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EIECTRON IMPACT EXCITATION OF THE HYDROGEN MOIECUIE

CHAPTER T
TITTRODUCTION

Although considerable theoretical work has been done on electron
impact excitation of atcznsl, comparatively little has been done in the
area of electron excitation of molecules, owing primariiy-to the lack
of aceurate wave functions for the excited states of molecules, and to
the added complication of the multi-center force field in which the
electronic motion takes place. |

The earliest work of this {type was done in 1832 by lMassey and
Mohra, who applied the Born approximation to the excitation of the
B 210 12: state of molecular hydrogen. They used two center varia-
tional wave functions for both the grourd state and the B state. Im
191L1, Roscoe® considered the excitation of the C 2o :"g'l_u, D 3pm lnu’
ard E 2sg 12; states as well as the B state, also using the Born ap-
proximation. MacDonald’s excited state wave functions were used, in
which the imer electron is descrived by a lsg, ¥ orbital, while the
excited electron is considered to be in a Iydrogenic (atomic) orbital
centered about the molecular midpoint. Even with these relatively
"simple wave functions, aporoxiratiors were used to evaluzte the inte-
grals,

Yore recently, XKbare® has calculated the cross sections for
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excitation to the B and C states, usin_g as wave -functions the one~
center expansions of _}brzinagas for both the ground state and the ex-
cited states. The use of these one center functions allows the Born
integrals to be evalnated exactly.

A1l of the above calculations have been carried out for a single
internuclear separation, relying on the Franck-Condon factors to give
the probabilities for excitation to the different vibrational levels,
Roscoe, however, expressed doubt about the validity of this procedure.
The correct procedure is to evaluate the elecironic scattering amplie
tude as a function of internuclear distance and then find the matrix
elements of this quantity beitween the initial and final vibrational
levels,

Although it is generally accepted that the Born approximation is
correct at very high energies, it may be seriously in error in the low
to medium energy range (threshold to zbout 100 eV), owing to its ne=
glect of the distortion of the incaming wave, the effects of coupling
between the various states ‘of the target molecule, ard the effects of
exchange betuween the incoming electron and the molecular electrons.
The close coupling approximation, even without exchange eifects in-
cluvded, has been shown to give ruch better agreement with experiment
in same cases of electron excitation of atams”.

Recently, accurate two-center vave functions® ® 10 have become
available for several of the excited states of the Fp molecule. Also,
with the conputational speed and capacity of modern elecironic comput-
ers, it is now possible o perform cross section calculations with

accuracy and sophistication which is comperable to some of the more
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recent work on electron-atom collisions. To this erd, the "mumerical
machinery™ has been develop:’ to calculate cross sections by (a) the
Born approximation, taking into account the variation of the scattering
amplitude 4wi"c,h internuclear seraration, and (b) the close coupling
aprroximation, including not only the initial state-~-final state cou-
pling, but also the coupling between the different excited states.-

During the progress of this work, a paper appeared by K. J. Miller
ana M, Kraussn, in which Born approxima.tion cross sections were pre-
sented for some of the Hp excited states, including the B and C states.
Variational two-center wave functions were employed, and full account
was taken of the variation of the scattering amplitude with inter-
muclear distance, Although the mmerical results presented herein for
the Born cross sections are not significantly different from those of
¥Miller and Krauss, there is a slight difference in the conclusions
which are drawvn from these results, This difference is discussed in
the text. The rather minor overlap between the work presented Lere
and that published by Niller ard Krzauss does not detract from the valwe
of this dissertation, since the major effort here is to show in vhat
respects the close coupling results differ from the Born results, and
to obtain cross sections which are valid in the rediwm energy range as
well as at high energies.

Tn Chapter iI, the electronic wave functions are discussed, and a
method for finding the vibrational wave functions is presented. The
Born approximation theory is formulated in Chapter IIT, and is applied
to the excitation of the B, C, and E states. Chapter IV gives the form-

wlation of the clcse coupling theory, Cheapter V describes the application
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of this theory to the electroni¢ excitation of the Ho molecule, and

the extension of the theory to inclvde vibrational effects is given

in Chapter VI. Thke results .are sumarized qualitatively in Chapter VII.

Some of the mmerical procedures. are discussed in Apperdix I, In

addition to this work on electron excitation of Hp, the excitation
functions have been calculated for all transitions from the ground.
state of Ne to the (2p)° 3p configuration, The Born-Ochkur approxi-
mation was used, and intermediate coupling vave functions were used

for t}ae various states of the (2p)° 3p configuration. The results

of these calculations are included as Appendix II.



CHAPTER II

WAVE FUNCTIONS

Electronic Wave Functions

For the grourd state X 12; and for the excited state C i, the
wave functions used were those calculated by E. R. Davidson.? These

wave functions are expressed in the form

N
¥(1,2) = Z C, o.(1,2) . N ~ 50 for most cases. (1)
&= K YK

Each cpK(l,Q) is called a "configuration", and is composed of
symmetrized products of one-electron functions called "basis functionms”.
The coefficients CK are determined by the solution of the secular equa-

tion which results from application of the linear variation method. The

basis functions are defined by

2, = (ndmiaiBy)

. LR
(njmag) = (§)3/2§nna lgé‘?—l)(l—”ﬂa)J L e R )

N

where §, T, @ are the usual elliptic coordinates,

& E. R. Davidson, Chemistry Dept., University of Washington, private
communication., For a discussion of these wave functions, see S.
Rotherberg and E. R. Davidson, Ietural Orbitals for Hydrogen lMolecule
Excited States, J. Chem, Fhys. L5, 2560 (1966). For a discussion of
the E electronic state, see E. R. Davidsom, J. Chem. Fiys. 35, 1189
(1961). Also see Prof, Davidson’s Ph. D. dissertation, which is
published as Air Force COffice of Scientific Research report rno, AFOSR-

1+85.
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and R is the intermuclear distance, Some relationships between spher
ical polar coardinates with the origin at the molecular midpoint and
these elliptic coordinates are given here for future reference. If

r, B, ¢ are the spherical polar coordinates, one can write

1/2

R .
T = §ES2+T12-1] )

e -,

r sin §
R
reosg = -35EN ,and
. Ry3/.2 2
r®singar dg dp = (3) (8% - 1) agandp .
The first few basis functions used by Davidson for the C '
state at R = 1.0 are given in Table 1. The "configurations” are

defined by a pair of integers specifying the basis functions to be

used.,

(1 3)

-;_‘- [£;(02,(2) +£,(V2,(2]

The first few configurations for the C state at R = l.an are also

given in Teble 1.



Teble 1. Basis functions and configurations for the C state. The basis
. m .
function (njmeB8) is defined as (2/R)%/2 g™ [52-1 Q-7 )J? =054

1ntd
e . The configuration are ék = £, (1) f,j (2) + f;j (1) . (2).
i

{or

The first few basis functions The first few configuretions for
for the C 'T state at R = 1.0e_ the C 'N_ state at R = 1.02_
tom 5 om0 B x i j

1 0 0 0 8 0 1 1 7

2 1 0 0 B8 0 2 1 8

3 0 2 0 B8 o0 3 1 9

by 2 0 0 B8 0 b 1 10

5 3 0 0 B8 o 5 1 1u

6 1 2 0 B 0 6 1 12

7 O 0 1 25 0 7 2 7

8 1 0 1 .25 0 8 2 8

9 2 0 1 25 0 9 2 9
10 o0 2 1 .25 0 10 2 10
1 3 0 1 25 0 11 2 1

12 1 2 1 25 0 12 2 12
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These wave functions, in the form (1), give quite accurate ener-
gies, ard are thought to be very accurate wave functions, but they are
samevhat awlward to use for the calculation of interaction potential
matrix elements or Born scattering amplitudes. FHowever, we can obtain
a considerable simplification in form and at the same time retain suf-
ficient accuracy by making use of the natural orbital expansion™

of (1), The wave functions in the above form consist of sums of prod-

ucts of one electron functions. They can therefore be put in the form

¥(1,2) = Zfi(l)cijfj(a) , ()

— 1,3

vhere, for singlet states, C i3 = Cj 5

The matrix C is a real, symmetric matrix, and it car therefore be
diagonalized. TIn order for this diagonalization to be carried out

in the wsual way, however, we must first express (4) in terms of a
set of orthonormal basis functions, This is accomplished by the fol-.

lowing {transformation:

/2

‘g1 = £1/ [(fl:fl)ll ’

g2 = [fz - (f2,8081] / [(f2,f2) - (f2,€1)2]1/2 ’
gz = [f3 - (f3,81)81 - (£3,8)82] / [(£3,£3)
-(£3,82)% - (fs,gl)zll/a p



(g8 = 8, , - (5)
This gives |

(1,2) = ) g(0e (@

vhere D = G rc @t . : - (8

The matrix D is then diagoralized in the uwsual way, i.e., a matrix S

is fourd such that

ST 8).., = a.6.. .
( )13 1613_

The functions ym = Z Sjmgj = E Gijsjmfi s
dJ i3
are then the so-called "matural orbitals”, which give the most rapidly

comvergent expansion of Y,

¥(1,2) = Z ay,(Dy, (2 ,
i
Zaa. = 1 .
i.
i

The product yi(l)yi(a) is called a "matural comfiguration”, and the
coefficient a, is its "weight™.

For the ground siate (X 12;), it is sufiicient to keep only the
Tirst natural configuration, since its weight exceeds .99 for all
values of R considered, If the first nmatural orbital is called u o

then the wvave Tunction can be written
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?x(l,e) zuo(l) uo(a) .

w_ is a 1s, type orbital, having the form £ (€,1) - L

o \/E\'
where fo(g, - = fo(g,n) .

- For the C Lﬁu state, there are two natural configurations which

occur with non-negligible weights, so that

"fc(l,a) ~ awi (Dyi(2d) +az y2 (Vy=2(2) .

In every case (i.e., each value of R), there is a u, and a v_ such that
va = (g, +v) /N2, and
vz = (u,-7v) /\2 .
Also, in every case, a = -a . Thus,
2 1
Yc(lye) =~ al; ‘% [uc(1)+ vc(l)] lzuc(E)-i. VC(Q)J
1
- é-[uc(l)-vc(l)] [uc(Q)-vc(2)] }
= a {uc(l)xfc(2)+ vc(l)uc(2)} s
2
3, ~ /2 .

uc is a lso'g tType orbvital, very similar to the a, described

gbove. Vo is a Zmu type orbital, having the form
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o .
v, = 2050 == , £ (8- = 2 (5 .

c v

Clearly (vc,uc) = 0 ,and
('V'c,'u.o) = 0 .

For the B 5, and E 122 states, the functions which were furnished
to us by Prof. Davidson were not tabulated over the range of R values
desired, FHowever, Prof. Davidson, in his Ph.D. dissertationa, develops
all the rnecessary equations for the calculation of the rmatrix elements
of the Eamiltonian, so that it was possible to do the variational cale
culation and obtain the wave functions for the above states without
too much difficulty.

The electronic Familtonian is, in atomic units,

e Jx 2 L .1y _1 1 .1y L
B = -2V1_(rA+rB)1'2V - 2t :

Expressed in elliptic coordinates,

2=__L_§_2.1§_ §._1.23_]
P o Y R

+ 1 aa
R(g2-1) (1-17) 3¢

i

+l :—15—— ’am

A TB R(g2-13)

H
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- R
LA D er e

i=0 D= =4

P‘zm‘ (n:_)é!ﬂmi (-na)em(CPrCPz)

where PLmI is a Iegendre function of the first kind, QLml

is a Iegendre function of the secord kind, and mel is a
Iegendre function of the first kind, normalized on the
interval (-1,1).
Since the interest here is for T states only, we will use ¢ -
type basis functions, defined by

(nje) = (%)3/2 ghle s 1o,
2n

The quantities needed for the construction of the energy matrix are

the overlap integrals,

. . 2
(a/j'a!| Bja) = ’:J—;;;; G nspla’+)

2

-G, (o) | 6(ji+, even)
srages O }

@

where 1 -of
G (a) E/geadg , anl
: 1

0 if j#+j is odd,

2 lsras
8(3’+3,even) = {1 if js+j is even ,

the Xinetic energy integrals,
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(nejtat] - %vel nja) -

2 2
=~ -Rg{j-i-j'+l I:ccaGn, apaplait) - (2oi2)aG . o (araf)

+ {a(ar)-3(54)-} 6, (arie) ey, o (er4o)

-n(n-1) C s .;2(0.' 'lu.)]

+ J(J’-l)Gn,+n(cc"*a)} §(j’+j,even) ,

51

the muclear attraction integrals,
1 1

(n7jrat|- = - =— | nje)
oA TB

2
4L

8(jr+i,even) ,

)i
= "R Gn'—i-n-}-l(wlal)

and the electron repulsion integrals, vhiech take the form
- * ¥ J
TN = = 2 _ -a81
(st = [ e, fan (2R g e
i -1

©

1 - -
2 o2v=N.d ~082
g :[1 an, (2 -1, 1, e

H—

[—]
(Wes W) = % Ziﬁ(sza,iﬁ&) ,



ik

Iz(NJ“’NJ“) = 8 58 7Ty, me, e, 0,5 ~8,5425%,3 Ty, 0, 2,0,

- ’ - - - g - - -
gzi}JgE: J+2f£, M2,N,a,0 gz)J';'zgz:J'*efz: NNoa

gl,,J = fldﬂ {anz(ﬂ)} P)

-1

1 du Loy 8 1
£ = h = (=)
n,n’,q,0f f ro Loz R,aU
BEaheet S (@R, P MO

o/, u
2 : ( aZ
and hn,a(g) =.1/'azlzne Pz(z)} .

The infinite sum indicated above reduces to a finite sum, since
$4

gZ 7= 0 for g >J. All of the above integrals can be done anal-
2

ytically, except for the inbtegral

1
T = h -
4,n,0,0,cf f (1-w®)[P (3—_)]2 n,a u) n’,afu
4

du 4 /1 hf' (l)

2

o]

which rmust be done numerically. Thus, all the quantities involved
in the construction of the energy matrix are easily calculated on
the computer.
Since the aim here is to get the variational wave function in
the form
¥(1,2) = ]_,ZJ :E':.L(.TL)C:.J.:fj @ ,
this form was chosen as the starting point, with the Ci,j, s as the

variational parameters.
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Since the interest here is in excited states with one electron in
a lsag orbital and the other in an excited orbital, the set of basis
functions was divided into two subsets, the first subset consisting of
basis functions appromriate for a lsc:g orpital, the second consisting
of functions appropriate for the excited orbital. The variational
parameters C 13 were allowed to be non-zero only if the indices i and J
belong to different subsets, The cordition Cij = C;ji Turther reduces
the mmber of independent parameters, so that, for example, for the B
state, where eight basis functions were used (C was therefore an 8x 8
matrix), there were only 16 injependent parameters.

The basis functions used at R = 2.0 a, are given in Table 2.

These same basis Tunctions were also used for other values of R, with

the values of g scaled by the factor R/2.

Pesults for the B State ¢

This variational calculation vas carried out for the B state &t
six values of R fram R = 1,0 to R = 2.0, Since this state is the lowest
in energy of the symmetry 12; the desired wave function is the ore
corresponding to the first root of the secular eguation, In Figure 1,
the energies obtained by this procedure are compared to the results
obtained by Kolos amd Wolniewiczl©, which are the best theoretical
energies presently available for this state, '

As stated aboye, the solution of the secular eguation yields
directly the elements of the mairix C. From this matrix, the nat
orbitals are found in exactly the same manmer as for the ground state
and the C state, Just as in the case of tke C state, there are two

natural configurations with non-regligible weights, and the same



Tzble 2. Basis functions for the B "2; state znd the B 12; state. The

basis function (nja) is defined as (2/3)3/2;5-11“38-'15.

B State E State
i n, Jl al i ni 31 al
1 ° ° 1 1 0 0 1.1
2 1 0 1 2 1 0 1.1
3 2 0 1 3 2 0 1.1
b 0 2 1 4 0 2 1.1
> 0 1 .5 5 0 0 ;M
6 1 1 .5 6 1 0 b
7 2 1 .5 7 2 0 A
8 0 3 -5 8 0 2 A
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~03 | T 1
9
-06— —
3
O
w
-0.7—
-08 l ] |
1.0 20 30 40
Rla,)
Figure 1. Electronic energies for the B state. The solid curve is

the potential obtained by Xolos and Wolniewicz, The

_ points-represent the present resultis.
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discussion applies, so that

5(L2) ~ ay (Uy (@) +ay (Vy () ,
v, = (m+v) N2,
v, = g-w) 2,

. 1
where Uy is a 1sog type orbital ard V5 is a 2p:;u type orpital, In

terms of the elliptic coordinates, we can write

I

N

fB(gy -'ﬂ) = -fB(§:'ﬂ) .

v D)

3 = i‘B(g,'ﬂ)

Results for the E State

This calculation was done for the same six velues of R as in the
case o the B state. Since this state is the secord lowest in energy
of its symmetry (the lowest being the grourd state), the desired wave
Tunction is the one corresponding to the second root of the secular
eguation, In Figure 2 are showm the results of this calculation,
along with those of Davidson®. In doing the natural orbital aralysis,
ve again find two natwral configurations with substantial weights, so

that

v2(1,2) zalyl(l)y1(2) +a2Y2(l):r2(2) .
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T 1 T

-06— —
S
o
53

0.7+ -]

-08 l l l

1.0 20 30 40
Rila, )
Figure 2. ZTlectronic energies for the E state. The solid curve is

the potential obteined by Davidson. The poinis represent

tlhe preseat results.
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This case differs from preceding ones, however, in that a # -al.
' 2

The transformation to the u, v form is accomplished as Ffollows

i

(-%/2 ¥, + b;/z ye) / (‘bl + b2)1/2 ,

g

- (nl/2 - pl/2 1 /2
g (D:./ Yy ba/ 7,) / (b, +2) 2o
where b = ]all / (ai + aa"a):"/2 , and
5 = 2 4 a2)12
%2 ]aal/ (al ) /

U, is a .'Lsc':g type orbital, and Vg 2 2s0'g orbital, s and vy are
normalized, but not guite orthogonal. Furthermore, K is not neces-~

sarily orthogonal to the ground state :Lscg orbital, although the overlap

is small (5 .02). Since it is necessary to have orthogonality between

the electronic wave functions in the development of the scattering

theory, we explicitly orthogonalize Vi to the grourd state orbital us
/2

v = [VE - (VE’uo)uo] / [1- (VE’uo)2]1 .

The wave function for the E state is then approximated by

72(L,2) j-a_-zuﬂ(l)vE'(a) +vyr(Dug(®] .

Vibrational Wave Functions

The vibrational wave functions used for this work were obtained
from an aporoximate mmerical solution of the wave equation. For the
grownd state, the B stale and the C state, the theoretical potential

curves obtained by Kolos and Wolniewiczl® were used. TFor the I state,
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Davidson’s theoretical potential curve was used.,

The wave equation for t"e vibrational motion is

(1 e 1
1- i + Py [I(3+1) - A3] + Vn(R)} X (B

= Env Xm,(R) P
were % (R) = Ro (R ,

and vhere n labels the electronic state, v the vibrational state,
and J the rotational state. A is the component of electronic angular
nomentum along the intermiclear éxis, i is the reduced ruclear nass,

ard R is the intermuclear separation.
Teglecting the rotational energy contribution, which is known to
be guite small compared to the spacing between vibrational levels, we

have the following differential eaguation which must be satisfied by

the X'nv( R).

/7

Xy = 2R [V (R) -E_J% . = 0 .

The potential function Vn(R) has the shape indicated schematically
by the solid curve in Figure I, For the integration of the above dif-
ferential eguation, Vn(R) is replaced by the function Un(R), defined

as Tollows:

Vn(Rl) R<Ry »

Un(R) Vn(R) Ry SsR<R ,

V() Re<R .



V(R)

|
REGION REGION I REGION I
T
R, > Rz
R
Figure 3. A typical potential curve. The solid curve illustrates the

usual shape of V(R). U(R) is given by the dashed lirmes,

where it differs from V(R).
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The shape of Un(R), vhere it differs from Vn(R), is indicated by the

broken lines in Figure 3, The difference between Un(R) ard Vn(R) is
significant only in region III, but here, the wave functions will be
vanishingly spmall anyway. especially for the first few vibrational

levels., To a good approximation, then, the solutions to

X -2u [UR) -E]x = O ,

are the required vibrational functions,
In region I (i.e., R > Rs), and in region ITI (R < Ry), the dif-

ferential equation takes the form

”

X = (IZX =0 ,
and has solutions

X = 2e"0R 4 3o

2
2

1/2
/2

oy = [2R(ED-EBIT .

where o = [2 l-l(Vn(Ra) - E)]

The mmerical integration is begun in region I, where we Know

X = e):p(-aIR) . Using the Tumerov’ difference schene, the integration

b For an equation of the type y" = g(x)y, the Mmerov method gives Yoa
in terms of Yp anrd Ypo1 by the ecuation

[2+ %(GX)az(xn) Ty, - 12 - %(6x)2g(xn_l)]yn_l

¥ =
o+l 1 2
1 - 3 (607 sl

where y = y(xn) and the {xn} are a set of equally spaced values of x,

&x = X%y o
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is carried to the left, through region II and into region IIT. In

region IIT, the form of the :olution is known to be

A e-aIIIR + B eu’III.R

)

X171

and A and B can be determined by matching to the numerical solution
at two points. An accepteble solution must have A= 0, so that ¥ = O

as R -+ - ©», Thus we have the condition

A(E) = 0 .,

The values of E which cause A to be zero are the required eigenvalues,
and the corresponding solutions ,'ai"ber being properly normalized, are
the functions x .. The roots of A(E) are appraximately located by
integrating for a large range of values of E, noting where A changes
sign. They are then found more precisely by a simple iterative proce-~
dure.

In Table 3 the computed energy differences AE(v + 1/2) = E
- Ev for the first few vibrational levels of the ground electronic
state are compared with the experimental values. The agreement is
seen to be satisfactory.

Table 4 gives the computed energies for the first few vibratiomal
levels of each of the electronic states considered. The energies are
in a.u. (1 a.u. = 27.21 eV). ard the energy -1.0 is that corresponding
to two separated E atoms in the ground state.

To a good approximation, the function cpo(o[ R) may be expanded
in terms of the wave functions of the bound vibrational states of the

excited electronic state n, t is
J
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Table 3. Experimental values vs. computed velues of AE (v + 1) for the
ground electronic state.

v Experimental Computed
0 4161 em™ 15163
1 3926 | 3926
2 3695 - 3698
3 3468 3470
1 3241 32k2

5 301k 3016
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Teble k. Computed enmergies (a.u) for the first few vibrationel levels of
each electronic state.

v ground state C state B state E state
0 -1.16k54 -.71283 -. 75354 -. 71051
1 -1.14557 -.70230 -.TU752 -.69960
2 -1.12767 -.69239 -.7h167 -.69800
3 -1.11083 -.68307 -.73597 -.69296
L -1.09502 -.67435 -.73043 -.68954
5 -1.08025 -.66621 -.72504 -.63809
6 -1.06651 -.65866 -.71980 -.683%
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o, (o|R) ~ i‘qvq’n(‘d R ,

V=0

where
4, = fneawo(om o,MR

and N + 1 is the number of bound vibrational levels, For example, if

we take n as the C state, we find

N

PIERRC

v=0

while if we take n as the B state, the result is even closer to 1.0,
This being the case, it is also possible to express the overlap in-

tegral (oo nv) as

(oo]nv) = /deR cpo(o] R) cp:(v{ R)

= Z (oo n*v?) (nrvimv) .

For example, the values of the overlap integrals of cpo(ol R) with
the v=0 ard v=5 vibrational functions of the C state are .350 and
- 275, respectively, as fourd by direct mwmerical integration. The
values for these quantities obtained by expanding in terms of the B

state vibratiomal functions are .350 ard -.27h.



CHAPTER III

FORMULATION OF THE BORN APPROXTMATION

In an inelastic collision of an electron with a diatomic mole-
cule, there may be a transfer of translational energy of the colliding
electron to electronic excitation, vibrational excitation, or rota-
tional excitation of the molecule, or any combination of these.
Following Craggs and I-‘L'assey,l‘2 ore may characterize the initial state
of the molecule by the set of quantum nurbers h v J M, where n labels
the electronic state, v the vibrational state, and J M the rotational
state. The wave function for this state may be written to a good

approximation

¥ = VEER o GR) x(Me,8 (7)

where T represents the electronic coordinates relative to the nuclei,
R the internuclear distance and @, & are the polar angles describing
the orientation of the internuclear axis.

According to the Born approximation, the differential cross
section for exciting the molecule from the ground electronic and

. ’ ’
vibrational state, which we shall label O O J M to the statenv d M

iss12

L 4
Ton o = %| f o401 R) or(v]R) xR ¥H]R) (8§

A Al2
M (4,R,) R 4R dR, do

28
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where '

n\1/z
2 k 1 A
M (3,RR) = 2 (E) ;-2 en(LRR)

2

eon(q,R,ﬁ) = '/;!;(o] T,R) Z eia';i x;,'*(n]'z"‘,R)d3r1d:"’r2 .
. i=1

Here k is the initial momentum of the colliding electronm, k’ the

final momentum, g the momentum change, R the unit vector in the direction

e, ¢, and &, the electronic deéeneracy of the final state,

In experimental situations, one is normally interested in the cross
section summed over the final rotational states. Since the energy
differences between the final rotational states are aiways small come
rared to the electronic and vibrational emergy differences, Mon(q_,R,ﬁ) ’

? 7
Is to a very good aprroximation independent of J M . The summed cross

section
v J’M'
IgZJM = Igom ’
J'u
then takes the form
2

Z l f a(®) (M| R) ak
Ju’
= Z /dﬁ [ ' e(®) ¢ @ ) (o

-

=/<ﬁ‘a &' eREHR)s (A5 =/d§ls(§)lz .

R)x(3' 1| &)
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Thus, we have for the swmed cross section

00

JM = fd.leR‘?d_R cpo(olR)cp (v]R) (q_,R,ﬁ)X(JM]fi) 2 .

»
In the above expression, x(J‘M} R) is the rotational wave function
for the molecule in its ground electronic state, which, in the case of

Fio is a T state (A = 0). Tms, (34 R) is just the spherical harmonic

’

Y_{R). Hoting that

Ju
A2 2J+1
2 IYJM( R) o
M

™ B

we have the result that the cross section IEZJM averaged over the

initial magnetic substates, is
v 1
Igo = 55H %: I:I;JM

= ; faRI deRw o{o Ro, (v R)M n(q,R,ﬁ) = (9)

The interpretation of eguation (9) is as follows: For the pur-
pose of computing tihe cross section summed over all final rotational
states, we can ignore the rotational states completely, computing the
cross section for each orientation of the molecule, and then average
over all orientations. Or, equivalently, we can treat the molecule
as having a fixed oriemtation in space and carry out an average over
.all possible directions of incidence of the colliding electron.

A furiber simplification caxn be made if we note that IL (q,R R)

depends oz R only to the extent that the elecironic wave functions
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deperd on R, and this dependence is known to be rather small in most
cases. On the other hand, the product cpo(o] R)cp:(v{ R) has a strong
maximm at Ro’ the equilibrium separation in the grourd electronic
state, It should therefore be a fairly good approximation to replace

equation (9) by

v 1 A
120 = gnl?,—;de

| fRZdR cpo(o,R)cpZ(le)la : (10)

A 12
¥ (LR ,R) I

Furthermore, if the energy differences of the vibrational states are
small compared to the Tinal ernergy of the colliding electron, so that
kl is effectively independent of v, we have the result that the rela-
tive probabilities of exciting the different vibrational states within
a given electronic state are given by the saquares of the appropriate

overlap integrals, Trat is, for a given n,
= L[ YeEll
o < l aR ¢ (o R)p, (V| B) I .

The above constitutes the mathematical formulation of the Francke
Cordon principle in excitation, and the sguares of the overlap inte-
grals are cormonly known as the Franck-Condon factors, The validity
of the Franck-Condon principle, as expressed above, depends upon
Mon(q,R,R) being essentially constén‘c over the region where the prod-

* -
uct qpo(ol P.)cpn(vl R) has apprecizable amplitude.
Within the framework of the Born appraximation and the Franck-

Condon principle, we obtain the relatively simple expression
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LD IE

= Z' fdeR NCE NG R),z. 8, 1= J& |1 (aR,R) ®
v
~ 8 f;-—r?/aﬁ , i (a,R ,8) 2 (11)

Tor the total differvntial cross section for excitation to the elec-
tronic state n., Thus, we fird that, for the calculation of the differ-
ential cross section summed over all possible states of nuclear motion
in the final electronic state, we simply treat the nuclei as fixed in
space, but then average the cross section over ail possible directions
of incidence of the colliding electron,

Fram equations (8) and (11), we have

?
1 x 1 A AL 12
f;(@) = gn -1:1'; -k 5 ;/‘;-R son(Q:Ro:R) , P (12)
where
ig.=

A . |
eon(q,Ro,f?) =f;:(OIF,R) Ze i¢(:z}¥,3)a3rla3r2 .

i=2
In Chapter II, where the electronic wave functions are discussed, it
is shown that these wave functions can be written to a good approxi-
mation
- —t
{o|r,R) ~ ulr )ulr and
5D &, EuE)

(4 T,R) =~ i E;n(;l)vn(;a) + vn(;l)un(;z)] .

Ny
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This gives '

eon(q,R,ﬁ) \/ij a®r u (r)e q X *(r)

Using elliptic coordinates, we have
3 B3 2 o oo
dr = ('2-) (e=-n")asdndp ,

2
@ = q (--m) te 5 [(52-1)(1 "12)] / sing

u (@ = £,(5W - YV
vn(?) = i‘n(g,‘ﬂ) ej‘m/\/gn—, m=0 for T state, m=l for g state,
ete., and
s F >
alend = Ed” fa [ a5(2 )2 (6,17 (5,)
-1

1/2

*rp-l-:.a =-l)(1-7]2)j sin g

e lau 2 sﬂ /E:De )

The integral over ¢ is the Bessel function of the first kind™®

.( )
1 ilme +xsing
_[d@ = J (X) .

Hence,

1 (=~
n 3
en(@RE) = 2D [iﬂ / g(g2-12)2 (8,7
~1 1

-ig 5 6
£,(5,Me 2 m{%g:[(ga-uu-n%]”"‘} .
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This integral is performed mmerically (see the Apperdix on mmerical

procedures.)

Iet us now introduce a gquantity Gn( q) related to the differential

cross section by the expression

6 (a) = %%‘—fd&e (aRR)] .

The total cross section, Q‘n’ is
& [ ™
&, -k—z- / qun(qJ .
Gnin

The quantity G (q) is shovn in Figure 4 for the B 1zu+, c i, and
E 1‘2; states.

It may be seen that Gn(q) is proportionzl to g ! for small q in
the case of the B and C states, This is characteristic of resonance
transitions, amd leads to the familiar 1n(E) /E en2rgy depvendence of
the cross section at high erergies. For the E state, hovever, Gn(qJ

has a totally different shape, and the integral

Yax .
/ dgG_(q)
%in

aporoaches a constant value at large energies, giving the cross section
a l/E energy dependence. These excitation functions, shown in Figures

5 and §, Lave characterisiics very similar to their united atomz counter-



35
25 T T

20 ‘ —

G, (q)

1O~

05—

0 |
0 05 10 15
' q
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parts, the E state corresponding to the He 1s2s state, while the B

ard C states correspond to e 1s2p state.

According to the Franck-Cordon principle, the cross sections
for exciting the various vibrational levels within each electronic
state are given by multiplying the O‘n by the square of the appropriate
overlap integral, Iet us call the cross sections obtained by this.

method Q(FC)

(FC) I/Paa.ch (o] R, (] R) -Q, .

A more accurate determination of the Born cross sections for
the individual vibrationzal levels may be made by using equation (9)
for the differential cross section IEZ The total cross section is

then fourd by integrating this quantity over all angles,

=fmx§;’ .

The quantities Q(Fc)

and an are given in Table 5 for electron
energies of 40 and 200 eV, for the first ten vibrational levels of
each of the above electronic states. It is seen that the Franck-
Condon vprinciple gives results whick are accurate to within 10 or
15% for he C and E states, but for the B state ngc) differs from
an by about a factor of 1.5 for the Tirst few vibrational levels,
These resulis are in accord with the nmumerical results published by
Miller and Krauss'l, They make ihe statement, however, that the use
of the Franck-Condon principle produces errors of less tian 20 per
cent for all cases. Ve would amend this statement to read, "The use

of tre Franck-Condon factors to determine the relative probabilities
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Table 5. Born cross sections for excitation to the vibrational levels of the
C, B, and E states. Q(FC) is the cross section computed by using
the Franck-Condon factor.

v ngv Qc,v ngv QB,V ngv O“E,v

0 8.25 9.23 .316 .506 1.31 1.43

1 12.6 13.6 1.09 1.65 1.83 1.95

2 12.0 12.5 2.18 3.15 -(4)95 .000101

3 9.34 9.47 3.33 4,58 .00126 .00133
10eV 4 6.58 6.17 k.29 5.63 1.43 1.%9

5 L.k 4,23 L ok 6.21 L0943 .0977

6 2.87 2.69 5.26 6.33 146 .150

7 1.85 1.70 5.26 6.08 - .605 .615

8 1.19 1.08 5.02 5.58 .38 .ho2

9 sl .68k 4.61 4.9k .34 .34

0 3.68 k.23 .127 .206 277 .305

1 5.70 6.26 k2 677 .39 a7

2 5.52 5.83 .893 1.30 -(B)203 . (4)216

3 4.38 4. ks 1.37 1.90 .000270 .000285

L 3.13 3.07 1.78 2.36 .307 .320
00V 5 o0 2.02 2.07 2.62 .0202 .0210

6 1.ko 1.29 2.22 2.69 .0315 .0323

7 014 .822 2.2k 2.60 .130 133

8 595 .523 2.15 2.50 .0859 .0868

S .388 .33% 1.99 2.13 -0735 .0736
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of exciting the different vibrational levels produces errors of less
than 20 per cent for all cases except the first five or six levels

of the B state™.



CHAPTER IV

FORMULATION OF THE CLOSE COUPLING THEORY

It has been shown that, within the framework of the Born approxi-
mation and the Franck-Condon principle, one can compute the cross sec~
ﬁion Tor electronic excitation according to the following procedures
First, one treats the problem of elecironic excitation as though the
nuclel vere fixed in space, and calcwlates the cross section for a
given relative orientation between the direction of incidence of the
incoming electron and the intermiclear axis, Then, one performs an
average over all possible relative orientations. Physieally, this
correspords to the fact that the muelei, being much heavier than the
electrons, move much more slovwly, soO that they will remain approxi-
mately stationmary during the excitation process. 2And, since there
is no reason Tor one relative orientation to be preferred over any
other, one should perform the average over all orientations., Although
this physical model has been substantiated mathematically only for the
Born approximation, .it is a very reasonable model, and we shall contime
to use it, even in cases where the Born approximation is not assumed to

be valid.
Iet us then consider the e-Fp interaction in this "clamped-miclei”
aprroxination, Since we are considering excitation of singlet states

only, and we are interested in cross sections over a large range of

energies, rather than just near threshold, where exchange effects

L1
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are expected to be important, we wiD. not include exchange between the
scattered electron and the molecular elecirons,

Iet T represent the coordinates of the molecular electrons, amnd
:?3 the coordinates of the scattered electron. The electronic state
of the molecule is specified by the quantum mmbers mh (A = O for T
state, = 1 for |} state, ete.), the state of the scattered electron
by k¥ £ m. Because of the cylindrical symmetry in which the three
electrons move, the component A = A + m of the total angular momentum
along the intermuclear axis will be a good quantum mumber. Fence, we
will specify the state of the three electron system by 4 = rAgh. The
guantum rumber X of the scatitered electron need not be explicitly
mentioned, since it is determined by the condition of conservation of

total energy in the excitation process,

1 1
.é-l%-;-go = -é-ki-i-{-‘,n = E . (15)

Ve expand the total wave function ¥, as follows:

v = Say (37 1
b4 L.I.Z qu(r: rs) , (16)
¢ (T, Ta) = = 2F , (3)
(TR r3 TR
M
x’g(n’l’l;, R) YZ,’A,_l,(9a) ’ (17)

where we = AN W' o= a"ATLYA", etel)

- .
1’.;(n')\’! r,R) is the molecular electronic wave fum tion,
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Y‘,’ ' ,(53) is a spherical harmonic, amd
LA

iy . r4) must have the behavior
LL'}J-( 3)

F“,“(O) = 0 ,and -
. 1
-1(kn,r3- 3 .ﬁ’ﬂ')
Fli'bl(rs)rs"” ¢ 6}”1
. 1
el(kn'rs' 3 'alﬁ)s
FE TR (18)

The Ap are to be chosen so that

S =
ik T
o I3

o D 42 AF, B)

n

v -4(o|T, R) e

ik r
o3

£ Ts fm (R: é3) ’ (19)

that is, ¥ is to represent the physical situation of a beam of electrons
of mamentum T{'o incident upon Fo molecules in the ground state, with the
scattered electrons sprerically diverging away from the target. The
guantity ]i‘ m(ﬁ,f‘g)]zdescri’oes the angular distribution of the scat-
tered electrons which have left the molecule in the state ni.

With the .Ap so chosen, the differential cross section for excita=

tion of the state m\ is

X . .
I?‘ (f3) = = - —i—_—_-/aﬁ} i‘m(R,fa)la . (20)

Tiow, A is the comporent of angular momentum of the rolecular

electrons along the internuclear axis., Since, in the above expression
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for Io:‘(i's) , Wwe average over all orientations of the internuclear

axis, we expect that I::"')‘ = Ig’)‘, so that

T(ts) = Lo'(Fs) + T (fs)

g, k m/dR'fm(R Ts3) B | (21)

where &, is the electronic degeneracy of the state n (gn =1lfor

states, g, = 2 for 1, Ay.s...states.) The total cross section Qn is

/ ats 12(5'3)

k
n 4 1 A
= nE;/érsﬁdR

given by

2

(R,23)| . (22)

e now evaluate the A}J- by reguiring that v have the indicated
form for rzg~= ., For very large rs, the plane wave exp( :‘i"o-?g) has

the expansion

j.i: ’;3 -l N
o . LoE A A
e ~ 27i(k r3) E 12‘Y£,m(ko)'f£,m(rs)

2,m

’ (23)

-

. 1 ‘ /e 1
‘[e-l(kol‘s- 5 ) 1(K°1'3- 5 f«ﬂ)]

and we reguire that

. 1 s fn 1,,-
-l(kn,rs -3 2m) I(Anlrs -3 £40)

F“M(I'a) ~e 51.1 I.u-e SH’H .



k5
Thus, we find that

- ikO.ISZ'
y-ﬁ;(o]r,R)e "'Z HE-UY ]I‘ R)'-zl y )\l(rs)
T )
. 1 . 1
-i(k_,r3 - 3 447) i(k_,~ 5 2%m)

x 2 214 je n 2 5 -e 22 S

Ts M Mo S5

ori At o | ilgyms - 3o
-5 Y, l,(k) e 6

nt Ao M

i(k I'g = ':'L" L,TT)
R T
Ll n,0°h,0 .
. 1
~l(kn,I‘3 -3 4m)

This is the required form, provided that the coefficient of e

vanishes. This gives

- 2mi .4 +
A i A-h(k)é

M kn n,0 )\,

and

gl U 271 .
fm(R,rs) = I::]-: E 12 ’A(k )Y A(TS)
250750

l:énmj\,oo,ﬁ S 7,008 'ﬁ] ? (24
vhere we have used the fact that S is diagonal in A.
For the total cross section Qn’ wve Tind
20> 2
W = & k—3 m TnU,A, 004 7 s (25)
o L,4%,A

vhere T=1 - S.
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Differential Equations

The total wave function ¥ must satisfy

(8-E) ¥ (26)

i
o
-

Moj

E -

where H
m

+V o,
3 .
Hm being the electronic Eamiltonian of the molecule,
5 (TR = g v(RTR

and V being the interaction potential between the colliding electron

andi the molecule,

Multiplying eguation (26) by -2 and making use of +he expansions

(16) and (17), we find that

1
Z { # +2(5-¢_,) -ZV} = E ()

pl

- A .
g(nlAI[r,R)YL,’A,_l,(?s) = 0 3

& _p(pra) |,
P e e AT
Ty

or

1}-(n’)\’]?,R)Y£,’A,-)‘,(§'3) =0 , (27
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vwhere we have used the relation %‘- };121 + 8n = E. If we multiply (27)
by \y*(n”k"]?,R)Yz// R (f3) and carry out integrations over the
LAY-

- A
coordinates of the molecular electrons and over rs, we have

d2 - E”(E”"‘l) + 1&2// F (1'3)
ar2 r2 | Ry

= Z U}J ” ,(r3) F“ l“ (1'3) . (28)
M 4

Or, in matrix notation, we have

P = GF |,
vwhere
£e(2741) }
G = (I X2, 08 0+ T ,
M {rg nfy puAa o M
vith

A =2 v* -t * A ) - A .
U“/“ = ’/:1‘:‘3‘/(;1‘ ¥ (nf}\’]r,R)Y‘e,’A,_}"(rg) v p(n)\] I’R)YE,A-l<r3) .(29)

Equation (é8) represents a set of simultaneous, lirear, second
order differential eguations, the solutions of whichk are found by a
mmerical integration. The mmerical method is discusseé. in the
fppendix on mumerical procedures. The method for finding solutions
vhich have the asymptotie form (18) is discussed by Barnes, Izne, and
Lin.” For sufficiently large rs, (28) may be replaced by

d2
e O, Fu'u(rs)_ =0,
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which has the solutions of the form

o 1 1
s:.n(kn,rs -5 447) +3B cos(kn,rs -5 2m)

RBu = e

b =

In matrix notation, this has the form

F = HHA+H3B ,

where
. 1
(HI)H'H = Sln(kn,rs - -2-2'1'1') 61-1'}-'- , and
1
(HQ)MJ cos(k T3 - 5 £/ S0y

Ay numerical solution of (28) must assume this form for sufficiently
Jarge r3, and A and B can be fourd by matching the mmerical solution
to F at two values of ra.

Now, each colwn of the matrix F is a solution to (28), and
furthermore, ary linear cambination of columns is also a solution.
Vhat we require is that F be a square matrix and that each column be
a lirearly independent solution., Then, the matrices A and B will be
non-singular, and in particular, 4 * will exist, so that

F® - opat By ALY +H BATY
= m+ER ,

is also a solution of (28). I is then seen that

F(S) = (Fo-i F1) - (B+i By) S
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is given by
78 o 21 5B (gt |
with s = (1um) (iR,
and R = BAY . )

To determine the cross section for excitation to a particular

electronic state, then, the following steps are 1equireds

(a)

()
(c)

(@)

A munerical solution F is found which has the properties

F 0) = 0 and
(0 :
det|F(rs)|# O for r3 >0 .

The matrices A and B are determined as indicated above.
The matrices R = BAL, S = (L+iR)(1- iR Y , and
T = 1 -5 are computed.,

Equation (25) is used o find the desired cross section.

The set of coupled differential equations (28), with the interaction

potential matrix U defined by (29), yields solutions which are appropri-

ate for the close coupling approximation. 3By altering the inferaction

potential mairix in certain weys, the eguations (28) can be made to

yield solutions which correspond to other approximations, For example,

the potential matrix UZs , deTined by

0 if n! and n both refer to excited electronic
UQS - states, and n’ £ n ,

S B U otherwise
MM ’
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yields solutions which corresp.orxi to the "two-state close coupling®
approxizﬁqtion, in vhich the coupling between the grourd state and each
excited state is taken into account, but the coupling between different
excited states is ignored. Tke distorted wave approximation is obtained
by using the potential matrix UDW, which is defined by

0 if n’ refers to the ground state and n refers
UDW = to an excited state ,
MM

UES otherwise ,

B

This has the effect of not allowing the ground state-excited state
coupling to influence the elastically scattered waves,

The Born approximation potential matrix, UB, is defined by

U ,.» if n’ refers to an excited electronic
UB - WM state, and n refers to the ground state,
Wi

0 , otherwise.

Cross sections have been calculated by all four of these approxi-

mations, as will be discussed below.



CHAPIER V

APPLICATION OF CIOSE COUPLING THEORY TO EXCITATION OF o

The close coupling theory, as it is formulated here, is appropriate
for the calculation of cross sections suwmed over all possible states of
nuclear motion in the final electronic state. Ve will first apply the
theory in this form to the excitation of the Hs molecule. The extension
of the theory to include vibrational effects is straightforward, and will

be dore later.

Evaluation of the Interaction Potential Matrix

From equation (15) we have
. Py * A - . P .
Up‘,“(rS) = /51'3 Yz,,‘;\]_}k,(rS) an)\)’m(r3) YE,A-)L(ISJ 2 (32)

where

vn'h',nl(;") =/d}° & (n\?| T, R) (5.2__ +.§_)
13 23

- ] pnd = =, L.
Iet us first consider VZ ne n}.(rS)' The electronic wave functions
2
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can be written

{0l TR = u Fou ()
§(dA|T,R) = /\W. T ?.._? (T2} + v ?ts ?.muu_ ’
A.qn.ud.OV = 0 ’ Aﬂ. ud. v ~ 1 > mﬁbu.ﬁu.\u ~ 1 .

Thus, we have
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1
vhere u ~u, = T (g,M) — , v, o= £ (E,%

° T o U

expressed in elliptic coordinates., Each of the above integrals is

of the form

@ a2m
I - & far [y (5,
n'h/,mh T VB g [an(e=-T") [ apf (8,7
1 -1 Te)

-i}\lcp

o

L s ™
Var Tz BTz

Expending ;}—- , we have

13
I'K
1 m "< *
T = %Al KA Km T (%) T, (&0
15 T 4
K,m >

wvhere r _is the smaller of raz, ri and T, is the larger of the two.

<
Substituting this expansion into (33), we get

bm %
In’).’,nl - 2K+L Km( 3)(2)
X,m
o 1 K
o T,
/:15 ﬁn(gz-n 1260 S
1 -1 >
21

oo In® Do

(COS 8 )4- (::’D

\f_\/_\/_

(33)

I¢ is clear that the integral over ¢ will give zero unless m = A/ -A.



Hence,

_ 2 ¥ AL ’

where

0

@ 1
R RS [ ¢ 2 2
uK(R,rs,n A‘,\) (z [ &g [an(s=-7%)
1 -1
K
. T< .
fnl(S)ﬂ) ;'I'(:;i' PK’)\I_)\(COS e)-‘-n(g:n) .
> .
This integral is eveluated by two-dimensionzl mmerical integration.
See Appendix I for the mmerical details.

e then find that

Viq:,m(l‘s) = kyf2n % \/m YK’)‘.,_)\(?:B)VK(R,I‘3,n')u',n)\) ,

where
V(RT3 n /M) = NN {%(R,rs,O,O)Bn,;\,,m
+ U.K(R,I’s, n’\’, 0)6;1}\’0 + U-K(R,I's, O;ﬁl)5nq',’o
+ uK(R,ra,n’?\',n);)} s
and

1/2 for n=0 (grourd state) ,

l’(jg otherwise .
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Ve will now examine the coniribution to V N n7\(1'3) made by

the muclear attraction terms.

-— - ., - 2 2 -
VN = [ axy"(a’r’ R) |« ~—— « =] §(oA|2,R
n/)\l,n)\(I'S) / Y (n ]I‘, ) [ r3A rSB] U(P lr: )
2 2.
= (== 298 ,,
rBA r n’A’, oA
K
R
Yoer
- _2’_ it < * A
s R k02 Y o0 s
even K P>

where R_ is the smaller of rs, R/2, ard R  is the larger of the two

guantities., TUsing the fact that

AL
T ol® = 5=

2

o
=

we have
Vo, (Fa) = 4B z sz Y olfe)
L o
é—!—l n’A/,mx "K,even ’
and

<
- " —
JK(R,*S,D A/, )~ V4L énl;\l,n 6K,even
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Nov, according to equation (32),
A ..-* A g A
U“l“ (1'3) = /drs YE’,I\"")\’ (rS) vn,k,’ m(rS) Y'e,A_;)‘(r3) .

But
A ¥ *
-

‘/3:3‘-': ';A"l’*K;)"""\Y«g':A"l

1 [exm .
= = /-—2-—-CK(,Q,,A'-L;,&’,A'-V)&A,,A .

which demonstrates the diagonality of Up. " with respect to A. We

therefore have
K
(3 = b % C 2,0 -h5 80,10 A08 ),

R

< -
{VK(R:rs’n”*’:m - ‘P;mﬁnw,m%,even} - (3

The sum over X in this expression goes from K =| -4/ to K = f+y7,
Now, each integral in the expression for VK(R,rs,n’l' ,TA) has in the
integrard the factor rE / r§+l. Thus ve see the Vp will decrease
rapidly with increasing X, and that for large rs, Ve l/r§+l. This
means that the elements of the potential matrix U between widely dif-

ferent { velues will be very smell, or that the "coupling" between

widely different / values will be small.

a P . s
» For the definition of the cuantity CK (4,m34m'), see E, U. Condon

and G. K. Shortley, The Theory of Atomic Svectra, page 175.
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Calculation of Cross Sections

In the application of the close coupling theory to the calcwlation
of cross sections, the first problem we face iIs that the system of
coupled differential ecuations is not a finite system. The index
« =2\ 2 A has a two fold infinite range, since n runs over all the
bournd (singlet) states, as well as the contimum, while ¢ Tuns from
0 to =, Since we can only solve finite systems, we must limit the
range of both n and 4.

Since ve are primarily interested in the n = 2 manifold (see the
electronic energy level diagram in Figure T), we choose to include
only the states of this manifold along with the ground state in the
close coupling scheme. This is a reasonable choice, since these
states are Tairly well separated in energy from all the other singlet
states, and we expect the strongest coupling to occur belween states
vhich are close together in energy.

Having limited the murber of electronic states, however, we still
have to contend with the infinite range of g values. Zguation (25)

gives for the total cross section for excitation to the electronic state
n,
kn 2
G = & = z : ]Tnk 500470 ’
ko
‘ 25875A

which ve may write

Q = z R
z n"e’z"A J

£,47,A
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Figure 7. Electronic energy level diagram, showing tke appraximate
position of the v = O vitrationzl level of some of the

singlet electronic states.
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2

=z !
= | oo, ozenl

with Ysgin = &

If, for sufficiently large £ and £/, the Born approximation gives

accurate partial cross sections, then, for some value of L,

_ pAborn
Qn,z,.@’,A - Qn,ﬁ,ﬂ’,A fOI‘ Z,.@’ > L ’

and the infinite sum for the total cross section may be replaced by
the expression
Q = G Z Z Z n, 8,87, A Qi?fz',z\ » 39
2=0 £/=0 A= -L

which contains only a finite nuwiber of partial cross sections. Further-
more, the validity oi‘ the Born partial cross sections implies that the
coupling between different £ values is unimportant for 4,47 > L.

In view of these arguments, it is reasonable to adopt the following
yrocedure. The system of coupled differential eguations is set up, inclu-
ding in the system the electronmic states X, C+(l=+l), C_(A=-1), B, and E,

ard £ values O through L. This results in a system of 5145 equa‘b:mnsqb

bS ince the interaction potential does not have matrix elements conmnecting
states of different parity, this set of 5145 eguations can be further re-
duced to two sets, orme set for states of even parity, and one for states
of odd parity. The even parity states are the molecular state X, with
even £ for the scatlered electron; E, with even £; B, odd £; C_, odd £;

and C, odd £. The odd parity states are X, odd £; E, odd 4; B, even £;

P
C, evenl; and C,, even L. The effects of this "diagonality with re-
spect to parity” can be seen in Tables 6, 7, ard 8, where alternate

partial cross sections vanish.
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for each value of A, the solutions to which yield the desired partial
cross sections. This proced are has been used to ootain partial cross
sections at incident electron erergies of 15, 25, and 50 eV, ard for
L=5and L=25.

The partial cross sections for A = 0 and for 25 eV are given in
Table 6 (close coupling with L = 5), Table 7 (close coupling with -

L = 3), and Teble 8 (Born partial cross sections). For the B and C
states, it is seen that the partial cross sections for 4,47 > 3 which
contribute significantly to the total cross section, are given with
sufficient accuracy by the Born approximation. That this is so may
be seen by the comparison given in Table Q of some of the larger
vartial cross sections, as camputed by the close coupling and Born
approximations. These same conclusions are reached when the corre-
sponding comparisons are made i‘or‘other values of A, so that the total
cross section may be obtained by equation (35), using L 2 3. However,
these same conclusions are not valid in the case of the E state. Here,
the partial cross section for £ = 3, 47 = 3 for the L = 3 case differs
from that of the L = 5 case by about a factor of 5. Also, the Born
partial cross sections do not apvroach the close coupling results for
the lairger 2 values.

As was discussed above, by altering the interaction potential
matrix in the appropriate manner, solutions can be dbtained correspord-
ing to the two-state close coupling approximation (2s), the distorted
‘wave approximaiion (DY) , or the Born approximation (83). Calculations
Lave bteen done for each of these approximations, as well as for the

""u11" close coupling method ( CC) described above. Teble 10 gives the

total cross sections for the B state for each of the four apoproxi-
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Table 6. Partial cross sections found by the close coupling

approximation with L = 5, These cross sections are for
=0, and for 25 eV incident electron energy, The units

are 1074 nas.

41 =0 1 2 3 3 5
£=0 1160 16.9 L0211}
1 311 362 2.98
2 88.3 &7 1.01
B state '3 3.8 15,7 28
L .087 12.0 132
5 .001 .00k 2.87
41 =0 1 2 3 L 5
2=0
1 388 15 .56
2 13,0 171 17
C state 3 L.,78 7.88 90.2
L .02 11,2 43,2
5 0, 0. 3,48
Lt=0 1 2 3 L 5
=0 178 61.8 .129
1 213 7.8 .038
2 271.9 33.0 3.35
T state 3 ATk 22,0 2.11
L .031 .006 19.7
5 0. - .132 13.2
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Table 7. Partialtéross sections found by the close

coupling epproximation with L = 3. These

cross sections ere for A = 0 and for 25 &V

incident electron energy.

The units are

107 ﬂa:.
4 =0 1 2 3
4=0 1150 12.3
1 32.8 350
B state 2 85.5 631
3 Cbh,01 13,4
41=0 1 2 3
2=0
1 ko6 110
C state 4.6 204
3 4.8 8.20
it=0 1 2 3
£=0 183 57.6
1 210 6. 65
E state 2 27.3 29.2
3 .20 61.9
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Teble 8. Born partisl cross sections for A=0 and for 25 eV

incident electron energy.

The units are 1074 waj,,

27 =0 1 2 3 3 5
2=0 1240 .009 .0
1 29,5 875 .07
2 418 481 .058 |
B state 3  ,001 2.98 238
L .001 2.1k 120
5 -0 oo .86
' =0 1 2 3 L 5
2=0
1 54,6 17k 02
2 .30 130 .03
C state 3 .01 B 75.0
L .0 .79 36.6
5 .0 .0 A7
L7 =0 1 2 3 L 5
=0 657 2% .0
1 ~ 191 .043 .0
2 ,006 31,9 .0
= state 3 .008 4,05 .0
¥y L0 .0 Ji
5 .0 .0 .03k




Table 9, Some of the larger partial cross sections for the B ard C states,
showing the agreement between CC and Born for large 4. These cross
sections are for ji= 0 and for 25 eV incident electron energy. The
units are 107% 1t ai-

B State ' C State
(2,8%) cc Barn (2,20) cc Born
(0,1) 1180 1280
(1,2) 365 881 (1,2) ny 172
(2,3) 649 496 (2,3 17 137
(3,4) 289 245 ' (3,1) 90.1 76,0
(%,5) 127 119 (%,5) 39.8 37.0
(5,6) 55.3 56.6 (5,6) 17.% 17.1
(6,7 25.9 27.5 (6,7 T.6 Te7
(7,8) 12.5 13.6 (1,8 3.3 3.5
(8,9) 6.3 6.8 (8,9) 1.5 1.5
(9,10) 3.3 3.6 (9,10) .70 T
(10,11) 1.9 2.0 (10,11) .30 31
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Teble 10. Total cfoss sections for excitation
to the B state. Cross sections are

in units of mwe3.

Electron

en2rsy CC 2s W Born
15 ev .97 .90 97 67
25 eV .88 .88 .91 .80
50 eV - .65 .65 .65 .66




3

rations, The agreement is fairly good between the DV, 2s, and CC
results at all of the electron erergies given. At 15 eV, we have the
unexpected situation that the DW result agrees very well with the CC
cross section, while the 2s result is samewhat lower. Eowever, this
discrepancy is less than 10 per cent. The Born cross section agrees
with the others at 50 eV, but is about 10 per cent lover at 25 eV and
30% lowver at 15 eV. Tt is apparent from these results that, for the
B state, the main error in the Born approximation is its neglect of
distortion and that the coupling with the other excited states does
not affect this cross section very much.

It will pe demonstrated later that the coupling between the 3B
state and the otker two excited states (C and E) is much weaker than
the coupling between the C state and the E state. This being the case,
it is rezsonable to remove the B state from consideration in the close
coupling scheme. Since the situation witnz ‘regard to the E state was
not made very clear by the calculations presented zbove with L = 3 and
L = 5, more extensive calculations have been done, iIncluding in the
close coupling scheme the states X, C_, C 1, and B, ard with I = T,
These calculations were carried out in the CC, 2s, ard Born approximatiops.

Some of the larger partial cross sections for the E state are
éhmm in Téble 11l. TI% is seen that for large 4, the Born and 2s

partial cross sections agree pretty Vell.c For the 75 eV electron

c . < -s .
The very small partizl cross sections(~ .01 x 107 % T a§) are subject
to relatively more numerical error than the larser ones., The values
given Tor these very small cross sections shouwld therefore not be

taken too seriously.



Table 11l.

Some partisl cross sections g, 20 A (A=0) for excitation to the E state. Units are 10-4n&§.
o 14

Electron Electron
energy (r,2") ce 2s Born energy (£,2") cc 28 Born
(0,0) 8u1 880 1190 (0,0) 66,8 108 176
(1,1) 971 1360 83.5 (1,1) gl Ly 105 100
(2,2) 8.3 22.6 3.36 (2,2) 67.3  Th.b 40,7
15 ev (3,3) 5.69 .18 .09 50 eV (3,3) 15.3  17.8 12.1
(4, 1) .188 034 .036 (4,4) 3.4 L5 3.22
(5,5) .ol .006 .006 (5,5) 1.18 .78 .66
(6,6) .022 .018 .018 (6,6) .72 .093 .086
(7,7) .035 .024 .023 (7,7) .72 .0005 .002
(0,0) 173 358 655 (0,0) 39.5  52.7 73.2
(1,1) 13 L81 190 (1,1) Lh.3  h9,5 59.0
(2,2) 69.8 97.1 32.4 (2,2) 39.4 42,9 29.0
25 eV (3,3) 6.22 8.30 3.98 75 eV (3,3) 16.5 16.9 13.4
(4, 4) 4,78 61 A5 (4, h) 5.78 6.51 k.97
(5,5) 1.88 .030 .03h4 (5,5) 1.79 2,01 1.76
(6,6) .69 .00k .007 (6,6) .65 .59 .52
(7,7) 2k 000k 001 (7,7) .22 i 1k

L9
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energy, the CC results for large 4 are in fair agreement with the 2s
and Born results, but for the lower energies this is not tle case.
For the lower energies, the Born and 2s partial cross sections fall
off very rapidly with increasing L. This is due to the fact that the
elements of the potential matrix bpetween the ground state and the E
state are proportional to 1/r3 for large r. The transitions X-C and C-E,
hovever, are optically allowed, so that the correspording potential
matrix elements are proportional to r~ 2, One would therefore expect
a stbstantial "indirect™ contribution to the large £ partial cross
sections for the E state. This explains the discrepancy between the
CC results and the 2s and Born results in the cases where the latter
partial cross sections are very smzll.

From the results given in Table 11, it is clear that, even for
the CC approximation, the pertial cross sections decrease rapidly
with increasing £, so that the total cross section can be fourd by

the expression

L L
Q =Z§:S:Qz,£',!& .

£=0 £4=0 A= =L
For electron energies aof 75 eV and lower, L = 11 was found to be ade-

d R .
guate. The {fotal cross sections for several electron energies are

given-in Teble 13, ‘Tt is seen that the total cross sections found
oy the CC and 2s apmroximations actually agree fairly well (within

about 10%) for all electron energies given, even though some of the

dIﬁ.clusian of 211 £ values up to £ = 15 was fourd to give less than

2% chenge in the cross section for an electron erergy of 75 eV.
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partial cross sections were seen to differ by as much as a factor of
two, The Born total cross section agrees with the CC and 2s results
at the 50 eV and 75 eV energies, but is seen to underestimate the
cross section for lower energies.

Some of the larger rpartial cross sections for the C state are
given in Teble 12, FHere we see that the CC, 2s, and Born results
for large 4 are in adequate agreement, especially for the higher
electron énergies, vhere the large £ partial cross sections are ime
portant. This confirms the conclusions reached above, namely that
the total cross section for the C state may be computed by the use
of equation (35), with I 2 3. The total cross sections for the C
state, computed by eguation (35) with L = 7, are given in Teble 13.
The CC and 2s results are in very good agreement over the vhole energy
range. The Born cross section is within 10 per cent of the CC and 2s
results for incident electron energies of 25 eV and higher.

The total cross sections for the B state, computed by the 2s and
Born aporoximations, are also given in Teble 13, As in the case of
the C state, the Born result is within 10 per cent of the 2s cross
section for electron erergies of 25 eV and higher. |

It has thus been demonstrated that, in the computation of the
total excitation cross sections to the electronic states E, B, and C,
the coupling petween excited states has very little. effect. The CC
and 2s zpproximations agree to within 10 per cent for all electiron
energies above 15 eV, and the. Born aj:prmci:nation results fall within
this 10% range for electron energies above 50 eV (25 eV for the B

and C states). Figures 8, 9, and 10 show the computed cross sectionms



Teble 12, Some partiel cross sections Q’ P (A=0) for excitation to the C state. Units are 10™* =
HE S

8 o
Electron Electron
energy (£,27) ce 2s Born energy (£,2%) ce 2s Born
(1,0) 219 260 12.5 (1,0) 45,3 25.4 11.7
(1,2) - 9.90 284 63.5 (1,2) 25.4 21.8 24,2
(2,3) 9.49 kh,2 16.2 (2,3) 29.0 25.8 33.5
15 ev (3,4) 147 W27 2.8 50 eV (3,4) 29.7  29.5 29,k
(4,5) .38 .53 .o (4,5) 24,6 25.h 2l 7
(5,6) .084 .099 .086 (5,6) 16,9 19.5  17.6
(6,7 .008 .00l .003 (6,7) 12,9 14.3 12.8
(1,0) 190 117 27.h (3,0) 14,7 8.36 5.60
(1,2) 90.2 101 88.5 (1,2) 9.93 8.89 9,67
(2,3) 86.0 102 6h.7 (2,3) 12.5  10.0 15.0
25 eV (3,h) 39.5 55.9  37.5 75 eV (3,4) 12,7 11,9  15.7
(4,5) k.7  23.6 18.3 (4,5) 15.2  1hh 15,2
(5,6) 6.22 10.1 8.31 (5,6) 11,4 11.9 12.5
(6,7) 2,91 k.61 3,91 (6,7) 11.6  11.7 10.6

oL



Teble 13. Totel cross sections for excitation to the n = 2 electronie

states, in units of wag.

Zlectron
energy C state E state B state
cc 2s B cc 2s B s B
15 ev |.688 .699 . Li8 389 .36 .1k2 897 666
20ev |.730 .75 .639 238 .24 149 .02 .70
25 eV |.732 .T30 .69% 176 .185 .133 874 .802
vev |.706 .708 .703 .43 150 .118 L19 L7882
50 eV | .60 600 .631 .093 .0862 .0764 | .653  .657
75 eV | .511 .502° .532 .05  .0560 .0521 | .52% .537
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. 15
Tor electron energies between 15 eV and 75 eV, For the E amd C states,

the CC and Born results are’ i)lot'bed vs electron energy, while the 2s
and Born results are given for the B state. )

In order to see under what conditions the coupling between excited
states will have some effect, a "mumerical experiment™ has been done,
in which the various direct matrix elements (i.e., the matrix elements
comecting the ground state with excited states) of the interaction
pctential have been artifically reduced. This has the effect of re-
ducing the "direct" excitation to a particular elect-onic state rela-
tive to the "indirect", so that the coupling effects can be ohserved.
Tebles 14, 15, amd 16 give tke résul‘cs of these calculations. Column
one of each table indicates vhich direct matrix element has been re-
duced, and the factor by which it is reduced. For example, "B/10"
Irdicates that the matrix elements connecting the B state with the

ground state were reduced by a factor of ten., The results given are

not total cross sections, but rather the quantity

b
Zz : n,z Lr,p .

A=0 L£1=0 A=

From these mmerical results, the following conclusions are evidents

.l. In all cases, the 2s approximation gives cross sections which
are proportional to the sguare of the direct matrix elements.
Thus, tie ground state-excited state coupling may be classified
as "weak", This is consistent with the good agreement between
the D7 and 2s results given in Table 10,

2. The coupling between the C and E states is relatively more
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Table 14. Results of the "numericel experiment” for an incident electron
energy of 15 eV. The first column indicates which direct matrix
elements were reduced, and the factor by which they were reduced.

Tull close coupling Two-state close coupling
C B E c B E
c/1 | .2 .94 .37 Bhh 835 .33
c/3 25 g2 136 077 82 .339
c/10 JA0k 936 134 - .0069 .86 .337
c/30 .188 .9k .13 .00078  .8l6 .338
c B E c B E
B/1 622 949 .37 o .835 .33k
B/3 613 .257  .293 663 101 .350
B/10 621, .1k7 298 665 .00903  .353
B/30 623 .131 .300 .665 .00101 .35
c B E c B E
E/1 622 .9h9  .317 6lk .835 .33k
£/3 165 .808  .239 656 .852 .0383
E/10 oLk 767 .23k .656 .8hk .00351
£/30 Ak U751 23k .656 818 .000387
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Table 15. Results of the murerical experiment for an eléctron
energy of 25 eV, The first column indicates which
direct matrix elements were reduced, and the factor
by vwhich they were reduced.

Full clecse coupling Two-state close coupling
c B E c B E
c/1 JAshk  5h7 139 28 .505 .178
c/3 .0799 .5k0 .119 o877 51k 18
c/10 0559 .5k2 122 L0083 512 a8
c/30 L0501 .538 .125 .0o0k8 511 .181
c B E C B E
B/1 sk sk7 L139 18 .505 .178
B/3 A65 102 128 J2s L0590 .18
3/10 L L0378 ,133 Ry L0055 .18
B/30 L70 L0286 134 125 .000595 .18
c B E c B E
/1 JAsh o sh7 L3139 .18 .505 .178
Ef3 ST 495 L0865 118 .511 .0199
E/10 356 478 L0912 g .512 .00180
E/30 352 47k 0956 418 .512 000201
' J
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Teble 16. Results of the numericel experiment- for an electron energy
of 50 eV. The first column indicates which direct matrix
elements were reduced, and the factor by which they were
reduced.

Full close coupling Two-state close coupling
c B E c B E
c/1 123,138 051k 01 125 L0718
c/3 L0251 .139 .0580 0113 .12k L0787
c/10 .0105 .138 .0608 .00102  .123 .0785
c/30 00826 ,137 .0616 .000113 .125 .0785
c B E c B E
B/1 125,138 .051% .101 .125 .0778
B/3 125  .0230 .0557 .102 .0139  .0787
B/10 J125  .0059 .0575 .102 .00127 .0791
B/30 .125  .004k7 .058L .102 000141 0785
c B E c B E
Ef1 125 138 .051% .101 .123 .0778
/3 .103 .126 .008%0 .101 .123 .00858
£/10 .0969 .121 .00727 .101 .123 . ,000786
E/30 .08 .121 0083k .101 .12k .0000871
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Important than their coupling with the B state.

3, The coupling effects decrease in importance with increasing

incident electron erergies.

It is of interest to see vhether or not the coupling between
excited states can also be classified as weak. To this end, a close
coupling calculation was done including the ground state, the C
state, and the E state, in which the matrix elements comnecting the
ground state and the E state were eéffectively reduced to zero, and the
matrix elements connecting the E and C states were varied. This
calculation was done for an electron energy of 25 eV. Tt was found
that reducing the C-E matrix elements by a factor of two reduced
the cross section to the E sitate for Mindirect excitation" {rom
L0540 to 0145, which is approximately a factor of four. It is there-
Tore concluded that the coupling between the excited states is also
weak,

Thus it is seen that, at least for incident electron erergies
of 25 eV and higher, the coupling between each pair of electronic
states is in the weak coupling regime, and although the effects of
the coupling between the different excited states can be chserved in
certain aspects of the calculation, they do not have ruch effect on

the total cross sections.



CEAPTER VI

CLCSE COUPLING WTIIH VIBRATION IINCIUDED
To obtain the cross sections for exeiltation to the individual
vibrational levels of each electronic state, the vibrational motion
of the nuclei must be taken into account in the close coupling
theory. This may be done by a straightforward generalizetion of the

equations (25), (28), and (29). The equations become

kz:nr 2
4] = _— T |T , PN
v 13 nAvEA 3000827 s (2573
°  g,87,A :

2 nypall
a - 2747+ + kflllvll} Fu// (rs)
d.ri ri J M

= UH”H ,(x3) FH ,p(l's) s (287)
“I

where the index y now stands for the set of quantum mumbers nmAvIA, v

being the vibrational guantim rmurber, and

U“,“(rs) = /-;253/‘55'3/5; {@:/(V'IR)

lk*(n’?"] ;’R)YZ’,A’-X’(és) v cpn(V] R)
- 'ér (D)\] ;: R)YE,A_)\(%ZB) } 2 (29')

8
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which becomes

Uy (ra) = D (a0 80,0000 81e.1

o]

/RQGR CPZI (v ®) VK(R,Is, n’A’,n\)

B

<
TOKEL 6n'1’,rl 6K,even cpn(le) )

R

It has been previously concluded, for the case where vibrational
effects were ignored, that the coupling velween the different elecw
tronic states has little effect on the computed cross sections. This
coupling was shown to become important, however, if the direct matrix
elements were artificially reduced. Since the inclusion of the vi-
brational portion of the wave functions will appreciably reduce all

of the non-diagonal elements of U the importance of the coupli
2

A |
between electronic states must be re-examined.

In the "mumerical experiment” that was descrived in the previous
chapter, it was seen that the cross section for direct excitation is
proportional to the square of the matrix elemwent of the potential
betieen the ground state and tie excited state in guestion. But
since the cross section is given by the sguare of the appropriate
elerents of the T matrix, we have the resull that foi- direct exci-

tion,

(direct) T
mAviA;000f A = “mAviAzocalA C

Similarly, at least for electron ensrgies of 25 eV and higher, where

the coupling between excited states was also shiowvn to be in the weak



&
regime, it is expected that the contribution due to indirect excitation
via the state n’/A’v/ will be proportional to the product of the two

nmatrix elements involved,

(irdirect, via n/A’v’)

“rAviA ;00028 A < U

mAVLA;nINI VL 1) Un’l'v'z'A;oooZ”A :
But this has the form

- /‘ZdR or(vi M2 (Rpp, , (v/| R) /;“EdR o, (VIRe®Ro (o|R)
which, upon summing over v/, becomes

> /Radﬁ o, (v B2 (R, (v/| ®) / 2R o, (v/| R)&(R)y, (o R)
v’

= /p%a cpi(v] R)£(R)g(Ryp (o R)

~ 2(R))a(R,) [ BER o) (V][RI (o] R) .

Since the direct contribution is also approximately proportional to

this same overlap invegral

/Rzaa o (VR (B

the result is obtained that the indirect contribution, swmed over
all the vibrational levels of the intermediate electronic state, is
reduced vy the sare Tactor as the direct contribution, It is there-
fore to be expected that, for the higher electron energies, the
coupling between the different excited electronic states will not
be ary more important for the case with vibration included than it

was for the prdolem without vibration.
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Within an electronic state, however, there may be coupling between
the various vibrational levels, since The interaction potential will
have matrix elements which connzcet them. Consider the expression

RK

‘ <
'/1;:26.3 cp:(v' IR (V| R) { Vi (R, 73,2k, ) - P>K+l 5K,even ’

VK will be non-zero only for even values of X, The K = 0 term wili
vanish for large rz, owing to the orthogonality of the vibrational
wave functions., Thus, the X = 2 term will be the first non-venishing
term, ard it is seen that the matrix elements connecting the different
vibrational levels are proportional to 1/r3 for large rs. This indie
cates that this type of coupling should be small, at least for high
electron energles.

To see whether or not this is so, calculations were done for
the B and E states, taking into account the coupling between the
vibrational levels., The higher vibrational levels of the ground
electronic stzate are not included here. The effects of the inclusion
of +these levels will be shown below, Table 17 shows the resulits for
the B state. The column labelled CC gives the cross sections calculated
by the close coupling method, in which the ground vibrational level of
the ground state, and the first four vibrational lewvels of the B state
were included. The column lzbelled 2s gives the correspording two-
state close coupling cross sections (coupling between the vibrational
levels of the B state is not included), while the Born results are
given in the n_ext column. It is seen, by comparison of the CC and Z2s
results, that the coupling vetween the B state vibrational levels has

very little effect on the cross sections. TIn fact, for all but tle
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Table 17. Creoss sections for excitetion of the first four

vibrational levels of the B stazte. The cross

sections are in units of me.

Zlectron
energy - CC 2s Born 2s%*
v=20 . 0061 .0066 L0046 .0059
1 .020 .023 L0146 .019
15 eV 2 O3 LO48 027 .035
3 .063 LOTh .0382 .0k9
v=0 .0053 L0057 .0056 .0055
1 .017 .019 .018 .018
25 ev 2 .035 .037 .035 034
3 .050 .055 .050 .050
v=0 L0043 . 004k .0046 .00%3
1 .01k .0k .015 .01k
50 ev 2 .27 .028 029 .27
3 oko Lokl Lol2 oko0
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. lovest electron energy, the CC, 2s, and Born results are practically
identical.
Table 16 gives the results for the E state. The E state is a
particularly interesting case, because of the Tact that the v = 2
and v = 3 levels have "direct™ excitation cross sections which are
several orders of magnituvde less than those for the neighboring
vibrational levels., This is because of the umusual double minimum
in the E state potential curve, and the fact that the v=2anmd v=3
levels lie almost entirely in the outer minimm. Even in this very
extreme situation, however, the coupling between vibrational levels
doesn’t appear to be very important, especially for the higher electron
energies.
Thus, 1t can be concluded that, for incident electron energies
of 25 eV and higher, the coupling between the vibrational levels of
the excited electronic states can be neglected. Furthermore, bee
cause of the absence of coupling effects, one might suspect that the
Born approximation (with the R variation of the scattering amplitude
taken into account) should give about the right relative cross sections
for the vibrational levels of a given electronic state. In Tebles
7 ard 18, the colurms labelled 2s* give cross sections calculated

by the expression
2s* 2s orn Born
an - o‘n (Oan / Qn ) 4

2s . e . . .
where Qn is the total cross section for excitation to the electronic

N ) . orn . .
state n, calculated by the 2s zpproximation, O,i" is the corresponding

Born . . . . .
Born result, and @ is the Born cross section for excitation to the

v



86

Teble 18. Cross sections for excitation of the first four
vibrational levels of the E state. The cross

sections are in units of ﬂag .

Electron

cc 2s Born 2s¥
energy

v=0 .061 .057 .021 048

15 ev 1 .080 .075 .028 .061
2 . (5)k6 .(5)25 .(5)14 .(5)32
3 W L(8)33 .(4)18 (ko

v=0 .030 .029 .021 .028

25 &y 1 .okl .0ko .028 .037
2 .(5)22  .(5)16 .(5)1k .(5)19
3 LWy ()22 .(4)19 .(4)25

¥ = .01k .013 012 .013

50 ev .018 .018 .016 .018

(6)%6  .(6)83  .(6)83  .(6)%@
B L(Hun (M (W12

w N = O
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vibrational level v of the electronic state n. e 2s% results differ
from the CC results by abou. 20 per cent at the most, and for electron
energies of 25 eV ard 50 eV, the two sets of results are in very good
agreenent.,

Eaving concluded that the coupling between the vibrational levels
of a given electronic state can safely be ignored for all but the lowest
electron energles, it is of interest to perform calculations to check
the earlier conclusion that the coupling betwween different excited
electronic states could also be ignored. To this end, a close coupling
calculation was done including the electronic-vibrational states X,
v=0; X, v=1; X, v=2; C_, v=0; C,v=1; C_}J v =03 C+, v=1; and E,
v=0; and with L = 7. JAs we have concluded previously, the E state
couples more strongly with the C state than with the B state, and
examination of the various overlap integrals reveals that the B, v=0
state will couple rmuch more strongly with the first two levels of
the C stete than with any of the higher levels, Thus, this calculation
should reveal any important coupling effects. The two higher levels
of the ground electronic state were included in order to see if their
presence would affect the cross sections for the higher electronic
states.

The results of this calculation are presented in Teble 19, and
conpared with the corresponding 2s cross sections. Tor the v=0 and
v=1 levels of the C state, the CC and 2s results agree to within 10

r cenv for eact electron energy, The same is true of the E, v=0

'

tate for the 25 eV and 50 eV electron energies, but for the 15 eV

4]

energy the two resulis differ by gbout 30 per cenmt. TFor incident



Teble 19. Results of the close coupling calcula-
tion including some vibrational levels
of the X, C, and E states.

Electron

energy CcC 2s -
X,v=1 057 .09
X,v=2 .00k .0015

15 ev C,v=0 11 A1
C,v=1 L1k .16
B,v=0 .08k .060
X,wv=1 .029 .026
X,v=2 .0027 .0012

25 ey C,v=0 .083 .08
C,V=’l .12 113
E,v=0 .029 L0351
X,val 013 012
X, v=L2 . .00096 .00082

50 eV C,v=0 .00 .038
C,V=l1 0057 ‘059
E,v=0 L0134 .015
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electron energies of 25 eV and higher, then, it may be said that the
two-state close coupling ap.roximation is adequate, both for calculating
the total cross sections (summed over vibrational levels) ani for the
cross sections to the individual vibrational levels of the excited
electronic states. For electron energies below 25 eV, these conclusions
are not alvways valid.

It is interesting to note that the cross sections for vibrational
excitation within the ground electronic state are apparently affected
guite strongly by the coupling between these vibrational levels and
the higher electronic states. The CC result for the X, v=2 state
differs from the 2s result by a i’actor of five at 15 eV, while a CC
call.cu"_.a'tion&1 of this same cross section which did not include the higher
electronic states gave a result vhich was within 10 per cent of the 2s
cross section, This is apparently due to the fact that the coupling
between the vibrational levels of any single electronic state is very
weak, while the coupling between the X electronic state and the C
electronic state, for example, is much stronger.

To further imvestigate the effects of the inclusion of the levels
X, w=1; and X, v=2 in the close coupling scheme, a CC calculation

exactly like the one described above, but with tkese two levels excluded,

8This close coupling calculation included the first few vibratioral
levels of the ground electronic state, but did not include any of the

 higher electronic states. The agreerment between the results of this
CC calculation and the corresponding £s results further supports the

above conclusion that the cowpling between the vibrationzl levels of

dans -

a given electronic state is very weak,
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was performed. The resulting cross sections for the vibrational
levels of the C state were within 5% of those reported in Tsble 19,
vhile the cross sections for the E, v=0 state were within 10%. Tn
view of these results, it may be concluded that the exeited vibrational
levels of the ground electronic state need not be included in the close
coupling scheme Tor the calculation of cross sections for the excitation
to the higher electronic states,

To sumarize, then, it has been demonstrated that for electron
ensrgies greater than 15 eV, the coupling between the different excited
electronic states has relatively little effect on the total cross
sections. In the case of excitation to the B state, this indirect
eoupling also has little effect on the partial cross sections. The
C state partial cross sections are affected to 2 greater extent than
those for the B state, but for electron erergies of 25 eV and higrer,
the indirect coupling effects are still not too important. Tims, for
these two staves, the main error in the Born aporoximation is its
neglect of distortion. The partial cross sections for the E state
show a2 stronger dependence than do those for the B and C states on
the indirect coupling, but this dependence is also seen to diminish
for higher electron energies.

For electron erergies of 25 eV and higher, then, the total cross
sections for excitation to each electronic state may be computed with-
out including the coupling between excited states. The coupling bte-
tween the different vibrétional levels is also unimportant. Further-
more, the relative cross sections for excitation of the vibrational

levels within an excited electronic state are given adeguately by the
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Born approximation, taking into account the R variation of the scat-
tering amplitude. Thus, the cross sections for excitation to the
variovs vibrational levels of these electronic states may be found by
multiplying the total cross secé'iozi to each electronic state by the
factor ( e n:rn / Qiorn)'

The cross sections for the first few vibrational levels of the B,
C, and E statés are given in Table 20, for incident electron energies

of 25, 50, ard T5 eV.



Cross sections for excitation to the vibrational levels of the

Table 20.
electronic states of the n = 2 menifold, in units of mej.
Blectron
energy v=20 v=1 v=2 «v=3 v=hk v=5
25 eV 0061 .020 .038 .05k 066 073
B stete 50 eV o0L6 .0015 029 ok2 .052 .057
75 ev 0037 .012 .023 03k .ok2 .0k§
25 ev .098 L1h .13 098 .067 .0L3
C state 50 eV .083 .12 g1 086 .059 .039
75 eV 071 .105 .097 oT4 051 .033
25 ev .027 .036 .(5)18 .(4)25 .028 .0018
E state 50 eV .012 .017 .(6)8 .(4)11 .013 .0008k
75 eV L0077 .01 .(6)55 .(5)72 .008L  .00053




CEAPTER VII

CONCLUS I0IS
Tne coupling between each pair of electronic states considered
is in the weak coupling regime., The indirect coupling has
little effect on the partial cross sections as well as the
total cross section for excitatlon to the B state, The C
state partial cross sections are noticeably affected by the
irdirect coupling only for electron energies below 25 eV,
while those for the E state are noticeably affected for all
electron energies below 50 eV, The total cross sections for
both the C ard E states, however, are given with adequate
accuracy by the 2s approximation for electron erergies of
25 eV ard higher.
The Born approximation gives accurate results (within about
ten per cent of the close coupling results) for incident
electron energies of 50 eV and higher. The Born cross sections
are smaller than the close coupling results at lov erergiles,
owing primarily to the neglect of distortion of the incoming

wave.

The coupling between the different vibrational levels & &

given electronic siate is not important for any of the incident

electron energies for vwhich calculations were done., For

3
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electron energies of 25 eV ard higher, the Born approxiration,
with the R variation of the scattering amplitude taken into
account, gives accwrate relative cross sections for excita-

tion of the different vibrational levels.
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APPEIDIX T

NUMERICAL PROCEDURES

Ivaluation of the Interaction Potential ¥atrix Elerments

In the expression for the matrix elements of the interaction

potential,
U, = %: K8, 705 £, 01-00) I

r
ijdB {cpn;(vﬂﬁ) V(R r3,nA 7, 1)

g

<
- ;;{:i' 6n’h’,n?\ 6K,even C'Dn(v]R)} ?
with VK(R:rS: n/A,i) = Ny 5 UK(R’ 73,00, 00) 63'7\':31

+ Up(R,3,n/A’, 00)8 + T.(R,T3,00,7)%

nA, 00 n’A’,00

+ UK(R,I':;,II’)\',D).)} 5
the cuantities which must be evaluzted by nuzerical iIntegration are

il 1
3
U (B,r5,000,m) = (D) / a3 /dﬂ(éa-ﬂa)fnl(é,ﬂ)
. 1 -1
K

I
<

ZA Pl G,
>

o7
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and the integrals involving the 'vibrational vave functions, To eval-

nate UK(R,rg,n'h',rM, the substitutions

1/2

= 2[R, am

cos § = -E0/[62#73-1] e ’

are nmade, and then the numerical integration is carried out, Twelve
point Gauss Ilegendre gquadrature is used for the integration over 1),
and twelve point Gauss laguerre guadrature for the integration over &.
The quantity VK(R,rs,nll' ,T\) is evaluated for six values of R
from R = 1,0 to R = 2,0, for 100 values of ra, ranging from rz = .01
to rg = 100, and for X = 0 through X = 5. For each value of rz and

X, the R dependence is approximated vy a quadratic least squares fit,

VK(R:rs:n,)":n)\) ~ V (ra,nA’, 1) "'V (ra,n’A’,mA)X

2 2
+ VK (r3,2’A7, )X ,

with X = R'Ro’ Ro being the ground state equilibrium separation.

Te guantities

(ntviov) = fRaaR o, (VIR o (MR,

(av/|d av) = fdeR ¢, (VR (R-R) :pn(v] R) ,

(n'v’[xé] nv) = fde.R q:n,(v’] R) (R-Ro)acpn(v[R) , and

o i+ fme, ) Lo e
nlv?! ~ZET V) = dR & @, v R) =T v 5
L £
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i \
are evaluated by a 400 point Simpson’s rule integration.

The expression for U is then

e -

5
K
UANCORE 4}: C AT As 4,00N1) 8y,
k=0

o 1
{VK (ra3,n %!, m0) (n/v'] ov) +VK(r3,n'7\',n)»)

(n'vI x| vy + V;(rs,n’7~' » ) (nrv 7] B[ av)

-(nrv/] — av)d 6

K+ nfih/, ok K,even} ?

for the case where the vibratiornzl states are included in the close

coupling scheme, and

5
CANCORE §c’((z,1v-x; S0 B,
=

T 0 ek
Vi (rg,nl}.f,n}‘.)-(no;—-z;ilno) 5n');’,n?\63€,even}
Tor the case where vibrational effects a're ignored. It ma& be noted
that for the latter case, tle muclear atiraction ternm is taken to be
the average value of this quantity in the grourd vibrational level of
each electronie state,
U}.1 " is thus found and tabulated for the 100 values of r3. In
the course of the mrrerical solution of the differential eguations,

the potential rmatrix is found by linear interpolation in this table.
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Solution of the Coupled Differential Eauations

In matrix notation, the system (28) of coupled differential

equations may be written
F'(x) = G(x) F(x)

where x is used as the independent variavle in place of rz. The

elements of the matrix G are known at each value of x, 'It is known
that F(0) = 0, and the aim is to infegrate the differential equation
from x = 0 out to large values of x so that the matrices A and B can

be fourd from the condition
F(x) laree x Hi(x) A+H(x) B .

't is known that the r"principle of detailed balance™ requires that

the matrix P = BA™* be symmetric., Thus, any approximave, numerical
integration scheme must be such as to yield a syrmetric R matrix, It
is instructive at this point to see what property of an exact solution
of the differential equation guarantees that R is symetric.

Multiplying the differential equation by ¥, we have
FF = FoFr .

But the G matrix is syrmetric, so that
Frr-¥F7F = Fegr-¥CF = 0 ,

and, therefore
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Integrating once by parts, we have

b

X X
(i?‘F/-i"F)L)-f(i"F'-i"F')dx = 0
o]

and, since F(0) = 0, we have the result that
Fre.F'F s 0

at each value of X, At large x, then, we find

~ . 4 L ~ 2 ~ _ I
(2, +B M) (B A+ Ho B)-(AHy +B3 H)(Hy1 A+ HB) = 0

or,

4 ~
XA FoB+S o Fr A -

~ 7 ~ 7
A7, o B-~-BExH A

~ -r' 4 ~ 7 I_
=A (A1 B2 - H F2) B-B (i Ha~-H HB) 4 = O

But Hy B - Ef Fo = -1, sothat B8 = B A

Maltiplying on the right by 4”1, and on the left by 4 ~%, we find

BAY = 718, orr = X

Thus, we see that an exact solution of the differential eguation will

have
Frt = Frr

and this guarantces that R = R, If the mmerical iniegration scheme
is such that ¥ I/ is symmetric at each point of the integration, then

the R matrix will be symeiric,

Ve recuire, then, a scheme with the property that if
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, :
f"n F, = ?‘;Fn , were F = F (xn) ,

then

Fl =§r’ F .

i‘n-i-l n+l n+l “nkl

Tt was fourd that the following scheme has this properiy:

n

’

s
o 4
Foag .= % FnAx-i-Fné.xz ,

with FIl = GnFn s
F’ 7o+ GF MAx
or ol - ‘ot mn ?

This integration scheme is accurate only to first order in Ax, and
therefore requires very small integration steps. Fowever, for the large
matrices involved here, this is by far the most elficient method of
those that were tried, since it recuires oniy a single matrix product
for each integration step, while the Iumerov metnod, for example,
requires a matrix inversion for each step. In trying other integration.
schemes, which did not automatically preserve the symmetiry of the R
ratrix, it was fourd that very high accwracy of integration was some-
times reguired in order to obtain accwrate cross sections. In particular,
a fourth order Runge-Kutta routine for solving simulizneous differential

ecuztions yielded reasonable resulis only when the integration was
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accurate to eight or nine signii‘ic-:ant figures. In contrast to this,
the method described above gives cross sections whose accuracy is
comparablie to the accuracy of integration.
To start the integration procedure, initial values are needed
for F and P/, The recguirements are that F(xo) correspond to a

solution that goes to zero at the origin, that
det|F(x))|# 0

and that F(xo) F'(xo) be symmetric, These lzst two requirements
are met if we choose F(xo) to be diagonal. With thils choice, the

differential equations for the diagonal elements are

{d‘? 24+

2 Y =
> = +hn-1{_u(x)}FW(x) = 0 .

Now, as x - O, the diagonal elements of the interaction potential

)4

gz—-we-ba F (x) =0
) ’

approach corstant valuves, namely

UW(O): = 2{ (m

so that the differential eguations are

1 1

= =

bl § T2

v

x? X
vkere b2 = ki - ULJU-(O)' The solutions of this which go to zero at

the origin are the functions

fﬂ(x) = bx J‘e(bx) 2
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where Jj P) is a spherical Bessel function. Ve therefore choose as initial

values for F and F/,

Fu’“(xo') = f.ﬂ(xo) 6”41 , and

F'.u'u(xo) = T x) 8, -

x  was normally chosen to be .0l (in units of ao') , and A:;: wvas initially
.001, The accuracy of the solution was testeda at each step of the
integration, and the value of Ax adjusted to keep the accuracy within
~ the desired limits. Acceptable upper and lower limits on the error
per integration step were fourd to be .5 per cent and .05 per cent,
respectively. ZReducing these limits by a factor of ten produced vexry
1little change in the calculated cross sections. On the average, the

Ax required for the accuracy specified above was about .01l or .02.

Evaluation of the Born Integrals

The basic integral involved irn evaluating the Born cross section is

3 0
& (a,R,c08 €) = \[2—(5} /dﬂ ag(g -ﬂz)fo(g:ﬂ)

-3 1

.. R
-ia 5 &7 1/2
£ (g,me 2 Jm{qé 20 (1] 4 } ,

-

with q“ = g ¢c%s @, q‘L = q sin G, € being the angle between R and

the direction of incidence of the incoming electrons. This two

a : ~ - .
The test for accuracy was made only for the dizgonal elements of F

and F7,
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dimensional integral is evaluat.ea mmerically, using twelve point
Gauss-Iaguerre quadrative for the integral over £ and twelve point
Gauss-Iengendre quadrature for the integral over 7. It is evaluated
for six values of R, ranging from R = 1.0 to R = 2.0, for twelve
values of cos € (those values appropriate for the Gauss-Iegerdre
guadrature formula), and 35 values of g, ranging from g = .01 to

¢ = 10. For each value bf cos ¢ and each value of q, the variation

of &‘,on(q,R,cos G) with R is approximated by a quadratic least sguares

Tit, giving
™) = 0 o) 1 D)
€ n(2Rycos €) Eon (Bc0s 6) + & (g,c08 ©) X
+ ain(q,cos e) x2 ,

with X = R-Ro, Ro being the ground state equilibrium serparation.

¥ we invoke the Franck-Condon principle, we have

1 2
D@ = L g [ @{ezn(q,cos 2 }(oo!nvf :
-1

vwhich is evaluated by the twelve point Gauss Iegerdre cuadrature
formula. The quantity ( oo] nv) is the vibrational overlap integral.

For the "non-Franck-Condon principle” case, we have

1

. 1l 1 ,‘ o)
Gnv(q) = :1; = 2w (cos €) {%n(q’ cos &) (oo]nv)

-1

l . M - 2 - 2
+ &, (g,c08 €)(o9) x|nv) + €op(2,c08 &) (00} X7 uv) .
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The total cross section an is then given by

Q =g§3/%ax e (9 .

This integral is done by Simpson’s rule, using cubic spline inter-

polation to find Gn(g_) at the desired values of g,



APFEMDIX IT

SOMZ TRANSTTION PROBABILITIES AMD BORN CROSS SECTIONS OF MNe

A program of experimental measurements of the electron impact
excitation functions of Ne has been conducted at the University of
Oklahoma by F. A. Sharpton ard R. M. St. John.™S To aid in the
interpretation of their experirental resulfs, same optical transition
provapvilities and Born approximatidn excitation cross sections have
been caleculated., COchkur’s approximation was used to evaluvate cross
sections vwhich pro;:eed only by electron exchange,

The ground state of Ie is the configuration (is)2(2s)2(2p)®
J'So. The excitéd states which we have considered belong to the con-
figurations of the type (1s)2(25)3(2p)° nf, which we write as simply
(2p)° nf. The coupling proolem in corfigurations of this type may
be treaved as a two-electron provlem, since the (2p)°S core behaves
in many respec‘té like a2 single p electron.

A comprehensive treatment of this two-electron vector coupling

16 The problen of calcu-

problem has been given by Cowan and Andrew,
lating the Jlevel structize and the wave functiorns for a given con-
figuration is that of finding the eigenvelues and eigenvectors of the
electron~-interaction Familtonian
e2 z P
H:E-—--&E.r..-s.:ﬁ-!-H 1
T.. gl( 1) i i el mg (v
>i Yi
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vwhere the summations are carried out over all electrons outside of

closed shells. The electrowtatic portion of (1) is evaluated in the

1S representation, vhere it is diagonal, having diagonal elements

(|5 15 = 3 (FF + g .
X

Here the Fk and Gk are certain radial integrals (usuzlly known as
Slater-Condon parameters) which can be calculated from the radial
wave Tunctions, but are commonly treated as adjustable parameters,
The megretic portion of (1) is easily evaluated in the jj repre-

sentation, where the matrix is diagomal, with diagonal elements
(Jl‘]&‘I HmaglJ:!.Jz) = Zdi gi *
i

The Qi are radial integrals related to the strergth of the spine
orbit interactions, ard are also treated as adjustable parametlers.
The expressions for the coefficients i’k s gk, and c'ii are given by
Covan and Andrew, 16 and will not be repeated here.

A transformation is carried out to obtain the two portions
of the Hamiltorﬁan natrix in the szme representation., The Familtone
ian matrix is then diagonalized, sibject to the condition that the
perameters Fk 5 Gk , and gi be chosen to give the best it to the obe
served energy level structure of the configuration, This is accome
_ plished by an iterative procedure. The resulting intermediate coupling
wave functions are then expressed as linear corbinations of IS basis
functions, to facilitate the calculation of the trarnsition procabil- |

ities and the excitation cross sections. That is,
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ber = ZS: (Yo 4I59) ¥yr5r
L,

vhere y labels the configuration, §J labels a level of the configuration,
and IEJY_T_SJ are the IS basis functions. The coefficients (y3J]yISJ)
are given in Tebles Al, A2, and A3,

The optical transition probability, A(Y3Jd-y/34J7), is given in
terms of the line strength, S(y3J,y/B’J’), by the expression

1 Ehmrte®al
AYBIN/B1IY) = sEr —sp— S(BT,Y/813")0°

-The expression for the line strength is given by Cowan and Andrew, 16

For a transition of the type
(2p)° 088 — (2p)° n7473¢3¢, or
Y8d —~ y’g*d’,
their expression becames

S(y8J,y/8’3") = l(YBJHP(‘)lh(ffs'J')l2 ’

(yaallE DNy rgrgy = ZZ (y8J] y1S3)

L,S Is,S?
(yISJHP(l)Hy’L'S 131 (y*gr3tyiLrsrsny

(yisalp D yrzsegn = as’s,<-1)s“‘f"z"l(w1mm[v1>1/2

fLas {z L1,
lorzaf |zezn ’
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Table Al, The coefficients ('Y'le YISJ) for the configurations (2p)° 3s
and (2p)° 4s. The states are labelled according to the

Paschen notation, 8

iss 1sg Isp lsg

3p, 1.0

%Py .96k .266

Py .266 -.96:

3p, - 1.0
2ss 2s4 2sp 2s3

3r, 1,0

1 3Py .79 -.663
1p, .663 .T49
3Po 1.0




Table A2. The coefficlients (yaJI vI3J) for the (2p)3 3p configuration. The states are labelled
according to the Paschen notation,1®

2pg 2pg 2pg 2p 2pio 2p7 2ps 2pa 2pa 2py
3D, 1.0
Mg .910 «320 .263
Do .hob -8k | .,359
3pg | =107 | =.l431 .896
3py | - -,083 -.178 .549 .812
Dy 0. .951 | ,308 | O,
tpy ' .059 | -.252 JTTT | =54
984, .995 | O, o. .102
3pg . 990 b1
150 -1 .990




ot

Table A3. The coefficients (YBJ| YLSJ) for the configuration (2p)°3d. The states are lebelled according
to the Paschen notation.!'®
3 | 34 34y ! 3y | 3dy | 3qf 38 | 3e | 30 34s | 3sf 3dg
°m | 1.0
% Fo 661 | -.hoh .633
L Fy . 750 .366 -.551
® Dy -.009 | .839 | .545
°p, -.h66 +529 .339 .623
Sy .001 | -.5U46 .838 .008
1p, .378 .650 428 -.502
®p, .800 .002 -.006 .600
°py -.900 -.271 .342
°m 114 609 . 785
‘p 421 | -.7h5 517
3p, 1.0
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a4, Y2 0 . )
P o= 6y, g (0 / (-ersR ()R, (r)c%r

(o]

where £> is the larger of £,L7, [J] = 27+, the quantities in brackets
are 6-J symbols, and R nz(r) is the radial portion of the one electron
orbital for the optical electroﬁ. These radial wave functions were
obtained by the Hartree-Fock-Slater self consistent field method,

by R. D. Cowan.*7

Recently, Benrett and Kindlemann obtained measurements of the
< s , . -5 - . .
radiative lifetimes of the levels of the (2p)° 3p configuration.

From these measurements, they ootained the transition moment integral

R, (r)(er)R, (r)rfdr = k.52 .
S P
o

Our calculated value using the Fartree-Fock-Slater wave functions is
L, 5.

The optical transition probabilities have been calculated for
all 'transitions; between the configurations (2p)° 3s, (2p)° 3p,

(2p)° 3@, (2p)° ks, and (2p)®. The guantities
g A(Y3T » y18*31) = (27+1) A(y3J - y’8¢3%) ,

are given in Teble AL, The quantity g A is syrmetric with respect
to interchange of initial and final levels,
Assuwming that the unpolarized beam of incident electrons can be

rerresented by the plane wave

ii';l 1 ' 1
e ° \!_%[Xét.é) +X(“2‘) ,



Table A,

Paschen notation,

The units are 108 gec™1,

The quantities g A(YBJ,y/8?J’) which connect the levels of the configuration (2p)° 3s,

(2p)% 3p, (2p)3 34, (2p)° ks, and (2p)8, The levels are labeled according 1o the

2p1

2ps

2pa

2p4 2D 2pg 2ps 2pg 2ps 2P40 grounsl state

Njiss | 748 . 730 . 0084 . 705 801 11,576 001 | o748 . 0063 15,3

l8q gl +556 . 603 . 089k

184 | 057 182 .669 1,04 .155 0827 | 975 (1.8 337 .980

lsg Q52 1.51 197 . 936 b2 .900 |4,07 831

255 | .029 .19 .029 «250 .085 204 L0287 | 024 . 061 2,07

2064 .066 . 085 .130 .050

264 | ,0089 | ,00022 |,051 027 L0750 | L1120 .10 +358 . 100 1,60

255 .039 o1l .020 121 L0204 | L2151 T «313

5y 632 1,71 L0957 | 1.17

3d, 0, 095 | 629 | .o0%2 | .23 | .866 | .0589| O,

3ds | J1T7L 0034 |,167 .00 3Th .0030 | .283 .102 112 2,20

3da | .0812 JAe79 0715 | 577 .04h99 | 0421 | ,133 | 1.56

4TT



Table Ah. Continued

2pa 2pa 2p3 2p4 2ps 2pg 2p7 2pp 2pp 2p10 ground state
5ila . .036h L6hl 2,91 .200
3.4 5,01
%ds |, OU9 ,1.66 J11h .099 L0002 | .112 .0016| ,0040 1.21 T2l
3dg L0787 : L0387 0376 .501
751 |.192 .355 51 .01k | ,060 0209 | .202 .019 124 1,08
%01 1.7h .136 .0108 | ,236 LOuh7 | 0801 | .003k | .6h41
369 2,36 JOTL .600 .0106
YU 0, AT77T | 1.26 .0916 |1.36 ,0165 | .00052]0,

V4TI
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the Born-Cchkur scattering amplitude can be written in the uncoupled

representation as

2(8,9,0) = {;2-\7:_)(( ) - %J—::[( l) + X(— %)Jace’co}
ﬁqw(r)y;’me(?)eiw Bap Ty (O

where¥ is an electiron spin function, ¢ is the spin quantum mmber,
m, and g, are quantum mumbers of the excifed orbital, amd s Oq
are quantum numbers of the vacant orbital in the (2p)° core. laking

use of the expressions _

oy = Y (vealysy) viasny
IS

PISRY = ) C(L,S,7; MM G(VIMSN)

. 'mo'co'% .
‘}’(YH"-ILSMS) = (-1 c(£,1,1; Mt -mo)

m
0%

-<x

1 1
¥ L
c<2’ 2’S 90’75 * Go) (Y mecjemoo'o> ’

i9-F L, x u
e o= hﬁz 1Jz(qr)Yz’m(r)Yz’m(q)' s
Z,m

. 1Y
£ % (2541 (287+1) | @
Yinyﬂlm-mYlm = pRn

"fe o e 70 g

c(L,8 y1m,,m -m ) c(s,47,1;0,0)
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Zm: c(z,l,L;ML +m ,-n ) c(z,l,z/;ML +m,m) = 6, R
o]

and

(B -n |25 >
(21;-!-1) (21&‘1)

¢(1,4,1; 0,0) = 5

LAl

where ,€> is the larger of the two quantities £, L; the expression for

the cross section becomes

oyzny = (v83] vI53) (v83} y1S3)

oS

LI §¥

58, 1% 514 1%
T | Sp0a1 |BET| S1 e O[553 NG
! Gnax

a .
min

. P .
PL, -1y, (cos ;) L',-M-!-IVIS(COS 8/ X(S)} ;

o
where IL(q) = fRQP(r)jL(qr)an(r)lzé‘r , and
o
h/g_‘:‘ 8 o for the ordirary Born approximation,
2
X(s) =)ar

1 2 2. S ons

— - =% for the Ochkur-Born appraximation .
2 g2 S,0
o

In the gbove expressions, C(i,S,J; I-E-I\;Ts,lv‘fs) is a Clebsch-CGordan
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coefficient, £, is the larger of (2,1), £ is the larger of (2,10,
g is the momentum change of the scattered electron, eq is the angle
betueen i‘:o and E:, PL,M is a norralized Iegendre function, and ‘jL is
a sprerical Bessel function, The cross sections for excitation to
each level of the configurations (2p)% 3s, (2p)° 3p, (2p)° 3d, amd
(2p)° Ls have been calculated. They are displayed in Figures Al
through A50, as a function of incident eleciron energy.

The direct coupling between the ground state and the excited
states with either even parity and odd J, or odd parity and even dJ,
can be shown to vanish, This results, of course, in the "non-exchange"
Born cross sections vanishing. In the approximation used here, then,
these excitatlons proceed by electron exchange only, The cross
sections for these states were calculated by the Ochinrr apmroximation,
The cross sections for states with even parity and even J, or odd

parity and odd J, were calculated by the ordimary Born approximation.
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 Figure Al. Cross section (c®) vs Electron Energy (eV)

Tor the lsg state.
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Figure 2. Cross section (@:®) vs Electron Energy (e

Tor the 1s. state.
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Figure 43. Cross section (cn®) vs Electron EZnergy (eV)

for the lsp state.
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Figure Al

Cross section (er®) vs Electron Energy (eV)

Tor the ls; state.
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Figure A5. Cross section (em®) vs Electron Energy (eV)

fcr the 2pg state.
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Figure A6.

Cross section (en®) vs Electron Erergy (eV)

Tor the 2ps state.
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Figwe A7. Cross section (cn®) vs EZlectron Energy (eV)

for the 2pg state.
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Figure 4AS. Cross section (em®) vs Eleciron Erergy (eV)

for the 2p, state.
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5.2

Figure A9. Cross section (cz®) vs Electron Energy (eV)

Tor the 2p1o state.
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Figure A10, Cross section (em®) vs Electron Energy (eV)

for the 2p; state,



128

RN |

e e e SO, PR b

0 100 - 238 330 22

Figure All, Cross section () vs Blectron Energy (eV)

for the 2pg state.
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Figure Al2. (Cross section (cm®) vs Zlectron Evergy (eV) -

for the 2pp state.
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FPigure Al3. Cross section (c®) vs Electron Erergy (eV)

for the 2ps state.
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10 23 590

Cross section (en?) vs Electron Energy (eV)

for the 2p; state.
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Cross section (ex?) vs Electron Energy (eV)

4
Tor the 3d4 state.
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Figure Al6. Cross section (em®) vs Eleciron Energy (eV)

for the 33, state.
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Figure Al7. Cross section (ex®) vs Electron Energy (eV)

-~ Vd
for the 333 state.



135

CCIOTTIT I T ITTTTTd

) W 240 T s 252

Figure A18. Cross section (cz®) vs Electron Erergy (eV)

s
for the 3s3 state.
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Figure AlS. Cross section {cm®) vs Electron Energy (eV)

Tor the 3ds; state.
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Figure A20,

T 10 25 530 23

Cross section (cm2) vs Eleciron Ernergy (eV)

for the 3d7 state.
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Figure A21. Cross section (ax®) vs Electron Erergy (eV)

for the 351" state.
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Figure 422. Cross section (o) vs Electron Energy (eV)

for the 3s] state.
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Figure 423. Cross section (em®) vs Blectron Energy (eV)

for the 3ds state.
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Figure 224, Cross section (ex®) vs Eleciron Frnergy (eV)

for the 3dz state.
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Cross section (en®) vs Electron Energy (eV)

for the 3si state.
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Figue A26.
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Cross section (cme) vs Electron Energy (eV)

for the 3dg state.
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Figure A27. Cross section (cr?) vs Eleciron Znergy (eV)

for the 2sg state.
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Figwre 428, Cross section (ex®) vs Electron Energy (eV)

for the 25, state.
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Cross section (en®) vs Electron Erergy (eV)

for the 2s5 state.
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Figwre £30. Cross section (e=®) vs

Tor the Zsg state.
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