This dissertation has been
 microfilmed exactly as received $\quad 69 \mathbf{2 4 9 3}$

ANDERSON, James Andrew, 1937TENSOR PRODUCT OF SEMIGROUPS.
 The University of Oklahoma, Ph.D., 1968 Mathematics

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKIAHOMA

GRADUATE COLLEGE

TENSOR PRODUCT OF SEMIGROUFS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of DOCTOR OF PHILOSOPEY

BY
JAMES ANDBEW ANDERSON
Norman, Oklahoma
1968

TENSOR PRODUCT OF SEMIGROUPS

ACKNOWLEDGIENT

I wish to express my sincere appreciation to Dr. Gene Levy for his advice and assistance in the preparation of this paper.

TABIE OF CONTENAS

Chapter Page
I. Introduction 1
II. Direct Sums of Semigroups. 13
III. Tensor Froducts Involving Free Semigroup. 32
IV. Tensor Froducts Involving a Union of Groups... 42
V. Tensor Products Involving The Direct Limit. 65
REFEPETCES 77

TENSOR PRODUCT OF SEMIGROUPS

CHAPTER I

INTRODUCTION

The tensor product in a category has been developed for some time. In particular, much work has been done on the tensor product of abelian groups and of other modules. To the best of the author's knowledge, however, T. J。Head [7] has been the first person to explicitly study the tensor product of a semigroup. The purpose of this paper is to extend the work of Head and to generalize some theorems relating to the tensor product of a group. These results will then be used to study the structure of the tensor product of an arbitrary semigroup with certain specific semigroups.

In the remainder of this chapter the definition of the tensor product of semigroups is given and compared to the categorical definition of the tensor product.

The purpose of the second chapter is to discuss and compare various definitions of the direct sum of semigroups.

We are especially concerned with whether or not the tensor product is distributive over a given direct sum.

A well known theorem for modules states that "If P is a projective module, A and B are modules, and $f: A \rightarrow B$ is a monomorphism, then $i \otimes f: P \otimes A \rightarrow P \otimes B$ is a monomorphisms where i is the identity map on P_{0} " The third chapter contains two generalizations of this theorem for semigroups.

In Chapter IV we are concerned with the tensor product of an arbitrary semigroup with a semigroup which can be expressed as a union of groups. The first theorem of Chapter IV shows that if C and D are semigroups which can be expressed as a union of groups, then $C \& D$ is a union of groups. A union of groups may be obtained in which the groups are formed by tensoring the groups of C with the groups of D_{0} This union of groups is isomorphic to $C \& D$ if and only if either C or D is a group. This theorem often makes it possible to restrict the discussion of semigroups to that of groups. One particular advantage of this restriction is that for several forms of the direct sum, the tensor product does not distribute over the direct sum in the category of semigroups but does when restricted to the category of groups.

The remainder of Chapter IV is concentrated on the study of the tensor product of an arbitrary semigroup with certain
\vdots
specific semigroups including the rationals under multiplication, the rationals under addition, the integers under multiplication, the integers under addition, and cyclic semigroups. Theorem 4.10 gives necessary and sufficient conditions for the tensor product of a cancellative semigroup S with the additive integers to be isomorphic to the groups of quotients of S. This theorem is then used to show lnat ine tensor product of a semigroup with the additive groun of rational numbers is a union of power cancellative divisible groups.

Theorem 4.17 shows that the tensor product of a semigroup with elements of finite order and a divisible semigroup is isomorphic to the tensor product of their maximal idempotent images.

Chapter V was motivated by an attempt to determine the structure of the tensor product of an arbitrary semigroup and the factor group consisting of the group of rationals mod one. The chapter begins with the development of the direct limit of a directed set of semigroups. The results are then used to solve the above problem. In addition the author shows that the maximal idempotent image of the direct limit of a directed set of semigroups is isomorphic to the direct limit of the directed set of idempotent images of the respective semigroups. In a similar manner it is shown that if each semigroup in a
directed set of semigroups has the property of being a union of groups or has the property of being power cancellative and divisible, then the respective property is retained by the direct limit.

In this paper, all groups and semigroups will be assumed to be abelian and additive unless otherwise stated. The letters Z, N, R, R^{+}, and P will denote respectively the semigroups of integers, positive integers, rational numbers, positive rational numbers and non-negative integers. Z_{n} will denote the cyclic group of order n. If A is a semigroup, A° will denote the semigroup formed by adding 0 to A unless it already contains an identity, in which case $A^{\circ}=A$. \bar{A} will denote the semigroup $A \cup\left\{O_{A}\right\}$ where O_{A} is an identity of A but is not contained in A. In general, the letters A, B, and C will denote arbitrary semigroups. $B(A, B)$ will denote the free semigroup formed from the set of symbols $A x B=\{(a, b) \mid a \in A, b \in B\}$. η will denote the natural map from $B(A, B)$ to $A \otimes B$ (see below).

For arbitrary semigroups A and B, let \sim be the finest congruence relation on $B(A, B)$ such that $\left(a_{1}+a_{2}, b\right) \sim\left(a_{1}, b\right)$ $+\left(a_{2}, b\right)$ and $\left(a, b_{1}+b_{2}\right) \sim\left(a, b_{1}\right)+\left(a, b_{2}\right)$. The relation exists since it is the intersection of all congruence relations satisfying the above conditions.

Definition 1, it The tensor product $A \otimes B$ of A and B is defined to be the quotient semigroup $B(A, B) / \sim_{0}$

In the same manner as for groups [13], one may show that if $f: A+A^{*}$ and g : $B+B^{\prime}$ are homomorphisms, then $f \otimes g$: $A \otimes B \rightarrow A^{\prime} \otimes B^{\prime}$ defined by $(\hat{I} \otimes g)(a \otimes b)=f(a) \otimes g(b)$ is a homomorphisme In the following development it wili be shown that the category of semigroups together with the tensor product satisfies the definition of a category with multiplication, but does not satisfy the definition of a tensored category. This is due to two "weaknesses" of the category of semigroups. One is that semigroups need rot contain an identity. The other is that homomorphisms of semigroups in general do not have kernels in the group theory sense. The following definitions may be found in [12j, page 33.

Definition 1.2: Let C and D be categories and Φ a map from C to D such that objects and maps of C are mapped respectively into objects and maps of D. Then ϕ is a covariant functor if for every map $f^{\prime} \varepsilon C$, the following conditions are satisfied:
(i) If f has domain c and range c^{\prime}, then $\phi(f)$ has domain $\Phi(c)$ and range $\Phi\left(c^{\top}\right)$ 。
(ii) If f is an identity, then $\phi(f)$ is an identity。 (iii) If $g f$ is defined, then so is $\phi(g) \circ \phi(f)$, and
$\phi(g f)=\phi(g) \phi(f)$.
The following definition may be found in [12], page 75.
Definition 1.3: A category C is called a category with multiplication if there exists a covariant bifunctor $\hat{\mathrm{Q}}: \mathrm{CxC} \rightarrow \mathrm{C}$, that is, there exists $\hat{\otimes}$ such that:
(i) $I_{A} \hat{\otimes}_{B}=I_{A} \hat{\widehat{3}}_{B}$ where I_{A}, I_{B}, and $I_{A} \hat{\mathbf{Q}}_{B}$ are identity maps on objects A, B, and $A \hat{\otimes} B$ respectively.
(ii) $\left(f^{\prime} \hat{\otimes} g^{\prime}\right)(f \hat{\otimes} g)=\left(f^{\prime} f\right) \hat{\otimes}\left(g^{\prime} g\right)$, and in addition C has an object K , called the ground object and isomorphisms e: $K \hat{\otimes} A \rightarrow A$, e': $A \hat{\otimes} K \rightarrow A$, a: $A \hat{\otimes}(B \hat{\otimes} C)+(A \hat{\otimes} B) \widehat{\otimes} C$, and c: $A \hat{\otimes} B \rightarrow B \hat{E}_{A}$.

Theorem 1.4: The category of semigroups together with the tensor product forms a category with multiplication.

Proof: The proof that $1_{A} \geqslant l_{B}=l_{A \& B}$, and that ($f^{\prime} \otimes g^{\prime}$) ($f \otimes g$) $=f^{\prime} f \& g^{\prime} g$ follows immediately from the definition of $\mathrm{f} \& \mathrm{~g}$ 。

Head [7] has shown that $A \otimes N \leq A$ and so N satisfies the definition of a ground object. The proof that $A B(B \& C) \cong$ $(A \otimes B) \otimes C$ and $(A \otimes B) \equiv(B \otimes A)$ is identical to that for groups [13].

The following three definitions may be found in [12], pages 63-67 and 78.

Definition 1.5: An additive category C is a category
such that for objects $a, b, c, d \varepsilon C$ each set hom (a, b) has a bilinear map

$$
+: \quad(\operatorname{hom}(a, b)) x(\operatorname{hom}(a, b)) \rightarrow \operatorname{hom}(a, b)
$$

such that hom (a, b) together with this operation is an abelian group and
(i) $\left(g_{1}+g_{2}\right) f=g_{1} f+g_{2} f$ and $h\left(g_{1}+g_{2}\right)=h g_{1}+h g_{2}$ for all maps $g_{1}: b+c, g_{2}: b \rightarrow c, f: a \rightarrow b$ and $h: c+d$ 。
(ii) There is a null object N_{s} that is, there exists N such that for all objects $c \in C, \operatorname{hom}(c, N)$ and $\operatorname{hom}(N, c)$ contain only one map.
(iii) For every pair of objects a_{1}, and a_{2}, there exists an object b and four maps p_{1}, p_{2}, i_{1}, and i_{2}

$$
a_{1} \underset{i_{1}}{\leftrightarrows} \circ \frac{p_{2}}{\rightleftarrows} a_{2}^{\rightleftarrows}
$$

such that
(a) $P_{1} i_{1}=l_{a_{1}}, P_{2} I_{2}=I_{a_{2}}, i_{1} p_{1}+i_{2} p_{2}=l_{b}$ 。

It follows immediately that the category of semigroups satisfies (i) and (ii); however, in general (iii) is not satisfied unless a_{1} and a_{2} contain identity elements. The category of groups, however, is an additive category

The following definitions of kernel and cokernel are generalizations of the kernel and cokernel of group theory. In
the usual definition of kernel and cokernel of group theory however, the kernel of f would be the object K and the cokernel would be the object M. In category theory the emphasis is on maps rather than objects.

Definition 1.6: If a category C contains a null object N :
(a) A kernel of a map $f: A \rightarrow B$ is a map $k: K \rightarrow A$ for some object $K \varepsilon C$ such that
(i) $\mathrm{fk}=0$ where 0 is the unique map such that
diagram

commutes.
(ii) If f h $=0$, then there exists a unique map g such that $h=k g$.
(b) A cokernel of $f: A \rightarrow B$ is a map $t: B \rightarrow M$ such that
(i) $t f=0$
(ii) if $u f=0$, then there exists a unique map g
such that $u=t g$ 。
Definition 1.7:
(a) An additive category C is an abelian category if
(i) Every map of C has a kernel and cokernel.
(ii) For every map k such that $k a=k \beta \rightarrow \alpha=\beta$ for all
$a, B \varepsilon C$
and every map u such that $\gamma u=S u \rightarrow \gamma=S$ for all $\gamma_{1} \mathcal{S} \in C_{6}$ k is a kernel of u if and only if u is a cokernel of K.
(iii) Every map $f \propto$ can be written as $k u$ where k and u have the same properties as in (if)。
(b) A tensored category C is an abelian category together with a ground object K and a covariant bifunctor Q: $C \times C \rightarrow C$ such that it preserves epimorphisms, anc for maps a, c, e and e^{0} as given in Definition 2.3, the foilowing diagrams commute:
(i) $A \hat{\otimes} B$

(ii) $A \hat{\otimes}(B \hat{\otimes} C) \xrightarrow{a}(A \hat{\otimes} B) \hat{\otimes} C \xrightarrow{c} C \hat{\otimes}(A \hat{\otimes} B)$

(iii) $K \hat{\theta}(B \dot{\otimes} C) \xrightarrow{\hat{a}}(K \hat{\otimes} B) \hat{\otimes} C$

The category of groups, together with the tensor producta is a tensored category. The category of semigroups is not a tensored category since it is not an abelian categcry: However, Head has shown that the tensor product of semigroups preserves epimorphisms, that iss if $f: A \rightarrow C$ is an epimorphisms then $i \& f: B \& A \rightarrow B \& C$ is an epimorphism where $1: B \rightarrow B$ is the identity. The diagrams above also commute for semigroups as well as groups. Hence the "weakness" of the tensor product of semigroups is in the category, not in the definition of the tensor product. Many properties of the tensor product of groups may therefore be generalized to the tensor product of semigroups if they do not involve abelian category properties such as kernel and cokernel.

The proposition and theorem iisted below will be used in Chapter II to construct counter examples as well as being basic to the theory developed in later chapters.

Proposition 1.8:
(a) Given a bilinear map $\alpha: B(A, B) \rightarrow C$, there exists a map o such that the following diagram commutes

(b) If $A \equiv A^{\circ}$ and $B \equiv B^{\prime}!$, then $A \geqslant B \equiv A^{*} \otimes B^{\prime}=$.
(c) In the subcategory of groups, $A \otimes B \cong A \overline{\mathcal{Q}} B$ where $A \bar{\otimes} B$ is the usual group tensor product.

The usual tensor product of groups is defined as follows: For groups B and C, let $2(B, C)$ be the free group generated by $B \times C$. Let $Y(B, C)$ be the smallest subgroup containing all element of the form。
(i) $\left(b_{1}+b_{2}, c\right)-\left(b_{1}, c\right)-\left(b_{2}, c\right)$
(ii) $\left(b, c_{1}+c_{2}\right)-\left(b, c_{1}\right)=\left(b, c_{2}\right)$ for $b_{8} b_{1}, b_{2} \in B, c_{8} c_{1}$, $c_{2} \in C$. The tensor product of B and C is defined to be $Z(B, C) Y(B, C)$. Notice that the basic difference between the group tensor product and the semigroup tensor product for groups is the use of the free group $Z(B, C)$ instead of the free semigroup $B(B, C)$.

Define an ordering s by $a s b$ if and only if $a+b=a$ 。
The following theorem may be found in [5], page 24.
Theorem 1.9: A commutative semigroup is a semilattice under the above ordering if and only if every element is an idempotent.

The following definition may be found in [5], page 18 .
Definition 1.10: If p is a congruence relation on S, then S / ρ is said to be a maximal idempotent image of S with property P if S / P has property P and every homomorphic image of S with property P is the homomorphic image of S / p.
T. Tamura and No Kimura [18] have shown that every semigroup S has a maximal icempotent image S / ρ where ρ is the forgruence relation defined by $a \rho b$ if and oniy if $a+x=n b$ and $b+y=m a$ for some $x, y s S$ and $n, m \in N$ 。

The foilowing theorem is due to Head [7].
Theorem ioil: If 0 is a singleton semigroup, then $S Q 0 \cong s / \rho$.

Corollary: Let I and J be maximal idempotent images of A and B respectively; then the maximal idempotent image of $A \& B$ is isomorphic to $I \otimes J$ 。 Proof: $(A \& B) \& \geqslant(A \& 0) \&(B \& 0)$ $\cong I \& J$.

CHAPTER II

DiRECT SUMS OF SEMIGROUPS

Although the direct sum of groups has been derined in many ways, the definitions are equivaient we to isomorphism。 This, however, is not true of semigroups. Many of the definitions now in use for semigroups are not in generai equivalent, although many of these same definitions are equivalent when restricted to groups. Several of the usual properties of the direct sum of groups are not retained by the various definitions of the direct sum of semigroups. For example, in some of the definitions of direct sum ilsted below semigroups A and B may not be contained in their direct sump even up to isomorphism. in other definitions, if A and B are groups, then their direct sum may not be a group. In many cases the definition of direct sum is not strong enough to insure that elements of the direct sum of semigroups A and B are uniquely expressible as the sum of eiements of A and B 。 in the definitions listed below, only definitions (9).(11), and (12) satisfy the categorical definition of the direct sum.

In general, none of the definitions of direct sum of semigroups contains all of the usual properties of the direct sum of groups listed above, and so the choice of definitions of direct sum must be made to suit the need.

The concepts of internei and external direct sums are somewhat confused by the previously mentioned fact that semigroups are not necessarily isomorphic to subsemigroups of their direct sum. In this paper; however; the direct sum of semigroups A, B contained in a semigroup D wili be considered internai if elements of the direct sum of A and B can be expressed as elements of A, B_{s} or $A+B$. Otherwise the direct sum will be considered external: Hence in the following definitions of direct sum, definitions $1,2,5,6,7$ and 9 are internal direct sums, while the rest are external direct sums. The following is a list of various definitions of the direct sum, most of wich are commonly used.

Definitions 2.1:
(1) If A and E are disjoint subsemigroups of a semigroup D, then $A \boldsymbol{\theta}_{1} B=\{a+c \mid a \varepsilon A, b \varepsilon B\}$.
(2) If A and B are disjoint subsemigroups of a semigroup D, then $A \oplus_{2} B=\operatorname{AuBu}(A+B)$.
(3) If A and B are semigroups then $A \theta_{3} B=$ $\{(a, b) \mid a \varepsilon A, b \varepsilon B\}$ where $(a, b)+(c, d)=(a+c, b+d)$.
（4）If A and B are semigroups then $A \Theta_{4} B=C$ if there exists maps p_{A} ：$\quad C \curvearrowleft A$ and $p_{B} ; \quad C+E$ such that for every semi－ group S and pair of maps $f: S \rightarrow A$ and $g: S \rightarrow B$ ，there exists a unique map $h o s \rightarrow C$ such that $f=p_{A} h$ and $g=p_{B} h$ ．
（5）If A and B are semigroups contained in a semigroup D ，then $C=A \hat{E}_{5} B$ if every $c \varepsilon C$ can be expressed uniquely as $a+b$ for $a \varepsilon A, b \in B$ 。
（6）$A \oplus_{6} B=C$ for semigroups A and B contained in a semigroup D if every $c \varepsilon C$ can be uniquely expressed as $a+b$ for $a \varepsilon A, b \varepsilon B$ ，and $A_{2} B$ are isomorphic to subsemigroups of C 。
（7）If A and B are subsemigroups of D ，where D contains identities for A and B ，then $A \Theta_{7} B=C$ if every $c \varepsilon C$ can be uniquely expressed as $a+b$ where $a \varepsilon A^{\circ}, b \varepsilon B^{\circ}$ 。
（8）For semigroups A and B let D be a semigroup contain－ ing \bar{A} and \bar{B} as subsemigroups．Then $C=A \oplus_{8} B$ if every ceC can be uniquely expressed $a s a+b$ where $a \varepsilon \bar{A}, b \varepsilon \bar{B}$, and $a \neq O_{A}$ when $b=O_{B}$ 。
（9）If A and B are subsemigroups of a semigroup D such that A, B ，and $A+B$ are mutually disjoint and elements of $A+B$ are uniquely expressible as $a+b$ for $a \varepsilon A_{\varepsilon} b \varepsilon B$ ，then $A \oplus_{9} B=\operatorname{AuBu}(A+B)$.
（10）For semigroups A and $B, A S 10 B=C$ if there exist maps

$$
\begin{array}{ll}
\mathrm{I}_{1}: \overline{\mathrm{A}} \rightarrow \overline{\mathrm{C}} & \mathrm{~g}_{1}: \overline{\mathrm{C}} \rightarrow \overline{\mathrm{~A}} \\
\mathrm{f}_{2}: \overline{\mathrm{B}} \rightarrow \overline{\mathrm{C}} & \mathrm{~g}_{2}: \overline{\mathrm{C}}+\overline{\mathrm{B}}
\end{array}
$$

such that
(i). $f_{1}\left(O_{A}\right)=O_{C}, f_{2}\left(O_{B}\right)=O_{C}$
(ii) for all aعA, $g_{1} f_{I}(a)=a_{a} g_{2} f_{I}(a)=O_{B}$
(iii) for all $b \in B_{\&} g_{2} f_{2}(b)=b, g_{1} f_{2}(b)=O_{A}$
(iv) for all $c \varepsilon C_{i} f_{1} g_{1}(c)+f_{2} g_{2}(c)=c_{0}$
(v) If every element of $A \oplus_{1} B$ can be expressed uniquely as $a+b$ for $a \varepsilon A, b \in B$, and every eiement of $f_{1}(A) \oplus_{1} f_{2}(B)$ can be expressed uniquely as $a+b$ for $a \varepsilon f_{1}(A)$ and $b \in f_{2}(B)$ 。
(11) For semigroups A and $B, A \Theta_{11} B=C$ if there exists maps $f: A+C$ and $g: B \rightarrow C$ such that for every semigroup H, and pair of maps $\alpha: A \rightarrow H$ and $B: B \rightarrow H$, there exists a unique map $h: C+H$ such that $h f=\alpha$ and $h g=B$ 。
(12) For semigroups A and $B, A \mathcal{F}_{12} B=\{(a ; b) \mid a \in \bar{A}, b \in \bar{B}$ and $(a, b) \neq\left(O_{A}, O_{B}\right)$ where addition is coordinatewise.

Definitions 9, 1], and 12, extend easily to an arbitrary family $\left\{A_{1}\right\}_{i \varepsilon I}$ of semigroups as follows:
(9^{*}) Let $\left\{A_{i}\right\}_{i \in I}$ be a family of semigroups contained in a semigroup D, then $\sum_{i \varepsilon I}^{\text {© }} A_{i}=C$ if every $c_{E C}$ can be uniquely expressed as.

$$
\sum_{k=1}^{n} a_{i_{k}} \text { for } a_{i_{k}} \varepsilon A_{i_{k}}
$$

(1i*) For a family of semigroups $\left\{A_{i}\right\}_{i_{\varepsilon} I}=\int_{i \in I}^{0} A_{i}=C$ if \exists maps $f_{1}: \quad A_{1} \rightarrow C$ such that for every semigroup H and family of maps $\alpha_{i}: A_{i} \rightarrow H_{i}$ there exists a unique map $h: C \rightarrow H$ such that the following diagram commutes.

(12*) For an arbitrary family of semigroups $\left\{A_{i}\right\}_{i \varepsilon I}$, $\int_{i \varepsilon I}^{\sqrt{12}} A_{i}=\left\{\left[a_{i}\right]_{i \varepsilon I} \mid a_{i} \varepsilon A_{i}\right.$ and $a_{i}=0_{A_{i}}$ for all but a positive finite number of i\} and addıtion is coordinatewise。

Definition 2.2: A semigroup A is called a pseudo-direct summand of a semigroup C if there exist maps $f: A+C$ and g : $C \rightarrow A$ such that $g f: A \rightarrow A$ is an isomorphism. The map g is called a retraction map.

Proposition 2.3:

(a) For semigroups A and $B, A \boldsymbol{\Im}_{4} B \doteq A \boldsymbol{\bigoplus}_{3} B$ o If $A \bigoplus_{5} B$ exists, then $A \otimes_{5} B \equiv A \approx_{3} B \equiv A \mathbb{F}_{1} B \equiv A \mathbb{F}_{4} B$ o Conversely, if $A \ominus_{3} B=C$, then $A^{\circ} \equiv A_{s} B^{\prime \prime} \cong B$ and D^{\prime}, such that $A^{\circ}, B^{\prime} \subset D^{\prime \prime}$

(b) For semigroups A and B, if $A \mathbb{S}_{6} B$ exists then $\mathrm{A} \oplus_{6} \mathrm{~B} \equiv \mathrm{~A} \oplus_{3} \mathrm{~B}$.
(c) For semigroups A and $B, A \Theta_{5} B$ exists implies $A \Theta_{6} B$ exists if and only if there exist homomorphisms $\Phi_{I}: A+B$ and $\Phi_{2}: \quad B \rightarrow A$. When $A \oplus_{6} B$ exists, $A \oplus_{6} B \doteq A \oplus_{5} B$ 。
(d) $A \oplus_{8} B$ exists if and only if $A \oplus_{9} B$ exists, and $A \leqslant_{8} B \equiv A \in_{9} B$
(e) $A \Theta_{8} B$ exists if and only if $A \Theta_{10} B$ exists and $A \Theta_{8} B=A \Theta_{10} B$.
(f) For an arbitrary family of semigroups $\left\{A_{i}\right\}_{i \varepsilon I}$, $\sum_{i \in I}^{\text {(1) }} A_{i}=\sum_{i \varepsilon I}^{\pi} A_{i}$.
(g) For an arbitrary family of semigroups $\left\{A_{i}\right\}_{i \varepsilon I}$, if $\sum_{i \varepsilon I}^{(3)} A_{i}$ exists, then $\sum_{i \varepsilon I}^{(\sqrt{8}} A_{i}=\sum_{i \varepsilon I}^{(13)} A_{i} \cong \sum_{i \in I}^{(1)} A_{i}$ 。 Conversely, given a family of semigroups $\left\{A_{i}\right\}_{i \varepsilon I}$, for each i $1 \varepsilon I$ there exist $A^{\prime}{ }_{i}=A_{i}$ and D^{\prime} such that $A^{r}{ }_{i} \in D^{\gamma}, \sum_{i \varepsilon I}^{(9)} A_{i}{ }_{i}$ exists and $\sum_{i \varepsilon I}^{(3)} A_{i} \cong \sum_{i \varepsilon I}^{\sqrt{2}} A_{i}{ }_{i}=\sum_{i \varepsilon I}^{\sqrt{13}} A_{i}$.

Proof: (a) To show $A \oplus_{3} B \cong A \bigoplus_{4} B$, define p_{1} : $A \Theta_{3} B \rightarrow A$ by $p_{1}(a, b)=a$ and $p_{2}: A \theta_{3} B \rightarrow B$ by $p_{2}(a, b)=b$. These are obviously homomorphisms. Let $\alpha: S \rightarrow A$ and $\beta: S \rightarrow B$ be arbitrary homomorphisms. Then define $\Phi: S \rightarrow A \mathcal{E}_{3} B$ by $\Phi(s)=(\alpha(s), B(s))$. Then Φ is the unique map such that the following diagram commutes.

$A \Theta_{3} B$ satisfies the definition for $A \mathcal{G}_{4} B$. Let S be a semigroup also satisfying the definition for $A \oplus_{4}$ B. By definition of $A \oplus_{4} B$, given $f: A \mathcal{E}_{3} B \rightarrow A$ and $g: A \Theta_{3} B \rightarrow B$, there exists a unique h such that the following diagram commutes.
(ii)

In diagram (i) let $p_{1}=f, p_{2}=g, \alpha=\rho_{A}, B=\rho_{B}$ then $\rho_{A}=p_{I} \phi=f \Phi=\rho_{A} h \phi$ and $\rho_{B}=p_{2} \phi=g \phi=\rho_{B} h \Phi$.

In the following diagram,

the uniqueness of $h \phi$ implies $h \phi$ is the identity map. Similarly,
one may show Φ h is the identity map on $A \Theta_{3} B$ ．Therefore，Φ is an isomorphism and $A \oplus_{3} B \cong A \bigoplus_{4} B$ 。

The proof that the existence of $A \bigoplus_{5} B$ implies $A \Theta_{5} B$ $A \oplus_{3} B \cong A \oplus_{1} B \cong A \oplus_{4} B$ is obvicus

Assume $A \oplus_{3} B=C$ ．Thens let $A^{\prime}=A \oplus_{3} O_{B}$ ，and $B^{\prime}=0{ }_{A} \oplus_{3} B$ ， where O_{B} and O_{A} are respectively external identities of B and A．Then $A^{\circ} \cong A, B^{\circ} \equiv B$ ，and every element of $A \Theta_{3} B$ can be written uniquely as $a^{\prime \prime}+b^{\prime}$ for $a^{\prime} \varepsilon A^{\prime} b^{\prime \prime} \varepsilon B^{\prime}$ 。 Therefore， since $A^{\prime} \oplus_{5} B^{\prime}$ is defined，$A^{\prime} \dot{\operatorname{G}}_{5} B^{\prime} \cong A^{\prime \prime} \oplus_{3} B^{\prime} \equiv A^{\prime} \oplus_{1} B^{\prime} \equiv A \Theta_{4} B^{\prime}$ $B \mu t A^{\prime} \oplus_{5} B^{\circ}=A \oplus_{3} B$ ，and so A^{\prime} and B^{\prime} are the desired semigroups． Let $D^{\prime}=A \sigma_{8} B$ 。
（b）The proof of（b）is obvious．
（c）The proof of（c）has been shown by Tamura［16］．
（d）If $A \oplus_{8} B$ exists，then $A n B=\phi$ ．If $a=a^{\prime}+b$ for some $a, a^{\prime} \varepsilon A, b \varepsilon B$ ，then $a+O_{B}=a^{\prime}+b$ contradicting the uniqueness of expression of sums of elements of A and B 。 Therefore $A \cap(A+B)=\phi_{0}$ Similarly $B \cap(A+B)=\phi_{0}$ Hence $A \oplus_{9} B$ exists．Define $\Phi: A \bigoplus_{8} B \rightarrow A \oplus_{9} B$ by

$$
\begin{aligned}
& \Phi\left(a+O_{B}\right)=a \\
& \Phi\left(O_{A}+b\right)=b \\
& \Phi(a+b)=a+b \text { for } a \varepsilon A, b \varepsilon B .
\end{aligned}
$$

This is easily seen to be an isomorphism and so $A \Theta_{8} B \equiv A \Theta_{9} B$ 。

Conversely, assume $A \notin g B$ exists, then $A \cap B=\phi$ 。 Let $a+O_{B}$ be the formal sum of a and O_{B}, and $O_{A}+b$ be the formal sum of O_{A} and b. Then $A \oplus_{1} O_{B} \cap B \oplus_{1} O_{A}=\phi$. Also $a+b \neq a+O_{B}$ and $a+b \neq O_{A}+b$ for $a \in A, b \in B_{\text {s }}$ and hence $a+b$ is uniquely expressible in $\bar{A}+\bar{B}$. Therefore $A \oplus_{8} B$ exists and $A{\underset{8}{\oplus}} \mathrm{~B}$ $A \oplus_{9} B$.
(e) Assume $\mathrm{A} \oplus_{8} \mathrm{~B}$ exists. Define

$$
\begin{aligned}
g_{1}: & A \oplus_{8} B \cup\left\{O_{A}+O_{B}\right\} \rightarrow \bar{A} b y g_{I}(a+b) \\
& =a \\
g_{2}: & A \oplus_{8} B \cup\left\{O_{A}+O_{B}\right\} \rightarrow \bar{B} \text { by } g_{2}(a+b) \\
& =b \\
f_{I}: & \bar{A} \rightarrow A \oplus_{8} B \cup\left\{O_{A}+O_{B}\right\} \text { by } f_{I}(a) \\
& =a+O_{B} \\
f_{2}: & \bar{B} \rightarrow A \oplus_{8} B \cup\left\{O_{A}+O_{B}\right\} \text { by } f_{2}(b) \\
& =O_{A}+b .
\end{aligned}
$$

These maps trivially satisfy definition (j) and hence $A \oplus_{10} B$ exists and it is easily seen that $A \oplus_{8} B \cong A \oplus_{10}$ B. The converse is obvious.
(f) To show $\sum_{i \in I}^{(12)} A_{i} \cong \sum_{i \in I}^{(11)} A_{i}$, define $\alpha_{j}: A_{j} \rightarrow \sum_{i \in I}^{(12)} A_{i}$ by $\alpha_{i}\left(a_{j}\right)=\left[a_{i}\right]_{i \in I}$ where $a_{i}=0_{A_{i}}$ if $1 \neq \mathrm{i}$.
Given a family of maps $f_{i}: A_{i} \rightarrow H$, define $\phi: \sum_{i \in I}^{(12)} A_{i} \rightarrow H$ by

$$
\phi\left(\left[a_{i}\right]_{i \in I}\right)=\sum_{\substack{i \in I \\ a_{i}}} \hat{f}_{i}\left(a_{i}\right)_{A_{i}} \text { 。 Then } \varphi \text { is obviously the unique }
$$

map such that $\varphi \alpha_{I}=\hat{\mathrm{f}}_{i}$ for all $i \in I$ ，and the following diagram commutes：

$\sum_{i \in I}^{(1)} A_{i}$ exists since $\sum_{i \in I}^{(12} A_{i}$ satisfies the definition 。 Let H be a semigroup also satisfying the definition for $\sum_{i \in I}^{(11)} A_{i}$ and identify \hat{f}_{i} with f_{i} ．Then by definition of $\sum_{i \in I}^{\mathbb{D}} A_{i}$ ，there exists h such that for all $i \in I, h f_{i}=\alpha_{i}$ and the following die－ gram commutes：（ii）

Therefore，$\alpha_{i}=h \hat{r}_{i}=n \varphi \alpha_{i}$ for all is and uniqueness of the map $h \rho$ such that $h \phi \alpha_{i}=\alpha_{i} \forall i \in I$ in the diagram
（iii）

implies that $h \underset{J}{ }$ is the identity on $\sum_{i \in I}^{(2)} A_{i}$ 。 Similarly
one may show φ h is the identity on D ．Therefore φ is an isomorphism，and $\sum_{i \in I}^{(1)} A_{i} \cong \sum_{i \in I}^{(2)} A_{i}$ 。
（g）To show that $\sum_{i \in I}^{(9)} A_{i} \cong \sum_{i \in I}^{(12)} A_{i}$ ，define φ ：
$\sum_{i \in I}^{(9)} A_{i} \rightarrow \sum_{i \in I}^{(12)} A_{i}$ by $\varphi\left(\sum_{k=i}^{n} a_{i_{k}}\right) \stackrel{i \in I}{=\left[a_{i}\right]} \quad \underset{i \in I}{ }$ ，where $a_{i}=O_{A_{i}}$ unless $i=i_{k}$ for some k ．This is the desired isomor－ phism。

Conversely，if $\sum_{i \in I}^{(12)} A_{i}$ exists let $C=\sum_{i \in I}^{(13)} A_{i}$ ，let $A^{\prime} j$
$=\left\{\left[a_{i}\right]_{i \in I} \mid a_{j} \in A_{j} \text { and } a_{I}=O_{A_{i}} \text { if } i \neq j\right\}_{0}$ ．Then each
element of C may be expressed uniquely as $\sum_{k=1}^{n \times} a^{\prime} i_{k}$ for
$a^{\prime}{ }_{i_{k}} \in A^{r}{ }_{i_{k}}$ ，and $A^{r}{ }_{j} \cong A_{j}$ o Therefore $\sum_{i \in I}^{(3)} A_{i}^{\prime}$ exists and $C \cong \sum_{i \in I}^{(2)} A_{i} \cong \sum_{i \in I}^{9} A_{i}{ }^{\circ}$

Definition 2．4：A direct sum \sum is said to be pro－ served by the tensor product if $A \otimes \sum_{i \in I} B_{i} \cong \sum_{i \in I} A \otimes B_{i}$ 。

Definition 2．5：A direct sum \sum is said to preserve isomorphism if $A_{i} \cong A_{i}^{i}$ for all $i \in I$ implies $\sum_{i \in I} A_{i} \cong \sum_{i \in I} A_{i}{ }_{i}{ }^{0}$

Definition 2．6：A direct sum $[$ is said to weakly preserve isomorphisms if $A_{1} \cong A_{i}$ for all $1 \in$ I implies that if $\sum_{i \in I} A_{i}{ }_{i}$ is defined，then $\sum_{i \in I} A_{i} \cong \sum_{i \in I} A_{i}$ 。 Definition 2．1（1）of the direct sum is used by Lapin ［1I］，among others．Its structure would seem to be too weak
to be of much use，and has the following disadvantages：
（i）In general，elements of $A \oplus_{1} B$ are not uniquely expressible $a s a+b$ for $a \in A, b \in B$ 。 In particular consider the case where $B=\{e\}$ and $a+e=e$ for all $a \in A$ 。
（ii）The direct sum E_{1} does not even weakly preserve isomorphisms．For example，if $A A^{\ell}=\left\{O_{B}\right\}$ and $A=\{e\}$ where $e+b=e$ for all $b \in B$ ，then $A \cong A^{\circ}$ but＂$A^{\prime} \theta_{1} B \cong B$ while $A \oplus_{1} B \cong A 。$
（iii）In general A and B are not isomorphic to subsets of $A \oplus_{1} B$ 。 If $B=\left\{O_{A}\right\}$ ，then $A \Theta_{1} B=A$
（iv）The sum Θ_{I} is not preserved by the tensor product．For example，if $A=P$ ，the non ∞ negative integers， $B=P^{-}$the negative integers，and $C=\{0\}$ ，a singleton semigroup，then $\left(A \Theta_{1} B\right) \otimes C \cong\{0\}$ ，since $A \oplus_{1} B \cong z$ ，and it follows from Theorem 1.11 that $Z \otimes 0 \leqq 0$ 。 However，by Theorem loll，it also follows that $P \otimes 0 \cong I_{8}$ where $L=\{a, b\}$ and multiplication is defined by $2 a=a_{s} a+b=2 b=b$ 。 $P^{-}\{0\} \cong\{0\}$ 。Therefore $\left(A \Theta_{1} B\right) \otimes C \neq(A \otimes C) \Theta_{1}(B \otimes C)$ 。
（v）When restricted to the category of groups， $A \oplus_{1} B$ can never exist since A and B cannot be disjoint． The direct sum defined in definition 2.1 （2）has the same disadvantages given for definition 2.1 （1）except that A and B are subsemigroups of $A \theta_{2} B$ 。

Definition（3）is the most commonly used form of the direct sum．Some of its theoretical uses may be found in［5］． The direct sum Θ_{3} preserves isomorphisms and when restricted to groups，it is the usual direct sum of groups．A and B are not in general isomorphie to subsemigroups of $A \leqslant_{3} B$ however， and Θ_{3} is not preserved by the tensor product．To show the latter，let $A=\{0\}$ and $B=\{0\}$ be singleton semigroups．Let $C=\{a, b\}$ where $2 a=a, 2 b=a+b=b$ 。

By Theorem $1.11_{2}\left(A \theta_{3} B\right) \& C \equiv C$ and
$(A \otimes C) \oplus_{3}(B \otimes C) \cong(O \& C) \oplus_{3}(O \otimes C) \equiv C \oplus_{3} C$ 。Therefore $\left(A \oplus_{3} B\right) \otimes C \neq(A \otimes C) \oplus_{3}(B \otimes C)$ 。

Definition 2.1 （4）is the categorical definition of the direct product［1र］，Since in this case it is restricted to a finite family of semigroups，we shall also consider it as a form of direct sum．Since by Proposition 2．3（a），for arbitrary semigroups A and $B, A \oplus_{3} B \cong A \oplus_{4} B, A \oplus_{4} B$ will have the same properties．

The form of direct sum given in Definition 2．1（5）is used by Redei［14］．Since when $A E_{5} B$ is defined，it is isomorphic to $\mathrm{A} \boldsymbol{\oplus}_{3} \mathrm{~B}, \boldsymbol{\oplus}_{5}$ weakly preserves isomorphisms．In general $A \oplus_{3} B$ and $A \oplus_{5} B$ will have the same properties．

The direct sum described by Definition $2.1(6)$ ，is also used by Redei［14］．It has the same advantages and disadvan－
tages as those given for Definition 2．1（5）except that A and B are contained in $A \odot 6 B$ up to isomorphisms．If A^{9} and B^{8} are isomorphic images of A and B in $A \Theta_{6} B$, this does not however，imply $A^{v} \bigoplus_{6} B^{v}=A \bigoplus_{6} B$ even if $A^{v} \bigoplus_{6} B^{\prime \prime}$ exists。 For example，let $A=N \Theta_{3} O$ and $B=0 \bigoplus_{3} N$ ．Then $A \theta_{6} B=$ $N \oplus_{3} N_{0}$ Let $A^{0}=\{(a, a) \mid a \in N\}$ and let $B^{B}=\{(a, 2 a) \mid a \in N\}$ ． Then $A^{9} \cong A$ and $B^{\prime} \cong B$ ，and $A^{9} f B^{\gamma}=\varnothing$ 。 However，$N \oplus_{3} N$ contains no direct summands since（ 1,1 ）cannot be expressed as the sum of two elements of $N \epsilon_{3} N$ 。

In general，Definition $2.1(7)$ is not equivalent to any of the others since identities are added only if A and B do not already contain identities．If A and B contain identities， then Definition $2.1(7)$ is equivalent to Definition 2。1（6）。 If neither A or B contains an identity，then Definition 2．I（7） is equivalent to Definition 2．1（8）．Thus the identities in A° and B° may be internal or external，and may or may not be the same element．The direct sum ϵ_{7} does weakly preserve isomorphisms，bat is not preserved by the tensor product as may be shown by the same example as for definition $2 \mathrm{al}(\mathrm{c})$ 。 $A \oplus_{7} B$ does contain A and B up to isomorphism，and when A and B are groups，$A \Theta_{7} B$ is the usual direct sum．

By Propositions 2．3（c）and 2．3（d）s Definitions 2．1（8）， （9），and（10）are equivalent and hence these direct sums will
have the same properties. By Propositions 2.3(c), (d), (e) and (f), when $A \oplus_{8} B, A \oplus_{9} B$ and $A \bigoplus_{10} B$ are defined, they are isomorphic to $A \Theta_{11} B$ and $A \Theta_{12} B$. Since $A \Theta_{11} B$ and $A \sigma_{12} B$ preserve isomorphisms, $A \Theta_{8} B, A \Theta_{9} B$, and $A \Theta_{10} B$ weakly preserve isomorphisms.

In general, all five of these direct sums of A and B will, when defined, have the same properties. A and B are isomorphic to subsemigroups of direct sums under each of the above definitions."When A and B are restricted to groups, none of these definitions of direct sum is the usual direct sum of groups. The direct sum is preserved by the tensor product in each case, as will be shown by the next theorem

Definition 2.l(k) is the categorical definition of direct sum and may be found in [12]. Definition 2.1(1) is the annexed direct sum used by Tamura [17], and the augmented direct sum used by -Head [7].

Theorem 2.7: For an arbitrary semigroup B and an arbitrary family of semigroups $\left\{A_{\lambda}\right\}_{\lambda \in I^{*}} B \otimes \sum_{\lambda \in I}^{0} A_{\lambda} \approx \sum_{\lambda \in I}^{(Q)}\left(B \geqslant A_{\lambda}\right)$ 。 Proof: Let $A=\sum_{\lambda \in I}^{(9)} A_{\lambda} ;$ Define $\varphi_{j}: A \rightarrow \bar{A}_{j}$ by $\varphi_{j}\left(\sum_{i=1}^{n} a_{\lambda_{1}}\right)=a_{j}$ if $\lambda_{1}=j$ for some λ_{1} - $O_{\lambda j}$ otherwise.

Let $f_{\lambda}: A_{\lambda} \rightarrow A$ be the embedding of A_{λ} into A_{0} Define F :

Therefore F is a monomorphism, and since it is onto, it is an isomorphism。Consequently $B \quad\left(\sum_{\lambda \in I}^{(9)} A_{\lambda}\right)=\sum_{\lambda \in I}^{(\mathcal{G}}\left(B \otimes A_{\lambda}\right)$.

Throughout the remainder of this paper, internal direct sum will mean Definition (9^{*}), and direct sum or external direct sum will mean Definition (12*) unless otherwise indicated.

These forms of the direct sum are used frequently during the remainder of this paper primarily because they are preserved by the tensor product. The main exception will be when taking the tensor product of a semigroup With a group. In this case Definition 2.1 (1) is used making it possible to use the theory of groups. since this definition when restricted to the category of groups is the usual direct sum for groups. It will be shown later that. when taking the tensor product of a semigroup with a group, one need only consider the problem of taking the tensor product of two groups. Since the direct sum given by Definition 2.1 (1) is preserved by the tensor product when
restricted to the category of groups, the main disadvantage to using this definition is removed.

In Definition 2.2, A is calied the pseudo-direct summand because there need not exist B such that $A \cap B=\varnothing$ and $A+B=C$. For example, let $A=\left\{a_{g} b\right\}$ where $2 a=a$, $b+b=a+b=b$. Define $\varphi: A+\{a\}$ by $g(b)=a, \rho(a)=a$ 。 Then \{a\} is a pseudo-direct sumnand, but there exists no B such that $\{a\} \cap B=f$ and $\{a\}+B=A$ 。

When the discussion is restricted to the category of groups, A is the direct summand. Properties of the pseudodirect summand are given by part (i) of the following proposition and its corollary. Part (ii) is a generalization of its corollary.

Proposition 2.8:
(i) If A is a pseudo-direct summand of C_{y} then $A \otimes B$ is a pseudowdirect summand of $C \otimes B$.
(ii) Let $A=F_{\circ}$ where F is a free semigroup. If there exists $\varphi: F \rightarrow B \subset F$ such that A is the set of elements left fixed by ${\underset{\sim}{0}}^{8}$ then A is a free semigroup.

Corollary: A pseudo-direct summand of a free
semigroup is a free semigroup.

Proof:
(i) If A is a pseudowdirect summand of C, then there exist maps $f: A \rightarrow C$ and $g: C \rightarrow A$ such that gf: $A \rightarrow A$ is an isomorphism. Therefore ($8 \& 1$) $(f \otimes 1)=A \otimes B \rightarrow A B B$ is an isomorphism and $f \otimes 1: A \otimes B \rightarrow C \otimes B ; \mathcal{A} \otimes 1: C \otimes B \rightarrow A \otimes B$ are the required maps.
(i1) Let $\left\{\beta_{i}: i \in I\right\}$ be a basis for F, where I is well ordered. Let $\left\{\beta_{j}: j \in J \subset I\right\}$ be the elements of the basis contained in A 。

Let $a \in A_{y}$ where $a=\sum n_{\alpha} \beta_{\alpha}$

$$
=\sum_{j=1}^{\alpha} n_{j} \beta_{j}+\sum_{k=1}^{m} n_{k} \beta_{k}
$$

and $\beta_{j} \in A_{,} \beta_{k} \in F \backslash A_{0} \quad a=\rho(a)=\sum_{j=1}^{n} n_{j} \varphi\left(\beta_{j}\right)+\sum_{k=1}^{m} n_{k} \varphi\left(\beta_{k}\right)$

$$
=\sum_{j=1}^{n} n_{j} \beta_{j}+\sum_{k=1}^{\varkappa} n_{k} \Phi\left(\beta_{k}\right) .
$$

For the sum $\sum_{k=1}^{m} n_{k} g\left(\beta_{k}\right)$, select $n_{k} \in\left\{n_{k}\right\}$ such that

$n_{l} \varphi\left(\beta_{l}\right)=\sum_{p=1}^{n^{\prime}} n_{\ell} n_{p}{ }^{\beta} p^{c}$ Since this is part of the sum $\sum_{k=1}^{m} n_{k} \beta_{k}$ and n_{ℓ} is maximal. $n_{p}=1$ or 0 for each $p_{\text {. Therefore }}$ $\varphi\left(\beta_{l}\right)=\sum_{p_{1}}^{n} \beta_{1}^{\beta} p_{1}{ }^{\circ}$ But this is true for all β_{k}, where $n_{k}=n_{l}$. and since there are only a finite number, Q must permute them.

Continuing this process for the remaining $n_{1}<n_{\ell}$ we find Φ permutes the β_{k}.

A set $\left\{\beta_{s}\right\}_{S \in S}$ is called a permutation cycle generated by φ if for each $s, s^{B} \in S$, there exists n such that $\varphi^{n}(s)=s^{1}$ 。

31
If $\left\{\beta_{k}{ }^{j} k \in K\right.$ is such a permuration cycle, let $c_{m}=\sum_{k \in K} \hat{\beta}_{k}{ }^{\text {s }}$ where $m=\min \left\{k: k \in K ;\right.$. Then $a=\sum_{j=1}^{n} A_{j} \beta_{j}+\left[n_{m} C_{m}^{k \in K}\right.$ where $C_{m} \in A$ for $a 1 l m_{0}$ and the β_{j} and C_{m} are linearly independent。

Therefore A is a free comutative semigroup.

Charpen III

TENSOR PRODUCTS INVOLVING FREE SEMIGROUPS

In general if A, B ，and C are moduies，and $A \subset B$ ，this does not imply $A \otimes C=B \& C$ However \mathcal{C} if C is a projective module（see below），then the above statement is true．In this section，we shall show anaiogous results for semigroups．

Definition 3．1：A module P is said to be projective if given any diagram of moduies

where f is an epimorphism，there exists a homomorphism $h: \quad \mathrm{P} \rightarrow \mathrm{A}$ such that $\mathrm{f} h=\cdot \mathrm{g}$ 。

The following theorem is well known and may be found in［13j。 page 6？

Theorem 3．2：If P is a projective module，A and B are modules，and $f: A \rightarrow B i s$ a monomorphisms Theni $\otimes f:$ $P \& A \rightarrow P \& B$ is a monomorphism。

Define a projective semigroup as follows：
Definition 3．3：A semigroup P is said to be projective， if given any diagram of semigroups

where f is an epimorphism，there exists a homomorphism $h: P \rightarrow A$ such that $f\left(\begin{array}{l}\text { go }\end{array}\right.$

To prove the analogy of Theorem 3.2 for projective semigroups，we first prove the following lemmas for free semigroups．

Lemma 3．4：Let F be a free commutative semigroup generated by the set of symbols $\left\{\lambda_{i}\right\}_{1 \in I}$ 。 Then $F \cong \sum_{i \in I} N_{i}$ ， where $N_{i} \cong N_{0}$ ．

Proof：The proof is immediate from the definition of a free semigroup．

Lemma 3．5：If $f: A \rightarrow B$ is a monomorphism and F is a free semigroup，then $f(1: A \circlearrowleft F \rightarrow B \otimes F$ is a monomorphism。

Proof：Using Lemma 3．4，Proposition 1．8（c），Theorem 2．7，and Theorem 1．4，we have

Similarly $B \& F \cong \sum_{i} B_{i}$ where $B_{i} \cong B_{\text {。 }}$ Let 0：$A \& F \rightarrow$ $\sum_{i \in I} A_{i}$ and $\bar{\rho}: B \otimes F \rightarrow \sum_{i \in I}^{1 \in I} B_{i}$ be these isomorphisms．Since f is a monomorphism；we may identify A with $f(A) \subset B$ ．Consider the diagram

where g is the embedding map of $\sum_{i \in I} A_{i}$ into $\sum_{i \in I} B_{i}$ 。 If elements of A_{1} are identified with their images in A under the map φ_{s} then $\varphi\left(a \sum_{p=1}^{n} \lambda_{i}\right)=\sum_{p=1}^{n} a_{i_{p}}$ ，where $a_{i_{p}}=a$ 。

Similarly，if the elements in B_{i} are identified with their isomorphic images in B_{p} then $\bar{\rho}\left(b \otimes \sum_{p=1}^{n} \lambda_{i_{p}}\right)=\sum_{p=1}^{n} b_{i_{p}}{ }^{\prime}$ where $b_{i}=b_{0}$

$\left(a \sum_{p=1}^{n} \lambda_{1}\right)$ 。 Since $g \varphi_{p}^{p=1} \bar{p}\left(\begin{array}{ll}p=1 & p=1) \text { for the generators of }\end{array}\right.$
$A \otimes \mathrm{~F}$ ，the above diagram commutes．Since $\theta, 0_{0}^{-1}$ and g are monomorphisms，f i must be a monomorphism．

Lemma 3．6：A semigroup is projective if and only if it is a free semigroup．

Proof：Assume P is a projective semigroup．Let $\left\{\alpha_{1}\right\}_{i \in I}$ be a set of generators of P, P always contains a set of generators since P itself is such a set Let F be the free semigroup generated by the set of symbols $\left\{\beta_{i}\right\}_{i \in 1^{\circ}}$ Define f ： $F \rightarrow P$ by $f\left(\sum_{k=1}^{n} n_{1_{k}} \beta_{1_{k}}\right)=\sum_{k=1}^{n} n_{i_{k}} \alpha_{i_{k}}$ for $n_{1_{k}} \quad$ No f is obviously an epimorphism。 Let $e: P \rightarrow P$ be the identity map on P ．By definition of a projective semigroup，given the diagram

there exists a map h such that f h $=$ ．Therefore P is a pseudo－direct summand of F_{8} and by the Corollary to Proposition $2.8, \mathrm{P}$ is a free semigrcup．

Conversely，let F be a semigroup and $\left\{\beta_{1}\right\}_{i \in I}$ its set of generators．Given the diagram

where f is an epimorphism，let $b_{i}=g\left(\beta_{i}\right)$ ．Then for each $b_{i}, i \in I$ ，select $a_{i} \in A$ such that $f\left(a_{i}\right)=b_{i}$ o Define $h: F \rightarrow A$ by $h\left(\sum_{k=1}^{m} n_{i_{k}} \beta_{i}\right)=\sum_{k=1}^{m} n_{i_{k}} a_{i_{k}} \quad$ Clearly，h is a homomorphism and $\mathrm{fh}=\mathrm{g}$ 。 Hence F is projective。

From Lemma 3.5 we have the following theorem：
Theorem．3．7：Let P be a projective semigroup．Then if $\varphi: A \rightarrow B$ is a monomorphism，i $\theta: P \otimes A \rightarrow P \otimes B$ is a mono－ morphism。

If the free semigroup F in Lemma 3.5 is replaced by a free semigroup with identity，say F_{s}^{*} then in general，the lemma is no longer true．In fact，for fixed $A_{8} B_{8}$ the lemma is true if and only if the homomorphism $\alpha: A \geqslant 0 \rightarrow B \in 0$ defined by $\alpha(a) 0)=f(a) 0$ is a monomorphism。

To prove this we show that $\rho: A \boldsymbol{F} \rightarrow \mathrm{~A} \otimes \mathrm{~F}^{*}$ ，defined by $\rho(a<f)=a \& f_{s}$ and $f: A \& 0 \rightarrow A \otimes F^{*}$ ，defined by $\varphi\left(a_{1} 0\right)=$
$\dot{a}_{i} \otimes 0$ ，are monomorehisms．It \pm then shown that the images of ρ and φ are disjoint．The theorem follows from Lemma 3．5．

Lemma 3．8：Let A be an arbitrary semigroup and F＊a free semigroup with identity 0 ，then the map $\mathcal{G}^{\circ} \mathrm{A} \otimes 0 \rightarrow A\left(\mathrm{~F}^{*}\right.$ defined by $\varphi\left(a_{i} \otimes 0\right)=a_{i} \otimes 0$ is a monomorphismu

Proof：Let f： $\mathrm{F}^{*} \rightarrow 0$ be the zero map．Then
$1 \otimes f: A \otimes F^{*} \rightarrow A \otimes 0$ is a homomorphism，and $(i \otimes f) \emptyset$ is the identity map on $A \otimes 0$ ．Therefore θ is a monomorphism．

Lemma 3．9：Let A be an arbitrary semigroup，and F^{*} be the free group F with identity 0 ．Then $\rho: A \otimes F \rightarrow A \otimes F *$ defined by $\rho(a \otimes \lambda)=a 8 \lambda$ is a monomorphism。

Proof：Let $\eta: B\left(A, F^{*}\right)+(A \& F) \cup\left\{O_{A} \otimes F^{\}}\right.$be defined by $\eta(a, \lambda)=a \otimes \lambda$ if $\lambda \neq 0$
$=O_{A D F}$ if $\lambda=0$ ，and
$\eta\left(\sum_{i=1}^{n}\left(a_{i}, \lambda_{i}\right)\right)=\sum_{i=1}^{n} \eta\left(a_{i}, x_{i}\right)$ 。
Since γ is bilinear，by Froposition 1．8（a）there exists $a \operatorname{map} \propto: A \otimes F^{*} \rightarrow(A \otimes F)$ i $\left.1 O_{A \otimes F}\right\}$ such that $\alpha(a \otimes \lambda)=a \otimes \lambda$ if $\lambda \neq 0$ and $\alpha(a \geqslant 0)=O_{A} \not F^{\circ}$ Clearly $\neq 0$ is the identity map on $A \otimes F$ ．Therefore f is a monomorphismo

Lemma 3．10：Let F^{*} be a free semigroup with identity 0 ． Considered as elements of $A \leqslant F^{*}, \sum_{i=1}^{n} a_{i} \lambda_{i} \neq\left[a_{j} \approx 0\right.$ for $a_{1}, a_{j} \in A, \lambda_{1} \neq 0$ 。

Prooí：Let 第 be the semigroup $A \in S$ ，where $S=\{0, I\}$ and addition is defined by $0+0=0,1+1=0+1=1$ 。

Let $\rho ; B\left(A, F^{*}\right)$－A be det：ned by
and $\left.\varphi^{(} \sum_{i=1}^{n}\left(a_{i}, \lambda_{i}\right)\right) \neq \sum_{i=1}^{n} \varphi_{1}\left(a_{i} s \lambda_{1}\right) \% Q$ is easily shown to be bilinear，and so by Proposition 1．8（a），there exists a map α such that the foilowning diagram is commutative．

$$
\begin{gathered}
B\left(A, F^{*}\right) \stackrel{\oplus}{\rightarrow} A \\
\partial V_{A} A
\end{gathered}
$$

$$
\begin{aligned}
& \text { Since } \alpha\left(\sum_{i=1}^{n}\left(a_{i} \otimes \lambda_{i}\right)\right)=\sum_{i=1}^{n}\left(a_{i}, 1\right)_{y} \text { for ail } i_{i} \neq 0, \text { and } \\
& \alpha\left(\sum_{j=1}^{m}\left(a_{j}^{0} \otimes 0\right)\right)=\sum_{j=1}^{m}\left(a_{j}^{0} 0\right)_{0} \\
& \sum_{i=1}^{n}\left(a_{i} \otimes \lambda_{i}\right) \neq \sum_{j=1}^{m}\left(a_{j}^{0} \otimes 0\right)
\end{aligned}
$$

Theorem 3．11：Let $x: A \rightarrow B$ be a monomorphism，F^{*} be the free semigroup F together with an identity 0 ，and
$\varphi: A \otimes 0 \rightarrow B \otimes 0$ be a homomorphism defined by
$\varphi(a \otimes 0)=\alpha(a) \otimes 0$ 。 Then $\alpha \otimes 1: A \otimes F^{*} \rightarrow B \otimes F^{*}$ is a monomorphism if an only if φ is a monomorphism。

Proof：Assume \mathcal{Q} is a monomorphism．Let
$\rho_{A}: A \otimes F \rightarrow A \otimes F^{*}$ be defined by $\rho_{A}(a \geqslant \lambda)=a \geqslant \lambda$ ，and
$\rho_{B}: B \& F \rightarrow B \otimes F^{*}$ be defined by $\rho_{B}(b \lambda)=b \& \lambda$ 。 By
Lemma 3．9，both of these maps are monomorphisms．Let \bar{i} be the identity map on F ．By Lemma $3.5, \alpha \otimes I: A \otimes F \rightarrow B \otimes F$

Is a monomorphism．Hences by the commutativity of the
diagram

（ $\alpha \otimes i$ ）$/ A \& F$ is a monomorphism。
Let $\eta_{A}: A \& 0 \rightarrow A O F^{*}$ be defined by
$\eta_{A}(a \otimes 0)=a 0_{B}$ and $\eta_{B}: B \otimes 0+B E F^{*}$ re defined by
$\eta_{B}(b \in 0)=b \not 0$ 。 By Lemma $30 \hat{\delta}$ ，these maps are
monomorphisms．By hypothesis， \mathcal{G} is a monomorphism。 Hence， by commutativity of the diagram

$\left.\alpha 81\right|_{A} 0$ is a monomorphism。 By Lemma 3．10， $(\alpha \otimes 1)(A \otimes F) \cap(\propto 1)(A \otimes 0)=\phi$ ．Therefore $\alpha \otimes 1$ is a monomorphism．The converse is obvious．

Corollary：$A F^{*} \cong(A \otimes F) \varnothing_{2} \quad(A \geqslant 0)$ 。
From Theorem $\mathrm{lomg}_{\mathrm{g}}$ and the discussion preceding it，we conclude that $A \subset B$ implies $A \& 0=B \& 0$ if and only if for all $a_{1}, a_{2} \in A_{0}$ the existence of $x_{s} y \in B_{2} n_{1}, n_{2} \in N$ such that $a_{1}+x=n_{1} a_{2}$
$a_{2}+y=n_{2}$
implies there exist $u_{,} \forall \in A, n_{3^{g}} n_{l \mid} \in N$ sucn that

$$
\begin{aligned}
& a_{1}+u=n_{3} a_{2} \\
& a_{2}+v=n_{4} a_{1}
\end{aligned}
$$

In generai, $A=B$ does not imply $A \subset B \subset B O$ For example, $\operatorname{set} A=P_{g}$ the nor negative integers, and $B=Z$ the set of integers. Then $A \in B$, but by Theorem $\mathrm{I}_{\mathrm{ol}} \mathrm{A} 11$ A $80 \cong\{0,1\}$ where $0+0=0,1+0=1+1=2$ while $B \otimes 0 \cong$ t0\% Therefore $A \otimes$ úr $B \otimes 0$ 。
Although it is not true for the category of semigroups that $A \subset B$ implies $A \otimes O=B \& O_{8}$ it is true for certain subcategories including the category of groups, the category of Archimedean semigroups and the category of idemporent semigroups.
Let A and B be semigroups such that $A \subset B$ and $A \otimes 0=B \otimes 0$, and iet v be the equivaience reiation on B defined by the natural map $\varphi: B \rightarrow B \geqslant 0$. Let $\left.i \tilde{s}_{\alpha}\right\}$ be the set of equivalence ciasses, and detine addition between the equivalence classes to be the usual addition of the quotient semigroup. Then by the discussion preceding Theorem 1.11, it follows that the semigroup $i_{\alpha^{\prime}}{ }^{j}$ is the maximai idempotent image of B 。
Similarly, iet p be the equivalence relation an A
 the set of equivaience classes of A detined by p_{0} With addition defined by $\left\{B_{\alpha_{I}} n A\right\}+\left\{B_{\alpha_{\hat{i}}} \cap A\right\}=\left\{\left(B_{1}+B_{2}\right) \cap A\right\}_{0}$
it forms the maximal idempotent image of A ．This motivates the following definition：

Definition 3．12：If $A \subset B$ implies $9: A \& 0 \rightarrow B E 0$ defined by $\mathscr{S}(\mathrm{a} \otimes 0)=\mathrm{a} \otimes 0$ is an \pm somorphism，then B retains idempotent images of A ．In symbols we shall indicate this by $A 母 B$ 。

Proposition 3．13：If $A<B$ and $B \& C$ then $A \& C$ 。
Proof：The proof of this proposition follows immediately from Definition 3．12。

One might at this point consider the possibiltiy of restricting the discussion to semigroups＂having this property， except that this property is not necessarily preserved by homomorphisms．For example，let $B=\left(N_{1} \in N_{2}\right) \cup\left\{O_{N_{I}} \oplus N_{2}\right\}$ where $N_{1}, N_{2} \cong N_{0}$ Let $\alpha: N_{1} \rightarrow N$ and $B: N_{2} \rightarrow N$ be these isomorphisms．Define $\bar{\alpha}: N_{1}+P$ by

$$
\begin{aligned}
& \bar{\alpha}\left(n_{1}\right)=\alpha\left(n_{1}\right) \text { for } n_{1} \in N_{1} \\
& \bar{\alpha}\left(O_{N_{1}}\right)=0 .
\end{aligned}
$$

－Define $\bar{B}: N_{2} \rightarrow \bar{P}$ by $\bar{B}\left(n_{2}\right)=B\left(n_{2}\right)$ for $n_{2} \in N_{2}$

$$
\bar{B}\left(O_{N_{2}}\right)=0
$$

Define $f: B \rightarrow 2$ by $f\left(n_{1}+n_{2}\right)=\alpha\left(n_{1}\right)-s\left(n_{2}\right)$

$$
f\left(0_{N_{1}} \oplus N_{2}\right)=0
$$

Then $f(B)=Z$ ．Let $A=\left\{N_{1} \oplus_{5} 0_{N_{2}}\right\} \cup\left\{O_{N_{1} \in N_{2}}\right\}$ be considered

41
as a subsemigroup of B 。 Certainly $A \subset B$ and A is closed under addition。 Then $f^{\prime}(A)=P_{g}$ the non negative integers．

Using the Corollary to Theorem 3．1l，Proposition 1．8（b）。 the fact that $N_{1} \cong N_{1} \Theta_{5} O_{N_{2}}$ and Theorem l_{011} ，we have $A \otimes 0 \cong\left[\left(N_{1} \oplus_{5} O_{N_{2}}\right) \cup\left\{O_{N_{1}} \mathrm{~N}_{2}!\right] \otimes 0\right.$
$\cong\left[\begin{array}{lll}N_{1} & \cup & O_{N_{1}}\end{array}\right] \otimes 0$
$\cong\left(N_{1} \otimes 0\right) \cup\left\{O_{N_{1}} \otimes 0\right\}$
$\cong\{1, \overline{0}\}$ where $\overline{\overline{0}}+\overline{0}=\overline{\overline{0}_{0}}, \overline{0}+1=1+1=1$ 。
Using Theorem 3．11 and its Corollary，together with Theorem 1．11，and Proposition $1.8(\mathrm{~b})_{8}$ we have
$B \otimes 0 \cong\left[\left(N_{1} \Theta_{2}\right) \cup\left\{O_{N_{1}} \otimes N_{2} \vdots \otimes 0\right.\right.$ $\left.\cong\left[\left(\mathrm{N}_{1} \in \mathrm{~N}_{2}\right) \otimes 0\right] \cup 1 \mathrm{O}_{\mathrm{N}_{1}} \otimes \mathrm{~N}_{2}\right\}$ $\cong\left[\left(N_{i} \otimes 0\right) \oplus\left(N_{2} \otimes 0\right)\right] u\left(\left\{\mathrm{O}_{N_{1}} \oplus N_{2}\right\} \otimes 0\right)$ $\cong(1 \oplus T) \cup\left(O_{1 \oplus T}\right)$ ，where T is an idempotent。
Therefore $A \mathbb{C} 0$ e $B \& 0$ up to isomorphism。 But by
Theorem 1，11，$f(A) \otimes 0=P \otimes 0 \cong\{1, \overline{0}\}$ and $f(B) \otimes 0=Z \otimes 0 \cong 0$ 。 Hence $f(B)$ does not retain idempotents of $f(A)$ 。

CHAFTER IV

TENSOR PRODUCTS INVOLVING A UNION OF GROUPS

Definition $\operatorname{Lefo}^{\prime}:$ A semigroup S is＇cailed a union of groups if $S=\dot{G} G_{a y}$ where fon each $\alpha A_{A_{0}} G_{\alpha}$ is a semigroup aEA
Of S 。

Head has shown that the problem of determining the tensor product of a group with a semigroup may be reauced to determining the tensor prosuct of two groups．This is accomplished by using the fact that ior an arbitrary group G_{*} $G \otimes Z \cong G$ ．Therefore，for a semigroup $S, S \otimes G \cong S \otimes(Z \otimes G)$ $\cong(S \& Z) \otimes G$ However $S \otimes Z \geq s$ a unfor of groupso Theng using a theorem by Head，restated here as part of Theorem 4.3 the problem is reduced to that oti findirg the union of Eroups formed by tensoring groups of the union of groups $S \&$ with the group G。

It has been shown if that if S is a unson of groupso then S may be expressed uniquely as a union of pairwise disjoint groups．Hereafter＇in this paper it wili be assumed that when a semigroup is expressed as a union of groups，these groups are pairwise disjoint。

Clifford $[4 j$ has shown that if \ddagger is a un on of groups
i $\left.G_{\alpha}\right\}_{\alpha \in A}$ it may be expressed，up to 1 somorphism，in terms of a semilattice and a set of homomorphisms between the various groups as follows：

Let I be the set of idempotents of S 。 Obviously the 1dentities of the groups $i G_{a}{ }^{j}{ }_{x} \varepsilon_{A}$ are 1 dempotents of S 。 Moreover these are the only 1dempotents of S since a group can contain only one 1dempotent．I is an idempotent semi－ group and hence a semilattice under the operation 2 defined by＂$i_{\alpha} \geq i_{\beta}$ for $\alpha_{0} B \in A$ if and only $\geq f i_{\beta}+i_{\alpha}=i_{\beta} " 。$ If $i_{\alpha} \geq i_{B}$ ，then for $a_{\alpha} \in G_{\alpha}$ ，It can be shown that $a_{\alpha}+1_{\beta} \in G_{\beta}$ o Define $\Theta_{\beta_{\alpha}}: G_{\alpha}+G_{\beta}$ by $\Theta_{\beta_{\alpha}}\left(a_{\alpha}\right)=a_{\alpha}+1_{\beta}$ 。 This is easily seen to be a homomorphism；and $\pm r^{\circ} i_{\alpha} \geq i_{B} \geq i_{\rho}$ ． then $\varphi_{r \beta} \varphi_{\beta \alpha}=\rho_{\gamma \alpha^{\circ}} \varphi_{\alpha \alpha}$ is the identity map。

Conversely，let $\left\{G_{\alpha}\right\}_{\alpha \leq A}$ be a set or pairwise disjoint groups indexed by the semilattice A 。 Suppose that for each $a_{j} \beta \in A$ such that $i_{\alpha} \geq i_{B}$ ，there exists a homomorphism $\rho_{\beta \alpha}: G_{\alpha} \rightarrow G_{\beta}$ such that if $i_{\alpha} \geq i_{\beta} \geq i_{\gamma,}$ then $\mathcal{F}_{Y \beta} \mathscr{F}_{\beta \alpha}=\varphi_{\gamma \alpha}$ ． and $\hat{\mathcal{F}}_{a \alpha}{ }^{1 s}$ the identity map or $G_{a^{\circ}}$ If S is the union of these groups，and for $a \in G_{\alpha,} b \in G_{g} a+b$ is defined
 semigroup．Using Head＂s terminoiogy［8］，call S the union of groups $\left\{G_{\alpha} \mid \alpha \in A\right\}$ related by the family of homomorphisms $\left\{\Psi_{\beta \alpha}: G_{\alpha} \rightarrow G_{\beta} \mid \alpha_{\rho} \beta \in A_{\beta} \alpha+\beta=\beta j_{0}\right.$

The foilowing lemma is due to Head [7]

Lemma 4o2: For an aroitrary semigroup $c, C \in Z$ is a union of groups. Furthermore C is a union of groups if and only if $C \otimes Z \cong C$

Let C be the union of groxps $G_{S}!s \in S j$ reiated by
 $\left.s+s^{\nu}=s^{p}\right\}$ and D be the union of groups $\left.: H_{t} \mid t \in T\right\}$ related by the famiiy of homomorphisms iott: $H_{t} \rightarrow H_{t}$ $t_{\Omega} t^{v} \in T_{2} t+t^{i}=t^{\prime \prime}{ }_{0}$

By tensoring the groups in C with groups in D, and tensoring corresponding homomorptisms, we obtain a semigroup U which is the union of groups $\left\{G_{S} S H_{t} \mid \mathrm{s} \in \mathrm{S}_{\mathrm{g}} \mathrm{t} \in \mathrm{T}\right\}$,

The homomorphism in the following theorem is a generailzation of one giver by Eead 8.

Theorem 4.3: If C and D are respectively a union of groups, then $C * D$ is a union of groups. Furthermore, there exists an epimorphism $\theta: C$ D D U defined by $\theta\left(c_{S} d_{t}\right)=c_{S} \otimes d_{t}$ for $c_{S} \in G_{S s} \dot{\alpha}_{t} \in H_{t}$. This map is an isomorphism $1 f^{2}$ and only if either S or T is a singleton set。

Proof: Using Lemma 4.2, we have (CQD) $2=0$ (D 2)
$\cong C D$ 。

Therefore, by Lemma $4, z, C E D$ is a inion of groups.
Since C and D are union of groups, each element of $C \times D$ may be written uniquely as an ordered pair $\left(c_{s}, d_{\tau}\right)$ for $c_{S} \in G_{S} \in C$ and $d_{t} \in H_{t}=D_{0}$

Define $\tilde{f}: C \times D \rightarrow U$ by $f\left(c_{S}, \dot{d}_{t}\right)=e_{S} \theta d_{t} \epsilon$
$G_{S} \otimes H_{t} \subset U_{0}$
For $v=t+t$.
$f\left(c_{s,} d_{t}+d_{v}\right)=f\left(c_{S o} \alpha_{v t}\left(\alpha_{t}\right)+\alpha_{v t}\left(\alpha_{t y}\right)\right)$
$=e_{s} \otimes\left[a_{v t}\left(a_{t}\right)+a_{v t}\left(d_{t}\right)\right]$
$=\left(c_{s} \& a_{v t}\left(\alpha_{t}\right)\right)+\left(c_{s} \otimes a_{v t}\left(\alpha_{t v}\right)\right)$
$=\left(\psi_{s s} \otimes \alpha_{v t}\right)\left(\varepsilon_{s} \otimes \alpha_{t}\right)+\left(\varphi_{s s} \otimes \alpha_{v t}\right)$
$\left(c_{s} \& d_{5}\right)$
$=\left(c_{s} \otimes d_{t}\right)+\left(c_{s} \otimes d_{t}\right)$
$=f\left(\varepsilon_{s,} d_{t}\right)+f\left(c_{s,} d_{t}\right)^{\prime}$
Similarly, f may be shown to be linear in tine first variable. Since f is bilinear on the elements of $C \times D_{9}$ it may be extended to a bilinear mapping from $B\left(C_{8} D\right)$ to U by defining $\tilde{f}\left(\sum_{s, t} n_{s t}\left(c_{s} \& \alpha_{t}\right)\right)=\sum_{s, t}^{n} n_{s t} \vec{f}\left(c_{s} \otimes d_{t}\right)$ for $n_{s t} \in N_{0}$ Therefore, by Proposition $I_{0} 8(a)$, there exists a unique map $E: C \& D \rightarrow U$ such that the following diagram commutes

where $\eta\left(c_{s} ; u_{t}\right)=c_{s} d_{t}$

$$
\theta\left(c_{S} \& d_{t}\right)=f\left(c_{S} ; \dot{u}_{t}\right)=c_{S} \mathbb{N}^{\prime} d_{t} \text {. Certainly } A 1 \leq \text { an }
$$

epimorphism: Therefore θ is the required homomorphism:
Head [8i has shown that when C or D is a group, θ is an
isomorohism: Converse?y: suppose

$$
\begin{aligned}
& \tilde{n}=c_{0} d, \text { where } 2 d=d_{0}, 2 a=c+d=c, \\
& E=\left\{u_{,}, w, x, y \text {; where } u+u=u, u+w=w+w=w,\right. \\
& w+v=x_{g} v+u=v+v=v_{0} \\
& x+w=x+x=x+u=x, \\
& x+y=x_{y} x+y=y+y= \\
& y+u=y s v+y=w+y=y,
\end{aligned}
$$

$\widetilde{C}_{\text {, }} \bar{D}$ and E are respectively the semilattices shown beiow.

$$
\begin{aligned}
& f(a, d)=y, f\left(z_{,} d\right)=w_{y} \\
& f(b, c ;=v, f(b, d)=u
\end{aligned}
$$

and extend linearly to $\bar{s}\left(\tilde{C}_{,}, \bar{D}\right)$ it can be shown by dirert
computation that f is a bilinear map.
Therefore, by Proposition i, ofia; there exists a map G: $\overline{0} \approx \tilde{B}$ - E such that the foilowing dagram commutes.

Since $f(a, c)=y$ and $f(a, d)+f(b, c)=w+v=X_{p}$

$$
\varphi(a \& c)=y \text { and } \varphi[(a \otimes d)+(b \otimes c)]=x \text { and so }
$$

$a \otimes d+b * c \neq a * c$
Assume S and T each contain at least two elements，and define homomorphisms $\tau: C \rightarrow \tilde{C}$ and $\mu: D \rightarrow \tilde{D}$ as follows： Choose $S, S^{\prime \prime} \in S$ and $t, t^{\prime \prime} \in T$ such that $S>S^{r}$ ；and $t>t^{\prime}$. For $g_{\alpha} \in G_{\alpha}$, let $\simeq\left(G_{\alpha}\right)=\left\{\begin{array}{l}b \text { if } a \geq s_{8} \\ \text { a otherwise } .\end{array}\right.$ For $h_{B} \in H_{\beta}$, let $\mu\left(h_{\beta}\right)=\left\{\begin{array}{l}\text { dif } B \geqslant t, \\ c \text { otherwise．}\end{array}\right.$
$\underline{\text { is }}$ a homomorphism，for if $\alpha, \alpha^{\nu} \geq 5, \alpha+\alpha^{\gamma} \geq s$ ，and $\left.\tilde{\sim}\left(\delta_{\alpha}+g_{\alpha}\right)=b=b+b=\tilde{f}_{(} g_{\alpha}\right)+\tilde{\sim}\left(g_{\alpha,}\right) ;$ if $\alpha^{8} \geq s$ and $\alpha<s$ or not comparable，then $a+a^{*}=s$ and
$r\left(g_{\alpha}+g_{a}^{q}\right)=a=a+b=\tilde{f}\left(g_{\alpha}\right)+\tau\left(g_{\alpha}^{\prime \prime}\right)$ 。 If $\alpha^{\prime}, a<s$ or not comparable to s ，then $a+a^{r}<s$ and $\tau\left(g_{\alpha}+g_{\alpha}^{9}\right)=a=a+a=\tau\left(g_{\alpha}\right)+\tau\left(g_{a}^{p}\right) 。$

Similarly one may show that is a homomorphism．
Identify a and b respectively with i_{S} ，and i_{S} ，the identities of G_{s} ，and G_{s} 。 Identify c and d respectively with i_{t} ，and i_{t} ，the identities H_{t} ，and H_{t} ．Then τ leaves $i_{s}{ }^{\prime}$
and i_{s} fixed while μ leaves i_{t} and i_{t} ，fixed。
Let Y^{*} be the embedding map of $\left\{i_{S}, i_{S}\right\}$ into C and μ^{*} be the embedding map of $\left\{\dot{I}_{t}, \dot{I}_{t y}\right\}$ into D 。 Then $t \circ t^{*}$ is the identity map on \tilde{C} and $u \mu^{*}$ is the identity map on \tilde{D}_{0}

Therefore $(\tau \otimes u)\left(\tau^{*} \otimes u^{*}\right): \tilde{C} \otimes \tilde{D} \rightarrow \tilde{C} \otimes \tilde{D}$ is
the identity map on $\tilde{C} \otimes \tilde{D}_{0}$ Hence $T^{*} \otimes \mu^{*}$ is a monomorphism and $\tilde{C} \otimes \tilde{D}$ is embedded in $C \otimes D$ ．Therefore $i_{S} \otimes i_{t}$, $i_{s}, \otimes i_{t}$ and $i_{S} \otimes i_{t "}$ may be identified with $b \otimes c, a \otimes d_{s}$ and $a \otimes c$ respectiveiy，and hence，since $a \otimes d+b \otimes c \neq$ a \＆ c ，we have $i_{s} \otimes i_{t}+i_{s}, \otimes i_{t} \neq i_{s}, \otimes i_{t} \cdot$

But considering $i_{S} \otimes i_{t}\left\|i_{S}\right\| i_{t}$ and $i_{S} \otimes{ }^{*} i_{t}$ ，as elements of U ，we have

$$
\begin{aligned}
& \left(i_{s}, \otimes i_{t}\right) \\
& =\left(i_{S} \otimes i_{t^{\prime}}\right)+i_{S} \otimes i_{t} \\
& =1_{S}, 8 i_{t}{ }^{\beta}
\end{aligned}
$$

Therefore θ is not an isomorphism．
The following Corollary is due to Head［8］．
Corollary：Let S be a semigroup，and G a group．If
$S \otimes Z=u_{\alpha} G_{\alpha}$ ，then $S \otimes G \equiv u_{\alpha}\left(G_{\alpha} \otimes G\right)$ 。
Proof：$S \otimes G \equiv S \otimes(G \otimes Z)$

$$
\begin{aligned}
& \cong S \otimes(Z \otimes G) \\
& \cong(S \otimes Z) \otimes G
\end{aligned}
$$

$$
\begin{aligned}
& \cong\left(U_{\alpha} G_{\alpha}\right) \otimes G \\
& \cong{ }_{\alpha}^{1}\left(G_{\alpha} \otimes G\right)_{0}
\end{aligned}
$$

We are now ready to restrict our theory to certain specific cases.
(1) Consider, for example, the tensor product $A \otimes \mathrm{Z}_{\mathrm{n}}$ where A is an arbitrary semigroup; Let $A \& Z=\mathcal{U}_{\alpha} G_{\alpha}$. Then $A \otimes Z \cong \ddot{\alpha}\left(G_{\alpha} \otimes Z_{n}\right)$. But for a group G it has been shown that $G \otimes Z_{n} \cong G_{i n G}$. Therefore $A \otimes Z_{n} \cong u_{\alpha}^{G} \alpha / n G_{\alpha}$

Hence tensoring by Z_{n} "shrinks" the groups forming the union of groups: Tensoring by $Z_{1}, 1_{0} e_{0}$, by an idempotent element "shrinks" each-groupinto its identity. Therefore $A \otimes 0$, the maximal idempotent image of A is isomorphic to the subsemigroup consisting of the identities of the groups of A.
(2) If G is a group such that $n G=0$, then, it has been shown [6] page 44 that $G=\sum_{i \in I}^{3} Z_{p_{i}} a_{1}$ where $\forall i, p_{i}$ is a prime number, and $a_{i} \in N_{0}$. Therefores if $\mu_{\alpha} \cong A \otimes \mathrm{Z}$,

$$
\begin{aligned}
A \otimes G & \cong\left(u_{\alpha}\right) \otimes G \\
& \cong{\underset{\alpha}{u}}^{\left(G_{\alpha} \otimes \sum_{i \leq I}^{(\mathcal{S}} Z_{p_{i}}^{a_{j}}\right)}
\end{aligned}
$$

Notice that although the direct sum-above is not preserved by the tensor product in the category of semigroups, it is preserved in the category of groups. Since for all
$\alpha \in A, i \in I_{,} G_{\alpha}$ and $Z_{p, i} a_{i}$ are groups，it follows that for all $\alpha \in A_{i} G_{\alpha} \otimes\left(\sum_{i}^{3} Z_{p_{i}} a_{i}\right) \equiv i_{i}^{-3} G_{\alpha} \otimes Z_{p_{i}} a_{i}$ 。 Therefore $U_{\alpha}\left(G_{\alpha} \otimes \sum_{i}^{(3)} Z_{p_{i}}{ }_{i}\right) \cong U_{\alpha} \sum_{i}^{\frac{1}{7}}\left(G_{a} \otimes^{i} Z_{p_{i}} a_{i}\right)$ 。 But，since
$\left.G_{\alpha} \otimes Z_{p_{i}} a_{i} \cong G_{\alpha /\left(p_{i}\right.} a_{i}\right) G_{\alpha^{\nu}}$ we have

$A \otimes G \cong \& \sum_{i}^{\infty}\left({ }^{B} a^{\prime}\left(p_{i} a_{i}\right) G_{a}\right)$ 。
（3）If G is a finitely generated group，then it has been shown［6］，page 40，$G \cong \sum_{i=1}^{\rho_{3}} Z_{1} a_{i} \in \sum_{j} \sum_{j=1}^{m} Z(j)$ where ${ }^{Z}(j) \cong Z$ for all j ．Therefore，for an arbitrary semigroup A ，if $A \otimes Z \underset{\alpha}{\underline{u}} G_{\alpha^{\otimes}}$ then

Since this direct sum is preserved by the tensor product
in the category of groups，for all a_{0} we have
$G_{a} \otimes\left(\sum_{i=1}^{n} z_{p_{i}} a_{i} \Theta_{3} \sum_{j=1}^{m(3)} z_{(j)} \equiv \sum_{i=j}^{n}\left(G_{a} \otimes z_{p_{i}} a_{i}\right) \oplus_{3}\right.$
$\sum_{j=1}^{m}\left(G_{\alpha} \& Z_{(j)}\right)$ ．Therefore
$\alpha_{\alpha}^{u}\left[G_{a} \otimes\left(\sum_{i=1}^{n(3)} Z_{p_{i}} a_{i} \Theta_{3} \sum_{j=1}^{m(3} Z_{(j)}\right)\right] \cong \sum_{i=1}^{n}\left(G_{\alpha} \otimes z_{p_{i}} a_{i}\right) \Theta_{3} \sum_{j=1}^{m(3)}$
 and for every is $\alpha_{\theta} G_{\alpha} \otimes Z_{(j)} \cong G_{0}$ Therefore $A \otimes G=\cup_{\alpha}\left(\sum_{i=1}^{n} G_{\alpha}^{(3)}\left(p_{1} a_{1}\right) G_{\alpha} \bigoplus_{3} \sum_{j}^{(3)} G_{j}\right)$ where $G_{j} \cong G_{a}$.

Let A be an arbitrary semigroup Q the semigroup of rational numbers under multiplication, Q^{*} the subgroup of non zero rational numbers, and $Q+$ the subgroup of positive rational numbers: It can be shown [15] that Q^{+}is isomorphic to $P(x)$, the additive group of polynomials in x over the ring 2. The isomorphism $\Phi: P(x) \rightarrow Q^{+}$is defined by $\Phi\left(\sum_{i=1}^{n} a_{i} x^{i}\right)=\prod_{i=1}^{n} p_{i} a_{i}$, where p_{i} is the i th prime integer greater than one.

$$
\text { However } P(x) \cong \sum_{i=1}^{\infty} Z_{i} \text { where } Z_{i} \cong Z_{0}
$$

Therefore $A \otimes Q^{+} \cong A \otimes \sum_{i=1}^{\infty} Z_{i}$. Since $\sum_{i=1}^{\infty} Z_{1}$ is a group, A (B) $\sum_{i=1}^{\infty} Z_{i}^{(3)} \cong A \otimes\left[\left(\sum_{i=1}^{\infty} Z_{i}^{(3)} Z_{i=1}^{i} \otimes Z\right]\right.$

$$
\cong A \otimes\left[z \otimes\left(\sum_{i=1}^{\infty} z_{i}\right)\right]
$$

$$
\cong(A \otimes Z) \otimes\left(\sum_{i=1}^{\infty} Z_{i}\right)_{0}
$$

Letting $A \otimes Z \cong \bigcup_{a} G_{a}$, we have
$(A \boxtimes Z)$

$$
\text { (2) } \begin{aligned}
\sum_{i=1}^{\infty} Z_{i} & \cong\left(U_{\alpha} G_{\alpha}\right) \otimes \sum_{i=1}^{\infty} Z_{i} \\
& \cong U_{\alpha}\left(G_{\alpha} \otimes \sum_{i=1}^{\infty} Z_{i}\right) \\
& \cong U_{a} \sum_{i=1}^{\infty}\left(G_{a}^{*} Z_{i}\right)_{0}
\end{aligned}
$$

Let $G_{i_{\alpha}}=G_{\alpha} \otimes Z_{i} \cong G$. Then $A \otimes Q^{+} \cong \bigcup_{\alpha} \sum_{i=1}^{\infty} G_{1_{\alpha}}$
Let $G=\{-1,1\}$ be considered as a subgroup of Q_{0}.
$Q^{*} \cong G \oplus_{3} Q^{+}$．Since $G \cong Z_{2}$ ，we have $Q^{*} \cong Z_{2} \Theta_{3} Q^{+}$。 Therefore $A \otimes Q^{*} \cong A \otimes\left(Z_{2} \oplus_{3} Q^{+}\right)$。

Since Q^{*} is a group ${ }_{9}$

$$
\begin{aligned}
A \otimes\left(Z_{2} \oplus_{3} Q^{+}\right) & \cong A \otimes\left[\left(Z_{2} \oplus_{3} Q^{+}\right) \otimes Z\right] \\
& \cong A \otimes\left(Z \otimes\left(Z_{2} \oplus_{3} Q^{+}\right)\right) \\
& \cong(A \otimes Z) \otimes\left(Z_{2} \oplus_{3} Q^{+}\right) \\
& \cong\left(u_{\alpha} G_{\alpha}\right) \otimes\left(Z_{2} \oplus_{3} Q^{+}\right) \\
& \cong u_{\alpha}^{u}\left(G_{\alpha} \otimes\left(Z_{2} \Theta_{3} Q^{+}\right)\right) \\
& \cong \underset{\alpha}{u}\left[\left(G_{\alpha} \otimes Z_{2}\right) \Theta_{3}\left(G_{\alpha} \otimes Q^{+}\right)\right] \\
& \cong{\underset{\alpha}{u}}_{u}\left[\left(G_{\alpha} / 2 G_{\alpha}\right) \Theta_{3} \sum_{i=1}^{\infty} G_{i \alpha}\right] .
\end{aligned}
$$

Since $Q=Q^{*} \cup\{0\}$ ，we have $A \otimes Q \cong A \otimes\left(Q^{*} \cup 0\right)$ 。By
a proof similar to that of Lemma 3.10 one can show that
$\left.\left.\left.A \otimes\left(Q^{*} \cup ;\right\}\right\rangle\right) \cong(A \otimes)^{\circ}\right) \oplus_{3}(A \otimes 0)$ 。 Therefore
$A \otimes Q \cong \mu_{\alpha}\left[{ }^{\left(G_{\alpha} / 2 G_{\alpha}\right)} \oplus_{3} \sum_{i=1}^{\infty}{ }^{(3)} G_{1 \alpha}\right] \quad \Theta_{3}(A \otimes 0)$ 。
Let Z be the semigroup of integers under multiplication，
Z＊．the subsemigroup of non zero integers，Z＋
the subsemigroup of positive integers，and A an arbitrary semigroup．For $1 \in N_{\infty}$ let $N_{i} \cong N_{0}$ ．Then $Z^{+} \cong \sum_{i=1}^{\infty} N_{i}$ under the $\operatorname{map} \phi: Z^{+} \rightarrow \sum_{i=1}^{\infty} N_{i}$ defined by $\phi\left(\prod_{k=1}^{n} p_{i_{k}} \alpha_{i_{k}}\right)=\sum_{k=1}^{i=1} \alpha_{i_{k}}$ ，where p_{1} is the $i^{\text {th }}$ prime greater than one．Therefore $A \otimes Z^{+} \cong A \otimes \sum_{i=1}^{\infty} N_{i}$ ，and since this direct sum is preserved by tensor product，$A \& Z^{+} \cong \sum_{i=1}^{\infty} A \otimes N_{i}$ ．Letting
$A_{i}=A \otimes N_{i} \cong A_{0}$ we have $A \otimes Z^{+} \cong \sum_{i=1}^{\infty} A_{i}$ 。

As before，$i t i, G=\{\otimes 1, \dot{Z}\}$ considered as a subgroup of Z ． Then $Z^{*} \cong G \Theta_{3} Z^{+}, G \stackrel{a}{=} Z_{2}$ ，and so we have $A \otimes Z^{*} \cong A \otimes\left(Z_{2} \oplus_{3} Z^{+}\right)$。 Since Θ_{3} is not preserved by the tensor product in the category of semigroups，we cannot proceed as in the previous example。

Since $Z=Z^{*} u\{0\}$ ，by a proof similar to that of Lemma 3．10g，we have $A \otimes\left(2^{*} \cup\{0\}\right)=\left(A \otimes Z^{*}\right) \oplus_{3}(A \otimes 0)$ 。 Therefore $A \otimes Z \cong\left(A \otimes Z^{*}\right) \oplus_{3}(A \otimes 0)$ 。

At this point，we may partially determine the structure of the tensor product $\overline{\mathrm{F}}$ an arbitrary seqmigroup A and a cyclic semigroup S．

If S is an infinite cycilc semigroup，then $S \cong N$ and hence $A \otimes S \cong \mathrm{~A}$ 。

The following description of a finite cyclic semigroup may be found in［5］．If S is finite and generated by s ， then there exists $\quad q_{;} r \in N$ such that $r s=(r+q) s$ 。 Let m be the least integer for which there exists a q such that $m s=(m+q) s$ ．The integer m is called the index of S ．Let n be the least integer such that $\mathrm{m} s=(m+n) \mathrm{s}$ 。 The integer n is called the period of S ．

Let $S_{m n}$ be the cycile semigroup with index m and period no Let $K_{m n}=\left\{m s,(m+1) s_{8} \ldots 0,(m+n-1) s\right\}_{0} K_{m n}$ is isomorphic to the cyclic group Z_{n} 。

The following lemma is due to Head［9］．
Lemma 404：$\left.S_{m n} \otimes S_{m^{\prime \prime} n^{n}} \cong S_{(m i n ~}\left\{m_{0} m^{8}\right\}_{B} \operatorname{gcd}\left\{n_{9} n^{*}\right\}\right)$ 。
Let s generate the semigroup $S_{m n, n}$ and s generate $S=S_{m n}$ ．Define $\phi: S_{m n_{i n} n}+Z_{n}$ by $\varphi(s)=1$ and extend linearly。 Since $K_{m n_{刃 n} n} \cong Z_{n}$ ，there exists an embedding $\alpha: Z_{n} \rightarrow S_{m n}, n$ and $\$ a: Z_{n} \rightarrow Z_{n}$ is an isomorphism．Therefore so is $(i \otimes \otimes \otimes 1)(1 \otimes \alpha \otimes i): A \otimes Z_{n} \otimes S_{m n} \rightarrow A \otimes Z_{n} \otimes S_{m n}$ 。 Hence $i \otimes a \otimes i: A \otimes Z_{n} \otimes S_{m n}+A \otimes S_{m n, n} \otimes S_{m n}$ is an embedding。

By Lemma 4．4：$Z_{n} \cong Z_{n} \otimes S_{m n}$ and $S_{m n, n} \otimes S_{m n} \cong S_{m n}$ 。
Let $\omega_{:} Z_{n}+Z_{n} \otimes S_{m n}$ and $r: S_{m n} \rightarrow S_{m n} n \otimes S_{m n}$ be defined respectively by $\omega(i)=1 \otimes \bar{s}$ and $\gamma(\bar{s})=\bar{s} \otimes \mathrm{~s}$ 。 These maps are onto，and hence one－to－one．$\therefore \omega$ and ζ are isomorphisms．Therefore $A \otimes Z_{n}=A \otimes Z_{n} \otimes S_{m n}$ and $A \otimes S_{m n} \otimes S_{m n} \cong A \otimes S_{m n}$ 。 Let $f: A \otimes Z_{n} \rightarrow A \otimes Z_{n} \otimes S_{m n}$ and $g: A \otimes S_{m n, n} \otimes S_{m n} \rightarrow A \otimes S_{m n}$ be the respective isomorphisms．

Thus $A \otimes Z_{n}$ is embedded in $A \otimes S_{m n}$ ，say by S_{ρ} and

$$
\begin{aligned}
\theta(a \otimes 1) & =g(i \otimes a \otimes i) f(a \otimes 1) \\
& =g(i \otimes a \otimes i)(a \otimes 1 \otimes s) \\
& =g(a \otimes a(1) \otimes s)
\end{aligned}
$$

Letting $p s=a(1)$ ，we have $g(a \otimes a(1) \otimes \bar{s})=g(a \otimes p s \otimes \bar{s})$

$$
\begin{aligned}
& =g(p a \otimes s \otimes \bar{s}) \\
& =p a \otimes s \\
& =a \otimes p s \\
& =a \otimes \alpha(1)
\end{aligned}
$$

Therefore $\operatorname{Im} \theta=A \otimes K_{m n}$ 。
If $a \in A$ generates a ininite cycilc subsemigroup A^{*} with index \bar{m} and period \bar{n} ，then $\bar{a} \otimes \bar{s}$ as an element of $A \otimes S_{m n}$ generates a cyclic－semigroup with index less than or equal to $\min (\bar{m}, m)$ ．This follows froin the fact that
$\Phi: A^{*} \otimes S_{m n} \rightarrow A \& S_{r . n}$ defined by $(a \otimes \bar{s})=a \otimes \bar{s}$ is a homomorphism。

If $A^{*}=A$ ，then by Lemma 4,4 a a \bar{s} has index equal to $\min \left(\bar{m}_{9}, \mathrm{~m}\right)$ ．In general the index may be less than $\min (\bar{m}, m)$ 。 Suppose $a=(m+k) b$ for some $b \leqslant A$ ，where $(m+k) s$ is the 1dempotent of S_{mn} 。 Then
$a \otimes s=(m+k) b \& s$
$=0(\mathrm{~m}+\mathrm{k}) \mathrm{s}$
$=b[(m+k) s+(m+k) s]$
$=b \&(m+k) s+b \&(m+k) s$
$=a \theta s+a \theta s$
and a © s has index one．

Similar resuits foilow if a generates an infinite cyclic subgroup.

Although we already know that for an arbitrary semigroup $S, S \$ Z$ is a union or groups we are now able to establish necessary and surficient conditions on S so that $S \otimes Z$ is the group of quotients oí S [see below]。

Definition 4o4: A relation R on a semigroup S is said to be compatible or stable if for every $a, b, c \in S, a R b$ implies (a + c) Ríb + ©

Define a relation son the elements of S as follows: $\mathrm{a} \leq \mathrm{b}$ if there exists $\mathrm{x} \in \mathrm{S}$ such that $\mathrm{b}+\mathrm{x}=\mathrm{a}$ 。 This relation is easily seen to be transitive, and compatible.

Definition 4.5: A semigroup S is said to be Archimedean if for every $a_{\Omega} b \varepsilon S_{\text {, there }}$ exists a positive integer n and $x \in S$ such that na $=b+x$.

This is equivalent to saying that S is Archimedean if for every $a, b \in S$, there_exists a positive integer n such that nasbo This definition world colrolide with the corresponding definision of an Archimedean ring if-s were replaced by \geq, but the above definition for semigroups is standard.

The following definitions may be found in [5].

Definition 4．5：A groue G is calied the group of quotients of a semigroup \hat{S}_{8} if \hat{G} contains $S_{\text {，}}$ and every $g \in G$ may be expressed as $a-b$ for $a, b \in S$ 。

Definition 407：A semigroup S is said to be separative if for every $a_{z} b \in S_{3} a+t=\dot{c}+b=a+a$ implies $a=b$ 。

The following iemma is due to Hewitt and Zuckermann［10］。
Lempa 4．8：A semigroup S can be embedded in a union of groups if and only if it is separative。

This canonical embediung is formed as follows：Define the equivalence relation η by $a \eta b$ if and only if na $\leq b$ and $m b \leq a$ for some $m_{,} n \leqslant N$ 。 Let $S_{\alpha}(\alpha \in \hat{A})$ be the equivalence classes of S fomed by η 。 It follows immediately from the definition of η that each $S_{\alpha}(\alpha \in \mathcal{F})$ is an Archimedean semi－ group．Since η is compatible，and hence a congruence relation S / η is a semigroup．If $\hat{a} \leq S_{\alpha}$ then $z a \varepsilon S_{\alpha}$ 。 Therefore $S_{\alpha}+$ $S_{\alpha}=S_{\alpha}$ ，and S_{y}, η a semilattice．If addition in A defined oy $\alpha+\alpha^{y}=a^{\prime \prime}$ when $S_{\alpha}+S_{a}^{\prime \prime}=S_{\alpha}^{\prime \prime \prime}$ ，then ${ }^{\prime \prime}$ is a semi－ lattice．In the same mainer as for the union of groups one may show S is a union of Archimedean semigroups．It may be shown［5］page 133，that each S_{α} is cancellative，and hence may be embedded in a group．Let G be the group of quotients of S ．Then ${\underset{\alpha}{u}}_{\alpha}$ is the desired union of groups．

The following lemma is due to Head［7］．
Lemma 40 9：If A is a separative semigroup and S is the union of groups in which A is embedded by the canonical embedaing，then $\mathrm{S} \cong \mathrm{A} \otimes \mathrm{Z}$ 。

Theorem 4．10：If A is a semigroup which can be embedded in a group，then $A 2$ is the group of quotients of A if and only if A is Archimedean．

Proof：Since A may be embedded in a group，it is cancellative，and hence separative。 Therefore by Lemma 4．9， $\phi: A \rightarrow A \otimes Z$ is an embedding．Therefore $A \subset A \otimes Z$ up to isomorphism。

Using the canonical embedding above，assume A is Archimedean；then $a \eta b$ for $a l i a, b \in A$ 。 Therefore A consists oi a single elemer：t a_{2} and $S_{\alpha}=A$ ．Therefore G_{α} is just the group of quotients of A ．

If A is not Archimedean；then by Theorem $1,11, A \otimes 0$ consists of at least two elements．Consider the commutative diagram

Since the elements of $A \mathbb{\&} 0$ are the images of the identities
of the groups in $A \otimes Z$, and $A \otimes O$ contains at least two elements，$A \otimes Z$ contইins at least two \pm dempotents and hence cannot be a group

The tensor product of an arbitrary semigroup and the additive group of rationals has ceriain properties which we shall now investigate。

Definition 4．11：A semigroup is called power cancellative if for every $a_{g} b \in A$ and $n \in N, n a=n b$ implies $a=b$ 。

Definition 4．12：A semigroup is called divisible if for each $a \in A$ and $n \in N_{8}$ there exists $x \in A$ such that a $=n \times$

The following iemmas are due to Head $[7]$ ．
Lemma 4．13：Let A be an arbitrary semigroup，and R^{+}the postive rational numbers under addition，then Ast is power canceliative and divisible。 The homomorphism $\Phi: A \rightarrow A \otimes R^{+}$ deiined by $\phi(a)=a \otimes 1$ is an isomorphism if and only if A is power cancellative ard divisible。

Lemma 4．14：Every hemomorphism f：A B of A into a power cancellative divisible＂semigroup B factors uniquely through $A \otimes R^{+}$，ioe；there exists a unique map $\alpha: A \otimes R^{+} \rightarrow B$ such that the following diagram commutes．

Lemma 4．15：Every nomomorphism $f: A \rightarrow B$ of A into a union of groups factors uniquely through $A \otimes Z$ ，i．e．，there exists a untque map $B: A \otimes Z \rightarrow B$ such that the following diagram commutes．

Theorem 4．16：Let R be the additive group of rational numbers．Then for an arbitrary semigroup A ；
（i）$A \otimes R$ is the union of power cancellative divisible groups．
（ii）$\Phi: A \rightarrow A \otimes R$ defined by $\Phi(a)=a \otimes l$ is $a n$ isomorphism if and only if A is the union of power cancellative divisible groups．
（iii）If ω is a map from A into a power cancellative divisible group G ，then there exists a unique map \propto such that the following diagram commutes where $\phi(a)=a \otimes 1$ 。

Proof：（i）k is power cancellative and divisible． Therefore by Lemma $4.13, R \otimes R^{+} \cong R$ 。 Therefore $(A \otimes R) \otimes R^{+} \cong A \otimes\left(R \otimes R^{+}\right) \cong A \otimes R$ ．Therefore by Lemma 4．13， $A \otimes R$ is power cancellative and divisible。

Since R is a group，by Theorem $4.3, A \otimes R$ is a union of groups．Obviousiy each of the groups is power cancellative．

Since $A \otimes R$ is divisible，if $a \in G \subset A \otimes R$ then for each positive integer n ，there exists an $x \in A \otimes R$ such that $n x=a$ 。 But x and a must belong to the same group．Therefore G is divisible，and $A \otimes R$ is the union of power cancellative divisible groups．
（ii）If $A \cong A \otimes R$ ，then obviously A is the union of power cancellative divisible groups since these properties are preserved by isomorphism．

Conversely，if A is the union of power cancellative divisible groups，then certainly A is a divisible semigroup． A is also power cancellative since if na $=\mathrm{nb}$ for $\mathrm{a}, \mathrm{b} \in \mathrm{A}$ ， then a and b mast beiong to the same group G_{α} ．Since this group is power cancellative，$a=b$ ．Therefore by Lemma 4．13， $\theta: A \rightarrow A \oslash R^{+}$is an isomorphism。

Since A is a union of groups，$a: A \rightarrow A \otimes Z$ defined by $\alpha(a)=a 81$ is an isomorphism．Therefore，there exists an isomorphism $\rho: A \otimes R^{+} \otimes Z \rightarrow A \otimes R^{+}$and $\rho(a)=(a \otimes 1)$ （ $1=a$ I 1 ．Since R^{+}is Archimedean，by Theorem 4．10， $\mathrm{R}^{+} \otimes$ $Z \cong$ R。 Let f be this isomorphism and i the identity map on A。 $\Phi=(i \otimes f) \rho$ is an isomorphism from A to $A \otimes R$ ．

$$
\Phi(a)=(i \otimes f) \rho(a)
$$

$$
\begin{aligned}
& =(I \otimes f)(a \otimes(I \otimes I)) \\
& =a \otimes[f \otimes(I \otimes I)] \\
& =a \otimes 1 .
\end{aligned}
$$

Therefore Φ is the required isomorphism.
(iii) Let G be a divisible power cancellative group, and ω a map from A to G. By Lemma 4.14, there exists a unique map $\bar{\alpha}: A \otimes R^{+} \rightarrow G$ such that the diagram

commutes.
Since G is a group, by Lemma 4.15, there exists a unique map ρ such that the diagram

commutes.
Combining diagrams, we have the diagram

Let $\Phi=(1 \otimes f) \vec{\theta} \theta 。 \phi(a)=a \otimes I_{0}$ Hence Φ is the same map developed in (ii). Let $\alpha=\rho(1 \otimes f)^{-1}$, then $\alpha \phi=\omega$, and uniqueness of p and $\bar{\alpha}$ insures uniqueness of a_{0}

The tenscr product of any divisible semigroup, including the rationals, with certain semigroups may be simplified as show by the following theorem and its corollaries.

Theorem 4.17: If S is a semigroup in which every element has finite order, and D is a divisible semigroup, then $S \times D \cong I \otimes J$, where I is the maximal idempotent image of S and J is the maximal idempotent image of D.

Proof: Suppose $s \in S$ and s generates a cyclic semigroup with index m and period n. The set $K_{m n}=\{m s,(m+1) s, \ldots$ (m $+n=1$) sfforms a subgroup and hence contains an idempotent, say ks.

Hence for $d \in D_{0}$

$$
\begin{aligned}
s \otimes d & =s \otimes k d^{8}, \text { where } d=k^{8} d \\
& =k s \otimes d^{8} \\
& =2 k s \otimes d^{8} \\
& =\left(k s \otimes d^{3}\right)+\left(k s \otimes d^{b}\right) \\
& =(s \otimes a)+(s \otimes d)
\end{aligned}
$$

Therefore every element of S © is an idempotent. Hence, by Theorem 1.11.

$$
\begin{aligned}
& S \otimes D \cong(S \otimes D) \otimes 0 \\
\cong & S \otimes D \otimes(O \otimes O) \\
\cong & (S \otimes 0) \otimes(D \otimes O) \\
\cong & I \otimes \mathrm{~J} .
\end{aligned}
$$

Corollary I: If G is a group in which every element has
finite order, and D is a divisible semigroup, then $G \otimes D \cong O \otimes D_{0}$ i.e., $G \otimes D$ is the maximal idempotent image of D。

Corollary 2: If G is a divisible group, and D is a semigroup in which every element has finite order, then $G \otimes D \cong 0 \otimes D$, the maximal idempotent image of D.

Corollary 3: If G is a group in which every element has finite order, and D is a divisible group, then $G \otimes D \cong 0$.

CHAPTER V

TENSOR PRODUCTS INVOLVING THE DIRECT LIMIT

The following development of the direct limit of a set of groups [semigroups] is essentially Bourbaki's [2], pp. 8898, develupment of the direct limit of a set. To extend the theory to groups [semigroups] one need only prove that the sets involved form groups [semigroups]. Although the results of this section through-qheorem-5.11 are known, to the best of the author's knowledge the use of the union of semigroups for a more elementary development-is original. As previously mentioned, the purpose of this chapter" \pm 'to ase the fact that the tensor product distribates over the-direct limit to study the tensor product of an arbitrary semigroup with the rationals mod one. In addttion, several theorems about the direct limit are proven by use of the tensor product.

The following iemma-is due to Bourbaki [1], page 98.
Lemma 501: Let $\left\{S_{i}\right\}$ be a family of groups [semi$1 \in I$ groups]. Then there exists a set S which is the union of. a family of pairwise disjoint groups:[semigroups] \{S $\}_{i \in I}$ such that for every $i \in I, S_{i} \cong S_{i}$.

Definition 5.2: Let $\left\{S_{i}\right\}_{i \in I}$ be a family of groups
［semigroups］。 The set sum（up to isomorphism）of this family of groups［semigroups］is the set $S=\underset{i \in I}{u} S_{i}^{\prime}$ where the S_{i} are pairwise disjoint and $S_{i} \cong S_{i}^{\prime}$ for all i $\epsilon I_{\text {。 }}$

Let I be a preordered right filter，i．e．for all i，
$j \in I$ ，there exists $k \in I$ such that $k \geq i, j$, and $\left\{S_{i}\right\}_{i \in I} a$ family of groups［semigroups］indexed by I ，and assume that for every i，j $\in I$ such that $i s j$ ，there exists a
homomorphism $f_{j i}: S_{i} \rightarrow S_{j}$ such that
（i）$i \leq j \leq k$ implies $f_{k i}=f_{k j} f_{j i}$ for all $i, j, k \in I_{0}$
（ii）For every $i \in I, f_{i i}$ is the identity map．
Let S be the set sum of the family of groups
［semigroups］$\left\{S_{i}\right\}_{i \in I}$ 。 Define a relation η on S as follows： For $x \in S_{i_{x}}, y \in S_{i_{y}}, x \eta y$ if and only if there exists $i \in I$ such that $i \geq i_{x}, 1 \geq 1_{y}$ and $f_{i, i_{y}}(y)=f_{i, i_{x}}(x) . \eta$ is obviously reflexive and symmetric．It is also transitive， for let $x \in S_{i}, y \in S_{j}$ and $z \in S_{k}$ and suppose $x \eta y$ and $y \eta z$ 。 Then there exists $1, m \in I$ such that $l \geq 1, j$ and $f_{l i}(x)=f_{1 j}(y)$ ，and $m \geq j, m \geq k$ ，and $f_{m j}(y)=f_{m k}(z)$ 。 Since I is a right filter，$\exists \mathrm{n}$ such that $\mathrm{n} \geq 1, \mathrm{n} \geq \mathrm{m}$ ，and $f_{n i}(x)=f_{n j}(y)=f_{n k}(z)$ ；therefore $x \eta z$ and η is transitive． Definition 5．3：The quotient $\bar{S}=S / \eta$ with the induced multiplication is called the direct limit of the family of
groups［semigroups］$\left\{S_{i}\right\}_{i \in I}$ with the family of maps（ $f_{j i}$ ）， It is denoted by $\underset{i}{l i m} S_{i}$ 。

Definition 5．4：The set $\left(S_{i}, f_{j 1}\right)_{i \in I}$ is called a directed system of groups［semigroups］．

Let $S={ }_{i} S_{i}$ and assume，without loss of generality， that the S_{i} are disjoint．Now，identify S_{i} and S_{j} if $f_{j 1}: S_{i} \rightarrow S_{j}$ is an isomorphism，and identify i, j ．Let \tilde{I} be the index set with the indices identified and let $\tilde{s}=$ $\underset{i \in \mathcal{I}_{1}}{\mathrm{~S}_{1}}$ 。 \tilde{I} is easily seen to be a partially ordered set．For $i, j \in \tilde{I}$ such that i and j are not comparable，define $S_{(i, j)}=$ $S_{i} \oplus S_{j}$ Since this is the categorical direct sum，\exists maps $g_{i}: S_{i} \rightarrow S_{(i, j)}$ and $g_{j}: S_{j} \rightarrow S_{(i, j)}$ such that for any pair of maps $f_{k i}: S_{i} \rightarrow S_{k}$ and $f_{k j}: S_{j} \rightarrow S_{k}, \exists$ a map $f_{(k,(i, j))}$ ： $S_{(i, j)} \rightarrow S_{k}$ such that $f_{(k,(i, j))} g_{i}=f_{k i}$ and $f_{(k,(i, j))} g_{j}$ $\mathrm{f}_{\mathrm{kj}}{ }^{\circ}$

Let $I^{*}=\tilde{I} \cup\{(i, j) \mid i$ and j are not comparable $\}$ ，and define an ordering on I＊as follows：
$1<j$ if and only if $i<j$ wher considered as elements of \tilde{I} ．

$$
\begin{aligned}
& i, j<(i, j) \\
& \text { (} 1, j \text {) } \leq k \text { if and only } i \leq k, j \leq k \text {. } \\
& \text { I* is a semilattice。 Hence the set } S^{*}=\underset{i \in I^{*}}{u} S_{i} \text { may be }
\end{aligned}
$$ considered as a union of semigroups in the usual manner．

Therefore it is a semigroup. The relation η on S^{*} is compatible, for if $x \geqslant y$ then there exist i, j such that

$$
\begin{aligned}
& f_{1 i}(x)=f_{l j}(y) \text { and if } z \in S_{k} \text { then for } n \geq i, j, k, l_{,} \\
& f_{n n}(z+x)=f_{n k}(z)+f_{n i}(x) \\
&=f_{n k}(z)+f_{n j}(y) \\
&=f_{n n}(z+y) .
\end{aligned}
$$

Therefore, $S_{/ \eta}^{*}$ is a semigroup. But $S^{*} / \eta \cong S_{/ \eta}$; therefore $S_{/ \eta}$ is a semigroup. If the S_{1} are groups, then S^{*} is a union of groups. Therefore S^{*} / η is a union of groups since the image of a union of groups is a union of groups. But since the identities of the various groups are identified, S / η is a group. Hence, the direct limit of a directed set of groups is a group.

The following definition may be found in Bourbaki [2]. Definition 5.5: Let f be the natural map of S onto S / η, and let f_{i} be the restriction of f to S_{i}. Then f_{i} is called the canonical map of S_{i} into S / η 。

Proposition 5.6: For each $1 \in I_{\text {, }}$ let μ_{i} be a map from S_{1} into a semigroup T such that $\mu_{j} f_{j 1}=u_{i}$ for all $i \leqslant j_{0}$ Let $S=\frac{\lim }{1} S_{i}$. Then there exists a unique map $\mu: S \rightarrow T$ such that $\mu_{1}=\mu_{1}$ for all $i \in I_{0}$

Proof: Bourbaki [2] proves the theorem for sets and functions. Therefore it is only necessary to show that μ is a homomorphism. Let $x, y \in S$.

$$
\begin{aligned}
& x=f_{i}\left(x_{i}\right) \text { for some } x_{i} \in S_{i}, \\
& y=f_{j}\left(x_{j}\right) \text { for some } x_{j} \in S_{j} .
\end{aligned}
$$

Assume $k \geq i, j$. Then

$$
\begin{aligned}
& x=f_{k}\left(x_{k}\right) \text { for some } x_{k}^{\prime} \in S_{k}, \\
& y=f_{k}\left(x_{k}\right) \text { for some } x_{k} \in S_{k} .
\end{aligned}
$$

Since f_{k} is a homomorphism, $f_{k}\left(x_{k}+x_{k},\right)=x+y$. Therefore $\mu(x+y)=\mu_{k}\left(x_{k}+x_{k^{\prime}}\right)=\mu_{k}\left(x_{k}\right)+\mu_{k}\left(x_{k},\right)$, $\mu(x)+\mu(y)=\mu_{k}(x)+\mu_{k}\left(x_{k}\right)$. Therefore μ is a homomorphism.

Corollary 1: Let $\left(S_{i}, f_{j i}\right)$ and $\left(T_{i}, g_{j i}\right)$ be directed systems of groups [semigroups] indexed by I. Let $S=\underset{i}{\lim S_{i}}$, and $T=\underset{i}{\lim } T_{i}$. Let f_{i} be the canonical map of S_{i} into S and g_{i} be the canonical map of T_{i} into T. For a $\in I$, let μ_{i} be a map of S_{i} into T_{i} such that the following diagram

is commutative. Then \exists a unique map $\mu: S \rightarrow T$ such that for each $1 \in I$, the diagram

is commutative。
Definition 507 (1): The family of maps $\left\{\mu_{i}\right\}$ mentioned In Corollary 1 is called a directed system of maps from

(ii) The map u in Corollary $l_{,}$denoted $\underset{i}{\lim } u_{i}$ is called the direct impt of $\left\{u_{i}\right\}$

Corollary 2. Let $\left(S_{i}, f_{j 1}\right),\left(T_{i}, g_{j 1}\right)$ and $\left(U_{i}, h_{j 1}\right)$ be directed systems of groups [semigroups], and let $S=\underset{i}{\lim } S_{i}, T=\underset{i}{\lim } T_{i}$ and $U=\underset{i}{\lim } U_{1}$. Let $f_{i}: S_{i} \rightarrow S_{8} g_{i}: T_{i} \rightarrow T$ and $h_{i}: U_{i} \rightarrow U$ be canonical maps. If $u_{i}: S_{i} \rightarrow T_{i}$ and $\nabla_{i}: T_{i} \rightarrow U_{i}$ are directed systems of maps, then $v_{i} u_{i}: S_{i} \rightarrow U_{i}$ is a directed system of maps and $\underset{i}{\lim }\left(v_{i} u_{i}\right)=\left(\underset{i}{\lim } v_{i}\right)\left(\underset{i}{\lim } u_{i}\right)_{0}$

The following theorem is due to Bourbaki [16] page 93.
Theorem 5.8: Let $\left(S_{i}, f_{j 1}\right)$ and $\left(S_{j i}^{\prime}, i_{j i}^{p}\right)$ be directed systems of groups [semigroupsj relative to I, and for i ϵ. I, let u_{i} be a map from S_{i} to $S^{i}{ }_{i}$ such that they form a directed system of maps: Let $u=\frac{11 m}{1} u_{1}$ 。 Then u_{1} is one to one (onto) if and only if u is one to one (onto).

Definition 5．9：The product order of I $x J$ where I and J are preordered right filters is defined by（i，j）$\geq(i \prime, j 1)$ if and only if $i \geq i^{\prime \prime}, j \geq j^{\prime \prime}$ for $i, i^{\prime} \in I, j, j^{\prime \prime} \in J$ 。 Let $\left(S_{i}^{k}, f_{j 1}^{1 k}\right)$ be a directed system of groups［semigroups］ Indexed by I x J with the product order，where $f_{j 1}^{7 k}$ is the map from S_{i}^{k} to S_{j}^{l} 。 For fixed $k \in J$ ，let $g_{j i}^{k}=f_{j i}^{k k}: S_{i}^{k} \rightarrow S_{j}^{k}$ Then $\left(S_{i}^{k}, g_{j i}^{k}\right)$ is a directed system of groups［semigroups］。 Let T^{k} be the direct limit of this directed system。

Let k and I be fixed elements of J such that $k \leq 1$ 。 Then $h_{i}^{l k}=f_{i i}^{l k}: S_{i}^{k} \rightarrow S_{i}^{l}$ is a directed system of maps indexed by I 。 Let $h^{l k}: T^{k} \rightarrow T^{I}$ be its direct limit。 By Proposition 5．6，Corollary 2，$h^{n k}=h^{n l} h^{l k}$ for $k \leq 1 \leq n$ ．Therefore $\left(T^{k}, h^{1 k}\right)$ is a directed system of groups［semigroups］．Let $T=\frac{11 m}{k} T^{k}$ ．Then $T=\frac{11 m}{k}\left(\frac{11 m}{i} S_{i}^{k}\right)$ 。

Let $g_{i}^{k}: S_{i}^{k} \rightarrow T^{k}$ and $n^{k}: T^{k} \rightarrow T$ be canonical maps，and let $u_{i}^{k}=h^{k} g_{i}^{k}$ ．Then for $1 \leq j_{i} k \leq I_{,} u_{j}^{\gamma} f_{j}^{1 k}=u_{i}^{k}$ ，and $\left\{u_{i}^{k}\right\}$ is an inductive system of maps indexed by I $x \mathrm{~J}$ with the product ordering。 Let $u=\frac{1 i m}{i, k} u_{i}^{k}: S \rightarrow T$ 。

Proposition 5．10：$\frac{\lim }{\underline{K}} \frac{1 i m}{i} S_{i}^{k}=\frac{7 i m}{i, k}$ Sk．
Proof：Bourbaki［2］shows $u: S \rightarrow T$ is a bijection，but since u is a direct limit－of homomorphisms；by Proposition 5.6 ，u is a homomorphism；${ }^{-}$Therefore u is an isomorphism． Corollary：Let $\left(S_{i}, f_{j i}\right)$ and（ $T_{k}, S_{l k}$ ）be directed
systems of groups［semigroups］indexed respectively by I and J ．Then $\frac{1 i m}{i, k}\left(S_{i} \otimes T_{k}\right)$ is a group［semigroup］，and $\frac{1 i m}{i_{s} k}\left(S_{i} \otimes T_{k}\right) \cong \frac{1 i m}{i}\left(\frac{1 i m}{k}\left(S_{i} \otimes T_{k}\right) \cong \frac{1 i m}{k}\left(\frac{1 i m}{i}\left(S_{i} \otimes T_{k}\right)\right)\right.$ 。

Theorem 5011：Let $\left(S_{i}, f_{j 1}\right)$ and（ $T_{k}, g_{I K}$ ）be directed systems of groups［semigroups］indexed by I，J respectively， and let $S=\frac{11 m}{i} S_{1}, T=\frac{11 m}{k} T_{k}$ 。 Then $\frac{1 m}{1, R}\left(S_{1} \otimes T_{k}\right) \cong$ $\frac{7 m_{1}}{1}\left(S_{1} \otimes T\right) \cong \frac{\lim }{\vec{K}}\left(S \otimes T_{k}\right) \cong S \otimes T 。$

Proof：Cartan and Eilenberg［3］show that for groups $\frac{1 i m}{i}\left(S_{i} \otimes T_{k}\right)=S \otimes T_{0}$ The proof is identicai for semigroups． The remainder of the theorem follows from the corollary to Proposition 5．10。

Consider the tensor product $A \otimes \otimes^{R} / Z$ where A is an arbitrary semigroup，R is the additive group of rational numbers and Z is the subgroup of integers．Since R / Z is a group，by Lemma 4．2，
$A \otimes R / Z \cong A \otimes R / Z \otimes Z=(A \otimes Z) \otimes R / Z$.
Let $A \otimes Z={\underset{\alpha}{u}}_{\|} G_{\alpha}$ ．Then $A \otimes R / Z \cong\left(u_{\alpha} G_{\alpha}\right) \otimes R / Z$

$$
\cong u_{\alpha}\left(G_{\alpha} \otimes R / Z\right)
$$

$R / Z \cong \sum_{p \in P} H_{p}$ ，where P is the set of prime integers and $H_{p}=\left\{{ }^{a} / \mathrm{p} q\right.$ i $\left.a \leq p^{q}, q \geq 1\right\}$ and addition is mod 1 。 Therefore $H_{p}=\dot{q}_{\mathrm{q}} \mathrm{Z}_{\mathrm{p}} \mathrm{q}_{\mathrm{o}}$

For $q \geqslant q^{\prime}{ }^{-} \operatorname{let} \bar{\varphi}_{q q}{ }^{\rho}: Z_{p} q^{\prime} \rightarrow Z_{p}$ be the embedaing map defined by $\phi\left(I^{q}\right)=p^{q \propto q^{\prime}} I_{s}$ where I^{\prime} generates $Z_{p} q^{\prime}$ and I
generates $Z_{p} q$ 。
Then $\left(Z_{p} q_{,} \mathcal{P}_{q q}\right)$ is a directed system indexed by N, the natural numbers, and $\frac{1 i m}{q}\left(Z_{p q} q\right)=\bigcup_{q} Z_{p^{q}}=H_{p}$. Therefore

$$
\begin{aligned}
A \otimes R / Z & \cong u_{\alpha}^{u} \sum_{p}\left(G_{\alpha} \otimes H_{p}\right) \\
& \cong{\underset{\alpha}{u}}_{u}\left(\sum_{p}\left(G_{\alpha} \otimes \stackrel{\frac{1 m}{C}}{p_{p} q} Z_{p}\right)\right) \\
& \cong \underset{\alpha}{u} \sum_{p} \frac{11 m}{q}\left(G_{\alpha} \otimes Z_{p} q\right)
\end{aligned}
$$

But $\left(G_{\alpha} \otimes Z_{p} q\right)={ }^{G}{ }_{\alpha} / p^{q_{G}}{ }_{c}$ and the following diagram commutes:

where $\mathcal{Q}_{q}{ }^{\prime}\left(g_{\alpha} \otimes I^{\prime}\right)=E_{\alpha}+p^{q} G^{\prime}$ and $\bar{\varphi}_{q^{\prime} q}\left(g_{\alpha}+p^{q} G_{\alpha}\right)=p^{q-q^{p}} g_{\alpha}+p^{q} G_{0}$. Therefore (${ }^{G} /{ }_{p} q_{G}, \bar{\Phi}_{q_{2},{ }^{1}}$) is a directed system, and by Theorem 5.8, $\frac{\lim _{q}}{}\left(G_{p} q_{G_{\alpha}}\right) \cong \frac{\operatorname{in}}{q}\left(G_{\alpha} \otimes z_{p} q\right)$,
and $A \otimes R / Z \cong u_{a} \frac{1 i m}{q}\left(G / q_{G}\right)$ 。
Proposition 5.12 (i): If ($S_{i}, f_{j i}$) is a directed system of semigroups; then the maximal idempotent image of the direct limit of ($S_{i}, f_{j i}$) is isomorphic to the direct limit of $\left(\bar{S}_{i}, \bar{f}_{j 1}\right)$, where \bar{S}_{i} is the maximal idempotent image of S_{i} and $\overline{\mathrm{f}}_{j i}$ is the unique map such that the following diagram commutes.

（ii）If each S_{i} is a union of groups，then $\frac{1 i m}{i} S_{i}$ is a union of groups．
（iii）If each S_{i} is power cancellative and divisible then $\underset{I}{\lim } S_{i}$ is power cancellative and divisible。
（iv）If each＇Si is the union of power cancellative divisible groups；then so is $\underset{1}{\underline{1} \mathrm{~lm}_{1}} \mathrm{~S}_{1}$ ．

Proof：
（i）follows directly from the fact that
$\frac{11 m}{1}\left(S_{1} \otimes 0\right) \cong\left(\frac{1 m}{1} S_{1}\right) \otimes 0$.
（ii）follows immediately from Lemma 4.2 and the fact that by Theorem $5.8 \frac{11 \mathrm{~m}}{1} \mathrm{~S}_{1} \cong \frac{11 \mathrm{~m}}{1}\left(\mathrm{~S}_{1} \otimes \mathrm{Z}\right)$

$$
\cong\left(\frac{1 i m}{1} S_{i}\right) \otimes z
$$

and therefore by Lemma $4.2, \frac{\lim }{i} S_{i}$ is a union of groups．
（1i1）If each S_{1} is power cancellative and divisible， then $S_{i} \cong S_{i} \otimes R^{+}$by Lemma 4．i3．Therefore by Theorem 5．8

$$
\begin{aligned}
\frac{11 m}{1} S_{i} & \cong \frac{\lim }{1}\left(S_{i} * R^{+}\right) \\
& \cong\left(\frac{11 m}{i} S_{i}\right) \otimes R^{+}
\end{aligned}
$$

and again by Lemma 4．13，等要 S_{1} is power cancellative and divisible。
（iv）If each S_{i} is the union of power cancellative
divisible groups, then by Theorem $4.17, S_{1} \cong S_{i} \otimes R_{0}$ Therefore, by Theorem $5.8, \frac{1 m}{1}\left(S_{1}\right) \cong \frac{11 m}{1}\left(S_{1} \otimes R\right)$

$$
\cong\left(\frac{1 i m}{\vec{i}} S_{i}\right) \otimes R
$$

and by Theorem 4.17, $\frac{7 m}{1} S_{1}$ is the union of power cancellative divisible groups.

We may now show an ajternate method for obtaining the group of quotients of a semigroup.

Let I (A) be the quotient of A by the finest congruence which identifies ali idempotents of A. The following Lemmas are due to Head [7].

Lemma 5.13: If a semigroup A may be embedded in a group, then $I(A \otimes Z)$ is isomorphic to its group of quotients.

Lemma 5.14: $I(A \mathbb{Z})$ is a group.
Theorem 5.15: If A may be embedded in a group and $A \otimes Z \cong \mathcal{X}_{\alpha}$, then the group of quotients of A is isomorphic to $\frac{\operatorname{Inm}}{\alpha} G_{\alpha}$

Proof: It was shown in the discussion preceding Definition 5.5 , that ρ_{g} the defining relation for $\frac{11 m}{\alpha} G_{\alpha}$ is a congruence relation when $\left\{G_{\alpha}\right\}$ is a union of groups.

Hence by Lemma 5:13, we need only show that p is the finest congruence relation wilch"identifies all idempotents。 Suppose ~ is the defining relation for I (A \& Z) and that for
$a \in G_{1}, b \in G_{j}$ â $p b$. Ther, there exists $k \geq i, j$ such that $f_{k i}(a)=f_{k j}(b)$. For $c \in G_{k}, a \circ c=f_{k i}(a) \circ c=f_{k j}(b) \circ c 。$ Let $y: \psi_{\alpha}^{U} G_{a}+I(A \otimes 2)$ be the natural mapping, then $f(a) \cdot f(c)=f(a c)=f(b c)=f(b) \cdot f(c)$. Since $I(A, B)$ is a group, $f(a)=f(b)$. Therefore $a \sim$ o. Hence p is the finest congruence relation which identiries idempotents, and by Lemma $5.13, \frac{\lim }{\alpha} G_{\alpha}$ is isomorphic to the group of quotients of A 。

－REFERENCES

1．No Bourbaki，E＇léments De Mathematique；Theorie Des Ensembles，Chapitre 2，Hermann，Paris，1963．

2．No Bourbaki，Eiéments De Mathematique；Theorie Des Ensembles，Chapitre 3，Hermann，Paris，1963．

3．H．Cartan and So Eilenberg，Homplogical Algebra， Princeton University Press，Princeton 1956．

4．A．H．Clifford，Semigroups admitting relative inverses，Annals of Math，Vol．42（1941）ppo 1037－1049．

5．A。H．Clifford，and G。Bo Preston，The Algebraic Theory of Semigroups，Vol．I_{0} Amer．Math．Soc．，Providence 1961。

6．L．Fuchs，Abelian Groups，Pergamon Press，London 1960．
7．T．J．Head，Homomorphisms of commutative semigroups as tensor maps，Jnl。Indian。Math．Soco，Vol．24，part 1 （1960），pp．231－234。

8．T．J．Head，The tensor product of a group with a semigroup，（submitted）。

9．T．J．Head，The tensor product of semigroups with minimai ideals，（submitted）．

10．E．Hewitt and H．S．Zuckermann，The l_{1}－algebra of a
 （1956），pp。70－79。

11．E．So Ljapin，Semigroups，Amer．Math．Soc．，Providence 1961．

12．So MacLane ${ }_{\text {，Categorical algebra，Bull．Amer．Math．}}$ Soc．，Vol：${ }^{1} 71$（1965），pp．40－106。

13．D．G．Northcutt，An Introduction to Homological Algebra，Cambridge University Press，Cambridge 1962．

14．I．Redei，The Theory of Finitely Generated Commutative Semigroups，Pergamon Press，New York 1965.

15．J．J．Rotman，The Theory of Groups，An Introduction， Pergamon Press，London $\overline{1960}$ 。

16．To Tamura，Examples of completely exclusive direct product，Portugal．Mathos Vol． 23 （1964），pp．41－54．

17．To Tamura，Minimal commutative divisible semigroups， Bull，Amer．Math．Soco，Vol．69（1963），pp：713－716．

18．T．Tamura，and N．Kimura，On decompositions of a commutative semigroup Ködai Math．Sem。Repo，Vol。 7 （1955）， pp．83－84。

