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CHAPTER I 

INTRODUCTION 

In 1966, Bruce presented·the·evolution.in time.for .the expansion 

into a vacuum of· a small sphere of .aluminum plasma. Suf.ficient; initial,. 

uniform energy density was. assumed· to be added, to·. the.aluminum sphere 

to produce a high density plasma. The results depended upon an analyti

cal equation of state which was developed for the problem. Two·results 

stand.out significantly in Bruce's work: 

1. The formation .of a ''cold .. shell" at the outer edge of the ex.., 

panding material, 

2. The-creation of a high temperature, low density core. 

St1bsequently, Brown (1968) measured the light outpu1;: as a .function of· 

time from a vacuum spark between aluminum electrodes, using a pulsed 

photomultiplier. The results, which Brown obtained, indicate the forma

ti.on of a "col.d shell" in the expanding aluminum plasma which conducted 

the current of the spark discharge. 

Another way to produce a high energy density, a:j.uminum pla,sma is 

the "exploding .wire" phenomena. In the published literature, some evi

dence is presented for the formati.on of a ·"cold shell" (Bennett, 1962) 

and the creation of a.!lhot core" (Bennett, 1965) in the "exploding wire" 

phenomena. It thus becomes very desirable to use the "exploding wire" 

phenomena as a means of checking the theoretical approach of Bruce, 

using in part; t4e experimental techniques of Brown. Other tests could 

1 
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be performed· with a far ultraviolet·vacuum spec·t'rograph built by Payne 

(1966) and with a recently constructed quadrupole mass filter.(Willis, 

1969), for determination.of ionization in tl).e aluminum plasma. To 

properly corre:j.ate experiments tq the theoretical approach, . it is. neces

sa:t:'y to. know accurately the ene;rgy conten.t and volume. Qf the wire prior 

to its e,cpansion. 

Kvartskhava. et aL (1957) and· Thomas and H~arst .. {:L967) have· pro

posed and·used methods·for measuring the energy content of an."explod::i.ng 

wire" incapacitive discharge systems. These methods can become rather 

complicate<;! due.to the non-linear circuit equations; a simple, yet re,

liable methc;,d of measuring the energy content wou:Ld be of great worth. 

Another problem associated with "explod:i,ng wires" is the need to 

establish a volume for the wire at a time which can be,considered as 

the beginning of the explosion, Before the initial energy denedty can 

be determined, this volume must be .established. Reithel and·Blackburn 

(1962) have discusse.d a concept that is known as the "resistance anomaly" 

in "exploding wire" phenomena •.. This anomaly expresses the fact that the 

resistance of a wire o:f; a specific, initial size is not a. unique func

Uon of the energy con.tent, but depends.upon. the rate of energy input. 

to the wir~. For a higher.rate of energy input, the resistance increas

es at a lowe:t:' rate. This-anomaly was discussed on the basis of a·hydro

dynamic model and·was-attributed to·inertial confinement in the expan,-. 

sion process •. Tucker and Neilson (1959) pr~viously. provided, a very use

ful measure of inertial confinement •. The·noted that.for .a given materi

al, the integral of the square of the current density.with respect·to· 

time while the.resistance increases to its first peak is a .constant. In 

view of the~e remarks, it.seems highly desirable.to insert.the energy 
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into. the ; wire dn as. ,sh,ort : a ,tillle· as i pt,rs-sibl'e~ < Tlu.s emp.loys the inertial 

confinement in orde:i: · to esta.bl.ish· :an -initial vol($.e at wlii¢h, the_ explo.,. 

sien begins. · 

Another probl~ · is·, to.· remove· the·· ele-etronra:gneti.c ·-: fields · after the 

plasma is foi;med •. In-the conventional'man,ner.of explodl(.ng a,wire ,by 

di1:1charging a ·cap_acitor bank·through the wire, elec.ti:omagnetic fields 

eJFis t in · anc;l around · the · wi:re during ; the e:icpansion of., .. the. plasma. , . This ;. 

effect does not correspond to_ the :theoretical prob.lem;.a.tJ.4 must be elim.-. 

inated ·in, order to· compare· the analytica,1 sQlution.with ... the. experiment. 

One, might ask . the question 1 -. is -the energy input, unifQrm throughout 

the :"exploding wire" when it is h~ated by t~e conducting _cur-rent •. This_ 

question is answered·in,Chapter II. It.is ·shown for.a .. small,wire of 

constant, vol,.1,lllle, .that; :the cu,rrent • firs.t tt;'.ave+s on:· the .. outer edge · of ._ the 

wire., Within a very few na-qosec;::onds, the current.density becomes prac

tically uniforl!l throughc;,ut thja wi:i:e. For times much lc;lrger thaQ. a·nai;,.o

secon«;i~ ·th9. energy is inserted uniformly in. the wire provic;led that no 

expansion occ:urs. 

The main, ,purpose o:f: this: thesis is to discuss. the .. theqry .,and· con .... 

struction of an "exploding wire" system :which overcomes, to s.ome extent,. 

the preceeding dif:l:iculties. The-basic -circuittywhich,appears capab+e· 

of sat;isfying ·: the present goals, ,~s found: in the publish,ci literature . 

(Tuck,er,, 1960). In _the system whic_h has beeri. constru~ted; .a squar.e 

voltage, pulse of known, amplitude and,_duration _is launched: down a coaxial 

cable which. is -terminated-· in. the_ wire to l>e exploded. · . The· wire is 

mqunted in, a vacuum •.. This ,pulse is obtai'i;led by switching a. co.axial 

caql,.e, .pulse gen~rator ·by,means of a.pressurized sparlt,ga,p. A second 

spark_gap is placed j1,1st ahead;of the wire at tlle end of the cable.in· 
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erdet to sha~en: the· leading.· edge:: ef • th:e···ve,·lta.ge ':pul'$e~. ,, .. Of ,.c.o.urse, the; 

wire will :not absorb all :0f the incident ene;gy; _part--;-0£",.the- energy wU.1 

'be reflected.- TQ.is reflected energy• coqld · entet: th~ .. wire by 11\UlUple 

ref+ecti,ons. at· th~ ends of tli,e coaxial cable, if· the.:.energy .were not re-. 

moved .. from the cable. and_: dissipated.· Since. it is :.desin.b-le .;or -the wire 

to expand in a region :free,of el~ctroina.gn_etic·f:i.elds.,:.,..a .. t:tm.~~.and trig.,. 

ge;ed spark :gap is employec;Lto discharge .the excess . .energy:into a ,coax'7" 

iall,y mountec,i rests.tot:'. · This• system -is equiva~ent,. in. its bas.ic opera~. 

tion, te that, of -Tu,c"t<-er; but· has th,e adc;litional.r-features of ... having the 

wire mqunte.d -in, a vacuum and of eliminating the ·reflect;ed energy. •- The· 

basi,c·electr:t.cal_features of·the system·are·presented.in Figure 1. 

The·_ coax;i.,alized ''exploding wire" system ,whic~ has. been ,.constructed 

h~ seyeral advantages over the capacitive discqarge.system:, 

1~ Th~-circuit.equations are algebraic rather than 1;\on-linea+ 

dif fere"Q.tial equlil,.tio~s. 

2. A voltage 11\easurement ___ acroE;1s · the wire alone·· serves, to deter-, 

mine .the e"Q,ergy content .of the wire.·. 

3~. By -making '..the system. completely cqaxialized, good· shielqing 

and· fr_equency, response: .is ·obtained.-

4. The·wire is mounted as part of the:center.-ccu:iductor of a coax

ial caQle delay,line; the.resulting cylindrical,symm~try. 

serves to.stabilize the wire. 

5. A coax:,lal:t.zed pulse generator delivers current.to.the wire for 

a predetermined period;of·time; after whic~ the:wire;is allow-, 

ed·to.expand. 

Since.it is desi;ableto insert a la;rge all).ount.of.energy intq a· 

wire in. a very short· period ,of time, it is import.ant :to use a very small 
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di,.ame'!=er wire~ . Fo~ a. giveI?,. cun:erit. in, ·the·· wire, a small.er ... diamete:r wire 

has a· greater resistance; .. and· ac:c.epts mare' en,ergy; per._unit t~me than a. 

larger, dii;unete:r ·wil;'e. The smaller diallleter wire als.q..,has ,.a .. greater. 

"pinchu press.llre (see Chapte:r ·II) which tends -to, prevelit .. expansiol). of 

the wire.- The hydrodynami~, · upinch'.' pres.sure is ptopa,1;:tional tq the: 

square of the :_ current de1;1si ty · in, the wire. .. Sever.aL &.9ipec.~ :.need' to ,be 

considered when -.sele~ting a· siz,e ·of. wire :for a. cur-rent· pulse: of· known 

ali)lplitllde, an,d · du.ration~ . 

A. Wi1;e Length-

1. · Long enough to minimi~e eml effects,. 

2 ~ Short, enough· to appear as·. a sphere a1;: a' fe'o/: centimeters, 

from, the wire •. 

B. Wire· Diamete:r · 

1. Small eneugh cG?mpaJ:'.ed to. the length· to, .. mini~ize :end ef.fects. 

2 ~ Small· enqugh _to · be , heated ·to. the de.sired · temperature by tl:i,e 

availal:lle c1,1rrent., 

3, La7:ge enougl;l.to be handled,easily. 

The durati9n of.the c1;1rre1?,t pu+se to the:wire_is restric:;ted :in several 

ways:. 

1 0 Short. eno1,18h so_ the :wire .remai,.ns at essentially .canst.ant •. volume 

during,the e~ergy input. 

2. Short enough to-prevent; arc~ from shorting the;wire,. or con..;. 

ducting vapor!,lp 

The· rema:{.nder. of this· thes.is is deveted. to a ;theoretical d:f,seussion 

ef th$ "pinch· effect'.', to the constl;'uction and· operation. of .. the ,complete-;-

· lY ceaxializ~d · "exp le ding wire''. system, , and· finally, to some prelimin,ary · 

results t4at dem.enstrate·the. operati9n of,the.system. · 



CHAPTER· II · 

"PINCH EFFECT" IN A SMALL ,ALUMINUM WIRE 

When .an ele_ctric current flows through a cylind.ri.cal wi.re, the 

self-produced ·fields exert forces on the moving char.ges which are di---

rected toward the center of the wire. These forces_ __ result. in a radial 

pressure· di1;1tribution throughout the_ cross. sectio.n_ of the wire. This 

pressure distribution tends to squeeze' or ''pinch'' the wire. 

The purpose of this chapter is .. to ·det.ermine the current density , 

distribution ,in a small diameter: aluminum ,wire as·· a function o:j: time.• 

From th;i..s distri];,utio.n, the resulting magnetic induction ._and· pressure 

~istribution will be determined •. 

The D;i.ffusion Equat:ion. 

To derive the diffusion equat:ion · (Gartenhaus, .. ,19.64), .first consiq.er 

Maxwell's elect;romagnetic equations .. for a conductor in ratio~alized MKS 

units.: 

V 0 B = 0 

V . E =· 0 

JI. 

'v x-E = - B 

'v x B = µo J' 

where, 

B = magnetic induction vecto.r 

7 
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E = elect-tic field vect6t 

J =· electric current·density. 

It is assumed that no.· charge density· exists within .the,.eonductor, and 

that the displacement current vanishes. . The permeability is assumed .. to · 

have the free space value, µ 0 • 

Iµ add:i,tion to Maxwell's equations;' the conl'.luctor is .assumed to 

obey Ohm's law in the form, 

.J · = oE, 

where .. 

CJ = electrical conductivity, 

Taking the curl of the last of Maxwell's equations and using the 

vector identity, 

V X 'v X A = -· 2 -V(V 0 A) - V A, 

appropriate substitutions· give the d,iffusion equation,. 

B - v2 B/µ CJ. 
0 

This equation is solved for B, and then,J is.determined by tlle last of 

Maxwell'. s equations. 

Geometry.an,d·Boundary·Conditions 

Consider a cylindrical conductor ·of .radh1s r 0 , of infinite l.~ngth, 

and oriented along the z a:ids of a cylindrical, coordinate· system. A 

current, i, ,flows along· the cylinder. The resulting current density. 

has only a component in tqe z direction which is a .function of·the rad-, 

ial distance, r; only. The magnetic induction.has only a.component in 



the r-d8.direction whic;:h is;a function.of r.only, Tne following solu-

tion, for ij · and J --is given by Anderson et al.·. (1958). 

The·diffusio~ equatiot?,, after convertio~ to·cylinqrical.·coordi..,. 

nate.s, alld with th~ above' conditions, is written,· 

wh.ere 

2 + B'/r - B/r = lJ O"· B,. 
0 

B = tangen,tia1 component·of B 

Accordi11g to. the. "skin effect" (Francis, 1960) • the .. current first -

travels on the ·outer surf a Ge · of the ·conductor, and· then .C:,i.iffuses t9ward 

9 

the . center. Tl).e boundary conditions, .for B, corresponding to this si tul:l,-

tion, ate·· 

B(r,o) = 0 . r·< r· 
' 0 

B(r , t) = B· t > O; 
0 0 

where B is.the consta11t value of B atthe.surface·of: the,conductor. · 
0 

Solution of the Diffusion Equat,ion. 

Empl.9ying the:substitut;ion-

the fo +lowillg is pbtaineq., 

U" . + U' /r U/r 
2. 

µ 'crU - = . o-

V" +· V' /r V/r 
2 a. - = 

with boun,dary -con(iiti,ons, 

U(r,O) = - :V(r) 



= B, 
() 
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ThE:-' equatiot,t for V. is an Euler '·s ,equa~ion, (Kell,s, 1960), .... ,The, ·solu-:-

tion~'af~er apply:i,ng the boundary condition and'ilitposing the restriction 

that,,V be f:f-nite. at r:= O, is 

V =· B·, X, 
0 

x =. r/r0 • 

Separatin,g th$ radial :a,;id tiJ11e depenaenc~ by the·substitutiG,;i, 

U(r,t) = S(r) ,T(t), 

r~sults in.the following: 

2 
T' . + µ a T/X = 0 · 0 . 

r2 s•• +rs'+ cx. 2 r2 .-.1) s = o 

X. 2 ·. = und.etermine~ constan'I; • 

The equation for Tis readily so],ved. 

The· equation for s.~Y be solved by making th.e sul>sti;ution; 

W· = "r, 

to. obtain., 

w2 · s•• • + w s • ·· + cw2. - 1) s . = · o. 

This is a Bes.seVss function of orde1; one.,(Kells, 19.60). Its solution,,is 

s = 
00 

E AJ (W) 
n=l· n 1 n 1 



W = A r n n 

J 1 (Wn) = · Bessel. functi6n :of ·, otder one ' 

By· coll.eating te~s,, the sollit:i,on fo.r U(r,t) is· 

= ~ A J (W ) exp (;;. A ~ t /JJ a) • n, l. n · · o n=l 

From .the b9u,nd,a;ry cc;mdition _at r = rQ for t < 0~ 

where, 

a 
n 

= A. r 
n o 

.. 

We .can now-write U as· a function of the relative coordinate ,x. · 

U(x, t) =· E-·A J (a x) exp( ... ,a2 t/r~._µ 0 cr). 
n~l n 1· n · n o 

To eva,lullte·the An, the:boundary,condition at t.= 0 is applied to ob-, 

tain .. 

00 

U(t,O) · = E A J (a· x) = - B x· n=l· n 1, n o 

11 

Multiplying thi1;1 last expression by x · J 1 <~\n ,c). and :,integrating with re':' 

spect tQ x-bet;;wee"Q. 0 and 1, UE!ing_the o:i;:-thogortality conditions·for 

B.essel f1,mctions, (see Appendix, A) ; 

A -· 2 B /a J (a.)· n o n. o n 

J (a) = Bessel function cf orc:J.er·zeJ;o~ 
o n 

The selu,tion fo; the . magnetic-:. induction thus becc;>'!lles. 
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B(x, t) = 

In the actual c~lcul,.aq.on for the wagneti~ ind~ction, th.is. l~st expres.-

sion will not-be.used .. ~ather, B·is calcul,.ated from J'qyanappropriate 

intt=lgration... In this way the use of· BesseLfunct.ionf:!. of two ·differen,t 

·:\, 
or_deJ;:"s will be avoided~ which ,save!:! con~ideI;able· computer time.· Upon .. 

integrating the ·last .of -Maxwel;I.'s equations_ using Stol,ces' theorm, one 

obtains for the preseµt·situation 

B(r) 
~

ro. = µ ,/r J. r -dr 
a· 

-r r/: 0 

B(O) = 0 · 

The solution. for the. curre_nt d~nsity is optained: by using th_e equations 

J, =· [v7 x B]Ai 0 

J(r) -- [B/r + .B']/µ 
. 0 

J = z · con>.ponent of J ~. 
' 

or,. in terms of .. x, 

The· equation .for the current density,is 

J(x,t) = y[l + I J (a x) exp(- a 2 t/r2 µ cr)/J (a )] 
n=l o n · n o o o n. 

y = 2 B /r µ • 
0 0 0, 
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The 11Pinch11 Pressµre · 

For an· infinitely long, uniform· cylindl;'icaJ, · conduc.to,r which has · a 

uniform current density distribution,, Hague. (1962) presented arguments, 

establi,shing the "pinch" pressure asafunction of the~radial distance. 

Similar arguments a],low.for an arbitrary current density .distribution 

in·the conductor. 

Consider a volume element., 6&1; which is at a distance, r, from the 

center of the conductor · 

on - r or oe 61 

1 = . conductor length •. 

The . force F on a single charged particle in Ml is 
C 

F = q[v x :sJ, 
C 

where 

q = charge of the current carrier 

v = velocity of the current cal;'rier 

This. last equation is .indicative of the fact tl),at the force on a chargeq. 

particle is directed radially inwarq. For the present situation this 

equation reduces to 

IF I· q V B 
C 

v = z.component of v 

The force 6F per unit volume 60 is 

8 F/r or 60 61 = IF I n, 
C. 
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where. 

n = m,1mber· density: of·· current carr.iers .• ·· 

Thus; 

wher~ vis.now an. average veloc;:ity fer the current carriers. But the: 

curre;nt den,sity·is,given by 

J = n q V,, 

so t'b,at, ·• 

oF ·. = · J B ·r or o e ol • 

. The-force oF i~-exerted·on the area r 06.ol; hence, .. the-ring of-radius.· 

r and thic~ness. or experiences a, pressure 'differential oP given by, 

oP = oF/r oe or,= J.B or· 

The ti;,tal:pressure,at·a distance,,r, frqm·the center of.the :conductor is 

obtained by int~gra~ing P from r ·to·• the surfa(i:e, of, the conductor.· 

P(r) = J B dr , Sor-. 

It shou:J_d be. realized .. that: ;this result implies that p.ressure .effects, are 

instantan~ousr In actuality, pre~sure effects are:expect~d .t:;.o propaga~e 

at,the ve]..ocity o~ sound in,the con,ducto.r, This requires a ·more compli ... 

cated ·set of equations, than, those. for the prese:pt problem~ 

The-Computer Solµtion 

In ot;"c;ler,to prepare the,equa1;ions for J, 'B;, an,d·P to be.solved on .. 
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a C()mputer, it wa$ decided to avoid absolute'valties by.defining relative 

values for all of the variables. In addition:to the.relative coordinate,. 

x, which has.already been defined, the following arealso defined: 

I -. J/I 
0 

I "I 2 = l. Tiro 
0, 

=· current density when it.is·uniform 

M = B/B.(r0 ) 

B(r) = µ i/2 1T r 
0 0 0 

= cc;mstant magnetic induction at· sµrface of conductor 

Q 

p 
0 

= P/P 
O· 

= 

-· pressure.at r = 0 for uniform.current density. 

Using these definitions, the equation.to be solved become, 

00 2 2 
I(x,t) = 1 + z:1 J (a ·. x) exp (- a t/r.µ cr)/J(a) n= · o n · n o o o n, 

M(x, t) 2/x 

~o 
Ix dx ,X < 0 

M(O, t) = 0 

Q(x,t) = 2 

~x 

IM dx .· 

These equation ,were solved on an IBM 360/50 computer which is.available 

at Ok:\.ahoma State University. The following param~ter$ are.used for an 

aluminum conduc to.r. 



16 

r = 1.27 
0 

X 10-5 m 

(J = 3.57 X 107 mho/m @ 20°C 

]..I. 
0 

= 41T X 10-7 hy/m 0 

The results of the computer calculations 'appear in Figt11:.-es 2; 3, and 4. · 

A polynqmia:J_ approximation is. used for the Bessel .func.tions of order, 
' 

zero. This approximation is.given in Appendix B. The zeros of the 

Bessel functions of order one were obtatned.from the tal>les of Jahnke 

and Emde (1943). The series expansion for I cqnverged.very. rapidly.· As. 

a result it was found necessary to us~ only ten terms.of.the expansion •. 

The values of I, M, and Q at t = 0 and at t = oo are.of particular 

interest in checking the computer solution._ At t. = O, tb,e current flows 

entirely on the surface of the conductor.and m~y be.represented py 

Consequently, 

I)x,O) = ~ o(x - 1) • 

M(x,O) = 0 

M(l,O) =· 1 . 

X < 1 

In order to obtain Q at-.t = O, a delta .function, m1:1ltiplied by M, is in-

tegrated. This integral has a discontinuity of magnitude 1. .at x = 1. 

If M were written_in a Fourier series it would converge.to.~ at _x = 1. 

This value is the one assumed to be.valid for usewith.the.delta func-

tion_when integrating at x·= L- As a result, the following value is 

obtained;. 

Q(x,O) ~ _ 
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This value fot Q is in agreement. wi:th ·the· calculat'i.ons.:.af_JTatL Kampen and 

felderhof (1967) who use a· slightly different .. approach :.to·,. the problem. 

It is further substantiated·by:the c9mputer·soltit:f,on for 'l;imes-near . . . 

t = o. At t·= 00 ; the following is obtained:, 

I (x,OQ) · - . 1 

M(x,oo) - ' x· 

Q(Ji:,oo) - 1 
2 

= - X 

2 
'.Che quant~ty r 0 ·µ 0 cr should ·give ·some indi(i:1;1tion Qf :_the ttme need 

for the current, density to become uri,,ifoJ;JP. throug}:iout, ,the conductor~ In · 

the case· of._ a O. 00.J,. inc;hes . di~eter wire, a calculation shows 

The, computer. solution .shows that;:-· the. current density :.be.comes essentially 

unif<;>rm after .about 2 ~5 nanoseconds. - An -expression .,may be written :that .. 

is valid for any cyl;lndrica.J,.. conductor. · Th~· approximate. time; t O , . is 

required to.obtain-a unifo~ current deneity,distribuiion. 

t· 
O· 

2 . 
- r µ cr/3 

0 0 

As. stated earlier, the pressµre effects in. the .conductor .were as-

sumed, to· be. instaµtaneou1;1. · This-_ assumption .. is-_ now. investigated further~ 

The·velocity of propagation, vL, of a plan~ longitu4ina~ wave in b~lk 

al,uminum is 

= 3 6.42_x 10- miser;. 
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Figure 2. Computer.Solution for the Current Density 
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(M) 
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- "'Figure 3~ Computer Solution for the Magnetic Induction 
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Figure 4~ Computer.Solution for the "P:i,nch" Pressure, 
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A pressure wave which travels from the outer edge oLthe conductor to 

the center requires a time t 1 , where. 

= r /v1 • 
0 . 
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By equating t 0 and~, we can find a·conE;).uctor rad;i.us.Rfor whtch the; 

electromagnet:ic and· pressure effects, in.· some sense, propagate. with .the 

same· velocity. , 

J;o;r aJ,.uminum, we havE;?, · 

R = -5 1.07 X 10 tn 

The·above·discussion indicate~ the formation and propagation of a shock 

wave in the:wire. It should be realized; that in,an.actual situation,, 

the ct,irrent cannot.rise instantaneou1;1J,.y on the.surface of the,wire. 

This "sl;lock effect"is, therefore, less than what it might,appear. It 

is desirable to indie:atethe m.a.gnitude of f;:he "pinch" pressures which 

may, be encountered fo;r a ·0,.001 inches alu1llinu?11, wire, For this purp,ose., 

Table I pre13ents values.of P0 for various·currents. 

As a. co11clu1;1ion to this· chapter, a simple calculat.ion.,.indicates 

the order of Jllagnitude. of the compression :f;or a. w;tre i which · is expected 
• 

from the "pinch effect". The·isothermalcompressibi],.it:y, k, (King, 

1962),. is defined by the following equation: 

k = - (1/V) (av/aP),. 

where 
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V =. volume 

P , = pressure 

Thermal· ef~ects ·are .not considered· since' they would· t.end.~to_ ~pand · the 

wire rather, than compress it. Compressional, effects are.:.,c.a-lc-ulated for 

the initial instant -before· the ·temperature · starts to . r.ise ~ 'Ihe, equa tio'Q. 

for the compressib:j.U.t;y ;i.s rewritten• in· te:pns of the mass. density p. 

k =··(1/p)(qp/oP) 

Assuming k, to be, constant,; this equatiop. may: be integrated• in the fol ... 

lowing manner;· 

By letting. 

. (P+ 
k )p, 

. AP 

dP 

t.i.P = P /2 · 
0 

the following equation is obtained:, 

exp(k.P /2) 
o· 

dp/p 

Since.the conipr~ssibilit:ies for soJ,.:i,d condµctors are so smalJ,.t the fol"'." 

lowing approximation is "l!lade.:_ · 

1·+ k P. /2 • 
0 

'Ihe isothermaJ,.1 compressibility fcg: ·aluminum· is· 
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(k) Ai - -14 2· 
1.37 ~10 m /nt 

Values for the compreE!sion ratio p /p O are· presented in' Table I. It · is 

obvious·that the effect is very small~· 
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· TABLE I 

PRESSURE· EFFECTS IN A O. 001 I1'lCHES Dl;~TER. ALUMINIDL.WIRE 

(amperes) 
. 2 

p/p i p (nt/m ) 
0 0 

10. 1.97 X 104 . 1.000000000135 

100. 1.97 X 106 1.0000000135 

1000 .• 
8 1.97 x·lO ·• 1;00000135 

2000. 3.94 X 108 1.00000270 · 



CHAPTER. I II ·· 

COAXIAL ·CABLE·. THEORY 

In·_ this chapter, . the cha.rac.terisUcs of coaxial cables are reviewed 

and·their 1:1pplication to.obtain, a pl,llse generator is presented. This 

summary-emphasi:zes the importance·of the coaxial cable·in the assembly 

of the "exploding wire" facility._ The presented .:equations are taken 

from the development of the subject by Millman and .. 'Ial,lb (1956), ·Whitm_er 

(],9.62), aI>.q. · Frt,1Ilgel (196:5) ~ - This. chapter i'Qcludes· the development of 

the-equations which;relate the voltage acro!3s ·the wire to its resistance, 

and to. the.energy input to the wire and the resulting plasma. In con.

clusion, a short description is presented -of circuits .of ... cables that may 

be elllployed to increase the input of energy to t~e-"exploding _wire".· 

The· Coaxial -,Cable as a:Delay Line 

Delay lines are passive, four ... terminal networks. which ,have. _the 

property that a signal· applied to tq.e inptit terminals .appea:i;:-s at the. 

ol,ltput tel;'11l,ina;l.s after .a time interval, T, which is called the: delay 

time~ · If a signal is applied .to a practical deliiY line, the signal will. 

suffe.r distortion- and· attenuation. In thi$ case, the delay time is de

finec;l, as the time interval between,the 50 per-cent amplitude points of 

the: rising edge ·of. the incident a1;1d' of. the delayed signals_. 

The -coaxial. cable del·ay ;Line is. of particular interest. for the 

prc:,blelll that is considerec;l in tq.is thesis, It_is practical tc;, use-a 
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coaxial .cable as a ,_delay line si1,1;ce ,, itS' e:\:eetrica! par.amete:rs. are· dis.,. 

tributed; that is, .the· coaxial ·cable has -a capacitance,_ CL' an4 an. in~ 

duc:tance; ~' per unit' lengtl'h , Phy-sically, the ·coaxial cable consists 

of. two concentric, cylindrical ·conductors with diamet.ers A .and ,B, which 

ate insulated by a d;ielec tric , of high elec tt'ical , .. resist.anc;e ~ Tl).e georo:e-, 

tt;"y of a se~tiol) of· coa:nal ·cable· and it13 equivalent,, .. electric~],. circuit 

,.ire. sketched . in Figure 5. · Between· the two conduc.tors, ·. the . insulating 

ma,,ter;i.al ,has a dielectric constant, k~ 

An important parameter, of the· coaxial ,cable· is its charac1;:eri·stic: 

impedance, which.is defineq.·by tl).e relation, 

whereR has the units of .e:l,eCtt'ical'resista.n,ce. If an idea,1 ·cable ia 
0 ' ' -

terminated by a non ... :i.nductive resistance which.-bu.tha,:.same .. value as its 

chat'acteristic: impedance, the. output signal. wil;L.-. s.how.no..dililtortion of 

input. sign~l 'at · the outpu't; . terminals. In pat'ticuµ.r ,. :,there. is ne,t · dis-

tprtion of a. comple:ic wave~ According to'.electr.oni.agne~stheoty, a .. 

siunsoida.l. voltage· that is applied :to th~ inp.ut ::tel;':nlinals. of a ·cal;>,le 

w:i.11 travel_ toward· the ·autput terminal$ with a::.cons,ta?l.t •velocity of ... 

propagat:ton~. v, which is independent· of ·fr¢qµency •.. Siuc~ any .,wave fonq.. 

can be resolved. :i,ntQ· its· Fourier spect)\"um, an id~.al co.axial. cable tha.t 

is terminated in its, characte.ristic itllpedance·. will .act as a· del.ay line 

f9r any input ,wave·form. The·delay ti,me i~ T == L/v; L,being theilength · 

of-the cable, Fo1; an imperfect,,but :practical .cable, that-is .terminated 

in.a resister with the:characte+istic impedance of the;cable, th~. most 

usual·source;of er-ror is· a distributec:l lea~ge resistanq.e·between the, 
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Figure 5. The.Coaxial.Cable 
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center conduc.tor •and· the outer conductor, , or shield. This leakage re-·. 

sults. in different frequencies propagating with different. v.elocities. 

The second mc;,st common defe,ct in practical· cables is a failure for R' to· 
' 0 

have the same value from one. end· of· the cable to the other; including 

cop.nectars~ It is customary to· refer to any length ;of . .coax.ial cable as 

a delay line, even i,£ it is not,terminated in. its cqaracteristic imped-

ance. 

The parameters for a coaxial •cable depend on the ,.variable dimensions' 

A and B, and·on the dielectri,c constant; k. A·list .of,tq.~se parameters 

and the equations which determine · them are·· callee ted . in· Tabl,e II. 

Reflections at. the Termination of a. Coaxial Cable . · 

A wave form travelingal.ong afinite-,-:J.ength, ,coa:icial cable delay 

lin~ wi],.l eventually reach.the end of the cable. If the cable is not 

terminatipd by.its cbarac;:teristic impedance, the wave•form·will·be re

flected, and·travelback ,toward the input terminals. The amount of the 

reflection will depend upon.the value of the terminating resistance. - In 

this section, reflectipn of. a wave form at the termina.tion of a. coaxial 

cable will ,be discus~ed •. 

The general solution for the voltage; E, and current,. I, along. a 

coaxial .cable delay line as a function of the distance alc;mg the cable, 

x, and the time, t, is given by. 

E(~,t) = Fi(t - .x/v) +F2(t + x/v). 

I(x,t) = l/R0 • [F1 (t - x/v) - F2 (t + x/v)] 

F 1 is an arbitrary·. function of. t - x/v &nd ,represents a wave· traveling 



TABlE II 

COAXIAL CABLE PARAMETERS 

~own Pa.ra.inet:ers 

A (InsiQ.e Diameter) · 

B (OutsideDiameter) 

k (Dielectric Constant) 

Universal Constants· 

£ 0 (Electric ,Pe1;illittivity of. Free·· Space) 
-9 = 10 /35.952 1r fd/m 

µ 0 (Magnetic Permeal;>ility of Free. Space) 
. -7 

= 4 iT X 10 hy /m .. 

Determinable Parameters 

Capa<!itance p~r-Unit Length·······~······ CL = 
' 

Inductance per Unit LE;mgth • "·"' •••• ~ .. · ....... . L . .., 
L 

Cllaracteristic Impedance ............... · •.• -~ .... Ro = 

2 1r k £.o/Ln (B/A) fd/ni· 

(µ-o/21r) Ln. (B/A) ·hy/m 

(1/2 · 1r)Jµ. /k E tn (B/ A) ohms, 
. Q 0 

Velocity of Propagat;:ion ....... .-~ •• .- ....... V = 1/Vk E<flo m/sec 

N> 
\0 
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in the direction of . increasing x; · F 2 -:is · an arbitrary function of t + x/v 

and represents a wave traveling in the· opposlte direction. · The specific 

. solution for wave-propagation along acoaxial·cable delay.line .is ob-,-. 

tained by co'!lll;>ining waves traveling .in· oppo·site directions, in suQh a, way 

that-the bou"Q.dary condition is,satisfied·at e~chtermination, The re-

quirement that E/I equal tQe terminating·impedance·i,s.a statement of ;a 

boundary condition. 

Consider an infi.nit,J,.y long·delayline to·which isapplied_the unit 

step voltagei U(t)., 

U(t) = 0 ; t·< 0 

U(t) · ~ l~; t >:O 

There is.no reflectedwave·fromthe·enc;l of tl;l.e c~ble, ,and the solutiot1 

for the:voltage and current is given.by 

E(x,t)· = U(t - x/v). 

I(x,t) = 1/R • U(t ~ x/v) 
. 0 

Since R = -E/ I, . an . inf;i.ni tely , long, de1ay line acts as._ a res;i.s tance of 
0 

' value, R .• 
0 

Assume, that .U(t) is applied to a delay lip.e of finite_ length, ,L, 

which i1;1 terminat;ed by R0 • It -is observed.that;the boundary CQndit:ion. 

is satisfied by the.solution that.is given for the infinitely long delay. 

line, It is concluded'that·a delay line which is terminated, in its 

charac tet;istic -imped.anc~ does not: reflect an incident wave.·· 

For the ;case in whi.ch the terminal 'resif?tance, R, of a ·finite, 

length-de+ay line is not,equa~ to R0 , the solution is quite.different 
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from the. two preceding· .cases.. Assume that a unit step voltage is 

applied to a delay line of length, L. Then a voltage reflection coef-

ficient, p, is foundt which is defined by the fol,lqwing equations: 

E(x,t) = U(t.,. x/v) + p • U(t:- 21/v +x/v) 

I(x,t) = · (l/R0 ) [U(t - x/v) - p • U(t - 21/v + x/v)] 

A current reflection coefficient, q,··maybe·defined. 

q. = - p • 

It ,may easily be shown, that the voltage reflectipn coefficient is given 

by 

.. R/R0 - 1 · 
p = R/R + 1 

0 

Two special cases are of particular interest •. In the first ca.se, R is 

equal to infinity (open-circuited line), for which, p = + 1 and q = .,. 1. 

For R =O (short-circuited line), p = - 1 and q = + 1. 

Th.e Coaxial·Cable·Pulse Generator. 

A length o~ coaxial cable will act as a pulse generator if it is 

charged-to a voltage, V. It maybe discharged through a,load resistance; 

just a13 a ·capacitor would be··discharged. The energy .stpred in· such a 

pulse generator il:l given bytheusual·formula for capacitive energy 

2 storage; Wc =~-CV ,·where.C = CLL andL is the length of the pulse 

generator. The pulse generator that is constructed in this mann.er has 

characteristicl:l different from- ·those of a' simple, capac,itor that is dis--

chargedtht"ougb a resistor. The voltage ril:les as a step function, is 
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constant for a short period of time, and then falls to zero as a step 

function. 

The operation of the coaxial cable pulse generator is explained by 

applying its Thevenin equivalent circuit. This circuit diagram and a 

schematic diagram for the pulse generator are shown in Figure 6. When 

the switch, S, is closed, the voltage drop across R is 

RV 
R+R 

0 

It is noted that there is a discontinuity in voltage at the load resist-

ance, its amplitude being 

E - V = 
R 

R V 
0 

R+R 
0 

Suppose R = R, then this discontinuity is of magnitude - V/2, This 
0 

discontinuity travels down the cable and discharges it to a voltage, V/2. 

When this discontinuity reaches the open end of the cable, it is re-

fleeted without inversion, discharging the cable completely. It is thus 

concluded that a length of coaxial cable charged to a voltage, V, and 

discharged into a load resistance equal to the characteristic impedance 

of the cable, will produce a square voltage pulse of amplitude V/2 and 

duration 2T. 

In the next section, the reflection of a square voltage pulse from 

the termination of a coaxial cable is considered, For this study it is 

desirable to have an analytic expression for such a wave form. Consider 

a square voltage pulse, E (t), of amplitude V, and duration t • This 
p O p 

pulse may be represented in terms of the unit step voltage. 
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where the: boundary. cond;i.t:fons · are 

E · = 0 
p 

= 0 ' ; 

t < 0 

·'t > t 
- p 

The Coaxial Gable Circuit for Exploding Wires 
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In.the preceding.three section,s of, thi1;1.chapt;ei- the basia·concepts 

fo:t; constructip.g a -coa~ial, "exploding wire" system were considered, ·· 

In this. section, these concepts· will be asse111.'~led and relevant equations. 

presented. · 

Essent;ially, the "explc;:,ding wire" circuit consists of a pu~se gen ... 

era tor, · a delay line,. aD,d the · wire to be· exploded·· as il],.uij tr ated ; in · 

Figure, 7. ·· The· pulse generator is chargedi to a voltage, V ~ and .discharg..,. 

ed ip.to the delay J,.ine,. Sincethe:characteristic -impedance of the.de-

l,.ay line is the slhne as· tha,t·of the pulse generator, a square.voltage. 

pulse will be launched d,own tl:).e delay line. .. The wi:i;:e forms .. a resistive 

te:pn,inatio'O, for the de],.ay line. When the:puls~ arrives.at ·th~ wire, 

cu:i;:rent pas!i!es through: it, and ;causes its resistance tc;, change.; The 

voltage· reflection ,coefficient at_ thiE! · termination ... is, consequent,ly, 

time dependent;. •· 

p = p(t) ' 
R(t)/R - 1 

' 0 

=. R(t),/R :+ 1' 
0 
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The nex~ prob:J.em ;ts to,determine the reflection of.a squa1:'e voltage 

pulse at a. time dependent 1;ei;istive termination of, a coa~ial :,cable. 

For the .situation described in the· preceding parag.raph, ,the current 

and voltage along the delay tine are represented by the fol!owing equa .. 

tions. 

E(x,t) - · E (t .. x/v) '+ p • · E (t - 2L/v + x/v) 
p p 

I(x, t) = 1/R • [E (t .... x/v):... p • E (t - 2L/v + x/v)] • 
0 p p . . 

The primary concern is the·volt;age·and:cutrentat't;he wire.termination, 

that is, at x = L.. Making· the· $Ubstitution for U(t), the following re-

lations.are·obtained: 

E(L, t) . = V (~+p) [U(t - L/v) - U(t - L/v -.t )] 
0 p 

I(L, t) = (V /R )(1 - p) [U(t - L/v) - U(t - L/v 
0 0 ·. . 

t )] 
p 

For times such that-t < L/v, the pulse has not·yet; arrived at the wire 

termination;-consequently,·E(L',t) = I(L,t) =.O. · It_is, therefore, con-:-

venient .. to . define a new time variable, t' , such that, the pulse . :i,s just 

arriving at the wire termination at, t' = 0, This requires. the subs ti tu""'. 

tion t' = t - Liv, to give 

E(L, t I) = V (l.+ p) [U(t') - U(t' - t )] 
0 . p 

I(L,t') = {V /R) (1 - p) [U{t1) - U(t' - t )]. 0 0 . . . . P 

The· only, times during which voltage appears·. across .·.the wire and· energy 

is inserted are times for which O .::_ t' ..::_ tp. For st,tch times, 

E(L, t') = V_(l+p), 
0 
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I(L,t') = (V /R ) (1 - p) , 
· 0 0 

Substituting for p(t'), the following is obtained aft!;:!r some algebraic 

.~nipulat:i,ons. 

where 

· Y(t') = 2G(t')/(1 + G(t')) 

K(t')' - 2/(1 +G(t')), 

Y(t') ::;: E(L t I) /V 
' 0 

G(t') - R(t')/R 
0 

K(t') = I(L t I) /I . 
' . 0 

I = V /R 
0 0 0 

Since there are two equations in three variables, one of them must be 

considered as independent. It seems most convenient to let Y(t') be the 

independent variable, sinGe it is the voltage that is most readily 

measured on the oscilloscope. Considering Y(t') as the independent 

variable, the following is obtained. 

K(t') = 2 - Y(t') 

G(t') = Y(t')/(2 - Y(t 1 )) 

Consideratipn is now given to the input of energy.to the wire by 

means of joule heating. The rate of energy input to the.wire is given 

by 

W(tj) = I(L~t') E(L,t') 

The total ener~;y input is obtained by integrating W over the time inter-



val of the.square voltage pulse. Thus,· 

W • ?0 s:P Y(t') (Z - Y(t')) dt' , 

P = r•· V 
0 0 0 

The energy content of the wire·at any other:time, t, between O andt 
p 

i$ determin,ed,by·integrating·between.the limits. 0 and t~ 

Cable Circ-q.its for·Increasi,ng Energy 

It is desirable that:there be a means of increasing the energy 
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delivered to the wire to be exploded., without. increasip,g the length of 

the ,voltage pulse in which· the· energy·,is contained, and without in-

creasing the voltage· to which the· pulse generator is. .. charged. Increas-

ing the voltage beyond a certain point becomes. imp:racti.cal, because 

dielectric breakdown,begiris·to occur.- The problem.is.one of designing 

a pulse generator usingseveral·lengths of·cable, in>sueh a way that 

the pharacteristic impedan,ceof the generator matches that: of the delay 

1 ine into which it· is discharged. 

The gene+al schemefor·accomplishingt~e,above is:as follows. 

2 Select n sections of cable of.length~ L (n, a positive integer). These 

2 
n. cables are divided into n groups.of n cables each. All the cables 

of each .group are connected in pci!,rallel and c:hargeq. to a voltage, V. 

In each case the center conductors a:re charged to the higher voltage. 

All the n gi;-oups are then connectecj. in series.· When thi.s ar:,;:-angement 
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is discharged, a-voltage pulse of amplttude;·-n·V, is produced. The 

length: of th~ pulse is exactly the same· as woui<f be·. produced, .by a single 

cable of.length; L. This Jlleans-that th~ energy of- the-;pulse has been. 

. 2. 
increased by the factor,.n. 

An. -U.lustration. o;E, a pulse generator· using· four .. cables appears in 
' . 

:Figure. 8. This figure· illustrates ··how· the· cables·· are· connected ._after 

they have been chargedto 0 the-appropriatevolt1;1.ge. · 
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Figure 8. Four-Cable Pµlse G~nerator 



CHA.PTER·IV 

COMMENTS ON SPARK GAP BREAl<DOWN 

As indicated.i.n·Chapter I; three.different. spark·gaps·are.employed 

in the coaxial cable· "explc;,cling .wite" system •.. One gap starts the pulse . 

down the coaxial c.able delay .line. A·~e'cond gap sharpens t~e ·leading 

edge of the pulee before it impinges 4pori the wire. The third gap is a 

three,...elec.trode.gap and·is.employed,to·divert.the reflected,pube into 

a dissipative c.i;rcu;i.t .that· absorbs the energy in the pulse without re

flee ti.ons • 

Basical.ly, a spark· gap consists of two• separated; metal·• electrodes · 

emerced in a confined gas. Application of a sufficiently high potential 

difference across the electrodes,results in a breakd<>wn with the £;I.ow 

of a. large current, Breakdown·occurs when.a sufficient potential dif

ference is applied and· held long enough to cause .the dynamic· resistance . 

of the space· between the. electrodes to. approach very. near. to· ze:q>. A 

study of spark gaps, thu$, becomes one.of the phenomena of electrical 

breakdo.wn of gases. The literature .. on th;i.s sul;lject; is very· extensive. 

Any elaboration of details would be out'· of place here. · Rat:her, an over.

view of t\le subject is presented in order·to place the understanding of 

spark gaps in proper. perspective to the purpose of this thesis •.. 

Factors Affectitlg $park Gap Breakdown 

The factors which affect spark down.brea~down can.be classified as 
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either,externaL_or internal. There are·many external fa.cto;i:-s which 

affect spai::;k·gap-breakdown,~ th.e·most·pr01ninant·of which are: 

l •. Gas in the. gap 

2. Initial temperat\lre·and·pressure of.the gas· 

3 •. Am.bi~nt ra.diation preeent 

4. Impedance anc;l natV,re of the voltage sQutce 

5 ~ · Electrode, spac:f:.ng and· shape 

6. Rate.of rise o; the voltage across.the gap 

7. Electrode·composition,·state of oxidation, etc. 
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In contrast to tb.e ·above· mentic;med -.external. factc;,rs, there are: in,

ter~al mechanisms of _breakdown.which occ1,1r in,thegas.· Ip, the litera

tµre, · these have been divided.· into . two gro1;1ps:. 

1. The prima'I'.y ionization process 

2. · Secondary :(.onizat;.ion processes 

':(:'he process of primary ioniza,tion ( a. effec:t) · occurs when electrons' 

crossing the gap, collide with a toms, producing ion pai~s. ·· Theoretically, 

thi~ proE?.eSs cannot· ca1,1s,e breakdown. by· 'itself •. · For ·.brea~down to·· occur, · 

the; current must increase .witho\,lt' bound, .limited only by the source 

supplying tb,e voltage. · In. order to e:iq>la:t,n· breakdown, .. secondary ion:i,za.- ·. 

tio1;1 processes have to be int1;oduced. A 11u,mpei:- of secondaty processes 

have. been recognized to cqntribute to breakdc:nm. in· gases. The magni".'" · 

tude of each·effectvaries with' the external·factors, especially .with, 

the pressure of the-gas. In·the literature, two main approaches have 

bee,;i advanced, to explain breakdown, the Townsend avalanahe,theory~ and 

the streamer·. theory (Meek and· Craggs, 1953). The Townsend theory, is· a 

low pressu;e theo.ry, including ionization at the. electrode ~utfaces,. 

The, basic ·secotldary process.es .contributing to the. Townsend the~t'Y ax;e · 
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the !3, · Y, a, and·· e: proces;ses, .. which are. briefly described .as follows: 

1. (3 effect:. Ion:i,.zation o:I; the gas by positive ions cteated by 

the passage of an in;i.tial electron. 

2. Y effect: Emission of secondary electrons by the cathode under· 

impact by positive ions in the discharge.· 

3. o effect: Emission of secondary electrons by the cathode,under 

impact by photons coming.fr.om the discharge. 

4. e: effect: Emission of secondary. electrons,.by the cathode under 

impact from excited.atoms ina metastable state. 

The Streamer·· theory is a high pres.sure theory w:hi.ch igno.res ionization 

at the·electrodes. This theory is controlled by then and a effects 

given bel.ow: 

1. n effect: Photo""ionization of .... the .gas. This process becomes 

significant at high pressures. Impurities in the. 

gas tend to decrease, or even to block this effect. 

2. a e.ffect: Effect of Space Charge. When, the applied pressure 

or potential difference is very high, the, density of 

charges of each sign rapidly assumes a value such 

that the electric field is strongly perturbed, Be

yond a critical threshold, it.becomes possible for 

ionization of the space·between the charges to rise 

sharply. 

The present state of the a1;t is one in which there is controversy over 

the role played by the various processes at differep.t pressures. This 

is evidenced by a recent journal article describing production of 

streamers at·low potential-gradients (Ac~er and.Penney, 1969). 

~ ... 
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Paschen' s Law 

Of great practical importance is a knowledge.--of the relation be-

tween the gas pressure, electrode spacing, al').d breakdown.voltage for a 

particular spark gap arrangement. A relation w~ich is valid for a lim-

ited range of parameters is known.as Pai;chen's law. Although it is an 

experimental law, it does have some th.eoretical .justif:i,.cation from a 

combination of the Townsend theory with some .. elementary kenetic theory, 

Let P be the gas pressure~ d, the electrode separation, .and Vb, ·the 

breakdown voltage. Then, Paschen's law is stated in two parts: 

L Vb is a unique function of the product, P d. 

2. vb has a minimum in the range of low f d. 

A curve which expresses Paschen's law is known as a Pa.schen}s curve. 

Its general form is illustrated in F:igure 9. 

Experimental evidence indicates that Paschen's law is valid in.the 

approximate region, 0.01 < P d < 20, where P d is measured in units of 

cm x psi (Papoular, 1965). Breakdown phenomena in the low Pd range are 

of no concern.; to the purposes of this thesis, but values of . P d, up to 

approximately 50 are required to hold off the high potential differences. 

to which the. pulse generator is charged'. · When the pressure becomes high 

enough, Vb is no longer·a unique function of Pd. In this region, a 

relation;; that was established by experiment and was later justified by 

means of the streamer theory, is known as Raether's criterion for break-

down. This criterion seems to give results consistent to within about 

10 percent of experimental values. If i's expressed by the following 

equatiori: -~ 

(etd) "" 20, c. 



QJ 
00 
ti! 
.µ 
r-'I 
-0 
> 

~ 
'O 
~ 
ca 
!J.) 
1-1 

p::i 

Pressure times Electrode Separation 

Figure 9 •. Paschen's Curve 

.i:,
Vl 



46 

where a is the number of ion pairs that· are produced .. per unit length of 

electron travel. . The subscript, c, denotes ·that· a corresponds to a cri,:

ticc!ll charge density which appears.in th,e theory,, In the next chapter, 

an experimental Paschen's.curve for nitrogen is extended to the high Pd 

region by using Raether's criterion. 

Time Lag 

When the voltage on a spark gap is increased very, very slowly, the 

voltage at which the gap breaks down is called the de ·(direct current) 

breakdown voltage, Vdc' When the voltage is applied more.and more rap

idly, the voltage at which breakdown occurs, Vbd' becomes larger and 

larger. The difference between these voltages is called the overvoltage, 

Vov, and the following.relation exists. 

For a pulse of voltage with a very rapid rise a-i;: the front of tl:le pulse, 

the overvdltage may be large; that is, it may be larger than Vdc. 

With a steeply-rising voltage, there is a lag between the time t:hat 

the steep front, -reaches V de and the. breakdown occurs at V bd. This time 

lag depends on the amount of.ove~oltage, the·pressure of the gas about 

the gap, the electrode separation, the electrode shape and surface ef

fects on the electrodes which are usually called the Paetow effects. 

The time lag is important for the design of the pulse shaping gap. The 

time lag decreases with an increase of overvoltage, and with very large 

overvoltages, time lags may be as small as tens of nanoseconds, or less. 

Below a.as per cent overvoltage, time lags may be of the order of milli

seconds. An increase of the electrode spacing increases the amount of 
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time lag. The time lag increases with an increas.e.:oL.p.ressure, with some·· 

restrictic;ms. 'l:he pressure must be in excess. of a critical pressure, 

and· the amount of overvoltage must be consta_nt. 

Switching Action 

As discussed in.the preceeding pordonof.this.c~p.ter,.a two-elec

trode sp11rk will hold qt£ voltages up to a critical. breakdown, voltage~ 

For purpoi;es of switching, the problem becomes .one::of_changing f:¢om a 

very good insulator at less than breakdown voltage. to a conductor.· 

Willia_m_s · (1959) li$ts eight w-ays to.· accomplish this: 

1.. J:-g.crease the vqltage across . the electrodes. 

2.. Reduce the electrode spacing. 

3. Reduce the, gas density (pressure) .•... 

4~ Irradiate the gap-with radioactive mater~als. or x..--:rays. -

5,. Ultraviolet irradiation of ,the.gap.-•. : -·· _ 

6, Emission of electrons. from. a hot· .. f.ilament. in .. the· gas. 

7. Injection of electrons and/or electrons into the gap. 

8. · :~is tortion of the elec;. tric field. 

The Switching Gap 

After the pulse generator is charge to a voltage, V, it must be 

dii;charged into the delay line to produce a square voltage.pulse. This 

:f..s accomplished by "firing" the swit<;hing gap which is illustrated in 

Figure 1. The-gap housing is filled with gas t<:> a high pressure such 

that breakdown cannoLoccur. A valve is opened which allows tl:te gas to 

exhaust from the. gap.housing,. The gas pressure between the elec~rodes 

eventually become.s low ep.oµgh. for breakdown. to. occur. 
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Pulse Shaping Gap 

As the squaI"e·voltage pulse travels along the delay line toward the 

wire to be exploded, it loses some of its high frequency components on. 

account of the imperfect nature of the delay line. This.loss consider

ably extends, that is, increases, the rise time of the voltage pulse i3,t. 

the wire. This would result.in inaccurate.calculations.from the oscillo

graphic traces. To Obtain a more rapid rise.of voltage, a second.spark 

gap is inserted at the end of the delay line,.just ahead of the wire. 

This gap has a shorter electrode spacing than the switching gap and is 

overvolted by the pulse. !n accordance with Fletcher .{1949), the oper

ation of the.'pulse shaping gap is explained as follows •. The pulse gen

erator· is discharged into.the delay line. When the pulse arrives.at the 

pulse shaping gap, this gap has a large overvoltage on it and breaks 

down very rapidly.after its normal lag time. If this lag time is long

er than the rise time for the voltageon the switching gap, the pulse 

appearing on the other side of the pulse shaping gap is determined by 

the second gap, rather than the first. This cause a pulse sharpening 

effect 

The Triggered Gap 

As stated earlier, it is desirable for the plasma from the ex

ploded wire to expand in a field free region. If the pulse that is re

flected from the wire is not eliminated, it will eventually bereflected 

bac~ into the wire. This would apply a field during the expansion of 

the plasma. To eliminate this reflected wave, a triggered spark gap is 

"fired''. This diverts the wave· and discharges its energy into a resis

tor. This resistor terminates a length of coaxial cable and is mounte.d 
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as. part of the center co11ductor, The· value .of. the .. r.esist.Qr is equal to 

t'tl.e·charactetisti'r•imped{lnce of the cable; ill this.way, 'there is no re-

flection from this termination. 

The triggered· spark gap is connected in a. "T'' fashion .on. the wire 

side c;,f the.switching gapt as is illustrated,in Figure l. · A small por .... 

tion of the original square voltage pulse is dive.rted.to,a time delay. 

After appropriate delay, the output of .the delay activates a thyratron 

circuit wh~ch ''fires" the triggered gap. 

The triggered gap must be able to hold off the initial square.volt: 

age pulse and must.be capable of being "fired" towitl;l.in an accuracy of 

perhaps·l/10 of a microsecond.· A method which appeared capable of ac.,.. 

compli!,!hing this is. the three-electrode spark gap, ·· Two basically dif-. . I 
ferent types of three-electrode.ga:psare illustrated in.Figu;te·10. Each 

types co-nsists of two main.electrodes, across which bre;:Lkdown occui;-s,, 

and a trigger electrode-which "fires" the spark gap. Type I has the 

trigger electtode·mounted coaxially withi'l;'l one of the main electrodes, 

and .. is insulated from it. In type Il, the trigger electrode· is mounted 

separately from the two main electrodes. and. at right angles to them. At · 

"firiµg" time, a valtage·is place across.electrode n and the;trigger 

electrode, causing breakdown.· The·three-electrode,,gap of type II seemed 

best suited to the present application for the following reasons: 

1.~ With type. II, all three electrodes . may be made adj us tal;,le. 

2~ Type II. allows for variation of .. the trigger ·electrode geometry •. 

3. Fabrication of type I becomes diffict1ltsince both of the main 

electrodes are connected as the center conductor of a coaxial 

cable. 
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CHAPTER·V 

SYSTEM HARDWARE -. 

In the prec.eeding chapters, the theory relating to tl;le ''explocling . 

wire•t syst~m was discussed~ In,. this chapte,;, the. electrical circuit:ry . 

:i,s di,soussed in greater det;ail; and· the design featur.es of. t:he :various 

machined parts are presented. _A block diagram of the complete system 

is shown in Figure. 11~ This diagr~ serves.as a basis for the present 

d iscusaion. 

The_ Power. Supply 

In.order to obtain a high input cu;rreil.t to the wire, it is neces"."' 

sacy to.chai:ge th~ puhe generator to a high volt;age. Th~·power·supply

to accompl,ish this :is the J<el~ket·-115,000 volt, x,-ra.y transformer., which 

is modified.;as ill.ustrated in Figure 12.· ; Primarily for safety reasons,· 

the case of the high voltage transfprmer. is raised ._above. ground,·. the 

center tap of .the sec0,ndary winding is left ungrounded,. anq the ,nega"".'. 

tive output· terminal is grounded,· The ·primary. of :.the high voltage .. wind"":' 
. . . " . . ... . 

ing and· the primaries of the.· filament. windings. ,are isolated: by means of. 

1: 1 isolation. transforll).ers which_ were con1;1tructed . for t;p.is purpose~ 

The control box .which is illustrated in. Figure 12 .consists, mainly, ,of· 

an auto7transfonner. Witll the :auto-transformer, _the, o'l,l.tput ,vol.tage of 

the high voltage transfopner. may be in,creased ·in, steps of approxima t.ely. 

1000 volts The primary of the, auto-transformer. _i1;1 coni,,eeted to a, 220 
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volt A. C. line. If the pulse generator is charged to the full 115~000 

volts, then the initial current in the wire is approximately 2300 am

peres. 

A small inductor.is placed in series with the positive output ter

minal of the power.supply. This is to prevent surge currents, which 

might be produced in the pulse generator, from.damaging the power.sup

ply. A surge current, which is incident upon the positive terminal of 

the power supply, is reflected by the inductor. 

In order to allow the pulse generator voltage.to build up gradua.lly 5 

a 25 me.gohm resistance is placed in series with the inductor and the 

pulse generator. This resistance consists of 25, 1 megohm resistors 

connected in series and mounted in a section of phenolic tubing, as il

lustrated in Figure. 13, By using resistors which are r~ted at 2 watts, 

50 watts may be continuously dissipat;ed. This means that approximately 

35,000 volts may be placed across the charging resistance, and that the 

pulse generator can be charged in steps of any value, up to this value. 

Between the inductor and the charging resistance is placed a knife 

switch. When this sw:itch is clo$ed, the pulse generator is charged, and 

the. switch may be opened, remotely, by a cord. If this switch we:re not 

opened, energy would be continuously fed into the cable system after the 

"firing" of the switching gap. 

The Cable Elements 

The cable which forms the pulse generator and the delay line of the 

"exploding wire" system is RG-19A/U coaxial cable. The various pa.:rama

ters for this cable are given in Appendix C. 

The pulse generator consists of approximately, 325 feet of the 
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RG..-19A/U cable. This length gives a pulse of approximately 1 micro

second. The distributed capacitance of the genel;'ator is approximately 

10,000 pfq The value of the RC time constant of.the charging ,resistance

generator .combination is approximately 0.25 seconds.· ·This means that 

the generator.is able to charge to 98 per cent of fuJ,l voltage in about. 

1 second. 

The delay line consists of approximately 1675 feet of RG-19A/U 

cableo The two way delay time is approximately 5.7 microseconds. This 

long length of .cable is desirable for two reasons: 

1. The pulse generator must be discharged into its characteristic 

impedance. If the delay line is too short, the pulse genera

tor will see the resistance of the wire rather than that of the 

delay line. 

2. It is desirable for the delay line to.be long enough so that· 

the ionization in the.switching gap is sufficiently recluced to 

withstand some.of the reflected pulse before it breaks down. 

Thepulse of.reflected eri.ergy is diverte<;l through the triggered 

gap rather than through the switch,ing gap. 

At various placed along the delay line, "T" connections are made as· 

indicated in the eleetrical diagrams. The Amphenol 1128000 "T" ccmnector 

is employed. Since the·required, coaxial connectors.were.not ayailable, 

special connectol:'s · were fabricated .. to· connect the cable to tbe "T',' and 

to connect the "T" to external circuitry., The "T'.' and these connectors 

are· il:;1.ustr.ated in Figure 14. The ma.in body of the >.connectors are made 

of brass.. The insulating material is high density polyethelene,. 

The delay .line is. ~ound around the sides.· of an oval-shaped ''cage", 

about l,O feet long, 4 feet wide, and six feet high. The pulse generator 
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is mo'l,lnted atop the !'cage" on a spool' aboµt 4. feet in diameter. 

The Spark.Gaps 

As discus1;1ed earlier in.this thesis, there.are'.three spark gaps in 

the "e,wloding wire'' system: the switching gal?, the .. pulse shaping gap,· 

and the triggered gap. The first two of\these aie constructed in exactr 

ly the same· manner. _and· are' illustrated. in Figures 15. and 16. 

In ordet to prevent'the possibility of .breakd()wn between an elec~. 

trade and: its housing, th_e dimentions .of the houijing, the .insulating 

material, and the center conduc:tor are tapered to.a.larger size. This 

taper is st,Jch that the ratio of the-center conductor diameter to the. 

housing diameter remains constant~ In this way, the spark gap retains 
·, .... 

the characteris.tic. impedance of. the cable.· to which it is attached •. This 

t;aper also prevents. sharp voltage grad,ients which would, result frq~ · 

abrµpt changes of diameter. 

A 11dQn1,1t 11 is placed between the two housings~ • This 11dQnut 11 pro-

vides·proper.separatiQn between the electrodes and provides an orfice 

thro1,1gh wh:i,._ch n:;i.trogen may be. admitted~ This assembly is held together 

by eight cap screws; pressure seals· are made by standard. industrial 11011 

rings. 

All parts of .· the spark gap are made of .. cold: rolled brass, except 

the hem::J.sphei:-ical electrpdes.andthe insulatQrs. All.current condui;:ting, · 
I 

intemal..; metal parts are.plated-with a thickness of 0.002 inc;hes of 

silver~ · This takes advantage of the high cenc;luctivity of silver to re-

duce·the resistance o:f the.conducting surfaces, which r~sults from the 

"skin effect','. 

The-insulato:rs in the spark:_gap.are madeof high densi\:y· 
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polyetb,ele~e. Before. insertion int_o the -spark gap, .the insulators are -

are coated with Dow Corning Compound 4. This compound is a ~on-melting, 

silicone dielectric and lubricant,_ which excludes moisture. It complies 

with the spec:i,fication, ·MIL-I-8660. As a lubricant,· it allows the in-

sertion of. the_insul~tor into the housing to be accomplished with ease. 

As _a dielectric:., it ,fills the -irregularities on the surface of the in-

lator, reducing the possibility of electrical leakage paths. 

The-two electrodes of the spark gap are hemisphericE!,l and are .made_ 

of copper. Then they are plated with silver. They are screwed into the 

ends of .the center conductors. Springs behind the.electrodes maintain 

proper tension, and slots around the.circumference of the ends-of-the 

center conduct9rs prevent binding. This arrangement allows the separa-

t ion -_ of the two electrodes to be adjusted to appropriate val1;J.es. The 

plane, parallel, and infinite electrodes, which are used for thec,retical 

calculations,. are. impractical; therefore, the hemispherical electrodes 

are used. This design results in a slight decrease-in .the breakdown 

voltage. - Peak (1929) predicts that·the voltage gradient .at -the elec-

trodes.is increased by the factor, 

L= d/4r + 1/4 + \j(d/4r + 1/4) 2 +1/2, 

where 

d · = electrode .separation 

r =.electrode radius. 

'the maximum -value of d/r -is about 1/3 for these spark gti:1.ps •. This gives 

gives·a maximum value for f 0 

f = 1. 115 
·~-
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Figure 17 . Triggered Spark Gap 
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The triggered spark gap is constructed in a mannerwhich is very 

similar to the other two.sp13.rk·gaps. This gap is illustrated in Figure 

17. The-two mainelectrodes are const:ruc;ted in exactly the same manner 

as for the other two spark gaps. The center conducto,rs are somewhat· 

extended and are made in two se.ctions. In place of.the "donut"' of the 

first two gaps, there is an arrangement to house the trigger electrode. 

This .electrode is made of copper, and is screwed, ort.tc:;> the end of a stem 

which passes through a high density polye,thelene.insuli;l.tor. This :Lnsu- -

lator is pressure sealed by an "O" ring an<;l by a ,flange which has·one 

side slightly tapered, on the end of the stem. -A.-smal;I. orfice through 

the side of this arrangement allows.nitrogen.to enter th,e system. 

The-Discharge Resistor 

After the reflected pulse fq>m the "exploding wite'' is diverted 

thro,ugl;i the "fired", triggered spark·· gap, the pulse continues into a 

dissipation c\lamber where a 50-ohm resistor is mounted. This 50-ohm re-,-

sistor matches the characteristic, or surge, impedance of the coaxial 

cable, Provided there is no mismatch of the surge impedance in the. 

coaxial conductor between the triggered spark gap and the resistor, the 

energy is completely dissipated with no reflections; The resistor is 

mounted coaxially as is illustrated in Figure 18. The resistor is a 

Corning, H-type, and is non-inductive. The upper part of the housing is 
; 

exactly the same as the housin~P for the spark ga1>s. The resistor is 

held by two holders which are slotted around the,circumference. The 

bottom of the resistor housing is removable. This arrangement allows. 

the resistor to. be inserted or removed with ease. 
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I" 

Figure 18. Coaxial Discharge Resistor 
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ElectronicCircuitry for th.e Triggered Gap 

The· electronic circuitry, which is required to. ''f.ire11 the triggered 

gap at the.proper time, is shown in Figures 19 and 20. A signal from 

the delay line is fed tq.rough a voltage divider. and .. an. impedance match

ing network to a variable time delay. This delay.is the AD-,.YU, type 

553e, variabl~ from O · to 15 microseconds~ The delayed s.ignal "fires" a 

2D2.l thyratron, which produces'a positive output_pul.se of approximately 

350 volts. The·5Q,OOO ohm potentiometer in the.cathode.c;ircuit controls 

the sensitivity of this thyratron circuit. Tlie 350 volt pulse from the 

2D21 is uf:led to "fire" a 6279 hydrogen.thyratron. When the hydrogen 

thyratron conducts, 30,000 volts is made available to the triggered 

spark gap by the pulser-cable. In ·the above arrangement, two thyratrons 

are used, rathet; than one, in order to keep voltage across the time de~ 

lay at.a sufficiently' low value. 

The hydrogen thyratron and the pulser"7"cable arrangement is an adap

tation of circuitry published by Theophanis (1960). The pulse:r".'.cable is . 

ma.de .,from. 24 feet of RG-58/U coaxial cable, and is initially charged to 

15,000 volts. When the hydrogen-thyratron c;oaducts, a 30,000 volt pulse 

;is produce~]. across A .and B. The 15,000 volts is applied to the. thyratron 

by as.mall, 15,000 volt, 5 ma power supply that is manufactured by 

Plastic Capacitors, Inco It was found that the ends.of the pulser-cable 

could not be cc;mnected · by means of high-voltage coaxial conn~ctors,; as 

~ short woµldoccur. The positive and negative' terminals had to be·sep

c1.rated. The pulser-cable arrangement is advantageous. in that.· it _allows 

the polarity of t\le pulse tel t_he, triggered gap. to be, revers.ed by re

versing . the_ output le.ads. 

The, time delay is set in. the following manner. Switch, S, is ·. 
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close~" This applies a small step voltage to the trigger input of .the 

oscilloscope, causing th_e electron beam to· begin its trace. At the sai;ne 

tinte,. a step voltage. is applied to th.e time delay:... . .Aftf.'!.r .a time interval 

of duration; .td' 30,000 volts appears across A and B. Part of this volt

age·is applied to the vertical input of .the oscilloscope. Thus, a pulse 

is seen ort the oscilloscope at a time,·· td, after the elect ton beam be

gins its trace. The variable time delay is adjusted until _the correct 

va+ue of td is; obtained. The-correct value is approximately.5.7 micro

seconds, which is the time for the pulse to propagate from the swit~hing 

gap-to the wire and .back to the triggered gap.· 

The Nitrogen System 

The gas in the spark gaps of the rrexploding .. .wire". systel)l is nitro..

gen. This gas.is employed because it is readily available in bottled 

form, and· because it does not support·. oxidation of the. spark gap elec

trodes. The nitrogen is fed tQ a manifold (Figure 21). where its dis

tributi,on is controlled by high pressure valves. The pressure is de- · 

termined by a regulator that is mounted ort the gas bottle. 

Attached to the bottom of the manifold.is a solenoid exhaust valve, 

which is activated by-a 30 volt power supply. After the spark gaps have 

been filled with nitrogen.to the proper pressure, the valve to th~ 

switclrln.g·;g~ is opened, leaving all others .closed. Activation of the 

solenoid·valve releases the pressure from the switching gap, and the 

voltage falls until the voltage of the pulse generator causes the gap 

to break down. 

r-n orde.r·to prevent circulating currents-in.the "exploq.ing wire" 

system, met{,11 :dibing is not used to· distribute the nitrogen 0 Instead, 
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Figure 21. Photograph of Pressure i:~anifold 
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1/4 inch, high pressure nylon tubing is used. This-tubing is rated at 

3000 psi, and is connected by means of standard high pressure stainless 

steel pipe fittings. Circulating currents are further -averted by mount-

ing all metal parts on a three-deck aluminum table by means of lucite 

rods. This construction is clearly seen in Figure 21. 

In. Chapter IV, the general form of Paschen's curve was discussed. 

Paschen's curve for high pressure nitrogen is presentedin Figure 22. 

The -minimum of · the curve cannot be seen on this -scal_e. This curve is 

derived from two sources. Below a breakdown voltage of 9000 volts, the 

curve is obtained from the experimental data of Williams (1959). The 

upper range is obtained by applying Raether's criterion, (ad) = 20. 
C 

The calculations were made in the following manner. First, a value of 

P d is selected, and then a /P is calculated by the equation, 
C 

a /P = 20/P d. 
C 

A value of E/P is found from the cµrve for the coefficient of ionization 

for nitrogen. given by Cobine (1958). This curve is presented in Figure 

23. Finally, the br~akdown voltage; Vb, is calculated from the equation, 

It should_ be remembered that the Paschen's curve is only accurate .to 

within perhaps 10 per cent in its upper range. This should be sufficient 

for initial setting of the spark gap. electr.odes. · Ultimately, the elec-

trade separation of the sp-a~k_ gaps is determined by experiment~ 

The Explosion Chamber 

In designing the chamber in which the wire is exploded, several 
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qualifications are stipulated: 

lo The explosion is to take place in a vacuumo 

2. The chamber is to be impedance-matched to the. RG-,l9A/U cable o 

3. The current is to be delivered symmetrically to the wire so 

that no unbalanced.forces are produced, 

4. Ports are to be provided for observation and experimentation. 

73 

5. A means of measuring the voltage variation with time across the 

wire is to be·provided, 

Following the preceeding guides, the chamber that is illus.trated in 

Figure 24 was designed and constructed. A photograph.of the chamber 

appears in Figure 250 The main body of the chamber is.made of cold 

rolled brass and is constructed in. two parts, In .this way, the chamber 

maybe disassembled for insertion of a wire, The two halves are sealed 

by an"O" ring. The center couductor, which introduces current into the 

chamber, is made of cold rolled brass and is silver plated, as is also 

the interior of the chamber. The insulator, which holds the center .con-. 

ductor~ is made of high density polyethelene, It is force~fitted in 

place so as to form a vacuum seal, 

Four.ports surround the position of the "exploding wire. Two of 

these are windows.and are made of pyrex glass" This construction is 

illustrated. at. the top of Figure 24 o A third port, similar in construct-. 

ion to the window ports, ls connected to a vacuum diffusion pump through 

a 1.5 foot section of stainless steel pipe; Part.of this construction 

is seen in Figure 250 Four inches outside the chamber, this pipe has 

a joint so the chamber may be. disconnected from the vacuum system. A 

fourth port, illustrated at the bottom of Figure 24, is l/3.rger than the 

other three., This port· is used• for insertion of probes, for the 
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Figure 25. Photograph of Explosion Chamber 
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quadrupole mass filter and. for other experimentaL devices to measure the 

properties of the plasma a When not in use, · this port ·.is.· covered with a 

plate. 

The explosion chamber is connected to·. the pulse shaping gap• by a 10 

foot section of.RG-19A/U cableo This·length .of cable.allows the chamber 

to be moved aobut without causing the cable to b.indo .. A .'.'T" connection 

is provided on this·cable just outside the chambero A voltage.divider 
( 

is mounted on a circuit board; across the inner and outer conductors of 

this "T"o This construction may be seen the the photographJ Figure 25 0 

This voltage divider.is connected to an oscilloscope.through a section 

of RG-58/U·cable, where the voltag~ across the wire is measured. 

In order,to hold the wire, special wire holders had to be disigned. 

The fi_nal disign is illuE?trated in Figure 26. The wire holder is made 

of copper, and is made in a conical shape. The apex angle of the.cone. 

is 90° o A 0.004 .. inches slot is cut through the apex, -along the axis of. 

the holdero Two holes, 1/16 inch in diameter, are bored at right angle-

to one another and at right.angle to the axis of the coneo The bottom 

of tb,e slot corresponds to the hole~ A - B. A.wire is instal+ed in the, 

left _hanc,Lholder of. Figure 24 in the fol.lowing manner o First,; the ·small 

section of .the body of the chamber is removed. Theholder·is,partially 

screwed-,.into it mount •. A wire is brought .down through the slot so that 

it lies in hole; A - Bo Ar~d, about 1/32 inch in diameter, is insert"".'. 

ed through the hole, C - D, above the wire. Tne wire is held.at one end, 

the other'end.is pulled so that it is alligned alc,ng the ax:i,s of the 

holder, and the holder is tightened into its mounto The wire is pinched. 

held. at· the apex becl:luse of the tabs on tb.e washer, made of shim stock, 

ben~ath the holdei;-o These tabs are all.igned aL90° to the axis of the 
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slot. ' The wire is installed in the other holder, in .. a. simi.la,r. .. manner. 

But, the_holder is _tightened to its mount by a nut .outside the main cav

i.ty of;the caamber. '.Che wire is pµlled taut·througµ.the,p.ort.Jllustrated 

at the bottom of Figure 24. · Excess wire is easily rei,noved from the hold

ers by pulling on it. This breaks the wire somewhere inside the holders. 
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CHAPTER VI 

PRELIMINARY RESULlS 

The primary objective of the project for this thesis is to design 

and cbnstruc;.t an "exploding wire" system that is capable of producing a 

high energy-de.nsity, aluminum plasma. The plasma is to have an initial 

density near to that of solid aluminum and is to expand from this den

sity into a vacuum which is free of electromagnetic fields. In this 

final.chapter, some.preliminary results are presented on the performance 

of this equipme.nt. Wires have been exploded with the pulse generator 

charged to 52,000 volts, which gives a pulse of 26,000 volts. This is 

roughly 19 per cent of the energy ·rating of the equipment. Seve.ral dif

ficulties were encountered. Improvements are suggested, 

Explosion Characteristics 

In this section, results are given for wires exploded with low and 

medium voltages on the pulse generator. In the two cases which are dis

cussed, the i;witching gap was set to "fire" in the neighborhood of 100 

psi. The pulse shaping gap was operated at atmospheric pressure, In 

the first case it was completely closed~ and in the second case the .elec-. 

trodes were separated about 0.020 inches. In both cases the fore pump 

· lowered the explosion chamber pressure to about 1 micron of Hg. 

Little difficulty was encountered in exploding a wire with the 

79 
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pulse geµera tor charged· to 13; 600 volts. In . this :..ease, . the ·wh;e was 

not mounted in the manma:r that is. ind:1-c_ated · in tl).e :preceeding chapter., 

The wire.was held b}'.' clamping it behind the.two holders~ This was· 

necessary since the holders were not yet completeiy.fabric~ted a.t·that· 

time. The length.of the alurnintun wire wa:s about 1 inch and, had a di

amete;r of .0.001 inches.; The voltage across .the wire was·measured as a 

function of time. This voltage variation with time is shown.in Figure 

270 A similar test was conduc~ed with no wire and the holders removed. 

In. this case,: a square voltage pulse is expect~d. across: the open end. of· 

the delay line. The pulse, which was.measured, is indicateq.in Figure 

28. From the curve of Figure 27 and a knowledge of the amplitude of the 

voltage ~ulsE:, the resistance, power and energy were calculated as a 

function of time. A computer program was assembled to perfin:-m the cal

culations. The data ,points from the voltage curve, which were employed 

for the calculat:Lons, were selected in such a manner .. so the curve be ... 

tween any two points was. a str,aight li~e. From the calculations. a 

curve was drawn which gives the relation ,between the res.istance and the 

energy o Thi.s curve is .shown in Figure 29" .· 

Diffic.'ulties -were encountered when a. wire .was exploded with the 

pulse genera.to:r.charged to 52,000 volts. The-pulse genera.tor-appeared 

to have a. leakage path, as the· generator would hold.the voltage·for only 

10 to 20 seconds after it was _disconnecte<;i from the power.supply. An

other difficulty was .. that . .of obtaining an oscilloscope trace. The elec

tron be_am would· begin its sweep across the oscilloscope· face before. the 

wire began.to-receive energy; causing nothing-but "trash" on the os,-. 

cillqscope·face. Evidently,; the electroi:nagnetic radiation from the 

"firing" ot;;;-:th~s:~swf.tching gap caused. the oscilloscope. to trigger 
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preroa.tur:ely. To alleviate. this second· situati.on, the . .internal delay of. 

the oscilloscope was u1;3ed,; The stray radiation. triggered the: delay. · 

After an. appropriate delay, the oscilloscope made a .,single. sweep.· 

Ewploying the ·. de:J_ayed sweep, a O. 002 inches diametet wire, about 

1/4 .inch.in length, wa1;3 exploded. The pulse generatqr.was. charged,to· 

52,000 volts, a1;3 indicated by a high voltage probe .which was. com;iected· 

to , a vacuum tul;,e vol.tmeter ~ . The· high voltage· pow:er _supply_ .. for charging 

the c''condens~rll cable was d:lsconnected from :the .cable .. after , the solenoid 

valve was ac,tivated. This·an~wed perhaps one and .. no.t,t110re.than. two 

seconds · for leak.age. to discharge th_e pulse generator~ To allow for a. 

slight leakage, a value .of 22,000 volts was assumed fo.r the amplitucle 

of the voltage pulse in the calculations, Theoscillog,;aph:ic trace of 

the variation of the voltage across the wire is shown in Figure 30. A 

curve for the.resistance versus energy for this experiment is presented 

in. Figµre 31. 

The results for the preceeding two• ex:i;i.:,,rtments, , which, have been 

<;liscussed, ~.1re· similar in several respec~s.; The initial,. rate a wire 

abso+bs energy-from the voltage pulse is proportional to th.e quantity, 

v2 L/A, where Vis-the voltage to which the pulse generator is cha.i;-ged 1 

~·is the lengt9: of the wire and A·is the cross.sectional area of tn-e 

wire. In both of the ·experiments, this quantity is approximately the•· 

same. This indicates ·that·th~ energy absorbed by the wires should be 

of the same order of magnitude. 

In both experiments, a dominant·feature is evident. This is the 

existence of a.voltage peak. At ,this voltage peak, the resistance of 

the.wire becomes a.maximt1m, the ct,i:rrent through the;wire;6ecemes a.min-. 
1···· 
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ma:dm,\im~ 

Very int~resting situ~tions · occur for both :.experiments .. at a~ energy 

d . f ' . 1 0 9 · 1010 . · · 1 1 3 I h fi · _eps1.ty o approximate y • ·.x JOU es;r,m • · n t e • rst experimen,t,. 

tlie resistance of the· wire suddenly drops to zero. · In the second ex,-. 

periment,. the :resistance reaches a -se¢(jridary.peak, ... and th,en very sharply 

decreases·to zero. Additlonal e:xpetiments a~e-required befote.the_exact 

nat1;1re of this sudden voltage· drop is det·ermine,d.-

The-Triggered Gap· 

l'he electronic, circ1;1itry for "firing", the t.riggere.<;1. ,.gap. was tested. 

To do this, two · alligat()J:." · cl:l.ps were·' clipped to a piec;:_e of. plexiglass 

an4 s.epa:\;."a ted ·about 1 /4 inch~ This arrang1amen t served as a ' spark gap. 

It was founc;l that the: gap would consistently spark-over when: the test 

switch, S, of Figure 19 was closed. No attempt has.yet been made to 

test the triggered spark gap in the :l'dynamic'' situation.- It was be-

J,.ieved that time could be better··spent in working. the "bugs'.' out. of the 

other parts o:f the;system. 

Wire Length, 
,.._ 

In using the "explodiJig wire" syst~m, th.e ability to. accurately de-. 

tepnine the energy. density in the _wire, or the plasma, is very impor~ant •. 

A mel:l,ns of measµring the length of the wire _becomes. very important .. for 

J:his purpo1;1e.; The following metho4 accompli,shes this object:iv$. The 

joint betwee:n the. two _halves of .. the explosion ,chamber serves as a ;ref'."" 

er-ence line for measµring distanq.es~ A thick washer-with :a cenical_hole. 

is,fabricated:to fit. over,the wire holder in the lai:::ge sectic:;i:n of.the 

axplosion .chamber. A flat surface on the washer is perpendicular to. 
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the axis of the wire holder~· A_measurement ie. tak'?n:.be'l=,ween. the refer

ence line and the flat surface of the· washer, using .a. depth .. _ga,uge ~ · · A 

s~~nd tneasure~ent.is made fr~m the. outer surface.of.the small section 

of the explosion cha.mb,er to a flat·.sarface on the cs.crew which. hold,s the 

other wire·holder. A knowlepge of these measured..distances.and·the d,i-. 

mentions. ,of· the. various .. parts of the explosion chamber serve to deter-

mine the lellgth of ·the; wirEh 

Spark-Gap Leakage. 

'l;'he·spa.rk gaps; ·which· have been c;lesigned, shou+d be able to contain 

a high pressure gas without.much leakage •.. If -a leak exists, long ex~ 

posure to higl;i pressures may result in a sufficiently.high le1;1.kage so 

the leak may be located. The !:ipark gaps were measur.ed for leakage. It 

. \Qt'Jss ·d.etermined that the :leakage ra.te was on.the order of 10 psi per· 

minute .at· 1000 psi~ This rate is sufficiently: slow to allow experi

ments to be performed, wit:b,out .. concern for the variation in. the spark .. 

gap p-,:-essure with time •• 

If-two mo:i:-e. pressure.regulators were employed, no va:i:-iation of 

pressure weul,,d occur in_ the gaps. Valves would, :be· provid,ed to,·exhaust 

the g.!lps whe:o, ·not. in use. The p-resent pressure man.Hold would be used. 

witll. the present s<;>lenoid valve-on the switching gap. 

Wire Holders 

. -. The wire holders; al:i d,esigned, · seem to. work very.well.. It was· 

found th.at th,ese. hold,e:i:-s were Cli!,pable · of . holding wires , of diamete;r, 

0.0007 incq.es .... 
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Suggestions for Improvente11-es 

Problems encountered during the course. of the .pr.ojeet ._suggest sev

eral improvements. Of primary.importance i$ the .el.imination of the_ 

leakage from the-pulse generator~- When this clif~icul,ty is resolved, an 

accur.ate determina_tion of the ·amplitud~ -of the volt.age :.pulse is possible. 

A s_econd improvement., · as indicated ear lier, . is to. es tal::,lish sepF1,r- _ 

ate·regulation for _the pressure'in each of the spark gaps. 

In•addition to the preceeding ,impro:vem~nts, the :following two .tasks 

are "to be, performed~ · 

lo Place the: triggered gap. into opeJ;."~tion. · 

2 ~ Determ,ine the optimum pressures _and· th_e optimu~ electrocle sep

aration1;1 · foi;:_ the spar~ gaps. 

When -the. improve:qients., me~tioned in this section, have been accolll-

plishecl• the system -should be. ready for making significant- measurements. 

of the plasn1q. by.exploding wires·at.high_energy densities._ 
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APPENDIX A 

PRO];>ERTIES OF BESSEL FUNCTIONS 

The following properties of Bessel functions.were needed in the so-

lution of the differential equations•for the "pinch effect" and are 

taken from Kells (1960) , 

Let Jn(x) be the Bessel function of order n with a:,:gument x. Then, 

the relationship between Bessel functions of different orders is 

Jri(x) -Jn+l (x) + (n/x) Jn(x) 

Jri(x) = Jn-l (x) - (n/x) Jn(x) 

Integrals of Bessel.functions of different orders are related by 

the equation, 

(oxk ) Jn+l (ax) dx ((n+k)/a) 

k 
-(P /a) .J (aP) · k Zl 

n 

The orthogonality condition for Bessel functions is 

where a and bare roots of J (x) = 0, . . . n 
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APPENDIX B 

POLYNOMIAL APPllOXIMA.TION FO.R BESSEL FUNCTIONS OF ORDER ZERO 

In the comput~r calc~lations for th.e !'pinch effect'', .the following 

polynomial .. apprqxii;na:t,ion for Bessel functions, of order zero, due to. 

Oliver (1965), was use4. 

Let~ be the aI,"gui:nent of the.Bessel function of order zero, J. 
0 

Then for 

the , approxima, tions is . 

where y = x/3 and 

-3 ~x ~3; 

Jo (Jr;) .""' t en y2ri + e: 
. n=O 

C 
0 

= LO 

C = -2.2499997 1 

C - =. 
2 

1.2656208 

c- = -0.3163866 3 

c4 =. 0.0444479 

cs = -0.0039444 

C = 0.0002100 6 

'The accµracy of this approxii;nation is determined by 

-8 le:I <:. 5 x. 10 
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For 

the approximation is 

where 

and 

J (x) = x~~ f cos(e ), 
0 0 0 

y = 3/x 

D = 0.79788456 
0 

D1 = ... 0.00000077 

D2 == -0.00552740 . 

D3 = -0.00009512 

D4 = 0.00137237 

n5 = -0.00072805 

n6 = 0.00014476 

E = -.0.78539816 
0 

E = -0.04166397 
1 

E2 = -0.00003954 

E3 = 0.00262573 

E4 = -0.00054125 

E5 = -0.00029333 
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E6 = 0.00013558 

The accuracy of this approximation is determined by 



APPENDIX C 

PARAMETERS. FOR THE -RG-l 9A/u:· COAXIAL CABLE 

Below are· given the various paramete.rs for the RG-19A/U coa~ial 

cable. Some· of the parameters were taken from the s,pecifica,tion sheet 

for the cal;,le; othei-s were calc1J.lated from the equations given in 

TABLE II. Using the same ·notation as in Table II, these parameter~ are: 

A = 0.250 in 

B = 0,910 in 

k = 2.24 

C = L 
29.5 pf/ft 

~= 78.8 mhy/ft 

R =- 52 ohms 
0 

V = 587 ·ft./µsec 
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