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Seriation and Multidimensional Scaling:
A Data Analysis Approach to Scaling
Asymmetric Proximity Matrices
Joseph Lee Rodgers and Tony D. Thompson
University of Oklahoma

A number of model-based scaling methods have
been developed that apply to asymmetric proximity
matrices. A flexible data analysis approach is pro-
posed that combines two psychometric procedures&mdash;
seriation and multidimensional scaling (MDS). The
method uses seriation to define an empirical order-
ing of the stimuli, and then uses MDS to scale the
two separate triangles of the proximity matrix
defined by this ordering. The MDS solution con-
tains directed distances, which define an "extra"
dimension that would not otherwise be portrayed,
because the dimension comes from relations
between the two triangles rather than within
triangles. The method is particularly appropriate
for the analysis of proximities containing temporal
information. A major difficulty is the computa-
tional intensity of existing seriation algorithms,
which is handled by defining a nonmetric seriation
algorithm that requires only one complete itera-
tion. The procedure is illustrated using a matrix of
co-citations between recent presidents of the
Psychometric Society. Index terms: asymmetric
data, cluster analysis, combinatorial data analysis,
multidimensional scaling, order analysis, proximity
data, seriation, unidimensional scaling.

This paper is concerned with data that are

asymmetric proximities indicating relationships
between pairs of objects and with an analytic
procedure that can reveal information about the
processes that generated the data. The data

analysis model is a method called seriation, and
it is used in combination with multidimensional

scaling (MDS).
Within the exploratory data analysis (EDA)

paradigm proposed by Tukey (1977), searching for
structure in a dataset is a natural early step in
the development of theories. EDA includes the
repeated fitting of mathematical models to data,
the use of procedures not especially influenced
by one or a few extreme data points, and the
visual representation of data through graphical
procedures. The procedure developed here is con-
sistent with these EDA tenets.

Models of Asymmetric Relationships

Models that portray relationships between
stimuli as distances or angles within metric spaces
(e.g., MDS, factor analysis) represent relation-
ships between stimuli symmetrically. But many
relationships are inherently asymmetric (Tversky,
1977). A number of approaches to modeling
asymmetric proximities have been proposed in the
psychometric literature. These can be classified
into three categories.

In the first category, the symmetric portion of
the data is extracted, and the asymmetric portion
is discarded as error. A common approach of this
type is to average corresponding off-diagonal
elements (a symmetric least-squares fit to the

original asymmetric matrix) and apply symmetric
models. For example, Tversky and Hutchinson
(1986) analyzed 39 asymmetric proximity
matrices by averaging. Alternatively, Levin and
Brown (1979) defined row multipliers that pro-
duced a least squares fit between the two triangles
of the asymmetric matrix.

The second approach-a more sophisticated
treatment of asymmetries-involves explicitly
modeling the asymmetries in addition to a sym-
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metric component. Young (1975) defined a

Euclidean distance model modified by multi-
plicative asymmetric weights: A spatial represen-
tation shows the symmetric structure, and dimen-
sional weights for each stimulus show how to
expand or contract the space to account for
directed distances from that stimulus. Krumhansl

(1978) specified a distance-density model in which
objects A and B are represented spatially, and
asymmetries are accounted for through the den-
sity of other object points around A and B. Saito
(1986) developed an MDS approach in which a
symmetric configuration is modified by estimated
&dquo;object constants.&dquo; When these constants are
constrained to be nonpositive, they can be con-
sidered &dquo;density constants&dquo; in relation to the

distance-density model. Constantine and Gower
(1978) proposed additively partitioning a square
asymmetric matrix Q into two matrices-S

(symmetric) and A (skew-symmetric; i.e.,
~~,~ = -aj,J They performed a singular value
decomposition of A to obtain a least-squares fit
to be plotted in two dimensions and provided an
interpretation of this spatial representation of the
asymmetries. Constantine and Gower also pro-
posed fitting an unfolding model to an asym-
metric matrix, which represents both row and
column stimuli within the same space. Holman

(1979) used a nonmetric procedure to decompose
asymmetric proximities into a symmetric func-
tion and a bias function. Finally, Weeks and
Bentler (1982) defined a model in which the sym-
metric part of a relationship is modeled as a

distance, and additive constants are combined
with the distance to reflect asymmetries.

The third category of approaches for model-
ing asymmetric proximities involves network
models in which asymmetries are represented
nonspatially as distances. These methods rely on
directed distances within a graph-theoretic con-
text to model asymmetries. Models in this

category might be called &dquo;purely asymmetric,&dquo;
because no underlying symmetry need be posited.
DeSarbo, Manrai, and Burke (1990) proposed a
nonspatial version of the distance-density model.
A number of other such approaches have been

developed, including those of Cunningham
(1978), DeSarbo (1982), Hutchinson (1989), and
Klauer (1989).

The method developed here shares features
of the second and third categories above. Visual
interpretation of distances is incorporated
because stimuli are represented in a Euclidean
space. Distances are directed, however, and the
presentation of the configuration indicates
order relationships. The order relationships
may be substantively meaningful, so that an

added dimension of information can be

represented within the space. This approach is
particularly valuable if temporal relationships
underlie the asymmetries in the data. Note that
none of the above methods has the capability to
portray both a dominance order and a proximity
structure.

The conceptual basis of this approach is the
following. The stimuli in an ~I x ~1 asymmetric
proximity matrix can be reordered to define N!
unique triangles of proximities. Each triangle
may be fit using symmetric models; however, the
proximities are directed, depending on the par-
ticular ordering of the stimuli. Thus, an ex-
haustive asymmetric model could be defined in
which all N! triangles of directed proximities are
represented spatially using MDS, with the order
relationships specified in the MDS solution.

However, with even medium-sized proximity
matrices, performing IV! MDS analyses would be
practically impossible. The approach presented
here selects an empirically interesting subset (one
or two) of the ~1! possible triangles. Seriation op-
timizes an objective function across the ~I!

reorderings of the N stimuli, and provides a
natural empirical method to select an ordering
of stimuli. Thus, this approach combines MDS,
which uses information contained within tri-

angles of a proximity matrix, and seriation,
which uses information contained in the relation-

ship between triangles. Both types of informa-
tion can be displayed in the same graphical
representation for substantive interpretation.
Gower (1977, p. 111) anticipated this approach in
his short description of his &dquo;lVlethod 3.&dquo; 9
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Seriation of Asymmetric Data

Background

Seriation is a procedure that orders stimuli ac-
cording to structure within a proximity matrix.
The method was developed within electrical engi-
neering, graph theory, and archeology. Seriation
was first presented in the psychometric literature
by Hubert (1974, 1976; Baker & Hubert, 1977).
He asserted: &dquo;One of the basic problems of data
analysis that has concerned applied researchers for
many years deals with the sequencing of objects
along a continuum&dquo; (Hubert, 1974, p. 9). Rela-
tionships have been noted between seriation and
other psychometric methods, including unfolding
(Defays, 1978; Heiser, 1981; Hubert & Golledge,
1981), MDS and correspondence analysis (Mardia,
Kent, & Bibby, 1979), and cluster analysis and
Thurstone’s Law of Comparative Judgment
(Hubert & Golledge, 1981). Seriation methods can
order stimuli in both symmetric and asymmetric
matrices-the focus here is on the latter. The
method presented applies specifically to square
(one-mode) asymmetric proximity matrices. For
seriation treatments of rectangular data matrices,
see Cliff, Collins, Zatkin, Gallipeau, and McCor-
mick (1988) or Coombs and Smith (1973).
A formal mathematical statement of the seri-

ation problem can be found in Hubert (1976).
The description here is conceptual. Begin with
a square asymmetric matrix of proximities be-
tween stimuli. Assume that the stimuli are ar-

bitrarily ordered and that order relationships are
transitive. Table 1 shows a 6 x 6 matrix of prox-
imities. If the stimulus order is arbitrary, any

Table 1

Proximity Matrix Indicating Proximity
Between All Pairs of Six Stimuli

Table 2
The Same Proximity Matrix as in Table 1,

With Rows and Columns Permuted
to Show Greater Structure

other ordering produces a different matrix with
the same information. Fable 2 shows the asym-
metric matrix associated with another of the 6!

(720) different orderings of the six stimuli. Note,
for example, that the 2,1 element of the matrix
in Table 2 is the same element as the 4,5 element
in Table 1. Each ordering produces a different up-
per and lower triangle. Reverse orderings (e.g.,
6-5-4-3-2-1 versus 1-2-3-4-5-6) produce identical
triangular structures on opposite sides of the
main diagonal. Clearly, the structure contained
in Table 2 is relatively hidden in Table 1.

Table 3 uses real data-the win/loss records
of the top ten women tennis players in 1989

(Flink, 1990). Players are ordered alphabetically.
Table 4 depicts one of the 10! reorderings of the
same data, obtained with the seriation algorithm
developed here. Table 4 shows (from bottom to
top) an empirically-based rank order of the
players based on their pairwise win-loss record.
The empirical ranking closely matches the one
actually defined by a panel of World Tennis experts
(Flink, 1990).

In general, the seriation procedure orders

stimuli according to some objective. The objec-
tive is defined within a mathematical function
that is optimized using one of several different
procedures. Once the seriation solution is found,
the ordering of the stimuli is no longer arbitrary.
With asymmetric data, the most popular seria-
tion objective function has been to find the order-
ing of the stimuli maximizing the sum of the
elements within one triangle (say, the lower

triangle) which simultaneously minimizes the
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T~ble 3
1989 Record of the Top Ten Women Tennis Players,
With Wins on the Rows and Losses on the Columns

sum in the other triangle (De Soete, Hubert, &

Arabie, 1988; Hubert, 1976). Although this goal
is easy to state, it is difficult to achieve except with
an exhaustive search of the IV~ possible orderings
(actually, a search of N!/2 orderings suffices,
because reverse orderings can count as a single
search). With even medium-sized matrices, such
a search is computationally intractable (e.g., a
10 x 10 matrix requires a search of 10!/2 =

1,814,400 orderings; a 20 x 20 matrix requires
1.2 x 1018 orderings).

Therefore, computational procedures, such as
the locally optimal pairwise exchange (LOPI) pro-
cedure (Baker & Hubert, 1977), dynamic pro-
gramming (Hubert & Arabie, 1986; Hubert &

Golledge, 1981), and simulated annealing (De
Soete et al., 1988), have been applied to reduce
the size of the search. Although these procedures

substantially reduce computational labor com-
pared to an exhaustive search, they are still

computationally-intense methods. For example,
dynamic programming requires at most 2^’’

evaluations of the objective function (which is
smaller than ~!/2 for all N > 4). Nevertheless,
2N still increases exponentially, and precludes
analysis of very large datasets.
A simpler optimization algorithm is presented

here that works even with large datasets. Many
data analytic settings support sacrificing the
single globally optimal solution in exchange for
faster convergence, as long as the resulting order-
ing is close to optimal. The seriation method
presented here requires only simple programming
and a single complete iteration through the
stimuli. Thus, it provides quick solutions with
even very large proximity matrices. If more

Table 4
Seriated Ordering of the 1989 Top Ten Women Tennis Players
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precision is required and/or if the proximity matrix
is small, then LOPI, dynamic programming, or
simulated annealing would be preferred.

A Simple Nonmetric Seriation Procedure

The seriation algorithm presented here is a

slight adaptation of a nonmetric counting rule
suggested by Hubert and Golledge (1981) and has
relationships to early procedures proposed by Ken-
dall (1955) and Flueck and Korsh (1974). From all
possible M orderings of the N stimuli defining a
proximity matrix Q , the objective is to order the
stimuli according to &dquo;number of victories&dquo; over
the other stimuli. A &dquo;victory&dquo; for stimulus I over
stimulus J occurs when Qi,j > Q;,;. To find this
ordering, construct a competition matrix from the
original Q matrix by comparing corresponding
off-diagonal elements. The competition matrix T
is defined as:

Next, the stimuli are ordered by sorting on the
row averages-the r°;s-(or, equivalently, the

sums) in T. Thus, stimuli that consistently
dominate other stimuli are placed lower in the
ordering. This is a nonmetric procedure for max-
imizing the sum in the lower triangle of T.
Because only the size comparisons and not the size
of the elements are accounted for, one or a few
extreme proximities do not have an undue effect
on the solution.

The remaining problem involves resolving ties
in the row averages. Baker and Hubert (1977)
recommended using the Younger A criterion
(Younger, 1963) in which the sizes of the original
elements in Q are used (metrically) to resolve ties.
Three-way and four-way ties are resolved

iteratively by passing through the tied elements
several times until larger entries in Q are in the
lower triangle.

Some Seriation Statistics

This formulation supports the development of

the following ‘6seriation statistics&dquo; designed to
provide diagnostic information to extend the
seriation results: a
1. ASY is a measure of the asymmetry of a prox-

imity matrix (cf. Hubert & Baker, 1979);
2. TIES counts the number of tied row averages

in T;
3. The dis are domination statistics, one for

each stimulus; and
4. FIT is a measure of how close the ordering

comes to finding perfect seriation structure.
Because the information the procedure uses to

order stimuli is contained within the asymmetries
of the matrix, ASY can suggest whether using the
procedure is appropriate. (If not, the stimuli can
be ordered on other grounds; e.g., Defays, 1978;
Hubert, 1974.) ASY is a special type of variance
based on absolute deviations:

First, note that the average of off-diagonal en-
tries in the indicator matrix T must equal .5.

Further, ASY is invariant with respect to whether
it is computed in the upper or lower triangle. In
a symmetric matrix, all entries in T will be .5

(because each competition ends up tied), and
ASY = 0. In a completely asymmetric matrix
(where none of the corresponding off-diagonal
entries are the same), all ~IV(IV - 1)/2] entries in
each triangle will be Is or Os. In such a matrix,
ASY = .ShT(1V - 1).5/(N(IV - 1).25] = 1.0. Thus,
ASY varies between 0 for perfectly symmetric and
1.0 for perfectly asymmetric matrices. ASY is

equal to the proportion of nontied indicators (Os
or 1 s) in either triangle of T. ASY uses a

nonmetric definition of asymmetry-correspond-
ing off-diagonal elements are simply counted as
equal or not. The size of the difference could be
accounted for through a similar approach, but the
statistic would have indeterminate bounds.

TIES counts the proportion of ties in the

row means. This is a measure of how much metric

information is used in the optimization criterion.
Because the first criterion used orders the stimuli

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


110

on increasing row means, tied r; suggest ambigui-
ty in this ordering (which is, if possible, resolved
by the Younger A criterion discussed above). Thus,
TIES is defined as follows:

where

for each row r, r > l. When TIES = 0, there are
no tied row means, and the ordering of the stimuli
is unambiguous. When TIES = 1, all the row
means are tied, and the resolution by the Younger
A criterion makes the seriation procedure a com-
pletely metric procedure. If the data are binary,
and TIES is close to 1.0, there is no information
in the matrix on which to order the objects, and
the ordering will be arbitrary.

The domination statistics, dips, are derived from
the r; s. The average of all row means ri must equal
.5. Thus, r; > .5 indicates stimuli that have
dominated more than an expected number of
other stimuli under an assumption of uniform
domination; stimuli with ri < .5 have dominated

fewer than expected. The domination statistic, di,
is defined as di = 2(r¡ - .5) for each of the i rows.
If the ith stimulus dominated none of the other

stimuli, di = -1; if it dominated all other stimuli,
did = 1. If it dominated exactly half of the other
stimuli, di = 0. Thus, di can range from -1 to +1:
Like the correlation coefficient, the sign of di in-
dicates the direction of domination, and the size
of di indicates the strength of domination.

Finally, FIT measures how close the seriation
algorithm comes to finding perfect seriation struc-
ture in relation to the objective function. Such
structure occurs when lower objects in the order-
ing have victories over those higher in the order-
ing, but not over those even lower; or, equivalently,
when a redefined indicator matrix corresponding
to the final solution has all the Is below the diag-
onal and only Os above. FIT can be defined by us-
ing the seriation-defined order of the stimuli, and
then slightly redefining the indicator matrix T.

In TFIN (the final competition matrix), if Pij =
Pj;, then instead of assigning a value of .5, assign
a value of 0; thus, only entries in Q that literally
dominate are given a value of 1.0. Then, FIT is
defined as the proportion of total competitions
that produce winners in the lower triangle of
TFIN:

FIT = 1.0 if every 1.0 element in TFIN is in the
lower triangle; FIT = .5 if exactly half of the 1.0
entries are in the lower triangle and half in the
upper (as expected by chance in a randomly or-
dered matrix). Values of FIT should be substan-
tially larger than .5 before concluding that the
seriation procedure found a useful and defensible
ordering. A low value of FIT for a matrix suggests
that seriation is not a proper analytic model to use.
Ties do not show up in the computation of FIT,
because they are represented neither in the numer-
ator nor the denominator. FIT does not indicate

whether a better solution could have been found
with a better optimization procedure (e.g., dy-
namic programming), or whether some other ob-
jective criterion could have produced a &dquo;better&dquo;

ordering of the stimuli.

TRIAGE

This seriation procedure and associated seria-
tion statistics are available within a larger system
of preprocessing and diagnostic routines called
TRIAGE (Rodgers, Thompson, & Thompson,
1989), which is a set of SAS MACROS written in
PROC MATRIX in SAS (SAS Institute, Inc., 1985).
The seriation procedure is also available in PRoC
IML coding. (Copies of the coding, documenta-
tion, and test runs are available on request.) This
procedure has been used successfully to order
stimuli from proximity matrices as large as

41 x 41, which is much too large for the other
methods listed above to treat successfully. The
results obtained from the simple procedure pre-
sented here have been compared to those obtained
from dynamic programming in the 15 x 15
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matrix analyzed by Hubert and Golledge (1981,
p. 435). The procedure ordered the stimuli exact-
ly the same as dynamic programming. The results
also were compared to those obtained by apply-
ing LOPI to several constructed datasets (Hubert,
1976, pp. 35, 44). Results were consistently close,
although not always identical.

The output of a seriation procedure is an order-
ing of the stimuli. The ordering of the stimuli may
be interpretable and, if so, the procedure has suc-
cessfully found a unidimensional dominance scale
along which the stimuli fall. Also, the proximity
matrix then can be ordered, and an MDS model
can be fit to one or both triangles.

S of the Triangles of the
Seriated Proximity Matrix

If the stimuli are ordered according to some in-
terpretable dimension, then the two triangles may
contain information that is separately meaningful.
For example, suppose information is available

about the membership overlap between 41 divi-
sions of the American Psychological Association
(APA) (see Rodgers, 1988). The proximity matrix
contains 6,jS indicating the proportion of total
members of Division i who are also members of

Division. Note that the numerators of these pro-
portions are equal for Q¡,j and Qj,;, but the denom-
inators are different and reflect the total size of
each division. Thus, Qij and Qji will differ to the
extent that the sizes of the divisions are different,
and the seriation procedure (which uses the dif-
ference between Qi,j and Q~,,) should therefore
order the divisions by size. Once ordered, prox-
imities in the upper triangle are directed and in-
dicate the specific relationships of large divisions
to small divisions. Numbers in the lower triangle
are ordered to specify directed relationships of
small divisions to large divisions. Separate MDS
analyses of the two triangles have these different
interpretations. Note that the assumption of tran-
sitivity that the seriation procedure imposes on the
ordering is reasonable when size (or time) is the
dimension on which the stimuli are ordered.

Distances in the MDS solution are directed ac-

cording to the particular triangle being scaled.

This feature can be portrayed within the MDS
space by drawing arrows between points indicating
the direction of the relationship. In practice, the
N(N - 1)/2 arrows that are drawn considerably
confuse the plot in which the stimuli are scaled.
To compromise, only the N - 1 arrows indicating
the ordering of the stimuli produced by the seria-
tion can be drawn; then, &dquo;visual transitivity&dquo; is
relied on to fill in other arrows. Alternatively, the
stimuli can be represented with numbers or let-
ters indicating the seriated ordering, so that the
unidimensional seriation structure-obtained by
analysis of the asymmetries-is captured in the
MDS representation along with the symmetric
proximity representation. This sacrifices the visual
impact of arrows forcing the directed distance in-
terpretation of the solution, but produces a more
understandable configuration to study.

In certain types of proximity matrices with a
large number of zero entries, most of the nonzero
entries may be seriated into the lower triangle.
Stimuli with time dependencies-in which rela-
tionships only exist for stimuli in one temporal
direction, for example-can produce such data.
A &dquo;misordered&dquo; proximity matrix can hide such
triangular structure (see Figure 1, below). When
seriated, the directed nature of the time dependen-
cies becomes apparent. In this case, only one MDS
application may be necessary.

Any type of asymmetric proximities (e.g., pro-
portions, frequencies, rates, overlap measures) can
be treated with this procedure. Often, theoretical
grounds may suggest the dimensions on which a
seriation procedure should order the stimuli (as
above with the APA data). In cases without
theoretical guidance, the seriation solution can be
inspected to discover an interpretable structure.
Because seriation extracts a unidimensional order-

ing from the stimuli, multiple dimensions in the
asymmetric information can be confounded with-
in the unidimensional seriation solution. Note that
there may be theoretically interesting triangles of
information other than the two specified by the
seriation algorithm presented here. Certainly MDS
(or other) analyses may be used on these triangles
as well, although optimality properties for which
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the seriation procedure searches are not features
of such an analysis.

The approach presented here is more of an ex-
ploratory procedure and less of a specific asym-
metric model than the methods described above.
This method sacrifices some mathematical ele-

gance, but gains flexibility and tractability, which
is justified to the extent that substantive informa-
tion is more easily obtained by the data analyst.
Thissen and Steinberg (1988) demonstrated data
analysis applications of item response theory,
arguing that &dquo;the goal of the analysis of psycho-
logical data, however mathematical, is psychology,
not mathematics&dquo; (p. 385).

Jllhastrati&reg;n A Co-Citation Matrix

The Data

Presumably, information about substantive

relationships between researchers is contained in
the frequency with which they cite one another.
An 18 x 18 asymmetric similarity matrix was
constructed of co-citation rates of Psychometric
Society presidents between 1970 and 1987. Rates
were defined by examining all Psychometrika
articles through 1985 authored or coauthored by
these 18 presidents, and dividing the number of
times President i cited President j by the number
of articles authored by President i (these numbers
are therefore interpreted as citations per article).
The citation rate matrix is presented in Table 5.
On theoretical grounds, the seriation procedure

was expected to order the presidents on a time-
related dimension, because asymmetries at least
partially reflect the fact that younger presidents
had more opportunity to cite older presidents than
vice versa. (Other differences between pairs of
presidents that might be confounded within the
ordering include differential tendencies to cite

many papers or important papers; these are ex-
pected to be less systematically reflected than the
time structure, however, because there is not an
obvious unidimensional scale along which these
types of differences should fall). Obviously, the
particular ordering in Table 5-the chronological
ordering of the presidents-already contains time-

related structure. Thus, this order is not an ar-
bitrary order of the 18! possible orderings; the
matrix already has achieved some of the goal of
seriation, in that many larger entries are in the
lower triangle and smaller entries are in the up-
per triangle.

Results

Table 6 presents the matrix from Table 5 after
seriation was applied. ASY = .72, indicating
substantial asymmetry. The value of TIES was .24;
the Younger A criterion had to resolve two, two-
way ties and one, three-way tie. From the 151 in-
formative (nonzero) entries, 109 (71070) are in the
lower triangle. FIT = .85, indicating that 85% of
the active &dquo;competitions&dquo; were reflected in the
derived ordering. Domination statistics di and row
averages r; also are shown in columns of Table 6.

The seriation of the presidents appears to give
an empirical time order, one related to

&dquo;psychometric age&dquo; of the president. The seria-
tion ordering and the chronological order had a
Spearman correlation of r = .73. Of those who
moved at least five places between the two order-
ings, Luce, McDonald, and Novick &dquo;became
older&dquo; in the empirical ordering, and Messick
&dquo;became younger.&dquo; Luce may have moved for
substantive rather than time-related citation

behavior, however. Because his work treated areas
other than scaling, test theory, factor analysis, and
structural equations modeling, he would be ex-
pected to cite others less often in this group,
almost all of whom are identified with one or
more of these areas. Such substantive structure can
be extracted from the information in Table 6 by
explicit analysis of the proximities.

Each triangle in Table 6 was submitted to an
MDS, with an empirical justification for analysis
of these particular triangles (out of the 18! pos-
sible orderings). If arrows are drawn on top of the
MDS solution indicating &dquo;who is citing whom,&dquo; 9

the two solutions give a natural asymmetric
representation of the citations data. The stimuli
also may be identified by numbers representing
the seriated ordering, which is a preferable tech-
nique for graphical purposes.
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Using ALSCAL (SAS Institute, Inc., 1983, p. 1),
the classical nonmetric MDS model was fit to
both the upper and lower triangle of Table 6. The
MDS fit statistics obtained from these two pro-
cedures were S-STRESS = .38 and = .58, and
S-STRESS = .51 and R~ = .23 for the lower

triangle and upper triangle, respectively. Only the
results from the lower triangle were interpretable
and interesting (because in the seriated solution,
most of the nonzero entries are in the lower

triangle, which explains the poorer fit values for
the upper triangle). The two-dimensional solu-
tion is shown in Figure 1. Presidents are

numbered/lettered according to their seriation-
derived order (numerals are continued with let-
ters), increasing with time. Thus, low numbers/
letters (e.g., Guttman and Luce) are placed into
this space according to how others cited them.
Information about their citations (most of which

were 0) is contained in the upper triangle, which
is not represented in this space. High numbers/
letters (De Leeuw and Takane) are placed into the
space according to how they cited others. Thus,
the higher the stimulus number/letter in Figure
1, the more actively did that president’s citation
behavior contribute to this space.

Consistent with the EDA tenets, the directions
in this space were substantively validated using
external data (see, e.g., Kruskal & Wish, 1978,
p. 35). The March, 1986, issue of Psychometrika
published annotated bibliographies for test

theory (Lewis, 1986), factor analysis (Mulaik,
1986), structural modeling (Bentler, 1986), and
scaling (Torgerson, 1986). In each area, the
number of references to each president was
tabulated and regressed into the space portrayed
in Figure 1. Direction cosines defined the angular
orientations, which are represented in the space

Figure 1
Derived Stimulus Configuration From Co-Citation Data for Psychometric Society Presidents, 1970-1986
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as arrows. Inspection of the space shows con-
siderable structure. The right (and especially up-
per) side contains presidents who were primarily
devoted to studying scaling. The upper left

quadrant contains developers of factor analysis
and structural equations modeling. Test theorists
are on the left-hand side. Three presidents were
&dquo;unstable&dquo; when slightly different versions of the
MDS model (e.g., metric models) were fit. Ramsey
and Cliff moved between the upper right
quadrant and the lower left quadrant across these
different solutions, and Bloxom also moved
toward the scaling direction. These shifts properly
reflect the attention of these presidents to both
scaling and test theory issues. The other

presidents were relatively stable across different
implementations of the MDS algorithm.

To illustrate further the flexibility of this
method-and still within the EDA framework-
the lower triangle of Table 6 was submitted to a
cluster analysis (using Ward’s procedure in SAS).
The results contained additional information not
obvious in the MDS solution, particularly about
the scaling specialists. The two major clusters
clearly separated those who focused on scaling
from the rest. The four subclusters contained

developers of structural equations modeling
(Guttman, McDonald, J6reskog, and Bentler),
the developers of ALSCAL (Takane, Young, and
De Leeuw), scaling experts who worked at Bell
Laboratories (Shepard, Kruskal, and Carroll),
and all others.

Discussion

Asymmetric data are both informative and
common. Approaches derived previously that
explicitly apply to asymmetries (as opposed to
treating them as error on top of symmetric
processes) have been strongly model-based. This
paper defined an exploratory procedure that sup-
ports a different approach to the analysis of
asymmetric proximity matrices. Conceptually, all
N! orderings and the resulting (say) lower

triangles could be analyzed with MDS, and

directed distances indicated. Practically, seriation
provides a mechanism to select one or two tri-

angles that are of particular empirical interest.
The resulting MDS portrayal represents symmetric
information from within the relevant triangle,
and the ordering of the stimuli reflects asym-
metric information from relationships between
the two triangles. These two procedures-
separately and in covnbination-can provide
substantive information to the data analyst,
as illustrated by the analysis of the Psychometric
Society presidents’ data.
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