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TENSOR PRODUCT OF SEMIGROUPS
CHAPTER I
INTRODUCTION

The tensor product in a category has been developed for
some time., In particular, much work has been done on the
tensor product of abelian groups and of other modules. To the
best of the author's knowledge, however, T, J., Head [7] has
‘been the first person to explicitly study the tensor product
of a semigroup. The purpose of this paper is to extend the
work of Head and to generalize Some theorems relating to the
tensor product of a group. These results will then be used
to study the structure of £he tensor product of an arbitrary
semigroup with certain specific semigroups.

In the remainder of this chapter the definition of the
tensor product of semigroups is given and compared to the
categorical definition of the tensor product,

The purpose of the second chapter is to discués and

compare varlous definitions of the direct sum. of semigroups.
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We are especially concerned with whether or not the tensor
product is distributive over a given direct sum,

A well known theorem for modules states that "If P is
a projective module, A and B are modules, and f: A»B 1is
a monomorphism, then i®f: P&®A-P®B 1is a monomorphism,
where i is the identity map on P." The third chapter con-
tains two generalizations of this theorem for semigroups.

In Chapter IV we are concerned with the tensor product
of an arbitrary semigroup with a semigroup which can be ex-
pressed as a union of groups. The first‘theorem of Chapter IV
shows that if C and D are semigroups which can be expres-
sed as a union of groups, then C&D 1is a union of groups.

A union of groups may be obtained in which the groups are
formed by tensoring the groups of C with the groups of D.
This union of groups is isomorphic to C&D if and only if
either C or D 1is a group. This theorem often makes it
possible to restrict the discussion of semigroups to that of
groups., One particular advantage of this restriction is that
for several forms of the direct sum, the tensor product does
not distribute over the direct sum in the category of semi-
groups but does when restricted to the category of groups.

The remainder of Chapter IV is concentrated on the study

of the tensor product of an arbitrary semigroup with certain




specific semigroups including the rationals under multiplication,
the rationals under addition, the integers under multiplication,
the integers under addition, and cyclic semigroups. Theorem

4,10 gives necessary and sufficient conditions for the tensor
product of a cancellative semigroup S with the additiveAinte-
gers to be isomorphic to the groups of quotients of S, This
theorem is then used to show Lhat the tenser prcduct of a semi-
group with the additive group of rational numbers is a union

of power cancellative divisible groups.

Theorem 4,17 shows that the tensor product of a semigroup
with elements of finite order and a divisible semigroup is
isomorphic to the tensor product of their maximal idempotent
images.

Chapter V was motivated by an attempt to determine the
structure of the tensor product of an arbitrary semigroup and
the factor group consisting of the group of rationals mod one.
The chapter begins with the development of the direct limit of
a directed sét of semigroups. The results are then used to
solve the above problem. In addition the author shows that
the maximal idempotent image of the direct limit of a directed
set of semigroups is isomorphic to the direct limit of the
directed set of idempotent images of the respective semigroups.

In a similar manner it 1s shown that 1f each semigroup in a
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directed set of semigroups has the property of being a union
of groups or has the property of being power cancellative and
divisible, then the respective property'is retained by the

direct limit,

In this paper, all groups and semigroups will be assumed
to be abelian and additive unless otherwise stated. The )
letters Z, N, R, R+, and P will denote respectively the semi-
groups of integers, positive integers, rational numbers,
positive rational numbers and non-negative integers. Zn will
denote the cyeclic group of order n. If A 1is a semigroup,
A° will denote the semigroup formed by adding 0 to A unless
it already contains an identity, in which case A° = A, Iy
will denote the semigroup Au{OA} where 0A is an identity
of A- but is not contained in A. In general, the letters
A, B, and C will denote arbitrary semigroups. B8(A,B) will

denote the free semigroup formed from the set of symbols

A x B = {(a,b) | aeA, beB}. ) will denote the natural map from

B(A,B) to A®B (see below).

For arbitrary semigroups A and B, let ~ be the finest
congruence relation on B8(A,B) such that (a; + a,, b)~(a;,b)
+ (ay,b) and (a,by + by)~(a,by) + (a,by). The relation exists

since it is the intersection of all congruence relations satis-

fying the above conditions,
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Definition 1,i: The tensocr product A®B of A and B is

defined to be the guotient semigroup B8{A, B)/~,

In the same manner as for groups [13], one may show that
if f: A-A' and g: B-B' are homomorphisms, then f® g:
A®@B— A'® B' defined by (feog) (a@b) = f(a)® g(b) is a homo~
morpnism. In the following development it wili be shown that
the category of semigroups together with the tensor product
satisfies the definition of a category with multiplication,
but does not satisfy the definition of a tensored category.:
This is due to two "weaknesses"™ of the category of semigroups.
One is that semigroups need rot contain an identity. The other
is that homomorphisms of semigroups in general do not have

kernels in the group theory sense, The following definitions

r

may bte found in [i2;, page 33.

Definition 1,2: Let C and D be categories and ¢ a map

from C to D such that objects and maps of C are mapped respec-
tively into objects and maps of D. Then ¢ 1is a covafiant
functor if for every map feC, the following conditions are
satisfied:

(i) If f has domain ¢ and range c¢', then ¢(f) has
domain ¢(c¢) and range ¢(c').

(ii) If f 1is an identity, then (f) is an identity.

(1i1) If gf is defined, then so is 6(g)°e(f), and



#(gf) = o(gle(f),
The following definition may be found in [12];, paé¢ 75,

Definition 1.3: A category C 1is called a category with

~multiplication if there exists a covariant bifunctor 8: CxC~C,

A\
that is, there exists & such that:

. Pl _ ,
(1) 1,915 = 1, 35 where 1),

!
lB’ and lA@B are ide.vntity

maps on objects A,B, and A®B respectively.
(11) (£'® g') (f&g) = (' £)&(g' g), and in addition C
has an object K, called the ground object and isomorphisms
e: K®A*A, e': A®K~A, a: AQ(BBC)*(A®B)®C, and
c: A8B-BE a.

Theorem l.4: The category of semigroups together with the

tensor prcduct forms a category with multiplication.

Proof: The proof that 1A¢.a 1z = 1A8B’ and that
(f'@ g') (f®g) = f'fgg'g follows immediately from the defini-
tion of f@ g.

Head [7] has shown that A®N = A and so N satisfies the
definition of a ground object. The proof that A (B&C) =
(A®B)®C and (A®B) = (B®A) is identical to that for groups
[131.

The following three definitions may be found in [12], pages
63-67 and 78.

Definition 1.5: An additive category ¢ 1is a category
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such that for objects a, b, ¢, deC each set hom (a,b) has a

pilinear map
+: (hom(a,b)) x (hom(a,b))+hom(a,b)
such that hom (a,b) together with this operation is an abelian
group and
(1) (gl t g, = gf + g, and h(gl + gz) = hg; + hg,
for all maps g,: b-c, g,: b+c, : a»b and h: c-d.

(ii) There is a null object N, that is, there exists N
such that for all objects ceC, hom(c,N) and hom{N,c) contain
iny one map.

(1ii) For every pair of objects ;s and a2, there exists

an object b and four maps P15 Pos il, and i,

Py P
altzs o) ;Fr a2
1 T2

such that

(a) p; iy = la{ Py 1, = 132, i) p, *3;pp = Lo

It follows immediately that the category of semigroups
satisfies (i) and (ii); however, in general (iii) is not satis-
fied unless a, and a2 contain identity elements. The
category of groups, however, is an additive category.

The following definitions of kernel and cokernel are gen-—

eralizations of the kernel and cokernel of group theory. In



the usual definition of kernel and cokernel of group theory
however, the kernel of f would be the object K and the coker-
nel would be the object M. In category theory the emphasis

is on maps rather than-aqbjects.

Definition 1.6¢: If a category C contains a null object N:

(a) A kernel of amap f£3 A»B is a map k: K+A for some

object KeC such that

(1) fk = 0 where 0 is the unique map such that

diagram N
/N
. X —————pB

0
commutes,

(ii) Iffh = 0, then there exists a unique map g
such that h = kg,
(b) A cokernel of f: A+B is a map t: B-M such that
(1) tf =0
(ii) if uf = 0, then there exists a unique map g
such that u = tg.

Definition 1.7:

{(a) An additive category C is an abelian category if
(1) Every map of C has a kernel and cokernel,

(ii) For every mar Xk such that ka = kB8+a=8 for all

a,BeC .
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and every map u such that ¥u =Su —»¥=§ forall ¥, § €
k is a kernel of u if and only if u 1s a cokernel of X,
(iii) Every map £ can be written as k-u where kK
and u have the same properties as in (ii),

(t) A tensored category C is an abelian category to-

gether with a ground object K and a covariant bifunctor
@: C x CoC such that it preserves epimorphisms, and for maps
a,c,e and e' as given in Definition 1.3, the foilowing diagrams

commute:

3=
(03]

(1)

8-> &
o\ %

w

)]

e

x>
oo

N\ -~ a - ”\ c ~
(11) AS (BRc) — (A®B)BC — CH(A®B)

(111) K&(B&C) —> (KBB)® C

a
(iv) A8 (K®C) —>(AZK)&C
18 Lc@l
A
Nz e®€1l A ~
ABC —— s (K@M EC
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The category of groups; together with the tensor product;
is a tensored category. The category of semigroups is not a
tensored category since it is noct an abelian categcry; How-
ever, Head has shown that the tensor product of semigroups pre-
serves epimorphisms, that isy, if fs A ~=+C is an epimorphism,
then i&f: B®A+BR®C is an epimorphism where 1: B-B is the
identity. The diagrams above also commute for semigroups as
well as groups., Hence the "weakness" of the tensor product of
semigroups is in the category; not in the definition of the
tensor product, Many properties of the tensor product of groups
may therefore be generalized to the tensor product of semi-
groups if they do’not involve abelian category properties such

as kernel and cokernel,

The proposition and theorem iisted below will be used in
Chapter II to construct counter examples as well as being basic
to the theory developed in later chapters,

Proposition 1.8:

(a) Given a bilinear map o :B(Ay,B)*C, there exists a map

£ such that the following diagram commutes
o
8(A;B) = C

rx

7$ o)
A®B /<

(b) If AZA* and B=B%, then A®B=4A'®B’.
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_{e) 1In the subcategory of groups, A®BSA®B where AEB
is the usual group tensor product,
The usual tensor product of groups is defined as follows:
For groups B and C, let 2(B,;C; be the free group

generated by B x C, Let Y(B,C) be the smallest subgroup con-

taining all element of the form.

(11) (b,cl + cy) = (byeq) = (b,cz) for by, by, byEB, ¢, ¢,
02€Cc The tensor prcduct of B and C 1s defined to be
Z(B,C/Y(By,C). Notice that the basic difference between the

group tensor product and the semigroup tensor product for groups

is the use of the free group Z(B,C) instead of the free semi-

group B(B,C).
Define an ordering < by asb if and only if a + b = a,
The following theorem may be found in [5], page 24,

Theorem 1.9: A commutative semigroup is a semilattice

under the above ordering if and only if every element 1s an

idempotent.

The following definition may be found in [5], page 18,

Definition 1,103 If p is a congruence relation on S
\

then S/e is said to be a maximal idempotent image of S wilth

property P if S/o has property P and every homomorphic image
\

of S with property P is the homomorphic image of S/o.
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T, Tamura and N, Kimura [18] have shown that every semi~

group S has a maximal idempotent image S/e where eis the gon-
gruence relation defined by ae b if and only if a + ¥ = nb
and b + y = ma for some x, y&S and n,; meN,

The following theorem is due to Head (7],

Thecrem 1,11t If 0 41is a singleton semigroup, then

]

S®0 = S/p-
Corollary: Let I and J be maximal idempotent images of

A and B respectively; then the maximal idempotent image of

A@B is isomorphic to I J,

(A®0)% (BE 0)

L]

Proof: (A®B)& O

ne

i®eJ,



CHAPTER II

DIRECT SUMS OF SEMIGROUPS

Although the direct sum of groups has been defined in
many ways, the definitions are equivalent ur to isomorphism.
This, howe%er, is not true of semigrcups. Many of the defini-
tions now in use for semigroups are not in general equivalent,
although many of these same definitions are equivalent when
restricted to groups. Several of the usual properties of
“the direct sum cf groups are not retained by the various def=-
‘initions of the direct sum of semigroups., For example, in
some of the definitions of direct sum listed below, semigroups
A and B may not be contained in their direct sum, even up to
isomorphism., In other definitions, if A znd B are groups,
then their direct sum may not te a group. In many cases the
definition of direct sum is not strong enough to insure that
elements of the direct sum of semigroups A and B are uniquely
expressible as the sum of elements of A and B, In the defini-~
tions listed below, only definitions (9)9(.11)g and (12)

satlisfy the categcrical definition of the direct sum,

13
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In general, none of the definitions of direct sum of semi-
groups contains all of the usual properties of the direct sum
of groups listed above, and so the choice of definitions of
direct sum must be made to suit the need.

The concepts cf internzi and external direct sums are
somewhat confused by the previously menticned fact that semi-
groups are not necessarily isomorphic to subsemigroups of
their direct sum. In this paper; however; the direct sum of
semigroups A, B contzined in a semigroup D will be considered
internal if elements of the direct sum of A and B can be ex-
pressed as elements of A, Bs or A + B. Otherwise the direct
sum will be considered external. Hence in the following def-
initions of direct sum, definitions 1, 2, 5, 6, 7 and 9 are
internal direct sums, while the rest are external direct sums.

The following is a list of various definitions of the
direct sum, most of wnich are ccmmonly used.

Definitions 2.1:

(1} If A and B are disjoint subsemigroups of a semigroup
D, then A @ B = {a ¢ blach, beB}.

(2) If A and B are disjoint subsemigroups of a semigroup
D, then A ®, B = AuBu(A + B).

(3) If A and B are semigroups then A Q% B =

{(a,b)|aech, beB} where (a,b) + (c;d) = (a + ¢, b + d).



15
(43 If A and B are semigrcups then A §; B = C if there
exists maps D,y C+A and Py C~E such that for every semi-
group S and pair of maps I: S-A and g: S-+B, there exists
a unique map hg¢ S-C such that f = pAh and g = th°
(5) If A and B are semigroups contained in a semigroup
Dy then C = A €_ B if every ceC can be expressed uniquely as

5
a +b for agh, beB,

(6) A § B = C for semigroups A and B contained in a
semigroup D if every ceC can be uniquely expressed as a + b
for aeA, beB, and A,B are isomorphic to subsemigroups of C,

(7) If A and B are subsemigroups of D, where D contains
identities for A and B, then A 67 B = C if every ceC can be
uniquely expressed as a + b where aeA®, beB°,

(8) For semigroups A and B lét D be a semigroup contain-
ing % and B as subsemigroups., Then C = A 68 B if every ceC
can be uniquely expressed as a + b where aeK, beg, and a # OA
when b = Op.

(9) If A and B are subsemigroups of a semigroup D such
that A, B, and A + B are mutually disjoint and elements of
A + B are uniquely expressible as a + b for acA, beB, then
A®; B = AuBu(A + B).

(10) For semigroups A and B, A €, B = C if there exist

maps



16

fls E+C g1t Cra
f24 B+C g,° C-+B
such that
(1) fl \OA) = Oc,fzxoB) = OC
(ii) for all ach, g, T3 {a) = a; g, Ijla) = OB
(1ii) for all beB; g, £, (b) =D, g £5(b) = 0y

-+
-y
)

(iv) for all ceC; fy 8, {¢c) 5 By (€) = c.

(v) If every element of A sﬁ B8 can be expressed uniquely
as a + b for acA, beB, and every element of fj (A) & f, (B)
can be expressed uniquely as a + b for a ¢ fl(A) and be fz(B)c

| (11) For semigroups A and B, A @11 B = C if there exists

maps f: A+C and g: B-C such that for every semigroup H,
and pair of maps &: A-H and 8: B+H; there exlists a unigue
map h: C-»H such that hf =o¢ and hg = B8,

(12) For semigroups A and B, A €, B = {(a;0}] ach, beB
ané (a,b) # (0, Og)lwhere addition is coordinatewise.

Definitions 9, 11, and 12, extend easily to an arbltrary
family {Ai}ieI of semigroups as follows:

(9¥) Let {A;}ijer be a family of semigrcups contalned in

aa

<)
a semigroup D, then z A; = C 1f every ceC can be uniquely
iel

expressed as.

€ . aik for aikeAiko

e 3

1
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1~
4 -
z,v Ai = C
el

that for every semigroup H and family

(11*) For a family of semigroups {A*}icI R
B i

if = maps fys A,7C such
A;~H, there exlsts a unique map h: C+H such

of maps °(i:

that the following dizgram ccmmutes.

s
A Lo C
{
lh
H
(12%¥) For an arbltrary family of semigroups {Ai}ieI s
ZEZAAi = {[ai]iEI { a; ¢ Ai and a4y = OA: fcr all but a

eI
positive finite number cf 1} and addition is coordinatewise,

A semigroup A is called a pseudo=-direct

Definition 2.2:

f: A-C and

summand of a semigroup C if there exist maps

g: C»A such that gf: A~A 1z an isomorphism, The map g is

called a retraction map.

Proposition 2.3:

(a) For semigroups A and B, A5, B = A 93 B, If A @5 B

exists, then AS5 B = A §; B = A€ B =AY B, Conversely,
if A@3 B=C, then3 A*S A, B'Z B and D‘, such that A', B'cD'

and C = A* €5 B'ZA" 85 B'= A*' §; B'= 4" &, B,

(b) For semigroups A& and B, if A<g B exists then
6
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(¢} For semigrcups A and B; A @5 B exists implies A @6 B

7

exists if and only if there exist homomorphisms ¢1: A+B and
¢,: B*A, When A &; B exists, A 96 B=A 65 B,

(d) A &g B exists if and only If A 69 B exists, and
A e8 B = Aeg B,

(e) A ®g B exists if and only if A elo B exists and
A.SB B=A @Ho B,

(f) For an arbitrary family of semigroups {Ai}ieI’

®,6 . &
7oA = 10 Ay
iel iel
(g) For an arbitrary family of semigroups {A4}j.y, if
8 ) . @ ~
1 A; exists; then ) A; = 2 Ay S X@Ay
iel B 12 lel el

Conversely, given a family of semigroups {Ai}isl’ for each iel

there exist A'j = A, and D' such that At;<DY, 17 A': exists
1 (el 1
ie

@ o~ or ~
and §  A', F ] OAY, T ] A
iel iel 1el

Proof: (a) To show A®; B = A&y B, define py: A &5 BrA
by Py (a,b) = a and py: A 93 B-B by p, (a,b) = b. These are
obviously homomorphisms. Let o: S=+A and p: S+B be arbi-
trary homomorphisms. Then define ¢: S-A 63 B by

$(s) = (=x(s), B(s)), Then ¢ is the unique map such that the

following diagram commutes,



(1) s —2—321

A @p—>B
P

A 63 B satisfies the definition for A&, B. Let S be a
semigroup also satisfying the definition for A@u B. By def-
inition of A&, B, given f: A@3 B+A and g: A’c':‘3 B-+B,
there exists a unique h such that the followlng diagram

commutes.,

In diagram (i) let Py = fy Py = 8y &= fDA’ g= FB then

1
03
©
"
)
w
o
©

(’A=pl¢=f¢=pAh¢andf>B=p2¢

In the following diagram,

€a

e

—3 B

Es

|

fe =

W<

the uniqueness of hé implies h¢ 1s the identity map. Similarly,
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one may show ¢h is the identity map on A@3Bo Therefore, ¢ is
an isomorphism and A®3B = A8, B,

The proof that the existence of A §zB implies A @gB =
A@BB = A®B =4 ®,8 1is obvicus.

Assume A @3B = C, Then,.let A'=A 6303, and B'=0, @38,
where OB and OA are respectively external identities of B and
A, Then A' = A, BY = B, and every element of A ®;B can be

written uniquely as a' + bf for a' ¢ A'y, b' ¢ B', Therefore,

[{K]

since A'@gB' is defined, A"ESB' 2 AT@B' Z A'@B' 2 AGB.

But A*@5B' = A ©3B, and so A' and B' are the desired semigroups.
Let D' = A @8Bo

(b) The proof of (b) is obvious,

(¢) The proof of (c¢) has been shown by Tamura [16].

(d) If A ®gB exists, then AnB = ¢, If a = a' +b for
some a, a' € A, b € B, then a + Og = a' + b contradicting the

uniqueness of expression of sums of elements of A and B,

Therefore A n (A + B) = ¢. Similarly B n (A + B) é. Hence

A®9B exists. Define ¢: A@8B-A @9B by

¢(a + Og) = a

]

¢(0A +b) =b

#(a + b) = a + b for aeh, beB.

This is easily seen to be an isomorphism and so A ©gB = A BgB-
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Converswly, assume A®9B exlists, then AnB =¢= Let a + Oy be
the formal sum of a and Og, and 0, + b be the formal sum of Oy
and b. Then Aelan BGlOA =¢a Also a + b # a + Og and
a+b#0, +b for aeA, beB; and hence a + b is uniquely ex-
pressible in & + B, Therefore A 68 B exists and A @8 B =
A @9 B.
{e) Assume A $8 B exists, Define
g1: A @BBU{OAJrOB} *Kbygl (a + b)
= a

By A@SBU{OA+0B}-'Bbyg2(a+b)

= b
fi: A=+ A 8 BUYO, + Og} by £, (a)
=a + 0Op |
for B+ A 68 BVIO, + 0Og} by f, (Db)

= OA + b,
These maps trivially satisfy definition (j) and hence A elo B
exists and it is easily seen that A $8 B =4 910 B. The

converse is cobvious,

~ @
(f) To show Z®A = } A,, define o :A, > Z@A.
1% Ay 3Ry 1
1eI ! el ieX
by %.(a.) = [a,] . where a, =0, if 1 # j§.
¢ J 17 ger Lo

@
Given a family of maps f,: A; = H, define t?: ) A, + H by
iel
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A -
gj([aij ) = 2 fi (ag). Then Qis obviously the unique
iel ‘
ay # oAi

A
map such that ?“i = fi for all ieIl, and the following

~i
B — T A

(1) \ iel

ZQDAq exists since Z(aAi satisfies the definition, 'Let H
ieI - 1€l

diagram commutes:

(D)

be a semigroup also satisfying the definition for Z Ai
iel

)
and identify fy with f,. Then by definition of ) A, there
jeI

exists n such that for all ieI, hf -°‘ and the following dia-

gram commutes: (i) A.._.........)

ieI

Therefore, > = hfi = hSOo& for all i; and uniqueness of

the map h @ such that hg’o(. = Xy VieI in the diagram

A .____;____, an

S 1;2

jel

(iii)

@
implies that h ¢ is the identity on ) A,. Similarly
iel
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one may show gh is the identity on D, Therefore@:is an
| @ . _©®

isomorphism, and Z A = i Ala
€I ¢ 1€l g @

(g) To show that & A, = 2 A4, define Q:

@ 2@4 n i€l i€l

‘. 3 -
2 A, A by?(kfi aik) [ai] cer? where a; OAi

iel iel 4 €l

unless i = i, for some k., This is the desired isomor-

k
phismo
@
Conversely, if Z@Ai exists let C = § Ays let A'j
ieI iel
= {[ai] . | aJ.e AJ. and a = OAiif i #3jl. Then each
iel
. ~
element of C may be expressed uniquely as Z a‘ik for -
k=1
Ld @
a'. € A'., ,and A', ¥ A,, Therefore | A! exists and
1k K ® i feT T
c =7 Aty = 77A g0
ieI iel

Definition 2,4: A direct sum ] is said to be pre-

served by the tensor product if A & } B, ) AgB, .
- ' fel eI

Definition 2,5: A direct sum | is said to preserve

&

isomorphism if A, = A'l for all ieI implies Z A = Z AY
i i i i
el jeI

Definition 2,6: A direct sum ] is said to weakly

preserve isomorphisms if Ai = A"i for all 1 ¢ I implies that
if § A', is defined, then I oAy = 1Ay
iel ieI . 1el

Definition- 2.1 (1) of the direct sum is used by Ljapin

(11], among others. Its structure would seem to be too weak
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to be of much use, and has the following disadvantages:

(1) In general, elements of A @l B are not uniquely
expressible as a + b for a ¢ A; b € B, In particular consider
the case where B = {e} and a + e = e for all a € A, -

(ii) The direct sum @1 does not even weakly
preserve isomorphisms., For example, if AY = {OB} and A = {e}
where e + b = e for all b ¢ B, then A = A? but A’ @l BB
while A @l B = A,

(11i) In general A and B are not isomorphic to subsets
of A @l B, If B = {04}, then A él'a = A,

(iv) The sum ®, is not preserved by the tensor
product. -For example, if A = P; ti¥® non-negative integers,
B = P~ the negative integers, and C = '{O}, a singleton
semigroup, then (A 61 B)® C = {0}, since A® B = Z, and it

follows from Theorem 1.1l that Z @ O = 0, However, by

n

Theorem 1,11, it also’ follows that P'® O L, where L = {a; b}

anq_ multiplication is defined by éa-= ag a+b=2b =D,
P'O{d} = {0}o Therefore (4 el B)®C# (A8C) @l (B®@C).
(v) When ‘restricted to the: category of groups,
A @1 B can never exist since A and B cannot be disjoint,
The direct sum defined in definition 2.1 (2) has the same
disadvantages given for definition 2.1 (1) except that A and B

are subsemigroups of A 9, B.
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Definition (3) is the most commonly used form of the
direct sum, Some of its theoretical uses may be found in [5].
The direct sum @3 preserves isomorphisms and when restricted
to groups, it is the usual direct sum of grours. A and B are
not in general isomorphic to subsemigroups of A @3 B however,
and 63 is not ‘preserved by the tensor producto. To show the
latter, let A = {0} and B = {0} be singleton semigroups. Let
C = {a;b} where 2a = a, 2b = é + b = b,

By Theorem 1,11, (A 83 B)& C = C and

(A®C) &, (B&C) = (0@ C) &5 (0®¢C) EC @3 C. Therefore

3
(A 8;,B)@CF(A@C) 93 (B@C).

Definition 2,1 {4) is the categorical definition of the
direct product {1:]. Since in this case it is restricted to a
finite family of semigroups, we shall also consilder it as a
form of direct sum. - Since by Propositicn 2.3(a), for
arbitrary semigroups A and B; A @3 B = A eq B, A &, B will
have the same properties,

The form of direct sum given in Definition 2,1(5) i1s used
by Redei [14]., Since when A @5 B is defined, it is isomorphic
to A @3 B, $5 weakly preserves isomorphisms. In general
A ©3 B and A '65 B will have the same properties,

The direct sum described by Definition 2,1(6), is also

used by Redei [14], It has the same advantages and disadvane-
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tages as those given for Definition 2.1(5) except that A and

B are contained in A &g B up to isomorphisms. If A" and B’
are isomorphic images of A and B in A 66 B, this does not
however; imply A'@, B* = A @6 B even if AY es B' exists,

For example, let A = N&; O and B = O$3 N, Then A @6 B =
N&; N, Let A' = {(a;a) | a € N} and let B* = {(a, 2a)]a €Nl
Then A’ = A and B' = B, and A'f, B' =¢ . However, N &; N
contains no direct summands since (1, 1) -cannot be expressed
as the sum of two elements of N 63 N,

In general, Definition 2,1(7) is not equivalent to any of
the others since identities are added only if A and B do not
alreadyv contain identities. If A and B contain identities,
then Definition 2,1(7) is equivalent to Definition 2,1(6), If
neither A or B contains an identity, then Definition 2.1(7)
is equivalent to Definition 2,1(8). Thus. the identities in
A° ar'1d B° may be internal or external, and may or may not be
the same el_ement;, The direct sum 67 does weakly preserve
isomorphisms, but is not preserved by the tensor product as
may be shown by the same example as for definition 2.1(c).

A é? B does contain A and B up to isomorphism, and when A and
B are groups, A 67 B is the usual direct sum,
| By Propositions 2,3(c¢) and 2.3(d), Definitions 2,1(8),

(9), and {10) are equivalent and hence these direct sums will



27
have the same properties, By Propositions 2.3(c), (d), (e)
and (f), when"A@g B, A 99 B and A @lo B are defined, they
are isomorphic to A @;; B and A &, B. Since A 911 B and
A 8, B preserve isomorphisms, A 83 B, A @ B, and A &, B

weakly preserve isomorphisms,

In general, all five of these direct sums of A and B
will, when defined, have the same properties. A and B are
isomorphic to subsemigroups of direct sums under each of the
above definitions. "When-A and B are restricted to groups,
none of these definitions-of direct sum is the usual direct
sum of groups. The direct sum is preserved by the tensor
product” in-each case, as will be shown by the next theorem,

Definition 2,1(k) is the categorical definition of direct
sum and may be found in [12]. Definition 2.1(1) 1s the
annexed direct sum used by Tamura [17], and the augmented
direct sum used by Head {T7].

Theorem 2.7: For an arbitrary semigroup B and an

arbitrary family of semigroups {A;};e7s B® Z® A, ¥ Z (B®4,).
el Ael

Proof: Let A = Z@A . Define Q,: A+ A, by
ey A J J
" €
QDJ( P 34\1) = a; 1f 3y = J for some i

te}

= 0,4 otherwise,
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Let £ AA - A be the embedding of A into A, Define F:

n

z@(B®A)»B®( Z@A)byF(Z (by & 2, ))- ! (isf, )
xel @ j-l@ j=1 n
(by®a, ). Define (;-e B@Y A, - ]7B®A by @(b@L aj) =
0 ] n el knel j

(1@@ )(vbe ] a ). Then gr( ] (b,@a Z (1®
s Oy 3=1 nj AR '*J =844
r ) (b, @a. )= T (b,®ea, ).
NI Ty m Ty

Therefore F is a monomorphism, and since it is onto, it is an
isomorphism., Consequently B ( ZOA ) = § (B®A)\)°

Throughout the remainder o%eihis papéif internal direct
sum will mean Definition (9%), and direct sum or externmal
direct sum will mean Definition (12%) unless otherwlse
indicated.

These forms of the direct sum are used frequently
during the remainder of this paper primerily because they
are preserved by the tensor product. The main exception
will be when taking the tensor product of a semigroup
with a group. In this case Definition 2.1 (1) is used
making it possible to use the theory of groups, since this
definition when restricted to the category of groups is the
usual direct sum for groups. It will be shown later that,
when taking the tensor product of a semigroup with a group,
one need only consider the problem of taking the tensor
product of two groups. oSince the direct sum given by
Definition 2.1 (1) is preserved by the temsor product when
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restricted to the category of groups, the main disadvantage -
to using this definition is removed,

InDefinition 2.2, A is called the pseudo-direct summand

because there need not exist B such that AAB =¢and

A+ B =C, For example, let A = {a,b} where 2a = a,

b+b=a+b=>b, Define C_;:A + {a} byg’f(b) = a, Q(a) = a,
Then {a} 1s a pseudo-direct summand, but there exists no B
such that {a}n B ={ and {a} + B = A,

When the discussion is restricted to the cé.tegory of
groups, A is the direct sqmmando ‘Properties of the pseudo-
direct summand are given by part (i) of the following
proposition and its corollary. Part (ii) is a generalization

of 1ts corollary.

Proposition 2,8:

(1) If A is a pseudo-direct summand of C; then
A®B is a pseudo=direct summan'd of C&B.

(i1) Let AcF, where F is a free semigroup, If
there exists gg F+ BCF such that A is the set of
elements left fixed by ?, then A is a free semigroup.

Corollary: A pseudo=-direct summand of a free

semigroup is a free semigroup,
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Proof':
(1) If A is a pseudo-direct summand of C, then
there exist maps f: A - C and g: C> A such that gf: A~ A
is aﬁ isomorphism. Therefore (g®i) (f®1): A@B » AQB is
an isomorphism and f@1i: A®B - C®B; g&i: CRB * AQB are

the required maps.

(i1) Let {Bi s eI} be a basis for F, where I is
well ordered. Let {BJ ¢ jJe€ J < 1} be the elements of the

basis contained in A,

let 2 ¢ A, wvhere a = n_8
a o
Qv nil
= n, g, + n, 8
o1 3 k=1 k
and g, ¢ A, B eF\A°a=»(a)=Zn )+Vn (8 )
3 k 4 by Pl by kY

]

Z. ng By T Z Tk Pgy).

”
For the sum Z=1 nko‘sk)’ select nk € {nk} such that
nx = max {my}. Let 9(s£) = Z < then

n ?(3 ) = ,Z By n B Since this is part of the sum
XA A | P
Z n, By and nx is maximal pp =1 or 0 for each p. Therefore

@(Bg) = Z Bp o DBut this is true for all 8., where n, =ny,

and since there are only a finite number, Qmust permute them.
Continuing this process for the remaining ny < nk we find
9 permutes the g,
A set (B s} seS is called a permutation cycle generated by
? if for each s, s!' € S, there exists n such that gyn (s) = s,
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If {Byi , . g 1s such a permutation cycle, let Cp = ) ﬁkﬁ
” keXK
= iks ] ] 5 = v S WE
where m = min i{k:k € Ki. Then a jgl ny Bj + Enm %nwgere Cme A

for all my, and the BJ and Cm are linearly independent,

Therefore A is a free ccmmutative semigroup.
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TENSOR PRODUCTS INVOLVING FREE SEMIGROUPS

In general if A, B, and C are modules, and A < B, this
does not imply A C <« B & C. However, if C is a projective
module (see below}, then the above statement is true., In
this section, we shall show analogous results for semigroups.

Definition 3,1: A module P 1s said to be Erogective

if given any diagram oI moduies

P
s
p—L—>E

where f is an epimcrphism, there exists a homomorphism
h: P+A such that fh =-g;

The following theorem is well known and may be found
in [13], page 67,

Theorem 3.,2: If P is a projective module, A and B

are modules, and f: A > Bis a monomorphism,Theni @ f:
P® A+ P® B is 2 monomorphism,
Define a projective semigroup as follows:

Definition 3.3: A semigroup P is said to be projective,

if given any diagram of semigroups

4

Dy

A——3
32



33

where f is an epimcrphism, there exists a homomorphism
hsy P -+ A such that fh = g,

To prove the analogy of Thecrem 3.2 for projective
semigroups, we first prove the following lemmas for free
semigroups.

Lemma 3.,4: Let F be a free commutative semigroup
generated by the set of symbols {A;}ycy. Then F e 2: N19

- el
where N. = N,
i — -

Proof: The proof is immediate from the definition
of a free semigroup.

Lemma 3,5: If f: A - B is a monomorphism and F is
a free semigroup, then f @ i: A@F » B® F is a monomorphiéma

Proof: Using Lemma 3.4, Proposition 1.8(c), Theorem

2.7, and Theorem 1,4, we have

n

A@FEA® (] N)
iel
1 (A® N
iel 1
) A,, where A, T A,
1e1 * 1

n

n
I

Similarly B& F = ] B, where B, ¥ B. Let 0: A®@F »
- lel
T
1A, and ¢: B®@ F~» | B
I 1 9 JeI 1
1s a monomorphism; we may identify A with f{A) € B, Consider

the diagram
© peF —E» 3 A
Jrse 63 g

8@F -L%B;

be these isomorphlsms. Since f
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where g is the embedding map c¢f | A into ] By, If

el 3 1el
elements of Ai are identified with their images in A under
n n
the map @, then Q(a® j 1; ) = I a, ,where a, =a,
p=4 p=1 'p p

Similarly, if the elements in B‘L are identified with

n n
their isomorphic images in B, then Sﬁ(b@ ) A ) s ) by
p=l1 "p p=l °p
where b = b,
1 n n _
Therefore g @ (2 @ ] A, ) =] a = ¢ (£ Q1)
o i i
p=l_ p p=1 'p

n
(a®] )y ). Since g@= P (f € 1) for the generators of

p=l p
A ® F, the above diagram commutes. Since §, ?,1 and g are

o
monomorphisms, f & 1 must be a monomorphism.

Lemma 3,63 A semigroup is projective if and only if
it is a free semigroup.-

Proof: Assume P 1s a projective semigroup. Let {;ei}iel
be a set of generators of P. P always contains a set of
generators since P itself is such a set., Let F be the free
semigroup generated by the set of symbols {Bi}iei" Define f:

n n
F + P by f(kzl hik Bik) =k§1 nik ecik for nik e N, f1is
obviously an epimorphism, Let es P » P be the identity map
on P, By definition of a projective semigroup, given the

diagram

ie
F———p
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there exists a map h such that fh = e, Therefore P is a
pseudo=direct summand of F, and by the Corollary to Proposition

2.8, P is a free semigrocup.

Conversely, let F be a semigroup and {Bi}iel its set

of generators. Given the diagram

F
e
a5

where f is an epimorphism, let bi =g (81)0 Then for each
by, 1eI, select a, & A such that f(ai) = bia Define

m m
h: F—»A by h( ] ny 8;) =] n, a  Clearly, his a
k=1 k k k=1 k ko

homomorphism, and fh = g, Hence F is projective.

From Lemma 3,5 we have the following theorem:

Theorem 3.7: Let P be a projective semigroup. Then
irf ?: A - B is a monomorphism, i@? s P® A+ P® B is a mono=-
morphism,

If the free semigroup F in Lemma 3.5 is replaced by a
free semigroup with identity,; say F: then in general, the
lemma is no longer true, In fact, for fixed A;,B, the lemma
is true if and cnly if the homomorphism«: AQ O » B& O
defined by «x(a & 0) = f(a) ® ¢ is a monomorphism, §

Toi)rove this we show that ps A F » A @ F¥, defined by

p(2a® f) =a@f, and J: 480~ A®F*, defined by g(aig 0) =
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é.i® 0, are monomorphisms., It is then shown that the images
of e and 9 are disjoint., The theorem follcws from Lemma 3.5.
Lemma 3,8:; Let A be an arbitrary semigroup and F* a
free semigroup with identity 0, then themap a:,p: AQO~ AGP*
defined by g(aiQO) = aiQ 0 is a monomorphism.
Proof; Let f: F*¥ - (0 be the zero map. Then
~1@®fs A® F¥ ~ A® 0 is a homomorphism, and (131‘)9 is the
identity map on A@OO-- Therefore ¢ is a moncmorphism,
Lemma 3.9: Let A be an arbitrary semigroup, and F¥*
be the free group F with identity O, Then o; A®F » A@F*
defined by P(a ®@r) = a®r is a monomorphism,

Proof: Let Uk B(A, F*) » (A®F) u {OAQF} be defined by

p(asd) = a®@A if » §0
= Opgp 1f * = 0, and
n n
(1 (a,, 2)) = § mia, 1)
9i=1 1" 3217 U4

Since v 1s bilinear, by Proposition 1.,8{a) there exists
a map %: A@F* » (A®F) v {0y p! such that x(a®r) = 2@
if » # 0 and «(a®0) = Oy gp. Clearly s is the identity map )
on A®@F, Therefore ¢ 1s a monomorphism,

Lemma 3,10: Let F* be a free semigroup with identity O.

Considered as elenents of A LF¥,
' i=1

] I~

a,0%, # Za?j‘g-o for
240 35 e &y 2y # 0. .

Proof: Let ® be the semigroup A @B S, where S = {0,1}

and addition is defined by 0 + 0 =0, 1 + 1 =0+ 1 =1,
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Let 9: 8(A,F¥) ~ %k be defined by

>
~—
It

(a,,0) 1f 2y = 0
. = (aig
n n -
1 ’ 3
and 9}(121 (ags 3;)) # 1-5:191 (ays Ay). @is easily shown to

1) otherwise

be bilinear, and so by Proposition-1.8(a), there exists a
map ¢ such that the followning diagram is commutative,

8(a,F¥) & &

N 7

AQ@F*
n n
Since ( ] (a,®x,)} = § (a,,1), for ail i, # O, and
190 1 17 Y

1=1 - i=1

m m

%«( ] (ajeo)) = [ (a}, 0),
j=1 j=1 J

m

n
)
i= 3=1

3
“

Theorem 3,11: Let w=:A > B be a monomorphism, F* be the

free semigroup F together with an identity O; and
9: A®0 » B®0 be a homomorphism -defined by
9(a®0) = x(a)@0, Then x®1 : A@F* - B@®F* is a
monomorphism if an only if 9 is a monomorphism,

Proofs Assume g’ is a monomorphism. Let

00
i

A®F > AQF* be defined by o (a® 1) = a@®1; and

°a
pg : BEF » BOF¥ be defined by py(0 1)

H

b®x*, By

Lemma 3.9, both of these maps ére'monomorphisms, Let I pe

the identity map on F, By Lemma 3.5, @I : A@F » B®F
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s a monomorphism., Hence, by the commutativiiy of the

diagram xgT
AQF ~eemeup BSF

(x@1i)i hg T is a monomorphism,

Let had A80 » A®F* be defined by

‘gA (2@0) a®0, and ':;B: B@0 + B@F¥ te defined by

78 (b@0) = b®0., By Lemma 3.5, these maps are

monomorphisms, By hypothesisggis a monomorphism, Hence,
by commutativity of the diagram

A80 —L-’BQO

i 7B
A@F*_ﬁil.,B@F*

o(@i is a monomorphism, By Lemma 3,10,

A®O0
x®i) (A@F)n (we@i) (AQO0) ='§b . Therefore x®1
is a monomorphism, The converse is cbvious,

Corollary: A®F* = (AGF) 3, (A®O0),

From Theorem 1,11, and the discussicn preceding it, we
conclude that A4 ¢ B implies A®0 < BQO if and only if for

all a,;, a, ¢ A, the exlstence cf x4 ¥ € B, Nyy N, € N such

1

that al + x nl a2

a, +y =n,8a
2 2 1
implies there exist u, v € A, 1’139 n, € N such that

a +u=n3a2

Ny
+
<
n

nh alo
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In generail, A < B does not imply A®0 < B®0, For
example, et A = P, the ncn negative integers, and B = 7,
the set of integers. Then & ¢ B, but by Theorem l.1l1,

{0, 1} where ¢ + 0 = 0, 1+ 0 =1 + 1 = 1, while

ne

A®D

1}

B®0 {0;e Theref‘ore. AU # B®O0,

Although it is not true for the category of semigroups
that A € B implies A0 < B&0, it is true for certain
subcat'egoriés including the category of groups, the category
of Archimedean semigrocups and the category orf idsmpotent
semigroups.

Let A and B be semigroups such that A « B and
A®0 < B®0, and iet ~ be the equivalence relation on B
defined by the natural map Q: B-B@C0. Let is,} be the
set of equivalence classes, and define addition between the
equivalence classes to t;fe the usual addition of the quotient
semigroup. Then by the discussion preceding Theorem 1.11,
it follows that the semigroup {B8,} 1s the maximal idempotent
image of B.

Similarly, iet p be the equivalence relation an 4,
defined by the natural map cp A+~ AQ0. Then {Bi n A}i!d is

the set of equivalence classes of A defined by p. With

addition defined by {8 nr A} + {8 n A} {8y ¢+ 82) n Al
~. o .

Z
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it forms the maximal idempoctent image of A, This motivates

the folliowing definition:

Definition 3,12: If A < B implies {,D: A80 » B®0

defined by (,D(a®0) = a®0 is an isomorphism, then B retains

idempotent images of A, In symbols we shall indicate this by

A g B,

Proposition 3,13: If A < B and B< C then A < C,

Proof: The proof-of this propositicn follows immediately
from Definition 3,12,

One might at this point consider-the possibiltiy of
restricting the discussion to semigroups-having this-property,
except that this property is not necessarily preserved by
homomorphisms. For example, let B = (Nlé N2) U {ONle N2}
where Ny, N, = N, Let a: N, » N and 8: N, > N be these
isomorphisms. Define o N1 + P by

X(ny) = &(ny) for n. ¢ N

1
x(0 ) =0,
N1
Define 8: N2 > P by 8 (nz) = 8(ny) for n, e N2
B {0 ) =0
N,

Define f: B h 2oy f (nl +n,) = «(nl) - B(nz)

by (O ) = 0,
N en,) * 0

Then £ (B) = Z, Let A= (N, ®_ 0.1V {0 } be considered
: 175 N2 Nl@Nz
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as a subsemigroup of B, Csrtainly A ¢ B and A is closed
under addition. Then f(A; = P, the non negative integers.

Using the Corollary to Theorem 3.11, Proposition 1.8(b),

the fact that N, & Ny 5] Oy and Theorem 1,11, we have

> N,
(v, 0 ) vio, ..
1V5 N, Nl@Ib

[Nl u ON1]®O
(N1®0) u {ON1® 0}

{l,E}Where0+0=6c95,+1=l+l=1°

1

n

AQO r1®0

IR

n

ne

Using Theorem 3.11 and its Corollary, together with
!

Theorem 1,11, and Proposition 1,8(b), we have

B®O [(N&N) u {0 ]®0
1 2 Nl@N2

i

]

[(N1® o)e(N2® 0)] v ({oNl@ N, }1®0)

), where T is an idempotent,

iz

(18T) v (OIQT

Therefore A0 < B&0 up to isomorphism. But by

1]

Theorem 1,11, f(A)®0 = P®0 = {1, 0} and

f(BY®0 = ZQ®0 = 0, Hence f(B) does not retain idempotents

of £(A).



CHAPTER IV l
TENSOR PRODUCTS INVOLVING A UNION OF GROUPS

Definition £,i: A semigroup S is-cailed a union of

groups if S =¢ G , where for each e« A, Ga is a semigroup
GEA
of S,
Head has shown that the problem of determining the
tensor prcduct of a group with a semigroup may be reduced to
determining the tenscr product of two groups, This is

accomplished by using the fact that for an arbitrary group G,

G ®Z =G, Therefore, for a semigroup S, S® G = SP(Z @ G)

e

(S22 Z)® G, However S & Z is-a union cf groups. Then,
using a2 theorem by Head, restaved here as part of Theorem 4,3
the problem is reduced to that of finding the union of groups
formed by tensoring groups of the union of groups S @ 2
with the group G,

It has been shown {5 that if S is a union 3f groups,
then S may be expressed uniquely as a union of pairwise dis;joint
groups., Hereafter-in-this paper it will be assumed that
when a semigroup is expressed as a union of groups, these
groups are pairwise disjoint.

Clifford {43 has shown that if S is a union c¢f groups
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{me}MA9 it may ve expressed, up to isomorphism, in terms
of a semilattice and a set of homomorphisms between the

various groups as follows:

Let I be the set of idempotents of S, Obviously the

identities of the groups {GQEQEA are i1dempotents of S,

Moreover these are the-only idempotents of S since a group
can ccntain only one idempotent, I is an idempotent semi=

group and hence z semilattice under the operation 2z defined

- 1

by " i, 2 iBfor ag 8 ¢ A1f and only if 1, + 1 =1, ",
If g2 ij39 then for a, ¢ G_ , it can be shown that

~ ° - m =
a, +1, € G,, Define G o G, = Gg bY Fpgalay) a, * ig.

B 8 B
This is easily seen to be a homomorphism; and if iqa 18 zib,,

then 9!8 98@ = Ozu" ?‘m is the identity map.

o

Conversely, lst: {Ga} be a set of pairwise disjeint
ach
groups indexed by the semilattice A, Suppose that for each
a, B € A such that (',‘24'89 there exists a homemorprism

Pgot Gy * G such that 1f (2 g 2G5 then Goo Pgo™ Pyys

and 9“15 the identity map on G,. If S is the union of
these groups; and for a ¢ G, b « Ggy @ *+ D is defined

to be §, (a) + 7,2(b), wnere ¥ = inf ((,(); then S is a
semigroup, Using Head®s terminoiogy [8], call S the union.
of groups {G, | aeA} related by the family of homomorphisms

{@gqt G, > Ggi o, Beh, a+ 8= 8},
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The following lemma is due to Head [7]
Lemma 4,2: For an arpitrary semigroup £, C® Z is a

union of groups., Furthermcre C 1is a union of groups if and

Co

n

only if ¢® 2

Let C be the uniocn of groups {GS i s ¢ S8} related by
the family of homomorphisms {?évs 3 GS ~ G, | s, s ¢ S,

s +s’ = s'} and D be the union of groups {H, | t e T}
related by the Ifamily of homomorphisms foggrs Hy = Hge
t, t' e T, t +t¢ =¢'},

By tensoring the groups in C with groups in D, and
tensoring corresponding homcmorphisms, we obtain a semi-
group U which is the union of groups G, 8 H, [ s € S, t ¢ T},

The homomorphism in the fcllowing thecrem is a
generailzation of ore giver by Eead 8.,

Theorem 4,3: If C and D are respectively a union of

groups, then C & D is a union of groups, Furthermore,
there exists an epimorphism 8: C® D -~ U é&efined by
0le, ® d.} = cg® dy for cg ¢ Gy dy ¢ Hgo This map is
an isomcrphism if and only if either S or T is a singleton
set,

Proof; Using Lemma 4,2, we have

{CeD®z=CL(DRL)

=C®D,




X
Therefore, dy Lemma 4.2, C D is a urion of groups,
Since C and D are union of groups, each element of
C x D may be written uniquely as an ordered pair (_c‘:s9 dt) for
cseGSCCanddteH;CDq
Define ©« C x D - U by f‘ics9 dy) = cg @ dy e
Gs@' Ht < U,
Forv=1%¢+t¥
£ (e, Ap + dpv) = T {cgy ayg () + aypy {dgv))
= & [avt(dt)" + "vt““rdt")]
— {dt)) + (cg ® By 0 (dgv))

= leg & a .

"

- ‘o L
(Fgs @ oyglleg & dp) + (P @ aygy)

0

leg @ Agv)
= (cg @ dt} + (cg ®dyy)
= f (csg, dt) + {csg dt\))o
Similarly, { may be shown to be linear in the first
variable, Since f i1s bilinear on the elements of C x D, it
may be extended to a biiinear mapping from B8 (Cy D) to U by

St s t

defining f (} ng (eg® 3p)) = i ngy £ (cg ® dy) for
H >
€ N, Therefore, by Prcposition 1,8(a), there exists a

Nst

unique map &: C € D » U such that the follcwing diagram

commutes

¥
8(Cy; D) —— U

\.\ };’
~

# D

~
/
c




whare 7{¢
/s

-'?)(-::s & 4.

W

& dye Certainly A 1is an

S

epimerphism. Therefore @ is the required homomorphism.
Head {8 has shown that when C or D is a group, © iIs an
isomorphism. Conversely, suprose
C =1ia, bi, where 2t = b, 22 = a + b = a,
B = ic, di, wnere 2d = d, 22 = ¢ + d = ¢,
E= {u, v, w, x, ¥y! where u + u = u, a+w=uw+w=Ww,
Wt v =X, vtu=v4ev=ov,
x+tws=x 4+ x=x+u=x,
X+ v=x, 2x+y=y+y-=
y+tu=y, v+ty=w+y=y,
C, D and E are respectively the semilatctices shown below.

10 rd
l
| i
‘a Ve
Define f£: B(C, D! ~ E by
fia, ¢ =y, £ {a, a;
fib, ¢r = v, £ {b, &)
ana extend linearly tc siC, D)

compu

Therefore, by

-~
v

@ L - E such that

l:)t

G:

"

d
,"/
\r(_'-" il \/W
\ Ve
X
1
¥y

Wy
1

it ran be shown by dirers

ration that f is a tiiinear map.
roposition 1.8{a;, there exists a map

he follicwing diagram commutes.
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f
g{C;, D) /> E
A
N
C® D
Since f{a, ¢) = y and f{a, d) + f(b, ¢) =w + v = X,
gJ(ae ¢) =y and 5'0[(8.8 d) + (b ® c¢)] = x and so
a®d+b®c#a&ec,
Assume S and T each contain at least two elements, and
define homomorphisms Z: C -~ C and m¢ D » D as followss-

Choose s, s’ ¢ S and t; t' ¢ T such that s > s'; and t > t',

For g e G, let 2(G,) = (b 1if o 2 5,
La otherwise,

For h, € H,, let u(hB) =fdif g 2 ¢t,

{

{c otherwise,

g B?

% is a homomorphism, for if &, o' 2 s; a + a' 2 5, and

(g, + B,y) = b =b +Db=7Tg,) *+Tg,) 31if o' 25 anda <s

or not comparable, then o + a¢*:< s and
T(gy * 8) =a=a+b=7Tg,) + Teg,')o If a', a <sor
not comparable to s, then a + 2' < s and

T(g, +g)) =a=a+a=Tig) +7Tg')

a
Similarly one may show that u is a homomorphism.
Identify a and'b respectively with i, and is’ the

identities of‘ng and Gg, Identify c and d respectively with

i.. and i, the identities H;, and K. Then T leaves ig:s

t'




I

and is fixed while y leaves it and it' fixed,
Let ¥* be the embedding map of {is, igs into C and u¥* be
the embedding map of {it’ it" } into D. Then teo t* is the
identity map on E and uu® 1s the identity map on ‘55
Therefcre (vt ® u}{t¥@® u*):s C®D~>C®D is
the identity mar on C® D. Hence t% ® u¥® is a monomorphism
and C @ D 1s embedded in C @ D. Therefore i_ ® 1.,
may be identified with b @ ¢, 2 ® d,
and a ® ¢ respectively, and hence, since a ® d + b @ ¢ #
a® c, we have ise: it" + is"® it # dgy Q it”
But considering iS ® 1.4, 1,,® i, and igy ® ;. as
elements of U, we have
(1, @ 1.,) + (15 @ 1.)=(Pgvg @ agvy) (15 @ 1)+ Pg . Qaguy)
(150 ® 1p)
=(is“® it") +1,,® 1es
=19 @ 1y
Therefore © is not an isomorphism.
The following Corollary is due to-Head- [8].

Corollary: Let S be a semigroup, and G a group. If

S€2Z=vG, then S®G = u(G_® G).
o a a

ne

Proof: S @G =S8 (G®2Z)

mn

S&(Z& G)

nt

(S@Z2)®@G
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nt

(g GG)Q G

I

v (Ga® G).
We are now ready to restrict cur theory to certain

specific cases,

(1) Consider, for example, the tensor product A® Z

where A is an arbitrary semigroup, Let A® Z =v Ga, Then
a

ne

A®Z g (Ga @ Zn)o But for a group G, it has been shown

1w

that G @ Zn G/’nGo Therefore A @ Zn £ gGa/nGa,o

Hence tensoring by Zn "shrinks" ‘the groups forming the
unlion of groups:: ‘Tensoring'by'zl, i.e., by an idempotent
element "shrinks" each-group-into its-identity. Therefore
A® 0, the maximal idempotent image of A is isomorphic to
the subsemigroup consisting of the identities of the groups
of AD Z,

(2) If G is a group such that nG = O, then, it has been

-

shown (6] page 4 that G = Z@Z a where %1, p; 1s a prime
1eT Py

number; and 2, ¢ N, Therefore, if uG, T A@Z,

A®G= (yG)H@ G
a

114

/~
u(G, @ Zw
> i<l

Z_a.)
Py

Notice that although the-direct sum-above is not

preserved by the ‘tensor -product in the category of semigroups,

it 1is preserved in the category of groups. Since for all
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a € 75(, 1 eI, G and Z_a are groups, it follows that for
< pii
all o ¢ &, G & (}Za) = ZQG Y Z, 2;. Therefore
@ i Py 1 i

Vi, @] Z, a)"UZC;G 7z > i° But, since

¢ i Py 1 1
G, ® ij_a g C’:x/\pi i)G .o We have
‘ @ ~ ti "®G a
v o, @ 7y 8) £ Y ] (Co/(pyP)e), and so
i

ON
A6 =y 1 (“(p,206 ).
i
(3) If G is a finitely generated group, then it has

been shown [6], page 40, G = Z z a, & Z Z,,y where
. p, t 3 (J)
‘ i=1 "1 J=1
Z(J) 2 7 for all j. Therefore, for an arbitrary semigroup

A, 1f A® Z = y G_, then
m

9 ( z®z a; O z®z
1=1 Pi1 j=1

A®G=E V(G

RC c

a

Since this direct sum is preserved by the tensor product

in the category of groups, for all a, we have

@ R
G ®@( ) z2,a &, § g= 1T ((e®z2_ a)®
Pyt 331 3V 4L e g B3
ne
z(euez( y)e Therefore
3=1 J
m@ o) n@
U[G@(ZZae 12 )]EE(G®Z 2,)@, |
11 Py 1 T3 450D =1 ° 1 3 521

a
(G, @z(‘j))° But for all 1, s, G & zpiai = Gu /(3 1)Gos

and for every J, a, G ® Z(,j) >~ G, Therefore

y @ ¢ ® =
A®G = (121 “(’(piai)G @3 § Gj) where G 3 Gac
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Let A be an arbitrary semigroup, Q the semigroup of
rational numbers under multipliication,; Q¥ the subgroup of
non zero rational numbers, and Q+ the subgroup of positive
rational numbers. It can be shown [15] that QF is isomorphie
to P(x), the additive group of polynomials in x over the
ring Z, The isomorphism ¢3 P(x) = Q% is defined by

n N : n
¢ ( z a;x ) = I piai, where p; is the 1th prime integer

i=1 i=1
greater than-one,

However P(x) £ = 7,

e
v
=
lag
(1]
’1
(1)}
o
]

Therefore A® Qt T4 ® Zmzi, Since ZQZ
1l i=1
)

n is a group,

A® Z@z
1=1

n
=
&
[ e ]
FaY

Il t~1 8

1 1

ue
&

Ten® [z,

Letting A®2z Y o_, we have

a
(A®2Z) ®© szi— L
i=1- i=1

n
C
[»]
St
&

[
o3

[

I

ne

@
A

?(Gu eizl 1)
~; 10
= Eizl (Ga® Zi)o §

yxy 19
G. Then A @Q* VY ] 6y .

i=1

n

Let Gia = Ga® Zi

Let G = {«=1, 1} be considered as a subgroup of Q.
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ot 2 g ®3 Qt. Since G = Z,; we have Q¥ 2z, ®3 Qt,

Therefore A ® Q¥

e

+
A ®(z, ®3 Q7).

Since Q* is a group,

n

A®(z, @5 a%) = AQ[(Z, &3 ") ®Z]

[

A@(z@(z, @5 qh)
(AQ7) @ (2, &; ")

ne

n

(v 6,) @ (2, B3

e
c

v (6,82, & ah)

0
c

<+
v [(c,®z) & (6,82M)]

G Q@
v [( a/cua)$3 151 Gy, Je

i
<

Since Q = Q* v {0}, we have A® Q = A ® (Q* v 0). By
a proof similar to that of Lemma 3.10 one can show that
A®TQ% u;C) T (A Q &) 63 (A®0)., Therefore
A®Q = urlfe/p) © E®G ] & (A®0)

a a 3 121 Ja 3 °

Let Z be the semigroup of integers under multiplication,
Z* the subsemigroup of non zero integers, Z+
the subsemigroup of positive integers, and A an arbitrary
N, Then zV 2 J N under the

=1 1

= n
map ¢: z° ~ ] N, defined by o( I p;"1,) = ] a, » where
1=1 k=1 k k=1 k

n

semigroup, For i ¢ N, l=t Ni

th prime greater than one, Therefore

©

pi is the 1

A@zt AR ] N,
i=1 o
by tensor product; A@®zt= § A ® N;. Letting
i=1

and since this direct sum is preserved

A

e~ 8

Ai=A®N15A9wehaveA®Z+3 g0

i=1



53

€ G = {=1; 1} considered as a subgroup of Z,

[

As before,
Then Z¥ = G *33 zt, ¢ ¥ 2,, and so we have
A® z¥ ¥ A @ (Z, 653 z*). Since @3 1s not preserved by the
tensor product in the category of semigroups, we cannot
proceed as 1n the previous example,

Since Z = Z* y {0}, by a proof similar to that of Lemma

3,10, we have A ® (2% ¢ {0})= (A ® Z¥) @3 (A ® 0), Therefore

A® Z = (A Q%) @3 (A®0),

At this point, we may partially determine the structure

of the tensor product o?'an arbitrary sémigfoup A and a cyclic

semigroup S.

If S is an infinite cyclic semigroup, then S ¥ N and
hence A®S = A4,

The following description of a finite cyclic semigrolp -
may be found in {5]. If S is finite and generated by s,
then there exists g; r € N such that'rs = (r + q) s. Let
m be the least integer for which there exists a q such that
ms = (m + q)s. The integer-m is called the index of S, Let
n be the least integep:such that m s = (m + n) s, The integer
n is called the period of"S.

Let Smn be the cyclic semigroﬁp with index m and period

Ne Let Km = {mS,'(m +l) s; co0ocy (m +n "l)s}o Kmn is

isomorphic to the cyclic group'Zna




¢t

The following lemma is due to Head [9].

24

noYo < i = S.
Lemma H.3: gmncg) Spiny {min {mgm*}, ged {n,n’1}),

a--

Let s generate the semigroup Smn n and s generate
b

S = Smna Define ¢: Spn.on * Zn by o¢(s) = 1 and extend

W »

linearliy, Since K
mn,n

o

an there exists an embedding
ol Zn - Smn,n and a3 Zn > Zn is an isomorphism., Therefore
sois (1@ e ®1)(1 @2 ®i) 2 A ®Zn®smn ~AQ® Zn® Son®

Hence 1 ® « @1 : A RZ ®S +» A®S @ S is an
n mn mn

mn,n
embedding.
= & o
By Lemma 4,4, 2 =2 € S and smn9n® S.n ¥ Spne
let W; 2 +2 S __and ¥: S__ - S ® S__ be
n n mn mn mnn mn

defined respectively by W(l) = 1 ® s and v(g) =5 ® s.
These maps are onto, and hence one=to=-one. . . and ¥ are
isomorphisms, Therefore AQZ - AQZ &3 and

n =" n mn

A®S ® 3§ “A®S . Let f:A®2Z -A®Z @S
mn ,n mn mn n n mn

and g:A @ S ® S » A ®S be the respective
mn mn

mn,;n

isomorphisms.

Thus A ®Zn is embedded in A ® smn’ say by 8, and

©(a @ 1) gli ®a ®1) f{l2a® 1)

gi®c ®1)(a ®1@5s)

gla ® o(1) @s),
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i

Letting ps = a(l), we have gla ®a(1} @ s) = gla ® ps @ §)

i

glpra @ s ®S)

pa @ s

a @ ps

a ®a(l)o

Therefore Im 0 = A @ K

If a € A generates & finite cyclic subsemigroup A¥ with
index M and period'n; then'a'® § as an-element of A®S .
generates a cyclié*semigroap with index-less than or equal to
min(m,m). This follows from the fact that
o3 -A* @ SmnﬁA @ S, defined by s (a® §5) = 2a® 5 is a
homomorphism.

If A¥* = A, then by Lemma %.4, a @ § has index equal to
min(fi,m). In general the index may be less than min{(W,m).
Suppose a = (m + k)b for some b € A, where (m + k)s is the

idempotent of Smno Then

1]

a ®s (m+_k)b®s
= pHh @ (m + k)s

=b @ [(m+ k)s + {m+k)s]

b @ (m+ k)s +b & (m+ K)s

2a®@ s +a®s

and a2 @ s has index one,




<

Ut

Similar resuits foliow 1f a geénerates an infinite cyclic
Subgroup.

Although we already know that for an arbitrary semigroup
S, S@ Z 1s a union ol grecups we are now able to establish
necessary and sufficient conditions cn S so that S ® Z is the
group of quotisnts of S [see below],

Definition 4.,4: A relation R on a semigroup S is said

to be compatible or stable if for every a, b, ¢ ¢ S, aRb

implies {(a + ¢) R(b + ¢jo

Define a reilation < on the elements of S as follows:
a < b if there exists x ¢ S such that b + x = a, This
relation 1s easily seen to be transitive,; and compatible,

Definition L.5: A semigroup S 1s sald to be Archimedean

if for every a, b ¢ S, there exists a positive integer n and
X ¢ S such that na = b + X,

This is equivalent to saying that S is Archimedean if
for every a, b ¢ S, there _exists a positive integer n such
that na s b, This definition would coincide with the
corresponding definition of an Archimedean-ring if < were
replaced by 2, but the abtove definition for semigroups is

standard.

The following definiticns may be found in [5].
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Definition 4,5: 4 group G is called the group of
quotients of a semigroup S, if G contains S, and every g ¢ G
may be expressed as a ~ bt for a; b € S,

Definiti

ncrmCaiate

(o]

n 4,7: A semigroup S 1s sald to be separative

if for every a, b ¢ S, 2+t =0t +b = a + a implies a = b,
The following lemma 1s due to Hewitt and Zuckermann {10],
Lemma 4.8¢: A semigroup S can be‘embedded in a union of

groups if and only if it is sepzarative,

This canonical embedding is formed as follows: Define
the equivalence relation % by a » b if and only if na s b and
mb < a for some my, n ¢ N, Let S, {ea ¢ %) be the equivalence
classes of S formed by ». It follows immediately from the
definition of ) that each S {a « #) is an Archimedean semi-
group, Since % is compatible, and hence a congruence relation
S/y is a semigroup, If a ¢« §_ , then 2a ¢ S,. Therefore S+
S, =S,, and 5/, is a semilattice, If addition in ¥ is

a 7

defined by o + a' = o" when S, + S, = S ", then % is a semi~-
lattiee, In the same manner as for the union of groups one
may show S 1s a union ¢f Archimedean semigroups: It may be

shown [5)] page 133, that each S, is cancellative; and hence

may be embedded in a group.. Let G be the group of quotients

of S, Then ch is the desired union of grcups.
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-

The foilowing lemma is due to Head [7].

o

Lemma £,9: If A4 is separative semigroup and S is the

=S SO

unicn of groups in which A is embedded by the canonical

embedding, then S = A ® Z.

Theorem 4,1C: If A is a semigroup which can be embedded

in a group, then A'® 2 is the group of quotients of A if and
only if A is Archimedean;

Proof: Since A may pe embedded in a group, it is
cancellative, and hence separative, Therefore by Lemma 4.9,
o: A » A®Z is an'embedéingc Therefore A ¢ A® Z up to
iscmorphism,

Using the canonical embedding above, assume A is
Archimedean; then a v b for all a, b ¢ A. Therefore &
consists of a single element a, and .Scl = A, Therefore Ga
is just the group of quotients of A,

If A is no® Archimedesn; then by Theorem 1,11, A @O
consists of at least two elements, Consider the commutative
diagram

A ——3400

\

P\

3
A®Z

Since the elements of A & 0 are the images of the identities
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. of the groups in A® Z, and A ® O contains at least two
elements, A & Z contains at least two idempotents and hence
cannot be a group

The tensor product of an arbitrary semigroup and the
. additive group of rationals has certain properties which
we shall now investigate.

Definition 4,11s A semigroup is called power

cancellative if for every a, b ¢ A and n ¢ N, na = nb

implies a = b,

Definition 4.12: A semigroup is called divisible if for

each 2a € A and n € N, there exists x € A such that a.= nx,

‘The following iemmas are due to Head [7].

Lemma 4,13: Let A be an arbitrary semigroup, and R* the
postive rational numbers under addition, then A2 R+ is power
cancellative and divisible, The homomorphism ¢: A »:A48 RY
defined by ¢(a) = a ®1 is an isomorphism if and only if A
is power cancellative and divisible,

Lemma 4,14: Every hcmomorphism fsA - B of A into a
power cancellative divisible-semigroup B factors uniquely

through A ® Rt, i.e., there exists a unique map x:4A ® Rt » B

such that the following diagram commutes.
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Lemma 4,15: Every homomorphism f:A - B of A into a
union of groups factors uniguely through A ®Z, i.e,, there

exists a unique map B8:A® Z - B such that the following

diagram commutes,
I'!
A—>B
\ T B

Pr@ 2

Theorem 4,16: Let R be the additive group of rational

numbers, Then for an arbitrary semigroup 4;
(1) A ® R is the union of power cancellative divisible
groups,

(1i) ¢: A > AQ® R defined by ¢(a) = a ®1 is an
Aisomorphism if and only if A is the union of power
cancellative divisible groups.

(1i11) If W 1s a map from A into a power cancellative
divisible group G, then there exists a unique map « such

that the following diagram commutes where ¢(a) = a ® 1,
W)
A ——s(
A®R
Proof: (1) R is power cancellative and divisible,
Therefore by Lemma 4,13, R ® R* £ R, Therefore
(A®R)®R* 2 A® (R ®R') ¥ 4 @R, Therefore by Lemma 4,13,

A @R is power cancellative and divisible.
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Since R is a group, by Theorem 4,3, A ® R is a union of
groups, Obviously each of the groups is power cancellative,

Since A® R is divisible, if a ¢ G <« A @ R then for each
positive integer n, there exists an x ¢ A & R such that nx = a,
But x and a must belong to the same group. Therefore G is
divisible, and A ® R is the union of power cancellative
divisible groups.

(11) If A = A ® R, then obviously A is the union of
power cancellative divisible groups since these properties
are preserved by isomorphism.

Conversely, if A is the union of power cancellative
divisible groups, then certainly A is a divisilble semigroup.

A is also power cancellative since if na = nb for a, b ¢ A,
then a and b must belong to the same-group G,. Since this
group is power cancellative, a = b, Therefore by Lemma 4.13,
e: A - A ® R* is an isomorphism.

Since A is a union of groups, a: A - A® Z defined by
a(a) = a® 1 is an isomorphism., Therefore, there exists an
isomorphism o3 A ® R*® z + A® RY and e(a) = (a®l)
®1=2®1. Since R* is Archimedean, by Theorem 4.10, R'®

Z = R, Let f be this isomorphism and i the identity map on

A, $=(1@®TF) o is an isomorphism from A to A ®R.

¢(a) = (1 @®F) (D(a)
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(1® fNH(a®(1@1))

il

3

a® [fe(1® 1)].

"

a® 1,
Therefore ¢ is the reguired isomorphism,

(iii) Let G be a divisible power cancellative group, and
W a map from A to G, By Lemma 4,14, there exists a uniqge

map o: A ®R+ + G such that the diagram

commutes.,
Since G is a group, by Lemma 4,15, there exists a unique
map p such that the diagram
A @Rt —-—E-——%G
p

®
A® rRt® 2

commutes,
Combining diagrams, we have the diagram
A= 06 N
N /1 o(1®r)”
] o ‘\
5 i ief
A@R'3AER'® Z—2®R
Let ¢ = (1 @ f)eo. ¢(a) =-a ® 1, Hence ¢ is-the same
map developed in (ii). Let ¢ = p(1 @ f)"‘l, then a$ =W, and

uniqueness of p and ¢ insures uniqueness of a.
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The tenscr product of any divisible semigroup,

including the rationals, with certain semigroups may be

simplified as shown by the following theorem and its
corollaries.

Theorem 4.17:

If S is a semigroup in which every
element has finite order, and D 1s a divisible semigroup, then
S® D

[13]

I&® J, where I is the maximael idempotent image of S
and J

is the maximal idempotent image of D.
Proof':

Suppose s ¢ S and s generates a cyclic semigroup
with index m and period n. The set Kmn={ms,, (m +1)s, ...

(m +n =1)s }forms a subgroup and hence conteins an idempotent,
say ks.

Hence for d ¢ D,

s®d

L}

s @ kd', where 4 = k'd4
ks@ d°

2ks & a°

(ks @ a?!) + (ks @ 47)

(s&d) + (s ®a)
Therefore every element of S & D is an idempotent
Theorem 1.11,;

Hence, by
S®D=(s®D) ®o0
S®D (O 0)

[}

(s®0) @{(D®@C)
I®J.

1l:

n

Corollary

If G is a group in which every element has
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finite order, and D is a divisible semigroup, then

G®D=0®D, i.e., G & D is the maximal idempotent image of

D,
Corollary 2 : If G is a divisible group, and D is a

semigroup in which every element has finite order, then
G ®D =0 ©D, the maximal idempotent image ofD.
Corollary 3: If G is a group in which every element has

finite order, and D is a divisible group, then G @ D = 0.




CHAPTER V
TENSOR PRODUCTS INVOLVING THE DIRECT LIMIT

The following development of the direct 1limit of a set
of groups [semigroups] is essentially Bourbaki's [2], pp. 88~
98, develcpment of the direct limit of a'set, To extend the
theory to groups [semigroups] one need only prove that the
sets involved form groups [semigroups]. Although the results
of this section-through-Ffheorem-5.11 are known, to the best
of the author's knowledge the-use of -the union of semigroups
for a more elementary development-is original. As previously
mentioned, the purpose  of-this chapter-is-to use the-fact
that the tensor product distributes over the-direct limit.
té study the tensor product of an arbitrary semigroup with
the r'a’cionz.ils'mod.onec In addition, several theorems about
the direct limit are proven by use of the tensor-product,.

The following iemma-is due to Bourbaki [1], page 98.

Lemma 5,1: Let {Si} be a family of groups [semi~
groups]., Then there'exist:%a set 'S which is -the union of a
family of pairwise disjoipt groups:[Semiéfoups] {Si}iEI
such that for every 1'e I, S'; = Sio

‘Definition 5.2: Let {Si} be a family of groups
1el
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[semigroups]. The set sum (up to isomorphism) of this family
of groups [semigroups] is the set S = u S' where the S'
je1 1 i

are pairwise disjoint and S, = S'i for all 1 ¢ I.

Let I be a preordered right filter, i.e, for all i,
jeIl, there exists keI such that k 2 i, j, and {Si} a

iel

family of groups [semigroups].indexed by I, and assume that
for every i,j € I such that i s j, there exists a

homomorphism fji S Si -+ S'j such that
(i) 1 s J < k implies fki = fkj fJi for all 1,j,k € I.
(i1) For every i ¢ I, fii is the identity map.
Let S be the set sum of the family of groups
[semigroups] {Si} . Define a relation v) on S as follows:
iel
For x € Si s ¥ € Si s XY if and only if there exists i ¢ I
X y
such ‘that i 2 ix, iz iy and fi’i (y) = fi’ix(X). n 1is
obviously reflexive and symmetric, It is also transitive,

for let x ¢ Si’ y € SJ‘and Z € Sk and suppose X9y and y Y 2.

Then there exists 1, m ¢« I such that 1 2 1, J and

£14(x) = flj(y)’ andm 2 j, m 2 k, and fmj(y) = fmk(z)°
Since I is a right filter, 3 n such that n 2 1, n 2 m, and
fni(x) = fnJ(y) = f (2); therefore x » z and y is transitive,

Definition 5.3: The quotient S = S/U with the induced

multiplication is called the direct limit of the famlly of
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groups [semigroups] {Si} with the family of maps (fji),
i1eX
It is denoted by lEP Sio
1

Definition 5.4: The set (845 fji) is called a
i1el

directed system of groups [semigroups].

Let S = v S, and assume, without loss of generality,
5 aie disjoint. Now, identify S1 and Sj if

31 : Si > S;j is an isomorphism, and-identify i,j. Let T
be the index set with the-indices identified and let S =

that the S

£

u~§ o I is easily seen to be a-partially ordered set, For
lel
i, J € I such that i and'j are not comparable, define S(i 1) =
]

Sio S‘j Since this is the categorical direct sum, S'maps

853 Sy » S(4,1) and'sJ= SJ > S4,9)
of maps f .: Si > Sk and ka:’ Sj - Sk' 3 a map f(k,(i,j)):

such that for any pair

ki

S(1,5) > S such that £y vy 5y 81 % Tyy 304 Ty (4 9)) &

f .
kj
Let I¥* = T v ((1,j) | 1 and j are not comparable}, and

define an ordering-on I¥* as follows:
1 <J if and only if i < j when considered as elements of f.
1,5 < (1,3

(i,J) sk if and only i s k, J s k.

I* is a semilattice, Hence the set S*¥* = y S. may be
ieI*

considered as a union of semigroups in the usual manner,
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Therefore it is a semigroup. The relation.‘p on S¥ is

compatible,; for if x v ¥ then there exist i,j such that

£;(x) = fl (y) and if z € Sk then for n 2 i,j,k,1,

fnk(z) * fn

J

fnn(z + x)

(x)

i
(2 * g (¥)

fhn(z +y).

Therefore, 879 is a semigroup. But S*/7 -4 SA7; therefore
8/9 is a semigroup, If the Si are groups, then S¥ is a
union of groups. Therefore S*/ is a2 union of groups since
the image of a union:of groups‘gs a union of groups. But
since the identities of the various groups-are identified,
S/D is a gr;oup° Hence, the direct limit of a directed set
of groups iS'a group.

The following definition may be found in Bourbaki [2].

Definition 5.5: Let f be the natural map of S onto

S/y, and let fi be the restriction of f to Sio Then fi is

called the canonical map of Si into S/'p°

Proposition 5.6: For each 1 ¢ I, let My be a map from Si

into a semigroup T such that quJi = u, for all 1 & j. Let

S = l%m Si° Then there exists a unique map u: S + T such that

My ='n°fi for all 1 e I, fji fi
' S—————— S j——y S
i 3 {
\\\\\EJ;\\‘ Yy \\\\Qi\\’lu
T T
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Proof: Bourbaki [2] proves the theorem for sets and

functicns. Therefore it is only necessary to show that u 1is

a homomorphism., Let x, y € S.

fi(xi) for some x, ¢ Si’

X
i

y = fJ(xJ) for some Xy € SJ.

Assume k 2 1i,j,  Then

1

X fk(xk,) for some x'y € S,

y fk(xk) for some X « Sk'

Since fk is a homomorphism, kaxK + xk,) = x +y. Therefore
p(x + y) = uk(xk + xk,) = uk(xk) + e (xpd,
u(x) + u(y) = up(x) + uk(xkv).' Therefore p is a

homomorphism,

Corollary l: Let (Si’ fji) and (T4, gji) be

directed systems of groups [semigroups] indexed by I. Let

——

i
Si into S and gy be the canonical map of Ti into T. For

a ¢ I, let My be a map of Si into Ti such that the

S = l%ﬂ§i’ and T = 1lim Ti’ Let fi be the canonical map of

following diagram

L1
§ Ty

i
P e 2
'j 'UJ J
is commutative., Then 3 a unique map p: S =T such that

for each 1 ¢ I, the diagram




is commutative,

Definition 5,7 {(i1): The family of maps {ui} mentioned

in Corollary 1 is called a directed system of maps from

(Sys f.,) into (T “gfi)a
(11) The map u in Corcllary 1, denoted lim u, is

i
called the direct iimit of {ui}o

Corollary 2. Let (Sy, fji)° (Ti’ gJi) and (Ui’ hJi)

be directed systems of groups [semigroups], and let

S = l%g Sy T = llp Ti and U = l%g Uio Let
fi: Si - S, gi: Ti - T and hio Uy = U be canonical maps., Ir

u ! v.:T :
A Si - 11 and i N +> Ui are directed systems of maps,

then vyous S, -+ Ui is a directed system of maps and

i
lim (v, u,) = (1im vy ) (lim ui)o
FE! iy 1
The following theorem is due to Bourbaki [16] page 93.
¢ Teot- l-
Theorem 5,8: Let (Si ji) and (SJi’ g Ji) be direct?d

systems of groups {semigroups] relative to I, and for'i e¢.I,
let uy be 3 map“from'si-to-S'i such that they form a directed
system of maps. Let u =';lg Uy o 'I'hen~ui is one to one

(onto) if and only if u is one to one (onto).
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Definition 5,9: The product order of I x J where I and

J are preordered right filters is defined by (i,J) 2 (i', j')

if and only if 1 2 1%, J 2 J° for i, 1' e I, §, J' € J.

k
i

indexed by I x J with the product order; where f%? is the

map from S? to S;q For fixed k ¢ J, let g?i = f?f : S§ > S?c

Let (S;, f}?) be a directed system of groups [semigroups]

Then (Si, gjg) is a directed system of groups-[semigroups].
Let Tk be the direct limit of this directed system.

let k and 1 be fixed elements of J such that k s 1,

1K _ .1k, ok . ol
Then hy" = fyf: Sf » S

by I. Let hlk: Tk »> Tl be its direct limit, By Proposition

is a directed system of maps indexed

5.6, Corollary 2, hnk = hnlhlk for k s 1 s n, Therefore
(Tk, hlk) is a directed system of groups [semigroups]. Let
= k k-
. T=1im T, Then T = lim (1im S*).,
—> —_—
k k Lk k 1 i
Let gy: Sy 'I‘k and hk ¢ T » T be canonical maps, and
k _ . x k 1 Llk ok
let u = h gi° Then for 1 < j, k s 1, My fji = U and

{ugf is an inductive system of maps indexed by I x J with
= 1 k

the product ordering. Let u = e ST,

P g i%% By

. 1 1 k . i

Proposition 5.10: .E? liﬂ Sy v Sfo

Proof: Bourbaki [2] shows u ¢ S - T 1is a bijection, but
since u is a direct limit-of homomorphisms, by Proposition

5.6, u is a homomorphism.- Therefore u is an isomorphism.

Corollary: Let (S;, fji) and (Tx, g1x) be directed
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systems of groups [semigroups] indexed respectively by I and

J. Then %im (S ® T&) is a group [semigroup], and

i
B (5,9 1) 2 4B (48 (s omo = HE (NP sy o).

Theorem 5.11: Let (Si’ fji) and (Ty, g1x) be directed

systems of groups [semigroups] indexed by I, J respectiveiy,
and let S = 4B s, 7= ¥ r, Then PP (5; @) =
53 (550 T)

Proof: Cartan and Eilenberg [3] show that for groups

n

’1—1{3‘ (S®T) =SaeT.

i (sy@ ) = S@T. Tne proof is identical for semigroups.
The remainder-of the theorem follows from the Corollary to
Proposition 5.10.

Consider the tensor-product: A ®R/Z where A is an
arbitrary semigroup,; R is the additive group of rational
numbers and Z is the subgroup of integers. Since R/Z is a
group, by Lemma 4.2,

.

nt

Let A®Z =u Gg. Then A ®F/, 2 (v G ) @~
a e ¢

m

R
g(Gu ® /Z)°

Rrp = HBp, where P is the set of prime integers and

peP
«{a/pq | as pq, q 2 1} and addition is mod 1, Therefore

jae]
n

o™

a qua

For q 2 q', let ?qqq : qu' > Z, be the embedding map

1
defined by ?(1’) = pq-q 1, where 1' generates qu' and 1
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generates quo

Then (qu’?qq’) is a directed system indexed by N, the

natural numbers; and %—’E (qu) =(Ll) qu = Hp, Therefore

a@fy/, = ¢l G ®H)
~ i
Ty (] (6, ® i z,a))

”
QC

D
11
g 5 (6, ® Z)

But (Gcl ® qu) = Ga/quc, and the following diagram
. commutes:
' Paqr
¢, ®2.a’ »G, ® Z

far) Pa
Ga qq! Ga
/(pq") —— /pq

pq

where 9qv (8, ® 1') = g, + p2'G and

@q'q (ga + pd' Go) pd-a’ g, * p? G, Therefore

(G /qu, @q’q,) is a directed system, and by Theorem 5,8,
lim (G = 11
Trg ( /qu ) = 23

a
R/ = 1 G
and A ® R/, g% _ém ( /qu)u

Proposition 5.12 (1): If (5, £,4) isa airected system
of semigroups, then the maximal idempotent image of the direct
limit of (Sj_’~fji) is isomorphic to the direct 1limit of
(§i, ?Ji)’ where '.S_i is th'e'maximal idempotent image of S,
and ?J i is the unique map such that the following diagram

commutes,




S
Lo
- Ji —
S, ——> 8§

i J
(11) If each S, is a union of groups, then Le 5, 1s a

union of groups.

(1ii) If each S, is power cancellative and divisible

i
then l%g Si is power cancellative and divisible,

(iv) 1If each'Si is the union- of power capcellative

divisible groups, then so is lig

) Sio
Proof:
(1) follows directly from the fact that

4. (s, @ 0y = (B s) @0,

(1i) follows immediately from Lemma 4.2 and the fact

n

1lim 1im
that by Theor‘em 508 ’? S T (Si® Z)

i

R

(2 spe z,
and therefore by Lemma 4,2, l%? Si is a union of groups.

(111) 1If each Si is power cancellative and divisible,

then S:L = Si® R* by Lemma 4,13, Therefore by Theorem 5.8
1i
=7 5, = HE (s, 8 ®Y

o r1im +
and again by Lemma 4,13, l@ﬂ Si is power cancellative and
divisible,

(iv) If each S, is the union of power cancellative

i
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divisible groups, then by Theorem 4,17, Si s Siéa R.

13

—Ig‘ (Si® R)
1i

m?g si)e R

14

Therefore, by Theorem 5.8, l%g (84)

113

and by Theorem 4,17, %&si is the union of power
cancellative divisible groups.,

We may now show an alternate method for obtaining the
group of quotients-of a semigroup.

Let I (A) pe the quotient of A by the finest congruence
which identifies all idempoctents of A. The following Lemmas

are due to Head [7].

Lemma 5.13: If a semigroup A may be embedded in a group,
then I(A® Z) is isomerphic to its group of quotients.
Lemma 5,14: I(A® Z) 1s a group.

Theorem 5,15: If A may be embedded in a group and

L®7 = G , then the group of quotients of A is isomorphic
to l%.&l Gyo
Proof: It was shown in the discussion preceding
Definition 5.5, that p, the cleaf:ming'relatién'15’01"':-%‘1l Gy
ls a congruence relation when {Ga} is a union of groups.
Hence by Lemma 5.13, we need only shocw that p.1s the

finest congruence relaticn wnich-identifies all idempotents.

Suppose ~ is the defining relation for I (A ® Z) and that for




e L
Fde]

a e G19 b ¢ GJ9 & 2 b, Then, there exists k 2 i, J such that

. Tgila) = fkj(b)° For c € G,y a c ¢ =1 (a) ° c=1s(b) - co

Let ¢ ch-&I (4 & Z) be the natural mapping, then

Y]

I (ac)= f{be) = £(b)- f{c). Since I (AP2Z) 1is

i

f(a) o £(cj

(b}, Therefore a ~t., Hence p is the finest

group, f{a)

congruence relation which identifies idempotents, and by

Lemma 5,13, %%E Ga is isomorphic to.the group of quotients

.of A,
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