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A semidestructive method has been developed for determining
the principal residual stresses and directions in rectangularly
orthotropic materials. The reduction equations are based upon a
set of functions that describe the surface strain-relaxation field
about a hole drilled to a limited depth into the material. Three
constants contained in the strain functions have to be determined
by calibration tests; they are related to three general constants and
the elastic material constants to establish applicability to an

orthotropic material. Expressions for the planar residual-stress

components in the material-symmetry directions are then devel-
oped, and from Mohr’s stress circle, the principal residual stresses
and directions are determined.

INTRODUCTION

RESTDUAL STRESSES are quite often a nemesis for the engineer oftoday. When neglected in design, residual stresses can cause a
part to fail below the design load or, under fatigue loadings, prior to
the useful design life of the part. Residual stresses are sometimes

neglected because they are not known to exist; at other times, they
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are neglected because their magnitudes and directions are unknown
to the engineer and he has no knowledge of how to determine them.
There is little hope for the first case. In the latter case, the cautious
engineer usually incorporates a much larger safety factor than re-
quired resulting in a part that is over-designed, i.e. over-strengthened
and over-weight.

Consequently, a number of different methods of measuring
residual stresses have been developed. One of the earliest methods
was the &dquo;boring out&dquo; method proposed by Sachs [1] in 1927 for
circular-cross-section bars and tubes of macroscopically homogeneous
isotropic materials. Recently this method was extended to cylindrically
orthotropic bodies by Olson and Bert [2] .

Another mechanical method was developed by Treuting and Read
[3] in 1951. This method is applicable to plate-type parts and is
based on a layer-removal technique that requires very precise
grinding and measuring procedures to obtain accurate results. The
method is restricted to very uniform stress fields. However, it can be
used for orthotropic material providing all the assumptions and
conditions can be met. One chief disadvantage of this method is that
it is completely destructive. A specimen (say 41/2 in. x 1/2 in.) has to
be removed from the part, thus rendering the part useless for its

designed purpose.
In 1934 Mathar [4] originated a third mechanical method appli-

cable to determination of planar residual stresses parallel with and
adjacent to a flat surface on a part. This method, called the hole-
drilling method, is based on measurement of surface strain relaxation
due to the drilling of a limited-depth hole normal to the surface. Care
must be taken in the drilling of the hole as well as the location, in-
stallation, and reading of necessary strain gages. The method has
been limited to macroscopically homogeneous, isotropic materials
and calibration tests have had to be accomplished on specimens
made of the same material for each investigation. These tests are
limited in that the specimens cannot be loaded above a stress value of
approximately one third the yield stress to allow for the stress con-
centration at the hole. In spite of the limitations, the hole-drilling
method has been used widely since it is semidestructive. Quite often
the hole is so small that it is acceptable. When it is not acceptable, it
can sometimes be filled quite satisfactorily.

Recently the hole-drilling method was improved by Rendler and
Vigness [5] by eliminating the necessity of a calibration for each
material. This improvement was accomplished by assuming a certain
functional form for the surface strain distribution. Two constants in
the strain distribution must be determined by subsidiary experiments
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involving applied uniaxial stresses. These experiments were con-
ducted for various ratios of hole depth to diameter and it was con-
cluded that a ratio of 1.0 is the optimum, i.e. gives the largest strain
response per unit stress. It was shown that the two constants deter-
mined for this ratio were valid for all isotropic elastic materials, and
then measured strains can be related to the principal residual stresses.
However, the analysis is restricted to macroscopically homogeneous,
isotropic elastic materials, and as will be shown, the analysis
neglected a factor which resulted in a small error.

Today many engineers work with more complicated materials,
particularly fiber-reinforced composite materials, which behave

anisotropically on a macroscopic basis. In this paper, the same

approach as used in Ref. 5 is used in deriving the analytical relations
required to determine the residual stresses in a rectangularly ortho-
tropic material from hole-drilling strain measurements. The required
calibration tests necessary for calculating the constants in the strain-
distribution functions are relatively simple tests and can be con-
ducted on simple specimens in advance of determining the residual
stresses.

In a residually stressed material, isotropic or not, the principal
stress or principal strain directions are seldom known. Furthermore,
Greszczuk [6] has pointed out that, in general, these directions do
not coincide with one another. However, in most practical applica-
tions, if the material being investigated is known to be orthotropic,
the material-symmetry directions are known and the associated elastic
constants are known or can be determined experimentally. These
elastic constants appear in the following stress-strain equations
relating the surface strains in the material-symmetry directions

(1,2) to the corresponding stress components:

’ 

THEORY

Consider a material in a generalized-plane-stress field represented
by the stress components ~11, ~22, ~12 and orient a cylindrical co-
ordinate system as shown in Figure 1. If a small circular hole is drilled
normal to the surface to a small depth into the material, a change in
surface strain will occur in the vicinity of the hole as a result of the
stress relaxation associated with the drilling of the hole. The change
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Figure 1. Schematic diagram showing coordinate system, stress
components, hole geometry, and strain-gage locations.

in strain which occurs at any location at a fixed radial distance from
the center of the hole can be expressed as

where E(a) is the normal strain at some angle a measured from the
major material-symmetry axis (direction 1), and K(a) and L(a) are
strain distribution functions dependent on the angle a.

If the strain functions K(a) and L(a) were known, it would be

possible theoretically to establish a working expression by taking
strain measurements at three unique orientations a and then solving
for the three planar stress components. Of course, three separate
single-element strain gages could be used, but it is more convenient
to use one of the new three-element strain-gage rosettes with a central
hole (especially designed for use in the hole-drilling method and
now commercially available), as used by Rendler and Vigness [5].

The strain-distribution functions are assumed in the following
forms:

It is noted that this is the most general form of functions required to
represent a homogeneous strain field.
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Substitutions of Eqs. (5) and (6) into Eq. (4) results in

The suggested strain-gage array can be strategically oriented such
that the strains Ea, Eb, and &euro;e will correspond to a = 0°, 45°, and 90° in
the system being investigated.

If the values a = 0°, 45°, and 90° are substituted into Eq. (7), the
following three simultaneous equations result:

These equations can be solved for (T1t. ~22, and 0-12 in terms of Ea, Eb,
and E, with the following results:

In studying Eqs. (11)-(13) and comparing them with Eqs. (1)-(3),
one might suspect that the constants A, B, and C contain the elastic
material constants. If general expressions could be developed for A,
B, and C in terms of the elastic constants, then Eqs. (11)-(13) would
be applicable to an orthotropic, elastic material. Such expressions for
A, B, and C will be developed using an approach similar to the one
used for isotropic material in Ref. 5.

The strain components associated with the material-symmetry
directions can be expressed in terms of the corresponding stresses
and the elastic constants, provided the proper proportionality con-
stants (k1, ... , k5) are included, as follows:

In general, the five proportionality constants are required because
the material being considered is orthotropic. However, definite
relations do exist between the constants, and it will be shown that
A, B, and C depend on only three of the five constants. Also, it will
be shown why a minimum of three proportionality constants are

needed for isotropic materials, rather than only the two used in Ref. 5.
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Recognizing that Ea and E, in Eqs. (8) and (10) are Ell and E22, one
can compare these equations with Eqs. (14) and (15) and see that

Also, from the Mohr’s strain circle,

and from Eqs. (13) and (16), one contains

Therefore, only three independent constants (kb k2, k5) exist. It
should be noted that for isotropic materials, E22 = El = E, v21= V12 = v,
and 2( 1 + v) G = E. For this case, k, = k, and k4 = k2 which agrees
with Ref. 5. However, C is not zero [since it equals k5(l + v) /E ] ,
as was assumed in Ref. 5. This explains why the predicted stresses
obtained in Ref. 5 had a maximum error at a = 45° (where sin 2<~= 1.0

and thus the effect of C is greatest).
Therefore, if the elastic constants are known, one calibration to

determine k1, k2, and k5 in Eqs. (21)-(23) will suffice for a given
orthotropic material.

DETERMINATION OF EQUATION CONSTANTS
BY CALIBRATION

The original statement of the problem was based on the hypothesis
that planar residual stresses in an orthotropic material could be
determined by drilling a hole into the surface and measuring the
surface-strain relaxation in the vicinity of the hole. In this paper,
equations have been developed which relate the stresses in the

material-symmetry directions of a rectangularly orthotropic material
to the corresponding strain-relaxation values measured in the vicinity
of the hole. In deriving these expressions, three constants occurred
that may be determined readily by applying a known stress in

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016jcm.sagepub.comDownloaded from 

http://jcm.sagepub.com/


250

direction 1 to an orthotropic calibration specimen and allowing the
stress in direction 2 to be zero. Denoting o-11 as the applied stress
and recognizing that

Eqs. (8) and (10) can be solved for A and B with the following results:

Thus, the constants A and B may be determined in terms of the
known stress o- and the radial strains Ea and &euro;e as measured at respec-
tive a angles of 0° and 90°. To determine the constant C appearing
in Eq. (8) requires the application of a shear stress ~12 in direction 1
or 2, or a uniaxial normal stress at a = 45°. For the case of a fairly
homogeneous material, either isotropic or orthotropic, a uniaxial test
at 45° can be conducted successfully. However, this is not the case
for fiber-reinforced composite materials, due to the problem of in-
complete gripping of cut fibers. Thus, for such materials, either very
specially designed uniaxial specimens [7] or in-plane shear loading
must be used.

For the case of uniaxial loading at 45°, for instance,

During the calibrations, strain measurements at other angles
should be taken. Then the assumed strain distribution can be checked

by comparing the measured test values with the analytical ones
determined from Eq. (4).

In Ref. 5, the optimal value of the ratio of hole depth to diameter
was determined to be 1. As the constants, A, B, and C are functions
of hole depth, a similar investigation would be in order when de-
termining these constants for specific orthotropic materials. It would
be expected that the optimal ratio of hole depth to diameter will be
restricted to the particular orthotropic material used.

GENERAL CALIBRATED EQUATIONS

After selecting the optimal value for the ratio of hole depth to
diameter, a proportional relation will exist between the associated
constants A’ and B’, where the prime denotes the optimal values.
This relation is defined to be
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where x is a constant of proportionality.
Substituting this value of B’ into Eq. (22) for B and adding thE

resulting equation to Eq. (21) where A has been appropriately
replaced by A’, one obtains

..,- ...-

Solving for A’, one obtains:

Substituting the value of B’ from Eq. (31) into Eqs. (11) and (12)
and again letting A = A’, the results are:

Substitution of A’ from Eq. (32) yields

and substitutions of Eq. (23) into Eq. (13) gives

A numerical value of kl can be determined from Eq. (32) as the
optimal values of A’ and B’ have been determined by calibration; a
numerical value exists for x, i.e. B’/A’. The major Young’s modulus
E1~ is known for the calibration material, and k, can be determined
from Eq. (23) after calculating C by the method described previously.

In these forms, Eqs. (35)-(37) represent the calibrated equations
valid for determining the planar residual-stress system relative to
material-symmetry directions of orthotropic materials.

CALIBRATION CONSTANTS FOR ISOTROPIC MATERIALS

The constants A, B, and C have been shown to contain the
material constants for isotropic materials as well as orthotropic
materials. For isotropic materials, Rendler and Vigness [5] selected
the optimal value of 1 for the ratio of hole depth to diameter and
obtained corresponding values of A’ and B’ as follows:

Since Ref. 5 showed a discrepancy in Eb = E(45°) of approximately
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-3 microstrain for the curve corresponding to Ea = E(O’) =-28
microstrain and 6e = e(90°) = -9 microstrain, the constant C can be
calculated as follows:

From Eqs. (28) and (30),

Introducing the elastic constants for cold-rolled steel, the dimension-
less constants for all isotropic materials are:

Inserting the above values of the general constants into Eqs.
(35)-(37) results in the following set of calibrated equations which are
applicable to determination of planar residual-stress systems in any
isotropic material with a hole drilled to a depth of one hole diameter:

DETERMINATION OF THE PRINCIPAL RESIDUAL STRESSES

If one can neglect the stresses acting in the z direction (per-
pendicular to the drilled surface), and using the values for the stresses
determined by Eqs. (35)-(37), one can use the Mohr’s stress circle
to determine the principal residual stresses as follows:

The stresses will be oriented at the following respective angles
measured CCW from the major material-symmetry axis (direction 1):
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NOMENCLATURE

A, B = calibration constants
a = general angle measured from the major material-symmetry axis
E = Young’s modulus
E = strain

e(a) = strain at some angle a
G = shear modulus associated with directions 1, 2
k = general constant
K(a) = normal-strain function
L(a) = shear-strain function
x = proportionality factor
v = Poisson’s ratio
r = radial distance on surface, measured from center line of hole

Subscripts
a, b, c = rosette elements at 0, 45, 90 degrees
11, 22 = normal stress, normal strain, or elastic constants associated with

directions 1, 2
12 = shear stress or shear strain in direction 2 acting on face normal to

direction 1
1, 2 = major and minor material-symmetry directions
1, ..., 5 = designations for different general constants, k
max, min = denotes principal stresses and associated directions

Superscripts
I 

= denotes optimal value
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