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ABSTRACT: The higher-order shear deformable plate theory presented here con-
cerns the buckling of laminated composite plates. The theory extends Reddy’s
higher-order theory (1984) to include the effect of rotatory moments sometimes
called curvature terms. General equations of equilibrium in terms of stress resultants
and boundary conditions are derived for plates laminated of orthotropic layers. Sub-
sequently, the equations of equilibrium and boundary conditions are also obtained in
terms of kinematic variables for the special case of symmetrically laminated cross-
ply plates.

INTRODUCTION

T IS NOW well known that in many situations, the classical thin plate theory is
Iinadequate for prediction of the flexural behavior of plates. The theory
grossly overestimates the buckling loads of the plates. This inadequacy results
essentially from the neglect of transverse shear deformation; the effect of ne-
glect of transverse shear deformation is most exemplified in composite plates
in which the shear moduli are often quite small in comparison to the in-plane
elastic moduli. Within the confines of applied elasticity (or mechanics of mate-
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rials) approaches, a first-order shear deformable plate theory (FSDPT) offers the
simplest way of accounting for the effect of transverse shear deformation.
The assumed in-plane displacement functions with only first-order terms of the
through-thickness coordinate in the FSDPT lead to uniform transverse shear
strains through the plate thickness. The effect of nonuniformity of transverse
shear strains is therein incorporated through the use of so-called shear correction
factors. In the higher-order shear deformable plate theories (HSDPT’s), the
in-plane displacement functions (and sometimes the out-of-plane displacement
function as well) are assumed with higher order terms of the through-thickness
coordinate. Consequently, in the HSDPT’s the nonuniformity of transverse
shear strains is built in by itselfand one doesn’t need the shear correction factors.
However, the HSDPT’s are considerably more complicated than the FSDPT,
particularly in terms of cumbersome algebra. Of the various available higher-
order theories, Reddy’s theory (1984) is possibly the one most widely used.

While including the effects of transverse shear deformation by the first- and
higher-order theories, one finds that the rotatory inertia terms due to cross-
sectional rotations come into effect naturally in the vibration analysis of plates.
However, in the shear-flexibility-based buckling analysis, the moment terms
due to cross-sectional rotations appear when one considers second-order
strains in the potential energy due to in-plane stresses. These terms, introduced
by Sun (1972, 1973) and later elaborated upon in the works of Dawe and Craig
(1986), Whitney (1987), and Bert (1995) have been referred to as curvature
terms. These terms, in analogy with the rotatory inertia terms of the vibration
problem may possibly be termed more appropriately the rotatory moments
(Bertand Malik, 1997). Interestingly, the rotatory moment terms have not been
considered in any of the available higher-order theories.

The motivation for the present work comes from a recent work of Bert and
Malik (1997). Using the FSDPT, this work compared the relative effects of
transverse shear deformation and rotatory moments on the buckling character-
istics of symmetrically laminated cross-ply plates with various types of bound-
ary conditions. Interestingly, the results also indicated that by including
rotatory moments, the first-order theory yields critical load values of simply
supported plates very close to those from the theory-of-elasticity solutions
(Noor, 1975); in fact, these comparisons were better than those of critical load
values based on Reddy’s theory (Reddy, 1984; Khdeir, 1988). Accordingly,
the present work offers a higher-order theory for buckling of thick laminated
plates wherein the effect of rotatory moments is included.

The present theory is developed within the framework of Reddy’s theory
(Reddy, 1984). The readers will find, admittedly, much similarity in the devel-
opment with Reddy’s work. Nevertheless, the present authors believe that this
is the first higher-order theory of buckling of laminated plates in which rota-
tory moments are considered.
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DEVELOPMENT OF THE THEORY
KINEMATICS OF DEFORMATION

The starting point of Reddy’s theory is the hypothesis on the kinematics of de-
formation. The theory sets out the displacement field in a manner that the resulting
stress field satisfies the conditions of vanishing transverse shear stresses on the
surface of a plate laminated of orthotropic layers. Thus, the displacement compo-
nents, u, v, w in the x, y, z directions, respectively, are given in the form (Reddy,

1984)
u=ug+np== || (P+wy)

2
1
V=V +z{¢—% (%) (p+w, )} @

w= w(x,y)

Here, in the above displacement field, uo, vo are the in-plane (x,y) displace-
ment components of any point on the mid-plane z = 0;¢ and ¢ are the rota-
tion components of a normal on the mid-plane in the y and x directions, re-
spectively; and 4 is the thickness of the plate. It may be noted that the
displacement field is described in terms of five independent kinematic
variables: uo, vo, w, ¢ and 9. Also, as a usual notation, the subscripts of a
variable following a comma indicate spatial derivatives with respect to
that variable.
The displacement field, Equation (1), leads to the following strain field

&y =u, =€ +z(k) +2%}), ey =v, =ed+z(kd+2%k3),
€3 = W,z = 0,
(2

e4=v, +w, =€) +z%k2, es=u,+w, =¢e2+z%32,

—_ — o0 0 2,-2
€=U, +v,=¢€,+z(k, +z°Kg)

where
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0 — 0 _
81 =Uox, Ez_vO,ya
0 — 0 — 0 _
&, =Y+w,, e =¢+w,, €6 = Uo,ysVox>

0 — 0 — 0

Kl _¢,x’ Kz_w,y’ K6—¢,y +¢,xa (3)
(2 =— 4 £0 (2= 4 o

bl bl
1 342 S,x 2 32 4,y
4 4 4

2 _ 0 2 _ 0 2 _ 0 0
K3 2 €45 ks = p2 s Ks 32 (84,x+85,y)

EQUATIONS OF EQUILIBRIUM

Consider a rectangular laminate subjected to in-plane compressive loading px
on the sides x = 0 and a and p, on the sides y = 0 and b, where the loadings are per
unit side lengths. The equations of equilibrium of the plate in the state of neutral

stability are set out via the principle of virtual displacements. The principle of vir-
tual displacements may be stated as

h/2
fl=—h/2foy (01681 +0'26€2 +U46€4 +056€5 +06686)dAxde

1 pw2
_Zfz=—h/zfoy(p"aelNL+py6£§VL)dAxydz=0 4)

where
foy()dAxy = f:=0 fxio()dxdy

In Equation (4), the second integral term comes from virtual work due to the non-
linear strains; it is in the inclusion of this term that the above equation differs from
that of Reddy (1984). The nonlinear strain terms are given by

1 1
£]’VL=§(u,2x+v,2x+w,2x ),8§L=5(u?y+v?y+w?y) (5

In order to proceed further, it is convenient to define the following stress resul-
tants:
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h2 .
(Ni’Mi,Pi )= f—h/ZOi (1’2’23 )dZ, 1= 112;6
h2
©.R)= [ 05 (1,22)dz ©)

h/2
Q2. Ry)= [ 04 (1,2 )dz

The two kinds of resultants P; and R; arise as a consequence of the higher-order
theory.

The equations of equilibrium are now obtained by integrating Equation (4) by
parts and using Equations (5) and (6), and subsequently collecting the coefficients
of virtual displacements. Thus, the equations of equilibrium in terms of stress re-
sultants are

6“0:N1,x +N6,y = PxUo,xx +py uO,yy

Ovo:Ng, +N2y = PaVoxx TPy Vo,

4 4
6W:3_h§_(Pl,xx +2P6,xy +P2,yy)+Ql,x +Q2,y _h_z(Rl,x +R2,y )

= pXM/,XX +pyw,yy

4h?
T35 (P ¥ P38 s+ (B 2 Y ), ]

y (7
- E[waxxxx +(px+ Py )w,xxyy + pymfy)’)'y]

4
Op:M, , + M, _gﬁ(ﬂ,x +Ps, )0 +

_17h2 4h2
315 (px¢xx ¢yy )+ (pxwxx +py 2 Yy )’X

4 4
OY:Me,+M,, —E{(P&x +P,)—0, +h—2R2

2

17h2 4h
(pan+pywyy)+ (pxw +p,W )y
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The rotatory moment terms in Equation (7) are underlined. It is noted that the ro-
tatory moment terms appear in the third (6w) equilibrium equation, as well as the
fourth (0¢) and fifth (0v) equations. This indicates that there is a coupling which
isnot present in FSDPT (Dawe and Craig, 1986, etc.).

In the above process, one also obtains the boundary conditions. The condi-
tions onthe x = 0 and a sides are described by the following:

() Ny — prug, = 00rduy =0

(2) N¢— psx Vox = Oordvp =0

4 2
(B) My~ P = 5 (176, +4w o )= 00186 = 0

3h? 315
4 h?
4) Me—%—zps—m (179, +4w,,)=00rdéy =0
4 h? 4 1
G 37 A T P (g% +Zw,xx)=02faw,x =0 ®)

3

4 on? h _
Ps‘*‘m(%ﬂ/},x +py¢,y )+g&i(px +py )w,xy - 09_! 6W)y =0

Ovey

4 4
(7N = (P s+ Py )+01—— R — pyw,
342 h?

h? 4 2 1 1 2 1
+a Px g¢,xx+§¢,xy+§ ,xyy+zw,xxx +p, g¢,yy+'§“{xyy
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and, the conditions on y = 0 and b sides are described by the following:

(1) N6 _pyu(),y = Oo_r6u0= 0

(2) N2 _py vO,y = 09_1'61)0 =0

4 h?
(3)M6—3h—2P6 315py(17¢ +aw,, )= Oord¢p=0
2
(4) My = 2 Po= 2o, (T, +4wy, )= Dordy = 0
4 2
(5)311_21:)6 E(wa,x'*'l’yﬁb,y) (9)

3

+ﬁ(px +p, )W,xy =0 Qféw,x =

h? 4 1
(6)3}1—2P2+6_3p( 1/)y+4w ) OOI‘(SWy 0
4
( )3h2 (P2y+P6x)+Q2 pyw,y

h? 2 1 4 1 1
+— &3 1{’xx + g +py ¢,xy +g'/’,yy +§ Wy +Z Wy

=0or ow=0

STRESS RESULTANTS

In order to apply the equations of equilibrium [Equations (7)] and the boundary
conditions [Equations (8) and (9)] to a laminate having variously oriented ortho-
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tropic layers, it is convenient to describe these equations in terms of the five
independent kinematic variables. For this purpose, one actually needs to express
the stress resultants in terms of uo, vo, w, ¢, and 3. Consequently, the stress field in
a layer of the laminate is expressed in terms of the strain field, Equation (2),
through the following constitutive equations of a typical layer (Whitney,
1987):

¢

g On Qi O ‘ €
Oy¢ =(0n On Ol &2 (10)
O Osi O Qcs] €6

14

and

{04}Z=I:Q44 Q45]l{84}€ (11)
Os Oss Oss| &5

where Q;, are a set of symmetric plane-stress transformed-stiffness coefficients.
In the above equations, the superscript £refers to a layer of the laminate.

The stress resultants are obtained by incorporating Equations (10) and (11)
into Equations (6). Thus, the stress resultants due to the in-plane stresses 0y, 02,
and og are

N} |[4] [B] [E]||¢€°}
M}r=|[B] [D] [F]j&°} (12)
Py UE] [F] [H]f({*}

where, in the above, the sub-columns and sub-matrices are of orders 3 x 1 and
3 x 3, respectively, comprising the elements formed by subscripts 1, 2, and 6.
Also,

hi2
(4 BijaDijaEij’Fij’Hij)= f

_h/foj (1,z,22,23,2%,2%)dz (i,j = 1,2,6)

(13)

ij»
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are the plate stiffnesses. The first three stiffnesses are the usual ones, and the last
three are consequences of the higher-order theory.

The stress resultants due to the out-of-plane transverse shear stresses g4 and o
are

Qz Ass  Ass Dag Dys 83
O Asy Ass Dsy Dss ||e?

= > (14)
R2 D44 D45 F44 F45 Ky
R, Ds; Dss Fsy Fss ||k2
where
W2, 2 4 S
(Aij’Dij’F}j)=f_h/2 ij(LZ s Z )dZ(l,j—4,5) (15)

are the remaining plate stiffnesses. It needs to be noted that in the right sides of
Equations (13) and (15), integration in each layer and subsequent summation for
all layers of the laminate is implied. Further, the plate stiffnesses, defined in Equa-
tions (13) and (15), are sets of symmetric coefficients.

BUCKLING OF A SYMMETRIC CROSS-PLY LAMINATE

Here, as a matter of practical interest, expressions for stress resultants, the equa-
tions of equilibrium, and boundary conditions for the commonly used configura-
tion of symmetrically laminated cross-ply plates are given. For this type of con-
figuration, itmay be seen easily from Equations (13) and (15) that

B;=E;=0(,j=12,6)
Ajg=Dijg=Fis=H;g=0(i=12) (16)

A4s =Dys = Fus =0
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and the expressions for the stress resultants in terms of the kinematic variables

may be obtained as
Ny = Ayuox +A4zu0,)
Ny =Apug, +Anve,

Ne = Ags(to,, +vox)

4 4
M, = (Dn _?,h—zFll )¢,x +(D12 ey

4 4
M, = (Dlz—g}T{Flz)@x +(D22_3h_2F

4
(D 66 —

e FGG)(¢y +¥,)—

4
Fi, )'/),y _311—2(F” W +Fiaw )

22)¢,y 2 —5 (FiaWxx +Fw,,)

F66ny

7

4 4 4
P = (Fn _3h_2H11)¢,x +(F12_§;17H12)¢,y _3h_2(Hnw,xx +Hpw,, )

4
Ty Dss )(¢+ Yx)

4
h_2D44)('/’+ w,)

4 4
Flz—%_2H12)¢,x +(F22—3‘h7H22)1//y 02 — (Hpw o +Hpw )

4 8
o= (F“ 2 Hee )@’,y )T gz os
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Using the plate constitutive Equations (17) in the general equilibrium Equations

(7), one obtains the five equilibrium equations of symmetrically laminated cross-ply
plates in terms of the five independent kinematic variables. These are

Oug: Ay g xx + Asstio,yy +(A12 + Aes Woxy = Pxthoxx + Pytlo,yy

Ovo:(Ayz + Aes Yo sy T AesVoxx T A22V0, 5y = PxVoxx + PyVo,yy

4 4 4
ow: 3h2 {(Fll 342 oz Hn )¢,xxx +[(F12 +2Fs )_Eh_z(Hn +2H 6 )]

4 4
X(@y+Y )yt (Fzz 2 sz}'l’ y_3h_2Hllw,xxxx

4
3h2 — (Hy, +2H66)Wxxyy 352 H22Wyyyy}

8 16
+(A55 —;I‘{Dss +‘};7F55 )(¢+W,x ).x

8 16
+(A44 —Z?DM e F44)('/)+Wy )y

4h
= DeWaxtPyw,y, —m[(px(p,xx +py, ¢,yy ),x +(px YxxtPy¥,yy ),y]

2
E[px W,xxxx+(px + Py )"{xxyy‘*'Py”iywy]

8 16 8 16
5¢:(D” —Sz—z—F“ +;h“Z'H11 )¢,xx +(D66 _3h_2F66 +—9;4—H66y,yy

8 16
+[(D12 + D )—W(FH + Feg )]+%_4(H12 +Hee W sy

4 4
_3}1_2{(}:“ 2 Hn)wm+[(F12 +2F¢6 )~ (H12+2H66 )]nyy}

(continued)

Downloaded from jtc.sagepub.com at UNIV OF OKLAHOMA on January 20, 2016


http://jtc.sagepub.com/

Buckling Analysis of Plates: Higher-Order Theory with Rotatory Moments 347

8 16
—(Ass —— Ds;s +h—4F55 )(¢+W,x)
2

h
= 5[17(px¢,xx +py¢,yy )+4(pxw,x.x +pyw,yy ),x]

8 16
51/)1[(012 + D )—%_Z(Flz + Fes )+%—4(H12 +Hgs )]¢.xy

8 16
+(D22——‘2‘F22+ HZZ}w,yy

3 ot
8 16
+(D66_3h_2F66 +9h—4H66}W,xx (18)

4 4
BEYY) {[(FIZ +2F¢6 )— ETE) (Hyy +2H g6 )]W,xxy

4 4
+3h—2(F22 _3h_2H22)W,yyy}

8 16

h2
- (A44 _h_2D44 +h_4F44 )(W‘*‘W,y )= EE[17(px¢,xx +P,% )

+4(pxw,xx T pyW ),y]

Further, using Equations (17), (8) and (9), one obtains the boundary conditions.
Thus, the boundary conditions of the x = 0 and a edges are specified as follows:

(1) Ay g + Ayavo,, = prttgy O Otig =0

(2) Ags(uo,y +vox )= PxVox or 6vg =0

8 16 8 16
3) (Dn _%—ZFU +9h—4H“ )¢,x +(D12 —3}1_21:12 +9h—4H12}W,y

4 4 4
—%—2[(1:11 _372-H11)W,xx +(F12 —%—zle)W,yy]
( continued )
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2

= mpx (17¢,x +W,xx )0_fa¢= 0

8 16 8 4
(4)(D66 2 F66+9h H66>(¢,y+1/’ )— ETe) (F66 02 H66)w,xy
2
=mpx(17¢,x+4"{xy)0_ff5¢=0
4 4
(5)“(Fn—%_2H11)¢,x“(F12—%_2H12)‘?,y
3h2 5 (Hiuyw +Hppw,,, )
h* 4 1
= — — +— =
84 px( 5¢,X 4 W,Xx)or 6W,X O
4
(6)_(F66 Y% Has)(‘f’ +y )+ H66ny (19)

h4
(Px’/’ +py¢ )+ (px+py)wxy—00r(3wy

4 4 4
(7)—3}1—2{(1:11 ‘EﬁHn)ﬁxx +(F66 —3},_2]‘166)‘7’,”

[(Flz +Fe )— (le + Hgs )]1/’;9/}

8 16
"(Ass B D55+h Fss)(¢+wx)

2

h 4 2
[H“W +(H12+2H66)W,xyy]=_6~§ l:px(g¢,xx+gw,xy

9h 4

1 1 2 1
+§w’xyy+z wm)+py (75¢,yy +§W,xyy )]— DxWy = Ogéw: 0
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The boundary conditions on the y = 0 and b edges are specified as follows:

(1) Ags (o, +Vvox )= P,u,, orduy =0
(2) Ajpuox + Axvo,y, = pyvo,, 0rdvy =0

8 16

8 4
(3) (D66 =57 Fes + =7 Hes )(¢,y +y )—%—Z(Fss _3}1—21-166 )W,W

3h 9h

315py(17¢ +4w , Jordp=10

8 16 8 16
(4)(012 —%—zFlz +9h_4H12)¢,x +(Dzz —‘é;l—{Fzz +%_4H22)W,y

4 4 4
—?};{[(FIZ —E}IE'HIZ)W,M +(Fzz —'372‘1‘122 )W,yy]

2

h
m DPx (171/)’), +4W,yy )gél/}= 0

4
(5)_(F66 Y% H66)(¢ +9 « )"' H66ny

4 h4
=m(px¢x pyP.y )+ (px+py)wxy0réwx_0

4 4
(6)—(F12 _3h_2H12)¢,x —(Fzz —3}1—21'122)11',y

4

h
— (Hpw . +Hpw )= 24

4 4 1
e 52 Pr SVt vy Jorow, =0

4 4
(7)“%—2{[(1:12 + Fes )—gh—z‘(le + Hege )]G’,xy

4 4
+(F66 —3—h‘2‘H66}W,xx +(F22 —%_szz}W,yy}

8 16
—(AM h2D44 P F44)(’/)+W,y)
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16

+9—h4‘[H22W,yyy +(Hyy +2H g6 )W 1y ]

h? 2 1 2 4 1 1 )
=E,; Dx gw,xx+§w,xxy +py g¢,xy+g¢,yy+gw,xxy +Zw,yyy/

- pyw,ordw =0 (20)

CONCLUDING REMARKS

In the present work, a higher-order theory for buckling of thick laminated plates
was presented. The theory was based on Reddy’s higher-order theory. The novelty
of the present theory is that it includes the effect of rotatory moments (curvature
terms).
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