representations (measurement estima-
tion and numerosity estimation; Booth & Siegler, 2006)? If 
these two tasks and the number-line task all measure numerical-
magnitude representations, then similar findings should 
emerge for all of them.

Method
Participants. Participants were 127 second graders (mean 
age = 8.22 years, SD = 0.44; 59% males, 41% females; 91% 
Caucasian) who attended elementary schools near Pittsburgh, 
Pennsylvania. Roughly 30% of the children were eligible for 
free or reduced-cost lunches. The experimenters were two 
Caucasian females.

Tasks. The children first performed, in random order, the 
number-line, measurement estimation, and numerosity esti-
mation tasks used in Booth and Siegler (2006) to assess repre-
sentations of numerical magnitudes. The specific numbers 
presented in all three tasks were 2, 5, 18, 34, 56, 78, 100, 122, 
147, 150, 163, 179, 246, 366, 486, 606, 722, 725, 738, 754, 
818, and 938. The number-line task was like that used in 
Experiments 1 and 2, except for having “1,000,” rather than 
“20,” at the right end and involving estimation of different 
numbers. On the measurement estimation task, children saw a 
short line labeled “1 zip,” a long line labeled “1,000 zips,” and 
a number indicating the length of a line (in zips) that they 
should draw. They drew a line to approximate the desired 
length. On the numerosity estimation task, children saw a 
computer screen that depicted one box with 0 dots, one with 
1,000 dots, and a third, initially empty, box that could be filled 
to the desired extent by placing the cursor in the “increase” 
box or the “decrease” box and holding down the mouse until 
the desired number of dots was reached.

After completing these three tasks, the children were given 
the numerical recall task, which was like that used in Experi-
ments 1 and 2, except that each story involved three “small 
numbers” (5, 18, 53, 79, 164, or 237), three “medium num-
bers” (419, 487, 524, 548, 625, or 632), or three “big num-
bers” (725, 759, 817, 846, 938, or 962).

Results
As predicted, individual differences in recall of numbers were 
substantially correlated with individual differences on all three 
tasks measuring numerical-magnitude representations (Table 3). 
This relation was present regardless of whether performance 
on each task was measured by linearity or absolute error. Indi-
vidual differences in performance on the three tasks used to 
assess numerical-magnitude representations were also closely 
related to each other (Table 3).

To test whether the interaction of numerical representation 
and number size influenced recall, we conducted a separate 2 
(better-fitting representation: logarithmic or linear) × 2 
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(number size: below or above 150) analysis of variance for 
each of the three tasks assessing numerical representations: 
the number-line, measurement estimation, and numerosity 
estimation tasks. As shown in Figure 2, the pattern was highly 
similar on all three tasks. When the number-line task was used 
to assess numerical-magnitude representations, recall accu-
racy (PAE) showed main effects for better-fitting representation, 
F(1, 125) = 23.29, p < .001, η2 = .16, and number size, F(1, 
125) = 136.43, p < .001, η2 = .51, as well as a representation-
by-number-size interaction, F(1, 125) = 5.75, p < .05, η2 = .02. 
When the measurement estimation task was used to assess 
numerical representations, recall accuracy again showed main 
effects for better-fitting representation, F(1, 125) = 10.65, p < 
.01, η2 = .08, and number size, F(1, 125) = 87.35, p < .001, η2 = 
.40, as well as a representation-by-number-size interaction, F(1, 
125) = 7.44, p < .05, η2 = .03. Finally, when the numerosity 
estimation task was used, there were also main effects for bet-
ter-fitting representation, F(1, 125) = 6.31, p < .01, η2 = .05, 

and number size, F(1, 125) = 112.75, p < .001, η2 = .46, and an 
interaction of the two, F(1, 125) = 4.90, p < .05, η2 = .02.

The interactions in all three analyses were of the predicted 
form. For numbers above 150, children who used linear represen-
tations showed superior recall relative to children who used loga-
rithmic representations—number-line estimation (PAEs = 21% 
vs. 32%): F(1, 125) = 24.93, p < .001, d = 0.86; measurement 
estimation (PAEs = 19% vs. 29%): F(1, 125) = 16.71, p < .001, 
d = 0.85; and numerosity estimation (PAEs = 21% vs. 29%): 
F(1, 125) = 10.16, p < .005, d = 0.64. In contrast, for numbers 
below 150, no between-group difference in recall was present for 
any of the three tasks used to assess numerical representations—
number-line estimation (PAEs = 7% vs. 11%): F(1, 125) = 3.72, 
p > .05; measurement estimation (PAEs = 8% vs. 9%): F < 1; and 
numerosity estimation (PAEs = 8% vs. 9%): F < 1.

Children were considerably more likely to remember the 
100s digits than the 10s or 1s digits, (28%, 15%, and 13% cor-
rect recall, respectively), χ2(2, N = 127) = 168.94, p < .001. 

Table 3.  Correlations Among Tasks and Measures in Experiment 3

Task and measure Memory: PAE Memory: R2
lin

Number 
line: PAE

Number  
line: R2

lin

Measurement:  
PAE

Measurement: 
R2

lin

Numerosity:  
PAE

Memory: R2
lin −.78**

Number line: PAE .61** −.47**
Number line: R2

lin −.60** .49** −.88**
Measurement: PAE .53** −.43** .87** −.79**
Measurement: R2

lin −.56** .45** −.83** .83** −.90**
Numerosity: PAE .53** −.37** .68** −.67** .63** −.69**
Numerosity: R2

lin −.56** .39** −.71** .71** −.66** .70**  −.83**

Note: R2
lin = percentage of variance accounted for by the best-fitting linear function relating the number that was presented to the number that was 

estimated or recalled; PAE = percentage of absolute error.
**p < .01.
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Fig. 2.  Recall accuracy (percentage of absolute error, or PAE) as a function of better-fitting numerical-magnitude representation (linear or logarithmic) 
and number size (below or above 150) for the three tasks used to assess numerical-magnitude representations in Experiment 3: number-line 
estimation (left), measurement estimation (middle), and numerosity estimation (right).
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This finding supports Brainerd and Gordon’s (1994) conclu-
sion that second graders’ numerical memory focuses on num-
bers’ gist rather than their verbatim form.

Discussion
Evidence from these three experiments indicates that children 
who generally use linear representations of numerical magni-
tude recall numbers better than those who generally use  
logarithmic representations. Experiment 1 demonstrated that 
low-income prekindergartners who produced more linear and 
more accurate patterns of responses for numbers in the 
0-through-20 range on two measures of numerical-magnitude 
representations—number-line estimation and numerical  
categorization—recalled numbers closer in magnitude to the 
numbers presented within vignettes. Experiment 2 replicated 
these findings with preschoolers from middle-income back-
grounds and demonstrated that numerical tasks that did not assess 
magnitude understanding showed weaker relations to recall. 
Experiment 3 extended the findings to older children, a wider 
numerical range, and two additional measures of numerical-
magnitude representations, and also indicated that second grad-
ers recall the gist of three-digit numbers (the 100s value) more 
often than the less significant values (the 10s and 1s values).

Data from Experiment 3 were especially compelling, as 
they yielded a predicted interactive effect of numerical repre-
sentation and number size on recall: Differences in recall 
between children who generally used linear representations 
and those who generally used logarithmic representations on 
tasks assessing numerical-magnitude representations were 
specific to the range of numbers in which the spacing between 
successive numbers is greater within the linear than within the 
logarithmic function. This prediction followed straightfor-
wardly from the view that all children would use the logarith-
mic representation when trying to recall small numbers, but 
that children who could also use the linear representation 
would be at an advantage in recalling large numbers, for which 
the spacing in the linear representation is greater.

Our interpretation of this interaction assumes that children 
can use logarithmic representations to remember small num-
bers and linear representations to remember large numbers. 
This assumption is consistent with Siegler and Opfer’s (2003) 
finding that second graders represent the numbers 0 through 
100 linearly in a 0-through-100 context and logarithmically in 
a 0-through-1,000 context. To further test this assumption, we 
asked David Geary to reanalyze his trial-by-trial assessments 
of 289 first graders’ number-line representations on a 
0-through-100 number-line estimation task (Geary, Hoard, 
Byrd-Craven, Nugent, & Numtee, 2007; Geary et al., 2008). 
Our goal was to test the prediction that children used logarith-
mic representations more often with smaller numbers. Geary’s 
reanalysis supported the prediction (D.C. Geary, personal 
communication, September 30, 2009). Children used logarith-
mic representations of numerical magnitude more often with 

numbers in the range where the spacing between numbers is 
greater in the logarithmic than in the linear function (numbers 
below 15) than they used such representations with larger 
numbers (69% vs. 49%), F(1, 288) = 120.69, p < .001, 
d = 0.70. Greater use of the logarithmic representation for 
smaller numbers was apparent in our data for all three tasks in 
Experiment 3, which involved the numbers 0 through 1,000—
number-line estimation (52% vs. 37%): t(126) = 6.13, 
p < .001, d = 0.52; measurement estimation (63% vs. 46%): 
t(126) = 9.50, p < .001, d = 0.91; and numerosity estimation 
(61% vs. 47%): t(126) = 6.12, p < .001, d = 0.56.

The same effect was found in our Experiment 3 data when 
the analysis was limited to children whose overall estimation 
pattern on the task was better fit by the linear function. On all 
three tasks, these children used the logarithmic representation 
on a higher percentage of trials when the number was below 
150 than when it was above 150—number-line estimation 
(38% vs. 23%): t(71) = 4.70, p < .001, d = 0.57; measurement 
estimation (38% vs. 10%): t(36) = 13.45, p < .001, d = 2.25; 
and numerosity estimation (49% vs. 34%): t(48) = 4.48, p < 
.001, d = 0.66 (see Trial-by-Trial Analysis in the Supplemental 
Material available online).

Our predictions and findings regarding heightened reliance 
on logarithmic representations for small numbers among chil-
dren whose overall representation is linear suggest that the 
development of numerical representations involves trial-by-
trial variability, adaptive choice among representations, and 
knowledge-driven change like that described in overlapping-
waves theory (Siegler, 1996, 2006). Within this theory, repre-
sentations and strategies that are generally less effective 
continue to be used in specific situations in which they are 
effective. The mechanism that produces these adaptive choices 
is viewed as unconscious, and its workings have been illus-
trated in computer simulations that generate strategy choices 
highly similar to children’s (Siegler & Araya, 2005; Siegler & 
Shipley, 1995). The present data suggest that similar choice 
and learning mechanisms contribute to the development of 
numerical representations.
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