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Using a simple mechanics-of-materials approach, a general expression is derived
for the static correction factor for transverse shear in a beam having arbitrary
nonhomogeneity in its cross section. The resulting expression is consistent with the
variationally derived results of Reissner’s analysis t I ] when the latter are reduced
from the two-dimensional (plate) case to the one-dimensional (beam) one. Also,
when applied to an unsymmetric laminate considered by Whitney [2], the numeri-
cal result obtained is identical with his, even though the method of derivation and
resulting mathematical form are entirely different.

INTRODUCTION

An elementary theory of composite-material beams was presented by Berkowitz
[ 3 ] . Although he considered anisotropic shear coupling, such as that produced by
off-axis layer orientation in a unidirectional filamentary composite, he admittedly
did not consider the appropriate shear correction factors to be used with his theory.
Using elementary transverse shear theory1, Bert [4] considered transverse shear

deformation for the particular case of a composite consisting of a single row of
circular cross section filaments. However, the results were not expressed in terms of
a shear correction factor.

For the case of nonhomogeneous (laminated) plates, there are a variety of

theories in existence. However, most of them require either an ad hoc assumption
of the distribution of transverse shear stress through the thickness, cf. [6], or a
separate determination of the shear correction factors k and k2 , cf. [7]. The one
analysis which does not have either of these limitations is the recent pioneering
work of Reissner [ 1 ] . In a variational analysis, he considered general anisotropic
layers laminated symmetrically about the midplane. However, he gave no numerical
results.

1 This elementary theory of shear is covered, for the homogeneous case, in most texts on
elementary strength of materials. According to Timoshenko [5], this theory was originated by
Jourawski.
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Of the various methods proposed to determine the shear correction factors from
static considerations, Chow [ 8 ] used an energy approach for symmetrical laminates
and Whitney [2, 9] extended Chow’s work to the general case (symmetrically or
unsymmetrically laminated). Since the layer stress-strain relations used in [2, 8, 9] ]
did not contain Poisson and in-plane-shear effects, they are strictly applicable only
to laminated beams rather than laminated plates. However, Whitney [9] obtained
excellent agreement for the static deflection of square plates for various angle-ply
and cross-ply lamination schemes, both symmetric and unsymmetric. This would
tend to suggest that, at least in certain instances, shear factors derived for laminated
beams can be successfully applied to laminated plates. However, it should be cau-
tioned that this may not be generally applicable because of the following special
conditions inherent in the cases considered by Whitney:

1. Highly directional material with a low in-plane shear modulus
2. Plate planform and loading in which gross in-plane shear action through

the thickness is minimal. (Of course, in the angle-ply configuration, there
is significant interlaminar shear action.)

The straight-forward approach used in the present work is that of elementary
shear theory. Thus, it may be considered to be a generalization of the work of
References [4, 10] to an arbitrary cross section with arbitrary nonhomogeneity.
(Reference [ 10] is applicable only to symmetric laminates.)

ANALYSIS

The longitudinal bending stress at any distance z from the midplane of the
laminate is assumed to be given by

where a comma denotes differentiation with respect to the variable following the
comma, u is the midplane longitudinal displacement, ~ is the shear angle, and E is
the longitudinal Young’s modulus which is a piecewise constant function of z
depending upon the lamination scheme. For a wide, thin laminate, E is replaced by
the plane-stress-reduced longitudinal stiffness, 611.

The longitudinal stress resultant, N, and stress couple, M, are given by

where h is the total thickness of the laminate and the respective laminate stretching,
stretching-bending coupling, and bending stiffnesses are given by
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The constitutive expression relating transverse shear stress, TXZ, and the corres-
ponding strain, yxZ, is:

where G is the transverse shear modulus.
In the absence of body forces, the two-dimensional static equilibrium equation

for stresses acting in the xz plane is

Integrating Equation (5) with respect to z and substituting Equations ( 1 ), (2),
and (4), one arrives at the following expression for yxz v

where a and b are &dquo;partial stiffnesses&dquo; for stretching and bending-stretching
coupling defined by the following expressions:

In static beam theory, the following resultant equilibrium equations are used:

where Q is the transverse shear stress resultant defined as follows:

Thus, Equation (6) simplifies as follows:

Equation (10) gives a means of determining the transverse shear strain at any
location within the nonhomogeneous beam. However, to express the result in terms
of a shear correction factor, some additional analysis is required.

Equating the shear strain energy per unit length for the actual nonhomogeneous
beam to that in an equivalent member having a uniform ’ distribution as

assumed in Timoshenko beam theory, one obtains
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where 7XZ is defined as follows:

Using Equations ( 10), (11) and ( 12), one arrives at an explicit relation:

It is noted that the form of Equation (13) is quite different than the result
obtained in [2, 9]. However, for the symmetric case (B = 0), it reduces to the

result obtained in [ 10] , which in turn reduces to the classical value of 5/6 deter-
mined by Reissner [11] for the homogeneous case (E and G independent of z).
Furthermore, it can be shown that Equation (13) is entirely consistent with

Reissner’s recent work [ I ] on symmetric laminates when the latter is reduced to
the one-dimensional case.

NUMERICAL RESULTS

Whitney [ 2] considered an unsymmetric, two-layer, cross-ply laminate in which
the plies were of equal thickness and make of graphite-epoxy with these properties:

where L,T denote the directions parallel and perpendicular to the fibers

respectively, vLT is the Poisson’s ratio determined from loading in direction L, and

G i¡ is the shear modulus associated with direction i,j. He obtained excellent agree-
ment for static deflection of square laminated plates calculated by plate theory
with transverse shear using his own kZ values (for this case ki = k 2 2) and by classical
elasticity theory. He also listed the k2 values, so that in evaluating the present
theory, it is necessary only to compare the k2 values with those of Reference [2].
The numerical result obtained from Equation (13) is identical, to four significant
figures, with the 0.8212 value reported in Reference [2]. This is quite interesting in
view of the fact that the present derivation and resulting equation for k2 are quite
different from those of Reference [2].
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If one omits the bending-stretching coupling effect by setting B = 0, k2 is

reduced to only 0.6580. This is significantly different from 0.8212 and thus the
bending-stretching effect in such a two-ply laminate cannot be neglected.
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