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TENSOR PRODUCT OF SEMIGROUPS

CHAPTER I

INTRODUCTION

The tensor product in a category has been developed for 

some time. In particular, much work has been done on the 

tensor product of abelian groups and of other modules. To the 

best of the author's knowledge, however, T. J. Head [7] has 

been the first person to explicitly study the tensor product 

of a semigroup. The purpose of this paper is to extend the 

work of Head and to generalize some theorems relating to the 

tensor product of a group. These results will then be used 

to study the structure of the tensor product of an arbitrary 

semigroup with certain specific semigroups.

In the remainder of this chapter the definition of the 

tensor product of semigroups is given and compared to the 

categorical definition of the tensor product.

The purpose of the second chapter is to discuss and 

compare various definitions of the direct sum. of semigroups.
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We are especially concerned with whether or not the tensor 

product is distributive over a given direct sum.

A well known theorem for modules states that "If P is 

a projective module, A and B are modules, and ft A^B is 

a monomorphism, then i(&f: P®A->-P<S>B is a monomorphism,

where i is the identity map on P." The third chapter con­

tains two generalizations of this theorem for semigroups.

In Chapter IV we are concerned with the tensor product 

of an arbitrary semigroup with a semigroup which can be ex­

pressed as a union of groups. The first theorem of Chapter IV 

shows that if C and D are semigroups which can be expres­

sed as a union of groups, then C ® D  is a union of groups.

A union of groups may be obtained in which the groups are 

formed by tensoring the groups of C with the groups of D. 

This union of groups is isomorphic to C ®D if and only if 

either C or D is a group. This theorem often makes it 

possible to restrict the discussion of semigroups to that of 

groups. One particular advantage of this restriction is that 

for several forms of the direct sum, the tensor product does 

not distribute over the direct sum in the category of semi­

groups but does when restricted to the category of groups.

The remainder of Chapter IV is concentrated on the study 

of the tensor product of an arbitrary semigroup with certain



specific semigroups including the nationals under multiplication, 

the nationals under addition, the integers under multiplication, 

the integers under addition, and cyclic semigroups. Theorem 

4.10 gives necessary and sufficient conditions for the tensor 

product of a cancellative semigroup S with the additive inte­

gers to be isomorphic to the groups of quotients of S. This 

theorem is then used to show that the tensor product of a semi­

group with the additive group of rational numbers is a union 

of power cancellative divisible groups.

Theorem 4.17 shows that the tensor product of a semigroup 

with elements of finite order and a divisible semigroup is 

isomorphic to the tensor product of their maximal idempotent 

images.

Chapter V was motivated by an attempt to determine the 

structure of the tensor product of an arbitrary semigroup and 

the factor group consisting of the group of rationals mod one.

The chapter begins with the development of the direct limit of 

a directed set of semigroups. The results are then used to 

solve the above problem. In addition the author shows that 

the maximal idempotent image of the direct limit of a directed 

set of semigroups is isomorphic to the direct'limit of the 

directed set of idempotent images of the respective semigroups.

In a similar manner it is shown that if each semigroup in a



directed set of semigroups has the property of being a union 

of groups or has the property of being power cancellative and 

divisible, then the respective property is retained by the 

direct limit.

In this paper, all groups and semigroups will be assumed 

to be abelian and additive unless otherwise stated. The 

letters Z, N, R, R'*’, and P will denote respectively the semi­

groups of integers, positive integers, rational numbers, 

positive rational numbers and non-negative integers. Z^ will 

denote the cyclic group of order n. If A is a semigroup,

A° will denote the semigroup formed by adding 0 to A unless 

it already contains an identity, in which case A® = A. A 

will denote the semigroup Au{0^} where 0^ is an identity 

of A - but is not contained in A. In general, the letters 

A, B, and C will denote arbitrary semigroups. g(A,B) will 

denote the free semigroup formed from the set of symbols 

A X B = {(a,b) I aeA, beB}. -}̂ will denote the natural map from 

B(A,B) to A ® B  (see below).

For arbitrary semigroups A and B, let ~ be the finest 

congruence relation on g(A,B) such that (a^ + 3-2» b)~(a2,b)

+ (agfb) and (a,b2 + bgJ-ia/b^) + (a^bg). The relation exists 

since it is the intersection of all congruence relations satis­

fying the above conditions.
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Definition 1., i ; The tensor product A ® B  of A and B is 

defined to be the quotient semigroup g(A, B)/^»

In the same manner as for groups [13]* one may show that 

if f; A-^* and g: B -6 ' are homomorphisms, then f® g:

A 0 B - » A ' ® B *  defined by (f®g) (a®b) = f(a)®g(b) is a homo­

morphism? In the following development it will be shown that 

the category of semigroups together with the tensor product 

satisfies the definition of a category with multiplication, 

but does not satisfy the definition of a tensored category?

This is due to two "weaknesses" of the category of semigroups. 

One is that semigroups need not contain an identity. The other 

is that homomorphisms of semigroups in general do not have 

kernels in the group theory sense. The following'definitions 

may be found in [12], page 33.

Definition 1,2; Let C and D be categories and $ a map 

from C to D such that objects and maps of C are mapped respec­

tively into objects and maps of D. Then 4> is a covariant

functor if for every map fcC, the following conditions are 

satisfied;

(i) If f has domain c and range c*, then $(f) has

domain $(c) and range $(c'),

(ii) If f is an identity, then $(f) is an identity.

(iii) If gf is defined, then so is 4>(g)°4>(f), and



$(gf) = 4>(g)$(f)o

The following definition may be found in [12], page 75.

Definition 1,3: A category C is called a category with

multiplication if there exists a covariant bifunctor ê: CxC^C,

that is, there exists S  such that:

(1) 1a ®'^3 " "here ^A> ^B’ ^a S b

maps on objects A,B, and a S b respectively.

(ii) (f*®g*) (f®g) = (f ' f)S(g“ g), and in addition C 

has an object K, called the ground object and isomorphisms 

e: k S a-A, e' : A®K-A, a; A ® (B® C)-^(A®B)® C, and

c: A^B-*b S  A.

Theorem 1.4: The category of semigroups together with the

tensor product forms a category with multiplication.

Proof: The proof that 1^0 Ig = l^^g, and that

(f'@ g*) (fsg) = f'fiSg'g follows immediately from the defini­

tion of f(g g.

Head [7] has shown that A ® N  s A and so N satisfies the 

definition of a ground object. The proof that A ® ( B « C )  = 

(A®B)®C and (A0B) = (B®A) is identical to that for groups 

[13],

The following three definitions may be found in [12] , pages 

63-67 and 78.

Definition 1.5: An additive category C is a category
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such that for objects a, b, c, dec each set horn (a,b) has a 

bilinear map

+ : (hom(a,b)) x (hom(a,b))-»hom(a,b)

such that horn (a,b) together with this operation is an abelian 

group and

(1) (ĝ L + 82̂  ^ ®1^ h(g^ + gg) = hg^ + hgg
for all maps g^: b+c, g^t b+c, f: a-»b and h: c-+d,

(ii) There is a null object N, that is, there exists N 

such that for all objects ceC, hom(c,N) and hom(N,c) contain 

only one map,

(iii) For every pair of objects a^, and a^, there exists 

an object b and four maps p^, pg, i^, and ig

Pi Pg 
a^±=; b a„

il ig

such that

Pi il = P2 h = \> h  ^1 + ^2 Pz ' lb-
It follows immediately that the category of semigroups 

satisfies (i) and (ii); however, in general (iii) is not satis­

fied unless a^ and a^ contain identity elements. The 

category of groups, however, is an additive category.

The following definitions of kernel and cokernel are gen­

eralizations of the kernel and cokernel of group theory. In



the usual definition of kernel and cokernel of group theory 

however, the kernel of f would be the object K and the coker­

nel would be the object M, In category theory the emphasis 

is on maps rather than objects »

Definition 1,6: If a category C contains a null object N:

(a) A kernel of a map f : A-̂ B is a map k: K-+A for some 

object KeC such that

(i) fk = 0 where 0 is the unique map such that

diagram

. . K-----
0

commutes,

(ii) If fh = 0, then there exists a unique map g 

such that h = kg.

(b) A cokernel of f : A-*-B is a map t : B-M such that

(i) tf = 0

(ii) if uf = 0 , then there exists a unique map g 

such that u = tg„

Definition 1,7:

(a) An additive category C is an abelian category if

(i) Every map of C has a kernel and cokernel,

(ii) For every map k such thatka = k6+a=6 for all

o , 6 eC



and every map u such that y u = iS‘u —» Y=  5 for all Y, c.

k is a kernel of u if and only if u is a cokernel of K.

(iii) Every map feC can be written as k-u where k 

and u have the same properties as in (ii)»

(b) tensored category C is an abelian category to­

gether with a ground object K and a covariant bifunctor

0: C X C-»C such that it preserves epimorphisms, and for maps

a,c,e and e' as given in Definition IcSj the following diagrams 

commute :

(i) A 0 B
A

I
A

A ® B

^  a ^ ^  C ^
(ii) A ® ( b S c) — » (A® B)ê C — > C#(A@B)

1 1 0  c
c 31

A S (00 B) — >(A0C)<3 B --  ̂(ceA)C B

(ill) K ® (B®C) (K0B)ê C

! ei
BS C

I
-> B ® C

le 3 1

(iv) A ®  (K0C)  > ( A S K ) ® C
■ n1 1®  e» Ay e«  1

A ®  C

AC <?1 
ÿ

>  (K®A)êc
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The category of groupsj together with the tensor product, 

is a tensored categoryc The category of semigroups is not a 

tensored category since it is not an abelian category. How­

ever, Head has shown that the tensor product of semigroups pre­

serves epimorphisms5, that is, if fi A ^ C  is an epimorphism, 

then iS f ; B®A->*B®C is an epimorphism where is B-̂ B is the

identity. The diagrams above also commute for semigroups as 

well as groups. Hence the "weakness" of the tensor product of 

semigroups is in the category, not in the definition of the 

tensor product. Many properties of the tensor product of groups 

may therefore be generalized to the tensor product of semi­

groups if they do not involve abelian category properties such 

as kernel and cokernel.

The proposition and theorem listed below will be used in 

Chapter II to construct counter examples as well as being basic 

to the theory developed in later chapters.

Proposition 1,8 ;

(a) Given a bilinear map «x :B(A,B)-*C, there exists a map 

C such that the following diagram commutes

6 (A,B) -^C 

AG5B / :

(b) If A=A* and B=Bh, then A « B = A ’'®B1,



11
(c) In the sub category of groups, A ® B = A ® B  where A®B 

is the usual group tensor product.

The usual tensor product of groups is defined as follows: 

For groups B and C, let Z(B,C) be the free group 

generated by B x C. Let Y(B,C) be the smallest subgroup con­

taining all element of the form.

(i) (b^ + bg, c) - (b^,c) - (bgsc)

(ii) (b,c^ + Cg) - (b,Ci) - (bjC^) for b, b^, bgCB, c, c^, 

c^^C. The tensor product of B and C is defined to be 

Z(B,C/Y(B,C). Notice that the basic difference between the 

group tensor product and the semigroup tensor product for groups 

is the use of the free group Z(B,C) instead of the free semi­

group S(B,C).

Define an ordering s by asb if and only if a + b = a.

The following theorem may be found in [5]» page 24.

Theorem 1.9; A commutative semigroup is a semilattice 

under the above ordering if and only if every element is an 

idempotent.

The following definition may be found in [5], page 18.

Definition 1.10: If P is a congruence relation on S,

then S/^ is said to be a maximal idempotent image of S with 

property P if S/p has property P and every homomorphic imageV
of S with property P is the homomorphic image of S/p .
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To Tamura and N. Kimura [l8 ] have shown that every semi­

group S has a maximal idempotent image S/p where p) is the con­

gruence relation defined by a p b if and only if a + z = nb 

and b + y = ma for some x, ysS and n, mcN,

The following theorem Is due to Head [7]»

Theorem I d l s If 0 Is a singleton semigroup, then 

S® 0 = S/po

Corollary; Let I and J be maximal idempotent images of 

A and B respectively; then the maximal idempotent image of 

A ® B  is isomorphic to Id&J,

Proof: (A<»B) ®  0 ^ (A®0)® (B« 0)

— J. ®  J 0



CHAPTER II

DIRECT SUMS OF SEMIGROUPS 

Although the direct sum of groups has been defined in 

many ways, the definitions are equivalent up to isomorphisme 

This, however, is not true of semigroupso Many of the defini­

tions now in use for semigroups are not in general equivalent, 

although many of these same definitions are equivalent when 

restricted to groups. Several of the usual properties of 

the direct sum of groups are not retained by the various def­

initions of the direct sum of semigroups. For example, in 

some of the definitions of direct sum listed below, semigroups 

A and B may not be contained in their direct sum, even up to 

isomorphism. In other definitions, if A and B are groups, 

then their direct sura may not be a group. In many cases the 

definition of direct sum is not strong enough to insure that 

elements of the direct sura of semigroups A and B are uniquely 

expressible as the sum of elements of A and B. In the defini­

tions listed below, only definitions (9 ),(11), and (12) 

satisfy the categorical definition of the direct sum.

13
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In general* none of the definitions of direct sum of semi­

groups contains all of the usual properties of the direct sum 

of groups listed above, and so the choice of definitions of 

direct sum must be made to suit the need..

The concepts of internal and external direct sums are 

somewhat confused by the previously mentioned fact that semi­

groups are not necessarily isomorphic to subsemigroups of 

their direct sum. In this paper, however* the direct sum of 

semigroups A* B contained in a semigroup D will be considered 

internal if elements of the direct sum of A and B can be ex­

pressed as elements of A* B* or A + B. Otherwise the direct 

sum will be considered external. Hence in the following def­

initions of direct sum, definitions 1, 2, 5* 6, 7 and 9 are 

internal direct sums, while the rest are external direct sums.

The following is a list of various definitions of the 

direct sum, most of wnich are commonly used.

Definitions 2.. 1-

(.1) If A and B are disjoint subsemigroups of a semigroup

D, then A B = (a + b|aeA* beB}.

(2) If A and B are disjoint subsemigroups of a semigroup

D, then A B = AuBu(A + B).

(3) If A and B are semigroups then A B =

{(a,b)IacA, beB} where (a,b) + (c,d) = (a + e, b + d).
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(4) If A and B are semigroups then A B = C if there 

exists maps p^i C-*-A and Pg: C-*B such that for every semi­

group S and pair of maps fs S-*A and g; S-̂ B, there exists

a unique map hi S-*-C such that f = p^h and g = Pgh»

(5) If A and B are semigroups contained in a semigroup

Dj then C = A B if every ceC can be expressed uniquely as

a + b for aeA, bcBo

(6) A ^  B = C for semigroups A and B contained in a

semigroup D if every ceC can be uniquely expressed as a + b

for aeA, beB, and A,B are isomorphic to subsemigroups of C.

(7) If A and B are subsemigroups of D, where D contains 

identities for A and B, then A B = C if every ceC can be 

uniquely expressed as a + b where aeA°, beB*»

(8) For semigroups A and B let D be a semigroup contain­

ing A and B as subsemigroups. Then C = A ©g B if every ceC 

can be uniquely expressed as a + b where aeA, beB, and a / 0^ 

when b = Ogo

(9) If A and B are subsemigroups of a semigroup D such

that A, B, and A + B are mutually disjoint and elements of

A + B are uniquely expressible as a + b for aeA, beB, then 

A @2 B = AuBu(A + B)o

(10) For semigroups A and B, A B = C if there exist

maps
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A^C g^: C-+A

B+C gg: C-+B

such that

(1 ). (0^) = O^^fjCO^) = Og

(ii) for all acA, fj (a) = a, gg f^fa) = Og

(iii) for all beB, gg fg (b) = b, fgCb) = 0^

(iv) for all ceCj f^ (c) + f2 g2 (c) = Co

(v) If every element of A B can be expressed uniquely

as a + b for aeA, beBj and every element of f]_ (A) f2 (B) 

can be expressed uniquely as a + b for a e fj(A) and be f^CB),

(11) For semigroups A and B, A B = C if there exists 

maps f: A-»-C and g: B-*-C such that for every semigroup H,

and pair of maps o( : A+H and g : B-̂ H, there exists a unique

map h: C-̂-H such that hf = »< and hg = g*

(12) For semigroups A and B, A ® " {(a,b*) j aeA, beB 

and (a,b) i- (0^, Og)}where addition is coordinatewise.

Definitions 9» 11» and 12, extend easily to an arbitrary

family of semigroups as follows:

(9*) Let {A^}j_ei be a family of semigroups contained in

a semigroup D, then \ A^ = C if every ceC can be uniquely
iel

expressed a&. for SlkCAik'
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(11*) For a family of semigroups (A,}. _ , i A. = C

" iel
if 5 maps fj: such that for every semigroup H and family

of maps Â -Hj, there exists a unique map h: C-̂ H such

that the following diagram commutes.

H  ■ ([Si^lEllel

(12*) For an arbitrary family of semigroups ,

a, e A., and â  =0, for all but a 1 1  Aj_

positive finite number of i } and addition is coordinatewise. 

Definition 2,2s A semigroup A is called a pseudo-direct 

summand of a semigroup C if there exist maps f : A-̂ C and

g: C-̂ A such that gf : A-*-A is an isomorphism. The map g is

called a retraction map_o 

Proposition 2,3:

(a) For semigroups A and B, A S/j B = A B, If A B 

exists, then A(S^ B = A SL B = A <5̂  B = A B, Conversely,

if A B = C, then 3 A’= A, B*= B and such that A*, B’cD*

and C = A‘S ^  B»=A* B'= A* B‘= A' B ‘,

(b) For semigroups A and B , if A Sg B exists then 

A ©g B = A ©g Be
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(c) For semigroups A and B, A B exists implies A B 

exists if and only if there exist homomorphisms ; A-*-B and

B+A. When A B exists, A B = A B,

(d) A ®g B exists if and only if A 9^ B exists, and 

A $g B = A Bo

(e) A ôg B exists if and only if A B exists and

A ®g B = A ©^Q Bo

(f) For an arbitrary family of semigroups

Ai ; A^o
iel ici

(g) For an arbitrary family of semigroups if
r® - r® -, r© .I ' A. exists, then I A. - I A. = 2 A.»

iel iel iel iel

Conversely, given a family of semigroups for each iel
_  @there exist A ’ĵ = A. and D’ such that A'^cD*, I Â  ̂ exists

 ̂ iel

and y A', = J A ‘ = I Aj_.
iel iel iel

Proof; (a) To show A B = A B, define p^; A B-̂ A 

by p^ (a,b) = a and pg: A 9g B^B by pg (a,b) = bo These are

obviously homomorphisms» Let of : S-*-A and p : S-*-B be arbi­

trary homomorphisms 0 Then define $ : S-»-A <Sg B by

$(s) = (»f(s), 6(s))„ Then $ is the unique map such that the

following diagram commuteso
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(i

P2
A 6  ̂B satisfies the definition for A B„ Let S be a 

semigroup also satisfying the definition for B» By def­

inition of A B» given f: A B->A and g; A 8 3  &+B,

there exists a unique h such that the following diagram 

commutes.

(ii) S' A

AI^B- >  B
g

In diagram (i) let = f, P2 = g* ^ f - Q

fA = ?i *= = Pa end = P^ $= g$ = fs

In the following diagram.

P a

h*

S

the uniqueness of h$ implies h$ is the identity map. Similarly,
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one may show $h is the identity map on A Therefore, $ is

an isomorphism and A = A Sif B«

The proof that the existence of A 6 ^B implies A ®^B =

A ̂ ^B = A ©]_B = A ®ijB is obvious.

Assume A Ô 3B = C. Then, .let A'=A and B*=0^

where Og and 0^ are respectively external identities of B and 

A. Then A* = A, B* = B, and every element of A @^B can be 

written uniquely as a‘ + b* for a* e A*, b® e B*. Therefore, 

since A'$^B® is defined, A® ©^B* = A" © 3B» = A ’®^B® = A ®^B. 

Bpt A * © 5B® = A © 3B, and so A® and B® are the desired semigroups, 

Let D ’ = A ® 8®°

(b) The proof of (b) is obvious.

(c) The proof of (c) has been shown by Tamura [I6].

(d) If A ®gB exists, then AnB = <|i. If a = a’ + b for

some a, a® E A, b e B, then a + Og = a® + b  contradicting the 

uniqueness of expression of sums of elements of A and B. 

Therefore A n  (A + B) =<J>. Similarly B n (A + B) = 4 . Hence 

A ©gB exists. Define $: A©gB-*-A©^B by

$(a + Og) = a 

$(0^ + b) = b

4>(a + b) = a + b for aeA, beB.

This is easily seen to be an isomorphism and so A ©gB = A ©^B<
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Conversely s, assume A©gB exists, then A/)B Let a + Og be

the formal sum of a and Og, and 0^ + b be the formal sum of 0  ̂

and b . Then A G^Og A B = (j). Also a + b a + Og and

a + b 5̂ 0^ + b for aeA, beB, and hence a + b is uniquely ex­

pressible in A + Be Therefore A ©g B exists and A ®g B -

A Be

(e) Assume A B exists « Define0

§1* ^ @g B V  {0^ + Og} -*• A by (a + b)

= a

gg: A $g B V {0^ + Og} -*• B by gg (a + b)

= b

f^: I * A ®g BV{0^ + Og} by f^ (a)

= a + Og

fgï B A 0g BV{0^ + Og} by f^ (b)

= Oj + b.

These maps trivially satisfy definition (j) and hence A B

exists and it is easily seen that A ®g B - A B. The

converse is obvious.

(f) To show A, ’= l^A.f define of :A, A^
iel i d   ̂  ̂ iel

by "x/a.) = [a. ] , where a. = 0 . If 1 ^ j.
i€l i

Given a family of maps f. : A, H, define (Ü: I A + H by
 ̂ iel
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A

([a.] ) = f. (a^}o Then ®is obviously the unique
i£l iel ^

map such that for all iel, and the following

diagram commutes! *̂ i ^
\ ------------A

(i) A iel ^

H

A. exists since satisfies the definition. 'Let H
iel - iel

r ®be a semigroup also satisfying the definition for I
iel

/\ r 0and identify f< with f.. Then by definition of I A , there
^ iei 1

exists h such that for all iel, hf = and the following dia- 

gram commutes: --

Therefore, = hf^ = hÿo^ for all i, and uniqueness of 

the map h ^  such that ĥ «<: = Vie I in the diagram

(iii)
iel

implies that h C is the identity on I A,. Similarly 
 ̂ iel
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one may show fflh is the identity on D. Thereforeç is an 

isomorphism, and ^  A. = %  A . .
j, T i ,’̂ Tif I * iel

(g) To show that ^  A = Â _, define (ft
n i€l 161

Z  A <  A, byd/ I a ) = [a ] 
iel iel J'k=i

where a. = 0 ,
lei

unless i = i for some k. This is the desired isomor- k
phism.

Conversely, if A^ exists let C = %^A^, let A*j
i e l i d

= {[a.] I a,G A. and a = 0..if i / j }. Then each1 i^I 0 J 1 A,
n'

element of C may be expressed uniquely as  ̂ ^*ik
k=l

a’, e A'. , and A*. = A.« Therefore [ Aj exists and

iel iel

Definition 2.4; A direct sum  ̂ is said to be pre­

served by the tensor product if A ^  I B. = I A®B.»
- - iel iel

Definition 2*5: A direct sum % is said to preserve

isomorphism if A = A %  for all iel implies I A , - I A',
iel iel

Definition 2,6: A direct sum I is said to weakly

preserve isomorphisms if A^ = A'^ for all i e l  implies that

if I A* is defined, then I A*. = I A.o
iel iel , iel

Definition-2ol (1) of the direct sum is used by LJapin

[11], among others. Its structure would seem to be too weak
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to be of much use, and has the following disadvantagess

(i) In general, elements of A B are not uniquely 

expressible as a + b for a e A, b e Bo In particular consider

the case where B = {e} and a + e = e for all a e A»

(ii) The direct sum Sj does not even weakly 

preserve isomorphismso For example, if A* = {Og} and A = {e> 

where e + b = e for all b e B, then A = A' but''A* B » B 

while A @2 B = A*

(iii) In general A and B are not isomorphic to subsets

of A Be If B = {0^}; then A B = Ao

(iv) The sum ©j is not preserved by the tensor 

product. For example, if A = P, tl# non-negative integers,

B = P” the hegative integers, and C = {0}, a singleton 

semigroup, then (A B) ®  C = {0}, since A B = Z, and it 

follows from Theorem 1.11 that Z ®  0 = 0. However, by

Theorem 1.11, it also'follows chat P ®  0 - L, where L = {a, b}

and multiplication is defined by 2a = a, a + b = 2b = b.

P"»{Q} = {0}= Therefore (A B) ®  C (A®C) (B ®  C).

(v) When restricted to the-category of groups,

A B can never exist since A and B cannot be disjoint.

The direct sum defined in definition 2.1 (2) has the same 

disadvantages given for definition 2.1 (1) except that A and B 

are subsemigroups of A ©2
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Definition (3) is the most commonly used form of the 

direct sumo Some of its theoretical uses may be found in [5]<> 

The direct sum preserves isomorphisms and when restricted 

to groups, it is the usual direct sum of groups. A and B are 

not in general isomorphic to subsemigroups of A B however, 

and ©2 is not preserved by the tensor product« To show the 

latter, let A = {0} and B = {0} be singleton semigroups. Let

C = {a,b} where 2a = a, 2b = a + b = b.

By Theorem 1.11, (A B ) S  C = C and 

(A ® C) (B,® C) = (0 ®  C) © 2  (0 ®  C) = C © 3  Co Therefore 

(A ©g B) ®  C f (A ®  C) (B ® C)o

Definition 2.1 (4) is the categorical definition of the

direct product [i;]. Since in this case it Is restricted to a

finite family of semigroups, we shall also consider it as a 

form of direct sum. Since by Proposition 2o3(a), for 

arbitrary semigroups A and E, A ® 3 B = A © ^ B ,  A B will 

have the same properties.

The form of direct sum given in Definition 2.1(5) is used 

by Re del [14]. Since when A B is defined, it is isomorphic 

to A © 3  B, @ 3  weakly preserves isomorphisms. In general 

A © 3  B and A B will have the same properties.

The direct sum described by Definition 2.1(6), is also 

used by Redel [14]. It has the same advantages and disadvan­
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tages as those given for Definition 2.1(5) except that A and 

B are contained in A ®5 B up to isomorphisms. If A'* and B® 

are isomorphic images of A and B in A ©g Bj this does not 

howevers, imply A “© g  B® = A B even if A® B ‘ exists.

For example, let A = N 0 and B = 0 N. Then A ©g B =

N ©g No Let A* = {(a,a) | a e N} and let B “ = {(a, 2a) [a cN). 

Then A* = A and B* = B, and AV: B® . However, N ®g N 

contains no direct summands since (1 , 1) cannot be expressed 

as the sum of two elements of N 6  ̂N.

In general. Definition 2.1(7) is not equivalent to any of 

the others since identities are added only if A and B do not 

already contain identities. If A and B contain identities, 

then Definition 2.1(7) is equivalent to Definition 2.1(6). If 

neither A or B contains an identity, then Definition 2.1(7) 

is equivalent to Definition 2.1(8). Thus the identities in 

A“ and B® may be internal or external, and may or may not be 

the same element. The direct sum ©y does weakly preserve 

isomorphisms, but is not preserved by the tensor product as 

may be shown by the same example as for definition 2 .1(c).

A B does contain A and B up to isomorphism, and when A and 

B are groups, A ©y B is the usual direct sum.

By Propositions 2.3(c) and 2.3(d), Definitions 2.1(8), 

(9 ), and (10) are equivalent and hence these direct sums will
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have the same properties » By Propositions 2.3(c), (d), (e)

and (f)a when A 6 g Bj A B and A B are defined^ they

are isomorphic to A ® and A 0^2 S^nce A B and

A ©22 ® preserve isomorphisms, A 0g B, A B, and A ®

weakly preserve isomorphisms.

In general, all five of these direct sums of A and B

will, when defined, have the same properties. A and B are

isomorphic to subsemigroups of direct sums under each of the

above definitions. When-A and B are restricted to groups,

none of these definitions■of direct sum is the usual direct

sum of groups. The direct sum is preserved by the tensor

product in-each case, as will be shown by the next theorem.

Definition 2,l(k) is the categorical definition of direct

sum and may be found in [12]. Definition 2.1(1) is the

annexed direct sum used by Tamura [17], and the augmented

direct sum used by Head [7].

Theorem 2.7s For an arbitrary semigroup B and an
0  0

arbitrary family of semigroups ( A ; ^ “ I (B®Aĵ ).
_  X e l  A « I

^  —Proofs Let A ■ I A. « Define (p, : A k. by 
X c l  ^

9j( .1 a^^) ■ Sj if ■ J for some x̂

■ 0;. Otherwise.
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Let f A be the embedding of A, into A„ Define Ps

J®(B ®  A ) ^ B ®  ( I ® A  ) by P ( 1  ( b . ® a  ) ) =  f (i®f, )
x h   ̂  ̂ 0  J=1 j j=l n j
(b.®a ), Define €'s B 0 j  A T B®A^ by (p(b ®  I a.) =
J  'j Q V :  ^
y{i®(P, ) ( b ® y  a )„ Then (pF(J (b.0a ) ) = ( p ( I  (i®

j=l j=l ' j=l  ̂ / j  ^ j=l
f ) ( b . ® a  ) = T (b, ®  a ).
Aj J  ̂j i=l J  ̂j

Therefore F is a monomorphism, and since it is onto, it is an
®  ©isomorphism. Consequently B ( V A ) = % (B®A ).

Ael  ̂ Ael ^
Throughout the remainder of this paper, internal direct

sum will mean Definition (9*), and direct sum or external

direct sum will mean Definition (12*) unless otherwise

indicated.

These forms of the direct sum are used frequently 

during the remainder of this paper primarily because they 

are preserved by the tensor product. The main exception 

will be when taking the tensor product of a semigroup 

with a group. In this case Definition 2.1 (1) is used 

making it possible to use the theory of groups, since this 

definition when restricted to the category of groups is the 

usual direct sum for groups. It will be shown later that, 

when taking the tensor product of a semigroup with a group, 

one need only consider the problem of taking the tensor 

product of two groups. Since the direct sum given by 

Definition 2.1 (1) is preserved by the tensor product when
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restricted to the category of groups, the main disadvantage 

to using this definition is removed.

In Definition 2.2, A is called the pseudo-direct summand

because there need not exi^t B such that A A B  = ̂  and

A + B = C. For example, let A = {a,b} where 2a = a,

b + b = a + b. = b. Define Ç s A -*■ (a) byjKb) = a, Ç(a) = a.

Then {a} is a pseudo-direct summand, but there exists no B 

such that {a}/I B =C and {a} + B = A.

When the discussion is restricted to the category of 

groups, A is the direct summand. Properties of the pseudo- 

direct summand are given by part (i) of the following 

proposition and its corollary^ Part (ii) is a generalization 

of its corollary.

Proposition 2.8:

(i) If A is a pseudo-direct summand of C, then 

A ® B  is a pseudo-direct summand of C®B.

(ii) Let Ac F, where F is a free semigroup. If 

there exists P B GF such that A is the set of 

elements left fixed by then A is a free semigroup.

Corollary; A pseudo-direct summand of a free 

semigroup is a free semigroup.
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Proof :

(i) If A is a pseudo-direct summand of C, then 

there exist maps fs A -*• C and gs C -«• A such that gf : A A 

is an isomorphisme Therefore (g 0 1 ) (f ®i); A ® B  -*■ A ® B  is 

an isomorphism and f 01; A ® B  C0B, g®is C ® B  A ® B  are 

the required maps.

(11) Let (S^ i iel) be a basis for F, where I is 

well ordered. Let {g^ : j e J = 1} be the elements of the 

basis contained in A,

Let a e A. where a = T n g
ay, m

•m
and Bj e A, e F\A, a = ̂ (a) = 6j) + 9

' jli
For the sum J n. 0 (g. ), select n. € {n. } such that 

k=l ■■ r>' X ^
n- = max {nj . Let ©(b J  = [ n g , then
A - ' A  p=l ^ P

n- ffl(gj) = X  n. n g c Since this is part of the sum 
m P~1
y n. g, and n« is maximal, n_ = 1 or 0 for each p. Therefore 

k=l ^ ^ r * ^
Ç(gg) = y B_ o But this is true for all g,, where n, = n,«
'  ̂ P]̂ =l Pi K K X

and since there are only a finite number, (pmust permute them.

Continuing this process for the remaining n^ < n̂  ̂we find 

y  permutes the ĝ .

A set (6g}ggg is called a permutation cycle generated by 

Ÿ  if for each s, s', e S, there exists n such that ^  (s) = s*„
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If {$!_} ^ is such a permutation cycle, let C = I 3̂ , K K € A keK

Then a = n^ 6  ̂ + 1 %  where Awhere ra = rain {ksk e K} 

for all ra, and the gj and are linearly Independent

Therefore A Is a free ccramutatlve semigroupc



CKArTER III

TENSOR PRODUCTS INVOLVING FREE SEMIGROUPS

In general if A, B, and C are modules, and A c B, this

does not imply A S  C c B ^  C. However, if C is a projective

module (see below), then the above statement is true. In 

this section, we shall show analogous results for semigroups. 

Definition 3=1: A module P is said to be projective

if given any diagram of modules

P

g
B

where f is an epimcrphism, there exists a homomorphism 

h: P-fA such that fh =-g.

The following theorem is well known and may be found 

in [13Ja page 67=

Theorem 3=2; If P is a projective module, A and B

are modules, and f : A B is a monomorphism, Then i ® f :

P ® A - * P ® B i s  a monomorphism.

Define a projective semigroup as follows;

Definition 3,3s A semigroup P is said to be projective,

if given any diagram of semigroups

P
I
!

'gfA    *B

32
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where f is an epimorphism, there exists a homomorphism 

ht P + A such that fh = go

To prove the analogy of Theorem 3=2 for projective 

semigroups, we first prove the following lemmas for free 

semigroupso

Lemma 3=4: Let F be a free commutative semigroup

generated by the set of symbols t^iel° Then F = X  N
i.i

where N = N, i —
Proofs The proof is immediate from the definition

of a free semigroup.

Lemma 3 = 5: If fs A - B is a monomorphism and F is

a free semigroup, then f g i s  A @  F + B ® F is a monomorphisme

Proofs Using Lemma 3=4, Proposition 1.8(c), Theorem

2.7, and Theorem 1.4, we have

A ®  F S A ®  ( % N ) 
iel

= I (A® N )
iel

= I Aj, where A = A.
lei ^

Similarly B S F = I B., where B = B. Let Os A ® F -*•
ici ^ ^

y A. and ©s B ® F -*• I B. be these isomorphisms. Since f 
ill iel
is a monomorphism, we may identify A with f(A) C  B. Consider

the diagram

t f Z
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where g is the embedding map cf I A Into I B,» If

iel  ̂ iel
elements of A are identified with their images in A under

n n
the map then Ç)(a® J- ) “ I , where a^ = a,

p=l p p=l p p

Similarly@ if the elements in B are identified with
n n

their isomorphic images in B, then 5 ( b ®   ̂ A ) = % b ,
p=l p p=l p

where b = b.
 ̂ n n _

Therefore g O ( a ® ^  ) = % a^ = Ç ( f S i )  
n ** p=l^ p p=l p

(a® % Aj_ )o Since gÿ = (p (f ® i) for the generators of
P=1 P ' ,

A ®  P, the above diagram commuteso Since G» 0 “ and g areJ V
monomorphisms, f ®  i must be a monomorphism.

Lemma 3=6? A semigroup is projective if and only if

it is a free semigroup,-

Proof; Assume P is a projective semigroup. Let

be a set of generators of P, P always contains a set of

generators since P itself is such a set. Let F be the free

semigroup generated by the set of symbols define f:
n n

F ->• P by f( [ n. 6. ) =  ̂ n =<. for n̂  ̂ e N, f is 
k=l ^  k k=l k k k

obviously an epiraorphlsm. Let e ; P ->■ P be the identity map

on P, By definition of a projective semigroup, given the

diagram

PI
ie 

f y
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there exists a map h such that fh = e. Therefore P is a 

pseudo-direct summand of P, and by the Corollary to Proposition

2.8, P is a free semigroup.

Conversely, let F be a semigroup and its set

of generators. Given the diagram

F

A ---

where f is an epimorphism, let = g (6^). Then for each

bĵ ; iel, select a^ e A such that f(a^) = b^. Define 
m m

[ I n, 6 )̂ = I n a
k=l k k k=l k kc

h: F — #A by h( I 6 )̂ =  ̂ n^ a^ Clearly, h is a

homomorphism, and fh = g. Hence F is projective.

From Lemma 3o5 we have the following theorem:

Theorem 3.7: Let P be a projective semigroup. Then

if J: A -► B is a mdnomorphism, i ® p :  P ® A - * P ® B i s a  mono- 

morphism.

If the free semigroup F in Lemma 3»5 is replaced by a 

free semigroup with identity, say F* then in general, the 

lemma is no longer true. In fact, for fixed A,B, the lemma 

is true if and only if the homomorphism *<: A ®  0 -+ B ®  0

defined by «<(a ®  0) = f(a) ®  C is a monomorphism.

To prove this we show that ps A ®  F -► A ® F*, defined by

p(a® f) = a ®  f, and ŝ A ®  0 A®F*, defined by Ç(a^® 0) =
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are monomorphisms. It is then shown that the images 

of Ç and ^ are disjoint. The theorem follows from Lemma 3.5.

Lemma 3.8; Let A be an arbitrary semigroup and F* a 

free semigroup with Identity 0, then the map A ® 0 - » A ® F *  

defined by ÿ(a^® 0) = 0 is a monomorphism.

Proofs Let fs F* -» 0 be the zero map. Then 

i®f; A» F* - A ® 0  is a homomorphism, and (l®f)© is the 

identity map on A®0. Therefore © is a moncmorphism.

Lemma 3.9; Let A be an arbitrary semigroup, and F* 

be the free group F with identity 0. Then pi A ® F  + A®F* 

defined by |s(a©A) = a ® A  is a monomorphism.

Proof: Let n : 8(A, P*) (A®F) u tO^^p} be defined by

'p(a,A) = a ® X  if A f 0

n
I (a , A )) = I (a. 5 A ). 

i=l i i=l
Since Yj is bilinear, by Proposition 1.8(a) there exists

a map o(i A ®F* -+ (A®F) u iO^^p) such that «(a®A) = a«A

if A / 0 and «(a®0) =’O^^p. Clearly xp is the identity map

on A®F, Therefore p is a monomorphism.

Lemma 3.10: Let F* be a free semigroup with identity 0.
n

Considered as elements of A®F*, y a.@A . ^ (g-0 for
i=l ^

^ , Sj e A, Â  ^ 0.

Proofs Let A" be the semigroup A ̂  8 , where S &= {0,1}

and addition is defined by 0 + 0 = 0 , 1 + 1 = 0 + 1 = 1 .
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Let B(AsF*) A be defined by

^(a^s X^) = (a^gO) if = 0

= (a^gl) otherwise 
n n _ .
I (a^g A^)) ¥ I (a^g x^)o ÿls easilyand d)( ) (a^. X J  ) / ) CD, (a, « x^)» ®is easily shown to

be bilinearg and so by Proposition■1»8(a)j there exists a 

map Of such that the followning diagram Is commutative.

6(AgF*) ^  k 
, \  /
A®F* 

n n
Since o<( I (a, «X.)} = % (a. gl)g for all X. / 0, and

1=1 1=1
m m

o(( I (aieo)) = I (a'g 0)g 
J=1 J=1 J

n m
I (a ® X ) / 2  0)'

1=1 ^ i J=1

Theorem 3.11: Let af:A B be a monomorphlsm, F* be the

free semigroup F together with an identity Og and 

g): A ® 0  -» B ® 0  be a homomorphism defined by

J?(a® 0) = ®<(a)®0. Then or®i : A®F* -» B ®F* is a

monomorphism If an only If g> is a monomorphism.

Proofs Assume ^ is a monomorphisra. Let 

: A ® F  A®F* be defined by p^Ca* X) = a® X, and

pg : B ® F  ■* B®F*  be defined by pg(b®X) = b ® X. By

Lemma 3.9g both of these maps are monomorphisms. Let i be 

the identity map on F. By Lemma 3o5g »^®T : A ® F -*■ B ® F
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Is a monomorphisme Hence^ by che commuiativity of the 

diagram
A S P  ---- :— 8>B®P

-»i w
ASP* ----- - B S F*

("f S 1 ) ; ^ ^ ̂  is a monomorphism.

Let A ® 0  -*• A®P* be defined by

(a®0) = a S 0 (, and B ® 0  •■*■ B ®F* te defined by

(b®0) = b®0o By Lemma 3,6; these maps are

monomorphisms. By hypothesis,^ is a monomorphism. Hence, 

by commutativity of the diagram
Ago  2— ^ B ®  0

A S F * . S.1.1-»B®F*

af® i I is a monomorphism. By Lemma 3olO,'A ® b
(*<®i) (A®F)/*i («©I) (A®0) = é , Therefore « ®i 

is a monomorphism. The converse is obvious.

Corollary; A®F* = (ASP) *2 (A®0),

Prom Theorem 1,11, and the discussion preceding it, we 

conclude that A c b implies A ® 0  c B ® 0  If and only if for 

all a^, ag e A, the existence of x, y c B, n^, n^ e N such 

that a^ + X = n^ a^

a. + y = n a
1

implies there .exist, u, v e A, n^, e N such that 

a^ + u = n^ ag

a2 + V = n^ a^.
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In generals A c B does not imply A ® 0  c B®0o For 

examples let A = P, the non negative integers g and B = z? 

the set of integers» Then A c Eg but by Theorem loll g 

A 00 = {Og 1} where 0 + 0 = 0, l+0 = l + l = lg while 

B ® 0  = {O/'i Therefore A® 0 ^ B®0o

Although It is not true for the category of semigroups 

that A C S  implies A ® 0  c B®Og it is true for certain 

subcategories including the category of groups, the category 

of Archimedean semigroups and the category of idempotent 

semigroups »

Let A and B be semigroups such that A c B and 

A 0 O  c B®0, and let be the equivalence relation on B 

defined by the natural map B B ® 0 » Let be the

set of equivalence classes, and define addition between the 

equivalence classes to lie the usual addition of the quotient 

semigroup» Then by the discussion preceding Theorem loll, 

it follows that the semigroup {6 }̂ is the maximal idempotent 

image of B»

Similarly, let p be the equivalence relation an A, 

defined by the natural map 5; A - A®0» Then {g . n A}..!,-r is7 i 1 c J.

the set of equivalence classes of A defined by p » With

addition defined by {6 n A} + {B n A} = i(B, + 8 )̂ n A),
^1 ~2  ̂ ^
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It forms the maximal idempotent image of A. This motivates 

the following definition:

Definition 3.12: If A c B implies A: A ® 0  - B « 0

defined by C(a®0) = a®0 is an isomorphism, then B retains 

Idempotent Images of Ao In symbols we shall Indicate this by 

A <  Bo

Proposition 3 d 3 s If A < B and B C then A ^ C»

Proof; The proof-of this proposition follows immediately 

from Definition 3o12o

One might at this point consider the possibiltiy of 

restricting the discussion to semigroups having this-property, 

except that this property is not necessarily preserved by 

homomorphismso For example, let B = (N^© N^) u {Ojj ^  ̂  } 

where = N, Let -»• N and 8; -*■ N be these

isomorphisms. Define S<s + P by 

(n^) = «(n,) for n^ c

?(0 ) * Oo
»  ^1

Define -* P by 8 (n^) * SCng) for n^ c

6 (0 ) • 0 
**2

Define f: B Z by f (n̂  + n̂ ) • *<(n̂ ) - 8(ng)

^ (°N
1 ^

Then f (B) * Z, Let A * {N, ®_ 0„ } V (0 } be considered1 5 Ng
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as a subsemigroup of Bo Certainly A c B and A is closed

under addition. Then f(A'; = the non negative integers.

Using the Corollary to Theorem 3.H g  Proposition 1.8(b)

the fact that s- 0^ and Theorem l.llg we have

A®0 = [(N^ © 5  0^^) « (0^^^ ̂  n ® 0

= [N, u 0 ]®0
1

= (N^® 0 ) u {Ojj ®  0 }

= {1 ,0} where 0 + 0 = 0 , 0 + 1  = 1 + 1 = 1 .

Using Theorem 3.11 and its Corollary, together with
t

Theorem 1.11, and Proposition 1.8(b), we have

B ® 0  a [(N^e Ng) u {0^ ®  °

= t(N^SNj)® 0 ] „ 10 g  ,
1 ^

S[(N,® 0)©(N2® 0)] u ({Ojj @  jj } ® 0) 
2

= (1©T) Ü (0--„ ), where T is an idempotent.Iwl
Therefore A SO c B ® 0  up to isomorphism. But by 

Theorem 1.11, f(A)®0 = P ®0 a <1, 0} and 

f(B)®0 = Z ©0 = 0. Hence f(B) does not retain iderapotents 

of f(A).



CHAPTER IV

TENSOR PRODUCTS INVOLVING A UNION OF GROUPS

Definition A semigroup S is-called a union of

groups if S ==J where for each a e A, G^ is a semigroup
a&A

Of So

Head has shown that the problem of determining the

tensor product of a group with a semigro-up may be reduced to

determining the tensor product of two groupso This is

accomplished by using the fact that for an arbitrary group G,

G ®  Z = Go Therefore g for a semigroup S, S ®  G = S ®(Z ®  G)

= (S ® Z) ® Go However S ® Z is a union cf groups » Then,

using a theorem-by Head, restated here as part of Theorem 4,3

the problem is reduced’to that of finding the union of groups

formed by tensoring groups of the union of groups S ®  Z

with the group Go

It has been shown f$j that if S is a union of groups, 

then S may be expressed uniquely as a union of pairwise disjoint

groups0 Hereafter"in-this paper it will be assumed that 

when a semigroup is expressed as a union of groups, these 

groups are pairwise disjoint « '

Clifford [4] has shown that if S is a union of groups

42
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niay De expressed, up to isomorphismj, in terms

of a semilattice and a set of hcmomorphlsms between the

various groups as follows r

Let I be the set of idempotents of So Obviously the

identities of zhe groups {G } are idempotents of Soa
Moreover these are the only idempotents of S since a group 

can contain only one idempotent, I is an idempotent semi­

group and hence a semilattice under the operation 2 defined 

by ** L  2 for g € A if and only if i^ + i^ = ig " »

If 1^8 then for a^ 6 g it can be shown that

This is easily seen to be a homomorphism^ and if f’̂ 2  2(^,

then ^yg ^gg = Cyg. is the identity map.

Conversely g let {Ĝ }̂ be a set of pairwise disjoint
osA

groups Indexed by the semilattice A. Suppose that for each 

g e A such that 2 , there exists a homomorphism 

9Ba° ^B ^uch that if 2  ̂ then pg^=

and Cp is the identity map on G„. If S is the union of ' aa “
these groups, and for a e G^g b e Gg g a + b is defined

to be Gyg(a) +_fvg(b)g where y- inf (Lr« « then S is a

semigroup. Using Head's terminology [8], call S the union

of groups {Gg I aeA} related by the family of homomorphisms 

^Çga' ^ ®gi »8 S eA, a + S = g}„
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The following lemma is due to Head [?j 

Lemma 4.2; For an arbitrary semigroup C, C ®  Z is a 

union of groupso Purrhermore C is a union of groups if and 

only if C ®  Z = Co

Let C be the union of groups ] s € S} related by

S J s'' £ S,the family of homomorphisms s G^ •*

s -r s" = s“> and D be the union of groups {H^ i t e T} 

related by the family of homomorphisms -* Ht»

tg t" 6 T, t + t" = t"

By tensoring the groups in C with groups in D, and 

tensoring corresponding homomorphismsg we obtain a semi­

group U which is the union of groups ÎG^ 3 H^ j s £ S, t £ T}, 

The homomorphism in the following theorem is a 

generalization of one given by Head 8 ^

Theorem 4.3: If C and D are respectively a union of

groupss then C D is a union of groups. Furthermore,

there exists an epimorphism 0 : C ® D - U defined by

©CCg ® d^ ) = Cg ® di- for Cg « Gg, d^ £ H^o This map is

an isomorphism if and only if either S or T is a singleton 

set.

Proofs Using Lemma 4.2, we have

(C @  D) 0  Z S c ®  (D ®  Z) 

s c ®  D.



45
Therefore3 Dy Lemma 4.2; C is a unicn of groups.

Since C and D are union of groups^ each element of 

C X D may be written uniquely as an ordered pair (c^g d^) for 

c £ c c and d^ £ c DoS 3  t «-•
Define f: C x D -* U by flCg, d^) = Cg<3 d^ £

G 0  c UoS Xt

For V = t + t -J

f (Cg, d^ + d^«; = f (Cg; (d̂ _) + Cdt»))

= c-g (S L {d^ ) + o:y(; V (d^ « ) ]

= (Cg @  ®  ®vt"

= (?8S ®  ® + (9̂ 88 ®  =Vt')
(Cg 0  d_«)

- (Cg ®  d_) + (Cg ®  d ^ « )

= f (Cgg d^) + f (Cgs. d^„ ) 0

Similarly; f may be shown to be linear in the first

variable. Since f is bilinear on the elements of C x D, it

may be extended to a bilinear mapping from 6 (C, D) to U by

defining f ( J n^^ (Cg® d^)) = I f (Cg ®  d^) for 
SI/ 5 b9 9

e N. Therefore g by Preposition 1.8(a), there exists a 

unique map 6 : C ® D U such that the following diagram 

commutes

p(C, D) » U

C * D



^6
wherejp(c^5 0

OfCqiS ) = f I Cg 5 dç ) = Cg S) d̂ c. Certainly R is an 

épimorphisme Therefore P is the required homomorphism,..

Head l8 j has shown that when C or D is a group, 0 is an 

Isomorphism.. Conversely,; suppose

S = ta,; b *• 4 where ?b = b 2a = a + b = a»

n = !c , di, wnere 2d = d, 2c = c + d = c„

E = iu, V, w X  j y ' where u + u = u. u + w = w + w = w,

W + V = Xr, V + u = V + V = v„

X + w = X t X = X + u = X,

X + V = X,; x + y -  y + y -

y + u = y , V + y = w ■*- y = y ,

D and E are respectively the semi lattices shown below,.

• b »d u

I V..--" >w
i I
ia it

y

Define f : 8(C* D ; ■* E by

f(a, r .! = y , f (a, d) - w„

f ( b j c ) = V ̂ f ( b , d ) = u

ana extend linearly to 6iC, D), It can be shown by direct

computation that f Is a bilinear map,,

Therefore» by Proposition l:8(a;g there exists a map 

0 ; 0 ®  D - E such that the following diagram commutes.
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B(C, D) -»E

X . /
c a  D

Since f(a, c) = y and f(a, d) + f(b, c) = w + v = x,

p(a ® c) = y and Ç)[(a ® d) + (b ®i c)3 = x and so

a ® d  + b ® C 7 ^ a ® C o

Assume S and T each contain at least two elements, and

define homomorphisms î's C C and D D as follows:

Choose s, s' e S and t* c' £ T such that s > s'; and t > t*.

For e G^, let 't(Ĝ ) = fb if o i s,
° Ia otherwise.

For hg e Hg, let p(hg) = |d if 6 & t,

otherwise.

? is a homomorphism; for if a,a* ss, a + o *  ^ s, and 

t(gg + g^,) = b = b + b = t\g^) + ?(g*,) ; if o' a s and a < s

or not comparable, then & + =*= s and

%(Sa + Sa) = a = a + b = t\ga) + %(ga')° If a » « < s or

not comparable to s, then a + o' < s and

%(go + g ^ ) = a = a + a =  %(gg) + fig*').

Similarly one may show that u is a homomorphism.

Identify a and b respectively with i^, and i^, the 

identities of and Gg. Identify c and d respectively with 

i^, and i^g the identities and Hj.. Then V leaves ig,
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and i fixed while p leaves i_ and i fixedoS u u
Let y* be the embedding map of {1^, Ig,} Into C and p* be

the embedding map of {i^, i^„ } into D= Then t° t* is the

identity map on C and up* is the identity map on D.

Therefore (t 0  u)(t*® p*)ï C ® D - ^ C ® D i s  

the identity map on C ® D. Hence t* ®  p* is a monomorphism 

and C ®  D is embedded in C ®  Therefore ig ® i^,, 

ig, ® i^ and i^^Gg i^„ may be identified with b ® c ,  a ® d ,  

and a 0) c respectively j and hence, since a ® d  + b ® c /  

a ®  c, we have i^ ® i^, + ig, ®  i^ f ig, (0 î .,.

But considering i^ ®  I^b, i^, (S i^ and ig, ®  ,, as

elements of U, we have 

(ig® 1^,) + ( ig,® it) = (fs's

(ig V ®  i^)

= (ig,® 1^,) + i g , ®  it,

= ig » ®  it®

Therefore 0 is not an isomorphism o

The following Corollary is due to Head"[8].

Corollary : Let S be a semigroup, and G a group. If

S ® 2 = V Gg, then S ®  G = u(Gg ®  G),
tt a

Proof; S 0 G  = S ® ( G S Z )

= S 0  (2 0  G)

= (S ® 2) ®  G
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= (u GJ  SI G 
a ^

= u ( G ® G) a a o
We are now ready to restrict our theory to certain 

specific cases.

(1) Consider, for example, the tensor product A ®

where A is an arbitrary semigroup. Let A ® Z =u G^. Then

A ® Z = ' j ( G  ® Z ) .  But for a group G, it has been shown c( a n
that G ® Z = G/nG. Therefore A ® Z = u^a/nG*. n n a

Hence tensoringby Z^ "shrinks" the groups forming the 

union of groups ; Tensoringby i.e., by an idempotent 

element "shrinks" each-group into its identity. Therefore 

A ®  0, the maximal idempotent-image of A is isomorphic to 

the subsemigroup consisting of the identities of the groups 

of A ® Z.

(2) If G is a group such that nG = 0, then, it has been

shown [6] page 44 that G = ^  Z & where Vi s Pi is a prime
iel ^i

number, and e N. Therefore, if uG^ = A ®  Z,

A ® G  — ( uG G“ a

' “(O.® I® V i ’® i£l ^i

Notice that although the -direct - sum above is not 

preserved by the tensor product in the category of semigroups, 

it is preserved in the category of groups. Since for all
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a e A» 1 e Ij 0^ and are groups, it follows that for

all o c Ar, G ®  ( y Z a . ) = G Z^ a,. Therefore
a “ 1 1 ° &  '

®  I Z a ) ar U ^ G  @  z a ), But, since
= " Î Pi 1 " i = Pi ^
Gg ®  Zp a_̂ = *^a/(p^ai)G^3 we have

u f(G ®  Z a ) = U  and so
« £ 1 a ^

A 0  G a ^ [(^''/(p^^DGg),

(3) If G is a finitely generated group, then it has
ft® @

been shown [6], page 40, G = I Z a. © -  y Z, where
i=l Pi  ̂J=1 

Z(j) - Z for all j, Therefore, for an arbitrary semigroup

A, if A 0  Z a u G , then a ®
^ ©A ® 0  * U ( G „ ®  ( Ï Z ® 3  Î Z ).

1=1 Pi J=1

Since this direct sum is preserved by the tensor product

in the category of groups, for all a, we have
u ̂  m

G„ ® ( J ^  Zp^a, ®3 Z,j.-. ; j_ (G„® Z^^a,) ©3

I ( O g ® Z ,  ,)„ Therefore 
J=1

n ®  mq) ng> m @
®3 ' j ,  (=. ® ® 3

(Gg 0  But for all 1, a, G^ ®  Z^ a^ % /(p^^DG,^,

and for every j, a, G^ ®  Z^j^ G. Therefore

A ® G  = ^  ( y ®  ^“/(p.^l)Gg @o y^G. ) where G . = G . 
i=l . J
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Let A be an arbitrary semigroup^ Q the semigroup of 

rational numbers under multiplication, Q* the subgroup of 

non zero rational numbers, and Q+ the subgroup of positive 

rational numbers. It can be shown [15] that Q"*” is isomorphic 

to P(x), the additive group of polynomials in x over the 

ring Zo The isomorphism 4>s P(x) -* Q+ is defined by
n n

$ ( I a.x^) =■ n p^^i, where p̂ _ is the i^^ prime integer 
i=l  ̂ i=l

greater than■one.

However P(x) = %^  Z , where Z, = Z.
1=1 ^

cc ”  (2)
Therefore A ®  Q+ ^  A ®  % Z^„ Since I Z^ is a group,

A <2) l^Z = A ®  [( p Z  ) 0  Z] 
i=l ^ i=l ^

00̂
= A ®  [Z (85 ( r  z )] 

i=l

= (A ®  Z) ®( Z )o 
1=1

1=1 1=1

Letting A ®  Z = ^  G^, we have

(A 0  Z) ®  l^Z = (U Ĝ ) ®  I® Z 
1=1 1=1

= U ( G  ®  1®Z.)
“ 1=1

1 =  1
Let G^^ = G^® Z^ = G 0 Then A 0  Q+ = U I G^^

1=1
Let 6 = {-1, 1} be considered as a subgroup of Q,
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Q* = G Q+„ Since G = we have Q* = Zg Q"̂ »

Therefore A ®  Q* = A ©(Z^ @ ^  Q"*") <,

Since Q* Is a group g

A®(Zg © 3  Q+) = A®[(Z2 ®3  Q+)8 Z]

S' A ® ( Z ®  (Z2 ®3 Q+) )

= (A <S Z) ®  (Zg ® 3  Q+)

-  = (u G„) ®  (Z. Q+)a “ d. D

= ü (G ®(Z- %  Q+))a a d. i

= u [(G ® Z  ) ©, (G 0Q+)]
a « 2 0 “

= u [ ( G a / 2 G a ) 0 _ l ^ G .  1 .3 la

Since Q = Q* u {0>, we have A ® Q = A ® (Q* u 0)» By 

a proof similar to that of Lemma 3olQ> one can show that 

A ® \ u  {0}) = (A ® ©2 (A®0)o Therefore
00 _

A ®  Q = u[(Ga/2G^) ©3 % G^^ ] ®  (A ®  0).
1—1

Let Z be the semigroup of integers under-multiplication,

_Z* the subsemigroup of non zero integers, Z+

the subsemigroup of positive integers, and A an arbitrary
00

semigroup» For 1 e N, let N. = N» Then Z =  ̂ N under the
» n i=l ^

map Z'*’ - \ N defined by n p»'̂ i. ) =  ̂ a , where 
i=l k=l k k=l ^k

p^ is the i^^ prime greater than one. Therefore

A 0 Z"̂  = A ®  % N., and since this direct sum is preserved 
i=l

by tensor product, A ®  Z'*’ = \ A ®  N.. Letting
i=l

A = A 0  = A, we have A ®  Z"̂  - I A,.
1=1
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As before s lei'. G = {-Ig 1} considered as a subgroup of Z, 

Then Z* = G ©_ Z'*‘o G ^  and so we have

A ®  Z* = A ®  (Z^ 0^ Z"*")» Since is not preserved by the 

tensor product in the category of semigroups, we cannot 

proceed as in the previous exampleo

Since Z = Z* u {0}, by a proof similar to that of Lemma 

3.10, we have A ®(Z* u {0))= (A 0  Z*) <8 0). Therefore

A <S Z = (A 0  Z*) ©2 (A®0).

At this point, we may partially determine the structure 

of the tensor product of an arbitrary semigroup A and a cyclic 

semigroup S.

If S is an infinite cyclic semigroup, then S - N and 

hence A <2) S = A.

The following description of a finite cyclic semigroup' 

may be found in [5]. If S is finite and generated by s, 

then there exists qj r £ N such that'rs = (r + q) s. Let 

m be the least integer for which there exists a q such that

ms = (m + q)s. The integer-m is called the index of S. Let

n be the least integer such that m s = (m n) s. The integer

n is called the period of S.

Let S^^ be the cyclic semigro'up with index m and period 

n. Let = {ms, (m + 1) s, (m + n -l)s}. is

isomorphic to the cyclic group Zn
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The following lemma is due %o Head [9]c

" ■'^mn® ^m’n“ ^(mln {m,m'}, gcd {n,nM)<,

Let s generate the semigroup ^ and s generate

S = S „ Define $? S Z by $(s) = 1 and extendmn mn,n n
linearly. Since K = Z , there exists an embeddingmn |,n n
a : Z ^ S and Z Z_ is an isomorphism, Therefore n mn,n n n
so is (i ®  $ O  i)(i 0  a ®  i) : A 0  Z^ ®  - A 0  Z^ 0

Hence i ® a ® i  : A ® Z  ® Sn mn A 0  ®  S is anmn,n mn
embedding.

By Lemma 1.4, Z„ = Z„ ®  and S_. „ ®  S„„ = S,n n mn^n mn mn
Let tjj z H. z ®  3 and y:n n mn mn S ®  S be mn,n mn

defined respectively by k)( 1) = 1 ® s and y(s) = s ®  s.

These maps are onto, and hence one-to-one. ,',u3 and y are

isomorphisms. Therefore A ®  Z Z A 0  Z ® S  andn - • n mn
S ®  S = A ®  S ran ,n mn mn

Let f:A ®  Z  ̂ ^ A 0 Z ® S n n mn
and gik 0 3  ® 3  A ®  3 be the respectivemn,n mn mn
isomorphisms.

Thus A ®  Z is embedded in A 0 3 say by 9* and n mn
©(a ®1) = g(i ® a  ®i) f ( a ® l )

= g(i ®  a ®i)(a ® 1 ®  s)

- g(a ®  a(l) ®  s) ,
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Letting ps = ail)^ we have g(a @  all) iS s) = g(a ® ps ® s)

= g(pa ®  s ®  s)

= pa ® s 

= a ®  ps 

= a ®  o(l)o

Therefore Im 0 = A ®  K »mn
If a e A generates a finite cyclic subsemigroup A* with

index m and period rig then a ® s as an element of A ®

generates a cyclic semigroup with index less than or equal to

min(m,m)o This follows from the fact that

A* ®  S ► A ®  defined by ?(a ®  s) = a ®  s is a mn r.ja
homomorphism0

If A* = Aj then by Lemma 4.4, a ®  s has index equal to

min(mjra)„ In general the index may be less than min(m,m)«

Suppose a = (m + k)b for some b € A, wh'ere (m + k)s is the

idempotent of S Then mn
a ® s = (m + k)b & s 

« b ® (m + k)s 

■» b ® [(m + k)s + (m + k)s]

= b ®  (m + k)s + b ®  (m + k)s 

= a ® s + a ®  s 

and a ®  s has index one.

L .
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Similar results follow if a generates an infinite cyclic 

subgroupo

Although we already know that for an arbitrary semigroup 

Sg S ®  Z is a union of groups, we are now able to establish 

necessary and sufficient conditions on S so that S ®  Z is the 

group of quotients of S [see below]»

Definition A relation R on a semigroup S is said

to be compatible or stable if for every a, b, c e Sg aRb

implies (a + c) R(b + c),

Define a relation s on the elements of S as follows: 

a s b if there exists x e S such that b + x = a» This 

relation is easily seen to be transitive, and compatible„

Definition 4»5: A semigroup S is said to be Archimedean

if for every a, b e S, there exists a positive integer n and

x £ S such that na = b + x»

This is equivalent to'saying'that S is Archimedean if 

for every a, b € S, there exists, a positive integer n such 

that na s b 0 This definition would coincide with the 

corresponding definition of an Archimedean'ring if-s were 

replaced by 2, but the above definition for semigroups is 

standard»

The following definitions may be found in [5]»
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Definition., 4 <,6.; A group G is called the group of 

quotients of a semigroup S, if G contains S, and every g c G 

may be expressed as a - b for a^ b e S„

Definition 4.7: A semigroup S is said to be separative

if for every â, b e S, a + b = c + b == a + a implies a = b.

The following lemma is due to Hewitt and Zuckermann [10]. 

Lemma 4.8; A semigroup S can be embedded in a union of 

groups if and only if it is separativeo

This canonical embedding is formed as follows : Define

the equivalence relation "!p by a yj b if and only if na  ̂b and

mb < a for some m, n f N. Let (a t A) be the equivalence
classes of S formed by ̂ » It follows Immediately from the 

definition of that each- a e A) is an Archimedean semi­

group o Since is compatibleand hence a congruence relation

is a semigroup0 If a < S^, then 2a e Therefore +

S = S , and is a serailatticeo If addition in A  is a ot » y
defined by a + a“ = <x" when + Ŝ '- = then is a semi­

lattice c In the same manner as for the union of groups one 

may show S is a union of Archimedean'semigroups; It may be 

shown [5] page 133? that each S* is cancellative, and hence 

may be embedded in a group, Let G be the group of quotients

of So Then uG is the desired union of groups » a a
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The following lemma is due to Head [?]c 

Lemma ^.9: If A is a separative semigroup and S is the 

union of groups in which A is embedded by the canonical 

embedding; then S = A ®  Z«

Theorem 4.10: If A is a semigroup which tran be embedded

in a group ; then A ®  Z is the group of quotients of A if and 

only if A is Archimedean.

Proofs Since A may be embedded in a group* it is 

cancellatives and hence separative. Therefore by Lemma 4.9, 

$s A A ®  Z is an embedding. Therefore A c a ® Z up to 

isomorphism.

Using the canonical embedding above, assume A is 

Archimedean; then a b for all a* b e A. Therefore A  

consists of a single element a, and = A. Therefore

is just the group of quotients of A.

If A is not Archimedean i, then--by Theorenrl.il, A ® 0 

consists of at least two elements. Consider the commutative

diagram

A

À
-»A @ 0

Since the elements of A ®  0 are the images of the identities
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of the groups in A ®  Z, and A ®  0 contains at least two 

elements5 A ® Z contains at least two idempotents and hence 

cannot be a group

The tensor product of an arbitrary semigroup and the 

additive group of ratiomls has certain properties which 

we shall now investigateo

Definition 4.11; A semigroup is called power 

cancellatlve if for every a^ b e A and n £ N, na = nb 

implies a = b.

Definition 4,12; A semigroup is called divlsible if for 

each a S A and n g there exists x 6 A such that a.= nx.

The following lemmas are due to Head [7jo 

Lemma 4,13: Let A be an arbitrary semigroup, and R'̂  the

postive rational numbers under addition, then A ® H +  is power 

cancellatlve and divisible» The homomorphism $ : A -► A ®  R'*' 

defined by î>(a) = a ®  1 is an isomorphism If and only if A 

Is power cancellatlve arid divisible.

Lemma 4.14: Every homomorphism fsA -► B of A into a

power cancellatlve divisible semigroup B factors uniquely 

through A ®  R'*', i.e., there exists a unique map o<;A ®  R'*’ B 

such that the following diagram commutes.

• ^ .B
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Lemma 4.15: Every homomorphism f?A - B of A into a

union of groups factors uniquely through A ®Z, i.e,, there 

exists a unique map 6:A ®  Z ->■ B such that the following 

diagram commutes.
f

A -----
>  Î6
 ̂ A ®  Z

Theorem 4.16: Let R be the additive group of rational

numbers. Then for an arbitrary semigroup A;

(i) A ®  R is the union of power cancellatlve divisible

groups o

(ii) A ->• A ®  R defined by <t(a) = a ®  1 is an

isomorphism if and only if A is the union of power

cancellatlve divisible groups,

(ill) If W is a map from A into a power cancellatlve

divisible group G, then there exists a unique map such

that the following diagram commutes where $(a) = a ® 1,
w)A ------

A ® R

Proof: (i) R is power cancellatlve and divisible.

Therefore by Lemma 4.13, R ®  R"*" = R. Therefore 

(A ©  R ) ® R ‘‘' = A ®  (R ®  r"*̂) = a ® R ,  Therefore by Lemma 4,13, 

A ® R  is power cancellatlve and divisible.
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Since R is a group^ by Theorem 4.3; A ® R i s a  union of 

groups. Obviously each of the groups is power cancellatlve.

Since A ®  R is divisible, if a e G c A ® R  then for each 

positive integer n^ there exists an x e A ®  R such that nx = a. 

But X and a must belong to the same group. Therefore G is 

divisiblej and A ®  R is the union of power cancellatlve 

divisible groups.

(ii) If A = A ®R, then obviously A is the union of 

power cancellatlve divisible groups since these properties 

are preserved by isomorphism.

Converselyj if A is the union of power cancellatlve 

divisible groups * then certainly A is a divisible semigroup.

A is also power cancellatlve since if na = nb for a, b e A, 

then a and b must belong to the same-group G^. Since this 

group is' power cancellatlve, a = b. Therefore by Lemma 4.13, 

01 A -► A ®  R'*' is an Isomorphism.

Since A is a union of groups, a : A -► A ®  Z defined by

a(a) = a 0 1 is an isomorphism. Therefore, there exists an

isomorphism p : A 0 R ' ^ ®  Z A ® R"*" and p(a) = ( a ®  1)

0 1  = a ®  lo Since R'* is Archimedean, by Theorem 4.10, R"^®

Z = Ro Let f be this isomorphism and i the identity map on

A. $ = (i ®  f ) p is an isomorphism from A to A ®  R.

. $(a) = (i ®  f) p(a)
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= (i ® f)(a ® (1 ®  D)
= a ® [f®(l ® 1)]
= a ® lo

Therefore $ Is the required isomorphismo

(ill) Let G be a divisible power cancellatlve group, and 

W a map from A to G» By Lemma 4<,14, there exists a unique 

map Ô; A ® G such that the diagram

uu
A—  G

A®R" 
commutes»

Since G is a group, by Lemma 4,15, there exists a unique 

map p such that the diagram

A ®  R+

A ®  R'*'® Z

commutes,

Combining diagrams, we have the diagram

A ®  RA

Let $ = (i 0  f)00o $(a) = a  ®  1, Hence $ is the same

map developed in (ii)- Let a = p ( i 0 f ) ” ,̂ then a* = cC, and 

uniqueness of p and a insures uniqueness of a.
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The tenser product of any divisible semigroup.

Including the rationale, with certain semigroups may be 

simplified as shown by the following theorem and Its 

corollaries.

Theorem 4-.17: If S Is a semigroup In which every

element has finite order, and D Is a divisible semigroup, then

S ®  D = I (8J J, where I Is the maximal Idempotent Image of S

and J Is the maximal idempotent Image of D.

Proofs Suppose s e S and s generates a cyclic semigroup 

with Index m and period n. The set K ^  = {ms, (m + l)s,

(m +n -l)s }forms a subgroup and hence contains an Idempotent, 

say ks.

Hence for d e  D,

s ®  d = s ®  kd', where d = k'd 

= ks ®  d*

= 2ks 0  d'

= ( ks ®  d ’ ) + ( ks 0  d ' )

= (s 0  d) + (s ®  d)

Therefore every element of S ®  D Is an Idempotent. Hence, by 

Theorem 1.11,

S ®  D = (S ®  D) ®  0

5 S ®  D ®  ( 0 ®  0)

= (S ®  0) 0  ( D ®  0)

= I ®  J.

Corollary 1 ; If G Is a group In which every element has
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finite order„ and D is a divisible semigroup, then

G ® D  = 0 i.e.j G ®  D is the maximal Idempotent image of

D,
Corollary 2 ; If G is a divisible group, and D is a 

semigroup in which every element has finite order, then 

G 0 D  = 0 0D, the maximal idempotent image ofD.

Corollary 3; If G is a group in which every element has 

finite order, and D is a divisible group, then G ®  D = 0.



CHAPTER V

TENSOR PRODUCTS INVOLVING THE DIRECT LIMIT

The following development of the direct limit of a set 

of groups [semigroups] is essentially Bourbaki's [2], pp. 88— 

98, development of the direct limit of a set. To extend the 

theory to groups [semigroups] one need only prove that the 

sets involved form groups [semigroups]. Although the results 

of this section "through •'Theorem'5 oil'are-known, to the best 

of the author's knowledge'the'use of the union of semigroups 

for a more elementary development'is original. As previously 

mentioned, the purpose-of'this chapter-is-to use the-fact 

that the tensor product•distributes•over the'direct limit. 

to study the tensor product of an arbitrary semigroup with 

the nationals mod one. In addition, several theorems about 

the direct limit are proven-by use of the tensor'product.

The following'lemma'is due to Bourbaki [1], page 98.

Lemma 5.1: Let {S.) be a family of groups [semi-
i£l

groups]. Then there exists - a set S which is - the union of.a 

family of pairwise disjoint groups ;[semigroups] {S.}
iel

such that for every i e I , S * ^ = S ^ .

Definition 5.2: Let {S.} be a family of groups
iel

65
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[semigroups]o The set sum (up to isomorphism) of this family

of groups [semigroups] is the set S = u S' where the S'
iel ^ ^

are pairwise disjoint and 8^̂ =- S'^ for all i e l »

Let I be a preordered right filter, i»e. for all i,

jel, there exists kel such that k  ̂i, J, and {S.} a
i e l

family of groups [semigroups] indexed by I, and assume that

for every i,J € I such that i s J , there exists a

homomorphism f : S S, such that 
ji i J

(i) i s J  ̂k implies f̂ ^̂  = f^^ f^^ for all i,J,k e I»

(ii) For every i e l ,  f^^ is the identity map.

Let S be the set sum of the family of groups

Define a relation on S as follows:[semigroups] {S^}
iel

For x e S. , y e , x M y if and only if there exists i e l  
z 7

such that i & i^, i & i and f̂ _,̂  (y) = fj_ (x), is
y y * X

obviously reflexive and symmetric. It is also transitive,

for let X e 3^, y e Sj and z e 3^ and suppose x ̂  y and y z,

Then there exists 1, m e I such that 1 a i, j and

fj_i(x) = fij(y)* m i J, m s k, and f^j (y) = f^(z) "

31nce I is a right filter, 3 n such that n  ̂1, n s m, and

f^i(x) = Tjjj(y) = f^(z); therefore x ^ z and yp is transitive,

Definition 5.3: The quotient 3 = 3/^ with the induced

multiplication is called the direct limit of the family of



67

groups [semigroups] (S }
i e l

It is denoted by S .
1 i

Definition 5.4; The set (S^, 

directed system of groups [semigroups],

with the family of maps (f ),
ji

is called a
i e l

Let S = u S and assume, without loss of generality, 
i ^

that the are disjoint. Now, identify and if

f^^ : Sj is an isomorphism, and-identify i,J. Let I

be the index set with'the-indices identified and let S =

u S 0 I is easily seen to be a partially ordered set. For 
ieî"l
i, J e I such that i and J are not comparable, define S (i,J)

Since this is the categorical,direct sum, 3 maps

^i and g : S -► S. .. such that for any pair J J v.i J
of maps f|̂ :̂ and f^^: Sj - 3  a map

^kj-
Let I* = Î u {(i,J) I i and J are not comparable}, and 

define an ordering-on I*-as follows :

1 < J if and only if i < j when considered as elements of I. 

1,5 < (i,J)

(i,j) s k if and only i s k, J s k.

I* is a semilattice 0 Hence the set S* = u S may be
ici* ^

considered as a union of semigroups in the usual manner.
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Therefore it is a semigroupo The relation on S* is 

compatible, for if x Tp y then there exist i,j such that 

fl^(x) = f^(y) and if z c then for n s i,j,k,l,

= + y>-
Therefore, is a semigroup. But S*, = S, : therefore

/•*) /'f) ir)

S is a semigroup. If the S are groups, then S* is a 
/f) i

union of groups. Therefore S* is a union of groups since 

the image of a union of groups is a union of groups. But 

since the identities of the various groups are identified.

S/p is a gijoup. Hence, the direct limit of a directed set 

of groups is a group.

The following definition may be found in Bourbaki [2]. 

Definition 5.5: Let f be the natural map of 3 onto 

S/p, and let f^ be the restriction of f to S^. Then f^ is 

called the canonical map of S^ into S/p.

Proposition 5.6 : For each i e l ,  let be a map from S^

into a semigroup T such that u.f = w. for all i $ j. LetJ Ji ^
S = S^. Then there exists a unique map y: S -► T such that

= yef^ for all i I.
S S
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' Proof; Bourbaki [2] proves the theorem for sets and 

functions. Therefore it is only necessary to show that v is 

a homomorphism. Let x, y £ S,

X = fĵ (x̂ ) for some x^ £ S^,

y = fj(Xj) for some Xj £ Sj.

Assume k & i,J, Then

X = f^(x^,) for some x'^ £ S^,

y = f̂ (̂x̂ ) for some x^ £ S^.

Since f^ is a homomorphism, + x^,) = x + y. Therefore

y(x + y) = %%(%% + x^,) = Wk(*k) + Wk(%k')'

w(x) + v(y) = Wk(:K) + Therefore p is a

homomorphism.

Corollary 1: Let (S^, fĵ )̂ and (T^, be

directed systems of groups [semigroups] indexed by I. Let 

S = limS., and T = lim T.. Let f be the canonical map ofT* i
into S and g^ be the canonical map of T^ into T. For 

a € I, let be a map of 3^ into T^ such that the 

following diagram

S.

is commutative. Then 3 a unique map p: S -^T such that 
for each i e l ,  the diagram



?0

s 1
4 1
S --- -̂-- •» T

is commutativeo

Definition 5.7 (D? The family of maps {p.} mentioned—  — I • • —  —      -    —   — -V m.* J

in Corollary 1 is called a directed system of maps from 

(S, 0 f..., ) into (T. « g. ̂ .

(ii) The map u in Corollary 1, denoted lim v. is
i

called the direct limit of

Corollary 2. Let ^Ji^ » (T̂, , and (Û ., h^^)

be directed systems of groups [semigroups], and let

S = lim T = ll]jn and U = liy , Let

^i° ^ Sj_° T^ -»■ T and h^s -► U be canonical maps. If

^1 ° ^i '̂'i ^i° ^i ^i directed systems of maps,

then is a directed system of maps and

lim (v^ u^) = (l|ç v^) (lim u^).

The following theorem is due to Bourbaki [I6 ] page 93.

Theorem 5.8: Let (S^, f^^) and (Sj^, be directed,

systems of groups [semigroups] relative to I, and for i e.I, 

let u^ be a map from to S*^ such that they form a directed 

system of maps; Let u =• liiji u^. Then u^ is one to one 

(onto) if and only if u is one to one (onto).
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Definition 5«9: The product order of I x J where I and

J are preordered right filters is defined by (l,j) 2 (!', j*)

If and only If 1 2 1', J 2 j* for 1, 1* el, eJ,

Let (S^, fj^) be a directed system of groups [semigroups]
IkIndexed by I x J with the product order, where fj^ Is the

V  *1 V  Irlr Ir
map from to S y  For fixed k e J, let gĵ _ ” ^Ji * ^i 

Then (S^, g^) is a directed system of groups [semigroups]»1 J i
IrLet T be the direct limit'of this directed system»

Let k and 1 be fixed elements of J such that k s 1»

' Then h^^ = f^^s -*■ is a directed system of maps Indexed

by I» Let h^^j T^ -»■ T^ be its direct limit» By Proposition

5.6, Corollary 2, h^^ = h'^^h^^ for k s 1 s n» Therefore 

(T^, h^^) Is a directed system of groups [semigroups]. Let

. T = lira T^» Then T = 11m (lim 5%).
T T  , , X ̂  i F  kLet g^j Si T and h : T - T be canonical maps, and 

let u^ = h^ gjo Then for 1 < j, k s 1, fj^ = and 

(u^/ Is an Inductive system of maps Indexed by I x J with 

the product ordering» Let u = : S -► T»

Proposition 5» 10; S^»

Proof J Bourbaki [2] shows u : S T is a bljection, but

since u is a direct limit-of homomorphisms, by Proposition

5.6, u is a homomorphism. Therefore u is an isomorphism. 

Corollary % Let (S^, fjj_) and (T%, be directed
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systems of groups [semigroups] indexed respectively by I and 

J, Then (S^^® Tĵ ) is a group [semigroup], and 

^  (S. (8 T^) = (1^5 (Si @Tk) = 4 ^  ( ^ ( S i ®  Tk))o

Theorem 5.11: Let (S^, fji) and (T%, gjĵ ) be directed 

systems of groups [semigroups] indexed by I, J respectively, 

and let S = Si, T = Tĵ , Then ^  (Si ®  T^) =

(Si® T) = (S ®  Tĵ ) s s®To

Proofs Cartan and Eilenberg [3] show that for groups 

(Sf ®  Tk) = S ®  To The proof is identical for semigroups, 

The remainder - of the theorem follows from the Corollary to 

Proposition 5,10»

Consider the tensor product A g ) w h e r e  A is an 

arbitrary semigroup,; R is the additive group of rational
n

numbers and Z is the subgroup of integerso Since /% is a 

group, by Lemma 4.2,

,R.

Let A ®  Z = V Ggo Then A ®  ̂ /2 = (u G^) ®  V g

R ^ I Hp, where P is the set of prime integers and 
PcP _

H = {^/ q i a s p ,  q ^ l }  and addition is mod 1. Therefore

For q > q', let qq' Zpq' Zp be the embedding map

defined by ^(1’) = p^“^ 1, where 1* generates Z^q* and 1
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generates Ẑ q,

Then ) is a directed system indexed by N, the

natural numbers, and (Z a ) = U  Z q = H . Therefore4 P  q P P

= s (Î ®  4 ^  Zpi))

But (G^ ®  Z^q) = ^a/p^G^g and the following diagram

commutes ;

fq'
G

z(pq')

Çqq'

9c.

where (g^ 0  1') = g^ + p '̂ ’g and 

ÿ q ’q = P^"^' gg + pS G, Therefore

/pQQ, Çq q>^ is a directed system, and by Theorem 5.8, 

liJS (°/pqg ) ® V ’*

and A 0  R/g = u Z (^/^q^).

Proposition 5.12 (i); If (S^, f^^) is a directed system 

of semigroupsi then the maximal idempotent image of the direct 

limit of (S^j.fj^) is isomorphic to the direct limit of 

(Sĵ , f j , where Sj is the maximal idempotent image of 

and fj^ is the unique map such that the following diagram 

commutes.
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i ?Ji -
Sj -------- -Sj

74

r
(il) If each is a union of groups, then is a

union of groups,

(iii) If each is power cancellative and divisible

then is power cancellative and divisible,

(iv) If each is the union of power cancellative

divisible groups, then so is Slira
■'i'

Proofs

(i) follows directly from-the fact that 

(S^(2 0) s ( 1 ^  s^) ®  0,

(ii) follows immediately from Lemma ^,2 and the fact 

that by Theorem 5o8 (S^ ®  Z)

- S^)® Z,

and therefore by Lemma 4,2, is a union of groups,

(iii) If each is power cancellative and divisible,

then ®  by Lemma 4,13, Therefore by Theorem 5o8

^  S ^  (S. S  R+) 

af (iÿ? s,)® R+

and again by Lemma 4,13, is power cancellative and

divisible,

(iv) If each is the union of power cancellative
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divisible groups, then by Theorem ^ol7i 3^ = 0  R„

Therefore J by Theorem 5o8j, (Sĵ ) - R)

s (lÿi s^)® R

and by Theorem 4.17* is the union of power

cancellative divisible groups»

We may now show an alternate method for obtaining the 

group of quotients of a semigroup.

Let I (A) be the quotient of A by the finest congruence 

which identifies all idempotents of A» The following Lemmas 

are due to Head [7]o

Lemma 5»15s If a semigroup A may be embedded in a group, 

then I(A® Z) is isomorphic to its group of quotients.

Lemma 5.1^: I(A® Z) is a group.

Theorem 5.15s If A may be embedded in a group and 

A <0 Z = uG , then the group of quotients of A is isomorphic

to 4 ^

Proof: It was shown in the discussion preceding

Definition 5.5, that p, the defining-relation-for-G^ 

is a congruence relation when {G^} is a union of groups.

Hence by Lemma 5«IS, we need only show that p. is the 

finest congruence relation which•identifies all idempotents. 

Suppose - is the defining relation for I (A ® Z) and that for
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a e b e Gjj a p be Then, there exists k > i, J such that 

fki(s) “  ̂ a “ c = ° c = ° c.

Let >7s uG ->-1 (A ®  2) be the natural mapping, then' “r a

f(a) = f(c) = f (ac)= f(he) - f(h) - f(c)c Since I (A®Z) is a 

group, f(a) = f(b)o Therefore a ' b<, Hence p is the finest 

congruence relation which identifies - idempotents, and by 

Lemma 5ol3, ^5? G^ is isomorphic to.the group of quotients 

of A»
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