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Matrix and Stimulus Sample Sizes in the Weighted
MDS Model: Empirical Metric Recovery Functions
Joseph Lee Rodgers
University of Oklahoma

The only guidelines for sample size that exist in
the multidimensional scaling (MDS) literature are a
set of heuristic "rules-of-thumb" that have failed
to live up to Young’s (1970) goal of finding func-
tional relationships between sample size and metric
recovery. This paper develops answers to two im-
portant sample-size questions in nonmetric weight-
ed MDS settings, both of which are extensions of
work reported in MacCallum and Cornelius (1977):
(1) are the sample size requirements for number of
stimuli and number of matrices compensatory?
and (2) what type of functional relationships exist
between the number of matrices and metric recov-

ery ? The graphs developed to answer the second
question illustrate how such functional relation-
ships can be defined empirically in a wide range of
MDS and other complicated nonlinear models.
Index terms: metnc recovery, monte carlo study,
multidimensional scaling, sample size, weighted multi-
dimensional scaling.

A research problem of considerable practical
interest is the choice of sample size. In settings
based on parametric statistical models (e.g.,
ANOVA), the relationship between sample size and
power has been carefully studied and charted
(e.g., Pearson & Hartley, 1951). The present
research was concerned with the relationship
between sample size and recovery of metric in-
formation in the nonmetric weighted multidimen-
sional scaling (WMDS) model.

Nonmetric MDS is a nonparametric method
used to assign scale values to stimuli. Raw data
are measures of relationship or proximity (e.g.,
similarities, confusions, transitions) between

stimuli; the Euclidean distance model is used to

define scale values. MDS is not usually used for
hypothesis testing (but see Ramsey, 1977). Rather,
its most common application is to extract inter-
pretable quantitative dimensions from qualitative
data. In this sense, MDS is more similar to fac-
tor analysis than to ANOVA or related parametric
techniques.

However, selecting the proper number of
matrices and stimuli is an important MDS con-
sideration for several reasons. First, the ability
of a nonmetric procedure to recover quantitative
information from qualitative data can depend on
the number of matrices and stimuli used. Other
factors related to sample size include stability and
external validity of scale values, interpretability
of the optimization function, and the cost of ob-
taining MDS data. To psychometricians, the first
reason-metric recovery-is probably the most
important. In fact, recovery in MDS research is
a near counterpart to power in a traditional para-
metric test. Power measures the probability of
correctly detecting an existing alternative

hypothesis; metric recovery measures the ability
of an MDS model to correctly detect the quan-
titative information in qualitative data. High met-
ric recovery will lead naturally to some of the
other criteria above, particularly to stability and
goodness of fit.

Several monte carlo studies have been con-
cerned with the problem of matrix (frequently
referred to as &dquo;subject&dquo; in the MDS literature)
and stimulus sample size in the WMDS model.
However, unresolved or contradictory issues still
exist. Two questions were addressed in the cur-
rent study. First, are matrix and stimulus sam-
ple sizes compensatory in the WMDS model?
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Second, what is the functional relationship
between matrix sample size and metric recovery
in the WMDS model? Research is reviewed that
has addressed the issue of sample size within the
WMDS model. This includes a reanalysis of data
from MacCallum and Cornelius (1977) to resolve
the issue of whether matrix and stimulus sample
sizes compensate for each other. Then monte
carlo results are presented that extend the results
of MacCallum and Cornelius; the design of the
present study permitted graphical portrayal of the
functional relationship between matrix sample
size and several measures of metric recovery.

Previous Research

Shiffman, Reynolds, and Young (1981) distin-
guished between classical MDS (CMDS), replicated
MDS (RMDS), and WMDS. The CMDS model as-
sumes a single I x I square symmetric matrix of
proximities between all pairs of stimuli (one-
mode, two-way data; see Carroll & Arabie, 1980).
Output is a single space with I stimuli in K dimen-
sions. The RMDS model assumes multiple I x I
proximity matrices (two-mode, three-way data),
but produces a single space representing the
stimuli (as in CMDS). The WMDS model requires
the same input data as RMDS (two-mode, three-
way), and also produces a stimulus space like
CMDS and RMDS. In addition, the separate ma-
trices (e.g., persons, companies, points in time)
are assigned scale values in a second space (usual-
ly called the &dquo;subject space&dquo; in the MDS litera-
ture ; here called the &dquo;anatrix space&dquo;) indicating
how they differentially weight the axes of the
stimulus space.

Early MDS sample size research studied stimu-
lus sample size and metric recovery. Young (1970)
considered the relationship between number of
stimuli and recovery in nonmetric CMDS settings,
and concluded that &dquo;it is, apparently, still too

early to determine just what the functional rela-
tion is&dquo; (p. 472). Once stated, the goal of find-
ing such functional relationships has never been
met; instead, the literature contains suggestions
and heuristic &dquo;rules-of-thumb&dquo; (e.g., Davison,
1983; Kruskal & Wish, 1978; Spence & Domoney,

1974; Young, 1970). The only theoretically based
criterion to be carefully studied was Shepard’s
(1966) &dquo;degrees-of-freedom ratio&dquo; (e.g., Spence
& Domoney, 1974; Young, 1970). However, no
general organizing principles concerning sample
size have resulted from these considerations.

Davison (1983, pp. 41, 48) discussed in-

complete designs, in which multiple (N) respon-
dents use different subsets of the I(I - 1)/2
possible paired comparisons, and then data are
averaged for every pair before applying the CMDS
model. He studied patterns in the monte carlo
literature (e.g., Spence & Domoney, 1974), and
developed a formula that insures at least 20 data
points for each estimated parameter: Select N
matrices and I stimuli so that N > 40A7(/ - 1).

The Davison formula implies a trade off

between the number of matrices and stimuli.

Multiplying through by (I - 1) gives the inequal-
ity N(I - 1) > 40K. Clearly, the formula treats
number of matrices and stimuli as compensato-
ry for a given dimensionality (i.e., increasing the
number of matrices reduces the need for stimu-

li, and vice versa). This relationship obviously
must be restricted to settings with more than a
few stimuli, because a scaling study with fewer
than five stimuli, for example, is not very sensi-
ble (e.g., Shepard, 1966). Davison’s (1983) for-
mula was based on intuition obtained from

inspection of previous studies.
MacCallum (1979) presented simulation results

from nonmetric WMDS settings. In his study,
number of stimuli was fixed at I = 30, and num-
ber of matrices was N = 10 or N = 20. Further,
error level and amount of missing data were also
manipulated. Results suggested that quality of
recovery decreased with increasing error and

increasing level of missing data, but was relatively
insensitive to matrix sample size. Because stimu-
lus size was fixed, neither the number of stimuli
nor the compensatory relationship between I and
N could be assessed.

MacCallum and Cornelius (1977) varied both
number of stimuli (I) and number of matrices
(N), as well as error level and dimensionality.
They defined four different measures of recovery,
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and complete three-way data were used. Their
findings replicated previous two-way results (e.g.,
Isaac & Poor, 1974; Young, 1970); true overall
recovery improved with increasing number of
stimuli, as did recovery of stimulus and matrix
spaces. The STRESS measure used in this study
(SSTRESS from ALSCAL), a measure of apparent
recovery derived from the data (but which con-
tains no information about the true underlying
structure of the data), actually gave misleading
information and suggested a better fit of the
model for decreasing numbers of stimuli. (Sher-
man, 1972, used a different routine to generate
data, in which each configuration was truly in-
dependent, and found that STRESS was a fairly
accurate index of recovery for many stimuli and

low levels of error.) Despite this one anomaly,
MacCallum and Cornelius (1977) suggested that
recovery of true structure increases monotonically
with increasing number of stimuli in both two-
and three-way settings.

The interaction between matrix and stimulus

sample size was assessed in MacCallum and Cor-
nelius (1977). Number of matrices and number
of stimuli showed a significant interaction for two
of the four dependent variables measuring
recovery-recovery of the true stimulus config-
uration, and recovery of the true matrix weights.
No interaction was observed for the two most im-

portant measures of metric recovery, STRESS and
tYl (the index of overall true metric recovery). An
interaction does not necessarily imply that the
number of matrices and stimuli compensate for
each other in producing quality of recovery (e.g.,
the effect of one might be increasingly enhanced
by increases in the other). However, the absence
of an interaction shows definitively that such a
compensatory relationship does not exist. Mac-
Callum and Cornelius (1977) did not plot cell
mean patterns for the two dependent variables
for which the interaction occurred, which leaves
doubts about the type of interaction that oc-
curred. This issue was resolved through a re-
analysis of their original data.

R. C. MacCallum (personal communication,
1988) provided the cell means from MacCallum

and Cornelius (1977). Plots of these means (avail-
able from the author) showed clearly the absence
of any type of compensatory relationship, even
for the two indices showing significant inter-
actions. All four measures were sensitive to

changes in number of stimuli, and virtually
insensitive to changes in number of matrices. The
interactions were caused by small, nonsystemat-
ic crossovers in otherwise very consistent patterns.
The implication of this reanalysis is that the num-
ber of matrices and number of stimuli are not

compensatory in three-way WMDS settings.
Rather, selecting these sample sizes should be
treated as separate problems.

Next, matrix sample size was considered.
When MacCallum and Cornelius (1977) tested
the main effect for number of matrices, the rela-
tionship of recovery to N was the same as in Mac-
Callum (1979, p. 421): &dquo;the number of

individuals, within the range studied, did not
have a substantial effect on any of the dependent
variables: ’

The levels of number of matrices in MacCal-
lum and Cornelius (1977) were 15, 25, 35, and
50, and the authors concluded that &dquo;empirical
investigators ... need make no effort to obtain
such (large) samples.&dquo; The authors, however, did
not resolve the point at which recovery is degrad-
ed by small sample size (if, indeed, such a point
occurs at all), or provide any indications of the
functional relationship between N and metric
recovery.

The early goal that Young (1970) established
has still not been met. Sample size recommen-
dations found in the literature for all of the MDS
models are qualitative statements that are heavi-
ly qualified. Functional quantitative relationships
cannot be found. However, they can be specified
empirically. For example, MacCallum and Cor-
nelius (1977) stopped just short of such a specifi-
cation. They could have plotted their four

measures of recovery against the sample sizes they
investigated (N = 15, 25, 35, and 50), but their
functions would have been flat, because their
work showed that asymptotic recovery is achieved
at levels below their smallest sample size. The
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range of the function that is not flat is the range
of particular interest to applied researchers. The
work of MacCallum and Cornelius (1977) was ex-
tended in the present study to specify the quan-
titative relationship between sample sizes and
metric recovery in WMDS models.

Method

This study replicated MacCallum and Cor-
nelius (1977), with adjustments reflecting
methods in Rodgers (1985). Three-way data were
generated and submitted to PROC ALSCAL in SAS
(SAS, 1983). Stimulus size was fixed at 12, and
error level at moderate, including both medium
range levels from the MacCallum and Cornelius

study. Nonmetric analyses were performed using
the INDSCAL option (for WMDS) in ALSCAL.

The 12 stimuli were randomly sampled from
the 50 real data points presented in Girard and
Cliff (1976) and used in MacCallum and Cor-
nelius (1977). These were four-dimensional data;
for a given dimensionality K, the first K dimen-
sions were used. The design varied number of
matrices across eight levels (N = 2, 4, 6, 8, 10,
12, 15, and 25), which included two sample sizes
studied by MacCallum and Cornelius.

Dimensionality was varied across three levels
(F~ = 2, 3, and 4). The matrix sample was ran-
domly selected from 200 matrices constructed be-
fore the simulation was run. Matrix weight
vectors for these 200 simulated individuals were
constructed to have unit length in a specified
dimensionality (thus, three different matrix sets
were generated), and to be Von Mises distribut-
ed with a mean of 45 ° and a concentration pa-
rameter of 8 (equivalent to a standard deviation
of 20°). The Von Mises distribution gives the
closest counterpart on the unit circle to the nor-
mal distribution on the number line (Mardia,
1972). When matrix vectors were occasionally
generated outside of the first quadrant, which
would have produced negative matrix weights and
imaginary distances, they were set back to the
boundary. This generation procedure was tested
and presented in Rodgers (1985).

Once simulated individuals and stimuli were

randomly selected, a matrix of true distances was
generated for each individual. Next, error gener-
ation routines presented in MacCallum and Cor-
nelius (1977) were used. Their random error
generation routine was adapted from Girard and
Cliff (1976), and involved a hyperbolic tangent
transformation of the distances with random
normal error added. This transformation
achieves the goal of making underestimates more
likely at the upper extreme of the scale, and over-
estimates more likely at the lower extreme, which
are properties characteristic of actual empirical
proximity data.

Within each of the 24 cells of the 8 x 3 de-

sign, 15 replications were run (compared to five
in MacCallum & Cornelius, 1977). Because the
present study was concerned with observing func-
tional relationships rather than testing for cell
differences, the added stability in the results

appeared to be worth the cost of obtaining addi-
tional data.

The same four dependent variables used by
MacCallum and Cornelius (1977)-SSTRESS, M,
delta, and phi-were computed for each replica-
tion (algebraic expressions for each index may be
found in their article). SSTRESS-squared STRESS,
the optimization criterion in ALSCAL-was used
as an index of recovery of distorted distances.
This is the only goodness-of-fit index available
in actual research. In monte carlo studies,
however, the true structure of the data is known,
and this structure was used to construct the ad-
ditional three dependent variables. lil is a meas-
ure of metric recovery-the recovery of the true
distances for each matrix; it is the normalized
sum of squared differences between the derived
and true distances. M was the index used in

Young’s (1970) original study investigating recov-
ery of metric information in nonmetric CMDS.
Delta is an index of recovery of the true stimu-
lus configuration. MacCallum and Cornelius
(1977, p. 410) describe delta as the &dquo;square root
of the mean squared differences between the true
and recovered projections.&dquo; Finally, phi is the in-
dex of recovery of the true matrix weights. This
index was computed by rearranging the derived
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dimensions to most closely match the original
dimensions, and is computed as 1 minus the aver-
age cosine o f the angles between the original and
derived matrix vectors.

Results

The median values across the 15 replications
in each cell are presented and discussed separately
for the four dependent variables in Figures 1

through 4. Of particular interest in each case is
the point of asymptote, beyond which increas-
ing the matrix sample size does not increase

recovery.

Figure 1
Empirical Relationship Between WMDS Matrix
Sample Size and SSTRESS in ALSCAL for Two,

Three, and Four Dimensions

For SSTRESS (Figure 1), higher values imply
lower recovery of the distorted distances. The

apparent asymptote for each dimensionality
occurs somewhere around 6 matrices. As expect-
ed, recovery improves for higher dimensionality,
although two and three dimensions are difficult
to distinguish.

For M (Figure 2), higher values imply better
recovery of the true distances. There is little sen-

sitivity to matrix sample size for two dimensions.
The asymptote for three and four dimensions
occurs around N = 6. Ability to recover the true
distances decreases with increasing dimen-

sionality.
For delta (Figure 3), higher values imply lower

Figure 2
Empirical Relationship Between WMDS Matrix

Sample Size and Metric Recovery (M) in ALSCAL for
Two, Three, and Four Dimensions

recovery of the true stimulus space (delta = 0
implies perfect, recovery), For K = 2, there is lit-
tle sensitivity to increasing ~10 ~’~r ~ = 3 and 4,
there appears to be an asymptote, again around
6. Recovery is poorer with increasing dimen-
sionality.

Figure 3
Empirical Relationship Between WMDS Matrix
Sample Size and Stimulus Space Recovery (Delta)
in ALSCAL for Two, Three, and Four Dimensions

Finally, for phi (Figure 4), higher values imply
lower recovery. Both within and collapsing across
dimensionality, there appears to be little relation-
ship of phi to sample size, even for very small
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Figure 4
Empirical Relationship Between WMDS Matrix
Sample Size and Matrix Space Recovery (Phi) in
ALSCAL for Two, Three, and Four Dimensions

samples. Again, recovery is degraded for increas-
ing dimensionality.

Discussion

Results of this monte carlo study are consis-
tent with those found by MacCallum and Cor-
nelius (1977). SSTRESS is the only index for which
recovery improved with dimensionality, and there
was virtually no sensitivity to the difference be-
tween sample sizes of 15 and 25. The present
study extended these results to the range below
N = 15.

For three of the four indices (those reflecting
characteristics of the stimulus space), a sample
size of approximately 6 was the point below
which recovery dropped off. This drop-off was
greater for four dimensions than for three, and
somewhat greater for three than for two. Thus,
if a two-dimensional solution is desired, a sam-
ple as small as 1 or 2 can provide high-quality
recovery. For three or four dimensions, samples
larger than 6 provide little improvement.

The insensitivity of phi to number of matrices
is quite interpretable. Phi measures recovery of
the matrix weights. Because these are recovered
at the individual matrix level, however, recovering
many matrix weights should not be different from
recovering only a few.

On the other hand, the insensitivity of the
other indices to matrix sample size is surprising.
Clearly, the nonmetric information from only a
very few matrices is sufficient to recover virtual-

ly all of the metric information in the original
distances, the distorted distances, and the origi-
nal stimulus configuration.

There are other considerations that may in-

fluence choice of matrix sample size in addition
to metric recovery. For example, Rodgers (1985)
showed that the power in statistical tests of group
differences in WMDS weight spaces depends heav-
ily on sample size (as would be expected for any
parametric test). Also, neither the present nor the
MacCallum and Cornelius (1977) study directly
investigated the ability of WMDS to &dquo;tie down&dquo;

the dimensions (e.g., Shiffman et al., 1981, p. 67),
the WMDS feature in which interpretable direc-
tions tend to lie on the coordinate axes. Because
this is an attractive property of the WMDS model,
future research might investigate its relationship
to matrix sample size. Also, because the rotation-
al invariance of WMDS is related to the variabili-

ty of the matrix weight vectors, this property
might be more affected by matrix sample size
than the measures of metric recovery from the

present study.
Graphs similar to those in Figures I through

4 could be developed for CMDS and RMDS set-
tings (as well as for unfolding and more exotic
models), for different levels and types of error,
and for other measures of recovery (e.g., STRESS
or STRAIN). This approach also provides a way
of formally comparing the recovery of metric in-
formation in different MDS models. For example,
RMDS and WMDS can be applied to exactly the
same type of data. WMDS produces an extra
space and achieves some level of rotational in-

variance, but what does RMDS do with the &dquo;ex-
tra&dquo; information? Is the stimulus space it

produces more metrically perfect than that from
WMDS?

For years, researchers have been using the
Pearson and Hartley (1951) power charts. These
came from analytic procedures derived from
parametric assumptions. MDS researchers have
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not been successful in developing comparable
methods. However, monte carlo procedures pro-
vide a way to empirically derive equivalent rela-
tionships in nonlinear settings like those in MDS
models.

References

Carroll, J. D., & Arabie, P. (1980). Multidimensional
scaling. In M. R. Rosenzweig & L. W. Porter (Eds.),
Annual Review of Psychology. Palo Alto CA: Annu-
al Reviews, Inc.

Davison, M. L. (1983). Multidimensional scaling. New
York: Wiley.

Girard, R. A., & Cliff, N. (1976). A monte carlo evalu-
ation of interactive multidimensional scaling. Psy-
chometrika, 41, 43-64.

Isaac, P. D., & Poor, D. D. (1974). On the determina-
tion of appropriate dimensionality in data with er-
ror. Psychometrika, 39, 91-109.

Kruskal, J. B., & Wish, M. (1978). Multidimensional
scaling. Beverly Hills CA: Sage.

MacCallum, R. C. (1979). Recovery of structure in in-
complete data by ALSCAL. Psychometrika, 44,
69-74.

MacCallum, R. C., & Cornelius, E. T. (1977). A monte
carlo investigation of recovery of structure by
ALSCAL. Psychometrika, 42, 401-428.

Mardia, K. V. (1972). Statistics of directional data. New
York: Academic Press.

Pearson, E. S., & Hartley, H. O. (1951). Charts of the
power function for analysis of variance tests, de-
rived from the non-central F distribution. Biometri-
ka, 38, 112-130.

Ramsey, J. O. (1977). Maximum likelihood estimation
in multidimensional scaling. Psychometrika, 42,
241-266.

Rodgers, J. L. (1985). Statistical tests of group differ-
ences in ALSCAL-derived subject weights: Some
monte carlo results. Applied Psychological Measure-
ment, 9, 241-248.

SAS Institute, Inc. (1983). SUGI supplemental library
user’s guide. Cary NC: Author.

Shepard, R. N. (1966). Metric structures in ordinal
data. Journal of Mathematical Psychology, 3, 287-315.

Sherman, C. R. (1972). Nonmetric multidimensional
scaling: A monte carlo study of the basic

parameters. Psychometrika, 37, 323-355.
Shiffman, S. S., Reynolds, M. A., & Young, F. W.

(1981). Introduction to multidimensional scaling. New
York: Academic Press.

Spence, I., & Domoney, D. W. (1974). Single subject
incomplete designs for nonmetric multidimensional
scaling. Psychometrika, 39, 469-490.

Young, R W. (1970). Nonmetric multidimensional scal-
ing : Recovery of metric information. Psychometri-
ka, 35, 455-473.

Acknowledgments

The author expresses his appreciation to Robert C Mac-
Callum, who provided the data from MacCallum and Cor-
nelius (1977) for reanalysis, and who provided suggestions
that improved this study Part of the preparation of this
article was completed while the author was on sabbati-
cal leave in the Psychology Department at Ohio State
University in 1987/88. An earlier version was presented
at the annual meeting of the Psychometric Society in Toron-
to in 1986.

t-luthor’s Address

Send requests for reprints or further information to
Joseph Lee Rodgers, Department of Psychology,
University of Oklahoma, Norman OK 73019, U.S.A.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016apm.sagepub.comDownloaded from 

http://apm.sagepub.com/

