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IN WATER SURFACE PROFILES OF GRADUALLY

VARIED FLOW IN OPEN CHANNELS.

BY
GUJAR NAGENDRA SESHAPPARAO

MAJOR PROFESSOR: Dr. Jimmy Frank Harp

A generalized method to compute any of the twelve different water

surface profiles of gradually varied flow in prismatic open channels has

been developed in a form suitable for use with high speed digital computers.

The differential equation has been transformed to a form suitable for
integrating by numerical methods. All the twelve profiles are shown to
lead to suitable integral functions and eight different polynomial approxi-
mations in the form of power series are fitted to these integral functions
for different range of values for the ratio of normal depth to stream depth
depending on the convergence of the series. Chebyshev polynomial approxi-
matiou and Lanczos method of Economization of Power Series are found to
have a dramatic effect in summing the infinite power series arising in the
case of adverse slopes.

This study also deals with the error analysis and the problem of
economization of number of steps required for the desired accuracy in the
water surface profile computations by the most popular "Step Methods'.
Improved procedures have been presented and their<acéuracy and advantages

are discussed in the text.
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CHAPTER I

INTRODUCTION

General: The hydraulic engineer is often called upon to de-
sign canals, flood-channels, and other open-channel works, the con-
sturction of which has proceeded rapidly in the last half-century.
The study of hydraulics of flow in open channels is not always sub-
ject to analysis in an exact or rigorous manner due to the large num-
ber of fundamental variables involved. The results are obtained by
simplified assumptions and, therefore, are only approximate, but the
limitations are compatible with the desired accuracy of results in
practical engineering problems. In order to have a steady uniform
flow, a constant area and shape of section must be maintained, and the
mean velocity must be the same at all sections. The water depth and
the bed. slope must be constant. However, if any of these fundamental
conditions and characteristics are changed, the flow becomes non-uniform
or varied. Usually, in this case the crpss—sectional area, the velo-
city, and the hydraulic slope vary from section to section. The
sections are irregular, the bed or the banks may be continually changing.
So the balance between the friction loss and the slope is disturbed
and the surface line is not parallel to the bottom. On the other hand,
the position of the surface curve must be computed for the limiting

cases of non-uniform flow. In natural watercourses such a computation
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is necessary. The classical example of varied flow is that of a back-
water curve produced by a dam, weir or other structure impeding the
flow. These structures will cause the water to back up the stream
thereby increasing the depth, In such cases, the important question
of how much the water will be raised at a given distance upstream from
the point of obstruction arises. Most of the problems in gradually
varied flow are concerned with the determination of the surface pro-
file of flow in both natural and uniform channels where changes of
depth are so gradual that the flow may be considered essentially paral-
lel to the stream bed. The derivation of water surface profiles serves
two major purposes; one - to determine tail-water rating curves and,
two - to trace the backwater curve above a dam or other obstruction
into the main stream or tributary where the effects are manifested. In
some cases a complete determination of a family Bf profiles, depending
on various conditions of stage and discharge of the stream, is necessary.
Such a family of profiles is necessary in (1) determining the economical
height of a dam, where the initial elevation is indeterminate (2)
tracing the flow profiles in a tributary stream for different stages,
and discharges into the main river (3) connecting two reservoirs by
canal for changing reservcirs' elevations and variable discharges,

Tail water curves are used in the desing of power plants, pum-
ping plants, and energy dissipators such as stilling basins. In the
design of large dams, these curves aiso furnish useful information for
making stability and stress analyses. A primary use of the backwater

curve above a dam is for reservoir land acquisitions and easements.
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Backwater information is also necessary in the design of bridges,
power plants or other hydraulic structures located along or above the
reservoir,

It must be noted that the fact that actual curvature of these
profiles is very slight, except in the immediate vicinity of the cri-
tical depth and also the relative length of the several curves, for
a given rate of discharge, will vary with relative depth of flow, since
the rate of loss is proportional to the square of the velocity. It
will be seen from figure (1) that except C3 and M3 profiles, all the
other curves are asymptotic to the normal depth line, to the bottom,
or to the horizontal, These curves are infinite in extent, mathema-
tically speaking, although for practical purposes it is reasonable to
consider that a curve has reached its end when the depth in within 1
to 2 per cent of its asymptotic limit. Longitudinal water surface
curves, in general, include not only backwater curves, but also water
surface profiles through the hydraulic jump, over weirs, around sharp
bends, and through abrupt changes in cross section, These abrupt or
sharply curving profiles cannot be solvéd by backwater computations
and therefore are not studied in this effort.

Purpose and Scope of Research: The purpose of this research
is to develop a generalized method of computing surface profiles of
stready, gradually varied flow in uniform channels, suitable for high
speed digital computers whereby results can be obtained more directly
than are possible ﬁitherto with the existing methods. These methods

require extensive tables, charts, and graphs developed by earlier
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investigators Hhich are no longer of widespread interest in view of
the extensive and rapidly growing use of high speed digifal computers
of this era. So the problem is to devise a new method to develop a
generalized computer program, flexible enough to solve any of the
twelve profilés encountered in practice.

The second phase of the study deals with the error analyses in
the most simpie DIRECT STEP method which is most popular but laborious
and time consuming. However, when only a few surface curves have to
be computed and elevations are needed all along the chanmel, thelStep
Method is most indispensable. The ultimate accuracy of the solution
will depend upon the number of steps used for the computation. The
smaller the depth increments, the more accurate are the results be-
cause of the assumptions made regarding energy loss. Which is the
most economical way to obtain the required accuracy with minimum effort?
This problem has been studied in this work. From the available liter-
ature it has been seen that most of the authors have not been enthu-
siastic in recognizing this problem. Numbers of methods are available
in solving ti:e problem in gradually varied flow. éonsiderable work
has been done to devise many labor-saving methods for the convenience
of the human operator, who can quickly and calmly look up tables or
trace solutions on a graph, but who finds it more lengthy and difficult
to do arithmetical calculations. Also he prefers his calculations to
be direct and explicit, and not to involve the tedious repetition of
trial-and-error processes which are often indispensable in open-channel

flow problems.
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The high speed computer takes quite a diffefent view of the
matter. It can calculate with great spged, and is ﬁot deterred By the
repetitions required in trial processes., Also the human programmer
directing the machine can easily and quickly write the instructions
governing these trial processes. The computer can lgok up tables just
"as readily as it can perform calculations, but tables and gfapﬁs are
generally regarded as a nuisance in computer work for two reasons:
They take up valuable storage space in the machine, and the programmer
must transfer them manually to tape or cards and then load them into
the machine,

In using graphs their ordinates would be listed in the machine
as tables, and the scanning of a graph is simulated by looking up the
table. But still these scanning and interpolation procedures in a
computer are quite awkward, It appears therefore that the computer's
view of the labor problem almost exactly reverses the view of the human
operator. It does not follow, however, that an engineer with access
to a computer need scrap all the procedures developed extensively so
far in water surface profile computations, For quick spot checks or
for small schemes, the engineer will always have a use for methods
that can‘be operated at the desk or in the drawing office, and that will
yield solutions quickly. For comprehensive reviews of large schemes,
the computer comes into its‘own but until it becomes cheap and small
it will not completely displace the methods which have been developed

- — so far in open channel flow problems.



CHAPTER II

REVIEW OF LITERATURE

Most of the earlier investigations are confined mainly to the
backwater aﬁd draw.down curves in uniform channels on mild slopes which
form the more important classes of surface profiles encountered in
practice, The computation of gradually varied flow profiles involves
basically the solution of the differential equation of gradually varied
flow. The main objective of the computation is to determine the shape
of the flow profile. Broadly classified, there are three methods of
computation; namely, the graphical-integration method, the direct-inte-
gration method, and the Step-Methods.

The theory of varied flow was first postulated in a complete
and comprehensive manner by J. M. Belanger in 1828. His method con-
tains the general differential equation for gradually varied flow and
method of solutions by successive approximation. The fundamental prin-
ciples were so well covered that little has since been added to modify
the differential equation in its original form. All the subsequent in-
vestigations have been mainly confined to the method of solution of
the gradually varied flow equation by direct, approximate and graphical
integration.,

The earlier attempts to obtain an analytical solution by direct
_integration of the differential equation were restricted to flow in

7
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channels of special form. The case of rectangular channel of great-width
was treated by Dupuit (1848) and Ruhlmann (1880) both ignoring the effect
due to changes of velocity. The same case was treated in complete form
by Bresse (1860), considering the effect of friction as well as that of
the change of kinetic energy, and Bresse used the Chezy formula for the
evaluation of friction. After experimental studies had shown that the
Chezy C was not constant, Bresse's function fell into disuse and it is
known that the shape of the channel may have an appreciable effect, so
that Bresse's curves cannot be used if the greatest accuracy is desired.
Bresse's method of integration of the differential equation leads to the

result
2
Y., L. &
X o) yn[so (g)](P

where ¢ is known as Bresse's function, and is equal to

2
du 1 u tutl 1 -1 8
le—.a?“é[“gm—.nﬂ R

vhere u = y/yn and A, is a constant of integration.

The case of broad parabolic channel was treated by Tolkmitt (1898).
. Many other solutions for a rectangular channel based on a variable coeffi-
cient in Chezy equation were due to Masani (1900}, Schaffernak-Ehrenberger
(1914), Baticle (1921, approximate trapezoid), Husted (1924), Kosney (1928),
Schokliseh (1930), and Gunder (1943).

The first attempt to arrive at a solution suitable for any type
of cross section was begun by Bakhmeteff (1932) and subsequently pre-
sented in a more complete .orm by Mononobe (1938). Mononobe (15) who.

agsumed both A and P to be monomial functions of y - an assumption that



appears to introduce little error for the depth range of the ¥ and the

M2 curves in many types of channel. Bakhmeteff's approach has met with
wide spread favor among hydraulic engineers. Finding that for prismatic
channels the product AZCZR may satisfactorily be represented as a constant
power of y over a considerable depth range, Bakhmeteff was able to develop
by analytical and graphical means a series of integral tables, use of which
greatly simplifies routine computation of surface profiles for positive
profiles. Under Bakhmeteff's guidance, Matzke (13), extended this

method to the case of adverse slopes, the nature of which requires a
different set of tables.

In an attempt to improve Bakhmeteff's method, Mononobe introduced
two assumptions for hydraulic exponents. By these assumptions the effects
of velocity change and friction head are taken into account integrally
without the necessity of dividing the channel length into short reaches.
Thus the Mononobe method affords a more direct and accurate computation to
these two types of surface profile, Mononobe submitted plots of his inte-
gration function, compared his results at length with those of nine
earlier investigators, and presented a series of ingenious laboratory
tests to substantiate his computations. In order to verify the curves ob-
tained by the methods of previous'investigators, Stevens (1936) checked
the Step-by-Step method for Ml-profile, a backwater curve with results
scarcely discernible from the experimental data.

Although the general principles of gradually varied flow have been
developed over a period of many years, it remained to Bakhmeteff (2) t§

organize these principles for ready engineering use. In the Bakhmeteff
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Method, the channel length under consideration is divided into short
reaches, The change in critical slope within the small range of the
varying depth in each reach is assumed constant and the integration is
carried out by short range steps with the aid of a varied flow func~
tion. Mononobe Method provides a direct procedure whereby results can
be obtained without recourse to successive steps., In applying this
method to practical problems, it has been found that some of his assump-
tions are not satisfactory in many cases, and another drawback of this
method perhaps lies in the difficulty of using the accompanying charts,
which are not sufficiently accurate for practical purposes. Bakhmeteff's

varied flow equation is

- gdny¥
s &+ 188D
1- &)

where

B = CZ:SOb/g-p

A complete integration of the differential equation of non-
uniform flow has been developed by Woodward and Posey (1943) (23), for
channels with horizontal bottom grade, but this integration is not applied
to channels with sustaining slopes. Because of the importance of non-
uniform flow and the particular difficulties in computing backwater curves
in closed conduits, C. T. Keifer and H. H. Chu (1954) (7) have devised
new procedures facilitating backwater computations. The methods developed
by earlier investigators cannot be applied accurately to closed conduits
when flow is near the top. C. J. Keifer and H. H. Chu proposed a method

for separating many of the involved factors in the non-uniform flow
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equation so that it can be integrated numerically with respect to the re-
lative depth of flow, y/D, in which y represents the depth of flow and D
is the diameter of the conduit. Later, Lee (1947) (14) and Von Seggern
(1950) (22) suggested new assumptions which result in more satisfactory
solutions. Von Seggern introduced a new varied flow function in addi-
tion to the function used by Bakhmeteff; hence, an additiomal table for
the function is necessary in his method. In Lee's method, however, no
new function is required.

Many investigators have suggested means of refining Bakhmeteff's
original work. Ven Te Chow (1955) (3) in particular has developed
methods which extend and consolidate Bakhmeteff's work while retaining
the same form of varied flow function. Ven Te Chow's varied flow equation

is

vhere

U= y/yn.

He has given extensive tables and charts which are simple and time saving
for practical application.

J. M. Lara and K. B. Schroeder (1959) (9) developed two methods
in their work with the Bureau of Reclamation for the computation of water
surface profiles in natural streams. First method is a trial and error
procedure which involves step-by-step computations. The method has a
very wide scope of application, particularly applicable to the irregular

channel in which the cross section consists of a main channel and separate
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overbank areas having individual "n" coefficients., Velocity head changes
are taken into account by weighting process and corrections can be includ-
ed for eddy losses within the éeach. Reach length representing the flow
path between sections, however, are assumed equal for the main channel
and overbank areas. The second method is also a trial and error procedure
involving step computationms. Hoﬁe&er, it differs from first method in
that reach lengths representing the flow path between sections are dif-
ferent for the main channel and overbank and the overbank reach length
could be considerably shorter.

A relatively simple and practical method has been proposed for
the computation of water surface profiles in natural streams, by P. A.
Argyropoulos (1961) (1). It is an advantageous method when several back-
water profiles must be determined in the channel. The velocity head
corrections have been taken into account and the effect of bend losses,
bridge-pier losses, and losses owing to change in shape of the cross
section can be include& when necessary. The method is based on the as-
sumption that the velocity of flow is not uniformly distributed over the
area of any cross section.

J. A, Ligget (10) (1961) developed a different procedure for the
general solution for open channel flow profiles. This method is claimed
to lend itself either to hand calculation or to calculation on the digi-
tal computer. His procedure deals with the derivation of the simplified
equation of non-uniform flow after applying certain boundary conditions
and solving that equation by Newton-Raphson Method of Successive Approxi-
mation. The present classical solqtions do not allow for the variations

in chanmnel width or cross section. Also, many of the present methods
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are troublesome near points of critical depth. However, the author him-
self has admitted that the method is evidently somewhat more laborious
than the methods now in use.

The effects of bed slope and roughness on the form of M1 - type
backwater profile in rectangular channel has been studied by H. R.
Vallentine (1964) (21). For channels of given width-depth ratios and
maximum-to-normal depth ratios, non-dimensional profile forms are seen
to depend on the normal-flow Froude numbers. There is little readily
available information on the actual proportions of the profiles and the
effect on these proportions of variations in flow geometry, roughness,
flow rate and bed slope. In this study which is limited to M1 - curves,
the variations of profile with bedslope, roughness and channel width are
presented in graphical form. Non-dimensional plots of the profiles show
a measure of similarity not readily recognizable from the usual analy-
tical approaches. It appears practical to gemeralize, at least approxi-
mately, regarding the vertical displacement of the water surface and the
length of the profile. These measures can be of value as approximate
guides, useful for preliminary design purposes, thus eliminating compu-
tation when precise values are not required.

In the treatment of irregular chammels, it is possible, just as
in the case of uniform channels, to replace the tiﬁe consuming, tedious
and trial process by graphical methods based on plotting certain proper-
ties of the cross section against the water level, or stage. Leach (1919),
Grimm (1928), Steinberg (1939), Escoffier (1946), and Ezra (1954) devel-
oped such graphical mefhods which are useful for determining a family of

flow profiles quickly. But the advantages of graphical procedures are
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offset by thier limited accuracy and applicability.

The first attempt to use computers (5) for calculations of back-
water curves was in Canada (1956). One machine did the work of 50 men
on the calculations of backwater curves, so vital to the hydraulic jug-
gling of the St. Lawrence River. The figures it produced have been of
constant use to Canadian and U.S. enginéers all along the 40 mile stretch
of river from Barnhart Island to Lake Ontario. The British Digital com-
puter, called "Ferut" was able to produce results in a little over a year
from Fhe start of operations to the final report on a job which it was
calculated, would have taken 50 man-years to accomplish. The machine
was used to analyze all possible variables that might have developed.

By manual calculations only about one-eigth of the variables could have
been considered.

Another study has been made recently by William F. Pickard (1963)
(17) in the application of the computer to longitudinal profiles. It has
been shown that the problem of integrating the differential equation that
governs the non-uniform flow in open channel can be reduced to the evalu-
ation of three transcendental functions. This later problem was shown to
reduce to that of computing certain simple algebraic quantities and cal-
culating various low-order polylogarithm functions. A sub-program has
written in Fortran for use on 7090 I.B.M. computer. However, the deri-
vation of approximating polynomials for the several polylogarithm func-
tion presents considerable difficulties and it requires extensive tables
of polylogarithms and also it demands high degree of mathematical skill.

Hydro: The hydro (12) (1966) is a content-oriented computer

language system, developed by the Department of Civil Engineering,
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Carnegie Institute of Technology, for the solution of hydraulic engin-
eering problems. This system has two principal components: a compiler
and a procedure library. When a HYDRO program is run, the compiler
translates it and assembles from the library an equivalent ALGOL pro-
gram which is then executed. Two generalized computer programs in ALGOL
language has been developed only for natural rivers, using Standard Step
Method. One computes a profile for a single regime -- subcritical or
supercritical -- emanating from a single control point. The second com-
putes profiles past many control points, with changes of regime éer-
mitted. Both procedures conpute curves for each of the input discharges
supplied by the user.

U.S. Army Corps of Engineers, Hydrologic Center, Sacramento
(1967) (19), have developed very recently a generalized computer pro-
gram of backwater computations for Frotran II for the I.B.M. 1620 and
G. E. 225 computers, using the "Standard Step Method" for natural rivers.
This program will compute the water surface profile for sections of any
shape using up to 100 points to describe the cross section and using up
to 10 different "n" values. Backwater through bridges may be made by
a special routine for low flow control and pressure flow. Correction
for bridge deck area and wetted perimeter can be made for a bridge sec-
tion when using the normal backwater routine. However, a more funda-
mentally based formulation is required if one is to achieve very much

generality and flexibility.



CHAPTER III

DEVELOPMENT OF PROCEDURE FOR DIRECT INTEGRATION

In the methods by direct integration the attempt is made to ob-
tain a direct solution of the varied flow function to dispense with the
large numbers of steps required by Step Methods. In order to integrate
the equation of gradually varied flow, it is necessary to establish the
relationship between the surface width, area, friction slope and depth
of flow. For a given rate of flow in a given uniform channel, these
variables may be expressed in terms of the depth y i.e., dx = ¢(y)dy
in which ¢(y) is usually of a form that is most difficult, if not impos-
sible, to integrate by methods of ordinary calculus.

This chapter presents a new method of integrating the equation
of gradually varied flow in prismatic channels. The differential equa-
tion of gradually varied flow is integrated under given assumptions, re-
sulting in an equation which contains varied flow functions, belonging
to the type same as Ven Te Chow's (3) varied flow function. Formulas
for hydraulic exponents derived by earlier investigators have been used
throughout the computations. But the Voluminous Tables, curves, and
graphs developed by earlier investigators-are no longer of widespread
interest in view of the extensive and rapidly growing use of high speed
digital computers of this era and the use of tables, curves and graphs

will have to be outdated sooner or later. Therefore, a new procedure has

16
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to be developed, suitable for programming to digital computers.
The differential equation of the gradually varied flow in open

channel flow can be written as

b

1-(yn/ )N
%=s.____y__ 3.1)
1- (Y Iy

It is not possible to perform this integration by conventional methods.
Equation (3.1) is integrated to give the distance x between ¥y and yz.
This equation represents the slope of the water surface with respect to
the bottom of the channel. It can therefore be used to describe the
characteristics of avrious flow profiles. The flow profile represents
the surface curve of the flowf It will represent a backwater curve if
the depth of flow increases in the direction of flow and draw down
curve if the depth decreases in the direction of flow. Twelve different
types of flow profiles (Figure 1) are possible in practical engineering
problems. All these cases are analyzed by the newly proposed technique
and compared with the other most common method and errors occurring in
each method are discussed. For the proposed analysis, all the twelve

profiles can be classified under four groups as following.

I Group: M, S, §), € =we-=s-sooomooooooooes § >0, y/y >1
IL Group: M), My, S, G =resmmereemoosomeoooes 5 >0, 3y <1
ITL Group: H,, H, =w----eess-ooeo et 5,50 ¥y =2
IV Group: A, A --=-s-esseesescossooeoooooeos § <0, ¥, <0

Positive slopes:
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Consider equation (3.1),

Let y/yn =U, dy=yn dU

M
1- G,/

dx = (/8 ) ¢ ——n dy
1- (yn/y)N

M
1- Gelyg) G0
(1/s) = - dy
° 1- G /v

- Gy am”

= (E)' . A au
o 1- (1/v)
(v Jy M N-N N
dx = +(yn/s°). ¢’n” U ! it} (3.2)
N N
1-0 1-0

This equation can also be written without any other substitution by
dividing each numerator and denominator by UN as following.

M -
Gely) o 1
x = 4@ /8) |-—o0o ¥ U (3.3)

1-yN 1-1U

The object of writing the equation (3.3) in this form is to fit a con-
verging series to the integral function for a particular range of value
for the ratio y/yn = 1.

Negative Slopes or Adverse Slopes:

For negative slopes it can be shown that the differential equation takes
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the form*
M
1- (yc/yn) &y n/y)M
dx =-(1/so) . dy
1+ (v_/y)¥

Let yly =1, dy =y dU
n n

1- (yc/yn)M (% "

U
dx=-(1/S) . o Yy au
o 1 n
1+ ()N
U
M. N-
(/) v M o
dx = + (yn/So) o/ —m—— - - du (3.4)
1+ 08 1+ 0¥
This can also be written without any other substitution
M-
(vely ) vE, 1
dx = (y /S)*| ———— - du 3.5
noo 140N 1+ 0¥

From the above equations, it can be seen that the terms

UN-M U-M UN-M U-M
A Group: ’ ’ ’
: =08 1oV ¥ W
. N . N
B Group: U ’ L ’ U , and 1 present
‘ .08 1N ¥ 140N

considerable difficulties in integration for different values of M and

*Chow, V. T., Hydraulics of Open Channel Flow. McGraw Hill Book
Co. Inc., 1955.
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N since direct integration of these terms is impossible. The procedures
only to integrate the first four terms in Group A are required since the
last four terms fortunately are the special cases of the terms of Group
A, when M is equated to zero in writing the program for the computer.

There are limiting conditions to the surface profiles. For
example as y approaches yc, thg denominator of Equation (3.1) approaches
zero. Thus dy/dx becomes infinite and the curve crosses the critical
depth line perpendicular to it. Hence surface profiles in the vicinity
of y =y, are only approximate. Similarly when y approaches Y, the
numerator approaches zero. Thus the curve approaches the normal depth
Y, asymptotically. Finally, as y approaches zero, the surface profile
approaches the channel bed perpendicularly which is impossible under
the assumption concerning the gradually varied flow.

Thus all the intervals mentioned above fall in the domain of
singular integrals. A variety of procedures exist for dealing with sing-
ular integrals, whether for singular integrals or for infinite range of
integration. In such cases, ignoring the singularity may be successful.
Under certain circumstances it is enough to use more and more arguments
vi until a satisfactory result is obtained. Series expansions of all or
part of the integral, followed by term by term integration, is a popular
procedure provided convergence is adequately fast.

As already pointed out earlier, most of the curves are infinite
in extent, mathematically speaking, although for practical purposes it
is reasonable to consider that a curve has reached it's end when the
depth is within 1 to 2 per cent of it's as}mptotic limit. Thus in the

present amalysis singular points in the integral functions are avoided.
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Positive Slopes

Drop-Down Curves:

Now consider the integral U dy, vhere y/y, = U.
1-w

When U <1, profiles of the II group, My, M3, S, and Cg -- drop-down

curves can be computed. Expanding the function in power series

UN-M =|:UN-M 1+UN+U2N+U3N+....+....]

oM TN 3NN

UN'M dU = UN'M+1 + U2N'M+1 + U3N"M+1 + e e e s
1- UN N-M+1 2N-M+1 3N-M+1

1}

p MY + g + ¥ + ...
NWHL INMHL INNMEL (3.6)

L (sp) (3.7)

Where S, is a hypergeometric series of equation (3.6) and it converges
for all values of U<1, since the practical range of values for N being
2'2<NK5'5 and for M being 3 <M €5, as given by V.T. Chow (4).
Similarly, it can be shown that the integral

o~ . N 2 2
d Us| m—— + e + — + ,.,.. 3.8
1- 0 N+1 W +1 W+ 1 (:8)

=U'SS...-0...--¢-:.0-.00 (309)

Where S5 is the hypergeometric series in equation (3.8)
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Finally the equation (3.2) for the drop-down curve takes the form

dx:E.{Ze U . 51 - U S gLl ... .. (3.10)

M M+l
So Yn}

Backwater curves:

Now consider the integral U & . vhere v/ = 1.
10N s y/yn

When U771, profiles of the I group, Mj, Sl’ SZ’ and C1 -~ backwater

curves can be computed., Expanding the function in Power Series.

M
U M -N -2N |, -3N
-l—-—U—:N—=U [1+U + U +U F oo e e e e e
sy My g N N N,
-M -M+1 -N<M+1 =2Na=M+1
U =1 + I + T .
1-U-N M+l -N-M+1 N
=gl M Y g e
MHL N+M-1 ZM-1  3NHM-1
(3.11)
! 1 ,
- U Sz - -M+1 o 4 o o o o o o (3.12)

Where Sy is the hypergeometric series of equation (3.11) and it converges
for all values of U771, and for the practical range of values of N and M
as stated earlier,

Similarly, it can be shown that the integral

-N -ON -3N
1 = U U U :
=y W= U -0 =— + + +.....] 0.
J;U' l:N-l , 2N-1 3N-1 :\ (3.13)
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- 'U[S6 . 1] (3.14)

Where S is the hypergeometric series in equation (3.13).

Finally the equation (3.3) for the backwater curve takes the form

M
dx = %Il {_;'_C} . U-M+1. (Sz +ﬁ> - U -(36 - 1) N U>1 (3-15)

(v} n

Adverse Slopes

Drop-down curves:

Next consider the integral J————I{N;MUN du. When UL1 profiles of IV
group A2 -- drop-down curves can be computed. Expanding this term in

Power Series
N-M N-M 3N 4N
‘L_—UN-=U [l-UN‘+'U2N-U +U-....+....]

M AN SNM AN

N-M
UW—dU=UN.M+1 . p2NMEl AW
I+ N-MH1 IN-M+1 IN-M+1
Ml
=y [!N_ + 7 + - .. +.l(3.16)
N-Mtl  oNowl IN-MHL
ML
=U .S3 ------ e o o 0o o 4 » e e " e o 0(3v17)

Where S3 is again an hypergeometric series of equation (3.16) with alter-
native signs. For all values of UK, this oscillating series converges.

Similarly it can be shown that the integral
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2
o au o g o
T+

-_UN*:UN-!-I.;.E:II +§‘I-+_1-""+'°']_(3'18)

= U ‘87 « o . . ¢« o 8 o o o o . (3-19)
Where S; is the hypergeometric series of equation (3.18).
Therefore, the equation (3.4) takes the form
ax= 2| (g )M-U"M+1-s -U 8 141 (3.20)
2= = | Gy 3 7] :

0

Similarly, the equation (3.5) can be written as follows.

M
= )7 M+l Ll yecs..-
s g {y_:} .y G“ +M_1> Ue(sg-1 | , 0> (3.20)

N -2N -3N
- = _ U =
Where 84 = YRRl NALT + -1 P
-N -IN -3N
_ B U U -
and 88 = —N-l " WAl + ol c e e + . .

From equation (3.21) , for U1, profile of the IV group, A3 -- back-

water curve can be computed. For all values of U1, the oscillating

hypergeometric series SA and S, converge. Now two questions; whether

8

the above derived series converge fast emough and whether they are use-
ful for practical computational purposes, remain unanswered. These ques-

-

tions will be discussed in detail in the next chapter.

Horizontal Channels

Computations of profiles in III group for horizontal chamnel do
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not present any difficulty. The differential equation for this case

can be shown (4)

M-N
d
a-;% = Sc[ h], where p = y/y.

Integrating and solving for x,

N-M+1 N+1L.
x = (¥/S,) P - P
N=-M+1 N+1

coeoee . (3.22)




CHAPTER IV

PRACTICAL EVALUATION OF FUNCTIONS DEVELOPED

IN WATER SURFACE PROFILE COMPUTATIONS

This chapter deals with the study of actual meth.ods of numerical
computation with the subject of function evaluation. The functions can
be expressed in terms of polynomials which arise quite naturally from
the truncation of infinite power series. A polynomial approximation of
degree n can be obtained by simply truncating the infinite series, and
the series must converge for all values of U. The number of terms which
must be retained to guarantee an accuracy ¢ will, however, clearly de-
pend upon the value of U. In order to determine the number of terms, U
should be restricted to a certain known interval. Thus if U is on the
interval 0 € U < 1, then themaximum error occurs at the end point U = 1.
Indeed some series converge so slowly that the amount of work required
to evaluate the approximate polynomial becomes prohibitively large.

Even more important, the addition of a large number of terms will even-
tually lead to a serious loss of accuracy, owing to round-off error ac-
cumulation. It is seen in the previous chapter that all the integral

functions give rise to eight different infinite power series (See Table
1). But it is not possible to sum an infinite number of terms. There-

fore, some sort of approximation becomes a necessity. Now the most

26




TABIE I

DIFFERENT TYPES OF POWER SERIES ARISING IN INTEGRAL FUNCTIONS

N . 3N
[UN+U -x-_.U.+...+...]=s1
N-M+1 2N-M+1 3N-MHL
-N -2 -3N
[ U + L + L + . + 1l = S,
N+R{-1 IN+M-1 IN4M-1
N N
[UN-U + R
N-M+1 IN-MHL 3N-MHL
-N - -3N
L T s U ) + ] =,
N+-1 A1 3N~
N N 3N
[—U-+L+—U-—+...+...']' = S,
N+L 24+ 3L
-N .
LRGSR N S + ] = S,
N-1 -1 3N-1
2 3N
AN N N B

N+1 N+l 3N+
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TABLE I (cont'd)
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important question is what constitutes a good approximsztion. This depends
on the rapidity of convergence of the series. The hypergeometric series
developeﬂ in the previous chapter coﬁverges very fast for all values of

U in the range 1.1 < U< o« and in the range 1.01 < U < 1.1, the rate of
convergence is very slow, the range 1 < U < 1,01 being of no practical
importance. Actual computations with numerical values of practical range
have been done on a digital computer to know the nature of convergence .
in direct summation of the series. The program and the flow chart for the
summation of this series are shown in Page 32. The series 86 and SS have
been tested by evaluating term by term with the values, U = 1.01, N =

2,2 and M = 0.0, which are the minimum values possible as stated earlier
and also give rise to slowest possible converging series. Similarly, the
series S, and S, with numerical values, U =0.99, N = 2.2, M =5, the.

1 3
series S. and S. with values U= 1.01, N = 2.2, and M = 3.0, have been

5 7
tested for convergence. As expected, they are rather slow in this range,
(see Table II). However, the convergence is guaranteed. At modern com-
puting speeds, especially with electronic machines like the I.B.M. 360,
the slow convergence may not be a good reason to rule out a computing ai-
gorithm. The accuracy expected in open channel flow problems is generally
of the order of 0.001, therefore the question of slow convergence does
not appear to be of great concern. For the series Sl’ 82, SS’ and S6
any other method of approximation other than a direct summation up to
N terms with the tolerable truncation error, would involve too much ad-
ditional work and is not advisable. However, for the other series, S3,

SA’ S7, and SS’ good approximations are available, and they will be dis-

cussed later.
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TABLE 11,

EVALUATION OF SERIES SHOWING THE NUMBER OF TERMS REQUIRED FOR:

THE GIVEN ACCURACY

Series u N M Accuracy Value No. of Terms
Required

.001 3.373 81

S1 0.99 2.2 5.q
) .0001 3.4001 156
.001 1.313 76

S2 1.01 2.2 3.0
.0001 1.3469 156
.001 -2.691 80

83 0.99 2.2 5.0
.0001 -2.6918 156
.001 . 1457 80

S4 1.01 2.2 3.0
.0001 . 1452 156
.001 1.461 76

S5 0.99 2.2 0.0
.0001 1.494 156
.001 2.215 78

S6 1.01 2.2 0.0
.0001 2.24%69 156
.001 .199 80

S7 0.99 2.2 0.0
.0001 .1993 156
.001 .633 80

88 1.01 2.2 0.0
.0001 .6337 156




FLOW CHART TO COMPUTE S1 OR S5 SERIES

’ \READU,M,N/

Y

et

S=-M+1

DENOM = N + §

i

SUM = X/DENOM

TERM = X/DENOM

|

DENOM = DENOM + N

i

_ TERM-X- (DENOM - N)
DENOM

TERM

4

Y
SUM = SUM + TERM

ERM < .000 0——>——DENOM = DENOM +4N|

- YES

\ WRITE SUM _/

31




FORTRAN IV SUB-PROGRAM FOR COMPUTING S

(IBM 1130)
/ [$JOB¥T
/ [¥FOR
*10CS. (CARD, 1132 PRINTER)
*mﬁmn PRECISION..
*ONE WORD INTEGERS

*LIST SOURCE PROGRAM

C SUBPROGRAM FOR COMPUTATIONS OF SERIES S, OR SS'

1
READ (2,99) U, HM, HN

99 FORMAT (3F 10,4)
X = Uk * BN
S=-m+1.
DENOM = HN + S
SUM = X/DENOM
TERM = X/DENOM
DENOM = DENOM + HN
S TERM = TERM * X * (DENOM - HN)/ DENOM
SUM = SUM + TERM
IF (ABS(TERM) - .0001) 16, 16, 12
12 DENOM = DENOM + HN
G0 T0 5
16 WRITE (3,100) SuM
100 FORMAT (E 15.8)
CALL EXIT

END
32
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Many techniques exist for finding approximating polynomials
which reduce the amount of work and guarantee a specified accuracy,
Perhaps the best known of these is Chebyshev economization. The trun-
cated series have the property that the maximum error occurs at the
end points of the interval of interest. The objective is to find a
polynomial approximation to a given function which (1) is of lower de-
gree than the truncated power series, (2) spreads the error evenly
over the whole interval, and (3) provides the same required accuracy.
Chebyshev polynomials are only useful for a particular range of value,
-1 < U< 1. Any polynomial of degree n is uniquely expressible as a
linear combination of the Chebyshev polynomials. The first ten of
the Chebyshev polynomials are listed in Column A of Table VII in the
Appendix A.

Another simply but very useful tool in Chebyshev approach
for the present analysis is what is known as "Economization of Power
Series" mainly due to Lanczos (8). If the truncated series approximates

a given function

_ 2 n 4.1)
£ @) = 2, + 3 U+ 3, U 4+ ==e-- + a U

in the interval 0 < U < 1, the error tends to be large at the ends of
the interval and small in the middle. Using Table VII given in Appen-
dix A, the truncated series is converted to an expansion in Chebyshev

polynomials.

£ @ = b0 + bl T1 v + b2 '1‘2 U) + === + bn T, U “.2)
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This is an expansion in orthogonal polynomials. In fact, the expan-
sion of a function into Chebyshev polynomials is mere reinterpretation
of the expansion of an even function into a Fourier cosine series.

This fundamental relation, which translates the outstanding properties
of the Fourier Series into the realm of power expansion, is the most
important property of Chebyshev polynomials. For many functions the
expansion in Chebyshev polynomials converges more rapidly than the ex-
pansion in any other set of orthogonal polynomials. Thus it is expected
to find bk of Equation (4.2) becoming small very rapidly as compared
with Ak of Equation (4.1). The Chebyshev expansion may be converted
back to a polynomial using Table VII (Appendix A). In general, it is
expected that if a power series consisting of many terms, is converted
to a Chebyshev expansion, then a much lower order polynomial approximation
can be obtained by dropping many of the later Chebyshev terms without
greatly increasing the error over that of the error due to originally
taking a finite number of terms in the power series. For many functionms,
especially those with slowly converging power series, the telescoping
effect can be quite dramatic. Hastings (6), has shown that some poly-
nomial derived from the Chebyshev approach, containing only five or six
terms approximate certain functions like log (1 + U) to an accuracy of
.0000015 for all U on the interval 0 < U< 1, The Taylor Series expan-
sion for some of those functions converge so slowly that many hundreds
of terms would be required for the same accuracy. The procedure for
economization of power series can be summarized as follows.

Step 1. Expand f£(U) into a Taylor Series valid on interval [0,1].
Truncate this series to obtain a polynomial
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_ 2 n
Pn(U) =3, + a1U + aZU +. ..+ anU

which approximates £(U) to within error ¢ for all U in [0,1].
Step 2. Expand Pn(U) into a Chebyshev Series

Pn(U) = b0 + b1 Tl(U) +...+ bn Tn(U),

making use of the Table VII (Appendix A).
Step 3. Retain the first k term in this series,

S (U) b +b Tl(U) +.. .4+ bk Tk(U)

choosing k so that the maximum error given by

B0 - 5,0 Se+ By *t...t b

is acceptable.

Step 4. Replace T . ., k) by its polynomial form using
Table VIIf (Appendlx A), and rearrange to obtain the econo-
mized polynomial approximation of degree k in standard form,

2 k
fU) » b0 + biU + bZU +...+ ka
Now consider the S3, SZ, S7, and 38 of IV Group which arise in

the case of adverse slopes. Since'these are oscillating series, it is
possible to sum the terms by less direct methods. Chebyshev polynomial
approximation has been found to have quite a dramatic effect on the

evaluation of these series. Letting UN =xand -M+l =5, and 0< x< 1

23 4 3
5, == - + S -4

NS 2NS  3NHS  4N4S ON+S

using the Table given in Appendix A, this truncated series is converted

to an expansion in Chebyshev polynomials.

< . (TO+T1) ) (3T +4T 2) (10T0+15T1+6T2+T3)V'-
2(N+S) 8 (2N+S) . 32(3N+S)
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The Chebyshev expansion may be converted back to a polynomial, using
Table VIII, Appendix A. The detail procedures for finding Chebyshev
polynomial coefficients are found elsewhere.* After using Lanczos'
method of Economization of Power Series, it can be shown that the fol-
lowing polynomial of only 8 terms can be obtained with the same accuracy
that can be achieved by directly summing many hundreds of terms of the

original series.

.999996423% . 9997482476:{2 .995397 0774x3

S3 ¥ S ) )
.9629352336x" N 838270355550 ,5719763382%°
(6345) (5N45) (645)

8

.25261945591{7 _ -0516283536x

T sy (8N+3)

y where S = =M + 1,(4.3)

Exactly the same Chebyshev polynomial coefficients hold good for other
series 84, S./., and 58 of this group. It is amazing to see that the
evaluation of only 8 terms will give accuracy far superior to direct
summation of many hundreds of terms of the original series. Therefore
this polynomial has been uniquely used in the general computer program

for computations of water surface profiles with adverse slopes.

* M. A. Snyder. Chebyshev Methods in Numerical Approximation.
Prentice-Hall Inc. Englewood Cliffs, N.J., 1966.

*C. Hastings. Approximations for Digital Computers. A research
study by the Rand Corporation. Princeton University Press, Princeton,
N.J., 1966.

[



TABLE III. COMPARISON BETWEEN DIRECT SUMMATION AND CHEBYSHEV
POLYNOMIAL APPROXIMATION

No. of Terms Required
Chebyshev. Direct

SERIES U N M Value Polynomials Summation
S3 .99 2.2 5.0 -2.6914408 8 180
S4 1.01 2.2 3,0 .14516469 8 180
S7 .99 2.2 0.0 .19929927 8 172
SS 1.01 2.2 0.0 .63365053 8 172
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CHAPTER V

COMPUTATIONS OF CRITICAL DEPTH AND NORMAL DEPTH

IN TRAPEZOIDAL CHANNELS

Computations of Critical Depth: Critical flow is an important problem
in the hydraulics of open channels. The problem of computing the cri-
tical depth is encountered frequently, so that it is advantageous for
hand computations, to have dimensionless curves and relative tables as
computational aids. The direct integration method of solving a non-
uniform flow equation requires the determination of both the critical
depth and the normal depth for each particular discharge. For trape-
zoidal cross sections, this is rather difficult, When the discharge

in a trapezoidal channel is given, the Equation (5.1) for critical depth
would yeild a sixth degree equation, the solution of which would involve
a cumbersome triai and error procedure. To overcome this difficulty,
various graphical methods have been suggested by a number of investi-

1
gators, N. N, Pavlovskij, S, Kolupaila,2 N. Rajarathnam and A. Thiru§

lN. N. Pavlovskij, in Kratkij Gridrauliceskij Spravocnik Tech-

gosizdat. Brief Consulting Book of Hydraulics. Leningrad, 1940 (Russian).

2
S. Kolupaila, Universal Diagram Gives Critical Depth in Trape-
zoidal Channels. Civil Engr. Vol. 12, Dec. 1950.

3N. Rajarathnam and A, Thiruvengadam, Critical Depth in Open
Channels. Journal of India Institute of Engineers. Vol, 41., No. 8,
Part I. April 1961.
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vengadam, and R. M, Advani4. Critical depth may be defined as the depth
at which a certain discharge @ flows in a channel of a given cross section
with a minimum content of specific enmergy. It can be shown that for cri-

tical flow, there exists the relationship
2 3
Q' /g = A, /T (5.1)
For a trapezoidal channel,
2 3
okQ/g = [(bﬂyc)yc] /(b+2zy )

This reduces to a sixth degree equation

3.6 2.5 2 4 ,.3 3 =
2y, +3bz7y,” +3bzy, + b A 2C°zyc -bC, =0 (5.2)

where Co =c(Q2/g = constant for the given discharge. It can be seen
that a direct solution for critical depth Y, is not easy where large
numbers of computations are to be performed for various discharges in
different trapezoidal channels., The first successful attempt in this
direction was made by S. Koulupaila, who introduced a diagram that is

actually dimensionless, and is based on a three parameter equation
- 2725 = 3,5
X = b/yc oXQ°/gb? = N = (x+z)7/x"(x+22), (5.3)

which is claimed to be universal in application. Curves can be plotted
as N versus x for different values of z. Knowing N and z from the given
conditions of flow, x can be obtained from the appropriate curve; hence
Yo is calculated.

Equation (5.2) is modified further, to yield a more useful two

4‘R. M. Advani, Critical Depth in Trapezoidal Channels. A.S.C.E.
Proceedings. J. of Hydraulics Division. Vol. 88. No Hy3, May 1962.
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parameter equation by later investigators.

Raja:‘?:h“a‘“ o _ .| {oliono? + ardona}? |
i .
(9)5/2 {1.;. /(b/gz)}llz
Thiruvengadam 2 Ve
3
Advani °£9§ = N1 = (Zb/nyc) * 1)
gb ()2 (B )y +2) (5.5)

ye ny,

. Dimensionless curves have been prepared using the above equations to cal-

culate Yoo

Proposed procedure: It appears that all of the above methods are of neg-
ligible value for digital computers, and the problem of finding the cri-
tical depth seems to be ridiculously simple on computers, provided the
critical depth Equation (5.1) is reduced to suitable form. It can be

- done as follows: ‘
Qg = 43/T = (vh2y )% 2 / (b+227,)

with

Co = Qz/g = constant

5. = C, (b422y,)/(btzy,)3

o = COI/% (b+22yc)1/3/(b+zyc) (5‘6).,,
- £(7.) (5.7)

The procedure to solve for V. involves
(1) Finding an approximate root

(2) Refining the approximation to the prescribed degree of
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accuracy.
The first approximation, or initial guess is known from physical con-
siderations, Refining the approximation is done by the method of suc-

cessive approximation or iterative technique.

Let (y); = f (YC)O
Next approximation (3 = £ (Yc)l
N® approximation (yc)N = f (YC)N-I

It is seen from Table IV that (yc)N converges to a solution of Equation
(5.7) very fast as N increases for different values of variables in a
practical range. The initial approximation is governed by a physical
consideration based on optimum critical velocity that may occur in
common open channel flow problems (See computer program).

Coﬁputation of Normal Depth: Computation of normal depth in a trape-
zoidal channel presents more difficulty than that of finding critical

depth. For uniform flow in trapezoidal channel
2/3
= (o )y . LB {(bﬂy )5, [ (2T )} (5.8)

This equation reduces to a 10th degree equation,

4 6

2 3y 8+ 10632y " + 52b y

5yn + Sba’y 2 +10p

5.5 2
+ b7y " = epeq yn2 2c1c2 Vo " c2b2 =0 (5.9

where

ey =2 N and ¢y = Q'€/1.48% fS-(')
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FLOW CHART FOR COMPUTING CRITICAL DEPTH

\ READ Q,B,Zz /

Cc = (Q%/g) - 3333

\

[

ASSUME MAX V = 1oq

1

3

[

(L=

[

[FIRST APPRX ¥CG = A/B|

\

i

ITN =0

-3353
(B +2:2.7C0)
YONEW = C - 3 37.7c6) ~

)

[

EPS = YCNEW-YCG YCNEW = YG

IIN = ITN+1'




. FORTRAN IV SUB PROGRAM FOR CRITICAL DEPTH

(IBM 1130)

/ [$JOB¥T

| [¥FOR

*I0CS(CARD,1132 PRINTER)

*EXTENDED PRECISION

*ONE WORD INTEGERS

C SUB PROGRAM FOR CRITICAL DEPTH INTRAPL CHANNELS

C Q = DISCHARGE CFS, B = BOTTOM WIDTH, Z = SIDE 'SLOPE
READ (2,99) q, B, Z

99 FORMAT (3F10.4)
C = (Q¥*.2/32) ** ,3333

C ASSUME MAXIMUM VELOCITY V = 100FT PER SEC

4=0
\

C YCG = FIRST APPROXIMATION FOR CRITICAL DEPTH
C YCNEW = CRITICAL DEPTE
YCG = A/B
ITN = 0
5 YCNEW = C* (B + 2.% Z * ¥CG) ** .3333/(B + Z* YCG)
EPS = YC - YCG o
IF (ABS (EPS) - .001) 42, 42, 43
43 ITN = ITN + 1
IF (IIN - 15) 16, 16, 12
16 WRITE (3,100) YCNEW

100 FORMAT ( F 15.7 )
43
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YCG = YNEW
G T0 5
12 CALL EXIT
42 WRITE (3,100) YCNEW
CALL EXIT

END

e




TABLE IV, COMPUTATIONS OF CRITICAL DEPTH BY ITERATIVE METHOD

Q b 2 v, i = No of iterations
15 4.0 .25 47 3
47 3.0 .5 1.773 5
160 8.0 .75 2.157 4
240 20.0 .5 1.624 3
300 12.0 1.73 2.381 5
400 20.0 3.0 2.075 5
450 10.0 2.0 3.192 7
500 18.0 1.0 2,733 b4
600 12.0 2.0 3.487 6
800 15.0 1.5 3.884 6
900 20.0 155 3.613 5
1000 20.0 1.5 3.852 4
2000 15.0 2.0 6.211 8
3000 20.0 2.5 6.70 8
4000 50.0 1.5 5.505 5
6220 100.0 1.0 4.851 4
10000 50.0 2.5 9.153 6
50000 300.0 2.5 9.263 4
100000 500.0 4.0 10.437 4
150000 500.0 4.0 13.555 4

45
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the direct solution for normal depth Yy for the given discharge from
this equation is formidable, though not impossible. At present, several
methods are available, trial and error approach, graphical methods and
the use of hydraulic tables being more popular. But again, none of
them are suitable for digital computers. Exactly similar method of
iterative technique as that used for finding critical depth is suggested

for finding normal depth. The procedure is as follows.

From equation of uniform flow (5.8)

., - [(szn)sn , (b+°1yn)2/3]' /503

n

where
cHp=Q- n/1.48§>' Sol/2 , and ¢q = 2VIFz
Y = c23/5 (btery,) 25 (btay)
T, (5.10)
y, = £0) (5.11)

With a practically reasonable first approximation for yn, it is possible
to solve Equation (5.11) with the required degree of accuracy by the
iterative technique. (See Table V.) The above mentioned procedures

for the evaluation of critical depth and normal depth are also simple
for hand computations. A uniform velocity of 20 ft/sec and a critical
velocity of 100 ft/sec have been found reasonable assumptions which

give rise to minimum values of ¥, and y, as first approximation and then



FLOW CHART FOR COMPUTING NORMAL DEPTH

\ e 0,3,2,5.,0 /
Y
‘0 =2. (1+129)°5
Y
[TASSE WAX VEL v=20|
Y
A= Qv
Y

FIRST APPROXIMATION
YG = A/B

Y
1 ¢=qun/(1-486%

L

ITN=0

1

A

TNEW = ¢+5. (B+00-¥6) "4/ (B+2-YG)

/

EPS = YNEW-YG

NO

ABS (EPS) <.001

N\ WRITE, W~

47

CALL
EXIT




FORTRAN SUB PROGRAM FOR NORMAL DEPTH

(IBM 1130)

/ [630BBT
| IBFOR
* T0CS (CARD,1132 PRINTER)
* EXTENDED PRECISION
* ONE WORD INTEGERS
C SUB PROGRAM FOR NORMAL DEPTH IN TRAPESOIDAL CHANNELS
C Q = DISCHARGE.CFS, B = BOTTOM WIDTH, Z = SIDE SLOPE
C S = BED SLOPE, AN = MANNING'S FRICTION COEFFT.
READ (2,99) Q,B, Z, S , AN
99 FORMAT (5F 10.4)
Co=2, % (1, +2%%2) %% 5

C ASSUME MAXIMUM VELOCITY V = 20 FT PER SEC

A=
v

C YG = FIRST APPROXIMATION FOR NORMAL DEPTH

Y6 = A
B

C=Q* AN/ (L.486* (S * * .5))
IIN=0

C YNEW = NORMAL DEPTH

5 YNEW ((C * .6) * (B+ GO * YG) * * ,4) / (B+Z * YG)
EPS = YNEW - YG
IF (aBS ( EPS ) - .001) 42, 42, 43

43 IIN = IIN + 4

IF (ITN - 15) 16, 16, 12
48



16 WRITE (3,100) YNEW
100 FORMAT ( F 15.8)
YG = YNEW
G0 T0 5
12 CALL EXIT
42 WRITE (3,100) YNEW
CALL EXIT

END

49



TABLE V.,  COMPUTATIONS OF NORMAL DEPTH BY ITERATIVE METHOD
Q cfs- b-ft 2z So n Yy i .
No. of iterations
15 4.0 .25 .004 .016 .838 4
47 3.0 .5 .005 .025 2,372 3
160 8.0 .75 .0005 .017 4.057 4
240 20.0 .5 .0002 .015 3.818 4
300 12.0 l.73  .002 .015 2,633 4
400 20.0 3.0 .00085 .015 2,888 5
450 10.0 2.0 .0016 .015 4.727 7
500 18.0 1.0 .0025 .025 2.468 3
600 12,0 2.0 .003 .012 4.809 6
800 15.0 1.5 .0003 .03 9.773 7
900 20.0 1.5 .00015 .015 7.831 6
1000 20.0 1.5 .0001 .025 11,933 7
2000 15.0 2.0 .001 .04 12,066 9
3000 20,0 2.5 .001 025 10.29% 8
4000 50,0 1.5 .0001 012 11.541 5
6220 100.0 1.0 .0001  .022  15.108 3
10000 50.0 2.5 .005 04 11.756 5
50000 300.0 2.5 .0005 .045 24,803 5
100000 500.0 4.0 .001 045 22,505 5
150000 500.0 4.0 .0002  .012  21.105 4

50
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converge to a real value in either case, Even lesser values of first
approximation should also work since the uniform velocity never exceeds
10-12 ft/sec in manmade channels or in natural streams. Newton-Raphson
Method (26) can also be applied to the Equations .(5.6) and (5.10) but

the only disadvantage is that the evaluation of the first derivative of
these equations which are essential in this method, is rather cumber-
some. However, in most of the cases, Newton~Raphson Method may be super-
ior to iterative method which has been used here fro a critical depth

and normal depth computations.




CHAPTER VI

STEP METHODS AND ERROR ANALYSIS

The Step Method is perhaps more widely used than the others in
computing surface profiles of flow in uniform channels. It is less mathe-
matically involved than the method by direct integration which requires
different sets of tables for varied flow functions of the existing methods.
For hand computations, the use of tables is not very satisfactory in com~
puting distance between the sections close to each other since a slight
error due to interpolation and round off may introduce a wide discrepancy
in results. The Step Method on the other hand, increases in precision
as sections become closer and when only a few surface curves have to be
computed and elevations are needed all along the channel; Step Method

will be most convenient.

Direct Step Method In the direct Step Method, solution involves

integration of the varied flow equation by steps, beginning with known
conditions at the control section, the size of the steps determining
the accuracy of the results. Energy equation for the non-uniform flow

between Section 1 and 2 (See Figure 2)

2 2
ViT/2g + v + z, = v, /2g +y, tzy + he (6.1)
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Fig, 2 Channel Reach for the Direct Step Method
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2 2
(Vy /28 +3,) - (V) [2g +y)) = (27 - 29) - g

E, - E, =S #x-S; &

A x = AE/(S, - S;) (6.2)

where'gf = (Sf 1+ Sf 2)/ 2 , average friction slope between any |

two reaches. In the equation (6.2) the magnitude of Ax is determined
for the corresponding difference in depth Ay. Evidently the slope of
the energy line then represents a mean over the distance 4x. So the
assumption in the direct Step Method is that the slope of the energy
grade line for this distance Ax is equal to the average of the slope
of the energy grade lines, corresponding to uniform flow at the two
sections 3} = (Sf 1 +sf 2)/ 2 , where Sfl and Sgo are found

from Manning's equation. This change in depth from the control section
to the limit which the curve approaches is first divided into an appro-
priate number of increments, thereby establishing a series of vertical
sections along the curve for which the depths of flow are known quantities.
The locations of these sections is yet unknown. This has been explored
by the method of error analysis in this present study. For the given
discharge it is possible to compute for each sections, the cross section
area, the velocity, the velocity head and the specific energy. Then AE
represents the change in specific energy and the quantity Ef, the mean
friction slope may be computed for values of ¥y and Y9 and evaluation

of 4 x is at once possible. This simple process is applicable to any
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type of surface curve and natural water courses as well as artificial
channels. It is evident, however, that the ultimate accuracy of the
solution will depend upon the factors 1) the extent to which assump-
tions leading to equation (6.2) are justified. .Z) the number of steps
adopted for the integration; the smaller the depth increments, the more
accurate are the results because of the assumptions made regarding energy
loss. The depth increments should be smaller as the profile approaches
uniform depth. If the length of the varied flow profile between sectioné
where the depths Yo and yk is to be calculated, accuracy whould be better
if the depth increments, for example, (yo - yk)/100 were used instead of
(yo - yk)/lo; So the calculation effort would be many times greater
than 10 intervals were used. This becomes a very big problem, especially

for hand computations when curves of considerable length say, 20000 or
40000 feet have to be computed. Which is the most economical way to ob-
tain maximum accuracy with minimumeffort? Table (VI) shows some numeri-
cal examples which give some idea about the magnitude of error and
it's behavior. This study deals with the problem of economization of
number of intervals in surface profile computationms.

Direct Step Method to compute the length of profile is a parti-
cular numerical method used to integrate the differential equation (6.2).
Figures (3 & 4) represent the graphical representation of the problem
of integrating the equation approximately. This is based on the assump-
tion that friction slope line is a straight line and Sf is calculated as
the arithmetic mean of the two slopes at points 1 and 2. Therefore, the

_error arises in each step due to this wrong assumption and finally it
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|
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Fig. 3 Graphical Representation of the Equation Ax = 5 3
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for Backwater Curve, (Existing Method)
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i AREA A'B'CD2 HATCHED AREA ABCD = AX
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Fig, 4 Graphical Representation of the Equation Ax = I
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for Drop Down Curve. (Existing Method)
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accumulates to a considerable extent.
Error Analysis: It can be seen that the area under the curve A B
C D may be replaced by an equivalent rectangular area AlBlc b, the height
of which being 1/ (So -'Eé) in the Figure (3) , and 1/ (§} - So) in Figure

(4). The distance along the channel between the two sections is therefore

AX = dE/ (8, - 5}) = Area ABCD = AE/ (S, - §;)  (Fig. 3)
ax = [dE/ (S - S) = Area ABCD = AE/ (Sp-S) (Fig. 4)

in which gf represents the arithmetic mean of friction slope. If the

value of Sf betweén two given depths of flow is known, the equation (6.2)
may be used to find the distance along the channel between these depths.,
It has been said earlier that the mean friction slope however, cannot be
determined conveniently, and some assumptions are made in it's evaluation.
It is necessary to divide the entire channel into several reaches, each
of such length that the mean friction slope may be assumed equal to the

arithmetic mean of the friction slopes at the beginning and end of reach.

Under this assumption, equation (6.2) becomes

11
rectangle AB CD (Fig. 3)

"
i

A% ME. 1/ [ S = (8¢ +5g,)/2]

1
rectangle AlB CD (Fig. 4)

px BE. 1/ [(Sg; +8gp)/2 = 8]

But in the present study, the area ABCD is taken as
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Ax:fl——;L—ALEE % [SOESfl +‘S°l:Sf2+SOESf3]
(6.3)
(Fig. 5)

A":Ail—:ﬁ % [3f1}so +Sf24-S°+Sf3-]:S°]
(6.4)
(Fig. 6)

This is evidently the famous Simpson's rule of Numerical Integratiom,

9 * By introducing this concept, the existing method is

suitably modified and computations by both the methods are done and the

if AE1 = AE

results are compared (Table VI). The advantage of this modification is

to explore the possibility of error analysis as it becomes formidable in
the former Average Friction Slope Method. Thus, it can be seen that al-
though this method is known as Arithmetic Direct Step Method in literature
this can lead to one of the most widely known and used techniques in Num-
erical Integration, Simpson's Parabolic Formula, and this is certainly

not more complex than that being used at present.

.Estimation of Error Bound in Direct Step Method

The integral of a function £ (y) may be obtained by integrating
it's Taylor Series expansion term by term and approximate formulas, to-
gether with the corresponding truncated errors may then be determined from
the integrated series. The truncated error committed in Simpson's rule

can be shown (16) equal to
J l5 4‘] | 1 1
R, < [®'-2a)" /180 ()] w2’ <y<d (6.5)

where, 2N = number of intervals and MZ is the maximum modulus of the

fourth derivative of the integrand over the interval [a', b'] . It can
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AX = HATCHED AREA ABCD %
AEl +AE2
2

(R,+4R2+R3)

TOTAL ENERGY E ——

Fig. 5 Graphical Representation of the Equation Ax = 3 AE 3
o °f

for Backwater Curve, (Proposed Method)
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be seen that the remainder term of the Parabolic Formula decreases as
1/,1\14 ; i.e. Simpson's rule converges significantly fast, and the com-
putational technique is not complex. Unfortunately, the equation (6.5),
is not helpful for computational purposes, since the maximal value of the

fourth order derivative of the integrand appears in this equation. Ex-

pressing the equation (6.2) in terms of y,

E=y+Q /[ +2y) )% %

b+2 - Jltzt 3
b + 2g) 1073 . 5 103

S -8 =%-(¥Q2/Lny

it can be seen that £V (y) is too much complicated and is not worth

evaluation practically. Therefore, this difficulty can be overcome if
the relations showing the dependence between derivatives and differences

of one and the same order, are used.

*Amyk = " (g) (6.6)
where, h = v +1- Vi
€ = a point between Yy +1 and Yy
From (6.5) and (6.6) *anl < (b' - a') max |A4yl / 180

To carry the transformation further, the differences can be written in

terms of the ordinates.

* .
S. B. Norkin., Elements of Computational Mathematics. (Trans.
from Russian). MacMillan Company, New York. (1965)
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4 -
% = (g, - 48, | +of -4E , +E

i+l i+2)
: | B ] - -
Flnally,thl < [ (@' - a')/180] max (£, _, = 4, _q +6F, . L
* ) 6.7)

Actually 8 typical profiles (Table VI) with a different set of variables
from discharge 400 cfs to 150,000; are analyzed and the error in each me-
thod, the present as well as the proposed, is computed. Curves are drawn
(Figs. 7 to 14) with error V/S number of divisions. It can be seen from
the curves, that errors decrease monotonically in a well behaved manner in
either case, and the proposed procedure proves better in the range of de-
sired accuracy., Error Bounds are also computed analytically by the equa-
tion (6.7), and the results are compared (Table VI). Since the error
predominafes in the last few steps as the profile approaches the normal
depth, the equation has to be applied to this range to find the maximum
modulus of the fourth order differences. From this error analyses, it is
found out that it is possible to determine the number of steps required
for the desired accuracy from equation (6.7) with relatively few computa-
tions before actually going through the most tedious computations, using
the number of steps in random fashion without having any idea of it's

accuracy whatsoever.

Standard Step Method

In natural watercourses, or artificial chamnels with frequent
changes of section and grade, Standard Step Method becomes more conven-
ient than the integration methods, described before. The detail proce-
dure can be found elsewhere (4). The underlying theory for the compu-

tation of water surface elevations is the principle of the conservation
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TABLE VI COMPARISON OF ACCURACY AND NUMBER OF STEPS REQUIRED IN THE EXISTING AND PROPOSED STEP METHODS

Profile
1. Q = 400.0 W = 20.0 So = 0001. 2 =0 n =.017 yn = 8.34 Ve = 2.96 vy = 6.0 y2 = 8.20
EXISTING METHOD PROPOSED METHOD
No. of Steps Length Absolute No. of Steps Length Error Error Bound Predicted
L Error L Ft from Eq. 6.7
.985 .985
4 60405 12825 4 86395 13165
8 68200 5030 8 76408 3178
11 . 70178 3052 16 73771 541
22 72321 809 22 73350 120
44 72987 243 44 73249 19
88 73167 63 88 73230 0 < 27 ft
176 73230 18
(Note: L . 985 = Length of profile up to a section where y/yn = ,985)
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TABLE VI (CON'T) COMPARISON OF ACCURACY AND NUMBER OF STEPS REQUIRED IN THE EXISTING AND PROPOSED
STEP METHODS .
Profile

2, Q = 750 W =10 S = .0004 Z=1 n=.0215 y, =9.5 y_ = 4.75 y., = 15.0 y, = 9.6
L ° 1 c 1 2
1.01 1.01
EXISTING METHOD PROPOSED METHOD
No. of Steps Length Absolute No of Steps Length Exrror Error Bound Predicted
L 1.01 Error L 1.01 Ft from Eq. 6.7
4 27619 2861 8 34236 2757
8 28747 1733 16 31479 940
27 30114 366 32 30729 250
54 30377 103 54 30539 40
108 30444 35 108 30499 20

216 30479 10 162 30479 0 < 68
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Profile

11.65

3 Q = 800 W 15 8o = .0003 Z = n = .03 Yo = 10.8 Yo = 4.05 ¥y = 4,08 ¥y, = 10.065
EXISTING METHOD PROPOSED METHOD
No. of Steps Length Absolute No. of Steps Length Absolute Error Bound Predicted
L Error : L.932 Error from Eq. 6.7
.932
9 9498 548 18 10041 5
18 9898 148 36 10043 3
45 10021 25 90 10045 1
20 10039 7 180 10046 0 o
Profile
4 Q = 1000 W 20 s = .0001 Z=15 n=,025 y =11.85 y_ =3.85y, =3.8 y, =
L (o] 1 n C 1 2
98 .98
4 36680 24892 4 89201 19391
10 53318 8254 8 69810 7215
20 58775 2797 20 62595 884
40 60733 839 40 61711 119
80 61358 114 80 61592 20
200 61572 0 120 61572 0 1 £ 9.45
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Profile

5 Q = 4000 W = 50 S° = ,001 Z=0 n= .,025 Vo = 10.95 Vo = 5.84 y1 = 20.0 Yy = 11.2
EXISTING METHOD PROPOSED METHOD
No. of Steps Length Absolute No. of Steps Length Absolute Exrror Bound Predicted
L 1.02 Error L 1.02 Error from Eq. 6.7
4 17379 119? 4 23837 5253
8 17852 723 8 20215 1631
11 18061 514 16 18981 397
22 18377 198 32 18674 90
44 18516 59 44 18610 26
88 18562 22 88 18584 (0] < 36
176 18575 9
Profile
6 Q = 6220 g = 100 S° = ,0004 Z =1 n= .022 Y= 10.0 Yo = 4.9 Yy = 25.0 Yy = 10.2
1.02 L 1.02
4 55253 2195 8 66570 9122
10 55499 1949 20 59221 1773
20 56398 1050 40 57813 365
40 57024 424 80 57490 42
74 57284 164 148 57448 o < 148
148 57398 50
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Profile

7 Q = 500000 W =300 Z = 2,5 So = ,0005 n = ,045 Y = 24,8 yc = 9,263 yl = 50.01 y2 = 25.01
EXISTING METHOD PROPOSED METHOD
No. of Steps Length Absolute No. of Steps Length Absolute Error Bound Predicted
L 1.01 Error L 1.01 Error from Eq. 6.7
5 88999 11097 10 123983 23887
10 92229 7767 20 107796 7700
25 96658 3438 50 101286 1190
50 98720 " 1376 100 100303 207
100 99661 435 200 100131 35
400 100096 0 < 123
Profile
8 Q = 150000 W = 500 Z=4,0 8 = .,0002 n= ,012 y = 21,1 y = 13.55 y. = 41.3 vy, = 21.3
L o L n c 1 2
1.01 : 1.01
5 164763 16359 10 217283 36155
10 169728 11394 20 192146 11018
20 175030 6092 40 183806 2678
40 178612 2510 80 181639 517
80 180321 801 160 181230 108

160 180872 250 320 181122 0 < 273
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‘of energy between two cross-sections on a stream and is expressed by the
same equation (6.1) and illustrated in Fig. (2). The stretch to be
studied is divided into short reaches. Trial-and-error computations are
made for each reach, based upon the data for the reach and the result of
the computations for the preceding reach., This necessitates carrying the
computations step by step from one end of the stretch to the other, gen-
erally from downstream to upstream. Selection of Reach: The reaches need
to be short enough to reduce to within permissible limits the error in
approximating the true water surface slope through the reach by the aver-
age of the surface slopes at each end. However, definite criteria for
determining the reach length have not been established, but the distance
depends primarily on the depth and slope of the stream channel, and on
the accuracy of the estimate of the water surface elevation at the initial
section. Some empirical methods are being used at present to determine

the reach length (19).

Proposed Theory of Criteria for the Determination of Reach Length.

It has already been mentioned that the error arises in the com-
putation of average friction slope which is calculated as the mean of the
two slopes at sections 1 and 2. This is based on the assumption that the
friction slope line is a straight line. But obviously it is a curve and
not a straight line. If the reach lengths are not small enough, the error
committed in each step goes on accumulating the finally grossly misleading
results may be obtained.

Consider the two adjacent values of the argument, denoted by Vi
and Ve +1 (Fig. 15) , between which lies the given value of

< =
y (yk <Y<Y, 1). Let (Sf)k f (yk) and (Sf)k +1=¢ (yk N 1) be
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S¢ = fly)
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Yk y YK+l
 y—DEPTH OF FLOW =™

Fig. 15, Graphical Interpretation of Error in the Average Friction
Slope Method
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the corresponding.values .of the function.. If the function is replacéd by
a linear function i.e., the arc of the graph of the function is replaced
by the chord spanning it, the error arising therefrom can be estimated.

The equation of the line passing through the points (yk, ka),

(Yk +1, ka + 1) has the form

but
S£, , 1 - Sf =4 Sf,
e+l " E
stn sf +8sf, Tk (6.8)

h
Now let the difference between the accurate value of the function £ (y)

and in approximate value as determined by the formula (6.8), be denoted
by ¢ (v)

9 () = £@y) - [sf, +asf, 7" k]
h

Differentiating ¢ (¥)

o o) = £ () - 8%
‘ h

o't ) = £
and also ¢ (yk) =0 (yk + 1) =0

Since the second derivative of the function £ (y) is continuous over the

range being considered, it satisfies the inequality

£ o< 6.9)
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where M2 is the maximum modulus of the second derivative of the inte-
grand over the interval (yk > Ve 4 1). Let at some point 'a' in the in-

terval, the function ¢ (y) attains it's maximum modulus for this inter-

val. Now expanding the function as a Taylor Series in powers of (y - a),

9 (a) +<pi (@ (v -2a + (cpii €)/2) (v - a)2+

e )

o @+ G ©2) G-al (6.10)

since mi (a) = 0, owing to the choice of the point a, Here € is some
point lying between y and a. Finally, let that point which of the pair

of points ¥ and Y 41 » is the closer to a , be called y . Then

© (5) = 0 and it follovs from (6.10) that o (2) = (' (5)/2) G - 2)°

Since |y - 2 |[< h/2 (y is that end of interval Ve Ve 1 which is

closer to a) then because of (6.9)

y )
@ ® K

since |¢ ) '5 lo (a)| on the interval (P S R
lo @) |= £ () -[sg +asE /b (v -y))[<¥,b'/8

for any y from the interval (yk > Yy 4 1). (6.11)

This is the required estimate for the error of taking the average of fric-
tion slopes at two sections based on the erroneous assumption of the fric-
tion slope line bring a straight line.

Unfortunately, it can be seen that evaluation of M2 = Max fii 6]
(see equation 6.15) is formidable and is not worth evaluation practi-

cally. So again, this difficulty can be overcome if the relations showing
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the dependence between derivatives and differences of one and the same

order are used. Thus it can be shown (11)
ii _ 2 (w2 iv
g =), m 2548 ) (n“/12)¢,
iv _f .4 . -
& 'Q/h)'(fi-z AR O b gty
£l - £, ,+16F _ -30f +16+£
i A i-2 i-1 i i+1

- f (6.12)

i+ 2]
Neglecting higher order derivatives, a more approximate equation will be
i 2
£ =(Un V0E L - 2%, +E ] | (6.13)
Finally, from (6.11) and (6.13)

o < WO, , -2 +£ D (6.14)

Therefore, it follows that the criterion to determine the length of reaches

will be 2fi N fi fi _ 1 to avoid errors. This can be satisfied by

+17%
increasing the number of steps.

Perhaps one of the most cumbersome and time consuming procedures
in open channel flow problems happens to be the water surface profile com-
putations by Standard Step Method because each step requires a crude trial-
and-error solution and the number of variables are too many. For é pris-

matic channel, the energy equation (6.1) can be written for backwater

curves in the form as follows

v, =¥ 0,0 1 2)-(1," 1 29)- 8, bx + (2 + 58,)/2) bx

) .
Y=y Q€ /[0 +2y) g TP - Q? 10+ zyz)y2]22g -5, bx +
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22 : 4/3
b+ 2 -,|1 i :

—

w2 | w42 {142 y2)4/3 6.15)
2.22 | o+ zy2)10/3 y, 10/3

It can be seen that trial-and-error is the only way to solve this equation,
and the same procedure has to be repeated again and again depending on the

number of intervals chosen for the total reach of the channel.

Computer Method of Solution. The Computer Program utilizes this equation

by starting in the most downstream subreach with a known water surface ele-
vation or depth, a corresponding discharge, and the cross-sectional pro-
perties. It there selects for the upstream cross-section of the subreach,
a water surface elevation, or depth, which will balance the equation to a
selected tolerance limit. This just-chosen upstream water-surface eleva-
tion of the next subreach, and the solution progresses upstream, balancing
the equation to the tolerance in each subreach.

Equation (6.15) is of the form ¥y = f (yz) and can be solved by
the iterative technique described in Chapter V. The initial approximation
is possible from physical considerations of the open channel flow. (See
Fortran Program page 107). This procedure eliminates assuming values of ¥y
in a random fashion, and testing for it's accuracy in each step. The cri-
terion, derived earlier (Equation 6.14), can also be applied to check the
accuracy at each step without any considerable extra efforts in computa-

tions.



CHAPTER VII

DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS

Practically every problem in Engineering Hydraulics involves
the prediction by either analytical or experimental methods of one or
more characteristics of flow. There are, in brief, three different
bases for such prediction. The first, and by far the oldest, is that
of "engineering experience" gained in the field by each individual en-
gineer. The second is the laboratory method of studying eac;’specific
problem by means of scale models. The third is the process of theore-
tical analysis which is developing rapidly now-a-days. Hydraulics has
occasionally been depreciated as a "Science of Coefficients, Tables,
and Charts" because engineers sometimes feel that other branches of
engineering have attained a higher state of development than hydraulic
eﬁgineering which lacks very often, more precise and accurate mathe-
matical analyses. However, the empirical nature of hydraulics is being
replaced rapidly by more rational methods of attack. At the same time
the increasing availability of digital computers along with the explo-
sive and sophisticated growth of Numerical Analysis have caused great
impact on the computational methods in today's hydraulic and hydrologic
investigations. |

Most of the equations in hydraulics are empirical and the methods

of solution involve equally crude trial-and-error procedures and depend
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oﬁ extensive tables and graphs. From éhis study it is expected that
most of these computational methods have to be outdated in this era of
digital machinery., This study shows that hydraulic problems encountered
in the planning, design, construction and operation of water resources
projects, which often require the solution of complex mathematical re-
lationships, the reduction of large volumes of data, the frequent repe-
tition of basic operations, or the evaluation of alternative assump-
tions and criteria, can be made ideally suited for the use of electronic
machines. In order to eliminate the procedures of searching tables,
charts, or scanning tabulations of experimental or computed data, it is
often more efficient to have the computer calculate the value of a
function of particular mathematical relationship each time, however
complicated it may be, by employing approximate expressions for the func-
tions. New techniques and procedures in Numerical Analysis are con-
stantly being developed for use with electronic computers which permit
the application of these machines in many areas of study hitherto con-
sidered impracticable or impossible. The present analysis is an attempt
to explore the use of some of the numerical methods available to solve
the problems in open channel flow. -

An area in which considerable future progress can be made is
that of a finding approximate éolynomials for the long series derived
in the case of positive slopes, instead of direct summation as used
here so that some valuable computer time can be saved. Although the
programs developed in direct integration method is applicable to all
prismatic channels with a few changes to parabolic shape, cannot be

applied to circular channels commonly encountered in Sanitary Engineering
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because the hydraulic exponents M and N vary appreciably when the depth
of flow is close to the crown. Even the other programs cannot be
claimed that they are suitable for all conditions of open channel flow
problems. Further research has to be done to refine some of the pro-
gramming techpiques to achieve more generality and flexibility. 1In
this study, emphasis is given more on the development of Numerical Me-
thods rather than actual programming.

Integrated Civil Engineering System: This system, called ICES,
was initiated and being carried out at the M.I.T. civil engineering
systems laboratory. This project is a cooperative venture of the govern-
ment, industry, and university groups interested in the development of
a large-scale, computer-based system which integrates advanced informa-
tion systems and powerful problem solving capabilities. Recently steps
were taken to begin development of a hydraulic and hydrologic problem-
solving capability for I.C.E.S.. Named 'HYDRA,' this subsystem is in the
earlier stages of its development. HYDRA presents an opportunity for
the research group vho can contribute to its initial design and orien-
tation. Therefore, it is hoped that the present work may form some
ground work in one of its important phases--water surface profile com®

. putations and may conceivably influence the ultimate form or capabilities

of the system.
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Shifted Chebyshev Polynomials
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APPENDIX A

Table VII. The Explicit Formulas for the Various Shifted Chebyshev
Polynomials for the Interval - [0,1]
T. (X)=1 (NOTE: T, (X) enters with halfweight only)

T X) =2x-1

(X) = 8% - 8% + 1

2
T, (%) =32 - 48x% + 18% - 1

T, (%) = 1288% - 25623 - 2568 + 1608 - 32X + 1

T, (%) = 51287 - 1280K° + 11200 - 4007 + 50K - 1

To (%) = 2048%° - 614480 + 691K - 3584%3 + 840K% - 72K + 1

T, (K) = 8192%7 - 28672%0 + 39424%° - 268808+ + 9408X° - 1568K% + 98X - 1

1, (X = 32768%° - 131072% + 21299280 - 180224%
+ 84480K% - 21504X° + 2688X% - 128X + 1
T, (X) = 13107257 - 58982438 + 11059208 - 1118208%°
2

+ 658944%° - 228096X4 + 44352){3 - 4320K" + 162X - 1

Ty (®) = 524288%10 - 2621440%% + 5570560%% - 655360087 + 4659200%°

- 2050048%° + 5491208% - 84480%° + 66002 - 200X + 1

T, M =2X-DT, .1 & -T _,®
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Table VIII. Relations Defining the Shifted Chebyshev Polynomials and

Pover Series for the Interval E), ﬂ

1

T, (NOTE : T, enters with halfweight only)

x=1/2 (To .'+le)

2 _
X" =1/8 (3T0 + 4T1 + T2)
3=
x) = 1/32 (10T + 15T, + 6T, + T,)
x% = 1/128 (35T + 56T

+ 28T2 + 8T, + T4)

3
+ 120T2 + 45T3 + 10T4 + TS)

1
2= 1/512 (126, + 210T

w
il

1
1/2048 (462To +792T; + 4951, + 22075 + 66T4 + 12T5 + T6)

o
I}

+ 20027, + 1001

=
fl

72 1/8192 (1716T_ + 3003

1 3

+1,)

+ 364’!4 + 91T5 + 14T6

% = 1/32768 (6435T, + 11440T1 + 8008T2 + 4368T3 + 1820’1‘4 + 5607

+ 120T6 + 16T7 + 'I'8)

X = 1/131072 (243107, + 437581, + 31824’1‘2 + 18564T3 + 8568T4 + 30601‘5

+ B16T, + 153T; + 18T + T)

6

x10 = 1/524288 (923787, + 167960T1 + 125970’1‘2 + 77520T3 + 38760T4

+ 15504T5 + 4845T, + 11401, + 190Tg + 20Ty + T;0)

1-2
=2+ T @+ D T+
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APPENDIX B
General Fortran IV Program for Water
Surface Profile Computations by

Direct Integration Method
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FLOW CHART FOR WATER SURFACE PROFILE COMPUTATIONS BY DIRECT INTEGRATION
METHOD (POSITIVE BED SLOPE)

COMPUTE INTEGRAL FUNCIIONS
WITH SUBROUTINE SERIS (SUM)

T .
X(I) = @)%

DENOM(I) = HN + S(I)
T .
[smi(1) = X(1)/DENOM (I)
4
TERM(I) = X(I)/DENOM (I)
Y

'DENOM(I) = DENOM(I) + m
7 —_
TERM(I) = TERM(I) * X(I) * (DENOM(I) - HN)/ DENOM (I)

Y

SM(I) = SIM(I) + TERM(D) | A

A

DENOM(I)=

ABS (TERM(I)) < .000I>NO+ DENOM(I) + HN

YES

RETURN

END |

MAIN PROGRAM

1
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MAIN PROGRAM
T

\READ B, Z, AN, SO, Q, YZJ

Y
COMPUTE NORMAL DEPTH
YNOR

COMPUTE CRITICAL DEPTH
YCRD

1
\WRITE‘ YNOR, YCRD /

CHECK BACKWATER OR
DROP DOWN CURVE

Y
U(1) = Y2/YNOR

9%




DROP DOWN CURVE

COMPUTE Y1

=g-YES

| BACKWATER CURVE

COMPUTE Y1

95

[T = ¥NOR-0-99] :
Y

COMPUTE HYDR EXP FOR| V COMPUTE' HYDR EXP FOR
UNIFORM FLOW HN CALL EXIT UNIFORM FLOW HN

Y Y
COMPUTE HYDR EXP FOR COMPUTE HYDR EXP FOR
CRITICAL FLOW HM CRITICAL FLOW HM

T

WRITE HN,HM
I -
[0(2) = Y1/3NOR| )
D(1) = U(1) D(1) = 1/U(1)
D(2) =U(2) D(2) = 1/U(2)
D(3) = U(1) D(3) = 1/u(1)
D(4) = U(2) D(4) = 1/U(2)

¥ ¥
S(1) = 1-mM: S(1) = mM-1
$(2) = 1-mM $(2) = -1
s(3) =1 $(3) = -1
S(4) =1 S() = -1
RMS(1) = 0.0 RMS(1) =-l/(HM-1)
RMS(2) = 0.0 RMS(2) = 1/(HM-1)
RMS(3) = 0.0 RMS(3) = -1
RMS (&) = 0.0 RMS(4) = -1

T g - 7

Y
COMPUTATION OF INTEGRAIL FUNCTIONS
[
DOI=1,2



i

CALL SUBROUTINE
SERTS (SUM)

Y

CONTINUE

Y

WRITE SUM(L),SUM(2)
| Do1=3.4
Y
CALL SUBROUTINE

SERIS (SUM)

I:C%NTINUE: |

WRITE SUM(3),SUM(%)
T .

DOI=14
i

“RSUM(I) = SUM(I) + RMS(I)

A

CONTINUE

i
_{YCRD 1
RUOSH _GNOR) j e ()

HM
YCRD) . 1
RUTSM '"'Qm T Esma)
1.

RUSMO = U(2) * RSUM(4)
RUSMT = U(1) - RSUM(3)

Y

WATER SURFACE PROFILE LENGTH
SWPL = (YNOR/SO) + (RUSMO - RUSMT - RUOSM + RUTSM)

Y
WRITE SWPL

[ caw exir |
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APPENDIX B

GENERAL FORTRAN IV PROGRAM FOR WATER SURFACE PROFILE
COMPUTATIONS WITH POSITIVE BED SLOPE BY DIRECT INTEGRATION METHOD

SUBROUTINE SERIS(I,SUM,X,TERM,D,DENOM,S,HN)
DIMENSION SUM(4),X(4),TERM(4),D(4) ,DENOM(4),S(4)
X(I)=(D(I)**mN
DENOM(TI)=HN+S (I)
SUM(I)=X(I) /DENOM(I)
TERM(I)=X (I) /DENOM(T)
DENOM (I)=DENOM(I)+HN

50  TERM(I)=TERM(I)*X(I)*(DENOM(I)-HN)/DENOM(I)
SUM(I)=SUM(I)+TERM(I)

' IF (ABS (TERM(I))-.0001)51,51,52

52  DENOM(I)=DENOM(I)+HN

GO TO 50
51  RETURN
END
c METHOD FOR PRISMATIC CHANNELS WITH POSITIVE SLOPE
c SYMBOLS B=BOTTOM WIDTH,Z=SIDE SLOPE,Q=DISCHARGE
c SO=BED SLOPE,AN=MANNINGS FRICTION COEFFT
c Y1=DEPTH OF FLOW DOWNSTREAM,Y2=DEPTH UPSTREAM
C AL=ALPHA=ENERGY COEFFT=1,SWPL=LENGTH OF PROFILE
DIMENSION SUM(4),X(4),U(2),D(4),S(4),RMS(4) ,RSUM(4)
READ(2,97)B,Z,AN,S0,Q
97  FORMAT(5F10.4)
READ(2,98)Y2
98  FORMAT(F10.4)
§ ROUTINE FOR OBTAINING NORMAL DEPTH YNOR
CO=(1.42%%2.)**.5
c FIRST APPROX FOR NORMAL DEPTH, ASSUME VELOCITY=25.0FPS
v=25.0
A=Q/V
C FIRST GUESS FOR NORMAL DEPTH=YNG
YNG=A/B

C=Q*AN/(1.486%(S0%*.5))
5 YNOR=( (C**, 6) *(B+2 . *COXYNG) **.4) / (B+Z*YNG)
EPS=YNOR-YNG
IF (ABS (EPS)~-.001)16,16,12
12 ING<YNOR
GO TO 5
16  WRITE(3,100)YNOR
100  FORMAT(IH ,'YNOR= ',F6.3)
ROUTINE FOR OBTAINING CRITICAL DEPTH YCRD
C FIRST APPROXIMATION FOR CRITICAL DEPTH,ASSUME VELOCITY =100.0 FPS
vC=100.0
C=(Q*%2./32.2)%*.3333

(]
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A=Q/VC
FIRST GUESS FOR CRITICAL DEPTH YCG
YCG=A/B
6  YCRD=C* (B+2.*Z*YCG)**,3333/ (B+Z*YCG)
EEPS=YCRD-YCG
IF (ABS (EEPS)-.001)17,17,13
13 YCG=YCRD
GO TO 6
17 WRITE93,101)YCRD
101 FORMAT(IH ,'YCRD= ',F6.3)
U(1)=Y2/YNOR
IF(U(1)-1.)25,26,27
27 Y1=YNOR*1.01
YAV=(Y1+Y2) /2.
RY=YAV/B
OBTAIN HYDRAULIC EXP FOR UNIFORM FLOW,HN BACK WATER CURVE
HN1=3.3333%(1.+2.*Z*RY) / (1.4Z*RY)
HN2=2.6667%(CO*RY) / (1.42.*CO*RY)
HN=HN1-HN2 :
WRITE(3,102)HN
102 FORMAT(1H ,'HN= ',F6.3)
OBTAIN HYDRAULIC EXP FOR CRITICAL FLOW,HM BACK WATER CURVE
EM1=3.%(1.42.*%Z*}RY) / (1.4Z*RY)
HM2=(2.*Z*RY)/(1.42.*%Z*RY)
HM=HM1-HM2
WRITE(3,103)HM
103 FORMAT(1H ,'HM= ',F6.3)
U(2)=Y1/YNOR
D(1)=1./U(1)
D(2)=1./U(2)
D(3)=1./U(1)
D(4)=1./U(2)
S(1)=mM-1.
S(2)=mM-1.
S(3)=-1,
S(4)=-1.
RMS(1)=1./(mM-1.)
RMS (2)=1./(HM-1.)
RMS (3)=-1.
RMS (4)=-1,
G T0 8
25 Y1=YNOR*,99
YAV=(Y14Y2) /2.
RY=YAV/B
OBTAIN HYDRAULIC EXP FOR UNIFORM FLOW,HN DROP DOWN CURVE
HN1=3.3333*%(1.42.*Z*RY) / (1.+Z*RY)
HN2=2,6667*(CO*RY)/ (1.+2.*CO*RY)
HEN=HN1-HN2
WRITE(3,120)HN
120 FORMAT(1H ,'HN= ',F6.3)
OBTAIN HYDRAULIC EXP FOR CRITICAL FLOW,HM DROP DOWN CURVE
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HM1=3.%(1.+2.*Z*RY) / (1 .4+Z*RY)
HM2=(2.*Z*RY)/ (1.+2.*Z*RY)
WRITE(3,121)HM
HM=HM1-EM2
121 FORMAT(1H ,'HM= ',F6.3)
U(2)=Y1/YNOR
D(1)=U(1)
D(2)=U(2)
D(3)=U(1)
D (4)=U(2)
S(1)=1.-m
$(2)=1.-mM
S(3)=1.
S(4)=1.
RMS (1)=0.0
RMS(2)=0.0
RMS (3)=0.0
RMS (4)=0.0
COMPUTATIONS OF INTEGRAL FUNCTIONS START
8 DO 9 1I=1,2
CALL SERIS(I,SUM,X,TERM,D,DENOM,S,HN)
9 CONTINUE

WRITE (3,30) SUM(L) , STM(2)
30 FORMAT(IH ,'SUM(l)= ',E15.8,1H ,'SUM(2)= ',E15.8
D0 10 I=3,4

CALL SERIS(I,SUM,X,TERM,D,DENOM,S,HN)

10 CONTINUE
WRITE(3,31)SUM(3),SUM(4)

31 FORMAT(1H ,'SUM(3)= ',E15.8,1H ,'SUM(4)= ',E15.8)
DO 81 1I=1,4
RSUM(I)=SUM(I)+RMS(I) . a

81 CONTINUE
FTERM=(YCRD/YNOR ) **HM
SS=HM-1.
RUO=1./(U(2))**SS
RUT=1./(U(1))**SS
RUOSM=RUO*RSUM(2)
RUTSM=RUT*RSUM(1)
BAA=FTERM* (RUOSM-RUTSM)
RUSMO=(U(2) ) *RSUM (4)
RUSMT=(U(1) ) *RSUM(3)
BAB=RUSMO-RUSMI
SWPL=(YNOR/S0)* (BAB-BAA)
WRITE(3,106) SWPL

106 FORMAT(1H ,'SWPL= ',E15.8)
GO TO 28

26 CALL EXIT

28 CALL EXIT
END
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GENERAL FORTRAN IV FOR WATER SURFACE PROFILE COMPUTATIONS
WITH NEGATIVE BED SLOPE BY DIRECT INTEGRATION METHOD

e N+ N> Nele!

(@]

97

98

12

16
100

SUBROUTINE SERIS(I,SUM,X,D,HN,S,E,F,G,H,0,P,T,W)
DIMENSION SUM(4),X(4),D(4),S(4),E(4),F(4)
DIMENSION G(4),H(4),0(4),P(4),T(4),W(4)
X(I)=(D(I)**HN
E(I)=.9999964239%* (X (I) / (S (L))
F(I)=.9997482476% ((X(I))**2.)/(1.*HN+5(I))
G(1)=.9953970774% ((X(I))**3.) /(3. *MN+5 (I))
H(I)=.9629353236%( (X (I))**4.) /(4. %NS (1))
0(1)=.8381703535% ((X (I))#*5.)/ (5. ¥MHS (1))
P(I)=.5719763382%((X(I))**6.) /(6. *N+S (I))
T(I)=.2526194559% ((X(I))**7.) /(7 . ¥EN+S (I))
W(I)=.0516283536%((X(I))**8.)/(8.¥MN+S (1))
SUM(I)=E (I)-F (I)+6(I)-H(I)+0(T)-P(I)+T(I)-W(I)
RETURN

END

METHOD FOR PRISMATIC CHANNELS WITH NEGATIVE SLOPE
SYMBOLS B=BOTTOM WIDTH,Z=SIDE SLOPE,Q=DISCHARGE
SO=BED SLOPE,AN=MANNINGS FRICTION COEFFT

Y1=DEPTH OF FLOW DOWNSTREAM,Y2=DEPTH UPSTREAM
AL=ALPHA=ENERGY COEFFT=1,SWPL=LENGTH OF PROFILE
DIMENSION SUM(4),X(4),U(2),D(4),S(4),RMS (&) ,RSUM(4)
READ(2,97)B,Z,4N,S0,Q

FORMAT (5F10.4) h

READ(2,98)Y2

FORMAT (F10.4)

ROUTINE FOR OBTAINING NORMAL DEPTH YNOR
CO=(1.42%%2,) %% .5

FIRST APPROX FOR NORMAL DEPTH,ASSUME VELOCITY=25.0FPS
v=25.0

A=Q/V

FIRST GUESS FOR NORMAL DEPTH=YNG

YNG=A/B

C=Q*AN/ (1.486% (S0%*.5))

YNOR= ( (C**. 6) * (B+2. *COXING) **,4) / (B+Z*YNG)
EPS=YNOR-YNG

IF (ABS (EPS)-.001)16,16,12

YNG=YNOR

G0 TO 5

WRITE (3,100)YNOR

FORMAT (1H ,'YNOR= ',F6.3) ,

ROUTINE FOR OBTAINING CRITICAL“DEPTH YCRD

FIRST APPROXIMATION FOR CRITICAL DEPTH,ASSUME VELOCITY=100.0 FPS
vC=100.0 .
C={Q**2,/32.2)**,3333
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A=Q/VC

FIRST GUESS FOR CRITICAL DEPTH YCG
YCG=A/B

YCRD=(C* (B+2.*Z*YCG)**,3333/ (B+Z*YCE)
EEPS=YCRD-YCG

IF (ABS(EEPS)~-.001)17,17,13

GO TO 6

WRITE (3,101)YCRD

FORMAT(1H ,'YCRD= ',F6.3)
U(1)=Y2/YNOR

IF(U(1)-1.)25,26,27

Y1=YNOR*1.01

YAV=(Y1+Y2)/2.

RY=YAV/B

OBTAIN HYDRAULIC EXP FOR UNIFORM FLOW, HN BACK WATER CURVE
HN1=3,3333%(1.+2.*Z*RY)/ (1.+Z*RY)
HN2=2.6667% (CO*RY) / (1.+2.*CO*RY)
HN=HN1-HN2

WRITE (3,102)HN

FORMAT (1H , "HN= ',F6.3)

OBTAIN HYDRAULIC EXP FOR CRITICAL FLOW, HM BACK WATER CURVE
AM1=3 % (1.+2.%Z*RY) / (1.+Z*RY) )
HM2=(2.*Z*RY) / (1.+2.*Z*RY)

HM=HMI.-HM2

WRITE (3,103)HM

FORMAT(IH , 'HM= ',F6.3)

U(2)=Y1/¥NOR

D(1)=1./U(1)

D(2)=1./0(2)

D(3)=1./U(1)

D(4)=1./U(2)

S(1)=HM-1.

S(2)=HM-1.

S(3)=-1.

S(4)=-1.

RMS(1)=1./(HM-1.)

RMS(2)=1./(mM-1.)

RMS(3)=-1.

RMS(4)=-1.

GO TO 8

Y1=YNOR*.99

YAV=(Y1+Y2) /2.

RY=YAV/B

OBTAIN HYDRAULIC EXP FOR UNIFORM FLOW,HN DROP DOWN CURVE
HN1=3.3333%(1.42.*Z*RY)/ (1.+Z*RY)
N2=2.6667%(C)*RY)/(1.42.*CO*RY)
HN=HN1-HN2

WRITE (3,120)HN

FORMAT (1H , 'HN= ',F6.3)
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OBTAIN HYDRAULIC EXP FOR CRITICAL FLOW,HM DROP DOWN CURVE
HM1=3,%(1.42.*%Z*RY) / (1.+Z*RY)
HM2=(2.*Z*RY) / (1.42,%Z*RY)
WRITE(3,121)HM
HM=HM1-HM2
121 FORMAT(1H ,'HM ',F6.3)
U(2)=Y1/YNOR
D(1)=U(1)
D(2)=U(2)
D(3)=U(1)
D(4)=U(2)
S(1)=1.-m
S(2)=1.-mM
S(3)=1.
S(4)=1.
RMS(1)=0.0
RMS(2)=0.0
RMS (3)=0.0
RMS(4)=0.0
COMPUTATIONS OF INTEGRAL FUNCTIONS START
8 D0 9 1=1,2
CALL SERIS(I,SUM,X,D,HN,S,E,F,G,H,0,P,T,W)
9 CONTINUE
WRITE (3,30)SUM(1),SUM(2)
30 FORMAT(IH ,'SuM(1)= ',E15.8,1H ,'SUM(2)= ',E15.8)
D0 10 I=3,4
CALL SERIS(I,SUM,X,D,HN,S,E,F,G,H,0,P,T,W)
10 CONTINUE
WRITE(3,31)SUM(3),SUM(4)
31 FORMAT(1H ,'StM(3)= ',E15.8,1H ,'SUIM(4)= ',E15.8)
D0 81 1=1,4
RSUM(I)=SUM(I)-+RMS(I)
81 CONTINUE
FTERM=(YCRD/YNOR ) **HM
SS=HM-1.
RUO=1./(U(2))**SS
RUT=1./(U(1))**SS
RUOSM=RUO*RSUM(2)
RUTSM=RUT*RSUM(1)
BAA=FTERM* (RUOSM-RUTSM)
RUSMO=(U(2) ) *RSUM(4)
RUSMT=(U (1) ) *RSUM(3)
BAB=RUSMO-RUSMT
SWPL=(YNOR/S0)* (BAB-BAA)
WRITE(3,106)SWPL
106 FORMAT(1H ,'SWPL= ',E15.8)
™ TO 28
26 CALL EXIT
28 CALL EXIT
END
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APPENDIX C
WATER SURFACE PROFILE COMPUTATIONS DIRECT STEP METHOD WITH ERROR ANALYSIS

COMPUTE WATER SURFACE PROFILE DIRECT STEP METHOD IN PRISMATIC CHANNELS
SYMBOLS W=BOTTOM WIDTH,Z=SIDE SLOPE,Q=DISCHARGE
SO=BED SLOPE,AN=MANNINGS FRICTION COEFFT
Y1=DEPTH OF FLOW DOWN STREAM,Y2=DEPTH UPSTREAM
ALPHA=ENERGY COEFFT=1,SUMX=LENGTH OF PROFILE
DIMENSION D(5),A(5),P(5),B(5),V(5),SFR(5),RSFR(5)
READ(2,95)Y2
95 TFORMAT(F10.4)
READ(2,97)W,Z,AN, S0,Q
97 FORMAT(5F10.4)
READ (2, 98)HN,ERR
98 FORMAT(2F10.4)
C ROUTINE FOR OBTAINING NORMAL DEPTH YNOR
CO=(1.4Z**2,)%* 5
C FIRST APPROX FOR NORMAL DEPTH,ASSUME VELOCITY=25.0 FPS
VEL=25.0
ARFA=Q/VEL
c FIRST GUESS FOR NORMAL DEPTH YNG
YNG=AREA/W
C=Q*AN/ (1.486%(SO**,5))
5  YNOR=((C**,6)%*(W+2.*CO*YNG)**.4) [ (WHZ*YNG)
EPS=YNOR-YNG
IF (ABS(EPS)-.001)16,16,12
12 YNG=YNOR
GO T0 5
16 WRITE(3,100)YNOR
100 FORMAT(1H ,'YNOR= ',F6.3)
Cc DETERMINE ECONOMICAL STEP
U=Y2/YNOR
IF(U-1.)25,26,27
o DROP DOWN CURVE
25 Y1=YNOR*.99
GO TO 28
C BACK WATER CURVE
27 Y1=YNOR*1.01
28 STEP=(Y2-Y1)/HN
50 YNEW=Y1+STEP*4.0
D(1)=YNEW
D(2)=D(1)-STEP
D(3)=D(2)-STEP
D(4)=D(3)-STEP

sNeoNoNeNe!
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D(5)=D (&) -STEP
D0 6 I=1,5
A(T)=(W+2Z*D (1)) *D(I)
P(I)=W+2,%D (1) *((L.42%%2, ) %% 5)
B(I)=(A(I)/P(I))**1.3333
V(I)=Q/A(I)

SFR(I)=( (AN**2,)*(V(I))**2.)/(2.22*B(I))
RSFR(I)=1./(S0-SFR(I))
CONTINUE

EEPS=RSFR(1) ~4.% (RSFR (2)+RSFR (4) )+6 ., *RSFR (3)+RSFR (5)
TEPS=EEPS*(Y2-Y1)/180.0
IF(ABS(TEPS)-ERR)18,18,17
STEP=STEP/2.

G0 T0 50

DELY=STEP
WRITE(3,101)DELY
FORMAT(1H , 'DELY= ',F6.3)
SUMX=0.0

Y=Y2

AS=(W+Z*Y)*Y
PS=W+2.*Y*CO

RS=AS/PS

BS=RS**1.3333

VS=Q/AS

VSS=VS**2,

VHS=VSS/64.4

E=Y-+VHS
SF=(AN*%2,)*VSS/(2.22%BS)
SR=S0~SF

RSR=1./SR

DP=Y2-DELY/2.

YP=DP

AP= (W+Z*YP)*YP

PP=W+2. ¥YP*CO

RP=AP/PP

BP=RP**1.3333

VP=Q/AP

VSP=VP**2,

VHP=VSP/64.4
SFP=(AN**2,)*VSP/(2.22%BP)
SRP=50-SFP

RSRP=1, /SRP
DDP=DP-DELY/2.

YDP=DDP
ADP=(W+Z*YDP ) *YDP
PDP=W+2. *YDP*C0
RDP=ADP/PDP
BDP=RDP**1.3333
VDP=Q/ADP

VSDP=VDP#*2,
VHDP=VSDP/64 .4
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EDP=YDP+VHDP
CHANGE IN TOTAL ENERGY
DLTAE=(E-EDP) /2.

SFDP= (AN*%2,)*VSDP/ (2.22*BDP)
SRDP=50-SFDP

RSRDP=1. /SRDP

SOSF=(1./3.)%*(RSR+4 . *RSRP+RSRDP)

SMALL REACH LENGTH

DLTAX=DLTAE*SOSF

WRITE (3,102)Y,DLTAE ,RSR,RSRP ,DLTAX , SUMK
FORMAT (1X, 6 (E15.8,1X))
IF(Y2-Y1)13,13,11

Y2=Y2-DELY

SUMX=SUMX-+DLTAX

GO To 10

CALL EXIT

CALL EXIT

END
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COMPUTE WATER SURFACE PROFILE STANDARD STEP METHOD
METHOD FOR PRISMATIC CHANNELS WITH POSITIVE SLOPE
SYMBOLS W=BOTTOM WIDTH,Z=SIDE SLOPE,Q=DISCHARGE
SO=BED SLOPE,AN=MANNINGS FRICTION COEFFT
Y1=DEPTH OF FLOW DOWN STREAM,Y2=DEPTH UPSTREAM
ALPHA=ENERGY COEFFT=1,DIST=LENGTH OF PROFILE
DIMENSION D(3),A(3),P(3),B(3),V(3),SFR(3)

READ (2,94)DIST

FORMAT (F10.4)

READ (2,95)Y2 "

FORMAT (£10.4)

READ(2,97)W,Z,4N,50,Q

FORMAT (5F10.4)

READ (2, 98)HN,ERR

FORMAT (2F10.4)

ROUTINE FOR OBTAINING NORMAL DEPTH YNOR
CO=(1.4Z*%2 )*% 5

FIRST APPROX FOR NORMAL DEPTH,ASSUME VELOCITY=25.0 FPS
VEL=25.0 :
AREA=Q/VEL

FIRST GUESS FOR NORMAL DEPTH YNG

YNG=AREA/W

C=Q*AN/ (1.486%(S0%*.5))

YNOR=((C**, 6) % (W+2,*CO*YNG) **.4) / (W+2*YNG)
EPS=YNOR-YNG

IF (ABS (EPS)~-.001)16,16,12

YNG=YNOR

GO T0 5

WRITE(3,100)YNOR

FORMAT (1H ,'YNOR= ',F6.3)

DETERMINE ECONOMICAL STEP

U=Y2/YNOR

IF(U-1.)25,26,27

DROP DOWN CURVE

Y1=YNOR*99

GO TO 28

BACK WATER CURVE

Y1=YNOR*1.01

STEP=(Y2-Y1) /HN

YNEW=Y1+STEP*2.0

D (1)=YNEW

D(2)=D(1)-STEP

D(3)=D(2)-STEP

D0 6 1I=1,3

A(T)=(W+Z*D(I))*D(I)
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P(I)=W+2.*#D(1)*((1.42%%2,)*%.5)
B(I)=(A(I)/P(I))**1.3333
V(I)=Q/A(I)
SFR(I)=( (AN**2,)*(V(I))*%2,)/(2.22%B(I))
6 CONTINUE
EEPS=SFR(1)-2.*SFR(2)+SFR(3)
IF (ABS (EEPS)-ERR) 18, 18,17
17 STEP=STEP/2.
GO TO 50
18 DELY=STEP
WRITE (3,101)DELY
101 FORMAT(1H ,'DELY= ',F6.3)
DNS=(Y2-Y1) /DELY
DX=DIST/DNS
SUMX=0.0
10 Y=Y2
ITN=1
AS=(WHZ*Y)*Y
PS=WH+2 . ¥¥*C0
RS=AS/PS
BS=RS**1,3333
VS=Q/AS
VSS=VS**2,
VHS=VSS/64.4
SF=(AN*%*2,)*VSS/(2.22%BS)
SFDX=SF*DX/2.
SDX=S0*DX
FIRST APPROX FOR UPSTREAM DEPTH OF SUBREACH
GAP=Q/25.0
FIRST GUESS FOR UPSTREAM DEPTH OF SUBREACH
YP=GAP/W
15 AP=(W+Z*YP)*YP
VP=Q/AP
VSP=VP**2,
VHP=VSP/64.4
PP=W+2 ., *CO*YP
RP=AP/PP
BP=RP**1,3333
SFDP=( (AN**2,)*VSP)/(2.22%BP)
SFDPX=SFDP*DX/2.
AYNEW=Y+VHS+SFDX-SDX-VHP
SEPS=AYNEW-YP
IF (ABS (SEPS)-.001)19,19,20
20 ITN=ITN+L '
IF (IIN-15)44,45,45
44 YP=AYNEW
G0 TO 15
45 CALL EXIT
19 YTWO=AYNEW
WRITE(3,105)YTWO, SUMK
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21

26
22

FORMAT (1X,2(E15.8,1X))
TF(SUMX-DIST)21,22,22
SUMK=SUMK4DX

Y2=YTWO

G0 T0 10

CALL EXIT

CALL EXIT

END
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