
THE STATE MATRIX METHOD FOR

THE SYNTHESIS OF DIGITAL

LOGIC SYSTEMS

By

ROBERT L. WOODS
ii

Bachelor of Science

Southern Methodist University

Dallas, Texas

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1970

•.

THE STATE MATRIX METHOD

THE SYNTHESIS OF DIGITAL

LOGIC SYSTEMS

Thesis Approved:

ii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my

thanks to those people involved in this thesis. In particu-

lar, I wish to thank Messrs. Engelland, Brun, and Gertsen

for their encouragement during the earily stages of develop

ment of this synthesis philosophy.

Thanks are in order to my committee, Professors K. N.

Reid, E. C. Fitch, and P.A. McCollum, and a special thanks

to Dr. Reid for serving as my thesis adviser.

I also wish to thank Dr. Fitch for allowing this

thesis to be published under the Basic Fluid Power Research

Program even though this work was not supported by BFPR.

I want to thank Velda Davis for providing such an

excellent typing service. It is greatly appreciated.

Those of you who have not undertaken a formal writing

such as this cannot realize how important a good wife can

be. Those who have, know what I mean when I say, thank

you, Brenda.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Background • • • • ••
Development of the State Matrix Method
Scope and Results of Study ••••••

Page

1

2
3
5

II. THE FEEDBAC-KS.EQUENTIAL STATE MATRIX
SYNTHESIS PROCEDURE •••••••• 7

III.

IV.

v.

Formal Matrix Representation • • • • • • • 7
Persistent States. • • • • • • • • • • 11
Memory Assignment. • • • • • • • • • • 19
Counting Sequences • • • • . • • • • • 23
Proced~re Summary. • • • • • • • • • • 26

THE STATE MATRIX SYNTHESIS PROCEDURE
FOR RANDOM -INPUT CIRCUITS • • .

The Primitive Flow Table
Formal Matrix Representation .••••••
Memory Assignment. • • • • • • ••
Output and Switching Conditions •••••.
Procedure Summary •••••••••••••

DIGITAL EQUATION SIMULATION AND THE
CANONICAL FLOW TABLE • • • • • ··• · .

Digital Equation Simulation
Canonical Flow Table •••

DIGITAL COMPUTE:fl PROGRAMS

Synthesis Program LOGSYN
Simulation Program LOGSIM

34

34
39
41
43
46

54

55
61

67

68
70

VI. SUMMARY AND CONCLUSIQNS 72

Summary . • . . • . . . • . . • • • • • • • • 72
Comparison to Other Techniques • • • • 73
Suggestions for Further Study. • • • • 77

A SELECTED BIBLIOGRAPHY Bo

iv

Chapter

APPENDIX A - THE PASSIVE ;MEMORY ••••••

APPENDIX B - LISTING OF COMPUTER PROGRAMS.

APPENDIX C - EXAMPLE COMPUTER SOLUTIONS ••

V

.
Page

81

90

104

LIST OF TABLES

Tab'le Page

I. The Developing State Matrix Relation
for the Sequence Z1 , Za , Z1 , Za • • • • • • • 10

II.

III.

IV.

v.

VI.

VII.

VIII.

IX.

x.

XI.

XII.

XIII.

The State Matrix Relation for the
Sequence Z:i. , Zi , Za , Za

The State Matrix Relation for
Z1 ' Za, Z1 , Za ' Z1 ' Z1

The State Matrix for a 2, 2, 1 Counter .
Primitive Flow Table for Example 3.1

Primitive Flow Table for Example 3.2 . .
Canonical Flow Table ;for Example 3.2 . .
The State Matrix Relation for Example 3.1

The State Matrix Relation for Example 3.2

The Unique State Matrix Relation for
Example J.2

The Primitive Flow Table for Example J.J

Step-By-Step Development of Digital
Equation Simulation

.

.

.

.

.

.
The Development of the Canonical Flow Table

vi

12

. • 20

. . . 24

. . . 36

. . . 37

. . . 38

. . . 40

. . . 41

. . . 4J

51

. 58

63

LIST OF FIGURES

Figure

1. Hydraulic Circuit Illustrating Notation

2. Synthesized Hydraulic Circuit for
~, ~' ~, ~ ...

3. Hydraulic Implementation for Z1 , Za,
Z1, Z2 , Z1, Z1

4. Hydraulic Implementation for
1, I, 1, I, 2, 3, 1, 2, 1, 3 .

5. Logic Circuit for Example 3.3

6. Flow Chart for Simulation Method.

7. Flow Diagram for Logic Systems Program

8. Passive Memory Valve.

9. Fluidic Memory Circuit .

10. Passive Memory Assignment Circuits.

11. Passive Memory Code Schematic

vii

Page

8

16

22

33

53

56

69

82

84

86

87

CHAPTER I

INTRODUCTION

The technology of switching circuit theory, although

relatively young, has found great application and utility

in modern design. :Most of the theory has been developed

for application in electrical engineering since electronics

has dominated the field of computation and logic for the

last dew decades.

Recent years have seen a rebirth of the use of a fluid

medium to perform the logic and computation in sequential

machines. The newly emerging field of fluid technology

termed "fluidics" is one major reason for this rebirth of

fluid logic. Since fluid power is often used as the muscle

of ~achines, it is convenient also to use the fluid itself

for the requiretl. computation in order to avoid the elec

trical to fluid interfaces.

To realize maximum utilization of fluid logic devices,

it is necessary to develop a technology of switching cir~

cui ts applicable to fluid circuits. The .theory should con

sider the unique properties of fluid devices not only in the

implementation of circuits, but also in the synthesis proce

dure itself. The synthesis procedure presented in this

1

2

thesis does take advantage of the unique properties of

devices in order to produce simple fluid circuits containing

minimal hardware.

Background

Modern switching theory had its origin in 1938 when

C. E. Shannon (9), of M.I.T., applied the laws of Boolean

algebra to the representation of electrical switches. 1

Although this was a great advancement for combinational

switching circuits, there was no formal procedure for the

synthesis of sequential switching circuits until 1954 when

D. A. Huffman (J) and E. F. Moore (8) independently devel-

oped the synthesis technique which is used today. This

technique has gained such widespread use and application

that today it is taught at every major university and is

even referred to as the "classical method". The synthesis

procedure presented in this thesis relies upon much of the

notation of the classical method. The reader not familiar

with this method, should refer to a book on classical

switching theory (2) , (5) , (7) , (8) •

E. C. Fitch (2), of Oklahoma State University, was one

of the first authors to apply the methods of sequential

switching circuit theory to hydraulics. However, his work

did not take into account any special properties of hydrau-

lie valves except in the implementation of logic circuits.

1Numbers in parentheses refer to references in the
Selected Bibliography.

3

Later work at Oklahoma State University by J. H. Cole

(1) did consider the properties of devices in the synthesis

procedure. Dr. Cole used the properties of the passive

memory devices to produce extremely simple circuits for the

feedback sequential type problem. This work has been a

major advancement for the field even though its scope of

application is limited.

G. E. Maroney (6) extended Cole's tabular method to

include the rapdom input type circuit. This method was

fundamentally the same as Cole's except that the random in-

put possibility necessarily complicated the execution of the

method. This technique also utilized the passive memory

effect to reduce hardware.

Development of the State Matrix Method

The state matrix synthesis procedure evolved from the

assumption that the outputs are related to the inputs and

the past state of the system. This relationship can be

written in matrix form as:

Here, the outputs are contained in the [z] vector, the [x]
vector contains the inputs, and the matrix [M] contains out

put and memory information. This binary matrix changes with

time to yield different outputs representing the different

states of a sequence.

~:

Early experi~ents with this type of synthesis were

restricted to the feedback sequential type problems because

of their simplicity. A close examination of the resulting

equations reve~led that they were essentially identical to

those obtained from Cole's method. This was very encourag

ing since Cole's method was known to produce valid expres

sions. The matrix arrangement of this method also gave

insight to many of the hidden subtleties of Cole's method.

Once the rules for the synthesis of feedback sequentic;1l

circuits using state matrices were defined, the method was

extended to ~andle the random input problems. The main dif

ference between the state matrix methods for random input

and feedback sequential problems was the input vector used.

The feedback sequential input vector contained only the

changed input, whereas the random input vector contained the

total input state.

The random input form .of the state matrix synthesis

procedure has since receive~ more attention since it is the

more general procedure. This form will also handle the

feedback sequential problems in some respects better than

the original state matrix method. Hereafter, the random

input form of this method will be referred to simply as the

"state matrix method", and the method using the changed in

put vector will be referred to as the "feedback sequential

state matrix method."

Scope and Results of Study

Altho~gh the state matrix synthesis procedure is the

most important item in this thesis, many other original

topics have arisen from this study. The major accomplish

ments of this study are:

(1) The development of the feedback sequential

state matrix synthesis procedure. (Chapter II)

(2) The development of the state matrix synthesis

procedure for random input circuits.

(Chapter III)

(3) A digital computer program to perform the

state matrix synthesis procedure. (Chapter V)

(4) The development of a simulation technique

to check the logical implications of digital

equations. (Chapter IV)

(5) A digital computer program to perform the

digital equation simulation and to formulate

the implied primitive flow table. (Chapter V)

(6) The definition of a standard format for the

primitive flow table. (Chapter IV)

The state matrix synthesis procedures have the follow

ing distinguishing features:

(1) The basic concepts of circuit synthesis are

much easier to grasp than those of other

methods.

(2) The execution of the procedure is straight

forward with few or no exceptions to

5

established rules.

(J) The resulting digital equations have few of

the usual logical complications.

(4) The procedure takes advantage of device

properties to produce circuits with fast

response and minimal hardware.

(5) There is virtually no limitation upon the

size or length of the problems which can be

handled.

6

The simulation method presented here provides a check

upon the digital equations resulting from a synthesis pro

cedure. Each possible input change is systematically in

spected for its effect upon circuit equations and the

resulting transitions are recorded in a primitive flow

table. This flow table may then be compared to the original

flow table which should contain identical information.

In comparing the simulated flow table to its original

primitive flow table, it is convenient, if not necessary, to

estabiish a standard flow table format. For this reason, a

method similar to the simulation method is used to define

the canonical flow table format.

The computer programs included in Appendix B perform

the mechanics of synthesis or simulation rapidly and accu

rately. These programs encompass all of the defined rules

and methods for the analysis of digital logic systems and

can be utilized to good advantage in design work.

CHAPTER II

THE FEEDBACK SEQUENTIAL STATE MATRIX

SYNTHESIS PROCEDURE

Although feedback sequential circuits are comparatively

simple, they have found a large field of application in

modern automation. Consequently, the synthesis of such

circuits is of major importance to industrial designers.

Feedback sequential circuits are characterized by their

use of a signal indicating the completion of one event to

initiate the next event in a prescribed sequence. Feedback

sequential circuits are automatic and, once started, require

no further attention to sustain sequential action.

Formal Matrix Representation

In sequential circuits, each element is associated with

one corresponding output from the logic circuit. In a hy-

draulic circuit this element is typically a hydraulic cylin

der and the output is the fluid flow which actuates the

cylinder. Since there is usually more than one element in a

sequential machine, it is convenient to let Z1 represent the

output which extends cylinder one and Z1 represent the

7

8

retract output for the cylinder. 1 The signal Xa is used as

an input to the logic circuit indicating the full extension

of cylinder two, and the signal Xa appears when cylinder two

is fully retracted. figure 1 illustrates a physical reali-

zation of these variables. The reader who is unfamiliar

with hydraulic circuit notation should refer to the

literature.

Cylinder One

p

Figure 1. Hydraulic Circuit Illustrating
Notation.

p

Using this notation, a-sequence involving two cylinders
!

1This notation is somewhat unfortunate since Z1 is used
in this ch~pter to specify only the chan~e of cylinder one,
not its continuous state. Also, Z1 and 1 are not perfect
complements since the specification of one does not imply
the other. A more appropriate notation would be ~Z1 , etc.;
however, the Z, Z notation is used here for simplicity. A
similar statement is true for the inputs X and X used in
this chapter only.

\

9

can be written as Z1 , Z2 , Z1 , Za• This implies that cylin-

der one extends, then cylinder two extends, cylinder one

retracts, cylinder two retracts, and. then the entire se-

quence is repeated indefinitely. Each event is initiated by

the completion of the proceeding event.

The synthesis of a circuit to execute this sequence

proceeds from the assumption that the required outputs from

the logic circuit are related to the inputs by the matrix

equation given below.

Z1 mu m:12 ... m1n X1

Z1 X1

- mu (1)

Zn xn

zn Dlnl· 111a X.

Recall from the rules of matrix multiplication that

-when multiplying the matrix [MJ by the [x] vector, every

entry in the jth column of [M] is multiplied by the element

in th~ j th row of [X J. Thus,, each column in [:M J i~ associ

ateq. ~nly with the corresponding input element of '[x].
For the sequence ~nder consideration, the first event

is the extension of cylinder one which results from the pre-

vious retraction of cylinder two. Thus, the state number 1

is entered in the matrix in the row of the Z1 output and the

column associated with the Xa input (column four). See

Table I.

10

The next event, the extension of cylinder two, is

initiated by the full extension of cylinder one. Hence,

the state number 2 is entered in the Z2 row and the X1

column. Similarly, state J is in .the Z1 row and the X2

column. The sequence is completed by state 4 in the Z2 row,

TABLE I

THE DEVELOPING STATE MATRIX RELATION
FOR THE SEq,UENCE Z1 , Z2 , Z1 , Z.a

'
I
I 1

I J

2 11 '

4
I

After all state numbers are entered into Table I, the

state matrix must be inspected to ensure that each state is

unique and does not represent any contradictions. For this

extremely simple problem, this is true and further attention

is not required. Table I may now be written matrix form by

placing a logical 11 1 11 for each state and a 11 0 11 elsewhere.

11

Z1 0 0 0 1 X1

Zi 0 0 1 0 X1
= (2a)

Za 1 0 0 0 ~

Za 0 1 0 0 Xa

The matrix in Table I is termed the state matrix since it'

only shows the states of the sequence. The matrix in Equa-

tion (2a) is termed the output matrix because Equation (2a)

is merely a set of digital output equations in matrix

notation. Writing Equations (2a) in longhand, one has:

Z1 = Xa

Z1 = Xa
(2b)

Za = X1

Za = X1

Note that the variables used in digital equations are

Boolean or binary logic variables.

Since this introductory problem is simple and requires

no memory, one could almost predict the results without the

use of any formal synthesis procedure. However, further

problems in this chapter illustrate the general case.

Persistent States

The problem of persistent states are prevalent in

almost every feedback sequential circuit. Persistent states

result when signals remain on long enough to form a

12

contradiction. The exact cause and remedy for this can best

be illustrated by an ex~mple.

Consider as example 2 the sequence Z1 , Z1 , Z2 , Z2 • The

state numbers are entered into Table II in exactly the same

fashion as the previous example. That is, state 1 is in the

Z1 row, X;a column. State 2 is in the Z1 row, X1 column.

The remaining state numbers are entered similarily and the

resulting state matrix is shown in Table II.

TABLE II

THE STATE MATRIX RELATION FOR
THE SEQUENC~ Z1 , Z1 , Za , Zia

1

2
I

3

4 I

/

If this state matrix were now converted into the output

matrix by placing a 11 1 11 for the states and a 11 0 11 elsewhere,

the following equations would result:

(J)

13

Reference to these equations and the state sequence

in Table II reveals that cylinder one would be extended by

Xa and subs~quently retracted by X1 • However, at the time

of retraction the extent signal Xz would still be on, be

cause cylinder two has not been changed since its retrac

tion. Hence, there is a contradiction because cylinder one

is trying to extend and retract simultaneously. The signal

which remains on creating a contradiction is called a

persistent state. In this case, the persistent state is the

signal X2 from state 1. This problem arises because only

the changed input and the changed output are used in the

state matrix relation. An event is specified only by the

variables that change, not by the present state of all

variables.

This condition can be alleviated by entering a shut-off

memory element at the persisting state and its complement at

the contradiction. Tne memory element should be in the

11 set 11 position prior to the persistent state and should be

in the 11 reset 11 position either prior to or on the contra

dicting state. The complemented memory signal is not used

in state signal formulation; it is only used as a reminder

when it shoulq be off or in the "reset" position.

For the problem under consideration, the persistent

state 1 contradicts state 2. Consequently, state 1 must be

modified with a shut-off memory element, say W12 • This ele

ment can then be used to shut-off the persistent signal

thereby avoiding a contradiction. Further examination of

14

Table 2 reveals that state J is persisting at state 4.

Hence, the memory element W34 is assigned to state J. The

state matrix for example 2.1 may now be written in output

equation form as:

Z1 0 0 0 W12 X1

Z1 1 0 0 0 x 1

= (4)
Za 0 W34 0 0 Xa

Za 0 0 1 0 Xa

Equations (4) give all of the required output equations

to sustain the qesired sequential action only if the shut-

off memory elements are swi t.ched at the proper times. W12

must be in the "set" position in order to formulate the

state signal 1; therefore, it mc:ly be set prior to its state.

In this case, W12 is set by the state signal 4 which is Xa•

Wia must be reset either prior to, or by, state 2. Since the

previous state is the persisting state, its signal may not

be used to reset itself. Therefore, the contradicting state

must be used to shµt-off or reset the memory element. Thus,

the switching conditions for W~ may be shown as follows:

Set Reset

W1a I Xa

J
Xi°

. state 4. . State 2

The notation adopted foi: subscripting the W elements is

quite fortunate: since the subscripts of Wia (read W one, two)

give both the p~rsisting and: the contradicting states,

15

respectively. The switching conditions may then be stated

by simply observing the subscripts. For example, the memory

element W34 is set prior to the persistent state J and is

reset by the contradicting state 4. Thus, the complete

logic specifications for example 2.1.are:

Output Equations:

Z1 = Xa W12

Z1 = X1
(5)

Za = X1 W34

Za = Xa

Switching Conditions:

Set Reset

I Xa X1 ;

X . l Xa

Before going any further into synthesis procedures, it might

be helpful to demonstrate the circuit implementation for

this problem. If the circuit shown in Figure 2 is not self-

explanatory, the reader is advised to consult a text on

fluid circuits. Refer to Figure 1 for the circuit implied

by the boxes representing the cylinders.

Persistent states always occur when two events involv-

ing one cylinder are consecutive; however, the same problem

arises anytime there is a possibility for a contradiction.

This problem may best be illustrated by an example. Con-

sider for example 2. 2 the three cylinder sequence Z1 , .. Z2 ,

x Xe --1 -
:X:1 - -

Cylinder 1 Cylinder 2 Xa -- -
J j

Zi Zi Za Za

- -·

Xa
Xa W12 X1 W34

X1 Xi Xa ..-IT\bll nd rTIT\iYJ 00 '

Xa l Xi J.

Figure 2. Synthesized Hydraulic Circuit for Zi , Z1 , Z2 , Z2

!

-

~
O"I

1-7

Zs, Zs, Za, Z1 • Following through the sequence, it is found

that Za is .causecl by X1 in event two. Later, in event five,

Zais required. However, since cylinder one is not re

tracted between events two and five, the signal X1 from

event two is still on. Thus, state 2 is a persisting state

contradicting event 5. A shut-off memory, Was, is.· required

to modify state 2. Since states 2 and 5 are not consecu-

tive, the shut-off memory element Was can be reset just

prior to the contradiction, state 5, rather than by the

contradiction itself. This is usually more desirable;

however, the particular circuit hardware might dictate

otherwise •.

There are three other persistent states in this se

quence. The rea4er is encouraged to develop the state

matrix for this sequence and verify the memory assignment

and switching conditions represented by Equations (6) .

The output matrix for the sequence Z1 ' Za' Zs' Zs' Za' Z1

is:

Z1 0 1 0 0 0 0 X1

Z1 0 0 0 Ws1 0 0 X1

Za Was 0 0 0 0 0 Xa
=

Za 0 0 0 0 0 Wsa Xa

Zs 0 0 Ws4 0 0 0 Xs

Zs 0 0 0 0 1 0 Xs

where the switching conditions are:

(6)

18

Set Reset

Was X1 Xs

W34 X l Was Xs

Ws 1 Xs Wsa X1

Wsa X3 X1

When determining persistent states, it is convenient to

partition the state matrix according to outputs. The two

rows for Z1 and Z1 represent the output partition one, etc.

The two colu~ns for Xa and Xa are input partition two, etc.

With the matrix partitioned in this manner, a systematic

method for determining persisting states can be defined.

This method requires the individual investigation of each

output partition. Starting with the first entry in an out-

put partition, each state is checked by investigating the

next entry in the output partition. This next entry is

always in the complementary half of the output partition.

These two states are always contradictory if they are con-

secutive and are not within a diagonal partition. A diago-

nal partition is the four entry square formed by the

intersection of an output partition and its corresponding

input partition. This square will always be on the diagonal

of the matrix. Two consecutive entries in a diagonal parti-

tion are not contradictory since the first event turns

itself off by the next entry. For the same reason, the

event in the output partition following an entry in its

diagonal partition is not contradictory. States not covered

19

by the above rule must be examined by applying the following

general rule. If the next entry in the output partition is

not consecutive and is not within a diagonal partition, then

the complementary event of the state immediately preceding

the first entry in the output partition must occur before

the next entry in the output partition. In other words, the

signal that initiated the first entry in the output parti

tion must be negated or turned-off prior to the next entry

in the output partition, otherwise the first entry will be a

persisting state. The application of these rules is dis-

cussed in detail for the example given in the Procedure

Summary.

Memory Assignment

In most sequences, an element is cycled more than once,

thus causing an input signal to appear more than once during

the sequence. Often, this input signal will initiate a dif-

ferent event each time it appears. In order to determine

which event is called for when that input appears, memory of

previous events is required.

Consider for example 2. J the sequence Z1 , Za , Z1 , Za ,

Z1 , Z1 • The state matrix shown in Table III is constructed

by entering the state numbers as previously discussed. A

close examination of this se~uence reveals that state 5 is a

persistent state. The element W66 is assigned to state 5 to

prevent the contradiction at state 6. This element is then

entered into the output matrix for state 5.

only persistent state in this sequence.

TABLE III

THE STATE MATRIX RELATION FOR
Z1 , Z2 , Zi , Z2 , Z1 , Z1

1 5

6 3

2

4

20

This is the

Columns one and two of Table III contain more than one

stable state per column. The states 6 and 2 in column one

indicate that there are two separate outputs initiated by

the input X1 • One time the input signal X1 initiates the

output Z2 ; the next time X1 appears, the output Z1 is

desired. In order to distinguish between these states, a

memory element is assigned to one of these states and its

complement is assigned to the other. For instance, the

memory element Y26 is assigned to state 2 and Y26 is

assigned state 6. In accordance with the W elements, the Y

elements are subscripted to denote their associated states.

The element Y26 is used to distinguish between states 2 and

6, and is set prior to state 2 and is reset before 6. A

21

similar condition exists between states 1 and 4. The memory

element Y14 is used to make each of these states unique.

The output matrix is constructed by entering all of the

Y elements to dist~nguish between common input states. The

W elements are entered at their persisting states and a 11 1 11

is entered for any stable state which does not require

memory. A 11 0 11 is entered elsewhere. The resulting output

matrix for ex~mple 2.J is given by Equation (7).

Z1 0 Y14 0 Wss X1

Z1 Yas 0 ;I. 0 X1
= (7)

Za Yas 0 0 0 Xa

Zz 0 Y14 0 0 Xa

Written out, these equations are:

Z1 = X1 Y14 + Xa Wss

Z1 = :X:1 Yas + Xa

Za = X1 Yas

Za = X1 Y14

The switching conditions are:

Set Reset

Yas X1 Y14 Xa Wss

-X-14 X1 Yas Xa

Wss x l Y14 X1· Yas

Figure J is a hydraulic implementation of the logic

circuit for this sequence. The passive memory effect is

X1 Xa
Cylinder 1 X1 Cylinder 2 x.,

Zi Zi Za Za

r-~--, r-~--, X1 Yas I I X1 Y14
I I I ___ I
I ··f I I
L.__ . - - - -1 L__ ----.I

Xa I I X1 Yas

I x. w ••
I

X1 Y14

x .. y,

~ Y,.Lx, X1 Y14,l I.• ,.,Xa X1 Yas.1 I. < :a I Xa- X1 Yas W5s

.:, I LL.I w w

X1 Xa Xa X1

Figure 3. Hydraulic Implementation for Z1 , Z2 , Zi , Za , Z1 , Z1 ·

llJ
llJ

utilized in this circuit to reduce circuit complexity and

hardware. At this point, the reader should refer to

Appendix A for a complete discussion of the passive memory

effect, assigmnent, and implementation for hydraulic and

fluidic circuits.

Counting Sequences

Counting sequences are characterized by their repeti

tious cycling of o~tputs. For example, a 2,2,1 counter

cycles (i.e., extends, retracts) the first element twice,

the second twice, and the third once and then repeats the

sequence. Counting sequences are handled in exactly the

same manner as any other automatic circuit; however, their

uniqueness deserves special mention.

23

In synthesizing this circuit, the usual formal notation

is dropped and the si~plified approach is introduced. The

first simplification is the omission of the output and input

vectors. Instead of writing a formal state matrix relation,

the rows and columns of the state matrix are labeled corre

sponding to their associated vectors. With this simplified

approach, the state numbers representing the sequence are

entered into the matrix as usual. The required memory ele

ments. are then as~igned adjacent to their state number

eliminating th~ need for rewriting the state matrix into the

output matrix form. The output equations are written

directly from the completed state.matrix.

The first step in synthesizing the equations for

: l

example 2 .• 4 is to enter the state numbers representing the

sequence into the state matrix as shown in Table IV. This

sequ-ence is written as Z1 , Z1 , Z1 , Z1 , Z2 , Z2 , Za , Za ,

TABLE IV

THE STATE MATRIX FOR A 2,2,1 COUNTER

3 Y35 1 W1a

2 Ya4

4 Y-~4.
5 Y 3 s Wse 7 Y79

6 Yss

8 Yi:;s

9 Y7 e W910

10

;
,

The next step is the determination of the existence of

any persistent states. Applying the .rules from page 18 to

the matrix unqer consideration, it is found that states 1

and 2 are contrc1dictory since they are consecutive entries

within the same output partition and different input parti

tions. States 2 and J and J and 4 are both within diagonal

partitions and, thus, are not contradictory. Since state 4

is in a diagonal p~rtition, there is no contradiction be

tween states 4 and 1. Entries like 5 and 6 in the second

partition and 9 and 10 in the third partition are contra

dictory. By similar application of these rules, it can be

seen that these are the only three contradictions in this

sequence. The shut-off memories (W elements) are now

25

entered into Table IV adjacent to their corresponding

persistent states (e.g., W12 at 1, W5 s at 5, and W910 at 9).

The next step of the procedure is the assignment of

input memory elements (Y elements). Here, the rule is

simple: whenever there is more than one state in a column,

a secondary memory state must be assigned to make each state

in the column unique. In Table IV there are four such col

umns requiring memory. The memory elements Y24 , Y36 , Y68 ,

Y79 are assigned to their corresponding states in accordance

to Appendix A.

The last step in the procedure is the specification of

the output equations and switching conditions. The output

equations are written directly from the state matrix in the

same manner as initially discussed. The switching condi-

tions are determined directly from the element subscripts.

The complete logical specifications for example 2.4 are

given below:

Output equations:

26

Z1 ::; X1 Yss + Xs W1a

Z1 = x,_ Ya4 + X1 Ya4 = X1

Za = X1 Yss Wss + Xa Y79 (8)

Za = Xa Yss + Xa Yss = Xa

Z3 = Xa '¥79 We10

Zs = X3

Switching conditions:

Set Reset

Ya4 Xs W1a X1 Y35

Y35 X1 Ya4 X1 Ya4

Yss X1 Yss Wss Xa Y79

Y79 ~ Yss Xa Yss

Y1 a X3 X1 Ya4

Wss X1 Ya4 Xa Yss

We10 Xs Yss X3

Notice that the equations for Zi and Za both reduce,

thereby eliminating a memory element. This does not imply

that these memory elements are not required. These two

signals (states 2 and 4) must be unique since they are used

to switch other memories to prepare the proper transition

paths.

Procedure Summary

The procedure for the synthesis of feedback sequential

digit.al control circuits is summarized by the following

four steps:

1. Enter State Numbers - Write down the specified

sequence and number each event in the sequence.

Starting with the first event, sequentially

enter the state numbers into the state matrix

in the row corresponding to the desired output

and the column corresponding to the previous

event.

2. Correct Persistent States~ Whenever a state

signal remains on to form an extend-retract

contradiction, the persistent state signal

must be modified by a W memory element.

J. Assign Memory States - Whenever there is more

than one state in any column of the state

matrix, memory states are required to make

each of these states unique.

4. Determine Output and Switching Conditions

The digital output equations are obtained from

the state matrix by replacing each state number

by a logical 11 1 11 and all blank entries in the

matrix by 11 0 11 and then multiplying the matrix.

The switching conditions are determined from

the memory subscripts.

The following example encompasses all of the defined

rules for the synthesis of feedback sequential logic cir

cuits and is worked in detail as a final illustration of

this synthesis procedure. The entire problem is presented

27

28

on page Ji and the procedure is discussed in detail below.

First of all, the sequence is specified and written

with state numbers below it, as shown on page Ji. This

sequence is then entered into the state matrix by placing

the state numbers in the row of the desired output and the

column of the present input. For example, the state number

1 is entered in the Z1 row and the X3 column since the first

event, Z1 , is initiated by the previous event which is the

retraction of cylinder three. The next event is the retrac

tion of cylinder one; accordingly, state 2 is located in the

Z1 row and X1 column. The remainder of the sequence is en

tered into the state matrix in the same fashion.

The next step of the procedure requires the investiga

tion of each output partition for the possibility of per

sistent states. The first partition is investigated by

starting with state 1. The next entry in this partition is

state 2. Since this is a consecutive entry not within a

diagonal partition, states 1 and 2 are contradictory and

must be corrected by modifying the persistent state (state

1) with the memory element W12 • W12 is entered in the

matrix adjacent to state number 1. The next entry in this

partition is state J. This entry, as well as the next, is

within a diagonal partition and is not contradictory. The

next entry in partition one after state 4 is state 7. Since

state 4 is within a diagonal partition, its initiating sig

nal is negated prior to the next entry (state 7). States 7

and 9 form a contradiction since event 6 has not been

29

negated before state 9 .. Accordingly, the memory element W79

is entered by state 7. The final entry in partition one is

state 1. Since event 8 is not negated before state 1, W91

is placed beside state 9 to correct this contradiction.

The next ~artition has only two states (5 and 8). It

can be seen th&t these states do not form a contradiction

since event 4 is negated by event 7. Similarly, state 8 is

not persisting at state 5.

The possible contradiction in partition three (6 and

10) is eliminated since event 5 is negated by event 8.

Thus, the signal causing state 6 is turned of'f' before state

10. The state prior to ~tate 10 (state 9) is negated before

state 6 eliminating this possible contradiction.

Now that all persistent states have been corrected, the

next step in the procedure is the assignment of' any required

memory states. Column one of' the state matrix contains

three states (2, 4, and 8). ' Each of' these states must be

made unique by modifying the states with the proper memory

state. This is done by placing Yas Ya 4 at state 2, Yas Ya 4

at state 4 and Yas at state 8. (Notice the double subscript.

notation.) Column two also contains three states, 3, 5, and

10, and ·the QI~mory elements Y36 and Y310 are assigned accord

ingly. There are no other columns requiring memory.

The final step of' the procedure is the specification of'

output and switching conditions. The output equations are

obtained by mentally replacing each state number by the

JO

logical 11 1 11 and multiplying the matrix by the input vector.

The switching conditions for the memory elements are

obtained from the element subscripts. For example, W12 is

set prior to state 1 by state 10 and is reset by state 2.

W79 is set by state 6 and is reset by state 8. Y24 is set

by state 1 an4 reset by state J, etc.

This problem is worked to completion on the following

page.

z
1

Sequence:

State Nos:

3

2 Yaa Ya4

4 Ya A Y.,.4.
5

EXAMPLE PROBLEM

1 I 1 I 2 3 1 2 I 3

1 2 3 4 5 6 7 8 9 10

YS:1 o Yas 7 W79

9 We1

-
Ya1 o Yas

B Y;;i 8

6

10 Ya10

Output Equations:

Z1 = X1 Ya10 Yas + Xa W79 + Xa w1 a

Z1 = X1 Yaa Ya4 + X1 Yaa Ya4 + Xa W91 = X1

Z:a = Xi Ya10 Yas

Za = X1 Yaa

Za = Xa

Za = X1 Ya10

31

1 Wu~

Y:aa + X:a W91

(9)

32

Switching Conditions:

Set Reset

Y24 Xs W1 a X1 Ya1 o Yss

Yaa Xs W1a ~ W79

Yss X1 Yaa Ya4 :X1 Yaa Ya4

Ys10 X1 Yaa Ya 4 Xa Wei

Wei X1 Yaa X1 Ys10

W79 Xa X1 Yaa

W1a X1 Ya1 o X1 X2 a Ya4

The hydraulip implementation for this circuit is shown

in Figure 4. In this ci~cuit, the actual switching signals
,i
;I

have been replaceµ by the notation S24 , R,,.. s , etc. , where S2 4

denotes the "set" signal for Y24 from the above switching

conditions.

Cylinder 1 : X1 I I I I X1

L--: X2. I I I X2
I

Cylinder 2 I I Cylinder 3

Zi Zi -Za Z2 Zs Zs

X:i

X1 Y31 o Y3s X1 Y310 Y3s

,--~--,
I I
I - I

L-- ----.J

r-~-, I - I
I - . I
L- ---...I

X1 Y2s Y24 X1 Y2s Y24

~ }\i

X3 W7s · X2 W91 X1 Y2s X1, Ya~ X1 Y310

S79 1 J ,\, lt,e

I

._-4}_' :xs· X2 Xi. X1

Figure 4. Hydraulic Implementation for 1, 1~_1, I, 2, J, 1, 2, I, J
. I

x1 Y31 o

I.,.)
I.,.)

CHAPTER III

THE STATE MATRIX SYNTHESIS PROCEDURE

FOR RANDOM INPUT CIRCUITS

Unlike feedback sequential circuits, random input cir

cuits do not anticipate the next input; consequently, every

possible input change must be considered. An example of

this type of circuit is the secret combination lock in which

only one sequence of input changes will result in the proper

output (i.e., the opening of the lock). Other sequences

might result in different outputs, return to starting posi-

tion, or many other conceivable situations. In any event,

the response to all input change possibilities from any

state in the sequence must be specified before a circuit to

perform the required logic can.be synthesized.

The Primitive Flow Table

The synthesis of a circuit to perform certain logic

sequences must proceed from the word statement of the possi

ble inputs and the desired response to input changes. For

every input change, two things must be specified: the

resulting output and the desired transition paths from that

state. These specifications are most conveniently

34

35

represented by the information table termed the Primitive

.Flow Table.

The primitive flow table contains the complete logic

specifications for a problem and is arranged as follows.

The columns of the table indicate all of the possible input

combinations. These input states are usually labeled above

each column according to the Gray code (one variable change

between columns). Each row of this table represents the

state of the logic system and its corresponding output, Z.

Numbers with parentheses around them indicate stable states

of the circuit and the unparenthesized numbers show the

possible transition rlaths from. one stable state to another.

As example J.11, consider the primitive flow table shown

by Table V. This example has two inputs, X1 and Xa, and one

output, Zi • The table indicates that the logic circuit must

provide a path from state (1) to state (2) when the input

changes from 11 00 11 to 1110 11 as indicated by the transition

path numbered 2 in the first row. Also, the circuit must

return from (2) to (1) by the path indicated in the second

row, first column. Notice that no transition path is shown
I

from input 11 00 11 , state (1), to input 11 11 11 , s:ince this would

require two inputs to be changed at exactly the same instant,

which is highly improbable.

.36

TABLE V

PRIMITIVE FLOW TABLE FOR EXAMPLE J.1

00 10 11 01 Z1
'

(1) 2 - .3 0

1 (2) 4 - 0

1 - 4 (.3) 0

- 2 (4) .3 1

In Table V, the output Z1 results when both inputs are

actuated by either the path from state 2 or J. As is the

case with this example, the primitive flow table should

specify every possible transition path and should form a

closed loop in that there is a path back to the~origin or

any other state. The above example is extremely simple and

requires no memory. When the sequences get larger and in-

puts are cycled, the need for memory arises as is shown in

the next example.

Consider for example J.2 the primary sequence 00, 10,

11, 01, 11, 10, which results in the output Z1 • These

quence 00, 01, 11 re~ults in the Z2 output. All other pos-

sible sequences are considered and the transition paths are

shown in the completed primitive flow table, Table VI.

37

TABLE VI

PRIMITIVE FLOW TABLE FOR EXAMPLE J.2

00 10 11 01 Z1 Za

(1) 2 - 7 0 0

1 (2) 3 - 0 0

- 2 (3) 4 0 0

1 - 5 (4) 0 0

- 6 (5) 4 0 0

1 (6) 3 - 1 0

1 - 8 (7) 0 0

- 9 (8) 7 0 1

1
. (9) 3 0 0 -

Before synthesizing a circuit to perform the indicated

iogic of Table VI, it is advantageous, al though not com-·

pletely necessary, to administer two additional steps to the

primitive flow table. First of all, the primitive flow

table should be checked for the possibility of redundant

states. Two stable states are said to be redundant if and

only if they have the same input state, the same output

state, .. and the s'ame or equivalent transition paths. For

example, the states (2) and (9) in Table VI are redundant

since they have the same input (they are in the same

column) , the same output (Z1 Za) , and the same transition

paths (1 and J). For this reason, the row containing state

(9) may be completely removed and all of the transition

38

paths 9 may be replaced with the path indicator 2. There

are no more redundancies in this table and the resulting

flow table is termed the reduced primitive flow table.

Another advantageous operation on this flow table is

the transfor~ation to the canonical flow table. This opera-

tion is not completely necessary for the purposes of this

chapter, so the definition and detailed discus~ion of it is

deferred until Chapter IV. Briefly though, the basic con-

cept is to order the states according to systematic input

changes. The canonical flow table for the problem under

consideration (which includes the above mentioned reduction)

is shown in Table VII.

TABLE VII

CANONICAL FLOW TABLE FOR EXAMPLE J.2

00 10 11 01 Z1 Za

(1) 2 - 3 0 0

1 (2) 4 - 0 0

1 - 5 (J) 0 0

- 2 (4) 6 0 0

- 2 (5) 3 0 1

1 - 7 (6) 0 0

- 8 (7) 6 0 0

1 (8) 4 - 1 0

39

Formal Matrix Representation

Once a problem has been completely specified and the

canonical flow table has been derived 9 the next step is the

synthesis of circuit equations to perform the required

logic. This synthesis can be reduced to the determination

of a unique matrix[~] satisfying the relation.

This is a statement that the outputs [z] are related to

the inputs [x] and previous events. The matrix [M] provides

this relationship and contains memory information which

defines the present state. The only difference between this

matrix relation and the one used for the feedback sequential

circuits is the input and output vectors used. In feedback

sequential circuit synthesis, the changed input and the

changed output vectors are used. For random input circuit

synthesis, the input vector contains the total input state

(present state of all inputs) and the output vector repre-

sents the continuous output state (present state of each

output) rather than the change output.

As a first step toward constructing this matrix, the

state numbers from the canonical flow table are entered into

each of the output partitions. States with an output of Z1

are entered in the top half of the ith output partition and

states with the Z1 output are entered in the bottom half.

This determines the rows in which states are entered. To

40

determine the proper entry column, recall from the rules of

matrix multiplication that each column in the matrix is

multiplied only by a corresponding row of the input vector

(x]. Thus, a column of the matrix represents events asso

ci"ated with only one input state. Hence, state numbers are

entered in the proper row of the output partition and in the

column associated with that input state.

To illustrate the state matrix synthesis concept, con-

sider example J~1 as represented by Table V. This primitive

flow table is entered into the state matrix by entering the

stable state numbers in the row of the individual output and

the column of the present input similar to the way it was

done in Chapter II. This matrix is given by Table VIII.

TABLE VIII

THE STATE MATRIX RELATION FOR EXAMPLE J.1

l~ -I 1 2

To obtain the output equation, replace every state num-

ber by the logical "1" and place a "O" elsewhere. Multiply-

ing the matrix yields the result:

4i

(10)

The above example illustrates the basic concept of cir-

cuit synthesis using state matrices. This problem did not

require memory; a more general problem requiring memory is

discussed below.

As another example of circuit synthesis, consider

example J.2 represented by the canonical flow table given in

Table VIII. The state numbers are entered into the matrix

as described above and the result is termed the state matrix

relation. See Table IX.

TABLE IX

THE STATE MATRIX RELATION FOR EXAMPLE J.2

~~

8 00

1 2 4 J 10

5 6
7 11

5 01

1 2 4 J
8 7 6

Memory Assignment

As can be seen from Table IX, the only time the output

42

Z1 appears is state 8. Since state 8 is associated with the

input 11 10 11 , one would be tempted to state that the output Z1

is equal to X1 X2 • However, this is not the case since state

2 also has the input 11 10 11 but does not have the output Z1 •

Thus, some method to distinguish between states 2 and 8 is

required. This is most conveniently done by assigning a

memory state at both states. If a memory element was in the

"set" position for 2 and in the "reset" position for 8, then

these two states would be a unique combination of the input

and memory states. This memory element may be represented

by placing Ya 8 adjacent to every 2 in Table IX and its logi

cal complement Y28 by states 8. This double subscript nota

tion implies that the memory element Y28 is used to

distinguish between states 2 and 8 and is set prior to 2 and

is reset prior to 8.

A similar condition exists in column four. Although

states 3 and 6 do not have differing outputs, they still

required uniqueness since they have different transition

paths and their signals are used to switch different memory

elements. Therefore, the memory element Y36 is assigned to

state 3 and its complement Y36 is assigned to state 6.

States 4, 5, and 7 in column three also require memory to

demand their uniqueness. The memory state Y47 Y46 is

assigned to state 4, Y47 Y46 to state 5, and Y47 to state 7.

Here again, the switching conditions are inferred by the

subscripts. At this point, the reader should refer to

43

Appendix A for further information concerning the passive

memory.

The matrix shown in Table X has all of the above

memory modifications. Now, each state in this matrix has a

unique representation.

- .

TABLE X

THE UNIQUE STATE MATRIX RELATION
FOR EXAMPLE J . 2

8 Yas

.1 2 Yas 4 Y47 Y4s 3 Y3e

5 Y47 Y4s 6 Y3e

7 Y47

5 Y47 Y4s

1 2 Yas 4 Y471 Y45 3 Y3e

8 Yas 7 Y47· 6 Y3e

Output and Switching Conditions

00

10

11

01

The purpose of any synthesis procedure is to give every

state a unique signal representation. This signal (or vari-

ations upon this signal) is then used either as an output

signal or as a switching signal for other memory elements.

The above steps produce a state matrix in which every state

,is represented uniquely by a certain combination of input

44

and memory states. The only remaining step is the specifi

cation of the outp~t and switching conditions.

The output equations are obtained from the state matrix

relation by replacing every state number designation in the

state matrix by the logical 11 1 11 'and by placing a logical 11 0 11

elsewhere. Once this substitution has been made, the re-

sulting matrix is termed the output matrix since it now rep

resents a set of digital equations rather than a state

matrix relation. These equations can be rewritten in the

individual equation form by multiplying the matrix by the

input vector.

The final step in the synthesis procedure is the one

which insures the pro:per circuit operation.;. this is the

specification of when each memory element is to be switched

to the proper state. These switching conditions are in

ferred from the element subscripts and the flow table. For

example, the memory element Y13 is set prior to the state

"i" and is reset prior to state "j". This information is

obtained from the flow table by observing the possible

transition paths to states i and j. The corresponding pre

vious states are to be used for switching signals.

As a specific example, t~e output and switching condi

tions for the problem given in Table X are as follows •. The

output matrix equation is:

0 Y2s 0 .. ,

z~ 1 Y2s Y47
Y47

Y4:7

0 0 Y47
'

1 'Y2s + Y47

Y2s Y47

0 0
.;,

Y45 + Yss
Y4s + Yss

Y4s 0

Y45 + Y3e

Y3s

+

+

00

10

11

01

(11a)

Since the outputs Z1 and Zi are perfect complements, only

the equations for Zi and Z2 need to be specified. These

are:

Z1 = X1X2 Y2s
(11b)

Z:;i = X1 X2 Y4 7 Y4 s

The switching conditions as determined from the sub-

scripts and the flow table (Table VII) are:

Y2s: Set = States 1 + 4 + 5

= X1X2 + X1X2 Y47 Y45 + X1X2 Y47 Y4s

= X1X2 + X1 Xa Y47

Reset = State 7

= X1X2 Y47

Y47: Set = States 2 + 8

= X1 X2 Y2 a + X1X2 Y:a a

- X1 X2

Reset = State•

= X1X2 Yss

46

Y45 Set = States 2 + 8

·- X1Xa

Reset = State 3

= X1Xa Y3s

Y3s Set = States 1 + 5

= X1Xa + X1Xa Y47 Y45

Reset = States 4 + 7

= X1Xa Y47 Y45 + Xi. Xa Y47

In more compact notation, the switching conditions are:

Set Reset

Yas 00 + 11 Y47 11 Y47

Y47 10 01 Y3s

Y45 10 01 Y3s

Y3s 00 + 11 Y47 Y45 11 Y47 Y45 + 11 Y47

Procedure Summary

The state matrix synthesis procedure consists of the

following four steps:

1. Develop Primitive Flow Table - From the word

statement of the prpblem, construct a primi-

tive flow table sho~ing all possible input

changes, all possible transitions, and the

corresponding outputs. If desired, this flow

table may then be transformed into the canon-

ical flow table.

2. Form State Matrix - Enter the stable state

numbers into the state matrix. Each state

number appears in every output partition

under the proper column.

J. Assign Memory States - Whenever there is more

than one stable state number in a column, make

each state unique by assigning the appropriate

memory state.

4. Determine Output and Switching Conditions -

The output equations are obtained by replacing

each state number by 11 1 11 and placing a 11 0 11

elsewhere and then multiplying the matrix. The

output complement need not be specified. The

switching conditions are determined from the

element subscripts and previous events shown

in the flow table.

47

As a final example of the state matrix synthesis proce

dure, example J.J is worked to completion on page 51, and

e·ach step is explained in detc;1.il below. The reader may

refer to Appendix C for further example problems and their

solutions.

Before working the final example, some of the formality

of the method can be dropped and the shorthand notation

introduced. First of all, the formal matrix representation

is omitted and the rows and columns of the matrix itself are

·merely labeled according to their outputs and inputs •. Next,

the intermediate step of writing the output matrix is elimi

nated by mentc;1.lly multiplying the matrix rather than rewrit

ing it. As a matter of fact, the matrix representation

48

itself can be eliminated by working directly with the primi

tive flolf table once the reader is familiar with the tech

nique. However, this step is not presented here.

Consider for example J.J a secret combination lock in

which there is only one proper sequence of output actuations

which will open the lock (output Z1). Any deviation from

this sequence sounds an alarm (output Z2). The correct se

quence is X1 , X2 , Xe , X2 , X1 ; where X means actuate and

hold, X means release. Even though a mistake sounds the

alarm, there should be a path provided back to the origin.

This primitive flow table is shown on page 51 and is not

transformed into the canonical form.

Once the primitive flow table is developed, the next

step is the formation of the corresponding state matrix.

This is done by ent~ring each state number in the column of

the input state and the rows of the individual outputs. For

the first output, all state numbers except state 6 are en

tered in the lower half of output partition one, since all

of them have the Z1 output. State 6 is then entered into

the Z1 row of the state matrix. Next, states 1 through 6

are entered in partition two in the Za. row and states 7

through 10 are entered in the Z2 row. These two row parti

tions comprise the state matrix for this example.

The next step is the determination of memory require

ment's. To do this, each column, representing one combina

tion of the inputs, is treated separately. Reference to the

state matrix reveals that every column has multiple states

and requires memory to make each state unique. Column one

has two states, 1 and 8, requiring one memory element, Y18 •

Y18 is thus entered beside every 1 in the matrix, and its

complement Y18 is entered adjacent ·to states 8. Similarily,

column two contains three states, 2, 4, and 9. Each of

these states is made unique by assigning two memory ele

ments, Y29 and Y24 , in accordance with Appendix A. Column

three has three states and column four has two. Memory ele

ments are assigned to these states in the same manner as

above •

. After the state matrix is formed and the memory re

quirements are entered adjacent to their respective states,

the output equations are obtained by mentally replacing the

state numbers with 11 1' s'' and then multiplying the matrix by

the input vector. The output complements do not have to be

specified. The output Zi appears at state 6 only. The Z2

output appears at states 8, 9, 10, and 7.

The final step is the specification of the switching

conditions; this step ensures proper circuit operation. If

the double subscript notation is used to deriote ~emory ele

ments, the switching conditions are stated from knowledge of

the subscripts and the flow table. The subscripts indicate

when an element should be in the "set" or "reset" position

and the flow table shows the possible transitions to these

states. For example, Y19 is set by any state immediately

preceding state 1 .and is reset by states preceding state 8.

From the flow table, it can be seen that the only transition

50

path to only transition path to state 1 is from state 6.

There are transition paths to state 8 from states 2, 4, 7,

and 9. Thus, Yl 8 is set by state 6 and is reset by state 2,

4, 7, or 9. The element Y29 is set by state 1 or 8 and is

reset by state 5 or 10. The remaining switching conditions

are determined in the same fashion and the complete table or

switching conditions is given below.

This problem is shown on the next page and the logic

circuit schematic is shown in Figure 5.

51

. TABLE XI

THE PRIMITIVE FLOW TABLE FOR EXAMPLE J.J

00 10 11 01. Z1 Za

(1) 2 7 0 0

8 (2) J 0 0

4 (J) 7 0 0

8· (4) 5 0 0

9 (5) 6 0 0

1 10 (6) 1 0

8 10 (7) 0 1

(8) 2 7 0 1

8 (9) 10 0 1

9 (10) 7 0 1

The State Matrix:

00 10 11 01

6 Ys7

1 Y1s 2 Yae Ya4 J Y31 o Y35 7 Ys7

8 Y1s 4 Yae Ya4 .. 5 · Y31 o Yss . , .

9 Yae .10 Ys10

8 Y1s 9 Y2s 10 Ys10 7 Ye 7

1 Y1s 2 Yae Y2 4 J Y310 Yss 6 Ys7

4 Y:as Ya4 5 Ys1 o Yss

Output Equations:

Z1 = X1 Xa Ys7

Za = X1 X:a Y18 + X1 Xa Ya 9 + X1 X8 Y310 + X1 Xa Y6 7 (12)

52

Switching Conditions:

Set Reset

Y1e X\Xa Ys7 X1Xa + X1Xa Ys7

Yas X1Xa X1Xa Y310 Y3 6 + X1Xa Ya10

Ya4 XiXa XiXa Y31 o Ya s

Y310 X1Xa Yas Ya4 X1Xa + X1X2 Yas

Y3s X1Xa Yas Ya4 XiXa Yas Ya4

Ys7 X1Xa Ya 1 o Ya s X1 Xa + X1 Xa ·ya10Yss + X1 Xa Ya10

(2)

Sa4

(1) (8)

S1 s R1s

XiXa

(4)

Ra4

. Sae
i

Za

or

(9) (J)

S35

Rae·

X1Xa

(5) (10)

Ras

S 3 1 o Hai~

XiXa

Figure 5. Logic Circuit for Examp1e J.J

~

(6)

Ss7

X1Xa

(7)

Ss7

\JI
\.,A)

CHAPTER IV

DIGITAL EQUATION SIMULATION AND

THE CANONICAL FLOW TABLE

All synthesis procedures will produce valid equations

for the representation of the specified logic when the pro

cedure is executed correctly. However, some methods are not

easily understood or require personal preference in certain

steps. Often, intuitively designed circuits do not function

properly or for some reason the circuit action needs to be

analyzed. To do this, the implied equations of the circuit

can be written.

Whether for verification or analysis, it is often nec

essary to check the system equations. For this reason, a

systematic digital equation simulation method has been

developed. This method involves the systematic excitation

of the inputs to the equations to produce a primitive flow

table. This simulated flow table representing the equations

may then be compared to the desired circuit action to ascer

tain if the equations represent the required logic.

Once the simulated flow table is obtained, the task of

comparing this table to the original flow table may be

larger than the original task of verifying the equations if

the state numbers do not coincide. For this reason, it is

54

55

advantageous, if not mandatory, to define a standard format

for flow tables. The canonical flow table defined in this

chapter satisfies this requirement.

Digital Equation Simulation

The simulation technique presented here offers a sys

tematic method for checking equations and in no way assumes

prior knowledge of system response. The basic idea is to

change one input from some base state and then observe the

resulting output and memory states. If these output and

memory states are different from any previously determined,

then a new state is defined. If they are the same as some

other state, then this new state is redundant and is re-

placed by its equivalent state. By extending this proce-

dure, there finally results a closed flow table. The flow

chart shown in Figure 6 illustrates the complete simulation

method.

The method may best be explained by an example. Table

XII illustrates the step-by-step development of the simula-

tion discussed below. Consider the logic represented by the

following equations as derived by the classical method:

Z1 = X1Xa Y1 Ya

Za = X1Xa Y1 Ya
(13)

Y1 = S1 + Y1 R1

Ya = Sa + Ya Ra

Assume Initial Memory
and Input States

Base State

, r

, Change One Input

New State

r

~ Check for Equivalence

Assign State
Number

Return to Base to
Change Next Input

Return to Oldest New
State Until Each is

Investill'ated.

Yes

'

Reduce

Simulated Flow Table
in Canonical Form

, ,

Figqre 6. Flow Table for Simulation Method

56

57

Where the switching conditions are given by:

S1 = X1Xa + Xa Ya

R1 = X1Xa + XaYa
U.4)

Sa = X1 Xa Y1 + X1 Xa Y1

Ra = X1Xa Y1 + X1 Xa Y1

The simulation is started by the initial assumption of

a memory state and an input state. For convenience, assume

that all memories are in the reset position, (Y1 Ya) , and

that all inputs are off, (OO). This state is termed the
,f

temporary base and is entered into a flow table by placing

a (1) in the first row under the input column 11 00 11 • The

corresponding o~tput and memory states are also indicated

for this row. Starting with this state, (1), as a base,

each input is excited individually to determine the.system

response. First, the input X1 is excited. This defines a

new state, (2), in the 11 10 11 column of Table XII (a). The

transition path to stable state (2) is indicated by the un-

parenthesized 2 in row one. Reference to the equations

reveal that the corresponding output and memory states do

not change. Next, input two is changed from the base,

resulting in the new state (J) in the 11 01 11 column. Again,

the output and memory states remain the same. This com-

pletes the investigation from base (1) and the resulting

response is indicated by Table XII (a).

The next step is to return to the oldest new state

and repeat the procedure with this state as the base.

00

(1)

00

(1)

1

00

(1)

1

1

TABLE XII

STEP-BY-STEP DEVELOPMENT OF DIGITAL
EQUATION SIMULATION

10 11 01 Zi Za Y1

2 - 3 0 0 0

Ya

0

(2) 0 0 0 .Q

(3) 0 0 0 0

(a) Initial Investigation

10 11 01 Z1 Za Y1 Ya

2 - .3 0 0 0 0

(2) .4 - 0 0 0 0

(J) 0 0 0 0

(4) 0 0 0 0

(b) Investigation of Base (2)

10 11 01 Z1 Za Y1 Ya

2 - 3 0 0 0 0

(2) 4 - 0 0 0 0

- 4 (3) 0 0 0 0

(4) 0 0 1 0

(c) Investigation of Base (J)

58

TABLE XII (Continued)

00 10 11 01 Z1 Za Y1 Ya

(1) 2 - 3 0 0 0 0

1 (2) 4 - 0 0 0 0

1 - 4 (3) 0 0 0 0

- 6 (4) 5 0 0 1 0

(5) 0 1 1 1

(6) 1 0 0 1

(d) Investigation of Base (4)

00 10 11 01 Z1 Za Y1 Ya

(1) 2 - 3 0 0 0 0

1 (2) 4 - 0 0 0 0

1 - 4 (3) 0 0 0 0

- 6 (4) 5 0 0 1 0

1 - 4 (5) 0 1 1 1

1 (6) 4 - 1 0 0 1

(e) Investigations of Bases (5) and (6)
and the Final Simulated Flow Table

59

60

At this point, the olq.est new state is (2). With 11 1011 as a

new base, changing the first input defines a transition to

the 11 00 11 column. The reader is encouraged to check both

the output and switching equations to verify that the re

sulting output and memory states for this possible transi

tion remain the same. The new state defined in column one

is redundant since it is equivalent to (1). Hence, a

transition path from (2) to (1) is indicated by a 1 entered

in column one. Next, the second input is changed from the

base. This defines a new state, (4), in the 11 11 11 column and

the input 11 11 11 sets Y1 • This completes the investigation of

(2). The result is shown in Figure XII (b).

The next base is (J) and investigations from this base

reveal that both input changes describe redundant informa

tion. The first input change transfers to (4) and the

second change transfers to (1). See Table XII (c).

The first input change from the next base, (4), sets

Ya, subsequently giving the output Za~ Since this new state

is not redundant, the state number (5) is assigned in the

11 01 11 column. Changing the second input from base (4) sets

Ya. Xa Ya resets Y1 which results in the Zi output. Again,

this new state is not redundant and the state number (6) is

assigned to this transition. See Table XII (d).

The first input change from state (5) resets Ya and

produces no output. This is equivalent to state (4) so no

new state number is assigned. The second input change

from (5) resets Y1 and then Ya, and has no output. This

defines a transition path back to state (1).

The final state to be investigated is state (6). It

can be shown that both input changes describe transitions

to previously defined states. Since there are no new

states to be investigated, this completes the simulation;

the final simulated flow table is shown in Table XII (e).

The equations examined above were derived from the

classical method. In the classical method, each memory

state is assigned to a complete row. In the state matrix

method, the memory elements are associated with input

columns individu~lly, not the complete row. Consequently,

when simulating the state matrix equations, the particular

sub-memory state associated with a column, not the total

memory state, is all that needs to be considered during

investigations. With this in mind, it is convenient to

place the designation of the memory state beside the state

number in the flow table rather than beside the complete

row.

Canonical Flow Table

61

Considering the previously mentioned need for the

canonical flow table and the simulation method discussed

above, it seems reasonable to define the canonical flow

table in a manner analogous to the simulated flow table.

The process used here is the systematic ordering of the

rows of a primitive flow table in accordance with the spec

ified response to input changes. Starting with the origin

62

or first st~ble state as a base, the state resulting from

the first input change is placed in the second row. The

state resulting from the second input change is placed in the

third row, etc. Upon the completion of the investigation of

this base, the oldest new state is then used as a base and

the entire process is repeated until all rows have been

reordered. The state numbers are then resequenced.

The process is best illustrated by an example. Con

sider the primitive flow table used in Chapter III, Table

VI. The redundant state is eliminated and the reduced

primitive flow table is shown in Table XIII (a).

Starting with state (1) as a base, the first input

change indicates a transition path to state (2). Since

state (2) is already in row two, no reordering is necessary.

The second input change indicates a transition path to (7).

Hence, the row containing state (7) is placed third as shown

in Table XIII (b). This completes the investigation from

(1) •

The first input change from (2) indicates a path back

to a previously ordered state, (1), requiring no reordering.

The second input change indicates a path to (J). Since it

happens that (J) is already in the next row, no reordering

is required. See Table XIII (c).

The next base is (7). This state has transitions to

states (8) and (1), respectively. Thus, state (8) is moved

to the fourth row and the transition to (1) is already

ordered. See Table XIII (d).

TABLE XIII

THE DEVELOPMENT OF THE CANONICAL
FLOW TABLE

00 · 10 · 11 01 Z1 Za

(1) 2 - 7 0 0

1 (2) 3 - 0 0

- 2 (3) 4 0 0

1 - 5 (4) 0 0

- 6 (5) 4 0 0

1 (6) 3 - 1 0

1 - 8 (7) 0 0

- 2 (8) 7 0 1

(a) Original Primitive Flow Table

00 10 11 01 Zi Za

(1) 2 - 7 0 0

1 (2) 3 - 0 0

1 - 8 (7) 0 0

- 2 (3) LJ:. 0 0

1 - 5 (4) 0 0

- 6 (5) 4 0 0

1 (6) 3 - 1 0

- 2 (8) 7 0 1

(b) Initial Investigation From (1)

63

TABLE XIII (Continued)

00 10 11 01 z,_

(1) 2 - 7 0

1 (2) 3 - 0

1 - 8 (7) 0

- 2 (3) 4 0

1 - 5 (4) 0

- 6 (5) 4 0

1 (6) 3 - 1

- 2 (8) 7 0

(c) Investigation of State (2)

v X ~'"l a

00

(1)

1

1

-
-
1

-
1

10

2

(2)

-
2

2

-
6

(6)

11 01 Z1

- 7 0

3 - 0

8 (7) 0

(3) 4 0

(8) 7 0

5 (4) 0

(5) 4 0

3 - 1

(d) Investigation of State (7)

64

Z:a

0

0

0

0

0

0

0

1

Za

0

0

0

0

1

0

0

0

TABLE XIII (Continued)

00 10 11 01 Z:i. Z:a

(1) 2 - 7 0 0

1 (2) 3 - 0 0

1 - 8 (7) 0 0

-
!

2 (3) 4 0 0

- 2 (8) 7 0 1

1 - 5 (4) 0 0

' 6 (5) 4 0 0 -
1 (6) 3 - 1 0

(e) Investigation of State (J)

00 10 11 01 Z:r. Z:a

(1) 2 - 3 0 0

1 (2) 4 - 0 0
•

1 - 5 (3) . 0 0

- 2 (4) 6 0 0

- 2 (5) 3 0 1

1 - 7 (6) 0 0

- 8 (7) 6 0 0

1 (8) 4 - 1 0

(f) The.Completed Canonical Flow Table
, With Resequenced State Numbers

65

The reader is encouraged to investigate states (J),

(8), (4), and (5) to verify that the remaining states are

already in the proper order. Once the rows are in the

proper order, the state numbers are then resequenced so that

each stable state number corresponds to its row number. The

completed canonical flow table is shown in Table XIII (f).

One further point which has not been decided at the

time of this writing is the definition of an origin for the

primitive flow table. The origin is usually thought of as

being the state with the inputs off and having the desired

sequence or logic developed from this point. However, a

more meaningful definition of the origin should consider the

topology of the transitions as being more important than the

number of inputs or outputs that are on or off. This defi

nition should be comprehensive enough so that an origin can

be uniquely determined for any primitive flow table.

Since an origin is not defined in this chapter, the

canonical flow table used here is not unique. The rows are

in the.proper order, but the origin or first row in the

canonical flow table will be the first row given in the

primitive flow table. This depends upon the designer's

personal preference and will, in general, not be unique.

However, for all of the cases investigated by the author,

the simulated flow table has resulted with the same origin

as the canonical primitive flow table, thereby presenting no

problem.

CHAPTER V

DIGITAL COMPUTER PROGRAMS

The logic systems program is designed to perform either

the synthesis or simulation of digital control systems. In

order to perform system synthesis, the user needs only to

supply the primitive flo~ table describing the desired

logic; the computer program will then perform the necessary

steps to obtain the digit~! equations.by the state matrix

synthesis procedure given in Chapter III. ·These· equations

may then be implemented to obtain a circuit containing the

information represented by the primitive flow table.

With this capability, the designer does not need to

know a formal synthesis procedure; he only needs to know how

to write a primitive flow table, call the program, and then

implement the resulting equations.

The simulation program offers a powerful tool for the

analysis of digital systems. This program generates the

primitive flow table implied by a set of digital equations

by the method described in Ch~pter IV. The simulation pro

gram may be used either to confirm the validity of equations

or to analyze the logical implications of existing circuits.

This can be advantageous when working with intuitively

designed circuits.

67

The FORTRAN IV source deck listed in Appendix B has

been running on the WATFOR terminal of OSU's IBM J60/50

computing facility. A time-share version of the program

68

is also available to allow users with remote teletype ter

minals to have access to the program from any phone line. A

user's guide for the time share program will be made avail

able under a separate cover.

Since the programs are rather lengthy and the listings

given in Appendix B contain many of the details of the pro

grams, only the philosophy of the programs is presented in

the rest of this chapter. Appendix C shows both the calling

information and the computer solutions to many example prob

lems. For further details of the use of this program, see

the write-up in Appendix Band the example solutions in

Appendix C.

Synthesis Program LOGSYN

Subroutine LOGSYN is the executive subroutine for the

synthesis of digital systems. The flow chart showing the

relation of subroutines is given by Figure 7. Subroutine

LOGSYN reads in the input data concerning the primitive

flow table and then uses subroutine PRINT to print the orig

inal primitive flow table. This primitive flow table is

then examined by subroutine EQUIV to reduce any redundant

information which might be contained in the flow table. If

two states are found to be redundant, one is eliminated and

an indication of this reduction is printed out below the

LOGIC SYSTEMS PROGRAM
Main Calling Program

DATA h
1------.JJ !

.--~-'-~~...z..~~~~~

LOG SYN
Synthesis Program

CANON

-.

t

-OUTPUT -

+
EXIT

EQUIV

PRINT

ASSIGN

rl.' ' i ~
.--~~~~ ~~......I.~~

-

-

LOGS IM
Simulation Program

I

, .
DIGEQN

+ EXIT

Figure 7. Flow Diagram for Logic Systems Program

original primitive flow table. This reduced primitive

flow table is then put into canonical form by subroutine

70

CANON. In this routine the rows of the primitive flow table

are reordered and resequenced as described in Chapter IV.

The resulting canonical flow table is then printed by sub

routine PRINT.

Subroutine OUTPUT performs most of the steps required

for system synthesis. In this routine, the memory require-

ments for each column are 'determined and subroutine ASSIGN

is used to provide the passive memory assignment code to

distinguish between stable states. After each state is made

unique by the proper memory assignment, the state signals

are printed. This gives the input and memory combination

which describes each stable state. Next, the switching con

ditions required for proper circuit action are printed. The

switching condi ti.ons are presented by giving the state num

bers at which a switch occurs. Finally, the output equa

tions are given by P+inting the states at which the

individual outputs appear. This completes the synthesis

procedure and the program then returns to the main calling

program to exit.

Simulation Program LOGSIM

Subroutine LOGSIM is the executive program for systems

simulation. As can be seen by Figure 7, this routine reads

the data cards containing basic information concerning the

system to be simulated·. Subroutine LOGSIM then sets up a

71

loop similar to the one shown in Figure 6 of Chapter IV.

This routine changes an input according to a Gray code. The

Gray code is supplied by subroutine ASSIGN. The correspond-

ing system response is determined by subroutine DIGEQN.

Subroutine DIGEQN is a subroutine supplied by the user con-

taining the switching and output equations. The input

change and the corresponding response determines a new

state. This state is then checked for redundancy by sub

routine EQUIV. If the new state is not equivalent to a

previously defined state, a state number is assigned to this

state.

This process is continued until all states have been

investigated and no new information is being generated. At

this point, the simulation is completed and subroutine PRINT

is then used to print the simulated primitive flow table.

Appendix C contains many examples of problems solved

with both the synthesis and simulation programs. The

reader is referred to the appendices for further information

concerning the usage and input for these computer programs.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

The major effort of this thesis has been concentrated

upon the development of new techniques for the synthesis and

analysis of digital logic systems. The synthesis procedures

are based upon the assumption that the outputs are related

to the inputs. This relation can be represented by the

vector matrix equation

[z] = [MJ[x] (15)

Since the input vector [x] and the desired output vector[~]

are known, the synthesis reduces to the determination of the

binary matrix [~J. The entries in this matrix give the re

lationship between the inputs and the outputs and contain

memory information of previous states.

The synthesis proceeds from entering the state numbers

from a statement of the desired logic or sequence into the

matrix [M]. The memory requirements are then determined and

entered into the matrix, producing the set of output equa-

tions in matrix form. Specification of the switching

72

conditions for the memory elements completes the synthesis

procedure.

73

The simul~tion technique presented here is quite help

ful either to verify digital equations or to analyze exist

ing circuits. This technique can also be used to totally

redesign existing circuits by first writing the equations

for the circuit, obtaining the simulated flow table, and

then synthesizing the state matrix equations from this flow

table. The canonical flow table is also an aid for analysis

and comparison.

The digital computer programs developed to perform

either systems synthesis or simulation offer a great design

tool to the designer who is unfamiliar with switching cir

cuit theory. These programs perform the steps necessary to

synthesize or simulate digital systems as described in

Chapters III and JV. With these programs, the designer only

needs to be able to write a primitive flow table and to

implement equations.

Comparison to Other Techniques

To fully evaluate the merits of this synthesis tech-

.. nique, a general comparison to existing techniques should

be made. This technique is compared to the classical method

and those methods suggested by Cole (1) and Maroney (6) on

the basis of the following areas:

1. Simplicity of the Synthesis Procedure - The

execution of the state matrix synthesis

procedure is much less complicated than the

classical method since the merging operation,

operational flow table, Karnaugh maps, etc.,

are eliminated. The total concepts of cir

cuit synthesis are much easier to grasp,

partially due to the use of the familiar

matrix notation. In comparing to the tabular

methods of Cole and Maroney, one can only

compare on the basis of procedure simplicity

since these methods produce essentially the

same equat~ons as the techniques presented here.

The philosophy of circuit implementation is

also the same. Thus, any comment made about

the state matrix equations or circuits is

equally applicable to those of the tabular

methocis.

Cole's tabular technique for the synthesis

of feedback seq~ential circuits handles persist

ent states in a more straightforward mann·er

than does the matrix method. However, the

search procedure for persistent states in the

matrix is more mechanical. It is felt that the

synthesis concepts using the matrix notation

are easier to grasp than the tabular method;

but this is a matter of personal preference.

Maroney's tabular method handles random

input problems in a tabular technique similar

to Cole's method. The random input possibility

requires multiple transition paths from states.

The transitions from each state are very hard

to follow in the tabular form; whereas, the

primitive flow table provides a graphic display

of transition paths. This causes a slight

problem for involved sequences since the

designer must keep much of this information in

his head rather than on paper. Also, redundant

states are harder to s·ense from the tabular

technique than from the primitive flow table.

Again, it is felt that the matrix synthesis

concepts are easier to grasp.

2. Simplicity of Circuit Implementation Procedure -

The state matrix and tabular synthesis procedures

offer a specific step-by-step procedure for cir

cuit implementation; whereas, the classical meth

od does not lend itself to any set procedure.

J. Circuit C~mplexity - The number of elements

required to implement a circuit is generally a

good indication of the circuit complexity.

Although the state matrix equations usually

require more memory elements, the use of the

passive memory effect reduces the total number

of elements to about the same or less than that

required by the classical method. However,

this is not a very rigid basis for comparison

75

since the classical method offers such a

flexibility in writing equations from the

Karnaugh maps. Each designer might derive

different equations from the classical method

depending upon his own personal preference.

Thus, to compare on this basis, the equations

from the classical Karnaugh maps must be re

written until a combination with minimum hard-

ware is determined. This is then compared to

the state matrix method.

4. Other Circuit Considerations~ The state matrix

synthesis procedure offers circuit features

that are not available from the classical

method. Among these are the elimination of

switching hazards, cycles, and other logical

complications. Another very important feature

is the prepared flow path concept. In this

procedure, each memory is switched prior to

any input change, thus preparing all possible

paths from that state. Notice that in the

classical method the input change causes the

switching of a memory to give the next state.

The prepared flow path feature produces cir

cuits in which the only delays are the delays

caused by forming the input combination and any

transmission time delay. Thus, circuit response

time is at a minimum.

76

77

Another important feature stemming from

the prepared flow path concept is that the

passive memory elements used in this synthesis

procedure are never switched when they are un-

der power as they are in the classical method.

Switching under power causes undesirable

transient pulses in the circuit. This is

avoided by switching the element before the

passive signal appears.

Suggestions for Further Study

As is true with any study, there are many areas provid-

ing interesting further study. Among these are:

1. A Synthesis Procedure Considering Some Combination

of the Total Input and Changed Inputs - The syn-

thesis procedure for feedback sequential circuits

presented in Chapter II considers only the changed

input whereas the procedure for random input cir-

cuits (Chapter III) considers only the total input

state. Both of these approachs have their own

distinguishing merit; however, it is felt that

som~ combin~tion of the two concepts will con-

sistently produce circuits having more of the

desirable features of both methods.

In the feedback sequential method, the W
' :

elements can often be replaced by "anding" an-·

other input signal to the state signal. Rules

for doing this should be investigated.

Another interesting synthesis concept is

the use of internal information as an auxiliary

input. It seems that as more information is

used as input information, the less complicated

the resulting circuit.

been pursued.

This concept has not yet

2. Definition of Origin for Canonical Flow Table -

The canonical flow table defined in Chapter IV

has a unique relationship involving the order

of the rows of a primitive flow table. Any two

flow tables containing the same information will

always result in canonical flow tables having

the same row relationships. However, the row

appe~ring first in the table is.thus far left

to the designer's preference. Although this is

usually acceptable, a rigorous definition for

the origin or first row of the canonical flow

table should be made considering only the

topology of the table's transition paths. This

would provide a unique format for displaying the

information contained in any primitive flow

table.

J. Computer Program for Feedback Sequential

Synthesis - Efforts should be made to write a

computer program to perform the necessary steps

for the synthesis of feedback sequential circuits

78

as presented in Chapter II. The techniques

already developed for the present program could

be easily adapted to provide a program to accom

plish this from a statement of the desired

sequence.

4. A Logic Synthesis Procedure Considering

Proportional As Well As Binary Variables - To

date, the synthesis of physical systems using

formal logic has been restricted to binary or

digital systems. Considering the matrix syn

thesis philosophy presented in this thesis, it

seems natural to extend this technique to in

clude proportional or dynamic variables as well

as binary variables. A proportional variable

could be entered into the state matrix to modify

a state in the same manner as the memory ele

ments are in this thesis. The proportional state

modifier would tell not o~ly when to give the

output but would also tell how. This "how"

could be the proportional signal rather than the

binary signal now used.

The author is currently engaged in investi

gating the possibilities of such a synthesis

procedure.

79

A SELECTED BIBLIOGRAPHY

(1) Cole, J. H. "Synthesis of Optimum Complex Fluid Logic
Sequential Circuits." (Ph.D. Thesis, Oklahoma
State University, 1968).

(2) Fitch, E. C. Jr. Fluid Logic. Stillwater: Oklahoma
State University, 1966.

(J) Huffman, D. A. "The Synthesis of Sequential Circuits."
Journal of the Franklin Institute, Vol. 257, No. 4
(195Z_l). - --

(4) Jensen, D. F., et al. "Pneumatic Diaphragm Logic."
Proceedings of the Fluidics Symposium. New York:
ASME, 1967.

(5) Marcus, M. P. Switching Circuits For Engineers.
Englewood Cliffs: ' Prentice~Hall, 1962.

(6) Maroney, G. E. 11 A Synthesis Technique for Asynchronous
Digital Control Networks." (M.S. Report, Oklahoma
State University, 1969).

(7) Miller, R. E. Switching Theory, 2 Vols. New York:
John Wiley, 1965.

(8) Moore, E. F., ed. Sequential Machines: Selected
Pa;eers. Reading, Mass.: Addison-Wesley, 1964.

(9) Shannon, C. E. 11 A Symbolic Analysis of Relay and
Switching Circuits." Trans. AIEE, Vol. 57
(1938).

80

APPENDIX A

THE PASSIVE MEMORY

81

APPENDIX A

THE PASSIVE MEMORY

This appendix deals with the definition, description,

and assignment of passive memory elements.

Definition

Any memory element which does not rely upon an active

power source to retain {ts output state is said to be a

passive memory element. In most cases, these devices have a

mechanical memory and the logic signal is merely directed

through the device according to its mechanical position.

The best example of this concept is the four-way, two

position detent valve shown in Figure 8.

XY XY

Set

X

Figure 8. Passive Memory
Valve

82

83

Description

This device has many salient features, most important

of which is the mechanical memory. Once the device has been

switched by either the set or reset signals, the device

remains in that position due to the detent hold feature.

The signal sent through the device does not necessarily have

to be an active signal connected to the supply; _this signal

may be an input or logic signal which appears only

occasionally.

By sending a logic signal through the device, the out

put XY appears only when the memory element is in the proper·

position (indicated by Y) "and" the logic signal Xis on.

The XY signal appears only when the device is in the "reset"

position· 11 and 11 the signal X is on. This device holds its

mechanical position to display memory characteristics and i·t

forms two "and" combinations (x.y·and X·Y); thus, the pas"""

sive memory device serves the function of three logic ele

ments, memory and two 11 ands 11 • By utilizing this effect,

circuit complexity and hardware can be reduced substantially.

Another advantageous feature of this device is the

complementary output. Notice that the device has two out

puts, XY and XY; when one is on (pressurized) the other is

off (to tank). Thus, the need for the inversion of Y to get

its complement Y is eliminated.

The pneumatic diaphragm logic device (4) possesses.sim

ilar mechanical memory characteristics as the valve

84

described above.

Fluidic passive memory devices without moving mechani-

cal parts do not exist; however, a similar savings in cir-

cuit hardware can be made by the use of the two devices

shown in Figure 9. The bistable amplifier is an active

memory element and its complementary outputs are fed into a

passive "and". The passive "and" element has complementary

outputs serving the function of two separate "ands" to form

XY and XY.

Figure 9.

rl
7

Set --
I\
-

y

- -

-
XY

Reset

y

~ ...

XY

Activ
Am

X

e Bistable
plifier

Passi ve 11 And 11

Fluidic Memory Circuit

The latching relay performs the analogous passive

memory function in electronic circuits. However, modern

85

technology has almost phased out the use of relays in com

pact logic circuits. Even so, the addition of two extra

"ands" in an electronic circuit is much less costly than the

same for fluid circuits. The usual bistable flip-flop inte

grated circuit could be built with outputs XY, and XY in

stead of the usual Y, Y where Xis some logic signal.

Assignment

As has been shown above, the passive memory can be used

to reduce hardware when distinguishing between two states.

The problem of assignment when higher orders of memory are

required is discusseq next. By using one more passive

memory element, the circuit of Figure 8 is modified to form

three unique memory states as shown by Figure 10 (a). Four

unique states are obtained in Figure 10 (b) by adding one

more passive memory element~

As shown by the previous discussion, each time another

memory element is added, another unique passive memory state

results. In general, N-1 passive memory elements describe N

unique states. The assignment schematic shown in Figure 11

illustrates the passive memory code. To describe N unique

states, omit all memory elements numbered above N-1.

The alternating placement of elements in the assignment

code allows the proper balance of fluid power. Higher or

ders may be obtained in the same alternating pattern.

TQ illustrate the assignment technique for making each

state of an input column unique, consider the three states

X

(a) Three Unique States, X Y1 Ya , X Y1 Y2

and X Y1

XY

X

(b) Four Unique States, X Y1 Ya, X Y1 Ya , X Y;r. Y3 ,

and X Y1 Y3

Figure 10. Passive Memory Assignment Circuits

86

Y1 Ya Y4 Yi Ya Y. Y1-Y2 Ya Y1 Ya Yet '1 Y3 Y5 Y1 Y3 Y5 -

Y1Ya Y1 Ya Yi Y3

Y1 Yi

Figure 11. Passive M¢mory Code Schematic

Yi Y3 Y7 Yi Y3Y7

V1 Y;!

0::,
-..J

88

1, 3, and 5. Using the double subscript notation, the

memory states are assigned as follows:

(1) Y15 Y13

(3) Y1 6 Y1 3

(5) Y1 s

The reader is cautioned not to confuse the double sub

script notation discussed here and the single subscript

notation used in Figure 11. The double subscript notation

carries information of the switching conditions. For exam-

ple, Y16 (read Y, one, five) is set prior to state 1, and is

reset prior to state 5. As an example of higher order

memory state assignment, consider the states 1, 3, 5, 8, 10,

and 13. The assignment is as follows:

(1) Y1 s Y1 s Y1s

(3) Y1 s Y1 s Y1s

(5) Y1 s Y1 s

(8) Y1 s Ys 1 s Ys 1 o

(10) Y1sYs1sYs10

(13) Y1sYs]s

The reader is encouraged to implement this circuit

using Figure 11 as a guideline.

As a final note, it should be pointed out that this

synthesis procedure allows every column in the state matrix

to be treated independently. In this respect, each input

state (or changed input) may be sent through memory elements

as a passive signal.

APPENDIX B

LISTING OF COMPUTER PROGRAMS

90

. SJllB
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C .. c
C
C
C:
C
C
c·
C

tooso."-"-01174 .
............... ,..._. ,, _..~ LSPOOOl

• ...
• •
* • • • • ..
• • •

L~IC SYSTEMS · P!ll!GRAK

RDIIER T L. llllOllS

SCHOOL OF MECHANICAL JND AEltOSl'ACE ENGINEER ING .
DlU.AHIJIIA STAlE IINlffltSHV

DECEIIIIEll, 1969

•LSP0002
*LSPOD03
•LSP0004
*LSP0005
*LSP0006
*LSP0007
*LSPOOOB
•LSPOD09
•LSPOOlO·
•LSPOOll
•lSP0012
*LSPOOl3

TIUS PROGRAM IS DESIGIIED TD l'EIIFllltM UTH£R THE SYl!ITHES lS *LSP0014
* OR SIMULATION OF DIGITAL COIIITROL SYSTE!IS. FOR FURTIER *LSP0015
• ...
• • • •

INFOR!IHIIJth SEE THE M.S. TIESIS •Tiff: STATE !IATR IX METHOD *LSP0016
FOR THE SYNTHESIS OF OIGI TAL UlGIC SYSTEtlS•. *LS1'0017

. . *LSP0018
*LSP0019
•LSP0020
*LSP002l

*SYSTFl!S SiNTriESI-S: ~~~~~~~~~~~~~~~~~~--~-*LSP0022

•
* IN ORDER TD PERFORft SYSTEII SYNTHESIS USING THE STATE

"*LSPo023
*LSP0024
*LSPOD25
•LSP0026
*LSP002i
•LSP0028
•LSP0029
•LSP0030
*LSP0031
~SP0032
*LSP0033
•LSP0034.
•LSP0035

* MATRIX SYNTHESIS.PiUICEDURE. THE USER MUST USE THE FllLLOlilNG
• CAi.:t.lNG PROGRAM.

•
" CALL LOGSYN
·stoP
END
• •
* · THE USER MUST At.SO SuPPLY THE FOLLDliIIG INFDRMATIOH TD
• BE RE&O.FRIL'I DATA CARDS.·

• • • • • • • • • • •

·cARD l - PROBLE!I IDENTIF ICAHIIN *LSP0036
ANYTHING READ Fltllft THIS. CARO· liJLL 8E PRINTED IN *LSP0037
THE 111TPUT. . . . *LSP0038

CARO 2 - IU• Ml, Nil = FUR!l&TUlZI *LSP0039
. ·NI = NUIIBER OF INPUTS *LSP0040

NO = NUl!BER OF aJTl'UTS •LSP004l.
l'lll = NUMBER OF ROliS IN THE PRIMITIVE FLOli T AeLE *LSPOD42 .

CARD 3 - INPUT STATES FOR EACH CDl.U!IN : FORMATl1614Ill l•LSP004:J .·
FOR TliO IllPUTSa THE C&Rll SHOULD READ . *LSP0044
00 10 11 01 *l SP0045

.c
C
C
C
C
C
C
C·
C
C
C
C
C
C
C
C
C
C
c·
.c·
·c
C
C

•
- . CAR~ 4 AND SUCCESSIVE CARDS EACH CO!IJAIN ONE ROli OF THE •LSP0046.

PRIMITIVE FLOW TABLE A!'IO tHE COl<RESPONOING *LSPOD'>J

• • • • • • • • • • ..

OUTPUT STATE = FORIIATl1614,6IH . . •t.SP004S
16 COLUMNS ANO 6 OUTPUTS AlU, READ FROM EACH *LSP0049.
CARO. STABLE STATES ARE ~NOICATEO BY ADDING *LSPOOSo·
1000 TO THE STATE·N~ilER TO OIST1NGUlSH THEM •lSP0051
FIi.Oii TRANSIT!Oft ·PUHS. A •OON•T CARE• OOTPUT *LSP0052
lS INDICATED IIY ENTERING A •z• INSTEAD OF A •o• *LSP0053
OR A •1•. *LSP0054

*LSP0055
*LSP0056
*LSP0057
•LSP00511

--~~~~~-~~~~--~~~~~~~-~~~-~~~~.;._--*:LSP0059

C
C
C
C

.C
C
C
C
C
C
C
C
C
C
C
C
C
C

··C
C
C
i;
C
C
C
C
C
{;

C
C
C
C

.C
C
C
C
C
C
C
C
C
C
c·
C
C
C
C
C
C
C
C
C
C
C
C
C

•SYSTEMS SlMUUITIDN: ---------.---·--.-----~•LSP0060
• *LSPOOl>l
• *LSP0062
• tN ORDER TO PERFORM SYSTEM SIIIIILATIONa THE USER MUST USE *LSP0063
• THE FOLLOWING CALLJl'{G PROGRAM. •LSP0064
• •LSP0065
CALL LOGSIK •LSP0066
STOP . •LSP0067
END *LSP0068
• *LSP0069
• THE USER MUST ALSO SUPPLY THE SUBROUTINE DIGEQN •LSP0070
• OESCRISlNG THE SYSTEM EQUATIONS, ANO THE FOLLOWING INFORMATION•LSP0071
• TO BE READ FRON DATA CARDS. . *LSP0072
•. *LSP0073
• tARD l - PROBLEM IOEl'{TIFICATION •LSP0074
* Al'{YTHING READ FRON THIS CARD lilLL BE PRX...TEO It{ *LSP0075
• THE OUTPUT. . •LSP0076
* CARO 2 - !'{I, NO, NM • FORIIATUIZI •LSP007l
• · niE NUNBER OF INPUTS, OUTPUTSa Al'{D ftEIIORIES.. *LSP0078
• CARO 3 ~ YIMI, XIII • FORNATllBli,4111 *LSP0079
* THf INITIAL STATE OF ALL OF THE MEMORY ELEMEl'{TS *LSP0080
• AND THE INITIAL ST.ATE OF ALL INPUTS. *LSP008l
* CARD 4 AND SUCCE.SSIVE CARDS EACH CONTAIN: THE NUMBER OF *LSP0082
• MEMORY ELEMENTS ASSOCIATED WITH THE JC-Tit *LSP0083
* COLUMtl, MCIJC,11, ANO THE CORRESPONDING l'{IJNBER •LSP0084
* DES.lGNATION OF THE JM-TH MEMORY IN THE JC-TH *LSP0085
* COLUMN, MCl;JC,Jll+ll = FORMAT! 12,9121 *LSP0086
• . •LSP0081
• *LSP0088
* •LSPOOB9
• *LSP0090
- ARRAY SIZES ----------· -"---*LSP0091
* . *LSP0092
* CONNON ST ATEKENTS - · . . *LSP0093
* · ,~ /ALL/ - IX(l'{l,NCh IYINM,l'{RJ, IZINO,NRI, SINR,NCI *LSP0094
• /EQN/ - XINII, Yll'{MI, lll'{Ola KSINR,l'{CI, MCINCaNM/2+1 I *LSP0095
• ./OUT/ - SSCINC,NR/Z+lla SSRINRI *LSP0096
• /ASN/ ~ IGINR/2-1,l'{R/21 *LSP0097
• /ION/" ~ JDENI 201 · *LSP0098
* . *LSP0099
* DIMENSION STATEIIEl'{TS - *LSPOlOO
* DIGEQN - nsrnc,. MS(l'{MJ. MRINMI *LSPOlOl
* EQUIV - ITINCI *LSP0102
•. OUTPUT - SETINM,NR/ZI, RESETINM,l'{R/ZI, PSll'{R/21 *LSP0103
• IZSI NO,NRI, Jl{ NM/ZlalYPIMO,NR/21, INOTI MO,NR/21,*LSP0104
• l'{YIM0=51, ·IOINR•401 . . *LSP0105
* PRINT - 11'{31411, IXPll'{l=41, lZPll'{0•6la MSINCI, MSSINCI *LSP0106
• ASSIGN - ·IAll'{R/21, RAINR/21 •LSP0107
• . •LSPOlOB
• NOTES - *LSP0109
• - !'{II= NR-NC *lSPOllO
* ~MD·= lOG[NR,11 + l *LSPOlll
* - SUBSCRIPTS SUCH AS IXPINl••U IMPLY THAT THE ARRAY IXP *lSPOUZ
* IS DEFll'{EO IN A DATA STATEMENT. •LSPOU3
* *LSPOll4

*********************~•• LSPO 115
CALL LOGSYN LSP0116
CALL l0GS1M LSP0117
STOP LSPOUB
fl'{D LSP0119

'° ·~

SUBROUTINE LOGSYN LSP0120
C **LSP0121
C * *LSP0122
C * SUBROUTINE LOGSYN IS THE EXECUTIVE PROGRAM FOR SYSTEM *LSP0123
C • SYNTHESIS. THIS PROGRAM READS THE DATA CARDS, PRINTS THE "1..SP0124
C * ORIGINAL PRIMITIVE FLCW TABLE, CHECKS FOR ANY ~FDUNDANT *LSP0125
C ·• INFORMATION IN THE PRIMITIVE FLOW TABLE, REARRANGES THE ROWS *LSP0126
C * TO FORH THE CANONICAL FLOW TABL~, PRINTS THE CANONICAL FLOW *LSP0127
C • TABLE, AND THEN PRINTS THE STATE, SWITCHING, ANO OUTPUT *LSP0128
C * INFORMATION. *LSP0129
C * *LSP0130
C • *LSP0131
C * NIE THE NUMBER OF INPUTS *LSP0132
t * NO= THE NUMBER OF.OUTPUTS *LSP0133
C • NR = THE NUMBER OF ROWS IN THE PRIMITIVE FLOW TABLE •LSP0134
C * NC ETHE NUMBER OF COLUMNS IN THE PRIMITIVE FLOW TABLE. *LSP0135
C • IXll,JCI = THE STATE OF THE I-TH INPUT FOR THE JC-TH COLUMN *LSP0136
C * IZIJ,IRI = THE STATE OF THE J-TH MEMORY IN THE IR-IH ROW *LSP0137
C • SIIR,JCI = THE ENTRY IN THE IR-TH ROW ANO JC-TH COLUMN OF THE •LSP013B
C * PRIMITIVE FLOW TABLE. STABLE STATES.ARE INDICATED *LSP0139
C • BY ADDING 1000 TO THE STATE NUMBER TD DISTINGUISH *LSP0140
C • THEM FROM TRANSITION PATHS. *LSP0141
C * SSCIJC,11 = THE NUMBER OF STABLE STATES IN THE JC-TH COLUMN *LSP0142
C • SSCIJC,K+ll = THE K-TH STABLE STATE IN THE JC-TH COLUMN *LSP0143
C * SSRIIRI = THE STABLE STATE IN THE IR~TH ROW *LSP0144
C * *LSP0145
C .,.•••***,=*******************LSP0146

COMMON /ALLI Nl,NO,NR,NH,NC,IXl4,161,IYl36,40J,IZl6,401,Sl40,161 LSP0147
. COHHON /OUT/ SSCl16,2ll, SSRlt,OJ . LS"P0148

COMMON /ION/ IDE!\11201 LSP0149
INTEGER S, SSC, SSR LSP0150

l FORMAT 120A41 LSP0151
2 FORMATl3121 LSP0152
3 FORMAT 116141111 LSP0153 -
4 FORMATl1614,61l I LSP0154
5 FORMATl1Hl,30X,'LDGIC SYNTHESIS•,/,27X,'FOR '11,' INPUTS, 1 ,11, LSP0155

* i OUTPUTS.• ,1111 LSP0156
6 FORMATllOX•ORIGINAL PRIMITIVE FLOW TABLE FOR'll5X,20A4/III LSP0157
7 FORMATllHl,9X•CANONICAL FLOW TABLE FOR'/15X,20A41/ll LSP0158
8 FORHATl/lOX'WHAT IS '14 1 IN COLUMN '12', ROW 1 12'71 / LSP0159
* lOX'CHECK YOUR DATA FOR ERROR'I LSP0160

9 FORMAT UHII . LSP0161
10 FORMATIIH1,9X,'NUHBER OF INPUTS• '12', NUMBER OF OUTPUTS= '12 LSP0162:

* NUMBER OF ROWS= 'IZ/lOX'TO RUN A PROBLEM OF THIS S1ZE'LSP0l63.
• •, THE ARRAY SIZES HUST BE ALTERED.• I LSP0164

REA015,ll IDEN LSP0165
0 Rl:ADl5,21 Ni, NO, NR LSP0166

ERROR = 0 LSP0167
!FINI .GT. 41 ERROR = 1 LSP0168
!FINO .GT. 61 ERROR = 1 LSP0169
IFINR .GT .401 ERROR = l LSP0170
I Fi ERROR .eo. 1.01 WRITEl6,lOI NI, ND, NR LSP0171
NC= 2**NI . LSP0172
REA015,3JIIIXll,JCl,l=l,41,JC=I,NCI LSP0173
READ15,4IIISll~,JCl,JC=I,16l,IIZIJ,IRl,J=l,61,IR=l;NRI LSP0174
WRITEl6,5l NI, NO LSP0175
WRITE16,61 IDEN LSP0176
CALL PRINTIOI LSP0177
CALL EQUIVIOI LSP0178
CALL CANON LSPO 179

---~---------- ----------- -----· ----·------------

WRITEl6,7l IDEN
CALL PRINT(OI
DD 21 Jt=l,NC
K = 0
00 20 IR•l,NR
IS= SIIR,JCI - 1000
IFIIS .LT. 01 GD TO 20
K = K+l
SSCIJt,K+ll = IS
SSRI IRI = IS

20 IFISIIR,JCI .LT. 01 WRITEl6,8l SIIR,JCI, JC, IR
21 SSCIJC,11 = K

CALL OUTPUT
WRJTEl6,9l
RETURN
END

LSP0180
LSPOIBI
LSP0182
LSP0163
LSP0164
LSP0185
LSP0186
LSP01B7
LSP0188
LSP0189
LSP0190
LSP0191
LSP0192
LSP0193
LSP0194
LSP0195

'° [\;)

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SDIRDIJTINE Lll6SIN LSP0196
...................... REIii J 14,.. II -11111118i_ ... LSP0197
• •LSP0198
• SilllllllUH.:' I..IIGSIN ms THE EXEC!ffl YE IPllllGllAN FDR SYSTEM •LSP0199
• SIIULATIOII. TH!S ll'llOGRJ\111 llEAOS THE IIIEQUIRED DATA CARDS ANJ •LSP0200
• CIINIIUCTS THE SYSTENTJC 1•uT EXCITATION. - T~E RESPIWSE TO *LSP0201
• INPUT CH.MIGES IS CHECKED EACH TIIIE IIY CAI.UNG THE SIBROUTJNE *LSP0202
* CONTAINING THE DIGITAL EIIUATlllJIIS. EACH NEW STATE DEFINED JS *LSP0203
• CHECKED F!lll IIEDUIIIIAIICY A.!llil IS ELININATED IF EQUJYALIENT TO A *LSPD204
* PREVIOllSLY DEFINED STATE. 1111'11!1 C!DFLETllllt DF THE SINULAT!ON, *LSP02D5
• THE RES!la-TING PRINITIYE FLOil TA!lLE IS PRINTED. *LSP0206
* •LSP0207
* *LSPOZOB
• NI= THE -BER oF 1-,-rs *LSPD209
• ND= THE !KINSER Of ilUTI'UTS *LSP0210
• Nil= THE IIIU!IBER OF RU!IS IN THE flRIIIITlYE FLOY TABLE *LSP0211
• NC = THE IL'ftBER OF C-S IN THE PRINITIYE FLOY TAl!LE. *LSP0212
• -IXU,.JCI = THE STATE OF TliE 1-Tii [IIPUT FDR THE JC-TH COLUMN *LSP0213 -
• IYl,.,IIU a THE STATE Of THE ill-TH 11'.BIIIR'f Ill THE Ill-TH ROW - *LSP02l~
* IZl~,IRJ = THE STATE OF T!IIE ~TH i!llEJIIIRY ELEIIENT IN THE IR-TH *LSP0215
• SIIR.JCI = THE ENTRY 11'1 THE IR-TH ,111]11 ANll .IC-TH COLUMN OF THE •LSP0216
* PRilliTilfE FLDV TABLE. STABLE STATES .AAE INDICATED *LSP0217
• BY ADOIIIG IOOD TD THE STATE IIUll8ER TO DISTINGUISH -•LSPD218
* THBI FRON 1fllAIIS1TllillN PATHS. •LSP0219
• "CIJC,11 = THE NUMBER 11F IEl!DRY Ell.Ef!ENTS ASSOCIATED WITH THE •LSP0220
* JC-TH COLUllll •LSP022l
• "CIJC,J.,.U a THE IENBER DESISIIAHOII OF THE -J,..TH IIEIIORY *LSP0222
* IN THE JC-TH CllLUNII *LSP0223 * _ - *LSPOZ2~
.... ._. •• , .. ,....,..._..,......_, , _.. _.. ... LSP0225.
COIUION /AU./ NI.1111,'IR.,U.llt,IXH•,ll61,IYD6,40l,lZl6,401.Sl~,l61 LSP0226
COllllON /Ellfl/ X141, Yl:361, Zl61, !lt51'\n,i6Jo NCl16,I9J LSP0227
COIUIIJN IASIJI IGU9,20J LSPD228
CIJIIIIO!I /IINII IDE11C20I LSPOZ29
INTEGER X, Y, Z, S LSPOZ30

-1 FORl'IATl20AU LSPOZ3l
2 FOIUIATl312J - LSPOZ32
3 FORl'IATC3011,4Ill LSPOZ33
4 FD11-'IATl(l91211 LSP0234 -
5 FORJIATl1Hl,3!1X'LDGIC Sl!IULATID11•12ox·- "Jl" INPUTS. •n LSP0235

• • OUTPUTS, •12• NEIIORIEs.•,,,,10x•s1J1ULATED FLGII TABLE FOR 9 LSP0Z36- -
• -115X, ZOl.4/ I/ I LSP0237 . ·

6 FORIIATIIOX,•THE Sl..,LATED FLOII TABLE NILL BE LONGER THAN 40 ROYS'/LSP0238
• 1ox.•THE PARTIAL FLOY TABLE IS GIVEN BELOW'/1 LSPOZ39

9 FORJIAHlHU LSP0240
16 FORJIATC1Hl,9X"llll!!IIIER i1!F llliil'IRS = •12•. NUt!IIER OF OUTPUTS s •Iz LSP0241

• •• l!IUIIIIER OF NEllml.IES = •1211111x•rn RUN A PRIIBLE" OF THIS "LSPOZ42
• •SIZE, THE ARllAY SIZES ll!UST BE ALTEllED.•J LSP0243

17 FORIIATUH1,9X•THE NUMIER OF --IES IN mu,1111 •1z• z •1211ox LSPO-
• •TD Rll:II A PROBLEN OF THIS SIZEe IIHE AltRAY SIZES MUST BE' LSP0245
• 'ALTEREO.•J LSP0246
·READ15,U IDEN LSP0247
READ15,21 NI, 1111, NII LSP0248
ERROR= 0 LSP0249
IF 11\11 .GT. 41 ERIIIIR = l LSP0250
ll'INO .GT. 61 ElllUJR s l LSPOZ51
IFIN" .GT.361 ERROR a l LSP0252
!FIERROR .EQ.l.01 1111111"'1:16,161 NI, lllio !Im LSP0253
INC s Z**NI LSPOZ54
ltEA015,3JIYINl,ll!lcbl\llll,IXlll,lzl,41 LSPOZ55

- ------- ---- ------- ---------

READl5,4IIIMCIJC,JMl,JM•l,191,Jt•l,NCI
00 19 JC=l,,.C

19 JFIMCIJC,11 .GT. 161 WRITE16,171 JC, MCIJC,11
WRITEl6,51 NT, NO, NM, !DEN
NIS = 2**NI
CALL ASS IGNINIS.,11
DO ll J=l,NC
JC = J
DO 10 l=l,NI
IFIXIII .NE. JGll,JII GO TO 11

10 CONTINUE
GO TO 12

11 CONTINUE
12 IR = l

CALL OIGEQN
NR = 1
NRS = 1
DO 13 M=l.NM

13 IYlH,NR) ~ Y(MJ
DO 14 J=l,NO

14 IZIJ,NRI = ZIJI
00 15 l•I.40
DO ·15 J=l,NC
KS(r,Jt = 0

15 Sll,JI = 0
SINR,JCI • 1001

20 DO 21 1•1,NI
IXll,JCI • IGil,JCI

21 XIII• JXll,JCI
DO 50 l=l,NI
XIII = NOTIXIII I
CALL OIGEQN
NR a NR+l
NRS = NRS+J

·DO 21·~-J=l,NC
00 22 11•1,NI
JFIXIIII .NE, IGill,JII GO TO 23

22 CONTINUE
JC = J
GO TO 24

23 CONTINUE
24 IFINR .LT. 401 GO TO 25

WRITEl&,61
CALL PRTNTINMI
RETURN

25 SINR,JCI • NRS+lOOO
SIIR,JCI • NRS
DO 26 ,..,1,NM

26 IYIH,NRI • YIMI
DO 30 J•l,ND

30 IZIJ.NRI • ZIJI
KSINR,JCI • I

50 XIII• NOTIXIIII
CALL EOUIVINl!I
00 60 JR•Z,NR
00 60 IC•l,NC
IFIKSIJR,ICI ,EO, DI GO TO 60
KSIJR, ICI • 0
IR• JR
JC • IC

LSP0256
LSP.0257
LSP0258
L·SP0259
·LSP0260 ..
LSP0261
LSP0262
LSPD263
LSP0264
(SP0265
L.SP0266
LSPD267
LSP0268
LSP0269
LSP0270
LSPD27l ·
LSP0272
LSP0273
LSP0274
LSP0275
LSP0276
LSP0277
LSP0278
LSP0279
LSP0280
LSP028l
LSP0282
LSP0283
LSP0284
LSP0285
LSP0286
LSP0287
LSP0288
LSP0289
LSP0290
LSP029l
LSP0292
LSP0293
LSP0294
LSP0295
LSP0296
LSP0297
LSP0298
LSP0299
LSP0300
LSP0301
LSP0302
LSP0303
LSP0304
LSP0305
LSP0306
LSP0307
LSP0308
LSP0309
LSP0310
LSP0311
LSP0312
LSP0313
LSPD314
LSP0315

'° \.,J

DO 55 M:cl.NH
55 YIMI = lYIM,lRI

GO TO 20
60 CONTINUE

DO 100 l=I.NR
DO 90 J=l,NC
iS = SII,Jl-1000
IFIIS .LT. 01 GO TO 90
DO 80 Il=l, NR

80 IFIS1Il,JI ,EQ. ISi Slll,JI
Sll,JI = -11+10001
GO TO 100

90 CONTINUE
100 CONTINUE

DO llO 1=1,NR
DO 110 J=l ,NC

110 Sll,JJ = -Sll,JI
CALL PRU.T (NM)
WRITEl6,9l
RETURN
END

-I

LSP0316
LSP03l7
LSP031B
LSP03l9
LSP0320
LSP032l
LSP0322
LSP0323
LSP0324
LSP0325·
LSP0326
LSP0327
LSP0328
LSP0329
LSP0330
LSP0331
LSP0332
LSP0333
LSP0334
LSP0335
LSP0336

'° ..r=-

C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

SUBROUTINE OIGEQN DIGEQNOl
**********'**'**'*11<****'************,:.*********************************0IGEQN02
* *OIGEQN03
• SUBROUTINE OIGEQN CONTAINS THE OUTPUT ANO SWITCHING *DIGEQN04
• EQUATIONS NECESSARY TO PERFORM SYSTEH SIMULATION. THE USER *OIGEQN05
* MAY FIND IT ADVANTAGEOUS TO USE THE TOTAL IN~UT STATE ARRAY *DIGEQN06
~ !TSIJC), INSTEAD OF FORMING THESE STATES JN HIS EQUATIONS. THE*OIGEQN07
* SWITCHING EQUATIONS ARE REPEATED TO ALLOW FOR ANY INTERNAL *OlGEQN08
* STATE SWITCHING OR CYCUNG. *DIGEQN09

* THE USER SHOULD ONLY SUPPLY THE SWITCHING EQUATIONS ANO *O!GEQNlO
* lHE OUTPUT EQUATIONS IN THIS SUBROUTINE. *OIGEQNlJ
* FUNCTION NOT MAY BE USED TO PERFORM THt LOGICAL *DIGEQN12
* COMPLEMENT *O!GEON13

*
*
*
*
"' *
*
*
*

XI ll
YIM!
ZIJI
ITS(JCI=
HSI M)

!<RIMI

THE
THE
THE
THE
THE
THE

CURRENT ST ATE OF THE I-TH INPUT
CURRENT STATE OF THEM-TH MEMORY
CURRENT STATE OF THE J-Ht OlJTPUT
TOTAL INPUT STATE FOR THE JC-TH. COLUHN
"SET" SIGNAL FOR. THE M-TH r4EMORY
"RESET" SIGNAL FOR. THE M-TH MEMORY

*DIGEQN14
*DIGEQNi5
*O!GH/Nlb
*OIGEQN17
*DIGEQN18
*OIGEQNl9
*D1GEQN20
*OIGEQN21
*DIGEON22

•~#***'*********:e:.***************'-**********'*********#********:c..**'***DIGEQN23
COMMON /ALL/ Nl,NO,NR,NM,NC,IX{4,16J,IY(36,40),[Z(6,40),S(40,16, OIGEQN24
COMMON /EQN/ X(4), Y{36), 2(6), KS{40,l6), MCllb,19) OIGEQN25
DIMENSION ITS(lb), MS(36J, MR(36J OIGEQN26
INTEGER X, Y, Z, S DIGEQN27
FORMAT(lOX,'SET AND RESET SIGNALS APPEARED SIMULTANEOUSLY'/ OIGEQN28

* 1ox,•x == 1 411 1 Y == 1 1811} DIGEQN29
ITS(ii= NOTIXl1ll*NOT(X(2ll*NOT(X(311*NOTIXl4)) DIGEQN30
ITS! 2) = Xlll ",NOTIX(2)l*NOTIXl3ll*NOT(Xl4)l DIGEQN31
ITS(31 X(ll * X(Zl *NOT(X(3ll*NDTIXl4l) OIGEQN32
ITS! 4j = NOTIX(ll l* X(21 *NOTIXf31 l*NOTIXl4) I DIGEQN33
ITS! 5) = NOTIX(lll* X(21 * Xl31 *NOTIXl4ll DIGEQN34
ITS(6) = Xlll * Xl21 * Xl31 *NOTIXl411 D!GEQN35
ITS(71 = XIII *NOT(X{Zl)* X(3) •NOT!Xl411 DIGEQN36
ITS(Bl= NOTIX(lll*NOT!X12ll* X(31 *NOT(X(4)1 D1GEQN37
ITSI 91 = NOTIX1lll*NDTIXl2)1* X(3) * X(41 OIGEQN38
!TSllOJ = Xlll *NOT!XIZil* Xl31 * X!4) DIGEQN39
ITSllll = Xlll * Xl21 * Xl3) * X!4) D!GEQN40
ITSl121 = NOT!Xll)I* X(21 * Xl3l * X!4l OIGEQN41
ITS!l31 NOT{Xlll)* 1121 *NOTIXl311* X14) DIGECN42
ITSl14l = X(ll * X(21 *NOTIX(3)l* Xl4) DIGEQN43
!TSl15) = XllJ *NOT!X12l>*NOTIXl311• Xl41 O!GEQN44
!TSl16l = NOTIX(ll l*NOTlr!21)*NOTIX(31)* X{4) OIGEQN45

10 !CH= O DIGEQN46
OIGEQN4 7

-~---~-~-~-------ENTER SWITCHING EQUATIONS------~--~----~DIGEQN48
DIGEQN49

HSIU
MP.Ill
MSIZI
MRl2)
MS131
MRD J
>!5(41
HRl4)
MS151
HRl5)

!TSl2l*Yi2l*Y(3) + ITS141
ITS12l*Yl2l*NOT(Y(3l)
ITS(II + ITSl31*Yl41
ITSl3l•NOTIYl4l I
ITS! H*YI I)
ITSlll*NOT!Yllll + ITSl31*Yl41
!TS(2l*Y12l*Yl3) + !TS(41*Yl5)
ITS(2l*Y(2)*NOTIYl3)l + !TS12)*N0T!Y(2l) +!TSl4l*NOT!Yl51l
ITS(ll*Ylll + ITS13)*Y(4I
ITSl3l•NOTIY(4) I

D1GEQN50

C

C
C
C

C
C

--~-----~~---~---~--~-~-~~----------~-~--~~~~----O!GEQN51
DO 15 M=l,NM OIGEQN52
~CH = YI Ml O!GEQN53
Y(MJ == MEMORY{YCMJ,MS{MJ,MR(MJ) OIGEQN54
IF(MSIMl*MRIMI .EQ. 11 WRITEl6,ll (Xlll,!=1,41, (YIJ!,J=l,NMJ DIGECN55
!F(Y(Ml .NE. MCH) !CH= l DIGEQN56

15 CONTINUE OIGEQN57
!F(!CH ,EQ. 11 GO TO 10 OJGEQN58

OIGEQN59
-..:..-------------~-~ENTER OUTPUT EQUATIONs~~-----~~~~---OIGEQN60

0IGEQN61
Zill= !TSf2l*NOT(Y(2ll + !TSl3l*NOTIY(4ll + ITS14)*NOTIV!5ll

OIGEQN62
---01 GECN63
DO 20 J=l,NO D!GEQN64
lFIZIJl .GT. ll Z(JI = 1 OIGEQN65

20 CONTH<UE OIGECNb6
RETURN D1GEQN67
END OIGEQN68

"° Vl

SUBROUTINE EOUIVIKNMI LSP0337
C ************* .. ********'**************lt******* .. ****** ... *******....-LSP0338
C * . *LSP0339
C * SUBROUTINE EQUIV.SENSES ANY REDUNDANT STATES IN THE *LSP0340
C • PRIMITIVE FLOW TABLE AND REPLACES THESE STATES WITH THEIR *LSP034l
C * EQUIVALENT STATES. THIS ROUTINE IS USED WI~H EITHER THE *LSP0342
C * SYNTHESIS OR SIMULATION PROGRAMS. *LSP0343
C • . *LSP0344
C * *LSP0345
C • KNM = THE NUMBER OF MEMORY B.EMENTS TO BE CHECKED FOR *LSP0346·
C· * EQUIVALENCE DURING SYSTEM SIMULATION. KNM = 0 FOR *LSP0347
C * SYSTEM SYNTHESIS. . *LSP0348
C * MCIJC.11 = THE NUl!SER OF MEK!IRY ELEMEl'ITS ASSOCIATED WITH. THE *LSP0349
C • JC-TH COLUMN *LSP0350
C * MCIJC.JM+ll = THE NUMBER DESIGNATION OF THE JII-TH MEMORY *LSP0351
C * IN THE JC-TH COLUMN *LSP0352
C *********************** .. ***LSP03S3

COMMON /ALLJ. NI .ND,l'IR,Nll,NC. IX14,161 • lYl36·,401,Iz.16•401 ,SI 40,161 LSP0354
COIIHON /EQN/ X141• Yl361• Zl61• K.5140.161, MCl16,191 LSP0355
DIMENSION ITl16l . LSP0356
INTEGERS LSP0357

l FORMATf//!/l LSP0358
2 ~ORHAT(lOX,'STATE '13' WAS EQUIVALENT TO STATE '13• AND HAS BEEN• LSP0359
* • REMOVED.•! LSP0360

IFINR .LE. 21 RETURN LSP036l
IF!!C!'.ll .EQ. 01 WRITEl6,ll LSP036Z ·

7 IRC = 0 LSP0363
DD 70 JC=l.NC .LSP0364

· NRl = NR-1 LSP0365
DO 40 11=1,NRl LSP0366
Ill = 11+1 • "LSP0367
IFI S 111. JC) .LE. 1000 I GO TO 40 LSP0368
00 30 12=111,NR LSP0369
IFISIIZ,JCI .LE. 10001 GO TO 30 LSP0370
DO 10 J=l•NO LSP0371
IFIIZIJ;lll .GT. 11 IZIJ.UI = -1 LSP0372
IFllztJ·,u,.u.o .oR. lllJ,121.LT.OI GD Til 10 LSP0373
IFIIZIJ;Ill .NE. fl.lJ,1211 GO TO 30 LSP0374

10 CONTINUE LSP037S 0

IF IKNM .eo. 0 I GD TO 12 LSP0376
NMC = MCIJC, 11 LSP0377
IFINMC .EQ. 01 GO TO 12 LSP0378.
DO 11 Jll=l,NMC LSPD379·
Ml = MCIJC.JM+ll LSP0380
IFIIYIMl,111 .NE. lYIKl.1211 GD TO 30 LSP038l

li CONTINUE LSP0382
12 DO 13 J=l.NC LSP0383

. l'FIJ .EQ. JCI GD TO 13 LSP0384
ITIJI = Sill.JI + S112.JI .LSPD385
·IFISI n.JI .EQ. 0 .OR. SIIZ,JI .Eo. 01 GD TO 13 LSP0386
IFlSlll•JI .NE. SII2,JII GO TO 30 LSPD387
ITIJI = Sill.JI LSP0388

13 CONTINUE LSP0389
IRC·= l LSP0390
IR= S112.JCI - 1000 LSP0391
IS= SIil.JC! - 1000 LSP0392
IFIKNK .EQ. 01 WRlTEH,,21 IR, ·1s LSP0393
ITIJCI = SI 11.JCI LSPD394
DO 14 13=1,NR LSP0395

14 IFIS113,JCI .EO. Sll2,JCI-IOOOI S113.JCI = SIil.JC) -1000 LSP0396

NR = NR-1
IFIIZ .eo. NR+ll GO TO 25
DD 24 14=12,NR
DO 20 J=l.NC
Slll,JI = ITIJI
S(l4wJl = Sfl4+1.·Jt

20 IFIKNM .GT. 01 KS114,JI = KS114+1,JI
DO 21 J•l ,NO

21 IZIJ,!41 = IZIJ,14+11
IFIKNM .EQ. 01 GD TO 23
00 22 M= l 9KNM

22 IYIM,141 = lYIM.14+11
23 CONTINUE
24 CONTINUE
25 DD 26 J=l ,NC

S(NR+l ,JI = 0
26 KSlNR~l.J) z 0
30 CONTINUE
40 CONTINUE
70 CONTINUE

!FllRC.NE.·D .AND. KNM,EQ.OI GD TO 7
RETURN
END

LSP0397
LSP0398
LSP0399
LSP0400
LSP0401
LSP040Z
LSP0403
LSP0404
LSP0405
LSP0406
LSP0407
LSP0408
LSP0409
LSP0410
LSP04ll
LSP0412
LSP0413
LSP0414
LSP0415
LSP0416
LSP0417
LSP0418
LSP04l9

\0
O"I

C
C
C
C
C
C
C
C
C

SUBROUTINE CANON LSP0420

***************.**********·***LSP042 l * *LSP0422
* SUBROUTINE CANDI'! TAKES THE PRIMITIVE HOW TABLE FROM *LSP0423
* THE SYNTHESIS PROGRAM AND REORDERS THE ROWS ACCORDING TO *LSP0424
* SYSTEMATIC INPUT CHANGES AS OUTLINED IN THE THESiS. THE STATE*LSP0425
• NUMBERS ARE THEN RESEQUENCED TO PRODUCE THE CANONICAL FLOW *LSP042b
* TABLE. *LSP0427
* *LSP0428
*******"****~********'***********************'***********************LSP0429.
COMMON /ALL./ .Ni: ,NO,NR ,N·H,-NC, IX (4, 16) . ., lY (36 ,40), IZ(6 ,40 I.St 40 _, 16 l LSP0430
COMMON /EQN/ X,141, Yl3&1, 2161, KS.(40,H,1,. HCl16,191 LSP0431
lflTEGER S, X LSP0432
FORHA'HlOX•THERE IS NO STASH STATE IN THE FIRST ROW.' I LSP0433
DO 10 l=l,NR LSP0434
DO lD J=l ,NC LSP0435

10 KSl!,,JI = O LSP043b
DO 11 J=l ,NC L SP0437
IFIS11,JI .LT, 10001 GO TO 11 LSP043B
IR = l LSP0439
IRR= l LSP0440
JC= J LSP0441
GO TO 20 ,LSP0442

11 CONTINUE LSP0443
WRITElb,11 LSP0444

20 DO 22- I::;;l,Nl LSP0445
22 XIII = IXII.JCI LSP044b

00 50 l=l,Nl LSP0447
· XIII = NOTIXIIII LSP0448

DO 30 Jl=l,NC LSP0449'
DO 23 11=1,NI , LSP0450
I FtX I II I .NE. !XI ll,Jll I GO TO 30 LSP045l

23 CONTINUE LSP0452
IFISII.RR,Jll .E~. DI GO TO 50 LSP0453
IRI : IR+l LSP0454
DO 26 IRl=IRI,NR LSP0455
IF(S!IRI,.Jil-1000 .NE. SHRR,Jll I GO TO 2& LSP0456
lR = IR+l LS·P0457
KSIIR,Jll = l LSP0458
DO 24 JCI=l ,NC LSP0459
S,T = SUR ,JCll LSP0460
SIIR,JCll = S.(lRl,JCH LSP04bl

24 Sl!Rl ,JCll = ST LSP0462 .
DO z·s JZ=l,NO LSP0463
ZT = IZIJZ,IRI LSP04b4
IZIJZ,IRI = IZIJZ,!Rll LSPOt,&5

zs· lZ(JZ,IRU = ZT LSP041',b
. GO TO 31 LSP04&7

21, CONTINUE LSP0468
30 CONTINUE LSP04&9
31 IFIIR .GE. NRI GO TO bl LSP0470
50 XII I = NOH X 1111 LSPOt,71

DO 60 12=2,NR LSP0472
DO 60 JZ=l,NC LSP0473
IFIKSI 12,JZI ,EQ- OJ. GO TO 60 l.SP0474
KS112,J2 I = 0 LSP04T5
IRR = 12 . LSP0476
JC= J2 LSP0477
GO TO 20 LSP04T8

bO CONTINUE LSP0479

6.1 00 100 l=l,NR
00 90 J=l,NC
IS= Sll,J)-1000
!F(IS .LT- O'I GO TO 90
DO 80 ll=l,NR

80 IF!S!ll,Jl .EQ. ISi S{ll,JI
Sll,Jl = -11+10001
GO TO 100

90 CO>!HNUE
100 CONTINUE

DO HO l=l,NR
00 l !.O J::l.,NC

110 St! ,JI = -Sll,Jl
RETURN
END

-1

LSPO~BO
LSP0481
LSPOt,82
LSP04B3
LSP0484
LSP04B5
LSP048fr
LSP0487
LSP04S8
LSP0469
lSP0490
LSP0491
LSP0492
LSP0493
LSP0494

'° -J

C
C
C
C
C
.c
C
t
C
C
C
C
C
C
C
t
t
C
C
C
C
C
C

SUBROUHNE OUTPUT ·L.SP0495
**************************..-.************•************ ***.**'*LSP0496
* $.LSP0497
* SUBROUTINE OUTPUT OETERIUN·ES THE MEMORY REQUIREMEN·TS, *.LSP0498
• PRINTS THE STATE SIGNALS, THE SWIT.CHING CDND1Tl0NS, ANO THE *LSP0499.
• OUTPUT SIGNALS. . •LSP0500
* *LSP050l • ~~= * SETl·K;MI = THE H-TH STATE SIGNAL .USED TO SET THE K-TH ·•LS.PD503
* HEHDRY ELEMENT •LSP0504 * RESETtK,HI =THEM-TH STATE SIGNAL USED TO RESET THE K-TH *LSP0505.
* MEMORY ELEMENT . *LSP050&
* PSIHI . = THE H-TH PREVIOUS STATE TQ A STABLE STATE *LSP0507
* SET!K,11 = THE NUMBER OF "SET• SIGNALS FDR THE K-TH HEH.OR¥ *LSP0508
* RESETIK,11 = THE NUMBER OF "RESET" SIGNALS FOR THE K-TH H.EHORY*LSP0·509
·• HC(JC,11 = THE NUM!iER OF MEMORY ELEHEN.JS IN THE JC-TH C.OLUHN*LSP0510
* *LSP0511

. * IN THE R.ESULHNG PRINT-OUT• •·LSP0512
* - ·THE STATE SIGNALS ARE TO BE SUBSTITUTED FOR THE STATE *LSP0513
* NUMBERS IN THLSIIITCHING AND OUTPUT EOuAnoNS. *LSPD514
* i - "*" IMPLIES THE LOGICAL "AND'' · •LSP0515
*. - - .-+-..-iHPLiEs THE-LO.GICAL •oRn •LSPOS16
* *LSPOSlT .. ··

*****************************~•**************************.*********LSP0518
COM>ION //!ill/ Nl,NO,NR,NM,NC,IX!4, 16J.1Yl3&,401, IZ16,401,Sl40,16l LSP0519
COMMON· /OUT/ SSC! 16,Zll, SSRl40t LSP05ZO
COMMON /EON/ Xt41, Yl361, Zl61, KS140,161, liCl16,i9·1 LSl'(l52l
COMMON. /ASN/ IGfl9,201 LSPOSZZ
.DIMENSION SET!36,ZOI, RESET(36,201, PSIZOI, IZS16,401, JLH9h LSP0523

* IYP15,ZOI, INOTt5,20l, NVl51, ·!01401 . LSP0524 ·
INTEGER S, SSC, SSR, SET, RESET, PS . LSP0525
DATA lAB,!AN/lH ,l!i.:I, NY/5>0.4H * Y/, 10/lH ,39*1H~/ LSP0526

3 FORHATl/llOX•(PASSIVE tlEHIIRY ASSIGNHENTl'J.I LSP0521
4 FDl\HATll/lOlt!S.TATE SIGNALS:'/i ·LSP052B
5 FORMAT! 15X, lHI, IZ,4HI =,4X,i 11, UIA4,.J.Zll LSP0529
6 FORMATllSX,l.HI ,i2,4HI =,3.X,2Il.l2 IA4, IZI I .LSP0530
1 FORHATll5X,lHl,12,4KI =,ZX,31lt1ZIA4,!211 LSP0531
8· FORMAT(15X,.lHl,IZ,4HI =,lX,411..121A4,1211 LSP0532
9 FORMAT(1H+,26X, I 1613X,Al,2Xlfl I LSP0·533

10 FORMAT uox•OUTPUT SIGNALS•• fl LSP0534
H ·FORMATl15X,'Z',Ir,• =• 13113,1X,Ali,lll9X,13113.lX,Allll LSP0535.
12 FORMATllOX'S·WlTCHING CONDITIONS:' II LSP0536 ..
1:3 FORHATUSX'Y', 12,6X'·SET =• ,10(13, 1X,All ,/121X,101I3,1X,All I I LSP0537:
14 FORMATl24X,'RESET =•,1DII3,1X,All,/!21X,101I3,1X,Allll LSP0538.
15 FORMATllilX'THERE ARE NO TRANSITION PATHS TO STATP,141· LSl'0539
16 FORMATUXI . . LSP0540

.NH = O LSPOSH
· DO 20 J=l..NC LSP0542

HCIJ,ll s LOGISSCIJ.,11,21 LSP0543
20 NM= NH +·MCIJ,11 LSP054t,

IFINII ,·Ell, 01 GO TO 26. LSP0545
WRITElt,.,31" LSP054&
DO 25 K=l.,NM LSP0547
SETI-K,11 = 0 LSP0548

·25 RESETIK,11 = 0 ·tSPOS49
26 Uf = 0 LSPD550

MCL = l LSP0551
Htl = D .LS.P0552
WRHEH, .. 4J . LSP0553
DO· 170 JC=l.NC· LS.P0554

.IICl = MCl + HCIJC,11 LSP0555
L = SSC(JC,11 LSP055&
IFIL-11170,160,30 LSP0557

30 CALL ASSIGNIL,21 LSP0558
·DO 100 1=1,l LSP0559
Ml= 0 LSP05&0
DO 35 IR=l,NR LSP0561
JFIS{IR,JCl .NE. SSCIJC;l+lll .GD TO 35 LSP0562
Ml= Ml+l LS1'05&3
PSIMll = SSRIIRI LSPD564

35 CONTINUE LSP0565
IFIMl .EQ. 01 WRITEl6,151 SSCIJC,I+ll LSP0566
Jl = 0 LSP0567
00 90 K=MCL,MCI LSP0568
JK = K-MCHl LSP0569
lFI IG.IJK,11 .LT. 01 GO TO 90 LSP0570
Jl = JI+l LSP057l
.INOTIJ·l,U = IAB LSP0572
IYPIJl,11 = K. . LSP0573
lfllGiJK,11 .EQ. 01 lNOTIJl,11 = IAN LSP0574
NS1 = SETIK,11 . LSP0575
·NRl = RESET! K, 11 LSP057&
l"FIIG!JK,ll ,EQ. 01· GO TO 83 ·LSP0577
SET(K,11 = NS1 + Ml LSP0578
00 82 H=l,Ml LSP0579

82· SETIK,.l+H+NSll = PSIMI LSP0580
GO TD 85 LSP0581

53 .RESETIK,ll = NRl + Ml LSP0582
00 ·8·4 M=l,Ml LSP0583

84 RESET! K,l+Pl+NRll. = PSINI LSP0584
85 CONTINUE LSP0585
90 CONTINUE LSP058&

JLIII = Jl LSP0587
100 CONTINUE LSP0588

.DO 156-KK=l,L LSP0589
Jl = JLIKKI LSP0590
GO TO 1150,151,152,1531,NI LSP059l

150 WRITEl&,51 SSCIJC,KK+ll,IIXll,JCl,l=l,Nll,INYIKl,IYPIK,KKl,K=l,JllLSP0592.
WRITE l&,91.IINOTI H,KK I ,H=l,Jl I LSP0593
GO TO 155 LSP0594

151 WRITE 1&,61 SSC(JC,KK+ll ,tlXI l ,JCI ,Izl,NI 1, INY IKI ,l'fP.(K,KKI ,Kml,Jl ILSP0595
• WRITEl6,911{NOTIH,KKl,M=l·,Jll LSP059b

GO TO 155 LSP0597
152 WR!TE16,7l SSC!JC,KK+ll,IIX!l,JCl,I•l,Nll,!NV(Kl,IYP{K,KKJ,Knl,JlllSP0598

WRITEl6,91 I INOTIM,KKI ,M=l, Jl I LSP0599
GO TO 155 LSP0600

153 WRITE16, 81 SSC(JC,KK+ll, I IX! I ;JCl, 1=1,Nll, CNY IKI ,IYPIK,KKI ,K=l,JllLSP0601
WR!TEl6,91 IINOTI H,KKI ,H=l,Jll. LSP0602

1"55 CONTINUE LSP0603
WRITEl6,l&I LSP0604
GO TO 110. . LSPD605

l&O !FINI ,LE, 21 WRITEl6,.61 SSC(JC,21.!IXC!,JCl,I•l,Nll LSP0606
!FINI .EQ, 31 WRITEl6,71 SSCIJC,21,IIXll,JCl,1=1,Nll LSPD607
IFCNI ,EQ. 41 WRITEll,.81" SSCIJC,2>.IIXCl,JCl,1*1,Nll LSP0608·
WR!TEll>t 161 LSP0609

170 PICL = MCL + MCIJC,U LSP0610
IFCNM .EO. 01 GO TO 176 LSP0611
WRITEl&,121 LSP0612
00 175 K•l,NM LSP0613
Ml= SETCK,11 LSPD614

'° co

.
~ ..
+.
"' .:
~

99

C
C
C
C
C
C

SUBROUTINE PR! NTIKNHI LSP063l
:Cc*************************.(r.$:*********tr********~************* LSP0632
* *LSP0633 * SUBROUTINE PRINT IS USED TO PRINT THE FLOW TABLES *LSP0634
* INVOLVED IN EITHER SYNTHESIS OR SIMULATION. *LSP0635
* *LSP0636
~•*************~********~*******~**************~*****'*~****$******LSP0637
COMMON I ALL/ NI,. NO,NR,NM,-NC, IX(4, 16) ,_ IV(36, 40), I Z (6,.40), S(4.0., 161
DIMENSION MSl16l, MSSl16l, IN3(4ll, IXP(41, IZP(6)
HlTEGER S
DATA JAB, IAP, IN3, IXP, IZP/4H ,4H(),41*3H--,.4*lHX,6*1HZ/

1 FORMATlllX,.4(1X,.Al,IlJ/J
2 FORMATC!OX,2f5X, IU,3X11b(lX,Al, Il})
3 FORMAT (!OX, 4 (4X .211) ,3X ,6(lX ,Al, ll))
4 FORMAT ClOX,8(3X,3I l J ,3X,6(lX,Al, I 1) J
5 FORMAT(16{2X,4I1J,3X,6(1X,Al,11J)
6 FORMATl12X,41A3l
7 FORMAT (2X,41A3 J
8 FORMAT(lOX,216,3X,6(2-X,Il)J
9 FORHAT(lOX,416,3X,6(2X,IlJJ

10 FORMATUOX,BI6,3X,6(ZX,Il}J
11 FORMAT(l6l6"3X';'6(2X,11l)
12 fC~HAT<lH+, 50X,1612)
13 FORMAT(lH+, 62X,16I2)
14 FORMAT{lH~, 86X,l612)
15 FORMAT(lH+,115X,16ll)
16 FORMAT(lH+,10X,lH1,lX,A4,3t2X,A4l,2H IJ
17 FORMAT(lH+,lOX,lHl,1X,A4,7(2X9A4J,ZH I)
18 FORMAT·(3H+I ,A4,15(2X,A4);2H I)

I NC = l +NC*Z+NO
WRT.TE(6,Ut IXP(I),I,l=l,NI)
GO TO' (20~25,30,35}\ NI

20 WRITE {6,2J (l IX l I ,JC), I='l ,Nl) .,.JC='l.,NCi, { IZP(J·) ,J,J=!,NO}
WRITE{ 6,6) { IN3(1 l, 1=1,- [NC}
DO 22 IR=!.NR
DO 21 JC=l ,NC
MS[JC! = S!IR,JCJ
MSS(JCJ= !AB
IF(SIIR,JCI .LE. 10001 GO-TO 21
MS(JCI = SIIR,JC) - 1000
MSSI JCI= !AP

21 CONTINUE
WRITE(6, 8J(HS(JCJ,JC=l,NC),(IZ{J. IR)9J=l,NO)
IF!KNH .NE. 01 WRITEl6,12l UYIH,IRl,H=l,KNMI

22 WRITEl6.,161!MSS[JCl,JC=l,NCI
GO TO 40

25 WRITE(b,3J(tlX(l.JC),I=l,Ntl,JC=l,NCJ,(IlP(JJ~J9J=l,NOl
WRITE (6,6) (IN3(I),°l=l, INC)
DO 27 IR=l ,NR
DO 26 JC=! ,NC
MSIJCI = 5(IR,JCI
MSS! JC!= JAB
IF!S! IR,JCI .LE. 10001 GO TO 26
MS!JCI = SCIR,JCI - 1000
MSS(JCI= !AP

26 1:0NTINUE
WRITE (b, 9l I MS(JCl ,JC=l.,NC J • (IZC J, IR> ,J=l,NO)
IF(KNH ,NE. Ol WRITEl6,13IIIYIH,IRI ,H=l,KNMl

27 WR!TE!6,l6IIMSS!JCl,JC=l,NCI
GO TO 40

LSP0638
LSP0639
LSP0640
LSP064l
L5P0642
LSP0643
LSP0644
LSP0645
LSP0646
LSP0647
LSP0648
LSP0649
LSP065D
LSP065J
LSP0652
LSPD653
LS?0654
LSP0655
LSP0656
LS-P0657
LSP0658
LSP065'1
LSP0660
LSP066l
LSP0662
LSP0663
LSP0664
LSP0665
LSP0666
LSP0667
LSP0668
LSP0669
LSP0670
LSP067l
LSP0672
LSP0673.
LSP0674
LSP0675
LSP0676
LSP0677
LSP0678
LSP0679
LSP06BO
LSP068l
LSP0682
LSP0683
LSP0684
LSP0685
LSP0686
LSP06B7
LSP0688
LSP0689
LSP0690

30 WRITE-16,41 t I IX(1,-JC), I:s-1.,NI) 11JC=l, NCJ, (I ZP(J J ,J ,J=l ,NOl
IIR!TE16,61 I IN3(I I ,I=l,INCI
DD 32 !R=l,NR
DO 31 JC=l,NC
MS!JCl = SIIR,JCI
MSS!JCI= !AB
!F!S(IR,JCI .LE. 10001 GO TO 31
MS[Jtl g S(IR1JCJ - 1000
MSS(JCl= !AP

31 CONTINUE
HR ITE(6 1 10 J \ MS i JC), JC=l ,NC l, (121 J, IR t ,J=l,NO J
JF!KNN .NE. 01 WRITEl6,14lllYIM,IRl,~=l,KNMl

32 WRITE{6,17!(MSS(JCl9JC=l,NC)
GO TO 40

35 WRITE f 6,5) l (1 Xf I ,JC) j J=l ,Nl) ,JC=l, NC) tt (I ZPCJ) t J ,J='l ,NOJ
WR[TEf 6,7} (lN3(I I, I=l., lNC)
00 37 1R=l,NR
DD 36 JC;::l, NC
MSUC} = SllR,JCJ
MSSIJC!= !AB
IF!Sl!R,jCl .LE. 1000) GO TO 36
HSCJCl = S(lR,JCl - 1000
MSS!JCl= IAP

36 CONTINUE
WRITE i 6,11 l (MS (JC), JC=l,NC), (I ZC J, IR) ,J=l,NO)
IFIKNM .NE .. Ol WRITE(69}5)(IY(M,IR),H=l,KNMJ

37 WRITEl6,18llMSS!JCl,JC=l,NCI
WRITE(6,1)ftN3lI),1=1,INCJ
RETURN

40 WRITE!6,61IIN3111,l=l,INCI
RETURN
END

LSP0691
LSP0692
LSP0693
LSP0694
LSP069S
LSP0696
LSP0697
LSP0698
LSP0699
LSP0700
LSP0701
LSP0702
LSP0703
LSPD704
LSP0705
LSP0706
LSP0707
LSP0708
LSP0709
LSP0710
LSP07l l
LSP0712
LSP0713
LSP0714
LSP0715
LSP0716
LSP0717
LSP0718
LSP0719
LSP0720
LSP0721
LSP0722

f->.
0
0

SUBROUTINE ASSIGNIK,NAI LSP0·723
t *********************************••••~•~••*********************-***LSP0724
C . * *LSP0725
C * SUBROUT !NE ASSIGN PRODUCES EITHER THE PASSIVE MEMORY OR *LSP072b
C * GRAV ASSIGNMENT CODE. THE PASSIVE MEMORY ASSIGNMENT CODE IS •LSP0727
C * USED FOR MEMORY ASSIGNMENT IN THE SYNTHESIS PROGRAM AND THE *LSP0728·
C ;;. GRAY CODE IS USED FOR INPUT STATES IN THE ·s1AULATION PROGRAM. *LSP0729
C * THE GRAY CODE PRODUCED BY THIS SUBROUTINE HAS THE ELEMENT ON *LSP0730
C * THE LEFT MOST FREQUENTLY CHANGING. *LSP0731
C * *LSP0732
C * *LSP0733
C * NA= OPTION SPECIFYING CODE *LSP0734
C * 1 = GRAY CODE !INPUT STATES! *LSP0735
C * 2 = PASSIVE CODE !MEMORY ASSIGNMENT! *LSP0736
C * K = THE NUMBER OF STATESIOR COLUMNS) REQUIRED *LS·P0737
C * IGll,JI = THE VALUE OF THE I-TH MEMORY IOR INPUT! IN THE *LSP0738
C * J-TH STATE !OR COLUMN). . *LSP0739
C * *LSP0740
C ***-******************************•**~*************~*************-*LSP0741

COMMON /ASN/ IG119,20I LSP0742
DIMENSION IAl161, RAl161 LSP0743
INTEGER RA LSP0744
!Fil< .LE. 11 RETURN .LSP0745
NHl = LOG I K ,NA I LSP0746
!FINA .eo. 21 GO TO 30 LSP0747

10 DO l! · !=l,K . LSPli74S
DO 11 J=l, NHl LSP0749
IGIJ,ll = 0 LSP0750
JH = 2**1NM1-JI LSP0751
00 11 H=l,JM,2. LSP0752 ·
AM = H LSP0753
Al = Z**J*I AM+0.51 LSP0754
AZ= 2**J*IAM-0.51 LSP0755
IFII.G•.Al .OR. I.LE.A21 GO.TO 11 LSP0756
IGIJ,TI = 1 LSP0757

11 CONTINUE LSP0758
RETURN LSP0759

30 DO 31 t=l,19 LSP0760
DO 31 J=l,20 l.SP076l

31 IGI hJ I = -1 LSP0762
NRA= 1 LSP0763
NR ·= 1. LSP0764·.

32 H = l LSP0765·.
DO 33 !=!,NRA LSP0766

33 IAIII = 0 LSP0767
IFINRA·oGT. 11 !Alli= 1 LSP0768

34 H = M*2 LSP0769
DO 35 J=t,14,2 LSP0770

· 35 lAll+J*NRA/HI = IAll+IJ-ll•NRA/HI + H/2 LSP0771
IF(M .LT. NRAI GO TO 34 LSP0772
DO 37 l=l,NRA LSP0773
JK = O LSP0774
IRl = I LSP0775
DO 36 14=1, IRl LSP0776

36 IFIIMUJ .LT. IA0.11 IK = IKH ,Ls,po-u;r
37 R.All 1 -= .HIIII .. rH< ~$Pllntll

NRR " ·Nit«NU I.-S9,ffl9
DO '3'9 i"'J.,NRA ~?.0-7.41,!1
IM·= •NR~l+l J.:SiP;ll1:!IJ
U = R.AI U i§l'#n

00· 38 ll=IR,NRR
12 = NRR+IR-11
DO 38 Ml=l, IM

38 IGIMl,12+11 = IG~Ml,121
JGIIN,IRI = l
IGIIH, IR+ll = 0
IFINR+l .EQ. Kl GO TD 40

39 CONTINUE
NR = NRR
NRA = NRA*2
GO.TO 32

40 CONTINUE
RETURN
ENO

LSP0783
LSP0784
LSP0785
LSP0786
LSP0787
LSP0788
LSP0789
LSP0790
LSP0791
LSP0792
LSP0793
LSP0794
LSP0795
LSPD796

!..I.
0
!..I.

t
C c
C
C
C
C
C
C
C
C
C
C

FUNCTION LOGIK,NAI LSP0797
***************************************.**************************LSP0798 * *LSP0799
* FUNCTION LOG DETERMINES THE NUMBER OF MEMORIES *LSPOBOO
* (OR INPUTSI REQUIRED FORK ROHS !OR COLUMNS) USING THE PASSIVE*LSP0801
* MEMORY (OR GRAYS ASSIGNMENT CODE. *LSP0802
* *LSP0603
* *LSP0804
* NA - OPTION SPECIFYING CODE *LSP0805
* l = GRAY CODE I INPUT STATES I *LSP080b
* 2 = PASSIVE MEMORY CODE !MEMORY STATES) *LSP0807
* K = THE NUHBER OF ROWS (OR COLUMNS). *LSP0808
* *LSP0809
**LSP0810
LOG = 0 LSPOBll
!FINA .EC. 21 GO TO 30 LSP0812

10 KK = 1 LSP0813
DO 11 I=l,10 LSP0814
IFIKK .LT. Kl LOG= [LSP0815

ll KK = KK*2 LSP0816
RETURN LSP0817

30 IFIK .GE. 21 LOG= K-1 LSP0818
RETUR~ LSP0819
END LSP082~

C
C
C
C
C
C

FUNCTION NOTl!Al LSP0821
t**************************~******************************$*******LSP0822
~ " *LSP0823
* FUNCTION NOT PERFORMS THE LOGICAL COMPLEMENT OF THE *LSPC824
* VARIABLE IA. *LSP0825
* *LSP082b
$*LSP0827
IF(!A .GE. 11 NOT= 0 LSP0828
lfllA .EQ. Ol NOT= l LSP0829
RETURN LSP0830
END LSP0831

.....
0
I\)

FUNCTION MEMORY (IV, MS,MRI L SP083Z

C ***************"***********************-****************************LSP0833
C * *LSP0834
C * FUNCTION MEMORY CONTAINS THE SIMPLIFIED MEMORY EQUATION. *LSP0835
C • - *LSP0836
C * *LSP0837
C * MS= SET SIGNAL *LSP0838
C • MR= RESET SIGNAL *LSP0839
C * IV= PREVIOUS MEMORY STATE *LSP0840
C * *LSP084l
C **·******************LSP0842

MEMORY= MS +-IY*NOTIMRI LSP0843
IF (MEMORY .GT. 11 MEMORY s l LSP0844
RETURN LSP0845
ENO LSP0846

SENTRY

....
0
w

APPENDIX C

EXAMPLE COMPUTER SOLUTIONS

104

SJOB
CALL LOGSYN
STOP
END

DATA CARDS:
000000000 l l lll l ll 112222222222333333333344444444445555555555666666666677777777778
1234567890!234567890123456789012345678901234567890123456789012345678901234567890

EXAMPLE C.l - TABLE XI REPRESENTING EXAHPLE 3.3
2 210

00 10 11 01
1001 2

81002 3
41003

81004 5

7

7

91005 6
l 101006
8 101007

1008 2
81009 10

91010

7

7

00
00
00
00
00
10
01
01
01
01

t-l.
0
\Jl

LOGIC SYNTHESIS .
FOR 2 INPUTS, 2 OUTPUTS.

ORIGINAL PRIMITIVE FLOW TABLE FOR
EXAMPLE C.1.- TABLE XI REPRESENTING EXAMPLE 3.3

Xl XZ
00 10 11 01 Zl ZZ. ----~---~------~~--~---

11 2 0 7 I 0 0
8 ' 2) 3 0 I 0 0
0 4 '3) 7 I 0 0
8 ' 4) 5 0 I 0 0
0 9 I 51 6 I 0 0
l 0 10 I 61 I 1 0
8 0 10 (71 I 0 l
Bl 2 0 1 l 0 1
8 I 91 10 0 I 0 1
0 9 110) 7 I 0 l ------------------. ----

CANON !CAL FLOW TABLE FOR
EXAMPLE C.l - TABLE XI REPRESENTING EXAMPLE 3.3

Xl X2
00 ,10 11 01 ll Z2

l) 2 0 3 I ·o 0
4 I 2l 5 0 I 0 0
4 0 6 I 31 I 0 1
41 2 0 3 I 0 1
0 1 I 51 3 I 0 0
0 8 (6.J 3 I 0 1
4 I 71 9 0 I 0 0
4 I 81 6 0 I 0 l
0 8 I 91 10 I 0 0
l 0 6 110 I I l 0 -----------------------

!PASSIVE MEMORY ASSIGNMENT!

STATE SIGNALS:

1) = 00 * Y
41 = 00 * .I'.

21 = 10 * Y 2 * Y 3
71 = 10 * Y 2 * .I'. 3
8) = 10 • .I'. 2

51 = ll*Y4*Y5
6) = 'll*Y4*.1'.5
9) = 11 * .I'. 4

I 3) = 01 * V 6
(10) = 01 * .I'. 6

SWITCHING CONDITIONS:

>/ l SET = 10
RESH= 2 + 3 + 7 +

y 2 SET = l + 4 +
RESET = 6 + 9

y 3 SET = l + 4
RESET= 5

y 4 SET = 2 + 3 + a + 10
RESET = 7

v 5 SET = 2
RESET = 3 + 8 + 10

y 6 SET = 1 + 4 + 5 +
RESET = 9

OUTPUT SIGNALS:

Zl = 10
Z2 = 3 • 4 ,,. 6 + 8

0
O'\

$JOB
CALL LOGSYN
STOP
ENO

DATA CARDS:
000000000 l l l l l l l I l 12222222222333 33333334444444444555 5555 55 56666666666 77777777778
12345678901234567690123456789012345678901234567890123456789012345678901234567890

EXAMPLE C.2 ~ TABLE 6.4 FROM FLUID LOGIC TEXT BY E.C. FITCH
2 112

00 10 ll 01
1001 2 7

81002 3
41003 9

101004 5

l
l

1008

111005 6

2

121006
1007

31009
1010 4

1011 5
1012 6

0
0
0
0
l
l
0
0
0
0
l
l

....
0
"'1

/

LOGIC SYNTHESIS
FOR 2 INPUTS, l OUTPUTS.

OR'IGINAL PRIK!TIVE FLOW TABLE FOR
EltAHPLE c.2 - TABLE f>.4 FROM FLUID LOGI.C TEXT BY E.c. FITCH

Xl X2
00 10 11 01 Zl ----------------

I I 11 2 0 7 I 0
I a I 21 3 0 I 0
I 0 4 I 31 9 I 0
I 10 I 41 5 0 I 0
I 0 11 I 51 b I 1 ., l 0 12 I bl I I
I l 0 0 I 71 I 0
I 1 Bl 2 0 0 I 0
I 0 0 3 t 91 I 0
I 1101 4 0 0 I 0
I 0 1111 5 0 l l
! 0 0 1121 b I l ---------------

STATE
STATE
STATE

8 WAS EOUI VALENT TO STATE
12 WAS EQUIVALENT ro· STATE.

9 WAS EOll!VALENT TO STATE

1 ANO HAS BEEN REMOVED.
5 ANO HAS BEEN REMOVED.
7 AND HAS SEEN REMOVED.

CANONICAL FLOW TABLE FOR
EXAHPLE C.2 - TABLE 6.4 FROM FLUID LOGIC TEXT 8Y E.C. FITCH

Xl X2
00 10 11 01 Zl -------------------

11 2 0 3 I 0
l I 21 4 0 l 0
I 0 4 I 31 I 0
0 5 I 41 3 I 0
6 C 51 7 0 I 0
bl 5 0 0 I 0
0 9 I 71 6 I l
l 0 7 I Bl I l
0 I 91 7 0 I l -------------------

I PASSIVE MEMORY ASSIGNMENT I

STATE S.IGNALS•

11 . 00 • Y
bl = oo • X

21 = 1o•v2·•v3
51 = 10 • Y Z * :t. 3
91 = 10 • X 2

41 = 11 • Y 4
71 = 11 • X 4

31 . 01 * Y 5
81 . 01 • X 5

SWITCHING CONDITIONS:

y l SET . 2 + 3 + 8
RESET • 5

y 2 SET = l + 4 + -6
RESET • 7

y 3 SET
RESET• 4 + 6

y 4 SET . 2 + 3
RESET• 5 + 8 + 9

y 5 SET C l + 4
RESET= 7

OUTPUT SIGNALS:

Zl c 1 + 8 + 9

'""' 0
C):)

SJOB
CALL LOGSYN
STOP
END

DATA CARDS:
00000-0000 u 111111112222222222333 333333344444444445 5555555556666&66M>&T7777711'TT~
l234567890l23456789012345678901234567B901H4567890l23456789012345678901234567B90.

EXAM·PLE C.3 - ·4-INPUT, 30 ROW
4 630

0000100011000 lODO 11011101010001000111011111101110101110110010001
1001 2 10 13 14000000

11002 3 15 16 100000
21003 10 4 17 110000

3 181004 15 5 111000
4 191005 6 17 111100

18 7 51006 11 011100
131D07 19 6 8001100

9 7 11 161008000110
1009 20 10 13 000000

l 31010 18 11 010000
10 61011 17 12010100

l 7 11 161012000111
l 18 151013 7 001000

. l 7 11 161014000111
2 41015 13 19 101000
2 19 171016 12100100

3 5 111017 16 110100
101018 4 13 6 011000

15 71019 5 16 101100
211020 3 15 16 100000

1021 22 10 13 14000000
231022 3 15 16 100000

1023 24 10 13 14000000
251024 3 15 16 100000

1025 20 10 13 26000000
9 27 11 161026000100'

281027 19 6 8001100
18 291028 7 101000,

30 41029 13 19 101000;
11030 3 15 u 10001.01

I-'
0

'°

LOGIC SYNTHESIS
l'OR 4 INPUTS, 6 OUTPUTS.

ORIGINAL PRIMITIVE FLOW TABLE FOR
EXAMPLE C.3 - 4-INPUT, 30 ROW

Xl X2 X3 X4

0000 1000 1100 0100 0110 1110 1010 0010 0011 1011 1111 0111 0101 1101 1001 0001 21 22 23 Z4 25 26 -- ---------------------------------
11 2 0 10 0 0 0 13 0 0 0 0 0 0 Q 14 I 0 0 0 Q Q 0
1 I 21 3 Q 0 0 15 0 0 0 Q 0 0 Q 16 0 I 1 0 0 0 0 0
0 2 I 31 10 0 4 0 0 0 0 Q 0 0 17 Q Q I 1 l 0 0 0 0
·o 0 3 0 18 . I 41 15 0 .0 Q 5 0 0 Q 0 0 I 1 1 1 0 0 0
0 0 0 11 0 4 0 0 Q 19 I 51 6 0 17 0 0 I l 1. 1 l 0 Q
0 0 0 0 18 0 0 0 7 0 5 I 61 11 0 0 0 I 0 l l 1 0 0
0 0 0 0 0 0 0 13 I 71 19 0 6 0 0 0 8 · I 0 0 1 l 0 0
9 0 0 0 0 0 0 0 7 0 0 0 11 0 16 I 81 I 0 0 0 1 1 0
91 20 0 10 0 0 0 13 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
1 0 3 1101 18 0 0 0 0 0 0 0 11 0 0 0 I 0 l 0 0 0 0
0 0 0 10 0 0 0 0 0 0 0 6 1111 17 0 12 I 0 1 0 1 0 0
1 0 0 0 0 0 0 0 7 0 0 0 11 0 16 1121 I 0 0 0 l 1 l
l 0 0 0 18 0 15 1131 7 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 7 0 0 0 11 0 16 1141 0 0 0 l 1 1
0 2 0 0 0 4 1151 13 0 19 0 0 0 0 0 0 1 0 1 D 0 0
0 2 0 0 0 0 0 0 0 19 0 0 0 17 1161 ·12 1 0 0 1 0 D
0 0 3 0 0 0 0 0 0 0 5 0 ll 1171 16 0 1 1 0 l 0 0
0 0 0 10 1181 " 0 13 0 0 0 6 0 o· 0 0 0 1 1 0 0 0
0 0 0 0 0 Q 15 0 7 1191 5 0 Q 0 16 0 1 0 1 l 0 0

Zl 1201 3 q 0 0 15 0 0 0 0 0 0 0 16 0 1 0 0 0 0 0
1211 22 0 10 0 0 0 13. 0 0 0 Q 0 0 0 14 0 0 0 0 0 0

23 ·1221 3 0 0 0 15 Q 0 0 0 0 0 0 16 0 1 Q 0 0 0 0
1231 24 0 10 0 0 0 13 0 0 Q 0 0 0 0 14 0 0 0 0 0 0
25 1241 3 0 0 0 15 0 0 0 Q 0 0 0 16 0 1 0 0 0 0 0

1251 20 0 10 0 0 0 13 0 0 0 0 0 0 0 26 I 0 0 0 0 0 0
9 0 0 0 0 0 0 0 21 0 0 0 11 0 16 1261 I 0 0 0 1 0 0
0 0 o· 0 0 0 0 28 1271 19 0 6 0 0 0 8 I 0 0 1 1 0 0
1 0 0 0 18 0 29 1281 7 0 0 0 0 .Q 0 0 I l 0 1 0 0 0
0 30 0 0 0 " 1291 13 0 19 0 0 0 0 0 0 I 1 0 1 0 Q 0
1 1301 .3 0 0 0 15 0 0 0 Q 0 0 0 16 0 I 1 0 0 0 1 0 -~~~----------- --

S7ATE 25 WAS .EQUIV.ALENT TO STATE 9 AND HAS BEEN REMOVED.
STATE 14 WAS.EQUIVALENT TO STATE 12 AND HAS BEEN REMOVED.

.r
.....
.....
0

CANONICAL FLOW TABLE FOR
EXAMPLE .C.3 - 4-INPUT, 30 ROW

Xl X2 X3 X4

0000 1000 1100 0100 0110 1110 1010 0010 OOll 1011 1111 0111 0101 1101 1001 0001 Zl ZZ l3 Z4 Z5 Z6 --·------------------------------------
I I lJ 2 0 3 0 0 0 ,. 0 0 0 0 0 0 0 5 I 0 0 0 0 0 0
I 1 I 21 6 0 0 0 7 0 0 0 0 0 0 0 8 0 I l 0 0 0 0 0
I 1 0 6 I 31 9 o· 0 0 0 0 0 0 10 0 0 0 I 0 l 0 0 0 0
I 1 0 0 0 9 0 7 I 41 11 0 0 0 0 0 0 0 I 0 0 1 0 0 0
I 1 0 0 0 0 0 0 0 11 0 0 0 10 0 8 I 51 I 0 0 0 l l 1
I 0 2 I 61 3 0 12 0 0 0 0 0 0 0 13 0 0 I l l 0 0 0 0
I 0 2 0 0 0 12 I 71 ,. 0 14 0 11 0 0 0 ·o I l 0 1 0 0 0
I 0 2 0 0 0 11 0 0 0 14 0 0 0 13 I 81 .5 I 1 0 0 I 0 0
I 0 0 0 3 I 91 12 0 4 0 0 0 15 0 0 0 0 I 0 1 1 0 0 0

0 0 0 3 0 0 0 0 0 0 0 15 1101 13 0 5 I 0 I 0 l 0 0
0 0 0 0 0 0 0 ,. llll 14 0 15 0 0 0 16 I 0 0 l l 0 0
0 0 6 0 9 1121 7 0 0 0 17 0 0 0 0 0 I 1 l l 0 0 0
0 0 6 0 0 0 0 0 0 0 17 0 10 1131 8 0 I l l 0 l 0 0
0 0 0 0 0 0 7 0 11 1141 17 0 0 0 8 o I 1 0 l l 0 0
0 0 0 0 9 0 0 0 11 0 17 1151 10 0 0 0 0 1 l l 0 0

18 0 0 0 0 0 0 0 11 0 0 0 10 0 8 1161 0 0 0 l l 0
0 0 0 0 0 ·12 0 0 0 14 1171 15 0 13 0 0 1 l l l 0 0

1181 19 0 3 0 0 0 ,, 0 0 0 0 0 0 -0 20 0 0 0 0 0 0
21 1191 ,. 0 0 0 7 0 0 0 0 0 0 0 8 0 l 0 0 0 0 0
18 0 0 0 0 0 D 0 22 0 0 .o 10 0 8 12.01 0 0 0 l 0 0

.1211 23 0 3 0 0 0 ,, 0 0 0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 .0 0 0 0 Zit 1221 14 0 15 0 0 0 16 0 ·o 1 1 0 0

I 25 1231 6 0 0 0 7 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0
I 1 0 0 0 9 0 2b IZltl 11 0 0 0 0 0 0 0 1 0 l 0 0 0

· I 1251 27. 0 3 0 0 0 ,. 0 0 0 0 0 0 0 5 0 0 0 0 0 0
I 0 28 0 o·· 0 12 l2bl ,, 0 14 0 0 0 0 O· 0 l 0 l 0 0 0
I 18 1271. ,. 0 0 0 7 0 0 0 0 0 0 o· 8 0 l 0 0 0 0 0
I 1 1281 6 0 0 0 7 0 0 0 0 0 0 0 8 0 1 0 0 0 1 0 ---

I PASSIVE MEMORY ASSIGNMENT I

STATE SIGNALS:

I ll :0000*Yl*Y2
1181 = 0000 • Y l • Y 2
I 211 · = 0000 * Y l • Y 3
125) .= 0000 • Y, l • :y 3

. I 21 =:1000 • y·4 * Y 5 • Y 7
119) · = 1000 * Y 4 * Y 5 * :I. 7
1231 s 1000 • -y 4 * :t. 5
1271 = 1000 ·~ Y 4 * Y· 6
1281 =·1000 • Y 4.• Y 6

61 s 1100

.31 = 0100

t->-
t->-
t->-

l 91 = 0110

1121 = 1110

(11 = 1010 * Y 8
(261 = 1010 •:ta

l 41 = 0010 • Y 9
1241 = 0010 * Y. 9

(111 = 0011 * YlO
1221 = 0011 • no
1141 = 1011

l 171 = 1111

(151 = 0111

[101 = 0101

1131 = 1101

I 81 = 1001

l 51 = 0001 * Yll * Yl2
1161 = 0001 * Yll * ~12
(201 = 0001 * Ill

SWITCHlNG CONDITlONS:

y l SET = 2 + 3 + 4 + 5 + 24 + 28 ·+ 16" + 20 + 27
RESET = 19 + 23 .

y 2 SET 2 + 3 + 4 + 5 + 24. + 28
RESET= 16 + 20 + 27

y 3 sn = 19
RESET = 23

y 4 SET = l + 6 + 7 + 8 + 18 + 2·1
RESET = 25 + 26

y 5 SET = t + 6 + 7 + 8 + 18
RESET = 21

y 6 SET = 25
RESET = 26

y 7 SET = l + 6 + 7 + 8
RESET = 18

y 8 SET = 2 + 4 + 12 + 14 + 19 + 23 + 27 + 28
RESET= 24

y 9 SET = l + 7 + 9 + 11 + 18 + 21 + 25 + 26
RESET = 22

no SET = 4 + S ~ 14 + 15 + 16 + 24

RESET= 20

Yll SET = 1 + 8 + 10 + 21 + 25 + 11 + 22
RESET = 18

Yl2 SET
RESET

1 + 8 + 10 + 21 + 25
11 + 22

OUTPUT SIGNALS:

ll = 2 + 6 + 7 + 8 + 12 + 13 + 14 + 17 + 19 + 23 + 24 + 26·+ 27 +
28

Z2 = 3 + 6 + 9 + 10 + 12 + 13 + 15 + 17
Z3 = 4 + 7 + 9 + 11 + 12 + 14 + 15 + 17 + 22 + 24 + 26
Z4 = 5 + 8 + 10 + 11 + 13 + 14 + 15 + 16 + 17 + 20 + 22
Z5 = 5 + 16 + 28
Z6 = 5

I

.....
[IJ

SJOB
CALL LOGSYN
STOP
EN.O

DATA CARDS:
000000000llllllllll222Z2Z22Z23333333333444444"4"45.55555555566666666667T777771778
lZ345678'1012345678901234567890lZ34567890lZ345678CJOl234567890123't5678CJOl234567890

·EXAMPLE C.4 - 8 EVENT COUNTER
l 116

0 l
1001 Z

31002
1003 It

51004
1005 6

71006
1001 a·

91008
1009 10

·111010
1011 12

131012
1013 14

151014
1015 16

11016

0
0
o·
0
0
0
0
0
0
0
0
0
0
0

·o
l

.. ..
\..)

LOGIC SYNTHESIS
FOR l INPUTS, l OUTPUTS·.

ORIGINAL PRIMITIVE FLOW TABLE FOR
EXAMPLE C.4 - 8 EVENT COUNT ER

Xl
0 l Zl --------
11 2 0
3 I 21 0
31 4 0
5 I 41 0
51 6 0
7 I 61 0
71 8 0
9 I 81 0

I 91 10 0
11 1101 0

1111 12 0
13 1121 n

ti31 14 0
15 1141 0

1151 16 0
l 1161 1 ----------

CANONICAL HOW TABLE FOR
EXAMPLE C.4 - 8 EVENT COUNTER

Xl
0 1 Zl

---~-------------
I I 11 z 0
I 3 I 21 0
I I 31 ... 0
I 5 (4) 0
I I 51· 6 0
I 7 I 61 0
I I 71 8 0
I 'I I 81 0
I I 91 10 0
I 11 1101 0
I I 111 12 0
I 13 1121 0
I I 131 14 0
I 15 1141 0
I 1151 16 0
I 1 1161 1 -------------

!PASSIVE MEMORY ASSIGNMENT!

STATE SIGNALS:

I 11 = 0 • Y 1 • Y 2 * Y 4
I 31 = o • • 1 • Y 2 • X 4
I 51 . o -• v·1 * X 2 * Y 6
I 71 = O • Y 1 • X 2 • X 6

'•t 'II = o • X 1 • Y 3 • Y 5
1111 = o • l 1 • Y 3 • X 5
1131 = o • l l • X 3 • Y 7
1151 . 0 * l I * l 3 * l 7

I 21 = l * Y 8 * Y 9 * Yll
I 41 . I• Y 8 • Y 9 • Ill
I 61 = l * Y 8 • l 9 * Yl3
I 81 = 1 • Y 8 * l 9 * 113
HOI . l * l 8 * YlO * Yl2
1121 = 1 * l 8 * YlO • 112
(141 = 1 * l 8 • 110 * Yl4
116) = I * l 8 • llO * 114

SWITCl<I NG CONDI HONS:

Y l · SET a 16 + 2 + 4 + 6
RESET • 8 + 10 + 12 + 14

Y 2 SET • 16 + 2
RESET :e 4 + 6

Y 3 · SET = 8 + 10

.....

..i::-

RESET = 12 + 14

y 4 SET = 16
RESET = 2

y 5 SET = 8
RESET = 10

y 6 SET 4
RESET= 6

y 7 SET = 12
RESET = l',

y 8 SET = 1 + 3 + 5 + 7
RESET= 9 + 11 + 13 + 15-

y 9 SET = l + 3
RESET= 5 + 7

YlO SET = 9 + 11
RESET = 13 + 15

YU SET = l
k.l:SET = 3

Y12 SET . 9
RESET = 11

Y13 SET = 5
RESET = 7

Y14 SET = 13
RESET = 15

OUTPUT SIGNALS:

Zl = 16

,-,.
,-,.
Vl

SJOB
CALL LOGSIM
STOP
END

DATA CARDS:
000000000111111111122222zz2223333333333444441tlt444555555555566666666667777777777B
123456789012345678901234567890123456789012345678901234567890123456789012345678'!0

EXAMPLE C.5 - TABLE XII -·CLASSICAL EQUATIONS
2 2 2

0000
2 l 2
2 l 2
2 l 2
2 I 2

MSlll = ITS131 + Xl21*Yl21
MRlll z ITS111 + NOTIX1211*Yl21
MS121 • ITS121*Ylll + ITS14l*Yl11
MRl21 = ITS131*Ylll + ITS·lll•NOTIYllll
ZIii • ITS12.l~OTIYl111*Y12.I
Z12.I = ITS14l*Y1ll*Yl21

-~
~

°"

LOGIC SIMULATION
FOR 2 INPUTS, Z OUTPUTS, 2 MEMORIES.

SIMULATED FLOW TABLE FOR
EXAMPLE t.5 - TABLE XII - ~LASSICAL EQUATIONS

Xl X2
DO 10 11 01 Zl 12 ---------------
ll 2 0 3 I 0 0
l I 21 " 0 I 0 0
l 0 " I 31 I 0 0
0 f, I 41 5 I 0 ·O
1 D " ·I 51 I 0 1
1 I 61 " 0 I 1 0 ------------------

0 0
0 0
0 o.
1 0
l 1
0 l

,-i.
,-i.
--..]

SJOB
CALL LOCSIM
STOP
END

DATA CA~os:
00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345676901234567890123456789012345676901234567890123456789012345678901234567890

EXAMPLE C.6 - ROTATION DIRECTION SENSOR - STATE MATRIX EQUATIONS
2 1 4

000000
l l
l 2
1 3
I 4

MS111 = ITS14l*NOT1Yl411
MR!ll = ITS121 + ITS14l*Yl4I
MS121 = I TSl31
MRIZI = !TSUI
MS131 = ITS141
MRl31 = ITS121
MS141 = ITSl31
MRl41 = tTSll I
ZI 11 = ITSI ll*YI ll + ITS12l*NOTIY12ll + ITSl31*NOT1Y131l +

ITS141*Yl4I

.....

.....
00

LOGIC SIMULATION
FOR Z INPUTS, l OUTPUTS, 4 MEMORIES,

SIMULATED FLOW TABLE FOR
EXAMPLE C,6 - ROTATION DIRECTION SENSOR - S.TATE ~ATRIX EQUATIONS

Xl X2
00 10 11 01 Zl ------~-----~--~----------

11 z 0 3 I 0 0 0 0 0
l I 21 4 0 I l 0 0 0 0
6 0 5 (31 I 0 l O l 0
0 a l 41 7 I l 0 l O l
0 a l 51 7 I 0 l l l l
61 z 0 3 I 1 l O l 0
1 0 5 I 71 I 1 0 l l l
l l 81 4 0 I 0 0 l O l

-----------------------~-----

....
'°

SJOB
tUL LOGSIM
STOP
END

DATA CARDS:
00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

EXAMPLE t.2 - TABLE 6.4 FROM FLUID LOGIC BY FITCH - STATE MATRIX EOUATIDNS
2 I 5

1111100
l l
2 2 3
l 4
1 5

MSIII = 1TS12l•Yl2l•Yl3l + ITSl41
MR(ll = ITSl21•Yt21*NOT(Yl311
MS121 = ITSlll + ITSl3l•Yl41
MRIZI = ITSl3l•NDHYl41l
MS131 = ITStll*Ylll.
MRl31 = ITSlll*NOTIYllll + ITS13l•Yl4l
MS141 = ITS121•Y12l•Yl31 .+ 1TS14l•Yl51
MRl41 = JTS12l•Y121•NOTIYl3ll + lTS12l•NDTIY(2II +ITSl41•NDTIYl511
MS151 = ITSlll*Ylll + ITS13l*Yl4I
MRl51 s ITS13l*N0TIYl411
ZIii = ITS12l*NOTIYl2ll + ITS13l•NDTIY141I + ITS141*N0TIYl511

~
N
0

LOGIC SIMULATION
FOR 2 INPUTS, l OUTPUTS, 5 MEMORIES.

SIMULATED FLOW TABLE FOR
EXAMPLE C.2 - TABLE &.4 FROM FLUID LOGIC BY FITCH - STATE MATRIX EQUATIONS

Xl X2
00 10 11 01 Zl --------------
ti 2 0 3 I 0 l l l l l
1 I 21 4 0 I 0 1 1 1 1 1
l 0 4 I 31 I 0 l 1 l 1 l
0 5 I 41 3 I 0 1 1 0 l l
& I 51 7 0 I o 0 1 0 0 l
61 5 0 3 I 0 0 l O O 1
0 9 I 71 8 I l 0 0 0 0 0
1 0 7 I 81 I l l O O O 0
1 I 91 7 0 I l 10000--------------

1--'
l'v
1--'-

VITA
~

Robert Loren Woods

Candidate for the Degree of

Master of Science

Thesis: THE STATE MATRIX METHOD FO~ THE SYNTHESIS OF
DIGITAL LOGIC SYSTEMS

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Frederick, Oklahoma, April 14,
1945, the son of Mr. and Mrs. Aldon Woods.

Education: Graduated from Frederick High School,
Frederick, Oklahoma, in May, 1963; attended
Oklahoma State University from 1963 to 1965;
received the Bachelor of Science degree from
Southern Methodist University in 1967, with a
major in Mechanical Engineering; completed re
quirements for the Master of Science degree from
Oklahoma State University in May, 1970.

Professional Experience: Technical analyst, Nuclear
Research Services, Dallas, Texas, 1967; graduate
teaching assistant, Southern Methodist University,
1968; graduate research assistant, Oklahoma State
University, 1968-69.

Professional Organizations: Member Pi Tau Sigma.

