
183

Fast Simulation of Open Queueing Systems

Cortney S. Hunt
University of Oklahoma

School of Industrial Engineering
Norman, OK 73019

(405) 325-3721 (W)
e-mail cshunt@essex.ecn.uoknor.edu

Bobbie L. Foote

University of Oklahoma
School of Industrial Engineering

Norman, OK 73019

(405) 325-3721 (W)

We describe a technique developed by the
authors for fast simulation of open queueing
networks. The technique takes advantage of
the recursive nature of departure times of
customers in various parts of the system. The
event calendar is circumvented using these
recursive relationships whenever possible.
A framework for identifying these recursive
aspects of a network is presented. The
technique involves identifying the servers in
the system at which flows merge or diverge.
Knowledge about the merge and diverge points
defines the dependency relationships a specific
customer has with other customers at each

point in the system. The concept of a system
level is based on these dependency
relationships.

The technique is implemented in the object
oriented language SmallTalk 80. The
implementation utilizes Windows interfaces
and allows graphical analysis of the simulation
results. The implementation is shown to
achieve significant reductions in execution
time compared with the traditional discrete-
event approach to simulation of such networks
in most cases. Several different types of
systems are explored in an attempt to
characterize those systems on which the
technique functions well.

Keywords: Fast simulation, queueing
systems, object-oriented modeling

Introduction

Perhaps one of the biggest hindrances to simula-
tion users is the intensive computer time simulation
requires (Law, 1991). In an attempt to alleviate the
problem, parallel processing algorithms have been
developed (Kamath and Bhuskute, 1991), various
schemes for handling event lists have been imple-
mented, and other approaches have been proposed
for making simulation faster. Extensive work has
been done on queueing models in an attempt to
avoid simulation entirely by deriving mathematical
approximations of various performance measures for
certain classes of systems (Whit, 1983) (Walrand, 1988).
The initial work on using recursion relationships in

simulation was done by Chen (1990 & 1993). Chen
presented a Fast Simulator for simple tandem queueing
systems. Chen’s Fast Simulator completely avoided
use of an event calendar by considering only simple
tandem lines. We present an approach which uses an
event calendar but which reduces the number of
events which it must process.
The reduction in the number of events required is

achieved by using the same recursive relationships
developed by Chen. However, we show that these
recursive relationships hold not just for simple
tandem lines, but for all servers within what we
define as a system level. The process of recognizing
the levels in the system to be simulated does require
some pre-simulation processing time. This additional
analysis time is relatively small compared with
simulation execution time.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

184

The simulation approach presented here bridges the
gap between the extremely fast but limited simula-
tion of simple tandem lines proposed by Chen and
the slow but general, discrete event approach.

Pre-Simulation Analysis
In order to take advantage of the recursive relation-

ships within a system we must isolate those parts of
the system where the recursion exists. We define the
level boundaries in each customer routing. This
concept is explained in the next section. We group
the servers associated in levels and create appropri-
ate software objects to represent these groupings.

System Levels
The boundaries of a system level are defined by

merge points in the system. A merge point is simply
any server which has more than one predecessor
server. A customer flowing through the system is
said to be in the same level from the time it enters a

merge point queue until the time it encounters the
next merge point.

Figure 1. System Levels and Merge Points

’

In Figure 1 each of the four nodes represent any
number of servers in a simple tandem line. Nodes 1 -
3 make up system level one for this system. Node 4 is
considered a level two node. Notice that node 4 is

directly dependent on nodes 2 and 3, and is indirectly
dependent on node 1.

Definition 1: The level (ld of a node k is defined as one
greater than the maximum level of any node in the set of
preceding nodes P on which it is directly dependent if
the size of set P is greater than 1.

Node 1 in Figure 1 is by definition a level one node.
Nodes 2 and 3 are also level one nodes because they
have only one predecessor node (size of the predeces-
sor set P is 1). Node 4 is a level two node which is
calculated as follows.

A system level comprises all nodes with identical
level designations. We use the system level concept
in Definition 2 to express the relationship between
customers flowing through first-come-first-served
queues. Equation 2 is an extension of that presented
by Chen (1990), in that for a simple tandem line he
defined di,’ as the departure time of customer j from
server i where there was only one customer routing.
In our definition the ith server in a routing may
represent a different server for each routing.

Definition 2: Departure times of customers within a
system level may be expressed in terms of the following
recursive relationship.

where

dili departure time of cllstomer j from the itl.I,J
server in its routing in the present level

s¡; = service time of customer j on the i°’’ server in ,J
its rOllting in the present level

’ .

Using these recursive relationships we can com-
pletely avoid processing events within a level. In the
next section we show how events need only be
processed at the level boundaries of a system.
Kamath (1991) was the first to develop an algorithm

for finding recursive departure times of customers in
simple tandem lines with parallel server nodes. The
technique involves tracking the next departure time
of all customers at parallel servers. When at least one
server is idle, the departure time of customer j from
server i is simply its departure from the previous
server plus its service time. When all servers are busy
the algorithm finds the next customer to depart and
calculates the departure time based on that customer.
The algorithm below is adapted from Kamath (1991).

Parallel Server Algorithm
Variable Definitions:
N - Total number of customers
M - Total number of nodes

NS. - Number of servers at node i
s;~ - Processing time for customer j at node i
a.. - Arrival time for customer j at node i = d.l.
P. - Previous customer served at the same server as

customer j J
Bus - Number of busy servers at a node when

customer j arrives

b - Beginning time for customer j at node i
d4~ - Departure time for customer j from node i

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

185

Sex - New sequence of j customers after&dquo;

processing at node i

Algorithm: At a parallel server node calculate the
departure times from the nodes as follows.

Procedure 1: To find P and BS, the previous cus-
tomer served and the number of busy servers.

1. Initialize BS = 0; Min = d. ; P = 0

Procedure 2: To update Temp. and Sex
’

Table 1 gives characteristics of systems which are
simulatable by our approach.

Table 1. General Fast Simulation Assumptions

The simulator does not model assembly nodes,
material handlers, or probabilistic branching. Cus-
tomer routings must be predetermined.

Control and Event Sets

The traditional discrete event calendar approach to
problems of the nature described here is to place an
event on the calendar for every arrival of a customer
to the system and every departure of a customer
from a server. This is an example of total control
being exercised by the simulation controller, which in
this case is the event calendar. Our approach is to
reduce the amount of control exercised to only that
which is necessary.

Simulation Control Issues

The total control used by the traditional simulation
approach is necessary because no analysis of the
system structure is done prior to simulation execution.
However, when we decompose the system into
nodes and levels we simultaneously define the
dependency relationships of customers in the system.
For acyclic systems (a customer visits the same server
no more than once) a linear sequential dependency
relationship exists between system levels. In this
special case, we can completely simulate the flow of
all customers in level 1, and then in level 2, and so
on. This is essentially equivalent to q unique simula-
tions tied together, where q is the number of levels in

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

186

the system. For general systems, where cycling does
occur, one event calendar is used to process events at
all level boundaries. In both cases only events at the
boundaries need be considered. In Figure 2 we show
the points in an example system where control is
exercised by General Fast in contrast with traditional
simulation. We quantify the results of this savings in
events in the next section.

Event Sets and Ratios
Since much of the time used by the traditional

simulation approach is consumed in event processing
we benefit from any reduction in the number of
events placed on the calendar. We define the set of
events required by a simulation approach to do a
specific simulation as the event set for that simulation.
For the restricted types of systems which we can
simulate, we calculate the total number of events
required by a traditional simulation approach as

where

J : total number of customer types

n : number of customers of type j simulated

b. : lot size of customer arrivals of type j
Me : total number of servers in the routing of

customer type j J

The expression for mts is divided into two parts.
The first part is the events related to the arrival of
batches. We generate one event for each batch
arrival. Since n. is the number of customers of type j
that will be simulated and since we assume that the
batches will be of equal size, the number of events

associated with arrivals is

The second part of the expression relates to depar-
tures from servers. Traditional simulation utilizes an

event for each departure from a server. Therefore

n,M. gives us the number of departure events associ-ated with customers of type j. We can see that the
size of the event set is affected by the relative number
of each customer type, the batch size of each customer
type, and the length of their routing.

Similarly, the total number of events required by
the General Fast Simulation approach may be ex-
pressed as

where

L~ : total number of system levels visited by
customer type j J

The expressions for event set size for General Fast
and traditional simulation are very similar. The
difference is that General Fast generates one event
per level while traditional simulation generates one
departure event per server. So n.L gives us the total
number of departure events associated with custom-
ers of type j from each of the levels in their routing.
The ratio of the size of these event sets is the events

rntio. The event ratio gives us some idea about the
efficiency of General Fast relative to traditional
simulation. The amount of computational effort
involved with processing events in General Fast is
proportional to the number of servers a customer
visits in the corresponding level.

Figure 2. Control Points in General Fast and Traditional Simulation

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

187

For this reason, the event ratio

is not an exact indicator of the actual execution speed
of General Fast relative to traditional simulation, but
it is proportional.
When we simplify the event ratio we notice an

interesting result. We let

That is, we represent n as some percentage p~ of the
total customers simulated.
By doing so we show that the event ratio (or

relative efficiency) is independent of the number of
customers simulated. The efficiency of General Fast
Simulation with respect to traditional simulation will
be governed by the number of servers visited, the
number of levels visited, and the relative percentages
of the different customer types. (eq. 6)

alternate Queue Disciplines
’

We have assumed prior to now that all queue
disciplines are first-come-first-served. The first-come-
first-served queue discipline is an exceptionally
efficient case for our simulation methodology since
the event calendar presents arrivals to a queue in
first-come-first-served order. When we desire an
alternate queue discipline we must not only sort by
time (on the event calendar) but also by some other
priority. The additional overhead associated with
choosing an alternate queue discipline comes in the
form of an extra sort, and an extra event which we
must place on the calendar for each customer arrival
to each level. Our previously defined event ratio
becomes

where LAQD is the number of levels which customer j
must visit with alternate queue disciplines. L. is the
number of remaining levels which customer j must
visit (assumed to be FCFS). We can see that the
efficiency of the simulator will decline with each
additional queue that we choose to model alternately.

Implementation Results
The implementation of these concepts was tested

using systems with a special structure. Figure 3
shows an example of this structure.

In all systems seven different customer types flow
through the servers in three parallel lines. Three of
the customer types flow directly down the three
tandem lines. The four remaining customer types
may follow the dashed routings indicated, or simply
travel down the line on which they start. For any
given system the three parallel lines always have
identical length. The length of the lines and the point
at which mixing stops were the variables of interest.

Figure 3. Sample Test System Representation

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

188

Systems tested had the following properties:

1. Equal numbers of each customer type were
simulated p,. = 7 1 Vj, J=1,7J 7

2. Batch size was the same for every customer type
(b~=1).

3. In every system all customer types visit the same
number of servers and levels (M and L respec-
tively).

Dependency Index
When the event ratio is simplified we refer to it as

the dependency index (DI).

We can see that the dependency index is simply a
ratio of the number of levels to the number of servers
for our test case. We would expect that as the depen-
dency index increases, the efficiency of General Fast
simulation with respect to traditional simulation will
decline. Figure 4 shows the results of our exploration.

As we increase the number of servers the execution
time of every simulation increases. General Fast gives
the fastest execution times when the dependency
index is zero (the ideal case), as we would expect.
Increasing the dependency index will cause slower
execution times, but these times will still represent an

improvement over traditional simulation up to a
point. When we increase the dependency index to 1.0
the General Fast approach is slower than traditional
simulation. In this situation every server is repre-
sented by a special tandem node which has more
overhead than a simple traditional simulation server
node. A fairly easy change to the implementation
would be to represent tandem nodes of length 1 with
a simple server instead of a tandem server node.
Figure 5 shows a more detailed exploration of the
effects of the dependency index for systems with a
line length of 60.
With the present implementation General Fast

simulation performs better than traditional simula-
tion for systems with a dependency index less than
approximately 0.7.

Software Interfaces

Implementation work was done in SmallTalk 80.
Interfaces are provided for model specification,
simulation parameter control and model execution,
and graphical output analysis capabilities. In Figure 6
we show an example of the model specification
interface.

Figure 4. Execution Time Results

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

189

Figure 5. System with Line Length 60

Figure 6. Model Specification Interface

The simulation is executed from the interface
shown in Figure 7. In this interface the user may
specify the seed and run length for the simulation, as
well as selecting which servers to collect statistics for.
Figure 8 presents a sample output analysis inter-

face that appears when a simulation execution is

completed.
When the user clicks the Display Stats button in the

interface in Figure 8 the window in Figure 9 appears.
The point estimate of the average number in

system is shown as the horizontal line across the plot.
If Statistics were selected in this window we would
see that the value of the point estimate is 0.88 cus-
tomers. A more detailed explanation of the output
analysis interfaces is provided in Tretheway (1992).
Similarly, Oltmanns (1992) describes the develop-
ment of the object-oriented probability model and
random number generation classes used in this
implementation.

Figure 7. Simulation Control Interface

Figure 8. Output Analysis Interface

Figure 9. Number in System plot for Server a2

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

190

Conclusions
A methodology for greatly reducing the execution

time for simulations of certain job shop-like queueing
systems has been presented. The implementation,
General Fast, demonstrates this reduction in execu-
tion times when compared with traditional simula-
tions of the same systems. The concept of the system
level and the use of recursive relationships between
customer departure times in parts of the system
allow us to reduce the time spent in event processing
by reducing the number of events processed in a
simulation. We have characterized the types of
systems for which the methodology will yield the
most improvement in execution time. We have
demonstrated that though this approach requires
analysis of the system prior to simulation, the tech-
nique is still much faster than traditional simulation
and has a wide variety of applications.

Acknowledgments
This work is part of ongoing research at the Uni-

versity of Oklahoma both in Advanced Modeling
Methodologies and in Integrated Production Man-
agement, and is funded in part by the National
Science Foundation and the Oklahoma Center for

Integrated Design and Manufacturing.

References
Chen, L., and Chen, C., (1990). A Fast Simulation Ap-

proach for Tandem Queueing Systems. Proceedings of
the 1990 Winter Simulation Conference, Balci, O.,
Sadowski, R., Nance, R., Eds., IEEE, 890-905.

Chen, L., and Chen, C., (1993). A Fast Simulator for
Tandem Queueing Systems. Computers and Industrial

Engineering 24, 2, 267-280.
Kamath, M., and Bhuskute, H. (1991). Fast Simulation

Techniques for Queueing Networks. Working Paper
CIM-WPS-91-MK1, Center for Computer Integrated
Design & Manufacturing, Oklahoma State University,
Stillwater, Oklahoma.

Law, A. and Kelton, D. (1991). Simulation Modeling and
Analysis. Second Edition, McGraw-Hill.

Oltmanns, M., Tretheway, S., and Leemis, L. (1992). The
Probability Model: A Construct for Simulation Input
Modeling. OU IE Internal Working Paper.

Tretheway, S., Oltmanns, M., Leemis, L. and Hunt, C.
(1992). A New Framework for Statistics Collection
During Output Analysis of Computer Simulations. OU
IE Internal Working Paper.

Walrand, J., (1988). An Introduction to Queueing Networks.
First Edition, Prentice-Hall Inc.

Whit, W. (1983). The Queueing Network Analyzer. The
Bell System Technical Journal 62, 9, November, 2779-2815.

CORTNEY S. HUNT received his BS
and MS degrees in Industrial
Engineering from the University of
Oklahoma, Norman in 1992 and 1994

respectively. He is a member of the
ORSA/TIMS, IIE, APM, and SME
chapters. His research interests include
advanced modeling methodologies,
production management, and facility
layout.

BOBBIE L. FOOTE, P. E., is a professor
at the School of Industrial Engineering
at the University of Oklahoma,
Norman. He teaches production
planning and control, quality control,
statistics, engineering economy, and
sequencing and scheduling. He is a
member of IIE, ORSA, TIMS and OSPE.
Professor Foote received honorable
mention from the 1988 Franz Edelman

Award for Management Science Committee. His current
research interests include automated process planning,
production planning, quality control, and facility design.
Dr. Foote was named a fellow of IIE in 1991. He is the
Associate Director of Oklahoma Center for Integrated ,

Design and Manufacturing located at Oklahoma State
University in Stillwater.

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

