
Sociological Methodology

1–49

� American Sociological Association 2015

DOI: 10.1177/0081175014562589

http://sm.sagepub.com1

AN INTRODUCTION TO THE

GENERAL MONOTONE MODEL

WITH APPLICATION TO TWO

PROBLEMATIC DATA SETS

Michael R. Dougherty*

Rick P. Thomasy

Ryan P. Brownz

Jeffrey S. Chrabaszcz*

Joe W. Tidwell*

Abstract

We argue that the mismatch between data and analytical methods, along

with common practices for dealing with ‘‘messy’’ data, can lead to inaccu-

rate conclusions. Specifically, using previously published data on racial bias

and culture of honor, we show that manifest effects, and therefore theoretical

conclusions, are highly dependent on how researchers decide to handle

extreme scores and nonlinearities when data are analyzed with traditional

approaches. Within LS approaches, statistical effects appeared or disap-

peared on the basis of the inclusion or exclusion of as little as 1.5% (3 of

198) of the data, and highly predictive variables were masked by nonlineari-

ties. We then demonstrate a new statistical modeling technique called the
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general monotone model (GeMM) and show that it has a number of desir-

able properties that may make it more appropriate for modeling messy data:

It is more robust to extreme scores, less affected by outlier analyses, and

more robust to violations of linearity on both the response and predictor

variables compared with a variety of well-established statistical algorithms

and frequently possesses greater statistical power. We argue that using pro-

cedures that make fewer assumptions about the data, such as GeMM, can

lessen the need for researchers to use data-editing strategies (e.g., to apply

transformations or to engage outlier analyses) on their data to satisfy often

unrealistic statistical assumptions, leading to more consistent and accurate

conclusions about data than traditional approaches of data analysis.

Keywords

data editing, monotone regression, maximum rank correlation estimator, cul-

ture of honor, racial bias

1. INTRODUCTION

Although recent high-profile cases of fraud have brought unwelcome

attention to social sciences, these cases offer an opportunity to reflect on

the state of our sciences as well as currently accepted practices (Crocker

2011; Fang, Steen, and Casadevall 2012). To be sure, sociologists have

been somewhat ahead of the curve in addressing issues related to data

quality, reproducibility (Freese 2007; Hauser 1987), replicability (King

1995), and publication bias (Gerber and Malhotra 2008; Leahey 2005).

Of these, data quality arguably ranks as the foremost problem for social

scientists because so much, including reproducibility and replication,

depends on having good-quality data. Unfortunately, much of the data

within the social sciences are messy, and they often require a good amount

of editing (e.g., transformation, replacement of missing values, outlier

removal) prior to analysis when used with traditional metric statistics.

Data editing, however, enables the researcher to capitalize on chance, a

problem that is compounded by the fact that there are not well-accepted

(or followed) guidelines for how and when to use particular data-editing

strategies (Leahey 2008; Leahey, Entwisle, and Einaudi 2003; Sana and

Weinreb 2008). The plethora of available strategies, even for something as

simple as outlier analysis, can promote flexibility in data analysis.

Unfortunately, different approaches to data editing can yield different sub-

stantive conclusions, meaning that replications depend not only on the data

but also on the specific choices one makes in data editing.
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The use of data-editing strategies is just one end of the spectrum of

the flexibility afforded to researchers. Modern computers and an ever

expanding toolbox of available statistical algorithms permit researchers

to easily explore their data in a variety of different ways under different

modeling assumptions prior to settling on the subset of analyses that are

to be reported (Ho et al. 2007). Coupled with methodological issues sur-

rounding the use of data editing, flexibility in analysis techniques has

been a major concern within the social sciences, leading some to call for

open-source documentation of data analysis techniques (Freese 2007;

Simonsohn 2013). Although there are many reasons to demand open-

source documentation, it does not address the problem of flexibility of

analysis; it only makes the use of flexible analysis methods public and

open to scrutiny.

The work presented here has two related goals. The first is to illus-

trate the problem with implementing accepted practices on how to deal

with messy data, showing just how sensitive substantive conclusions can

be to different choices made in data analysis. The second goal is to pro-

vide an alternative approach to modeling messy data that reduces or

eliminates the need for researchers to make such decisions. With regard

to the first goal, using data on racial prejudice (Siegel, Dougherty, and

Huber 2012) and culture of honor (Henry 2009), we show that the use of

least squares (LS) regression techniques yields inconsistent conclusions

across various accepted methods for dealing with messy data. These

inconsistencies call into question the validity of statistical conclusions

based on LS approaches and in general render the data less interpretable.

We argue that the mismatch between the nature of one’s data and stan-

dard statistical approaches can deceive researchers into drawing invalid

conclusions, no matter how well intentioned or diligent the researchers

are.

Turning to the second goal, we introduce a new statistical algorithm,

the general monotone model (GeMM; Dougherty and Thomas 2012)

that makes weaker assumptions than LS approaches about scale of mea-

surement and the functional relationships among manifest variables.

GeMM provides relatively more consistent statistical outcomes across

several criteria for inclusion or exclusion of extreme scores and the pres-

ence of nonlinearities. We show that GeMM is more robust to extreme

scores, it is unaffected by nonlinear monotone relationships, and it has

superior predictive accuracy and better statistical power when compared

with a variety of procedures based on LS. Our application of GeMM in
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this article goes beyond previous published applications. Specifically,

our analyses evaluate the stability or robustness of GeMM relative to

alternative modeling techniques under a variety of realistic conditions

that might otherwise entice researchers to make tough decisions about

how to handle nonlinear or nonnormal data or the presence of extreme

scores. We argue that GeMM provides a promising solution to flexibility

in data analysis by greatly reducing both the need for and the impact of

data editing.

2. MESSY DATA AND TOUGH DECISIONS

Rarely do data neatly conform to the assumptions required for carrying

out standard statistical procedures. For instance, it is well recognized

that real data typically deviate, often nontrivially, from normality

(Micceri 1989), which can result in violations of assumptions underly-

ing standard statistical techniques. Real data are messy. As researchers,

we are taught to be vigilant to aberrations in our data, and even to

remove them through the use of transformations or ‘‘outlier’’ analyses.

For example, Hays (1994) stated that

the data should be inspected for unusually skewed or artificially restricted
distributions, missing data, and the presence of unusually deviant cases or
outliers. . . . Fortunately, even messy data can often be cleaned up enough
to be used, but doing so requires many choices. (p. 721)

Many textbooks contain similar advice—advice that instructs

researchers to clean their data through transformation and outlier dele-

tion techniques. These techniques, which we refer to collectively as

data-editing strategies (Leahey 2008; Leahey et al. 2003), allow

researchers to clean and/or reexpress the data in a form that more

closely conforms to the assumptions of the statistical model. However,

the same textbooks that offer advice on how to handle nonnormalities

and outliers also point out that standard LS estimation procedures and

their robust implementations often perform reasonably well even when

their assumptions are not met (see Howell 2002). This type of back-

and-forth between prescribing data-editing strategies and touting robust-

ness is typical.

The fact that many analysis techniques make strong assumptions

about distributional (e.g., multivariate normality) and functional (e.g.,

linear) forms can present researchers with a potentially important
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dilemma: Should they engage in data editing to bring the data in line

with the assumptions of the analytical procedure, recognizing that the

statistical conclusions are conditional on the particular data-editing

strategies used? Or should they analyze the data ‘‘as is,’’ recognizing

that the statistical conclusions are conditional on potential violations

of assumptions? Obviously, the best-case scenario is that statistical

conclusions are invariant across various data-editing strategies and

methodologies. However, there may be cases in which researchers’

statistical, and therefore theoretical, claims depend on whether or

how they have transformed or trimmed the data. Indeed, in investigat-

ing Diederik Stapel’s infamous body of work for instances of decep-

tive research practices, an investigatory panel specifically noted how

the elimination or inclusion of extreme scores affected the statistical

conclusions:

On the one hand, ‘‘outliers’’ (extreme scores on usually the dependent vari-
able) were removed from the analysis where no significant results were
obtained. This elimination reduces the variance of the dependent variable
and makes it more likely that ‘‘statistically significant’’ findings will
emerge. . . . Conversely, the Committees also observed that extreme scores
of one or two experimental subjects were kept in the analysis where their
elimination would have changed significant differences into insignificant
ones; there was no mention anywhere of the fact that the significance relied
on just one or a few subjects. (Levelt Committee, Noort Committee, and
Drenth Committee 2012:49)

Obviously, it strikes us as problematic when statistical and theoreti-

cal conclusions are dependent not on the data per se but on the creative

use (or misuse) of statistical methods and data-editing strategies—what

Simmons, Nelson, and Simonsohn (2011) have referred to as ‘‘experi-

menter degrees of freedom.’’ Although Stapel may have been guilty of

not disclosing his decisions to include or exclude participants (and out-

right fraud in other cases), the fact that he sometimes engaged in outlier

elimination (and other times chose not to) is not inconsistent with stan-

dard practices. In fact, the authors of the Stapel report even seem con-

flicted about whether it was appropriate to eliminate extreme scores.

The bottom line is that decisions about whether to engage in data edit-

ing that are based on whether the data meet the assumptions of the sta-

tistical model leave the researcher in a precarious position: damned if

you do and damned if you don’t.
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Although there have been several documented cases of inappropriate

data editing within the psychological literature (e.g., that of Diedrick

Stapel), the issue of data editing is clearly of concern across all of the

social sciences, including sociology (John, Loewenstein, and Prelec

2012; Leahey et al. 2003). The tension surrounding the appropriateness

of eliminating outliers was illuminated by an exchange between Kahn

and Udry (1986) and Jasso (1986) in the American Sociological Review

regarding an analysis of intercourse frequency among married couples:

Kahn and Udry criticized Jasso’s original analysis by arguing that her

inclusion of outliers was inappropriate and biased the statistical results;

Jasso countered by arguing that the exclusion of outliers in Kahn and

Udry’s reanalysis produced ‘‘sample truncation bias.’’ This divergence

on the inclusion of outliers highlights a common predicament: There is

not always a clear solution to the presence of outliers, and decisions to

include or exclude them often come down to a judgment call.

The scope of the data-editing problem for statistical inference is diffi-

cult to assess from published work, in part because there is little over-

sight or consistency in regard to how data-editing procedures are carried

out (Leahey 2008) and in part because few articles include serious dis-

cussion of how specific data-editing decisions affect statistical conclu-

sions. Nevertheless, it is clear that data editing is a relatively common

component of statistical analysis. Notable examples from the literature

include the common use of logarithmic transformations for analyses that

include estimates of income (e.g., Olsen and Dahl 2007; Semyonov and

Lewin-Epstein 2011) and homicide rates (Lederman, Loayza, and

Menéndez, 2002). Although decisions regarding whether to transform

variables are presumably based on the need to bring the data in line with

modeling assumptions, these decisions represent an important source of

flexibility in data analysis—a flexibility that can be exploited either

intentionally or unintentionally (Simmons et al. 2011).

The exploitation of flexible analysis techniques is a problem for sci-

ence. However, the critical question concerns the precise nature of this

problem: Is it that people fail to report faithfully the many decisions that

ultimately exploit this flexibility? Or is it that there is too much flexibil-

ity with data analysis techniques to begin with? Depending on how we

perceive the problem, it suggests different solutions. If the problem is

that people do not faithfully report the many decisions that exploit the

flexibility of available statistical algorithms, then the obvious solution

is to require full disclosure of data analysis methods in an open-source
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forum, as suggested by Freese (2007). However, if the problem is that

there is too much flexibility to begin with, then the solution would seem

to lie in the development (or use of) procedures that reduce this flexibil-

ity (Ho et al. 2007). Thus, although full disclosure is important, we

believe that the more fundamental problem lies with the use of standard

statistical techniques, which permit, and in some cases demand, that

researchers engage in data editing. Assuming this is the case, then one

reasonable approach is to use analysis techniques that are robust to the

types of decisions that researchers would otherwise be compelled to

make in order to bring their data in line with the modeling assumptions

(cf. Beck and Jackman 1998).

3. THE GENERAL MONOTONE MODEL

Fundamentally, the GeMM is an algorithm for detecting and modeling

monotone statistical relationships in regression contexts. The primary

difference between GeMM and standard LS approaches lies in the fit-

ness function. In LS regression, the goal is to find the regression coeffi-

cients that minimize the sum of the squared differences between the

observed and the predicted values. In contrast, in GeMM the goal is to

find the regression coefficients that minimize the difference in the ordi-

nal correspondence (i.e., that minimize the number of rank-order inver-

sions) between the observed and predicted values, as defined by

Kendall’s (1938) t. In this way, GeMM attempts to find the solution

that provides the best monotonic (i.e., rank-order) fit to the data, as

opposed to finding the best linear LS fit to the data. Thus, GeMM is a

variant of the maximum rank correlation estimator (Cavanagh and

Sherman, 1998; Han 1987). As demonstrated below, GeMM has super-

ior statistical power relative to ordinary LS (OLS) to detect nonlinear

but monotone statistical relationships, without requiring the researcher

to model the nonlinearity directly or engage in data editing. The reason

for this is that the rank-order correlation t, on which GeMM is based, is

invariant to monotone transformation on the criterion variable. It is also

important to note that GeMM suffers little loss in statistical power com-

pared with OLS when the statistical relationship is linear and the data

satisfy standard OLS assumptions (Dougherty and Thomas 2012).

Because GeMM is invariant to transformation on the criteria, unaffected

by nonlinearities, and should be less sensitive to extreme scores (a prop-

erty we demonstrate below), it provides a new tool for modeling messy
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data that would otherwise require editing or more specialized statistical

algorithms.

In its simplest form, GeMM consists of a one-parameter model (i.e.,

one predictor), which is used to predict the criterion variable1 of inter-

est. In this context, GeMM is actually identical to Kendall’s (1938) t

correlation coefficient, but it is expressed in a model form. Rather than

expressing the relationship between X and Y directly, we substitute Ŷ

for X to show the model-form equivalence of t for a single predictor:

Ŷ = bX : ð1Þ

In equation (1), we wish to find a value for b that minimizes the incor-

rectly predicted paired comparisons, as defined by equations (2) to (6):

t Ŷ , Y
� �

= C � Dð Þ=sqrt Pairs� Tp

� �
� Pairs� Tcð Þ

� �
, ð2Þ

C = Prop Yi.Yj \ Ŷ i.Ŷ j

� �
+ Prop Yi\Yj \ Ŷ i\Ŷ j

� �
, ð3Þ

D = Prop Yi.Yj \ Ŷ i\Ŷ j

� �
+ Prop Yi\Yj \ Ŷ i.Ŷ j

� �
, ð4Þ

Tp = Prop Yi � Yj \ Ŷ i = Ŷ j

� �
+ Prop Yi � Yj \ Ŷ i = Ŷ j

� �
, ð5Þ

and

Tc = Prop Yi = Yj \ Ŷ i � Ŷ j

� �
+ Prop Yi = Yj \ Ŷ i � Ŷ j

� �
, ð6Þ

where Pairs = N(N– 1)/2, the number of unique paired comparisons; C

is the number of concordant paired comparisons; D is the number of dis-

concordant pairs; Tp is the number of ties on the predictor; and Tc is the

number of ties on the criterion. With only one predictor, only the sign

of b matters, which provides the direction of the relationship between Ŷ

and Y. Thus, for the one-predictor case, the specific value of b is irrele-

vant, and the strength of the predictor is defined by the value of t. Note

that there is no intercept parameter in equation (1), because it is not nec-

essary for predicting the ordered relationship.

Equation (1) can be generalized to the multiple predictor case:

Ŷ = b1X1 + b2X2 + . . . + bkXk : ð7Þ

In equation (7), the different coefficients are estimated to maximize

model fit and can therefore take on any real number, which allows the
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variables to differentially contribute to the overall fit between the data,

Y, and the model estimates, Ŷ. In this context, the magnitudes of the b

values are interpreted as the relative contribution of each predictor for

predicting the ordinal values of Y. In contexts in which predictors are

uncorrelated, the b weights can be viewed as the relative importance of

each variable for characterizing the ordinal values of Y.

Parameter estimation is achieved computationally, rather than analy-

tically, because there are no currently available methods for deriving

optimal weights to maximize the rank-order correspondence between a

model and the data. In the present analyses, we used a genetic algorithm

to search the parameter space for the best-fit parameter estimates. Prior

work (Dougherty and Thomas 2012) illustrated that genetic search

works well for estimating the optimal weights for simulated data with

known parameters.

In the analyses that follow, we fit data within the context of minimiz-

ing model complexity. This was achieved by using a variant of the

Bayesian information criterion (BIC). Raftery (1995) showed that the

BIC could be estimated from

BIC = N log 1� R2
� �

+ k log Nð Þ, ð8Þ

where N is the sample size, R2 is the squared multiple correlation, and k

is the number of parameters. One problem with applying equation (8)

directly is that GeMM is designed to predict rank orders. However,

Kendall and Gibbons (1990) showed that under bivariate normality,2

Pearson’s r could be estimated from t using

r � tau = sin(pi=2t): ð9Þ

Substituting equation (9) for the value of R2 in (8) yields equation (10):

BICt = N log(1� (sin½pi=2t�)2) + k log Nð Þ: ð10Þ

Equation (10) is the value of the BIC estimated from the t-to-r transfor-

mation. However, because the value of rt shows greater variability than

r (Rupinski and Dunlap 1996), we use an adjusted form of rt based on

sample size and the number of predictors used in the regression.

Specifically, we define r0t as

r0t = sin½pi=2tv�, ð11Þ

The General Monotone Model 9
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where

v = N � P� 1ð Þ=N , ð12Þ

where v is a weighting function based on the number predictors, P,

used in the regression and sample size, N. Because v serves to deweight

the value of t for smaller sample sizes, it reduces the variance of the

t-to-r transformation. Because v goes to 1.0 as N increases, the asymp-

totic value of the t-to-r transformation is preserved. Substituting r0t into

equation (12) gives

BIC0t = N log(1� r0
2
t) + k log Nð Þ: ð13Þ

Model selection based on equation (13) (BIC0t) is assessed on the fit of

the model to the data as given by the degree of monotonic relationship

expressed by the t-to-r transformation, adjusted for model complexity.

Dougherty and Thomas (2012) showed that model fitting based on r02t is

invariant to monotone transformation on y, whereas model fit based on

the linear r2 can suffer from considerable loss of power when statistical

relations deviate from strict linearity. Furthermore, Dougherty and

Thomas (2012) illustrated that GeMM’s estimated parameters approxi-

mated the metric population values, and they were unaffected by nonli-

nearities. This later result occurs for the same reason that ordinal

multidimensional scaling solutions approximate metric properties of the

data: The number of constraints on the rank-order solution increases

exponentially as sample size increases (Dougherty and Thomas 2012;

see also Shepard 1962, 1966).

The base GeMM algorithm described above and in Dougherty and

Thomas (2012) searches the parameter space to find coefficients that

maximize the value of t. However, a simple modification to this pro-

cess involves maximizing the linear fit (R2), conditional on the optimal

ordinal fit. This can be achieved in GeMM by sorting all models with

equivalent (maximal) ordinal fit by their corresponding values of R2.

This yields the vector of b values that optimize the linear fit, condi-

tional on the set of coefficients that maximize ordinal fit. Note that the

coefficients derived from this process are scale independent and are not

directly comparable with coefficients derived from OLS, because there

is an infinite number of parameter values that will yield an equivalent

solution. This is because GeMM lacks an intercept term and because

the fit statistic, t, is invariant to monotone transformation. However, we
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may obtain a comparable LS model, one that is conditioned on maxi-

mizing t, by regressing the criterion value Y on the predicted values of

Y obtained from GeMM. In other words, we can use the OLS machinery

to rescale the GeMM fitted weights to the LS solution that simultane-

ously maximizes the rank-order correspondence between the criterion

and fitted values. We refer to this procedure as order-constrained least-

squared optimization (OCLO; Tidwell et al. 2014). In principle, the

OCLO solution is a special case of the base GeMM model in which

weights are rescaled to minimize the sum of squared errors, conditional

on the optimized ordinal fit. The end result of applying OCLO is a set

of b coefficients that are directly comparable with those obtained via

OLS regression.

4. REDUCING FLEXIBILITY IN ANALYSIS: AN
ILLUSTRATION OF GEMM ON TWO DATA SETS

Flexibility in data analysis presents an appreciable challenge when dif-

ferent analysis techniques or data-editing decisions change the substan-

tive conclusions. Here, we argue that GeMM offers a promising

approach for reducing this flexibility. GeMM assumes that the predic-

tors are interval scale, permitting the model to take the traditional addi-

tive form, but it treats the criterion variable as ordinal—allowing

ordinal, interval, ratio, and even nominal (in some cases) scale variables

to serve as the criterion. A key feature of GeMM is that it is designed to

model the monotone relations of the data. This feature means that

GeMM is invariant to transformation on Y and should be relatively

robust to extreme scores, or outliers, compared with LS procedures.

Consequently, GeMM’s solution should be relatively stable across dif-

ferent methods for identifying and eliminating extreme scores. In con-

trast, because LS procedures seek to maximize linear fit, extreme scores

can exert undue influence on LS solutions, even when only a small

number of scores are extreme. Below, we demonstrate that a small num-

ber of extreme scores can sometimes drive manifest effects, and other

times hide effects when data are analyzed using LS procedures. In addi-

tion, we illustrate that different methods for identifying and eliminating

extreme scores and nonlinearities can lead to inconsistent statistical

conclusions when analyzed with LS approaches. In contrast, GeMM

provides more consistent statistical conclusions across multiple data-

editing strategies in our demonstrations.
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4.1. When Extreme Scores Drive Effects: The Case of Racial Bias

What is the relationship between explicit measures of racial bias, impli-

cit measures of racial bias, and motivation to control prejudice? Prior

work on this topic suggests that explicit measures of racial bias capture

some element of a person’s true underlying attitude but that they are

subject to response biases on the part of the participant (e.g., Dunton

and Fazio 1997; Fazio et al. 1995). For example, how people respond on

the Attitudes Toward Blacks (ATB) scale appears to be moderated by

people’s motivation to control prejudice (Plant and Devine 1998). Plant

and Devine (1998) identified two separate forms of such motivation: an

internal motivational factor and an external motivational factor. The

internal factor tests for motivations stemming from the belief that stereo-

types are morally wrong or personally unacceptable. The external factor

tests for motivations stemming from the desire to avoid social censure—

in other words, the belief that other people believe that stereotypes are

morally wrong or unacceptable. Either type of motivation could lead to

similar self-censoring of socially unpopular attitudes, but that similarity

belies the important differences between people who are driven by one

versus the other motive type.

Partly to deal with this problem of self-censoring, considerable

research has validated the use of implicit measures of racial bias.

Perhaps the most well-known implicit measure is the implicit associa-

tion test (IAT; Greenwald, McGhee, and Schwartz 1998), a measure that

uses response times to assess the difficulty respondents have classifying

white or black faces simultaneous to categorizing other stimuli as good

or bad. More recently, other implicit measures have been developed that

do not rely on response times. For example, Payne and colleagues

(Payne et al. 2005; Payne, Burkley, and Stokes 2008) developed the

affect misattribution procedure (AMP), which involves showing people

a stimulus word or picture that they are told to ignore, followed by a

Chinese pictograph. Participants are instructed to rate how pleasant the

pictograph is, ignoring the stimulus that precedes it. However, the affect

associated with the first stimulus is expected to ‘‘bleed over’’ to the pic-

tograph, revealing how positively or negatively respondents actually

feel about that first stimulus, which they are supposed to be ignoring.

Payne and colleagues showed that scores on the AMP reflect subtle in-

group preferences among both white and black respondents and that this

in-group bias occurs whether or not participants are warned to avoid
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being biased on the measure (an external motivation to control preju-

dice). In contrast, participants who reported strong internal desires to

avoid prejudice appeared to modify their explicit racial attitudes.

Consequently, the self-reported attitudes of these participants hardly

correlated at all with their scores on the AMP. Among participants who

reported weaker internal desires to avoid prejudice, AMP scores were

highly correlated with explicit prejudice.

An important question regarding the measurement of racial attitudes

is the degree to which explicit measures of racial attitudes capture one’s

true attitude and the degree to which they are subject to people’s moti-

vation to control their expression of their attitude. This problem is

reflected in the results found by Payne et al. (2005), as well as by many

other researchers (e.g., Devine et al. 2002; Dunton and Fazio 1997;

Plant and Devine 1998; Plant, Devine, and Brazy, 2003). Theoretically,

a case can be made for both the inclusion and exclusion of external and

internal motivation to control prejudice as predictors of racial attitudes.

On one hand, it makes sense that participants would wish to avoid

social censure (an external motivation) as a consequence of openly

admitting that they are racially biased. For this reason, it is clear that

explicit motivations should play an important role in how participants

respond on the ATB scale and other such explicit attitude measures. On

the other hand, the belief that racism is morally wrong (an internal

motivation) might lead them to explicitly state more positive attitudes

toward blacks than they actually hold. Either way, researchers who want

to know people’s true attitudes would seem to do well by accounting

for these types of motivations in studies of prejudice or other socially

sensitive topics.

4.1.1. Data and Analyses. We reanalyzed data initially published by

Siegel et al. (2012). The original sample included 213 University of

Maryland undergraduate students (128 women). Of these, 15 partici-

pants were missing data on one or more measures and were therefore

excluded from the analysis. Each participant was measured on 10 vari-

ables, including three measures of racial attitudes (the ATB scale, the

Race AMP [Race-AMP], and the Racism IAT [Race-IAT]), the motiva-

tion to control prejudice subscales (the External Motivation Scale

[EMS] and the Internal Motivation Scale [IMS]), two measures of cog-

nitive control (the Stroop test and the Stop Signal Task), and three mea-

sures of political attitudes (explicit political attitudes [EPA], a Political

The General Monotone Model 13
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AMP [Pol-AMP], and a Political IAT [Pol-IAT]). Additional details of

the study, including how the various tasks were constructed, adminis-

tered, and scored, are provided in Siegel et al. (2012).3

Siegel et al. (2012) were concerned primarily with understanding the

relationship between the IAT and the measures of cognitive control.

Using factor analyses, they showed that both the Pol-IAT and the Race-

IAT loaded on two factors: their respective attitude factor and a cogni-

tive control factor. That is, performance on the IAT appeared to be pre-

dicted best by a model that assumed that the IAT measures both the

target attitude and cognitive control. Although the Race-IAT was unre-

lated to the explicit ATB scale, it was highly related to the Race-AMP.

Moreover, the ATB scale was correlated with the Race-AMP and both

the EMS and IMS. This pattern of correlations suggests that scores on

the ATB are dependent on an (implicit) attitude factor and both forms of

motivation to control prejudice. However, Siegel et al. did not explore

these relationships in depth. Thus, the substantive goal of our reanalysis

was to identify the best predictors of scores on the ATB from the collec-

tion of variables included in the study by Siegel et al. There were two

methodological goals: (1) to demonstrate that the substantive conclu-

sions could change depending on how extreme scores were identified

and treated and (2) to test whether GeMM was less sensitive to the treat-

ment of outliers.

Using LS regression, we tested the hypothesis that both internal and

external motivations to control prejudice were negatively related to par-

ticipants’ self-reported (explicit) racial biases, as measured by the ATB

scale, independent of participants’ implicit racial bias, as measured by

the Race-AMP. Using the classical null hypothesis significance testing

(NHST) approach with a = .05, we found the predicted relationship:

The ATB scale was significantly and positively related to the Race-

AMP, and the ATB scale was negatively related to both the EMS and

IMS. Summary statistics for this analysis are presented in Tables 1 and

2, in the top row, labeled ‘‘Full data.’’ Overall, these three variables

accounted for 13.2% of the variance in ATB scores, with the rank-order

correlation between the predicted and the actual values of the ATB

yielding a value of t = .239. Thus, on the basis of this analysis, it seems

that we are justified in supporting the theory that self-reported (explicit)

racial bias is a function of people’s implicit racial bias, their internal

motivations to control racial bias, and their external motivations to

avoid being seen as racially biased. Or are we?

14 Dougherty et al.
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Figure 1 plots the histograms for the 10 variables in the study, and

Figure 2 provides the bivariate scattergrams for each predictor (x-axis)

plotted against the ATB scale. Three findings should be evident from

inspection of the graphs. First, the relationships identified by linear

regression are not easily discernible from the bivariate plots, although

by itself, this fact might not be terribly concerning—subtle associations

do not always yield their secrets to the naked eye. Second, many of the

predictors are poorly distributed, which is somewhat more concerning,

given the assumptions underlying LS regression. Third, there appears to

be a small number of extreme scores (outliers?) in the distribution of the

Table 1. Fit Indices from the Various Models

BIC0t BIC t R k

OLS-NHST
Full data (N = 198) 29.905 212.283 .239 .364 3
Univariate (N = 195) 212.837 26.282 .23 .288 2
DFFITS (N = 191) 215.321 210.142 .245 .321 2
Cook’s D (N = 185) 222.196 224.986 .299 .444 3

Robust regression
Huber 215.651 28.965 .241 .307 2
Bisquare 215.005 29.132 .238 .308 2
Hampel 210.646 211.886 .243 .362 3

OLS-BIC
Full data (N = 198) 29.242 212.445 .236 .365 3
Univariate (N = 195) 211.472 26.551 .223 .29 2
DFFITS (N = 191) 210.982 211.093 .224 .328 2
Cook’s D (N = 185) 221.074 225.253 .295 .445 3

Ordered logistic
Full data (N = 198) 162.602 166.442 .277 .3 35
Univariate (N = 195) 153.567 157.535 .266 .285 33
DFFITS (N = 191) 147.438 150.248 .268 .298 32
Cook’s D (N = 185) 132.55 131.86 .377 .443 33

GeMM
Full data (N = 198) 217.835 25.878 .251 .282 2
Univariate (N = 195) 215.389 23.89 .242 .267 2
DFFITS (N = 191) 217.348 27.524 .254 .301 2
Cook’s D (N = 185) 223.914 224.109 .306 .44 3

Note: k is the number of significant or retained parameters. For ordered logistic, k includes the

number of significant threshold parameters. Thus, for k = 35, there are three significant predictors

(External Motivation Scale, Race Attitude Misattribution Procedure, and Internal Motivation

Scale) and 32 significant threshold parameters. BIC = Bayesian information criterion; GeMM =

general monotone model; NHST = null hypothesis significance testing; OLS = ordinary least

squares.
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ATB scale, which could prove to be especially problematic for standard

regression techniques and might even ‘‘require’’ data editing prior to

analyzing the data with OLS. Given the presence of extreme scores and

the nonnormality of the distributions, we conducted a series of follow-

up analyses to determine the robustness of the conclusions to different

methods for reducing the influence of violations of the assumptions of

linear LS regression. The first approach was to conduct outlier analyses

to identify and eliminate potentially problematic data points. There are

a variety of outlier detection methods, but we confined ourselves to

three techniques: (1) univariate outlier analysis, (2) Cook’s D, and (3)

DFFITS.4 Application of these three approaches to the data set resulted

in the identification of 3, 13, and 8 extreme scores, respectively. After

trimming these data points out of the sample, we reanalyzed the data,

again using OLS with an a value of .05.

−50 0 50
0

50

100

Pol AMP
−1 0 1 2
0

20

40

60

Race IAT
−1 0 1 2
0

20

40

60

Pol IAT

−20 0 20 40
0

20

40

60

Race AMP
0 5 10

0

20

40

Int Mot
0 5 10

0

20

40

Ext Mot

0 2 4 6
0

50

100

Pol Att   
   

   
   

   
C

ou
nt

−5 0 5 10
0

50

Stroop
0 200 400 600

0

50

100

Stop Signal

0 2 4 6
0

20

40

ATB

Figure 1. Histograms for the 10 variables reported in Siegel et al. (2012).
Note: AMP = affect misattribution procedure; Ext = external; IAT = implicit

association test; Int = internal; Mot = motivation; Pol = political; Pol Att = explicit

political attitude.
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The results of the analyses after eliminating these extreme data points

are also presented in Tables 1 and 2. As can be seen, two approaches to

eliminating extreme scores revealed that two predictors were significant,

and one approach revealed three significant predictors. Surprisingly, the

elimination of a mere 1.5% of the data (three data points) was sufficient

to knock out internal motivation as a significant predictor. This was not

just a matter of the p value’s hovering around .05 and bouncing back

and forth over the threshold, as the p value for IMS was .02 for the full

data set, but it jumped to nearly .12 after eliminating only three data

points. Thus, the decision to exclude IMS for the univariate trimmed

data is not an inconvenient by-product of the conventional, yet arbitrary,

value of a = .05. Combined with the analyses using the full data set,
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Figure 2. Scattergram plotting attitudes toward blacks (y-axis) against nine
predictor variables.
Note: AMP = affect misattribution procedure; Ext Mot = external motivation to control

prejudice; IAT = implicit association test; Int Mot = internal motivation to control

prejudice; Pol = political; Pol Att = explicit political attitude.
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there appears to be no clear ‘‘winner’’ regarding which statistical conclu-

sions are most appropriate.

The fact that different methods for dealing with extreme scores

resulted in different statistical models is problematic for the purposes of

theory testing. Therefore, we conducted a series of analyses using three

variations on robust LS regression and ordinal logistic regression.

Robust statistics are designed to deweight extreme scores on the basis

of their distance from the mean, and therefore they are purported to

have better statistical properties when distributional assumptions are

violated. The methods used here are the Huber, bisquare, and Hampel

methods, which were implemented again using NHST. Ordinal logistic

regression treats the criterion variable as an ordered category, and it

estimates thresholds for each category. For our purposes, we modeled

the raw data rather than creating binned responses.5 In addition, we also

reanalyzed the full and trimmed data sets using the BIC as a model

selection method. The BIC model selection method has the advantage

of not relying on the arbitrary .05 threshold for statistical significance.

The results of the robust, OLS-BIC model selected, and ordinal

regression analyses are presented in the middle portions of Tables 1 and

2. Once again, the results are inconclusive, with two of the robust

approaches (Huber and bisquare) yielding two significant predictors and

one approach (Hampel) yielding three significant predictors. Model

selection using the BIC to select predictors was even more inconsistent,

as it yielded two different two-predictor models, as well as a three-

predictor model. The results of the ordinal logistic model are a bit more

complicated. This model fits the ordinal properties of the data, but to do

so, it estimates thresholds for each of the ordered categories using the

full model with all predictors. As can be seen, this model fits the ordinal

properties quite well, but at the expense of a considerable increase in

model complexity due to the need to estimate the threshold parameters.

Even so, this method also produced different models between the full

data set and the univariate trimmed data set in which only three observa-

tions were eliminated: three predictors were significant on the full data

set, but only two were significant on the reduced (univariate trimmed)

data set.

The inconsistency across outlier and data analysis methods is unde-

sirable for many reasons, but principally because it allows the

researcher the freedom to choose which theoretical conclusions to

draw from the data, rather than forcing theoretical conclusions to be
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constrained by the data—a principle at the heart of basic science.

Given these inconsistencies, we reanalyzed the data using GeMM. In

contrast to traditional LS approaches, GeMM models data at the level

of paired comparisons, as we explained earlier. Because GeMM does

not model data using a distance metric and makes less stringent

assumptions of the data, it should be more robust to the presence of

extreme scores and nonlinearities.

The results using GeMM are presented at the bottom of Tables 1 and

2.6 As can be seen, GeMM resulted in a two-parameter solution when

applied to the full data set, and this solution was consistent for both the

univariate and DFFITS methods for eliminating outliers. Note that the

two-predictor solutions include the same predictors (EMS and Race-

AMP) identified as significant by the Huber and bisquare procedures.

GeMM was not completely insensitive to outlier deletion methods, as it

identified a three-predictor solution when the 13 observations were

trimmed using Cook’s D. However, the fact that it was stable for both

the univariate and DFFITS methods (which required deleting only 3

and 8 observations) suggests that it is relatively more robust than OLS.

In fact, further analyses on these data indicated that the OLS solution

changed from a three- to a two-predictor model even after eliminating

just one data point, the single most extreme value on the ATB scale.

This pattern of analyses suggests that GeMM has a much greater toler-

ance for extreme scores than OLS. Coincidentally, the robust regression

procedures also resulted in a three-predictor model when applied to the

Cook’s D–trimmed data.

If we consider the full data set, is the two-parameter GeMM solution

preferable to the three-predictor LS solutions, and are we justified in

accepting the two-parameter model over one that includes three predic-

tors? There are two ways to address this question: (1) compare the fit

indices for GeMM with those of OLS and (2) conduct cross-validation

analyses. We consider both in turn.

4.1.2. Comparing Fit and Cross-validation. Inspection of the fit

indices indicates that the two-parameter GeMM solution actually pro-

vides a better fit to the data in terms of accurately capturing the ordinal

properties of the data than all of the other approaches except ordinal

regression, even the models that included three parameters, as shown by

the values for BICt
0 and t. Although the LS solutions fit the data better

when evaluated in terms of the multiple R and BIC, these indices are

The General Monotone Model 21

 at UNIV OF OKLAHOMA on January 20, 2016smx.sagepub.comDownloaded from 

http://smx.sagepub.com/


highly suspect because they require the assumption of linearity:

Inasmuch as the linear (LS) solution is relatively poor at capturing the

monotonic relations of the data (as given by t and BICt
0), we must be

wary of interpreting a solution that makes the stronger assumptions of

normality and linearity. Although ordinal logistic regression had a

higher value of t, this came with considerable increase in model com-

plexity. As we show below, this increase in model complexity can lead

to overfitting.

One interesting aspect of these fit indices is that although the LS ver-

sions (ordinary and robust regression) provide better fit to the data in

terms of R2, this fit comes at a cost of accurately capturing the ordinal

properties of the data. For instance, for the full sample, OLS accounts

for 13.2% of the variance (R2 = .132), but it has a rank-order correlation

of only .239. In contrast, when GeMM is applied to the same data it

accounts for only 8.0% of the variance (R2 = .080), but it is better able

to account for the ordinal properties of the data, with a rank-order corre-

lation of .251. This pattern also holds for all three methods for trimming

outliers.

We used split-half cross-validation to evaluate out-of-sample predic-

tion: Which statistical algorithm provides the best predictive accuracy

when the estimated parameters are used to predict new observations?

This approach has the advantage that it directly addresses the problem

of overfitting, in which statistical models tend to show poorer accuracy

(i.e., shrinkage) at predicting new observations compared with the fit to

the original estimation sample. The cross-validation approach has the

added benefit, however, of allowing us to evaluate statistical power, or

the probability that each of the predictor variables will be identified as a

‘‘significant’’ predictor (or included in the selected model). We con-

ducted a split-half cross-validation using the full data set (N = 198), in

which half of the data were randomly sampled and used to estimate

model parameters. The remaining half of the data were used as the hold-

out sample. For each ‘‘replication’’ of this procedure, we recorded for

each algorithm which parameters were recovered, fit indices, and b

weights. For methods using NHST, a parameter was classified as recov-

ered if it was significant at the .05 level using a t test on the regression

coefficient. Out-of-sample predictive accuracy was assessed by applying

the recovered statistical model to the holdout sample (i.e., the b weights

for nonsignificant predictors were set to zero). We computed the
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multiple R, t, and the corresponding values of BIC and BICt
0. This pro-

cedure was repeated 500 times for each statistical model.

The results of the cross-validation analyses are presented in Tables 3

and 4. Table 3 shows the probability of recovering each predictor when

each algorithm is provided half of the data. Recall that on the full sam-

ple, OLS recovered a three-predictor model consisting of the Race-

AMP, the IMS, and the EMS, whereas GeMM recovered a two-predictor

model consisting of the Race-AMP and the EMS. Overall, GeMM was

more likely to recover both the AMP and the EMS than OLS, indicating

that GeMM had more power to detect these effects. The remaining mod-

els are less straightforward, but on balance GeMM showed recovery

rates that were either approximately equal to (Robust LS-Huber, ordinal

logistic) or better than the other alternatives.

Perhaps more instructive are the fit statistics provided in Table 3,

which illustrate the average fit (top half) and average cross-validation

accuracy (bottom half). GeMM provided better out-of-sample predictive

accuracy than all of the alternatives in terms of t and even outperformed

many of the alternatives in terms of the multiple R. Note that logistic

regression showed the worst out-of-sample prediction in terms of R and

second worst in terms of t, despite the fact that it showed the best per-

formance in terms of t (and second best in terms of R) on the estimation

sample.

To summarize, on the basis of the statistical fit and predictive accu-

racy of the various statistical models, it is clear that the best and most

defensible conclusion to draw from the data is that responses on the

ATB scale in Siegel et al.’s (2012) study are best accounted for by both

implicit racial prejudices (as measured by the Race-AMP) and external

motivations to control prejudice (EMS), but not internal motivation to

control prejudice (IMS). However, the bigger point to be made from

these analyses is that statistical conclusions based on LS approaches

proved to be highly suspect, a situation often due to a very small number

of observations. Removing merely three of the 198 data points was suffi-

cient to change the statistical conclusions, and the use of robust proce-

dures only muddled the picture. The main problem, as we see it, is that

the labile nature of LS procedures and their sensitivity to the removal or

deweighting of extreme scores licenses the researcher to choose which

theory to support via the selection of a data-analytic strategy. Thus,

rather than the data constraining the theory, the theory can constrain the

data in the name of making sure the data adhere to statistical
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assumptions. GeMM appears to be more resistant to outliers, which

means it will be less affected by decisions to eliminate them.

4.2. When Nonlinearities Mask Effects: The Case of Homicide

Rates and the Culture of Honor

A recent topic of interest in social-psychological research concerns cul-

tures of honor, which are societies in which defense of reputation is a

central organizing theme (Nisbett 1993; Nisbett and Cohen 1996). Such

societies are especially common, according to Nisbett and colleagues,

where scarce resources are highly portable (hence, easily stolen) and

where the rule of law is weak or altogether absent (see also Brown and

Osterman 2012). Nisbett (1993) argued that this combination is quite

common in societies whose economies are based on herding rather than

agriculture or industry. Because herding societies tend to be resource

poor, their resources are quite portable, and they tend to be poorly man-

aged by law enforcement, the latter due in part to the fact that herders

Table 4. Cross-validation Results for Analyses Predicting Attitudes toward
Blacks

Cross-validation Using Selected (Best Fit) Models

BIC0t BIC t R k

Estimation
GeMM 27.847 24.881 .259 .314 1.397
OLS-BIC 25.293 27.321 .245 .363 1.647
Bisquare 26.686 25.787 .255 .337 1.542
Huber 26.796 26.041 .259 .344 1.604
Hampel 26.864 26.755 .255 .348 1.513
OLS 26.209 26.894 .251 .352 1.559
Ordered logit 120.919 114.465 .299 .354 28.042

Cross-validation
GeMM .155 .18
OLS-BIC .134 .178
Bisquare .145 .18
Huber .149 .183
Hampel .141 .169
OLS .147 .179
Ordered logit .137 .157

Note: BIC = Bayesian information criterion; GeMM = general monotone model; OLS = ordinary

least squares.
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are, by necessity, spread out. Under such conditions, people are espe-

cially vulnerable to social predation, both from within (via internal com-

petition for scarce resources) and from without (via attack from other

groups). This vulnerability, over long periods of time, has a tendency to

breed the beliefs, values, and social norms that characterize honor cul-

tures, such as a hypervigilance to reputational threats and aggressive

responses to perceived honor violations.

Honor cultures tend to stress strength and toughness as primary quali-

ties of value for men, and loyalty and purity as primary qualities of

value for women (Nisbett and Cohen 1996; Vandello and Cohen 2003).

These qualities are pursued vigorously by men and women in such soci-

eties, as they help protect them from their key sources of vulnerability.

For instance, men who are known to be strong and brave are not likely

to be targeted for attack, as long as there are other targets available.

Arguably, a man does not have to be absolutely strong and brave to pro-

tect himself or his family—he has to be known only as being relatively

stronger and braver than other men, as someone who should not be dis-

turbed or ‘‘messed with.’’ As long as he maintains his reputation for

pugnacity, he can reduce the odds of predation from his neighbors and

from hostile out-groups. Because of this combination of an extreme

emphasis on reputation management and the types of reputations that

are idealized for men and women, honor cultures tend to exhibit higher

than average rates of argument-based homicides (Nisbett and Cohen

1996). In addition, research has shown that U.S. states classified as

‘‘honor states’’ (in the South and West) display higher levels of school

violence (Brown, Osterman, and Barnes 2009), higher rates of suicide

(Osterman and Brown 2011), and excessive levels of risk taking that

lead to higher rates of accidental deaths (Barnes, Brown, and Tamborski

2012), compared with ‘‘nonhonor states.’’

In a series of studies, Henry (2009) argued that one of the reasons that

herding cultures tend to develop honor norms, as Nisbett and Cohen

(1996) suggested they do, is that such cultures tend to be characterized

by strong status disparities. When a society has a large status hierarchy,

with relatively few people controlling a relatively large amount of that

society’s resources, people at the bottom of the status hierarchy may feel

especially vulnerable to social devaluation and be prone to hypervigi-

lance and hyperreactance to status threats (see also Daly and Wilson

2010). Aggression in the face of insults is one prime example of the type

of reaction that might be especially prevalent in members of low-status
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groups in such unequal societies. Henry tested this notion in part by

showing that homicide rates were higher in cultures whose economies

tended to be based heavily on herding, where (theory suggests) honor-

related beliefs and values will tend to proliferate. Important, Henry

showed that elevated homicide rates in herding-oriented countries were

statistically accounted for by levels of social wealth disparity within

those countries, independent of a country’s overall level of wealth.

Henry also expected to replicate past findings that overall wealth would

independently predict homicide rates, which he showed in study 1 (at

the county level) but failed to show in study 2 (at the country level).

4.2.1. Data and Analyses. We reanalyzed the data used for study 2

of Henry (2009). Our use of this data set was a matter of convenience,

and it was motivated by Henry’s failure to replicate the association

between overall wealth and homicide rates obtained in his study 1 and

other prior work (Nisbett and Cohen 1996). Using OLS regression, we

were able to reproduce his international results: Countries with larger

proportions of their lands devoted to uncultivated pastures and meadows

appropriate to herding (hereafter pastureland) tended to exhibit higher

homicide rates, but this association was largely accounted for by

within-country levels of wealth disparity (as indexed by the Gini coeffi-

cient of income inequality, hereafter Gini), independent of overall levels

of wealth across those countries (as indexed by gross domestic product

per capita, adjusted for purchasing power parity, hereafter GDP).

Replicating Henry (2009), GDP was not a significant predictor (p =

.36), which remains as surprising to us as it did to Henry. However, a

key question is raised: are our statistical conclusions robust?

Figures 3a and 4 show the bivariate scattergrams and histograms for

the four variables: homicide rates, percentage pastureland, Gini, and

GDP. As is clear, the data are poorly distributed, yet there is obvious

structure in the bivariate scattergrams. In particular, there appears to be

a monotone but nonlinear relationship between GDP and homicide rates.

Indeed, in terms of Kendall’s t, the strength of the relationship between

Gini and homicide (t = +.39), is virtually identical to the strength of the

relationship between GDP and homicide (t = –.36). In contrast, the pat-

tern of correlations obtained using Pearson’s r yields a much stronger

relation between Gini and homicide (r = +.50) compared with GDP and

homicide (r = –.30). There appears to be not only substantial
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nonlinearity in the data but also a small number of extreme scores and

substantial nonnormality.

Given the obvious violations of assumptions for the linear model, it

is likely that OLS regression is ill equipped to model these data accu-

rately.7 But, how should the data be modeled? Henry (2009) modeled

homicide rates in their raw form using OLS, but other researchers inter-

ested in understanding factors contributing to homicide rates have used

different approaches. For example, in testing the social capital theory of

cross-national homicide rates, Lederman et al. (2002) modeled the natu-

ral logarithm of homicide. In a replication of this study, Robbins and

Pettinicchio (2012) used negative binomial regression, which they

argued more accurately captures the modeled distribution. Because the
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Figure 3. Scattergram showing homicide rates per 100,000 residents (y-axis)
plotted against three predictor variables used by Henry (2009). (a)
Untransformed data. (b) Data after applying the log transformation to the
homicide rate (per 100,000 residents).
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data are transformations on count data (homicides per 100,000), both

Poisson and quasi-Poisson regression are logical alternatives as well.

The fact that there are multiple potential analysis techniques raises two

questions: (1) Which method is ‘‘most’’ appropriate? and (2) Do the dif-

ferent methods yield different substantive conclusions? The question of

which method is most appropriate is debatable, though addressing the

second question seems straightforward. To start, we reanalyzed the data

using two reasonable and common transformations: the natural loga-

rithm and the square root. We used these transformations in two ways:

first where only the criterion variable (homicide rate) was transformed

and second where all of the variables were transformed. As an illustra-

tive example, Figure 3b plots the bivariate scattergram after applying

the log transformation to homicide rate. As can be seen, the nonlinear
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Figure 4. Histograms for three predictor variables and the criterion used by
Henry (2009).
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relationships in the raw data are mostly linearized after the

transformation.

Table 5 provides the results of the analyses using LS regression and

GeMM both on the original (raw) data and on the transformed data. As

should be evident, only GeMM provided a consistent model form across

the various transformations. In particular, both versions of LS regression

(OLS-NHST and OLS-BIC) recovered a one-predictor model consisting

of Gini when applied to the raw data but a two-predictor model consist-

ing of Gini and GDP when the criterion variable was log-transformed (p

values \ .001 across methods for both Gini and GDP). When all of the

variables were transformed, however, both OLS-NHST and OLS-BIC

again recovered the single-predictor model consisting of Gini. The

Table 5. Fit Indices for Models

Transformation BIC0t BIC t R k

OLS-NHST
None 229.332 222.289 .391 .503 1
sqrt(homicide) 241.419 230.888 .471 .593 2
sqrt(all) 229.332 230.682 .391 .564 1
Log(homicide) 242.672 232.096 .476 .6 2
Log(all) 229.332 228.687 .391 .55 1

OLS-BIC
None 232.709 222.289 .391 .503 1
sqrt(homicide) 232.709 231.062 .391 .566 1
sqrt(all) 232.709 230.682 .391 .564 1
Log(homicide) 246.769 232.129 .471 .601 2
Log(all) 232.709 228.687 .391 .55 1

GeMM
None 245.712 213.636 .488 .467 2
sqrt(homicide) 245.712 227.531 .488 .573 2
sqrt(all) 242.328 226.307 .475 .565 2
Log(homicide) 245.712 230.677 .488 .592 2
Log(all) 238.647 225.71 .459 .561 2

GLM
Poisson 235.999 212.302 .467 .495 3
Quasi-Poisson 240.521 216.824 .467 .495 2
Negative binomial 240.298 216.267 .466 .49 2

Note: In all cases in which k = 1, the predictor included in the model (or identified as significant)

was Gini. In all cases in which k = 2, the predictors included in the model or identified as

significant were both Gini and GDP. BIC = Bayesian information criterion; GDP = gross

domestic product per capita, adjusted for purchasing power parity; GeMM = general monotone

model; GLM = generalized linear model; NHST = null hypothesis significance testing; OLS =

ordinary least squares.
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square-root transformation also yielded inconsistent findings across

methods. GeMM recovered a two-parameter model (Gini and GDP),

and this was consistent across all of the transformations. Also included

in Table 5 are the results from using three variants from the generalized

linear model (GLM) family. Poisson regression identified all three pre-

dictors as significant, whereas both quasi-Poisson and negative binomial

regression identified both Gini and GDP as significant.

Arguably, given the distributions presented in Figure 4, the data

could legitimately be transformed to remove the skew prior to using tra-

ditional LS regression. However, whether the transformation should

apply only to the criterion variable (homicide rate) or to all variables is

a matter of debate and an existing ‘‘researcher degree of freedom’’ under

traditional analysis methods. Although explicit transformations are

unnecessary for negative binomial and the two Poisson regressions, they

are implicitly carried out via the link function within GLM, of which

researchers have many options. In contrast, with GeMM there is no

need to transform the criterion variable because the rank-order correla-

tion, t, is invariant to monotone transformation. Thus, whether the

homicide rate is transformed by taking the logarithm, square root, or

any other monotonic function or left untransformed is immaterial for

GeMM’s solution and therefore removes this potentially important

researcher degree of freedom.

The analyses presented above indicate that LS regression procedures

are sensitive to decisions about whether (and how) the data are trans-

formed. This should not be too surprising, because LS procedures fit

distance information and because the distance information changes

under different transformations. But just how distorted can it get? To

explore this sensitivity, we analyzed the data again, but this time after

adding a constant before applying the logarithmic transformation. The

need to add a constant to the data prior to taking the logarithm arises

when responses take on the value of 0 or are negative. Negative values

are likewise problematic for the square-root transformation, but so are

positive values less than 1 (as a square-root transformation on values

between 0 and 1 will increase these values, while decreasing all values

greater than 1; adding a constant to raise all raw values to a number

greater than 1 eliminates this transformation disequilibrium). If OLS-

NHST is used, adding any constant between .2 and 1.4 leads to both

Gini and GDP identified as significant. Adding any constant above 1.4

or below .2 results in only Gini as statistically significant. The LS
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models yield different models with different additive constants; GeMM

does not. The use of the negative binomial and Poisson regression mod-

els from the GLM family does not really solve the underlying issue: For

these models, whether the number of homicides in each country is con-

ceptualized as a count or a rate problem can actually change the form of

the statistical model. Furthermore, if homicides are interpreted as a rate

(number of homicides per unit of population), the model form can also

depend on the choice of scaling constant. For example, both Pearson’s

r and rank-order correlation (t) between the fitted values and the data

vary depending on whether the homicide variable is expressed per

1,000, per 100,000, or per 10,000,000. How likely is it that researchers

are aware of these sources of variation when they choose to add or

divide by a constant as part of their data transformation routines?

As mentioned above, GeMM provides a two-predictor model regard-

less of transformation. But how well does this solution succeed when

evaluated in terms of fit indices and cross-validation?

4.2.2. Comparing Fit and Cross-validation. A comparison of the

relative fit indices favors the solution identified by GeMM. First, con-

sider the results of the OLS. The one-predictor solution on the raw data

has the highest value for R among the various procedures. However,

despite having the best metric fit, this model is much poorer at captur-

ing the ordinal properties of the data compared with GeMM and the

GLMs. That is, to fit the ordinal properties of the data, it is necessary to

give up a little accuracy in predicting the metric properties. Both the

GeMM and the GLMs do just this. Comparing GeMM with the GLMs,

however, also reveals that GeMM performs favorably in terms of t and

BICt
0. GeMM’s fit to the metric properties is somewhat poorer than that

of the GLMs.

Using the same split-half methodology described in the discussion of

the racial bias data, we evaluated the predictive accuracy and statistical

power of GeMM relative to the various LS procedures. Figure 5a plots

the probability of recovering each predictor using N/2 for raw and trans-

formed data for OLS-NHST, OLS-BIC, and GeMM. Table 6 provides

the fit and out-of-sample predictive accuracy for all of the models. As

is strikingly clear, GeMM recovers each of the two predictors (Gini and

GDP) identified in the full sample on approximately 95% of runs, with

statistical power remaining high across the various transformations. For

comparison, for the full data set all three procedures recovered Gini and
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Figure 5. Probability of recovering each predictor on half the total sample.
(a) Comparison with least squares procedures across various transformations.
(b) Comparison with various forms of generalized linear modeling. GDP =
gross domestic product per capita, adjusted for purchasing power parity; GINI
= wealth disparity index (Gini coefficient of income inequality); %PAS =
percentage pastureland.
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GDP when homicides were log transformed, but it is notable that

GeMM substantially outperforms both versions of OLS in terms of

recovering these predictors when provided half the data, in particular

for GDP. Thus, not only does GeMM accurately recover GDP on the

full data set, it does so with much higher power compared with OLS,

even under conditions in which the data are transformed to make them

more suitable for OLS.

Given the relatively poor showing of the LS procedures in recovering

the predictors identified on the full data set, it should not be surprising

that GeMM substantially outperformed its LS competitors in out-of-

sample prediction. Indeed, even if we restrict our analyses to only the

subset of nonnull models identified by the LS procedures, which we

have done here in Table 6, it is clear that GeMM is the hands-down

winner of the cross-validation contest. GeMM uniformly outperforms

OLS and OLS-BIC in terms of predicting the rank order of homicide

rates across nations, and in some cases even outpredicts OLS in terms

of Pearson’s R, for example, sqrt(homicides), and log(homicides).

A comparison of GeMM with the GLMs is a bit more complicated.

GeMM clearly outperforms quasi-Poisson in probability of recovery

(Figure 5b) and out-of-sample predictive accuracy (Table 6). Standard

Poisson regression recovered both Gini and GDP at the approximate

level of GeMM, but it also recovered percentage pastureland more than

50% of the time. The inclusion of percentage pastureland in the model

is particular problematic here, because adding it to the model actually

decreases ordinal predictive accuracy. Negative binomial regression per-

formed nearly identical to GeMM across the board, with GeMM having

a modest advantage in probability of recovery and a small (.015) advan-

tage in terms of t. Thus, overall GeMM performed better than all three

of the models from the GLM family.

To summarize, we argue that homicide rates across the 92 countries

analyzed in this data set are best accounted for by both wealth disparity

and a country’s overall wealth per capita. Although the finding was tan-

gential to Henry’s (2009) main theoretical conclusions, it nevertheless

explains a failure to replicate a classic finding in one of his studies, that

of the relationship between GDP and murder rates. This finding is con-

sistent with Henry’s original prediction, which presumably was masked

by the substantial nonlinearity present in the data. GeMM was able to

accurately capture both Gini and GDP as important predictors of homi-

cide rates without transformation and without requiring specific
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assumptions about the form of the underlying distribution of homicides.

In contrast, within OLS, the decision to include GDP in the statistical

model was contingent on how the data were transformed, and within

GLM, it was contingent on which distribution was assumed.

5. GENERAL DISCUSSION

The analyses presented in this article identified two important problems

faced by behavioral and social scientists in their use of standard and

robust LS procedures and a possible solution to these problems. First,

LS regression procedures are highly sensitive to violations of assump-

tions and the presence of extreme scores. In our reanalysis of the racial

bias data, we illustrated that a small number of extreme scores was suf-

ficient to drive or mask statistical effects. Eliminating a mere 1.5% of

the data was sufficient to render internal motivation to control prejudice

as unnecessary to predict explicit attitudes toward blacks. In contrast,

for the culture of honor data, violations of the linearity assumption and/

or the presence of extreme scores resulted in the failure of LS regression

to identify expected patterns for which there was structure in the data.

Taken together, these results suggest that nuances within one’s data can

either drive effects or mask them when using LS procedures. The fact

that violations of assumptions and messy (which is to say, real) data can

undermine statistical conclusions is not a new insight, of course. What

is new, we believe, is that accepted procedures for dealing with messy

data offer no real solutions to the problem, which leads to the second

finding.

The second finding identified by our analyses is that accepted meth-

ods for dealing with messy data do not uniformly converge on a consis-

tent statistical, and therefore theoretical, conclusion. This is especially

problematic because the failure to find consistency across methods

leaves too much decision-making power in the hands of the scientist.

Unfortunately, scientists are not always unbiased observers of their data,

and they are probably most likely to use the data-editing strategies that

result in outcomes supportive of their theories, although they might not

be aware that they are doing so. Thus, standard practices for dealing

with messy data increase the number of researcher degrees of freedom

(cf. Simmons et al. 2011), which we argue can undermine the search

for valid scientific conclusions and hamper scientific progress.
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Our solution to these two problems is to advocate for statistical proce-

dures that reduce or eliminate the need for conducting outlier analyses

and data transformations. As we showed throughout this article, GeMM

provides a promising new approach that maximizes fit at the ordinal

level. To illustrate the fundamental importance of modeling the ordinal

level of data, imagine that a new scoring system were proposed for use

at the Olympic Games. This scoring system, statisticians show, does a

good job of accounting for variance in athletes’ past scores (analogous

to a high R2), although it does not do particularly well at recovering

ordinal outcomes, in other words, in postdicting who came in first, sec-

ond, or third place. We cannot imagine that such a scoring system would

ever see the light of day, and whoever proposed it would be laughed out

of a career in statistics. Nonetheless, that is essentially what the present

two studies suggest is happening with LS procedures when it comes to

modeling ordinary, messy data in the behavioral sciences. As we have

shown, GeMM’s solution was relatively more robust across a variety of

reasonable methods for identifying and eliminating extreme and influen-

tial scores. This is a major advantage of GeMM, as it removes some of

the degrees of freedom that researchers have to make the results ‘‘turn

out’’ in favor of their hypotheses (Simmons et al. 2011).

As a side note, it is interesting to comment on what constitutes an

outlier in the traditional sense. Outliers are typically identified by their

distance from the center point of a distribution of scores, or how much

influence they have on the fit of a regression model. Measures of influ-

ence, such as Cook’s D and DFFITS, are defined within a LS function

and provide a metric for how influential a particular data point is on the

overall LS fit of a model. Thus, the more extreme an observation is,

the more influence it exerts on the LS solution. In contrast, within the

GeMM framework, a score that is 3 standard deviations from the mean

is treated as no different than a score that is 100 standard deviations

from the mean. Indeed, the only influence an extreme score has on the

overall fit of the model is gauged by how many inversions it creates in

the predicted rank orders when included in the data set. This implies a

need for influence statistics that operate in ordinal, rather than metric,

space. Because GeMM models data on an ordinal level, it has a higher

bar in terms of what constitutes an outlier.

Reconceptualizing data through the lens of ordinality redefines the

meaning of outliers as those observations that have undue influence on

the rank-order fit of the model. These observations may be true
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aberrations—data points that represent illegitimate responses given the

measurement instruments (e.g., a response of 12, when the scale is

bounded at 10)—or they may be real observations. For example, there

are many cases in which extreme scores might be produced by data-

entry errors, distracted subjects, or other processes external to an experi-

ment. However, in the great majority of cases there is no ground truth

by which researchers can determine whether an extreme score is a legit-

imate member of the population distribution or an aberration due to an

external factor. The uncertainty surrounding the cause of an extreme

score is problematic for justifying its exclusion. If the decision to

exclude is based on the need to meet the assumptions of a statistical

algorithm, this strikes us as a poor justification and is tantamount to for-

cing a round peg into a square hole.

Obviously, there are a number of alternative regression procedures

not included in our modeling competition, and one might take issue

with our focus on LS regression. However, we believe that this focus is

warranted given the widespread use of the OLS (and its robust imple-

mentations) across the social sciences. Still it is quite possible that other

models might perform better than GeMM, though the appropriate candi-

dates for the two data sets presented here (ordinal logistic, negative

binomial, Poisson and quasi-Poisson regressions) did not offer any per-

formance advantages over GeMM, and in most cases underperformed

relative to GeMM.

At the same time, one might argue that decisions regarding whether

to transform one’s data should be based on sound justification and the

need to do so prior to engaging in data analysis. We agree, of course,

but also argue that transformation for the purpose of analyzing a partic-

ular data set seems potentially opportunistic. Hence, we suggest that

decisions to transform a data set in a particular way should be based on

an understanding of the population distribution and driven by theory,

not based merely on characteristics of the sample distribution. In the

absence of theoretically justified reasons for transformation, we suggest

that procedures such as GeMM are more appropriate for handling data

where there are even slight departures from linearity, except where the

form of the nonlinearity is of theoretical interest.8

Substantively, the findings based on GeMM for the racial bias and

culture of honor data were at odds with what were found using tradi-

tional LS approaches. First, analysis of the race data suggests that

responses on the ATB scale are a function of two variables: an
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unconscious racial attitude, as measured subtly by the AMP, and an

external motivation to control prejudice. The AMP was positively pre-

dictive of people’s responses on the ATB scale, whereas external moti-

vation to control prejudice was negatively related to people’s responses

on the ATB. This pattern supports the idea that individuals are moti-

vated to conceal their racial attitudes because they know that racial pre-

judice is socially unacceptable.

The fact that internal motivation to control prejudice was not included

in the GeMM contradicts the conclusions drawn by Plant and Devine

(1998) and more recent findings of Payne et al. (2005). There are many

possible reasons that our findings are at odds with these prior studies,

including the fact that racial attitudes likely differ across geographical

regions (i.e., attitudes toward blacks may differ across different subject

populations) and change over time (i.e., the data collected by Plant and

Devine are at least 15 years old). We therefore do not question the valid-

ity of these prior findings. Rather, the critical point for the present pur-

poses is that the statistical, and therefore theoretical, conclusions drawn

from our data were heavily dependent on decisions about how to deal

with its messiness.

Second, for the culture-of-honor data, we showed that homicide rates

are predicted by both wealth disparity (Gini) and overall country wealth

(GDP). Wealthier countries experience fewer homicides, whereas coun-

tries with greater wealth disparity experience more homicides. These

variables are theoretically independent of one another, as a country

could be poor but exhibit complete social equality in its distribution of

its few resources (not likely, but theoretically possible), or a country

could be wealthy and exhibit a similar degree of social equality. Indeed,

developed nations with high GDPs per capita differ widely in terms of

how their overall wealth is distributed across their people. This potential

independence of GDP and Gini, however, is largely theoretical, as over-

all wealth and wealth disparity are, in fact, negatively correlated in

analyses at the level of nations, states, and even counties within states

(e.g., Henry 2009). In poorer countries, resources are more likely to be

controlled by a few powerful people, compared with the more abundant

resources of wealthier countries. Because of this typical association,

researchers studying wealth or wealth disparities must consider both of

these variables if they want to avoid confounding one with the other.

According to the analyses presented here, how a researcher decides

to handle messy data can have an enormous impact on whether or to
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what extent variables (e.g., GDP, internal motivations to control preju-

dice) reveal their influences. Because of both nonlinear patterns and the

influence of extreme scores, traditional LS analyses will sometimes

overestimate a variable’s influence, as in the case of internal motiva-

tions to control prejudice as a predictor of racial attitudes. Traditional

LS analyses can also underestimate a variable’s influence, as is the case

in the association between a country’s wealth and homicide rates, due

to nonlinear relations and extreme scores in the data.

5.1. What Are the Practical Advantages of GeMM?

These substantive issues aside, what might compel one to use GeMM in

lieu of traditional LS regression? As with other regression techniques,

GeMM is a tool for prediction, inference, and data mining and explora-

tion, though we believe that it offers some practical advantages over

standard LS techniques. We articulate these next.

5.1.1. GeMM as a Tool for Prediction. As demonstrated with the

two data sets presented in this article, GeMM provides a computational

algorithm for optimizing rank-order prediction that can outperform more

complex algorithms on the basis of LS. The trade-off, of course, is that

GeMM is not guaranteed and likely will not optimize prediction of

metric values. However, we believe that this trade-off is warranted in

many contexts. For example, consider any task that entails a selection

decision on the criterion or outcome variable, such as selecting among

job applications, choosing graduate applicants (if you are a faculty

member), or choosing graduate programs (if you are a student). In all of

these cases, the goal of the decision maker is to predict the relative

ordering on the criterion, rather than to predict a specific quantitative

value. As should be clear from the two example data sets presented here,

GeMM generally showed greater accuracy for out-of-sample prediction

when assessed in terms of predicting the ordinal values. Inasmuch as

one of the principal goals of the social and health sciences is to predict

real-world behaviors, having statistical models that can, first and fore-

most, accurately predict ordered relations is important: what good is a

statistical model with a high R2 value if it does poorly in predicting the

relative ordering of the criterion variable?

5.1.2. GeMM as a Tool for Inference. In an ideal world, inferences

drawn from data should be invariant across data-editing strategies. The
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problem, of course, is that there is theoretically an infinite number of

ways in which data can be transformed, and numerous justified ways of

identifying outliers. Although it is certainly possible to explore a variety

of potential data-editing strategies to assess the robustness of the con-

clusions, it would be virtually impossible to explore all possible trans-

formations and outlier deletion methods. In this respect, GeMM offers

many practical advantages over standard techniques: It is (1) invariant

to transformation on the criterion variable, (2) more robust to transfor-

mation on the predictors, and (3) more robust to outliers. These advan-

tages follow from the use of tau as the fit metric, which, unlike

Pearson’s r, is invariant to monotone transformation. Because transfor-

mation on the predictors can affect the additive form of the predicted

values, GeMM can still be affected by transforming the predictors, but

only if the transformation results in changes in the ordinal properties of

the additive model. In contrast, the use of transformation on the predic-

tors is guaranteed to affect the LS fit. In other words, many of the deci-

sions that could be exploited for analysis on the basis of LS approaches

are unnecessary for analyses based on GeMM. Furthermore, unlike lin-

ear LS, GeMM does not lose statistical power under deviations from

linearity.

As an example, consider our analysis of the culture-of-honor data. In

this analysis, we illustrated that GeMM was relatively insensitive to

transformation and had higher statistical power than linear LS. Thus,

making fewer assumptions about one’s data can pay off in an increased

likelihood of detecting effects and more robust conclusions that are not

conditional on having met specific model assumptions or on particular

data-editing strategies. Importantly, the conditions in which researchers

are most inclined to engage in data editing are precisely those conditions

in which the data are unlikely to satisfy metric statistical assumptions.

On the flip side, GeMM’s strength as a method for identifying mono-

tone relationships limits the specificity of the inferences that can be

drawn from the data. Although it can identify any nonlinear monotone

relationship with equal probability without the need to transform the

data, it cannot characterize the nature of those relationships. Thus, if

researchers are interested in modeling the specific functional relation-

ship between a set of variables, then GeMM would not be an appropri-

ate tool. It should be noted though that the application of GeMM does

not preclude them from further exploring these functional relationships
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with nonlinear LS methods, if they are comfortable drawing conclusions

that go beyond the ordinal properties.

5.1.3. GeMM as a Tool for Exploration. As with traditional LS

methods, GeMM can also be used in the context of data exploration.

Note, however, that in this context the fact that GeMM relaxes assump-

tions about functional form can be advantageous. Consider, for exam-

ple, a data set in which a researcher has no a priori hypotheses about

which variables should be related to the criterion. In these cases, it is

even less likely that the researcher has any a priori guess about the form

of the functional relationships that might exist therein. The problem

with using traditional LS regression approaches in these contexts is that

they require either that the researcher commit to modeling specific func-

tional forms, engage in a great deal of data editing, or explore various

alternative modeling approaches. With GeMM, identifying potentially

interesting statistical relations can be accomplished with minimal data

editing and without loss of power when those relations are nonlinear.

5.2. Interpreting the Output of Regression Coefficients

within GeMM

The most straightforward interpretation of GeMM is in its model form,

wherein the GeMM returns the model that best accounts for the rank-

ordered properties of the criterion. The regression coefficients derived

from GeMM have the exact same interpretation as those obtained from

OLS once the OCLO solution is obtained, with one caveat. The OLS

solution minimizes LS, whereas the rescaled OCLO-GeMM weights

minimize LS conditional on maximizing ordinal fit.

Although in many cases the actual parameter values derived from

GeMM may be close in magnitude to those obtained from other statisti-

cal procedures, there may be cases in which the relative magnitudes of

the parameters differ in important ways. For example, for the homicide

data set, the standardized regression coefficients derived from OLS

yielded |BGini| . |BGDP| (.42 vs. –.09), but the GeMM solution yielded

|BGini| \ |BGDP| (.25 vs. –.29). This is informative because it tells us that

the relative contributions of GDP and Gini are different if we are inter-

ested in using these variables to predict the rank order of homicide rates

(GeMM) versus predicting the metric values of homicide rates (OLS).

The implications of the GeMM solution compared with the OLS
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solution could be rather important. For example, a policymaker who

wishes to reduce homicide rates would make different policy decisions

if using OLS as the basis of that decision than if GeMM were used as

the basis of that decision: the OLS solution implies that efforts at reduc-

ing homicide rates should focus primarily on decreasing wealth dispar-

ity (Gini), whereas the GeMM solution implies both that wealth

disparity should be decreased and overall wealth (GDP) increased. This

is not to suggest that GDP or wealth disparity cause homicides but

rather to highlight the two very different policies that could result from

using OLS versus GeMM.

5.3. Availability and Extensions

The bulk of this article has focused on the application of GeMM in con-

texts in which we must deal with messy data in one way or another. To

facilitate the use of GeMM, we have developed versions in MATLAB,

Mathematica, SAS, and R. MATLAB code and an accompanying user’s

guide are available at the first author’s Web site (http://www.damlab

.umd.edu/gemm.html); Mathematica and SAS code is available upon

request. The development version of the GeMM package for R, and

associated code and data used in this article, are available for free from

the authors. The R package will be posted to Cran when completed. In

its present form, the R package automatically produces the OCLO solu-

tion proposed in Tidwell et al. (2014).

We have a number of active lines of work aimed at extending the

GeMM framework. A key limitation of GeMM thus far is that it is con-

strained to modeling monotonic relationships and therefore is not appli-

cable to data sets that include nonmonotonic relationships. To address

this, we have begun developing a version of GeMM that permits inflec-

tion points between the criterion and the modeled data, where an inflec-

tion point implies a change in the direction (sign) of the modeled

relationship (Lawrence, Thomas, and Dougherty 2014).

A second area of work motivated by GeMM involves the develop-

ment of leverage or influence statistics that identify outliers in ordinal

space. Although GeMM should in principle be more robust to many dif-

ferent types of extreme scores, it will still be sensitive to extreme scores

that create a large number of rank-order inversions. This is likely the

reason that GeMM showed some sensitivity to the outlier deletion in

racial bias data set. Although these types of extreme scores might be
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identifiable with traditional leverage statistics such as Cook’s D, we

imagine that alternative methods for identifying highly influential scores

in ordinal space will be required.

6. SUMMARY

The existence of ‘‘uncooperative’’ and messy data poses a major chal-

lenge for behavioral and social science researchers. Unfortunately,

within the standard approaches, traditional methods for handling nonli-

nearities, nonnormalities, and outliers provide the data analyst with a

great deal of freedom for reconditioning the data to remove these prop-

erties, a freedom that can be exploited, intentionally or otherwise, to tell

the preferred story. The more freedom allotted to the data analyst to

make decisions that are not well justified, the more likely it is that the

stories that get told are little more than myths. The goal of discovering

fundamental facts about nature should not lead us to treat data and data

analysis as if it were fine art requiring delicate hands. Rather, it should

compel us to approach data analysis the way an engineer approaches

the development of a new jetliner, which is to ensure that the plane flies

even under nonideal conditions. As a public good that informs social

and health policy, we argue that the same standard should operate for

scientific claims. GeMM provides a new tool that we believe can help

ensure that scientific claims are robust and invariant to data-editing

strategies.

Notes

1. We use the term criterion variable to refer to the outcome or dependent variable.

2. The assumption of bivariate normality is not crucial for the operation of GeMM.

One way to conceptualize the t-to-r transformation is that it allows one to estimate

the value of r under any order-preserving transformation of the data, without actu-

ally needing to transform the data. When assumptions of bivariate normality and lin-

earity are met, then the t-to-r transformation should closely approximate the value

of r on the untransformed data.

3. Siegel et al. (2012) used structural equation modeling to examine the factor structure

of the various measures of attitude and cognitive ability. For that analysis, the abso-

lute (unsigned) scores were used.

4. The univariate outliers were identified by observations 63 standard deviations from

the mean. Cook’s D and DFFITS are standard leverage statistics that quantify the

influence of each individual point on the regression solution. Observations were

trimmed from the data set if the value of Cook’s D exceeded 4/N and if the value of
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DFFITS exceeded 2[sqrt(p/N)], where p is the number of predictors in the

regression.

5. On the basis of the full sample, there are 37 distinct response categories, for which

ordered logistic regression must fit 36 threshold parameters. For the full sample,

only 32 of these thresholds were statistically significant at p \ .05.

6. Model fitting for GeMM consisted of a two-step process in which we first fit

GeMM to the full sample to find the subset of predictors that minimized BICt
0. We

then ran 1,000 bootstrap samples to estimate the standard errors of the coefficients.

The coefficients listed in Table 2 correspond to the mean coefficients (and corre-

sponding standard errors) from the 1,000 bootstrap samples. Model fits listed in

Table 1 are based on the analysis of the full sample.

7. Both the Henze-Zirkler and Mardia tests of multivariate normality revealed signifi-

cant departures from multivariate normality, a finding that held for both the untrans-

formed and transformed data.

8. However, we suggest that in most cases in the social sciences, theories are not spec-

ified in such detail and instead are expressed largely as ordinal predictions (see also

Cliff 1996).
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