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Analyses are presented for predicting the strength governed by
the plastic tensile instability (PTI) phenomenon in thin-walled
cylindrical and spherical pressure vessels constructed of texture-
hardening alloys and with or without over-wrapped filaments.
These analyses are important in predicting ductile bursting of
pressure vessels used in such high-performance applications as

high-pressure storage bottles, liquid-propellant tankage, and solid
rocket casings. The analyses cover cylindrical pressure vessels
subject to any ratio of biaxial stresses. Also means of estimating the
effect of finite length is presented. Spherical vessels of texture-
hardening material and cylindrical vessels with filaments over-
wrapped on a texture-hardening metallic substrate are treated as
special cases. The analytical results are compared with available
experimental results with good success.

INTRODUCTION

PROMISING 
RECENT development concerning the biaxial strength

Aof metallic materials is the concept of texture hardening, which
apparently was first recognized by Backofen and his associates (1,2) .
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This concept consists of orienting the crystalline texture so that there
are no crystallographic planes available on which slip can occur in the
plane of the biaxial loading. This increases the yield strength in the
plane of loading under biaxial tension, even though the uniaxial yield
strength in any direction in the plane of the sheet or plate remains
unchanged.

It has been shown that the hexagonal close-packed (HCP)
crystalline texture, such as found in titanium and beryllium, is

especially suitable for texture hardening [1,2].
Using the biaxial yield strengths predicted by Hill’s orthotropic

plasticity theory [3,4], Gerard [5] has shown the weight-saving
potential of texture hardening for both spheres and long, closed-end
cylinders. However, usually pressure vessels are evaluated on the
basis of burst strength rather than yield strength. The experimental
burst behavior of texture-hardening materials has been reported in
C6_9].

As a basis for more rational material selection and for future alloy
development, a theoretical analysis is needed for PTI (plastic tensile
instability) in thin-walled pressure vessels made of texture-hardening
material. The only such analysis known to the present authors is due
to Marin and Sharma [ 10] , but is applicable to cylinders failing due
to instability of circumferential loading only. Additional analyses are
presented here for axial-load tensile instability of cylinders and
bursting of spheres due to internal pressure.

The benefit from using texture-hardening materials is greatest for
a biaxial-stress ratio of approximately unity. Thus, Gerard [5] sug-
gested that a very efficient pressure vessel would result if its wall were
a composite consisting of resin-impregnated glass (or boron) fila-
ments wound circumferentially to carry one-half of the hoop load at
failure and a texture-hardening metallic substrate to carry the rest of
the hoop and all of the axial load at failure. This is similar to a design
concept used previously [11, 12] with an isotropic metallic substrate.

Wolff and Harvey [13] pointed out that the biaxial-stress ratio, B,
increases monotonically during plastic straining of the metal, so that
strictly speaking, it would be necessary to use the more complicated
incremental or flow theory of plasticity rather than the simpler de-
formation theory. However, in practice, glass filaments are wound with
some prestress, which helps to keep B more constant and closer to the
optimal final value, B = 1. Then analyses based on deformation
plasticity theory can be used to obtain reasonably close estimates
of failure performance in glass-filament-wound, metallic substrate,
cylindrical pressure vessels. This has been carried out for the case of
isotropic substrates by Johns and Kaufiman [14]. The texture-
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hardening material analysis presented here is applied to the case of
texture-hardening substrates.

MATERIAL CHARACTERIZATION

In order to characterize the mechanical behavior of the material,
the following hypotheses are made:

1. Elastic strains are neglected.
2. The deformation theory of plasticity is used.
3. Rigid-plastic material behavior (i.e., constancy of material

volume) is assumed. yj=,j>1;,; >;.,

4. The material is assumed to homogeneous. 
’

5. The extent of plastic-range anisotropy is not altered by plastic
deformation.

6. There is no hydrostatic-pressure effect on the mechanical be-
havior.

7. The mechanical behavior is anisotropic in such a way that the
properties in the plane of the sheet are independent of orienta-
tion, while the material is textured in such a way that its prop-
erties in the thickness direction are different from those in the

plane of the sheet. In other words, the material is what is known
as a transversely isotropic material which is a special case of an
orthotropic one. It can be shown that this is the most beneficial
type of anisotropy insofar as achieving a high ratio of biaxial
yield strength to uniaxial yield strength is concerned.

8. The following relation between true stress’ and true strain’,
first proposed by Hollomon [15] , is used:

Hypotheses 1 through 6 are the bases for Hill’s theory of

orthotropic plasticity [3,4] , while Hypothesis 7 is merely a specializa-
tion of it. Hu [16] and Budiansky [17] have discussed the limitations
of Hypothesis 2. Alternative plasticity theories in which Hypothesis 5
is relaxed have been propounded [18-20] ; in others Hypothesis 6 has

o In analyzing plastic tensile instability phenomena in reasonably ductile materials, it is necessary to use true
stress and true strain rather than nominal stress and nominal strain as used in engineering design. Fortunately, the
results of plastic-tensile-instability analyses can be converted back to nominal quantities for design use. True stress
is simply the instantaneous load divided by the instantaneous cross-sectional area. At tension plastic strains, the
stress is always greater than the nominal stress, which is the load divided by the original cross-sectional area. True
strain, sometimes called logarithmic strain, is equal to the natural logarithm of the ratio of the instantaneous gage
length to the original gage length, for an infinitesimal gage length (or a finite gage length if the strain is uniformly
distributed). Nominal strain is merely the ratio of the change in length to the original length.
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been relaxed [21,22] . It has been shown recently that Hypotheses 1
and 3 have a negligible effect on the stress at which plastic tensile
instability occurs [23] . In short, the hypotheses used here are reason-
able on the basis of the current state of the art of plasticity theory.

The material parameter first suggested by Backofen et al [1], to
characterize the anisotropy of a transversely isotropic, texture-

hardened material is the following true strain ratio:

Larson [24] has suggested that the plastic-range Poisson’s ration tt,
associated with in-plane deformation be used as a measure of texture-
hardening anisotropy. It can be shown that ¡..tp and R are related by

Since strength is of more direct importance in ductile failure than
strain, the following strength ratio has been proposed as a more

significant measure of texture-hardening capability [25]:

where a-zy and ~py are the respective yield strengths in the thickness
direction and in the plane of the sheet. The ratios a and R are related
by the following expression:

Table 1 lists values of R, J-tp, and a determined experimentally for
some titanium alloys [6,8,9,24,26,27,34].

Table 1. Values of Texture-Hardening Parameters R, E.~,~&dquo; and
a Obtained with Various Titanium Alloys
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The stress-strain relations for biaxial loading can be expressed as:

where 3 is the effective true stress defined by the following
expression: H-’

Biaxial yield-strength envelopes for an isotropic material (a = 1)
and for a typical texture-hardening material (a = 1.36) are given in
Figure 1.

~- 7 ~ .:; 
,~ =

GEOMETRICAL AND LOADING CONSIDERATIONS

The following additional hypotheses are made:
1. The shell geometry is that of a circular cylinder or a sphere.

Figure 1. Biaxial yield-stress envelopes for an isotropic material
(a = 1 ) and for a texture-hardening material (a = 1.36).. ~
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2. The shell is thin-walled; i.e., the wall thickness is very small in
comparison to the shell radius so that the thickness-direction
stress is negligible.

3. It is assumed that no bending action takes place until the onset
of tensile instability. This implies that in the case of the

cylinder, it must be long so that the girdle-type restraint of the
end closures is negligible.

4. The loadings considered are: for the sphere, uniform internal
pressure only; for the cylinder, uniform internal pressure and
external axial tension or compression, combined in any way so
as to give any positive biaxial-stress ratio.

TENSILE INSTABILITY IN CYLINDERS
DUE TO HOOP LOAD

For the case when plastic tensile instability in a long, thin-walled
cylinder is governed by hoop load, the analysis of [10] for an ortho-
tropic cylinder can be adapted to the more specialized case of a
transversely isotropic, texture-hardening material by making the
following transformations of the orthotropic parameters:

all - 1, ai2 ~ 1 - a 2/‘~~ a22 ~ 1~ a31 ~ a 2I‘~~ a-2 /2

Then the result is

SoilSt. = [1- (2-a-2)B+B2]~n-~~i2[(1+a 2/2)- (1-a-2)B]-n (8)

where B = ~a/a~e, Stu is the nominal ultimate tensile strength (uniaxial
in the plane of the sheet) assuming that uniaxial failure occurs by
plastic tensile instability, and SB2 is the nominal hoop stress in the
cylinder at plastic tensile instability.

Table 2 summarizes all of the experimental results available to the
authors on hydrotests of thin-walled vessels made of texture-

hardening materials. All of the vessels were cylindrical and all of the
materials were titanium alloys. The comparisons between the experi-
mental results and calculations using (8) are inconclusive in the
instance of two series of tests: In both of the Series 1 tests, failure did
not occur as a result of plastic tensile instability, since in both tests
failure occurred prematurely at the longitudinal welds; also in the
Series 6 tests, the exact value of the texture-hardening parameter a
(or R or was not known and thus had to be estimated on the basis
of measurements made at another laboratory on specimens probably
from another heat and made by another producer. However, in the
Series 2 through 5 tests, failure was apparently quite ductile and thus
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Table 2. Comparison of Hoop Failure Stresses Determined Experimentally
and By Calculation for Texture-Hardening Titanium-Alloy Cylinders

Experimental Results

* Estimated on the basis of data presented in Table 1.
**Failure occurred prematurely in the longitudinal weld in both specimens.

~ m~~-= ; 3 ,~,.

undoubtedly due to plastic tensile instability.
In the Series 2 through 5 tests, the values calculated by (8) and

labeled LC in Table 2 fall from approximately 6 to 30 percent below
the values obtained experimentally. This is unusual in plastic tensile
instability experimental-calculated comparisons, where it has been
found that the calculated values usually exceed the experimental
values by from 1 to 15 percent [10].

In attempting to determine the cause for this discrepancy, there
are at least three potential explanations:

1. The girdle-type radial and rotational restraint offered by the end
closures on the actual finite-length cylinders, which is neglected
in the theoretical analysis.

2. A hydrostatic pressure effect.
3. An effect whereby the texture-hardening effect (as characterized

T by a, for example) increases with plastic strain during loading.
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The length-to-diameter ratio of the cylinders used in the Series 2
through 4 tests is L/D = 0.96 if only the main (uniform-thickness)
cylindrical portion is considered, or L/D = 1.37 if the tapered cylin-
drical transition sections are also included. Empirical results reported
by Sachs et al [28] , indicate that closed-end alloy steel cylinders
subject to internal pressure (B = 1/2) tend to burst at stresses 6 to 12
percent above those of infinitely long cylinders, for these finite L/D
ratios. However, the titanium alloys of interest here have lower strain-
hardening exponents and thus a smaller difference. Thus, results of
theoretical analyses must be used. For example, the analysis of Weil
et al [29] , predicts an increase of approximately 4 to 8 percent.

Unfortunately, no analysis of the effect of finite L/D on texture-
hardening materials appears to be available. However, to indicate the
order of magnitude of the effect, a very approximate estimate can be
made by considering a spherical shell to be the upper bound for the
girdle effect, i.e., a cylinder with L/D = 0 arid hemispherical end caps.
Since the nominal hoop stress for a spherical shell is one-half that of a
cylindrical shell,

where subscripts OL - zero-length cylinder and sph - spherical.
An expression for (SOi)SPh/Stu is given by (27). Then the following
interpolation formula is used to interpolate between a long cylinder
and a zero-length cylinder (sphere):

where x ---- Sei/Stu, the unprimed quantities denote the isotropic case,
the primed quantities denote the texture-hardening case, and the
subscripts are as follows: LC - long cylinder, OL - zero-length
cylinder, FL - finite-length cylinder.

The results of applying (9) and (10) to the Series 2 through 5 test
cylinders is given in Table 2 in the column labeled FL. These inter-
polated values still fall from approximately 2 to 24 percent below the
experimental values.

This rough interpolation indicates that the finite-length effect
cannot account for the high experimental burst strengths. However,
recent research [32] indicates that the texture-hardening effect in-
creases with plastic strain. In their example, the plastic strain ratio R
increased from 2.31 at 0.2 percent MPOS (maximum principal offset
strain) to 4.83 at 0.8 percent MPOS and finally to 5.90 at burst. This
same phenomenon of increasing anisotropy (increasing R) with in-
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creasing biaxial loading has also been observed in tests using flat
sheet material with face grooves [33] . This is in contradiction to

Hypothesis 5 and Hill’s orthotropic plasticity theory and will require
additional research to resolve.

TENSILE INSTABILITY IN CYLINDERS
DUE TO AXIAL LOAD

The total axial load Pa, which is the sum of the external load and
the pressure load 7rr2p, is related to the axial stress as follows:

Setting the total differential dPa = 0 and noting that

one arrives at the following expression, which has been obtained
previously by Felgar [30]: . -_. 

_

From (6), it is noted that e~/e~ remains at a constant value (denoted
by C1) for a given a and B. Then constancy of material volume re-
quires that ~/~&euro;e=~/&euro;p=&horbar;(l+Ci). Putting these results into (13)
yields:

Making use of (1), (6), and (7), it is found that

where

Taking the derivative of (15) yields:

Equating the right-hand sides of (14) and (17) gives the following
expression for the axial true strain at which tensile instability takes
place:

It is noted that this is exactly the same value of true strain at which
uniaxial tensile instability occurs. However, the corresponding
nominal stresses are quite different in the two cases due to the dif-
ference in the stress states. . .. ’. &dquo;&dquo;.. - ~ --
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From (15) and (18),

The nominal axial stress is defined here as follows:

where r, and h, are the initial values ofr andh. Then combining (11),
(12), (19), and (20), yields the following expression for the nominal
axial stress at which tensile instability occurs:

where e is the base of the natural logarithms.
From uniaxial tensile instability theory, as given by Marin [31]

for example, the nominal ultimate tensile strength is

From (16), (21), and (22), the following dimensionless result is
obtained:

For the case of uniaxial loading in the axial direction (B ~ ~), (23)
gives a result of unity, which serves as a check.

Figure 2 shows a biaxial-ultimate-strength envelope for two

materials, each having the same value of the strain-hardening ex-
ponent (n=0.095) : One material is isotropic (a=1) and the other is of
the texture-hardening type with a = 1.36. The transitional biaxial-
stress ratio at which the plastic tensile instability phenomenon
changes from hoop to axial (shown as dashed lines in Figure 2) is

found by equating Sai = BSoi, using values from (8) and (23) for Soi and
Sai, respectively. The result is:

TENSILE INSTABILITY IN PRESSURIZED SPHERES

For a thin-walled sphere subject to uniform internal pressure p,
the in-surface stresses are given by

Then setting dp = 0 for instability and using relations (12) which
are applicable to spheres as well as cylinders, the following result is

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


326

Figure 2. Biaxial ultimate-stress envelopes for two materials with
a strain-hardening exponent of 0.095: isotropic (a = 1) and

texture-hardening (a = 1.36). 
- 

--

- . I ~p .~ ~

obtained:

Since (26) is identical to that obtained by Marin and Sharma as an
intermediate step in their analysis of the hoop-direction tensile in-
stability in a cylindrical shell, the same analysis is applicable here
provided the correct biaxial-stress ratio (B = 1) is used. Thus, the
result is (8) with B = 1:

Although expression (27) for the sphere stress ratio SolStu is

identical to that for a long cylinder subject to the same biaxial stress
ratio (B = 1), the nominal hoop stress per unit pressure (so/p) for a
sphere is ro/2ho, while for a long cylinder it is twice that, namely
ro/ho. Thus, according to the theory presented, a sphere can withstand
twice the burst pressure of a long cylinder of the same radius, thick-
ness, and material at B = 1. n&dquo;, c &dquo;-- c-, - .. - _ .r ... _ _ , .
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Figure 3. Ratio of hoop stress at burst for a glass filament/metallic
substrate cylinder to that for a monolithic cylinder of the same
alloy versus texture-hardening parameter a for selected values of
strain-hardening exponent n.

APPLICATION TO FILAMENT-OVERWRAPPED
METALLIC-SUBSTRATE CYLINDERS

To compare performance of closed-end cylindrical pressure

vessels, it is desirable to calculate the ratio of the hoop strength of the
substrate (at tensile instability) for the filament/substrate composite
cylinder, (SOi)¡S, to that of a monolithic cylinder constructed entirely
of the same material as the substrate, (SOi)m’ Using the design philoso-
phy that the filaments should carry one-half of the hoop load at failure
and assuming that there is adequate prestress, this ratio can be

expressed as:

Using (8), (28) becomes

The relationship expressed by (29) is depicted graphically in
Figure 3. As can be seen, the texture-hardening parameter a is much
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more dominant than the strain-hardening exponent n. 
’

Since all of the filament-overwrapped cylindrical pressure vessels
known to the present investigators have been made with isotropic
substrate materials, no comparisons can be made between theory and
experiment for texture-hardening substrate materials. However, the
mean values of the burst-strength ratios obtained experimentally by
various investigators for several different isotropic substrate alloys, as
listed in Table 3, agree well with the theoretical range of 1.73 to 1.78
for a = 1.0 and n ranging from 0 to 0.2 with one exception.

&dquo;!~ R r
- - ~ 

’

SUMMARY . ~ =J

Plastic tensile instability (PTI) analyses were presented for

cylindrical and spherical pressure vessels of texture-hardening alloys
with or without overwrapped filaments. On the basis of these analyses
and comparison of the results with experimental results, these con-
clusions were drawn:

1. The cylindrical pressure-vessel analysis presented covers all
possible biaxial-stress ratios at which PTI governs. Even when cor-
rected for finite length, the calculated values of hoop stress at failure
were always conservative (i.e., low) compared to the experimental
values for certain texture-hardening titanium alloys. In all cases, rang-
ing in biaxial-stress ratio B from 0.5 to 1.24, the ratios of hoop failure
stress to ultimate tensile strength were substantially greater than they
would be for a ductile isotropic material.

2. The transitional biaxial-stress ratio at which PTI occurs simul-

taneously in both the axial and hoop directions was substantially
lower for texture-hardening material than for an isotropic one. How-
ever, this does not reduce the increased load-carrying capacity of
texture-hardening materials in the range of B from approximately
0.5 to 2.0.

Table 3. Experimentally Measured, Room-Temperature Burst-
Strength Ratios for Cylindrical Pressure Vessels Having Isotropic
Metallic Substrates Overwrapped with Glass Filaments
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3. It was shown that the nominal hoop stress at PTI failure for a
spherical shell subject to internal pressure is the same as that for a
long cylindrical shell of the same radius, thickness, and material and
subject to the same biaxial-stress ratio (B = 1), just as in the case of
isotropic material.

4. Application of the theory to prediction of PTI failure of iso-
tropic metallic cylindrical pressure vessels overwrapped with glass
filaments gave results which agreed fairly well with experimental
results.

5. Since to the authors’ knowledge, no texture-hardening sub-
s trate/glas s -fi lame nt-wrappe d pressure vessels have been built to

date, the theory could not be verified for this case. However, due to
the good agreement mentioned above, it is believed that the theory
gives a reliable prediction. The theory confirms Gerard’s prediction
(which was based on biaxial yield stress only) that such a pressure
vessel should be a very efficient one from the standpoint of pressure-
vessel performance/weight efficiency.

NOMENCLATURE

B = ratio of biaxial principal true stresses, ~a/~e
Ci, C2 = parameters used in derivation
D = diameter of cylinder
h = wall thickness
K = strength coefficient introduced in Equation (1)
L = length of cylindrical portion of pressure vessel
n = strain-hardening exponent introduced in Equation (1)
Pa = total axial load
R = true strain ratio defined by Equation (2)
r = radius of cylinder
S = nominal stress
x, x’ = Sei/Sta for the isotropic and texture-hardening cases
« = true strength ratio defined by Equation (4)
o’u =orthotropic parameters of Ref. [10] ]
&euro; = true strain
i = effective true strain
o- = true stress
6- = effective true stress defined by Equation (7)
P-P = Poisson’s ratio associated with in-plane plastic strain

Subscripts
a = axial direction
FL =finite length
fs = filament/substrate composite
i = instability
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LC = long cylinder 
-

m = monolithic
o = initial
OL = zero-length
py = in-plane yield
r = radial
sph = spherical
trans = transition
tu = uniaxial tensile

zy = thickness-direction yield
0 = circumferential

’ H~ ~i k°tF
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