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CHAPTER I 

INTRODUCTION 

The technology of switching circuit theory, although 

relatively young, has found great application and utility 

in modern design. :Most of the theory has been developed 

for application in electrical engineering since electronics 

has dominated the field of computation and logic for the 

last dew decades. 

Recent years have seen a rebirth of the use of a fluid 

medium to perform the logic and computation in sequential 

machines. The newly emerging field of fluid technology 

termed "fluidics" is one major reason for this rebirth of 

fluid logic. Since fluid power is often used as the muscle 

of ~achines, it is convenient also to use the fluid itself 

for the requiretl. computation in order to avoid the elec

trical to fluid interfaces. 

To realize maximum utilization of fluid logic devices, 

it is necessary to develop a technology of switching cir~ 

cui ts applicable to fluid circuits. The .theory should con

sider the unique properties of fluid devices not only in the 

implementation of circuits, but also in the synthesis proce

dure itself. The synthesis procedure presented in this 

1 
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thesis does take advantage of the unique properties of 

devices in order to produce simple fluid circuits containing 

minimal hardware. 

Background 

Modern switching theory had its origin in 1938 when 

C. E. Shannon (9), of M.I.T., applied the laws of Boolean 

algebra to the representation of electrical switches. 1 

Although this was a great advancement for combinational 

switching circuits, there was no formal procedure for the 

synthesis of sequential switching circuits until 1954 when 

D. A. Huffman (J) and E. F. Moore (8) independently devel-

oped the synthesis technique which is used today. This 

technique has gained such widespread use and application 

that today it is taught at every major university and is 

even referred to as the "classical method". The synthesis 

procedure presented in this thesis relies upon much of the 

notation of the classical method. The reader not familiar 

with this method, should refer to a book on classical 

switching theory ( 2) , ( 5) , ( 7) , ( 8) • 

E. C. Fitch (2), of Oklahoma State University, was one 

of the first authors to apply the methods of sequential 

switching circuit theory to hydraulics. However, his work 

did not take into account any special properties of hydrau-

lie valves except in the implementation of logic circuits. 

1Numbers in parentheses refer to references in the 
Selected Bibliography. 
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Later work at Oklahoma State University by J. H. Cole 

(1) did consider the properties of devices in the synthesis 

procedure. Dr. Cole used the properties of the passive 

memory devices to produce extremely simple circuits for the 

feedback sequential type problem. This work has been a 

major advancement for the field even though its scope of 

application is limited. 

G. E. Maroney (6) extended Cole's tabular method to 

include the rapdom input type circuit. This method was 

fundamentally the same as Cole's except that the random in-

put possibility necessarily complicated the execution of the 

method. This technique also utilized the passive memory 

effect to reduce hardware. 

Development of the State Matrix Method 

The state matrix synthesis procedure evolved from the 

assumption that the outputs are related to the inputs and 

the past state of the system. This relationship can be 

written in matrix form as: 

Here, the outputs are contained in the [z] vector, the [x] 
vector contains the inputs, and the matrix [M] contains out

put and memory information. This binary matrix changes with 

time to yield different outputs representing the different 

states of a sequence. 



~: 

Early experi~ents with this type of synthesis were 

restricted to the feedback sequential type problems because 

of their simplicity. A close examination of the resulting 

equations reve~led that they were essentially identical to 

those obtained from Cole's method. This was very encourag

ing since Cole's method was known to produce valid expres

sions. The matrix arrangement of this method also gave 

insight to many of the hidden subtleties of Cole's method. 

Once the rules for the synthesis of feedback sequentic;1l 

circuits using state matrices were defined, the method was 

extended to ~andle the random input problems. The main dif

ference between the state matrix methods for random input 

and feedback sequential problems was the input vector used. 

The feedback sequential input vector contained only the 

changed input, whereas the random input vector contained the 

total input state. 

The random input form .of the state matrix synthesis 

procedure has since receive~ more attention since it is the 

more general procedure. This form will also handle the 

feedback sequential problems in some respects better than 

the original state matrix method. Hereafter, the random 

input form of this method will be referred to simply as the 

"state matrix method", and the method using the changed in

put vector will be referred to as the "feedback sequential 

state matrix method." 



Scope and Results of Study 

Altho~gh the state matrix synthesis procedure is the 

most important item in this thesis, many other original 

topics have arisen from this study. The major accomplish

ments of this study are: 

(1) The development of the feedback sequential 

state matrix synthesis procedure. (Chapter II) 

(2) The development of the state matrix synthesis 

procedure for random input circuits. 

(Chapter III) 

(3) A digital computer program to perform the 

state matrix synthesis procedure. (Chapter V) 

(4) The development of a simulation technique 

to check the logical implications of digital 

equations. (Chapter IV) 

(5) A digital computer program to perform the 

digital equation simulation and to formulate 

the implied primitive flow table. (Chapter V) 

(6) The definition of a standard format for the 

primitive flow table. (Chapter IV) 

The state matrix synthesis procedures have the follow

ing distinguishing features: 

(1) The basic concepts of circuit synthesis are 

much easier to grasp than those of other 

methods. 

(2) The execution of the procedure is straight

forward with few or no exceptions to 

5 



established rules. 

(J) The resulting digital equations have few of 

the usual logical complications. 

(4) The procedure takes advantage of device 

properties to produce circuits with fast 

response and minimal hardware. 

(5) There is virtually no limitation upon the 

size or length of the problems which can be 

handled. 

6 

The simulation method presented here provides a check 

upon the digital equations resulting from a synthesis pro

cedure. Each possible input change is systematically in

spected for its effect upon circuit equations and the 

resulting transitions are recorded in a primitive flow 

table. This flow table may then be compared to the original 

flow table which should contain identical information. 

In comparing the simulated flow table to its original 

primitive flow table, it is convenient, if not necessary, to 

estabiish a standard flow table format. For this reason, a 

method similar to the simulation method is used to define 

the canonical flow table format. 

The computer programs included in Appendix B perform 

the mechanics of synthesis or simulation rapidly and accu

rately. These programs encompass all of the defined rules 

and methods for the analysis of digital logic systems and 

can be utilized to good advantage in design work. 



CHAPTER II 

THE FEEDBACK SEQUENTIAL STATE MATRIX 

SYNTHESIS PROCEDURE 

Although feedback sequential circuits are comparatively 

simple, they have found a large field of application in 

modern automation. Consequently, the synthesis of such 

circuits is of major importance to industrial designers. 

Feedback sequential circuits are characterized by their 

use of a signal indicating the completion of one event to 

initiate the next event in a prescribed sequence. Feedback 

sequential circuits are automatic and, once started, require 

no further attention to sustain sequential action. 

Formal Matrix Representation 

In sequential circuits, each element is associated with 

one corresponding output from the logic circuit. In a hy-

draulic circuit this element is typically a hydraulic cylin

der and the output is the fluid flow which actuates the 

cylinder. Since there is usually more than one element in a 

sequential machine, it is convenient to let Z1 represent the 

output which extends cylinder one and Z1 represent the 

7 
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retract output for the cylinder. 1 The signal Xa is used as 

an input to the logic circuit indicating the full extension 

of cylinder two, and the signal Xa appears when cylinder two 

is fully retracted. figure 1 illustrates a physical reali-

zation of these variables. The reader who is unfamiliar 

with hydraulic circuit notation should refer to the 

literature. 

Cylinder One 

p 

Figure 1. Hydraulic Circuit Illustrating 
Notation. 

p 

Using this notation, a-sequence involving two cylinders 
! 

1This notation is somewhat unfortunate since Z1 is used 
in this ch~pter to specify only the chan~e of cylinder one, 
not its continuous state. Also, Z1 and 1 are not perfect 
complements since the specification of one does not imply 
the other. A more appropriate notation would be ~Z1 , etc.; 
however, the Z, Z notation is used here for simplicity. A 
similar statement is true for the inputs X and X used in 
this chapter only. 

\ 
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can be written as Z1 , Z2 , Z1 , Za• This implies that cylin-

der one extends, then cylinder two extends, cylinder one 

retracts, cylinder two retracts, and. then the entire se-

quence is repeated indefinitely. Each event is initiated by 

the completion of the proceeding event. 

The synthesis of a circuit to execute this sequence 

proceeds from the assumption that the required outputs from 

the logic circuit are related to the inputs by the matrix 

equation given below. 

Z1 mu m:12 ... m1n X1 

Z1 X1 

- mu ( 1) 

Zn xn 

zn Dlnl· ... . .. 111a X. 

Recall from the rules of matrix multiplication that 

-when multiplying the matrix [MJ by the [x] vector, every 

entry in the jth column of [M] is multiplied by the element 

in th~ j th row of [ X J. Thus,, each column in [:M J i~ associ

ateq. ~nly with the corresponding input element of '[x]. 
For the sequence ~nder consideration, the first event 

is the extension of cylinder one which results from the pre-

vious retraction of cylinder two. Thus, the state number 1 

is entered in the matrix in the row of the Z1 output and the 

column associated with the Xa input (column four). See 

Table I. 
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The next event, the extension of cylinder two, is 

initiated by the full extension of cylinder one. Hence, 

the state number 2 is entered in the Z2 row and the X1 

column. Similarly, state J is in .the Z1 row and the X2 

column. The sequence is completed by state 4 in the Z2 row, 

TABLE I 

THE DEVELOPING STATE MATRIX RELATION 
FOR THE SEq,UENCE Z1 , Z2 , Z1 , Z.a 

' 
I 
I 1 

I J 

2 11 ' 

4 
I 

After all state numbers are entered into Table I, the 

state matrix must be inspected to ensure that each state is 

unique and does not represent any contradictions. For this 

extremely simple problem, this is true and further attention 

is not required. Table I may now be written matrix form by 

placing a logical 11 1 11 for each state and a 11 0 11 elsewhere. 
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Z1 0 0 0 1 X1 

Zi 0 0 1 0 X1 
= (2a) 

Za 1 0 0 0 ~ 

Za 0 1 0 0 Xa 

The matrix in Table I is termed the state matrix since it' 

only shows the states of the sequence. The matrix in Equa-

tion (2a) is termed the output matrix because Equation (2a) 

is merely a set of digital output equations in matrix 

notation. Writing Equations (2a) in longhand, one has: 

Z1 = Xa 

Z1 = Xa 
(2b) 

Za = X1 

Za = X1 

Note that the variables used in digital equations are 

Boolean or binary logic variables. 

Since this introductory problem is simple and requires 

no memory, one could almost predict the results without the 

use of any formal synthesis procedure. However, further 

problems in this chapter illustrate the general case. 

Persistent States 

The problem of persistent states are prevalent in 

almost every feedback sequential circuit. Persistent states 

result when signals remain on long enough to form a 
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contradiction. The exact cause and remedy for this can best 

be illustrated by an ex~mple. 

Consider as example 2 the sequence Z1 , Z1 , Z2 , Z2 • The 

state numbers are entered into Table II in exactly the same 

fashion as the previous example. That is, state 1 is in the 

Z1 row, X;a column. State 2 is in the Z1 row, X1 column. 

The remaining state numbers are entered similarily and the 

resulting state matrix is shown in Table II. 

TABLE II 

THE STATE MATRIX RELATION FOR 
THE SEQUENC~ Z1 , Z1 , Za , Zia 

1 

2 
I 

3 

4 I 

/ 

If this state matrix were now converted into the output 

matrix by placing a 11 1 11 for the states and a 11 0 11 elsewhere, 

the following equations would result: 

( J) 
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Reference to these equations and the state sequence 

in Table II reveals that cylinder one would be extended by 

Xa and subs~quently retracted by X1 • However, at the time 

of retraction the extent signal Xz would still be on, be

cause cylinder two has not been changed since its retrac

tion. Hence, there is a contradiction because cylinder one 

is trying to extend and retract simultaneously. The signal 

which remains on creating a contradiction is called a 

persistent state. In this case, the persistent state is the 

signal X2 from state 1. This problem arises because only 

the changed input and the changed output are used in the 

state matrix relation. An event is specified only by the 

variables that change, not by the present state of all 

variables. 

This condition can be alleviated by entering a shut-off 

memory element at the persisting state and its complement at 

the contradiction. Tne memory element should be in the 

11 set 11 position prior to the persistent state and should be 

in the 11 reset 11 position either prior to or on the contra

dicting state. The complemented memory signal is not used 

in state signal formulation; it is only used as a reminder 

when it shoulq be off or in the "reset" position. 

For the problem under consideration, the persistent 

state 1 contradicts state 2. Consequently, state 1 must be 

modified with a shut-off memory element, say W12 • This ele

ment can then be used to shut-off the persistent signal 

thereby avoiding a contradiction. Further examination of 
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Table 2 reveals that state J is persisting at state 4. 

Hence, the memory element W34 is assigned to state J. The 

state matrix for example 2.1 may now be written in output 

equation form as: 

Z1 0 0 0 W12 X1 

Z1 1 0 0 0 x 1 

= ( 4) 
Za 0 W34 0 0 Xa 

Za 0 0 1 0 Xa 

Equations ( 4) give all of the required output equations 

to sustain the qesired sequential action only if the shut-

off memory elements are swi t.ched at the proper times. W12 

must be in the "set" position in order to formulate the 

state signal 1; therefore, it mc:ly be set prior to its state. 

In this case, W12 is set by the state signal 4 which is Xa• 

Wia must be reset either prior to, or by, state 2. Since the 

previous state is the persisting state, its signal may not 

be used to reset itself. Therefore, the contradicting state 

must be used to shµt-off or reset the memory element. Thus, 

the switching conditions for W~ may be shown as follows: 

Set Reset 

W1a I Xa 

J 
Xi° 

. state 4. . State 2 

The notation adopted foi: subscripting the W elements is 

quite fortunate: since the subscripts of Wia (read W one, two) 

give both the p~rsisting and: the contradicting states, 



15 

respectively. The switching conditions may then be stated 

by simply observing the subscripts. For example, the memory 

element W34 is set prior to the persistent state J and is 

reset by the contradicting state 4. Thus, the complete 

logic specifications for example 2.1.are: 

Output Equations: 

Z1 = Xa W12 

Z1 = X1 
(5) 

Za = X1 W34 

Za = Xa 

Switching Conditions: 

Set Reset 

I Xa X1 ; 

X . l Xa 

Before going any further into synthesis procedures, it might 

be helpful to demonstrate the circuit implementation for 

this problem. If the circuit shown in Figure 2 is not self-

explanatory, the reader is advised to consult a text on 

fluid circuits. Refer to Figure 1 for the circuit implied 

by the boxes representing the cylinders. 

Persistent states always occur when two events involv-

ing one cylinder are consecutive; however, the same problem 

arises anytime there is a possibility for a contradiction. 

This problem may best be illustrated by an example. Con-

sider for example 2. 2 the three cylinder sequence Z1 , .. Z2 , 



x Xe --1 -
:X:1 - -

Cylinder 1 Cylinder 2 Xa -- -
J j 

Zi Zi Za Za 

- -· 

Xa 
Xa W12 X1 W34 

X1 Xi Xa ..-IT\bll nd rTIT\iYJ 00 ' 

Xa l Xi J. 

Figure 2. Synthesized Hydraulic Circuit for Zi , Z1 , Z2 , Z2 

! 

-

~ 
O"I 
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Zs, Zs, Za, Z1 • Following through the sequence, it is found 

that Za is .causecl by X1 in event two. Later, in event five, 

Zais required. However, since cylinder one is not re

tracted between events two and five, the signal X1 from 

event two is still on. Thus, state 2 is a persisting state 

contradicting event 5. A shut-off memory, Was, is.· required 

to modify state 2. Since states 2 and 5 are not consecu-

tive, the shut-off memory element Was can be reset just 

prior to the contradiction, state 5, rather than by the 

contradiction itself. This is usually more desirable; 

however, the particular circuit hardware might dictate 

otherwise •. 

There are three other persistent states in this se

quence. The rea4er is encouraged to develop the state 

matrix for this sequence and verify the memory assignment 

and switching conditions represented by Equations ( 6) . 

The output matrix for the sequence Z1 ' Za' Zs' Zs' Za' Z1 

is: 

Z1 0 1 0 0 0 0 X1 

Z1 0 0 0 Ws1 0 0 X1 

Za Was 0 0 0 0 0 Xa 
= 

Za 0 0 0 0 0 Wsa Xa 

Zs 0 0 Ws4 0 0 0 Xs 

Zs 0 0 0 0 1 0 Xs 

where the switching conditions are: 

(6) 
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Set Reset 

Was X1 Xs 

W34 X l Was Xs 

Ws 1 Xs Wsa X1 

Wsa X3 X1 

When determining persistent states, it is convenient to 

partition the state matrix according to outputs. The two 

rows for Z1 and Z1 represent the output partition one, etc. 

The two colu~ns for Xa and Xa are input partition two, etc. 

With the matrix partitioned in this manner, a systematic 

method for determining persisting states can be defined. 

This method requires the individual investigation of each 

output partition. Starting with the first entry in an out-

put partition, each state is checked by investigating the 

next entry in the output partition. This next entry is 

always in the complementary half of the output partition. 

These two states are always contradictory if they are con-

secutive and are not within a diagonal partition. A diago-

nal partition is the four entry square formed by the 

intersection of an output partition and its corresponding 

input partition. This square will always be on the diagonal 

of the matrix. Two consecutive entries in a diagonal parti-

tion are not contradictory since the first event turns 

itself off by the next entry. For the same reason, the 

event in the output partition following an entry in its 

diagonal partition is not contradictory. States not covered 
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by the above rule must be examined by applying the following 

general rule. If the next entry in the output partition is 

not consecutive and is not within a diagonal partition, then 

the complementary event of the state immediately preceding 

the first entry in the output partition must occur before 

the next entry in the output partition. In other words, the 

signal that initiated the first entry in the output parti

tion must be negated or turned-off prior to the next entry 

in the output partition, otherwise the first entry will be a 

persisting state. The application of these rules is dis-

cussed in detail for the example given in the Procedure 

Summary. 

Memory Assignment 

In most sequences, an element is cycled more than once, 

thus causing an input signal to appear more than once during 

the sequence. Often, this input signal will initiate a dif-

ferent event each time it appears. In order to determine 

which event is called for when that input appears, memory of 

previous events is required. 

Consider for example 2. J the sequence Z1 , Za , Z1 , Za , 

Z1 , Z1 • The state matrix shown in Table III is constructed 

by entering the state numbers as previously discussed. A 

close examination of this se~uence reveals that state 5 is a 

persistent state. The element W66 is assigned to state 5 to 

prevent the contradiction at state 6. This element is then 



entered into the output matrix for state 5. 

only persistent state in this sequence. 

TABLE III 

THE STATE MATRIX RELATION FOR 
Z1 , Z2 , Zi , Z2 , Z1 , Z1 

1 5 

6 3 

2 

4 

20 

This is the 

Columns one and two of Table III contain more than one 

stable state per column. The states 6 and 2 in column one 

indicate that there are two separate outputs initiated by 

the input X1 • One time the input signal X1 initiates the 

output Z2 ; the next time X1 appears, the output Z1 is 

desired. In order to distinguish between these states, a 

memory element is assigned to one of these states and its 

complement is assigned to the other. For instance, the 

memory element Y26 is assigned to state 2 and Y26 is 

assigned state 6. In accordance with the W elements, the Y 

elements are subscripted to denote their associated states. 

The element Y26 is used to distinguish between states 2 and 

6, and is set prior to state 2 and is reset before 6. A 
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similar condition exists between states 1 and 4. The memory 

element Y14 is used to make each of these states unique. 

The output matrix is constructed by entering all of the 

Y elements to dist~nguish between common input states. The 

W elements are entered at their persisting states and a 11 1 11 

is entered for any stable state which does not require 

memory. A 11 0 11 is entered elsewhere. The resulting output 

matrix for ex~mple 2.J is given by Equation (7). 

Z1 0 Y14 0 Wss X1 

Z1 Yas 0 ;I. 0 X1 
= (7) 

Za Yas 0 0 0 Xa 

Zz 0 Y14 0 0 Xa 

Written out, these equations are: 

Z1 = X1 Y14 + Xa Wss 

Z1 = :X:1 Yas + Xa 

Za = X1 Yas 

Za = X1 Y14 

The switching conditions are: 

Set Reset 

Yas X1 Y14 Xa Wss 

-X-14 X1 Yas Xa 

Wss x l Y14 X1· Yas 

Figure J is a hydraulic implementation of the logic 

circuit for this sequence. The passive memory effect is 



X1 Xa 
Cylinder 1 X1 Cylinder 2 x., 

Zi Zi Za Za 

r-~--, r-~--, X1 Yas I I X1 Y14 
I I I ___ I 
I ··f I I 
L.__ . - - - -1 L__ ----.I 

Xa I I X1 Yas 

I x. w •• 
I 

X1 Y14 

x .. y, 

~ Y,.Lx, X1 Y14,l I.• ,.,Xa X1 Yas.1 I. < :a I Xa- X1 Yas W5s 

.:, I LL.I w w 

X1 Xa Xa X1 

Figure 3. Hydraulic Implementation for Z1 , Z2 , Zi , Za , Z1 , Z1 · 

llJ 
llJ 



utilized in this circuit to reduce circuit complexity and 

hardware. At this point, the reader should refer to 

Appendix A for a complete discussion of the passive memory 

effect, assigmnent, and implementation for hydraulic and 

fluidic circuits. 

Counting Sequences 

Counting sequences are characterized by their repeti

tious cycling of o~tputs. For example, a 2,2,1 counter 

cycles (i.e., extends, retracts) the first element twice, 

the second twice, and the third once and then repeats the 

sequence. Counting sequences are handled in exactly the 

same manner as any other automatic circuit; however, their 

uniqueness deserves special mention. 

23 

In synthesizing this circuit, the usual formal notation 

is dropped and the si~plified approach is introduced. The 

first simplification is the omission of the output and input 

vectors. Instead of writing a formal state matrix relation, 

the rows and columns of the state matrix are labeled corre

sponding to their associated vectors. With this simplified 

approach, the state numbers representing the sequence are 

entered into the matrix as usual. The required memory ele

ments. are then as~igned adjacent to their state number 

eliminating th~ need for rewriting the state matrix into the 

output matrix form. The output equations are written 

directly from the completed state.matrix. 

The first step in synthesizing the equations for 
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example 2 .• 4 is to enter the state numbers representing the 

sequence into the state matrix as shown in Table IV. This 

sequ-ence is written as Z1 , Z1 , Z1 , Z1 , Z2 , Z2 , Za , Za , 

TABLE IV 

THE STATE MATRIX FOR A 2,2,1 COUNTER 

3 Y35 1 W1a 

2 Ya4 

4 Y-~4. 
5 Y 3 s Wse 7 Y79 

6 Yss 

8 Yi:;s 

9 Y7 e W910 

10 

; 
, 

The next step is the determination of the existence of 

any persistent states. Applying the .rules from page 18 to 

the matrix unqer consideration, it is found that states 1 

and 2 are contrc1dictory since they are consecutive entries 

within the same output partition and different input parti

tions. States 2 and J and J and 4 are both within diagonal 

partitions and, thus, are not contradictory. Since state 4 



is in a diagonal p~rtition, there is no contradiction be

tween states 4 and 1. Entries like 5 and 6 in the second 

partition and 9 and 10 in the third partition are contra

dictory. By similar application of these rules, it can be 

seen that these are the only three contradictions in this 

sequence. The shut-off memories (W elements) are now 
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entered into Table IV adjacent to their corresponding 

persistent states (e.g., W12 at 1, W5 s at 5, and W910 at 9). 

The next step of the procedure is the assignment of 

input memory elements (Y elements). Here, the rule is 

simple: whenever there is more than one state in a column, 

a secondary memory state must be assigned to make each state 

in the column unique. In Table IV there are four such col

umns requiring memory. The memory elements Y24 , Y36 , Y68 , 

Y79 are assigned to their corresponding states in accordance 

to Appendix A. 

The last step in the procedure is the specification of 

the output equations and switching conditions. The output 

equations are written directly from the state matrix in the 

same manner as initially discussed. The switching condi-

tions are determined directly from the element subscripts. 

The complete logical specifications for example 2.4 are 

given below: 

Output equations: 
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Z1 ::; X1 Yss + Xs W1a 

Z1 = x,_ Ya4 + X1 Ya4 = X1 

Za = X1 Yss Wss + Xa Y79 (8) 

Za = Xa Yss + Xa Yss = Xa 

Z3 = Xa '¥79 We10 

Zs = X3 

Switching conditions: 

Set Reset 

Ya4 Xs W1a X1 Y35 

Y35 X1 Ya4 X1 Ya4 

Yss X1 Yss Wss Xa Y79 

Y79 ~ Yss Xa Yss 

Y1 a X3 X1 Ya4 

Wss X1 Ya4 Xa Yss 

We10 Xs Yss X3 

Notice that the equations for Zi and Za both reduce, 

thereby eliminating a memory element. This does not imply 

that these memory elements are not required. These two 

signals (states 2 and 4) must be unique since they are used 

to switch other memories to prepare the proper transition 

paths. 

Procedure Summary 

The procedure for the synthesis of feedback sequential 

digit.al control circuits is summarized by the following 



four steps: 

1. Enter State Numbers - Write down the specified 

sequence and number each event in the sequence. 

Starting with the first event, sequentially 

enter the state numbers into the state matrix 

in the row corresponding to the desired output 

and the column corresponding to the previous 

event. 

2. Correct Persistent States~ Whenever a state 

signal remains on to form an extend-retract 

contradiction, the persistent state signal 

must be modified by a W memory element. 

J. Assign Memory States - Whenever there is more 

than one state in any column of the state 

matrix, memory states are required to make 

each of these states unique. 

4. Determine Output and Switching Conditions 

The digital output equations are obtained from 

the state matrix by replacing each state number 

by a logical 11 1 11 and all blank entries in the 

matrix by 11 0 11 and then multiplying the matrix. 

The switching conditions are determined from 

the memory subscripts. 

The following example encompasses all of the defined 

rules for the synthesis of feedback sequential logic cir

cuits and is worked in detail as a final illustration of 

this synthesis procedure. The entire problem is presented 
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on page Ji and the procedure is discussed in detail below. 

First of all, the sequence is specified and written 

with state numbers below it, as shown on page Ji. This 

sequence is then entered into the state matrix by placing 

the state numbers in the row of the desired output and the 

column of the present input. For example, the state number 

1 is entered in the Z1 row and the X3 column since the first 

event, Z1 , is initiated by the previous event which is the 

retraction of cylinder three. The next event is the retrac

tion of cylinder one; accordingly, state 2 is located in the 

Z1 row and X1 column. The remainder of the sequence is en

tered into the state matrix in the same fashion. 

The next step of the procedure requires the investiga

tion of each output partition for the possibility of per

sistent states. The first partition is investigated by 

starting with state 1. The next entry in this partition is 

state 2. Since this is a consecutive entry not within a 

diagonal partition, states 1 and 2 are contradictory and 

must be corrected by modifying the persistent state (state 

1) with the memory element W12 • W12 is entered in the 

matrix adjacent to state number 1. The next entry in this 

partition is state J. This entry, as well as the next, is 

within a diagonal partition and is not contradictory. The 

next entry in partition one after state 4 is state 7. Since 

state 4 is within a diagonal partition, its initiating sig

nal is negated prior to the next entry (state 7). States 7 

and 9 form a contradiction since event 6 has not been 
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negated before state 9 .. Accordingly, the memory element W79 

is entered by state 7. The final entry in partition one is 

state 1. Since event 8 is not negated before state 1, W91 

is placed beside state 9 to correct this contradiction. 

The next ~artition has only two states (5 and 8). It 

can be seen th&t these states do not form a contradiction 

since event 4 is negated by event 7. Similarly, state 8 is 

not persisting at state 5. 

The possible contradiction in partition three (6 and 

10) is eliminated since event 5 is negated by event 8. 

Thus, the signal causing state 6 is turned of'f' before state 

10. The state prior to ~tate 10 (state 9) is negated before 

state 6 eliminating this possible contradiction. 

Now that all persistent states have been corrected, the 

next step in the procedure is the assignment of' any required 

memory states. Column one of' the state matrix contains 

three states ( 2, 4, and 8). ' Each of' these states must be 

made unique by modifying the states with the proper memory 

state. This is done by placing Yas Ya 4 at state 2, Yas Ya 4 

at state 4 and Yas at state 8. (Notice the double subscript. 

notation.) Column two also contains three states, 3, 5, and 

10, and ·the QI~mory elements Y36 and Y310 are assigned accord

ingly. There are no other columns requiring memory. 

The final step of' the procedure is the specification of' 

output and switching conditions. The output equations are 

obtained by mentally replacing each state number by the 
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logical 11 1 11 and multiplying the matrix by the input vector. 

The switching conditions for the memory elements are 

obtained from the element subscripts. For example, W12 is 

set prior to state 1 by state 10 and is reset by state 2. 

W79 is set by state 6 and is reset by state 8. Y24 is set 

by state 1 an4 reset by state J, etc. 

This problem is worked to completion on the following 

page. 
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Sequence: 

State Nos: 

3 

2 Yaa Ya4 

4 Ya A Y.,.4. 
5 

EXAMPLE PROBLEM 

1 I 1 I 2 3 1 2 I 3 

1 2 3 4 5 6 7 8 9 10 

YS:1 o Yas 7 W79 

9 We1 

-
Ya1 o Yas 

B Y;;i 8 

6 

10 Ya10 

Output Equations: 

Z1 = X1 Ya10 Yas + Xa W79 + Xa w1 a 

Z1 = X1 Yaa Ya4 + X1 Yaa Ya4 + Xa W91 = X1 

Z:a = Xi Ya10 Yas 

Za = X1 Yaa 

Za = Xa 

Za = X1 Ya10 

31 

1 Wu~ 

Y:aa + X:a W91 

(9) 
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Switching Conditions: 

Set Reset 

Y24 Xs W1 a X1 Ya1 o Yss 

Yaa Xs W1a ~ W79 

Yss X1 Yaa Ya4 :X1 Yaa Ya4 

Ys10 X1 Yaa Ya 4 Xa Wei 

Wei X1 Yaa X1 Ys10 

W79 Xa X1 Yaa 

W1a X1 Ya1 o X1 X2 a Ya4 

The hydraulip implementation for this circuit is shown 

in Figure 4. In this ci~cuit, the actual switching signals 
,i 
;I 

have been replaceµ by the notation S24 , R,,.. s , etc. , where S2 4 

denotes the "set" signal for Y24 from the above switching 

conditions. 



Cylinder 1 : X1 I I I I X1 

L--: X2. I I I X2 
I 

Cylinder 2 I I Cylinder 3 

Zi Zi -Za Z2 Zs Zs 

X:i 

X1 Y31 o Y3s X1 Y310 Y3s 

,--~--, 
I I 
I - I 

L-- ----.J 

r-~-, I - I 
I - . I 
L- ---...I 

X1 Y2s Y24 X1 Y2s Y24 

~ }\i 

X3 W7s · X2 W91 X1 Y2s X1, Ya~ X1 Y310 

S79 1 J ,\, lt,e 

I 

._-4}_' :xs· X2 Xi. X1 

Figure 4. Hydraulic Implementation for 1, 1~_1, I, 2, J, 1, 2, I, J 
. I 

x1 Y31 o 

I.,.) 
I.,.) 



CHAPTER III 

THE STATE MATRIX SYNTHESIS PROCEDURE 

FOR RANDOM INPUT CIRCUITS 

Unlike feedback sequential circuits, random input cir

cuits do not anticipate the next input; consequently, every 

possible input change must be considered. An example of 

this type of circuit is the secret combination lock in which 

only one sequence of input changes will result in the proper 

output (i.e., the opening of the lock). Other sequences 

might result in different outputs, return to starting posi-

tion, or many other conceivable situations. In any event, 

the response to all input change possibilities from any 

state in the sequence must be specified before a circuit to 

perform the required logic can.be synthesized. 

The Primitive Flow Table 

The synthesis of a circuit to perform certain logic 

sequences must proceed from the word statement of the possi

ble inputs and the desired response to input changes. For 

every input change, two things must be specified: the 

resulting output and the desired transition paths from that 

state. These specifications are most conveniently 
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represented by the information table termed the Primitive 

.Flow Table. 

The primitive flow table contains the complete logic 

specifications for a problem and is arranged as follows. 

The columns of the table indicate all of the possible input 

combinations. These input states are usually labeled above 

each column according to the Gray code (one variable change 

between columns). Each row of this table represents the 

state of the logic system and its corresponding output, Z. 

Numbers with parentheses around them indicate stable states 

of the circuit and the unparenthesized numbers show the 

possible transition rlaths from. one stable state to another. 

As example J.11, consider the primitive flow table shown 

by Table V. This example has two inputs, X1 and Xa, and one 

output, Zi • The table indicates that the logic circuit must 

provide a path from state (1) to state (2) when the input 

changes from 11 00 11 to 1110 11 as indicated by the transition 

path numbered 2 in the first row. Also, the circuit must 

return from (2) to (1) by the path indicated in the second 

row, first column. Notice that no transition path is shown 
I 

from input 11 00 11 , state (1), to input 11 11 11 , s:ince this would 

require two inputs to be changed at exactly the same instant, 

which is highly improbable. 
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TABLE V 

PRIMITIVE FLOW TABLE FOR EXAMPLE J.1 

00 10 11 01 Z1 
' 

( 1) 2 - .3 0 

1 (2) 4 - 0 

1 - 4 ( .3) 0 

- 2 ( 4) .3 1 

In Table V, the output Z1 results when both inputs are 

actuated by either the path from state 2 or J. As is the 

case with this example, the primitive flow table should 

specify every possible transition path and should form a 

closed loop in that there is a path back to the~origin or 

any other state. The above example is extremely simple and 

requires no memory. When the sequences get larger and in-

puts are cycled, the need for memory arises as is shown in 

the next example. 

Consider for example J.2 the primary sequence 00, 10, 

11, 01, 11, 10, which results in the output Z1 • These

quence 00, 01, 11 re~ults in the Z2 output. All other pos-

sible sequences are considered and the transition paths are 

shown in the completed primitive flow table, Table VI. 
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TABLE VI 

PRIMITIVE FLOW TABLE FOR EXAMPLE J.2 

00 10 11 01 Z1 Za 

(1) 2 - 7 0 0 

1 (2) 3 - 0 0 

- 2 ( 3) 4 0 0 

1 - 5 ( 4) 0 0 

- 6 ( 5) 4 0 0 

1 (6) 3 - 1 0 

1 - 8 (7) 0 0 

- 9 (8) 7 0 1 

1 
. (9) 3 0 0 -

Before synthesizing a circuit to perform the indicated 

iogic of Table VI, it is advantageous, al though not com-· 

pletely necessary, to administer two additional steps to the 

primitive flow table. First of all, the primitive flow 

table should be checked for the possibility of redundant 

states. Two stable states are said to be redundant if and 

only if they have the same input state, the same output 

state, .. and the s'ame or equivalent transition paths. For 

example, the states (2) and (9) in Table VI are redundant 

since they have the same input (they are in the same 

column) , the same output ( Z1 Za ) , and the same transition 

paths (1 and J). For this reason, the row containing state 

(9) may be completely removed and all of the transition 
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paths 9 may be replaced with the path indicator 2. There 

are no more redundancies in this table and the resulting 

flow table is termed the reduced primitive flow table. 

Another advantageous operation on this flow table is 

the transfor~ation to the canonical flow table. This opera-

tion is not completely necessary for the purposes of this 

chapter, so the definition and detailed discus~ion of it is 

deferred until Chapter IV. Briefly though, the basic con-

cept is to order the states according to systematic input 

changes. The canonical flow table for the problem under 

consideration (which includes the above mentioned reduction) 

is shown in Table VII. 

TABLE VII 

CANONICAL FLOW TABLE FOR EXAMPLE J.2 

00 10 11 01 Z1 Za 

(1) 2 - 3 0 0 

1 (2) 4 - 0 0 

1 - 5 (J) 0 0 

- 2 ( 4) 6 0 0 

- 2 (5) 3 0 1 

1 - 7 ( 6) 0 0 

- 8 (7) 6 0 0 

1 (8) 4 - 1 0 
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Formal Matrix Representation 

Once a problem has been completely specified and the 

canonical flow table has been derived 9 the next step is the 

synthesis of circuit equations to perform the required 

logic. This synthesis can be reduced to the determination 

of a unique matrix[~] satisfying the relation. 

This is a statement that the outputs [z] are related to 

the inputs [x] and previous events. The matrix [M] provides 

this relationship and contains memory information which 

defines the present state. The only difference between this 

matrix relation and the one used for the feedback sequential 

circuits is the input and output vectors used. In feedback 

sequential circuit synthesis, the changed input and the 

changed output vectors are used. For random input circuit 

synthesis, the input vector contains the total input state 

(present state of all inputs) and the output vector repre-

sents the continuous output state (present state of each 

output) rather than the change output. 

As a first step toward constructing this matrix, the 

state numbers from the canonical flow table are entered into 

each of the output partitions. States with an output of Z1 

are entered in the top half of the ith output partition and 

states with the Z1 output are entered in the bottom half. 

This determines the rows in which states are entered. To 
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determine the proper entry column, recall from the rules of 

matrix multiplication that each column in the matrix is 

multiplied only by a corresponding row of the input vector 

(x]. Thus, a column of the matrix represents events asso

ci"ated with only one input state. Hence, state numbers are 

entered in the proper row of the output partition and in the 

column associated with that input state. 

To illustrate the state matrix synthesis concept, con-

sider example J~1 as represented by Table V. This primitive 

flow table is entered into the state matrix by entering the 

stable state numbers in the row of the individual output and 

the column of the present input similar to the way it was 

done in Chapter II. This matrix is given by Table VIII. 

TABLE VIII 

THE STATE MATRIX RELATION FOR EXAMPLE J.1 

l~ -I 1 2 

To obtain the output equation, replace every state num-

ber by the logical "1" and place a "O" elsewhere. Multiply-

ing the matrix yields the result: 
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(10) 

The above example illustrates the basic concept of cir-

cuit synthesis using state matrices. This problem did not 

require memory; a more general problem requiring memory is 

discussed below. 

As another example of circuit synthesis, consider 

example J.2 represented by the canonical flow table given in 

Table VIII. The state numbers are entered into the matrix 

as described above and the result is termed the state matrix 

relation. See Table IX. 

TABLE IX 

THE STATE MATRIX RELATION FOR EXAMPLE J.2 

~~ 

8 00 

1 2 4 J 10 

5 6 
7 11 

5 01 

1 2 4 J 
8 7 6 

Memory Assignment 

As can be seen from Table IX, the only time the output 



42 

Z1 appears is state 8. Since state 8 is associated with the 

input 11 10 11 , one would be tempted to state that the output Z1 

is equal to X1 X2 • However, this is not the case since state 

2 also has the input 11 10 11 but does not have the output Z1 • 

Thus, some method to distinguish between states 2 and 8 is 

required. This is most conveniently done by assigning a 

memory state at both states. If a memory element was in the 

"set" position for 2 and in the "reset" position for 8, then 

these two states would be a unique combination of the input 

and memory states. This memory element may be represented 

by placing Ya 8 adjacent to every 2 in Table IX and its logi

cal complement Y28 by states 8. This double subscript nota

tion implies that the memory element Y28 is used to 

distinguish between states 2 and 8 and is set prior to 2 and 

is reset prior to 8. 

A similar condition exists in column four. Although 

states 3 and 6 do not have differing outputs, they still 

required uniqueness since they have different transition 

paths and their signals are used to switch different memory 

elements. Therefore, the memory element Y36 is assigned to 

state 3 and its complement Y36 is assigned to state 6. 

States 4, 5, and 7 in column three also require memory to 

demand their uniqueness. The memory state Y47 Y46 is 

assigned to state 4, Y47 Y46 to state 5, and Y47 to state 7. 

Here again, the switching conditions are inferred by the 

subscripts. At this point, the reader should refer to 
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Appendix A for further information concerning the passive 

memory. 

The matrix shown in Table X has all of the above 

memory modifications. Now, each state in this matrix has a 

unique representation. 

- . 

TABLE X 

THE UNIQUE STATE MATRIX RELATION 
FOR EXAMPLE J . 2 

8 Yas 

.1 2 Yas 4 Y47 Y4s 3 Y3e 

5 Y47 Y4s 6 Y3e 

7 Y47 

5 Y47 Y4s 

1 2 Yas 4 Y471 Y45 3 Y3e 

8 Yas 7 Y47· 6 Y3e 

Output and Switching Conditions 

00 

10 

11 

01 

The purpose of any synthesis procedure is to give every 

state a unique signal representation. This signal (or vari-

ations upon this signal) is then used either as an output 

signal or as a switching signal for other memory elements. 

The above steps produce a state matrix in which every state 

,is represented uniquely by a certain combination of input 
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and memory states. The only remaining step is the specifi

cation of the outp~t and switching conditions. 

The output equations are obtained from the state matrix 

relation by replacing every state number designation in the 

state matrix by the logical 11 1 11 'and by placing a logical 11 0 11 

elsewhere. Once this substitution has been made, the re-

sulting matrix is termed the output matrix since it now rep

resents a set of digital equations rather than a state 

matrix relation. These equations can be rewritten in the 

individual equation form by multiplying the matrix by the 

input vector. 

The final step in the synthesis procedure is the one 

which insures the pro:per circuit operation.;. this is the 

specification of when each memory element is to be switched 

to the proper state. These switching conditions are in

ferred from the element subscripts and the flow table. For 

example, the memory element Y13 is set prior to the state 

"i" and is reset prior to state "j". This information is 

obtained from the flow table by observing the possible 

transition paths to states i and j. The corresponding pre

vious states are to be used for switching signals. 

As a specific example, t~e output and switching condi

tions for the problem given in Table X are as follows •. The 

output matrix equation is: 



0 Y2s 0 .. , 

z~ 1 Y2s Y47 
Y47 

Y4:7 

0 0 Y47 
' 

1 'Y2s + Y47 

Y2s Y47 

0 0 
.;, 

Y45 + Yss 
Y4s + Yss 

Y4s 0 

Y45 + Y3e 

Y3s 

+ 

+ 

00 

10 

11 

01 

( 11a) 

Since the outputs Z1 and Zi are perfect complements, only 

the equations for Zi and Z2 need to be specified. These 

are: 

Z1 = X1X2 Y2s 
(11b) 

Z:;i = X1 X2 Y4 7 Y4 s 

The switching conditions as determined from the sub-

scripts and the flow table (Table VII) are: 

Y2s: Set = States 1 + 4 + 5 

= X1X2 + X1X2 Y47 Y45 + X1X2 Y47 Y4s 

= X1X2 + X1 Xa Y47 

Reset = State 7 

= X1X2 Y47 

Y47: Set = States 2 + 8 

= X1 X2 Y2 a + X1X2 Y:a a 

- X1 X2 

Reset = State• 

= X1X2 Yss 
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Y45 Set = States 2 + 8 

·- X1Xa 

Reset = State 3 

= X1Xa Y3s 

Y3s Set = States 1 + 5 

= X1Xa + X1Xa Y47 Y45 

Reset = States 4 + 7 

= X1Xa Y47 Y45 + Xi. Xa Y47 

In more compact notation, the switching conditions are: 

Set Reset 

Yas 00 + 11 Y47 11 Y47 

Y47 10 01 Y3s 

Y45 10 01 Y3s 

Y3s 00 + 11 Y47 Y45 11 Y47 Y45 + 11 Y47 

Procedure Summary 

The state matrix synthesis procedure consists of the 

following four steps: 

1. Develop Primitive Flow Table - From the word 

statement of the prpblem, construct a primi-

tive flow table sho~ing all possible input 

changes, all possible transitions, and the 

corresponding outputs. If desired, this flow 

table may then be transformed into the canon-

ical flow table. 

2. Form State Matrix - Enter the stable state 

numbers into the state matrix. Each state 



number appears in every output partition 

under the proper column. 

J. Assign Memory States - Whenever there is more 

than one stable state number in a column, make 

each state unique by assigning the appropriate 

memory state. 

4. Determine Output and Switching Conditions -

The output equations are obtained by replacing 

each state number by 11 1 11 and placing a 11 0 11 

elsewhere and then multiplying the matrix. The 

output complement need not be specified. The 

switching conditions are determined from the 

element subscripts and previous events shown 

in the flow table. 
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As a final example of the state matrix synthesis proce

dure, example J.J is worked to completion on page 51, and 

e·ach step is explained in detc;1.il below. The reader may 

refer to Appendix C for further example problems and their 

solutions. 

Before working the final example, some of the formality 

of the method can be dropped and the shorthand notation 

introduced. First of all, the formal matrix representation 

is omitted and the rows and columns of the matrix itself are 

·merely labeled according to their outputs and inputs •. Next, 

the intermediate step of writing the output matrix is elimi

nated by mentc;1.lly multiplying the matrix rather than rewrit

ing it. As a matter of fact, the matrix representation 
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itself can be eliminated by working directly with the primi

tive flolf table once the reader is familiar with the tech

nique. However, this step is not presented here. 

Consider for example J.J a secret combination lock in 

which there is only one proper sequence of output actuations 

which will open the lock (output Z1 ). Any deviation from 

this sequence sounds an alarm (output Z2 ). The correct se

quence is X1 , X2 , Xe , X2 , X1 ; where X means actuate and 

hold, X means release. Even though a mistake sounds the 

alarm, there should be a path provided back to the origin. 

This primitive flow table is shown on page 51 and is not 

transformed into the canonical form. 

Once the primitive flow table is developed, the next 

step is the formation of the corresponding state matrix. 

This is done by ent~ring each state number in the column of 

the input state and the rows of the individual outputs. For 

the first output, all state numbers except state 6 are en

tered in the lower half of output partition one, since all 

of them have the Z1 output. State 6 is then entered into 

the Z1 row of the state matrix. Next, states 1 through 6 

are entered in partition two in the Za. row and states 7 

through 10 are entered in the Z2 row. These two row parti

tions comprise the state matrix for this example. 

The next step is the determination of memory require

ment's. To do this, each column, representing one combina

tion of the inputs, is treated separately. Reference to the 

state matrix reveals that every column has multiple states 



and requires memory to make each state unique. Column one 

has two states, 1 and 8, requiring one memory element, Y18 • 

Y18 is thus entered beside every 1 in the matrix, and its 

complement Y18 is entered adjacent ·to states 8. Similarily, 

column two contains three states, 2, 4, and 9. Each of 

these states is made unique by assigning two memory ele

ments, Y29 and Y24 , in accordance with Appendix A. Column 

three has three states and column four has two. Memory ele

ments are assigned to these states in the same manner as 

above • 

. After the state matrix is formed and the memory re

quirements are entered adjacent to their respective states, 

the output equations are obtained by mentally replacing the 

state numbers with 11 1' s'' and then multiplying the matrix by 

the input vector. The output complements do not have to be 

specified. The output Zi appears at state 6 only. The Z2 

output appears at states 8, 9, 10, and 7. 

The final step is the specification of the switching 

conditions; this step ensures proper circuit operation. If 

the double subscript notation is used to deriote ~emory ele

ments, the switching conditions are stated from knowledge of 

the subscripts and the flow table. The subscripts indicate 

when an element should be in the "set" or "reset" position 

and the flow table shows the possible transitions to these 

states. For example, Y19 is set by any state immediately 

preceding state 1 .and is reset by states preceding state 8. 

From the flow table, it can be seen that the only transition 
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path to only transition path to state 1 is from state 6. 

There are transition paths to state 8 from states 2, 4, 7, 

and 9. Thus, Yl 8 is set by state 6 and is reset by state 2, 

4, 7, or 9. The element Y29 is set by state 1 or 8 and is 

reset by state 5 or 10. The remaining switching conditions 

are determined in the same fashion and the complete table or 

switching conditions is given below. 

This problem is shown on the next page and the logic 

circuit schematic is shown in Figure 5. 
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. TABLE XI 

THE PRIMITIVE FLOW TABLE FOR EXAMPLE J.J 

00 10 11 01. Z1 Za 

( 1) 2 7 0 0 

8 (2) J 0 0 

4 ( J) 7 0 0 

8· ( 4) 5 0 0 

9 ( 5) 6 0 0 

1 10 ( 6) 1 0 

8 10 (7) 0 1 

(8) 2 7 0 1 

8 ( 9) 10 0 1 

9 (10) 7 0 1 

The State Matrix: 

00 10 11 01 

6 Ys7 

1 Y1s 2 Yae Ya4 J Y31 o Y35 7 Ys7 

8 Y1s 4 Yae Ya4 .. 5 · Y31 o Yss . , . 

9 Yae .10 Ys10 

8 Y1s 9 Y2s 10 Ys10 7 Ye 7 

1 Y1s 2 Yae Y2 4 J Y310 Yss 6 Ys7 

4 Y:as Ya4 5 Ys1 o Yss 

Output Equations: 

Z1 = X1 Xa Ys7 

Za = X1 X:a Y18 + X1 Xa Ya 9 + X1 X8 Y310 + X1 Xa Y6 7 (12) 
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Switching Conditions: 

Set Reset 

Y1e X\Xa Ys7 X1Xa + X1Xa Ys7 

Yas X1Xa X1Xa Y310 Y3 6 + X1Xa Ya10 

Ya4 XiXa XiXa Y31 o Ya s 

Y310 X1Xa Yas Ya4 X1Xa + X1X2 Yas 

Y3s X1Xa Yas Ya4 XiXa Yas Ya4 

Ys7 X1Xa Ya 1 o Ya s X1 Xa + X1 Xa ·ya10Yss + X1 Xa Ya10 
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Sa4 

( 1) (8) 
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Za 
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Figure 5. Logic Circuit for Examp1e J.J 
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CHAPTER IV 

DIGITAL EQUATION SIMULATION AND 

THE CANONICAL FLOW TABLE 

All synthesis procedures will produce valid equations 

for the representation of the specified logic when the pro

cedure is executed correctly. However, some methods are not 

easily understood or require personal preference in certain 

steps. Often, intuitively designed circuits do not function 

properly or for some reason the circuit action needs to be 

analyzed. To do this, the implied equations of the circuit 

can be written. 

Whether for verification or analysis, it is often nec

essary to check the system equations. For this reason, a 

systematic digital equation simulation method has been 

developed. This method involves the systematic excitation 

of the inputs to the equations to produce a primitive flow 

table. This simulated flow table representing the equations 

may then be compared to the desired circuit action to ascer

tain if the equations represent the required logic. 

Once the simulated flow table is obtained, the task of 

comparing this table to the original flow table may be 

larger than the original task of verifying the equations if 

the state numbers do not coincide. For this reason, it is 
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advantageous, if not mandatory, to define a standard format 

for flow tables. The canonical flow table defined in this 

chapter satisfies this requirement. 

Digital Equation Simulation 

The simulation technique presented here offers a sys

tematic method for checking equations and in no way assumes 

prior knowledge of system response. The basic idea is to 

change one input from some base state and then observe the 

resulting output and memory states. If these output and 

memory states are different from any previously determined, 

then a new state is defined. If they are the same as some 

other state, then this new state is redundant and is re-

placed by its equivalent state. By extending this proce-

dure, there finally results a closed flow table. The flow 

chart shown in Figure 6 illustrates the complete simulation 

method. 

The method may best be explained by an example. Table 

XII illustrates the step-by-step development of the simula-

tion discussed below. Consider the logic represented by the 

following equations as derived by the classical method: 

Z1 = X1Xa Y1 Ya 

Za = X1Xa Y1 Ya 
( 13) 

Y1 = S1 + Y1 R1 

Ya = Sa + Ya Ra 



Assume Initial Memory 
and Input States 

Base State 

, r 

, Change One Input 

New State 

r 

~ Check for Equivalence 

Assign State 
Number 

Return to Base to 
Change Next Input 

Return to Oldest New 
State Until Each is 

Investill'ated. 

Yes 

' 

Reduce 

Simulated Flow Table 
in Canonical Form 

, , 

Figqre 6. Flow Table for Simulation Method 
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Where the switching conditions are given by: 

S1 = X1Xa + Xa Ya 

R1 = X1Xa + XaYa 
U.4) 

Sa = X1 Xa Y1 + X1 Xa Y1 

Ra = X1Xa Y1 + X1 Xa Y1 

The simulation is started by the initial assumption of 

a memory state and an input state. For convenience, assume 

that all memories are in the reset position, ( Y1 Ya ) , and 

that all inputs are off, (OO). This state is termed the 
,f 

temporary base and is entered into a flow table by placing 

a (1) in the first row under the input column 11 00 11 • The 

corresponding o~tput and memory states are also indicated 

for this row. Starting with this state, (1), as a base, 

each input is excited individually to determine the.system 

response. First, the input X1 is excited. This defines a 

new state, (2), in the 11 10 11 column of Table XII (a). The 

transition path to stable state (2) is indicated by the un-

parenthesized 2 in row one. Reference to the equations 

reveal that the corresponding output and memory states do 

not change. Next, input two is changed from the base, 

resulting in the new state (J) in the 11 01 11 column. Again, 

the output and memory states remain the same. This com-

pletes the investigation from base (1) and the resulting 

response is indicated by Table XII (a). 

The next step is to return to the oldest new state 

and repeat the procedure with this state as the base. 



00 

( 1) 

00 

( 1) 

1 

00 

( 1) 

1 

1 

TABLE XII 

STEP-BY-STEP DEVELOPMENT OF DIGITAL 
EQUATION SIMULATION 

10 11 01 Zi Za Y1 

2 - 3 0 0 0 

Ya 

0 

(2) 0 0 0 .Q 

( 3) 0 0 0 0 

(a) Initial Investigation 

10 11 01 Z1 Za Y1 Ya 

2 - .3 0 0 0 0 

( 2) .4 - 0 0 0 0 

(J) 0 0 0 0 

( 4) 0 0 0 0 

(b) Investigation of Base (2) 

10 11 01 Z1 Za Y1 Ya 

2 - 3 0 0 0 0 

(2) 4 - 0 0 0 0 

- 4 ( 3) 0 0 0 0 

( 4) 0 0 1 0 

(c) Investigation of Base (J) 
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TABLE XII (Continued) 

00 10 11 01 Z1 Za Y1 Ya 

( 1) 2 - 3 0 0 0 0 

1 (2) 4 - 0 0 0 0 

1 - 4 ( 3) 0 0 0 0 

- 6 ( 4) 5 0 0 1 0 

(5) 0 1 1 1 

(6) 1 0 0 1 

(d) Investigation of Base (4) 

00 10 11 01 Z1 Za Y1 Ya 

( 1) 2 - 3 0 0 0 0 

1 (2) 4 - 0 0 0 0 

1 - 4 ( 3) 0 0 0 0 

- 6 ( 4) 5 0 0 1 0 

1 - 4 ( 5) 0 1 1 1 

1 (6) 4 - 1 0 0 1 

(e) Investigations of Bases (5) and (6) 
and the Final Simulated Flow Table 
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At this point, the olq.est new state is (2). With 11 1011 as a 

new base, changing the first input defines a transition to 

the 11 00 11 column. The reader is encouraged to check both 

the output and switching equations to verify that the re

sulting output and memory states for this possible transi

tion remain the same. The new state defined in column one 

is redundant since it is equivalent to (1). Hence, a 

transition path from (2) to (1) is indicated by a 1 entered 

in column one. Next, the second input is changed from the 

base. This defines a new state, (4), in the 11 11 11 column and 

the input 11 11 11 sets Y1 • This completes the investigation of 

(2). The result is shown in Figure XII (b). 

The next base is (J) and investigations from this base 

reveal that both input changes describe redundant informa

tion. The first input change transfers to (4) and the 

second change transfers to (1). See Table XII (c). 

The first input change from the next base, (4), sets 

Ya, subsequently giving the output Za~ Since this new state 

is not redundant, the state number (5) is assigned in the 

11 01 11 column. Changing the second input from base (4) sets 

Ya. Xa Ya resets Y1 which results in the Zi output. Again, 

this new state is not redundant and the state number (6) is 

assigned to this transition. See Table XII (d). 

The first input change from state (5) resets Ya and 

produces no output. This is equivalent to state (4) so no 

new state number is assigned. The second input change 

from (5) resets Y1 and then Ya, and has no output. This 



defines a transition path back to state (1). 

The final state to be investigated is state (6). It 

can be shown that both input changes describe transitions 

to previously defined states. Since there are no new 

states to be investigated, this completes the simulation; 

the final simulated flow table is shown in Table XII (e). 

The equations examined above were derived from the 

classical method. In the classical method, each memory 

state is assigned to a complete row. In the state matrix 

method, the memory elements are associated with input 

columns individu~lly, not the complete row. Consequently, 

when simulating the state matrix equations, the particular 

sub-memory state associated with a column, not the total 

memory state, is all that needs to be considered during 

investigations. With this in mind, it is convenient to 

place the designation of the memory state beside the state 

number in the flow table rather than beside the complete 

row. 

Canonical Flow Table 
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Considering the previously mentioned need for the 

canonical flow table and the simulation method discussed 

above, it seems reasonable to define the canonical flow 

table in a manner analogous to the simulated flow table. 

The process used here is the systematic ordering of the 

rows of a primitive flow table in accordance with the spec

ified response to input changes. Starting with the origin 
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or first st~ble state as a base, the state resulting from 

the first input change is placed in the second row. The 

state resulting from the second input change is placed in the 

third row, etc. Upon the completion of the investigation of 

this base, the oldest new state is then used as a base and 

the entire process is repeated until all rows have been 

reordered. The state numbers are then resequenced. 

The process is best illustrated by an example. Con

sider the primitive flow table used in Chapter III, Table 

VI. The redundant state is eliminated and the reduced 

primitive flow table is shown in Table XIII (a). 

Starting with state (1) as a base, the first input 

change indicates a transition path to state (2). Since 

state (2) is already in row two, no reordering is necessary. 

The second input change indicates a transition path to (7). 

Hence, the row containing state (7) is placed third as shown 

in Table XIII (b). This completes the investigation from 

( 1) • 

The first input change from (2) indicates a path back 

to a previously ordered state, (1), requiring no reordering. 

The second input change indicates a path to (J). Since it 

happens that (J) is already in the next row, no reordering 

is required. See Table XIII (c). 

The next base is (7). This state has transitions to 

states (8) and (1), respectively. Thus, state (8) is moved 

to the fourth row and the transition to (1) is already 

ordered. See Table XIII (d). 



TABLE XIII 

THE DEVELOPMENT OF THE CANONICAL 
FLOW TABLE 

00 · 10 · 11 01 Z1 Za 

( 1) 2 - 7 0 0 

1 (2) 3 - 0 0 

- 2 ( 3) 4 0 0 

1 - 5 (4) 0 0 

- 6 ( 5) 4 0 0 

1 (6) 3 - 1 0 

1 - 8 (7) 0 0 

- 2 (8) 7 0 1 

(a) Original Primitive Flow Table 

00 10 11 01 Zi Za 

( 1) 2 - 7 0 0 

1 (2) 3 - 0 0 

1 - 8 (7) 0 0 

- 2 ( 3) LJ:. 0 0 

1 - 5 ( 4) 0 0 

- 6 ( 5) 4 0 0 

1 (6) 3 - 1 0 

- 2 (8) 7 0 1 

(b) Initial Investigation From (1) 
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TABLE XIII (Continued) 

00 10 11 01 z,_ 

( 1) 2 - 7 0 

1 (2) 3 - 0 

1 - 8 (7) 0 

- 2 ( 3) 4 0 

1 - 5 ( 4) 0 

- 6 ( 5) 4 0 

1 (6) 3 - 1 

- 2 (8) 7 0 

(c) Investigation of State (2) 

v X ~'"l a 

00 

( 1) 

1 

1 

-
-
1 

-
1 

10 

2 

(2) 

-
2 

2 

-
6 

(6) 

11 01 Z1 

- 7 0 

3 - 0 

8 ( 7) 0 

( 3) 4 0 

(8) 7 0 

5 ( 4) 0 

( 5) 4 0 

3 - 1 

(d) Investigation of State (7) 
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Z:a 

0 

0 

0 

0 

0 

0 

0 

1 

Za 

0 

0 

0 

0 

1 

0 

0 

0 



TABLE XIII (Continued) 

00 10 11 01 Z:i. Z:a 

( 1) 2 - 7 0 0 

1 (2) 3 - 0 0 

1 - 8 (7) 0 0 

-
! 

2 ( 3) 4 0 0 

- 2 ( 8) 7 0 1 

1 - 5 ( 4) 0 0 

' 6 ( 5) 4 0 0 -
1 ( 6) 3 - 1 0 

(e) Investigation of State (J) 

00 10 11 01 Z:r. Z:a 

( 1) 2 - 3 0 0 

1 (2) 4 - 0 0 
• 

1 - 5 ( 3) . 0 0 

- 2 (4) 6 0 0 

- 2 ( 5) 3 0 1 

1 - 7 (6) 0 0 

- 8 (7) 6 0 0 

1 (8) 4 - 1 0 

(f) The.Completed Canonical Flow Table 
, With Resequenced State Numbers 
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The reader is encouraged to investigate states (J), 

(8), (4), and (5) to verify that the remaining states are 

already in the proper order. Once the rows are in the 

proper order, the state numbers are then resequenced so that 

each stable state number corresponds to its row number. The 

completed canonical flow table is shown in Table XIII (f). 

One further point which has not been decided at the 

time of this writing is the definition of an origin for the 

primitive flow table. The origin is usually thought of as 

being the state with the inputs off and having the desired 

sequence or logic developed from this point. However, a 

more meaningful definition of the origin should consider the 

topology of the transitions as being more important than the 

number of inputs or outputs that are on or off. This defi

nition should be comprehensive enough so that an origin can 

be uniquely determined for any primitive flow table. 

Since an origin is not defined in this chapter, the 

canonical flow table used here is not unique. The rows are 

in the.proper order, but the origin or first row in the 

canonical flow table will be the first row given in the 

primitive flow table. This depends upon the designer's 

personal preference and will, in general, not be unique. 

However, for all of the cases investigated by the author, 

the simulated flow table has resulted with the same origin 

as the canonical primitive flow table, thereby presenting no 

problem. 



CHAPTER V 

DIGITAL COMPUTER PROGRAMS 

The logic systems program is designed to perform either 

the synthesis or simulation of digital control systems. In 

order to perform system synthesis, the user needs only to 

supply the primitive flo~ table describing the desired 

logic; the computer program will then perform the necessary 

steps to obtain the digit~! equations.by the state matrix 

synthesis procedure given in Chapter III. ·These· equations 

may then be implemented to obtain a circuit containing the 

information represented by the primitive flow table. 

With this capability, the designer does not need to 

know a formal synthesis procedure; he only needs to know how 

to write a primitive flow table, call the program, and then 

implement the resulting equations. 

The simulation program offers a powerful tool for the 

analysis of digital systems. This program generates the 

primitive flow table implied by a set of digital equations 

by the method described in Ch~pter IV. The simulation pro

gram may be used either to confirm the validity of equations 

or to analyze the logical implications of existing circuits. 

This can be advantageous when working with intuitively 

designed circuits. 
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The FORTRAN IV source deck listed in Appendix B has 

been running on the WATFOR terminal of OSU's IBM J60/50 

computing facility. A time-share version of the program 
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is also available to allow users with remote teletype ter

minals to have access to the program from any phone line. A 

user's guide for the time share program will be made avail

able under a separate cover. 

Since the programs are rather lengthy and the listings 

given in Appendix B contain many of the details of the pro

grams, only the philosophy of the programs is presented in 

the rest of this chapter. Appendix C shows both the calling 

information and the computer solutions to many example prob

lems. For further details of the use of this program, see 

the write-up in Appendix Band the example solutions in 

Appendix C. 

Synthesis Program LOGSYN 

Subroutine LOGSYN is the executive subroutine for the 

synthesis of digital systems. The flow chart showing the 

relation of subroutines is given by Figure 7. Subroutine 

LOGSYN reads in the input data concerning the primitive 

flow table and then uses subroutine PRINT to print the orig

inal primitive flow table. This primitive flow table is 

then examined by subroutine EQUIV to reduce any redundant 

information which might be contained in the flow table. If 

two states are found to be redundant, one is eliminated and 

an indication of this reduction is printed out below the 
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Figure 7. Flow Diagram for Logic Systems Program 



original primitive flow table. This reduced primitive 

flow table is then put into canonical form by subroutine 
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CANON. In this routine the rows of the primitive flow table 

are reordered and resequenced as described in Chapter IV. 

The resulting canonical flow table is then printed by sub

routine PRINT. 

Subroutine OUTPUT performs most of the steps required 

for system synthesis. In this routine, the memory require-

ments for each column are 'determined and subroutine ASSIGN 

is used to provide the passive memory assignment code to 

distinguish between stable states. After each state is made 

unique by the proper memory assignment, the state signals 

are printed. This gives the input and memory combination 

which describes each stable state. Next, the switching con

ditions required for proper circuit action are printed. The 

switching condi ti.ons are presented by giving the state num

bers at which a switch occurs. Finally, the output equa

tions are given by P+inting the states at which the 

individual outputs appear. This completes the synthesis 

procedure and the program then returns to the main calling 

program to exit. 

Simulation Program LOGSIM 

Subroutine LOGSIM is the executive program for systems 

simulation. As can be seen by Figure 7, this routine reads 

the data cards containing basic information concerning the 

system to be simulated·. Subroutine LOGSIM then sets up a 
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loop similar to the one shown in Figure 6 of Chapter IV. 

This routine changes an input according to a Gray code. The 

Gray code is supplied by subroutine ASSIGN. The correspond-

ing system response is determined by subroutine DIGEQN. 

Subroutine DIGEQN is a subroutine supplied by the user con-

taining the switching and output equations. The input 

change and the corresponding response determines a new 

state. This state is then checked for redundancy by sub

routine EQUIV. If the new state is not equivalent to a 

previously defined state, a state number is assigned to this 

state. 

This process is continued until all states have been 

investigated and no new information is being generated. At 

this point, the simulation is completed and subroutine PRINT 

is then used to print the simulated primitive flow table. 

Appendix C contains many examples of problems solved 

with both the synthesis and simulation programs. The 

reader is referred to the appendices for further information 

concerning the usage and input for these computer programs. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

The major effort of this thesis has been concentrated 

upon the development of new techniques for the synthesis and 

analysis of digital logic systems. The synthesis procedures 

are based upon the assumption that the outputs are related 

to the inputs. This relation can be represented by the 

vector matrix equation 

[z] = [MJ[x] (15) 

Since the input vector [x] and the desired output vector[~] 

are known, the synthesis reduces to the determination of the 

binary matrix [~J. The entries in this matrix give the re

lationship between the inputs and the outputs and contain 

memory information of previous states. 

The synthesis proceeds from entering the state numbers 

from a statement of the desired logic or sequence into the 

matrix [M]. The memory requirements are then determined and 

entered into the matrix, producing the set of output equa-

tions in matrix form. Specification of the switching 
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conditions for the memory elements completes the synthesis 

procedure. 
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The simul~tion technique presented here is quite help

ful either to verify digital equations or to analyze exist

ing circuits. This technique can also be used to totally 

redesign existing circuits by first writing the equations 

for the circuit, obtaining the simulated flow table, and 

then synthesizing the state matrix equations from this flow 

table. The canonical flow table is also an aid for analysis 

and comparison. 

The digital computer programs developed to perform 

either systems synthesis or simulation offer a great design 

tool to the designer who is unfamiliar with switching cir

cuit theory. These programs perform the steps necessary to 

synthesize or simulate digital systems as described in 

Chapters III and JV. With these programs, the designer only 

needs to be able to write a primitive flow table and to 

implement equations. 

Comparison to Other Techniques 

To fully evaluate the merits of this synthesis tech-

.. nique, a general comparison to existing techniques should 

be made. This technique is compared to the classical method 

and those methods suggested by Cole (1) and Maroney (6) on 

the basis of the following areas: 

1. Simplicity of the Synthesis Procedure - The 

execution of the state matrix synthesis 



procedure is much less complicated than the 

classical method since the merging operation, 

operational flow table, Karnaugh maps, etc., 

are eliminated. The total concepts of cir

cuit synthesis are much easier to grasp, 

partially due to the use of the familiar 

matrix notation. In comparing to the tabular 

methods of Cole and Maroney, one can only 

compare on the basis of procedure simplicity 

since these methods produce essentially the 

same equat~ons as the techniques presented here. 

The philosophy of circuit implementation is 

also the same. Thus, any comment made about 

the state matrix equations or circuits is 

equally applicable to those of the tabular 

methocis. 

Cole's tabular technique for the synthesis 

of feedback seq~ential circuits handles persist

ent states in a more straightforward mann·er 

than does the matrix method. However, the 

search procedure for persistent states in the 

matrix is more mechanical. It is felt that the 

synthesis concepts using the matrix notation 

are easier to grasp than the tabular method; 

but this is a matter of personal preference. 

Maroney's tabular method handles random 

input problems in a tabular technique similar 



to Cole's method. The random input possibility 

requires multiple transition paths from states. 

The transitions from each state are very hard 

to follow in the tabular form; whereas, the 

primitive flow table provides a graphic display 

of transition paths. This causes a slight 

problem for involved sequences since the 

designer must keep much of this information in 

his head rather than on paper. Also, redundant 

states are harder to s·ense from the tabular 

technique than from the primitive flow table. 

Again, it is felt that the matrix synthesis 

concepts are easier to grasp. 

2. Simplicity of Circuit Implementation Procedure -

The state matrix and tabular synthesis procedures 

offer a specific step-by-step procedure for cir

cuit implementation; whereas, the classical meth

od does not lend itself to any set procedure. 

J. Circuit C~mplexity - The number of elements 

required to implement a circuit is generally a 

good indication of the circuit complexity. 

Although the state matrix equations usually 

require more memory elements, the use of the 

passive memory effect reduces the total number 

of elements to about the same or less than that 

required by the classical method. However, 

this is not a very rigid basis for comparison 
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since the classical method offers such a 

flexibility in writing equations from the 

Karnaugh maps. Each designer might derive 

different equations from the classical method 

depending upon his own personal preference. 

Thus, to compare on this basis, the equations 

from the classical Karnaugh maps must be re

written until a combination with minimum hard-

ware is determined. This is then compared to 

the state matrix method. 

4. Other Circuit Considerations~ The state matrix 

synthesis procedure offers circuit features 

that are not available from the classical 

method. Among these are the elimination of 

switching hazards, cycles, and other logical 

complications. Another very important feature 

is the prepared flow path concept. In this 

procedure, each memory is switched prior to 

any input change, thus preparing all possible 

paths from that state. Notice that in the 

classical method the input change causes the 

switching of a memory to give the next state. 

The prepared flow path feature produces cir

cuits in which the only delays are the delays 

caused by forming the input combination and any 

transmission time delay. Thus, circuit response 

time is at a minimum. 
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Another important feature stemming from 

the prepared flow path concept is that the 

passive memory elements used in this synthesis 

procedure are never switched when they are un-

der power as they are in the classical method. 

Switching under power causes undesirable 

transient pulses in the circuit. This is 

avoided by switching the element before the 

passive signal appears. 

Suggestions for Further Study 

As is true with any study, there are many areas provid-

ing interesting further study. Among these are: 

1. A Synthesis Procedure Considering Some Combination 

of the Total Input and Changed Inputs - The syn-

thesis procedure for feedback sequential circuits 

presented in Chapter II considers only the changed 

input whereas the procedure for random input cir-

cuits (Chapter III) considers only the total input 

state. Both of these approachs have their own 

distinguishing merit; however, it is felt that 

som~ combin~tion of the two concepts will con-

sistently produce circuits having more of the 

desirable features of both methods. 

In the feedback sequential method, the W 
' : 

elements can often be replaced by "anding" an-· 

other input signal to the state signal. Rules 



for doing this should be investigated. 

Another interesting synthesis concept is 

the use of internal information as an auxiliary 

input. It seems that as more information is 

used as input information, the less complicated 

the resulting circuit. 

been pursued. 

This concept has not yet 

2. Definition of Origin for Canonical Flow Table -

The canonical flow table defined in Chapter IV 

has a unique relationship involving the order 

of the rows of a primitive flow table. Any two 

flow tables containing the same information will 

always result in canonical flow tables having 

the same row relationships. However, the row 

appe~ring first in the table is.thus far left 

to the designer's preference. Although this is 

usually acceptable, a rigorous definition for 

the origin or first row of the canonical flow 

table should be made considering only the 

topology of the table's transition paths. This 

would provide a unique format for displaying the 

information contained in any primitive flow 

table. 

J. Computer Program for Feedback Sequential 

Synthesis - Efforts should be made to write a 

computer program to perform the necessary steps 

for the synthesis of feedback sequential circuits 
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as presented in Chapter II. The techniques 

already developed for the present program could 

be easily adapted to provide a program to accom

plish this from a statement of the desired 

sequence. 

4. A Logic Synthesis Procedure Considering 

Proportional As Well As Binary Variables - To 

date, the synthesis of physical systems using 

formal logic has been restricted to binary or 

digital systems. Considering the matrix syn

thesis philosophy presented in this thesis, it 

seems natural to extend this technique to in

clude proportional or dynamic variables as well 

as binary variables. A proportional variable 

could be entered into the state matrix to modify 

a state in the same manner as the memory ele

ments are in this thesis. The proportional state 

modifier would tell not o~ly when to give the 

output but would also tell how. This "how" 

could be the proportional signal rather than the 

binary signal now used. 

The author is currently engaged in investi

gating the possibilities of such a synthesis 

procedure. 
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APPENDIX A 

THE PASSIVE MEMORY 

This appendix deals with the definition, description, 

and assignment of passive memory elements. 

Definition 

Any memory element which does not rely upon an active 

power source to retain {ts output state is said to be a 

passive memory element. In most cases, these devices have a 

mechanical memory and the logic signal is merely directed 

through the device according to its mechanical position. 

The best example of this concept is the four-way, two

position detent valve shown in Figure 8. 

XY XY 

Set 

X 

Figure 8. Passive Memory 
Valve 
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Description 

This device has many salient features, most important 

of which is the mechanical memory. Once the device has been 

switched by either the set or reset signals, the device 

remains in that position due to the detent hold feature. 

The signal sent through the device does not necessarily have 

to be an active signal connected to the supply; _this signal 

may be an input or logic signal which appears only 

occasionally. 

By sending a logic signal through the device, the out

put XY appears only when the memory element is in the proper· 

position (indicated by Y) "and" the logic signal Xis on. 

The XY signal appears only when the device is in the "reset" 

position· 11 and 11 the signal X is on. This device holds its 

mechanical position to display memory characteristics and i·t 

forms two "and" combinations (x.y·and X·Y); thus, the pas""" 

sive memory device serves the function of three logic ele

ments, memory and two 11 ands 11 • By utilizing this effect, 

circuit complexity and hardware can be reduced substantially. 

Another advantageous feature of this device is the 

complementary output. Notice that the device has two out

puts, XY and XY; when one is on (pressurized) the other is 

off (to tank). Thus, the need for the inversion of Y to get 

its complement Y is eliminated. 

The pneumatic diaphragm logic device (4) possesses.sim

ilar mechanical memory characteristics as the valve 
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described above. 

Fluidic passive memory devices without moving mechani-

cal parts do not exist; however, a similar savings in cir-

cuit hardware can be made by the use of the two devices 

shown in Figure 9. The bistable amplifier is an active 

memory element and its complementary outputs are fed into a 

passive "and". The passive "and" element has complementary 

outputs serving the function of two separate "ands" to form 

XY and XY. 

Figure 9. 

rl 
7 

Set --
I\ 
-

y 

- -

-
XY 

Reset 

y 

~ ... 

XY 

Activ 
Am 

X 

e Bistable 
plifier 

Passi ve 11 And 11 

Fluidic Memory Circuit 

The latching relay performs the analogous passive 

memory function in electronic circuits. However, modern 
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technology has almost phased out the use of relays in com

pact logic circuits. Even so, the addition of two extra 

"ands" in an electronic circuit is much less costly than the 

same for fluid circuits. The usual bistable flip-flop inte

grated circuit could be built with outputs XY, and XY in

stead of the usual Y, Y where Xis some logic signal. 

Assignment 

As has been shown above, the passive memory can be used 

to reduce hardware when distinguishing between two states. 

The problem of assignment when higher orders of memory are 

required is discusseq next. By using one more passive 

memory element, the circuit of Figure 8 is modified to form 

three unique memory states as shown by Figure 10 (a). Four 

unique states are obtained in Figure 10 (b) by adding one 

more passive memory element~ 

As shown by the previous discussion, each time another 

memory element is added, another unique passive memory state 

results. In general, N-1 passive memory elements describe N 

unique states. The assignment schematic shown in Figure 11 

illustrates the passive memory code. To describe N unique 

states, omit all memory elements numbered above N-1. 

The alternating placement of elements in the assignment 

code allows the proper balance of fluid power. Higher or

ders may be obtained in the same alternating pattern. 

TQ illustrate the assignment technique for making each 

state of an input column unique, consider the three states 



X 

( a) Three Unique States, X Y1 Ya , X Y1 Y2 

and X Y1 

XY 

X 

(b) Four Unique States, X Y1 Ya, X Y1 Ya , X Y;r. Y3 , 

and X Y1 Y3 

Figure 10. Passive Memory Assignment Circuits 
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Y1 Ya Y4 Yi Ya Y. Y1-Y2 Ya Y1 Ya Yet '1 Y3 Y5 Y1 Y3 Y5 -

Y1Ya Y1 Ya Yi Y3 

Y1 Yi 

Figure 11. Passive M¢mory Code Schematic 
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1, 3, and 5. Using the double subscript notation, the 

memory states are assigned as follows: 

(1) Y15 Y13 

( 3) Y1 6 Y1 3 

( 5) Y1 s 

The reader is cautioned not to confuse the double sub

script notation discussed here and the single subscript 

notation used in Figure 11. The double subscript notation 

carries information of the switching conditions. For exam-

ple, Y16 (read Y, one, five) is set prior to state 1, and is 

reset prior to state 5. As an example of higher order 

memory state assignment, consider the states 1, 3, 5, 8, 10, 

and 13. The assignment is as follows: 

( 1) Y1 s Y1 s Y1s 

( 3) Y1 s Y1 s Y1s 

( 5 ) Y1 s Y1 s 

(8) Y1 s Ys 1 s Ys 1 o 

(10) Y1sYs1sYs10 

(13) Y1sYs]s 

The reader is encouraged to implement this circuit 

using Figure 11 as a guideline. 

As a final note, it should be pointed out that this 

synthesis procedure allows every column in the state matrix 

to be treated independently. In this respect, each input 



state (or changed input) may be sent through memory elements 

as a passive signal. 
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. SJllB 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C .. c 
C 
C 
C: 
C 
C 
c· 
C 

tooso."-"-01174 . 
............... ,... ...... ._. ........ ,, .... _..~ .......... LSPOOOl 

• ... 
• • 
* • • • • .. 
• • • 

L~IC SYSTEMS · P!ll!GRAK 

RDIIER T L. llllOllS 

SCHOOL OF MECHANICAL JND AEltOSl'ACE ENGINEER ING . 
DlU.AHIJIIA STAlE IINlffltSHV 

DECEIIIIEll, 1969 

•LSP0002 
*LSPOD03 
•LSP0004 
*LSP0005 
*LSP0006 
*LSP0007 
*LSPOOOB 
•LSPOD09 
•LSPOOlO· 
•LSPOOll 
•lSP0012 
*LSPOOl3 

TIUS PROGRAM IS DESIGIIED TD l'EIIFllltM UTH£R THE SYl!ITHES lS *LSP0014 
* OR SIMULATION OF DIGITAL COIIITROL SYSTE!IS. FOR FURTIER *LSP0015 
• ... 
• • • • 

INFOR!IHIIJth SEE THE M.S. TIESIS •Tiff: STATE !IATR IX METHOD *LSP0016 
FOR THE SYNTHESIS OF OIGI TAL UlGIC SYSTEtlS•. *LS1'0017 

. . *LSP0018 
*LSP0019 
•LSP0020 
*LSP002l 

*SYSTFl!S SiNTriESI-S: ~~~~~~~~~~~~~~~~~~--~-*LSP0022 

• 
* IN ORDER TD PERFORft SYSTEII SYNTHESIS USING THE STATE 

"*LSPo023 
*LSP0024 
*LSPOD25 
•LSP0026 
*LSP002i 
•LSP0028 
•LSP0029 
•LSP0030 
*LSP0031 
~SP0032 
*LSP0033 
•LSP0034. 
•LSP0035 

* MATRIX SYNTHESIS.PiUICEDURE. THE USER MUST USE THE FllLLOlilNG 
• CAi.:t.lNG PROGRAM. 

• 
" CALL LOGSYN 
·stoP 
END 
• • 
* · THE USER MUST At.SO SuPPLY THE FOLLDliIIG INFDRMATIOH TD 
• BE RE&O.FRIL'I DATA CARDS.· 

• • • • • • • • • • • 

·cARD l - PROBLE!I IDENTIF ICAHIIN *LSP0036 
ANYTHING READ Fltllft THIS. CARO· liJLL 8E PRINTED IN *LSP0037 
THE 111TPUT. . . . *LSP0038 

CARO 2 - IU• Ml, Nil = FUR!l&TUlZI *LSP0039 
. ·NI = NUIIBER OF INPUTS *LSP0040 

NO = NUl!BER OF aJTl'UTS •LSP004l. 
l'lll = NUMBER OF ROliS IN THE PRIMITIVE FLOli T AeLE *LSPOD42 . 

CARD 3 - INPUT STATES FOR EACH CDl.U!IN : FORMATl1614Ill l•LSP004:J .· 
FOR TliO IllPUTSa THE C&Rll SHOULD READ . *LSP0044 
00 10 11 01 *l SP0045 

.c 
C 
C 
C 
C 
C 
C 
C· 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c· 
.c· 
·c 
C 
C 

• 
- . CAR~ 4 AND SUCCESSIVE CARDS EACH CO!IJAIN ONE ROli OF THE •LSP0046. 

PRIMITIVE FLOW TABLE A!'IO tHE COl<RESPONOING *LSPOD'>J 

• • • • • • • • • • .. 

OUTPUT STATE = FORIIATl1614,6IH . . •t.SP004S 
16 COLUMNS ANO 6 OUTPUTS AlU, READ FROM EACH *LSP0049. 
CARO. STABLE STATES ARE ~NOICATEO BY ADDING *LSPOOSo· 
1000 TO THE STATE·N~ilER TO OIST1NGUlSH THEM •lSP0051 
FIi.Oii TRANSIT!Oft ·PUHS. A •OON•T CARE• OOTPUT *LSP0052 
lS INDICATED IIY ENTERING A •z• INSTEAD OF A •o• *LSP0053 
OR A •1•. *LSP0054 

*LSP0055 
*LSP0056 
*LSP0057 
•LSP00511 

--~~~~~-~~~~--~~~~~~~-~~~-~~~~.;._--*:LSP0059 

C 
C 
C 
C 

.C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

··C 
C 
C 
i; 
C 
C 
C 
C 
C 
{; 

C 
C 
C 
C 

.C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c· 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

•SYSTEMS SlMUUITIDN: ---------.---·--.-----~•LSP0060 
• *LSPOOl>l 
• *LSP0062 
• tN ORDER TO PERFORM SYSTEM SIIIIILATIONa THE USER MUST USE *LSP0063 
• THE FOLLOWING CALLJl'{G PROGRAM. •LSP0064 
• •LSP0065 
CALL LOGSIK •LSP0066 
STOP . •LSP0067 
END *LSP0068 
• *LSP0069 
• THE USER MUST ALSO SUPPLY THE SUBROUTINE DIGEQN •LSP0070 
• OESCRISlNG THE SYSTEM EQUATIONS, ANO THE FOLLOWING INFORMATION•LSP0071 
• TO BE READ FRON DATA CARDS. . *LSP0072 
•. *LSP0073 
• tARD l - PROBLEM IOEl'{TIFICATION •LSP0074 
* Al'{YTHING READ FRON THIS CARD lilLL BE PRX...TEO It{ *LSP0075 
• THE OUTPUT. . •LSP0076 
* CARO 2 - !'{I, NO, NM • FORIIATUIZI •LSP007l 
• · niE NUNBER OF INPUTS, OUTPUTSa Al'{D ftEIIORIES.. *LSP0078 
• CARO 3 ~ YIMI, XIII • FORNATllBli,4111 *LSP0079 
* THf INITIAL STATE OF ALL OF THE MEMORY ELEMEl'{TS *LSP0080 
• AND THE INITIAL ST.ATE OF ALL INPUTS. *LSP008l 
* CARD 4 AND SUCCE.SSIVE CARDS EACH CONTAIN: THE NUMBER OF *LSP0082 
• MEMORY ELEMENTS ASSOCIATED WITH THE JC-Tit *LSP0083 
* COLUMtl, MCIJC,11, ANO THE CORRESPONDING l'{IJNBER •LSP0084 
* DES.lGNATION OF THE JM-TH MEMORY IN THE JC-TH *LSP0085 
* COLUMN, MCl;JC,Jll+ll = FORMAT! 12,9121 *LSP0086 
• . •LSP0081 
• *LSP0088 
* •LSPOOB9 
• *LSP0090 
- ARRAY SIZES ----------· -"---*LSP0091 
* . *LSP0092 
* CONNON ST ATEKENTS - · . . *LSP0093 
* · ,~ /ALL/ - IX(l'{l,NCh IYINM,l'{RJ, IZINO,NRI, SINR,NCI *LSP0094 
• /EQN/ - XINII, Yll'{MI, lll'{Ola KSINR,l'{CI, MCINCaNM/2+1 I *LSP0095 
• ./OUT/ - SSCINC,NR/Z+lla SSRINRI *LSP0096 
• /ASN/ ~ IGINR/2-1,l'{R/21 *LSP0097 
• /ION/" ~ JDENI 201 · *LSP0098 
* . *LSP0099 
* DIMENSION STATEIIEl'{TS - *LSPOlOO 
* DIGEQN - nsrnc,. MS(l'{MJ. MRINMI *LSPOlOl 
* EQUIV - ITINCI *LSP0102 
•. OUTPUT - SETINM,NR/ZI, RESETINM,l'{R/ZI, PSll'{R/21 *LSP0103 
• IZSI NO,NRI, Jl{ NM/ZlalYPIMO,NR/21, INOTI MO,NR/21,*LSP0104 
• l'{YIM0=51, ·IOINR•401 . . *LSP0105 
* PRINT - 11'{31411, IXPll'{l=41, lZPll'{0•6la MSINCI, MSSINCI *LSP0106 
• ASSIGN - ·IAll'{R/21, RAINR/21 •LSP0107 
• . •LSPOlOB 
• NOTES - *LSP0109 
• - !'{II= NR-NC *lSPOllO 
* ~MD·= lOG[NR,11 + l *LSPOlll 
* - SUBSCRIPTS SUCH AS IXPINl••U IMPLY THAT THE ARRAY IXP *lSPOUZ 
* IS DEFll'{EO IN A DATA STATEMENT. •LSPOU3 
* *LSPOll4 

*********************~•••••••••••••••••••••••••••••••••••••••••••• LSPO 115 
CALL LOGSYN LSP0116 
CALL l0GS1M LSP0117 
STOP LSPOUB 
fl'{D LSP0119 

'° ·~ 



SUBROUTINE LOGSYN LSP0120 
C ******************************************************************LSP0121 
C * *LSP0122 
C * SUBROUTINE LOGSYN IS THE EXECUTIVE PROGRAM FOR SYSTEM *LSP0123 
C • SYNTHESIS. THIS PROGRAM READS THE DATA CARDS, PRINTS THE "1..SP0124 
C * ORIGINAL PRIMITIVE FLCW TABLE, CHECKS FOR ANY ~FDUNDANT *LSP0125 
C ·• INFORMATION IN THE PRIMITIVE FLOW TABLE, REARRANGES THE ROWS *LSP0126 
C * TO FORH THE CANONICAL FLOW TABL~, PRINTS THE CANONICAL FLOW *LSP0127 
C • TABLE, AND THEN PRINTS THE STATE, SWITCHING, ANO OUTPUT *LSP0128 
C * INFORMATION. *LSP0129 
C * *LSP0130 
C • *LSP0131 
C * NIE THE NUMBER OF INPUTS *LSP0132 
t * NO= THE NUMBER OF.OUTPUTS *LSP0133 
C • NR = THE NUMBER OF ROWS IN THE PRIMITIVE FLOW TABLE •LSP0134 
C * NC ETHE NUMBER OF COLUMNS IN THE PRIMITIVE FLOW TABLE. *LSP0135 
C • IXll,JCI = THE STATE OF THE I-TH INPUT FOR THE JC-TH COLUMN *LSP0136 
C * IZIJ,IRI = THE STATE OF THE J-TH MEMORY IN THE IR-IH ROW *LSP0137 
C • SIIR,JCI = THE ENTRY IN THE IR-TH ROW ANO JC-TH COLUMN OF THE •LSP013B 
C * PRIMITIVE FLOW TABLE. STABLE STATES.ARE INDICATED *LSP0139 
C • BY ADDING 1000 TO THE STATE NUMBER TD DISTINGUISH *LSP0140 
C • THEM FROM TRANSITION PATHS. *LSP0141 
C * SSCIJC,11 = THE NUMBER OF STABLE STATES IN THE JC-TH COLUMN *LSP0142 
C • SSCIJC,K+ll = THE K-TH STABLE STATE IN THE JC-TH COLUMN *LSP0143 
C * SSRIIRI = THE STABLE STATE IN THE IR~TH ROW *LSP0144 
C * *LSP0145 
C .,.•••*****************************************,=*******************LSP0146 

COMMON /ALLI Nl,NO,NR,NH,NC,IXl4,161,IYl36,40J,IZl6,401,Sl40,161 LSP0147 
. COHHON /OUT/ SSCl16,2ll, SSRlt,OJ . LS"P0148 

COMMON /ION/ IDE!\11201 LSP0149 
INTEGER S, SSC, SSR LSP0150 

l FORMAT 120A41 LSP0151 
2 FORMATl3121 LSP0152 
3 FORMAT 116141111 LSP0153 -
4 FORMATl1614,61l I LSP0154 
5 FORMATl1Hl,30X,'LDGIC SYNTHESIS•,/,27X,'FOR '11,' INPUTS, 1 ,11, LSP0155 

* i OUTPUTS.• ,1111 LSP0156 
6 FORMATllOX•ORIGINAL PRIMITIVE FLOW TABLE FOR'll5X,20A4/III LSP0157 
7 FORMATllHl,9X•CANONICAL FLOW TABLE FOR'/15X,20A41/ll LSP0158 
8 FORHATl/lOX'WHAT IS '14 1 IN COLUMN '12', ROW 1 12'71 / LSP0159 
* lOX'CHECK YOUR DATA FOR ERROR'I LSP0160 

9 FORMAT UHII . LSP0161 
10 FORMATIIH1,9X,'NUHBER OF INPUTS• '12', NUMBER OF OUTPUTS= '12 LSP0162: 

* NUMBER OF ROWS= 'IZ/lOX'TO RUN A PROBLEM OF THIS S1ZE'LSP0l63. 
• •, THE ARRAY SIZES HUST BE ALTERED.• I LSP0164 

REA015,ll IDEN LSP0165 
0 Rl:ADl5,21 Ni, NO, NR LSP0166 

ERROR = 0 LSP0167 
!FINI .GT. 41 ERROR = 1 LSP0168 
!FINO .GT. 61 ERROR = 1 LSP0169 
IFINR .GT .401 ERROR = l LSP0170 
I Fi ERROR .eo. 1.01 WRITEl6,lOI NI, ND, NR LSP0171 
NC= 2**NI . LSP0172 
REA015,3JIIIXll,JCl,l=l,41,JC=I,NCI LSP0173 
READ15,4IIISll~,JCl,JC=I,16l,IIZIJ,IRl,J=l,61,IR=l;NRI LSP0174 
WRITEl6,5l NI, NO LSP0175 
WRITE16,61 IDEN LSP0176 
CALL PRINTIOI LSP0177 
CALL EQUIVIOI LSP0178 
CALL CANON LSPO 179 

---~---------- ----------- -----· ----·------------

WRITEl6,7l IDEN 
CALL PRINT(OI 
DD 21 Jt=l,NC 
K = 0 
00 20 IR•l,NR 
IS= SIIR,JCI - 1000 
IFIIS .LT. 01 GD TO 20 
K = K+l 
SSCIJt,K+ll = IS 
SSRI IRI = IS 

20 IFISIIR,JCI .LT. 01 WRITEl6,8l SIIR,JCI, JC, IR 
21 SSCIJC,11 = K 

CALL OUTPUT 
WRJTEl6,9l 
RETURN 
END 

LSP0180 
LSPOIBI 
LSP0182 
LSP0163 
LSP0164 
LSP0185 
LSP0186 
LSP01B7 
LSP0188 
LSP0189 
LSP0190 
LSP0191 
LSP0192 
LSP0193 
LSP0194 
LSP0195 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SDIRDIJTINE Lll6SIN LSP0196 
...................... REIii J 14,.. II -11111118i .......... ..._ ... LSP0197 
• •LSP0198 
• SilllllllUH.:' I..IIGSIN ms THE EXEC!ffl YE IPllllGllAN FDR SYSTEM •LSP0199 
• SIIULATIOII. TH!S ll'llOGRJ\111 llEAOS THE IIIEQUIRED DATA CARDS ANJ •LSP0200 
• CIINIIUCTS THE SYSTENTJC 1•uT EXCITATION. - T~E RESPIWSE TO *LSP0201 
• INPUT CH.MIGES IS CHECKED EACH TIIIE IIY CAI.UNG THE SIBROUTJNE *LSP0202 
* CONTAINING THE DIGITAL EIIUATlllJIIS. EACH NEW STATE DEFINED JS *LSP0203 
• CHECKED F!lll IIEDUIIIIAIICY A.!llil IS ELININATED IF EQUJYALIENT TO A *LSPD204 
* PREVIOllSLY DEFINED STATE. 1111'11!1 C!DFLETllllt DF THE SINULAT!ON, *LSP02D5 
• THE RES!la-TING PRINITIYE FLOil TA!lLE IS PRINTED. *LSP0206 
* •LSP0207 
* *LSPOZOB 
• NI= THE -BER oF 1-,-rs *LSPD209 
• ND= THE !KINSER Of ilUTI'UTS *LSP0210 
• Nil= THE IIIU!IBER OF RU!IS IN THE flRIIIITlYE FLOY TABLE *LSP0211 
• NC = THE IL'ftBER OF C-S IN THE PRINITIYE FLOY TAl!LE. *LSP0212 
• -IXU,.JCI = THE STATE OF TliE 1-Tii [IIPUT FDR THE JC-TH COLUMN *LSP0213 -
• IYl,.,IIU a THE STATE Of THE ill-TH 11'.BIIIR'f Ill THE Ill-TH ROW - *LSP02l~ 
* IZl~,IRJ = THE STATE OF T!IIE ~TH i!llEJIIIRY ELEIIENT IN THE IR-TH *LSP0215 
• SIIR.JCI = THE ENTRY 11'1 THE IR-TH ,111]11 ANll .IC-TH COLUMN OF THE •LSP0216 
* PRilliTilfE FLDV TABLE. STABLE STATES .AAE INDICATED *LSP0217 
• BY ADOIIIG IOOD TD THE STATE IIUll8ER TO DISTINGUISH -•LSPD218 
* THBI FRON 1fllAIIS1TllillN PATHS. •LSP0219 
• "CIJC,11 = THE NUMBER 11F IEl!DRY Ell.Ef!ENTS ASSOCIATED WITH THE •LSP0220 
* JC-TH COLUllll •LSP022l 
• "CIJC,J.,.U a THE IENBER DESISIIAHOII OF THE -J,..TH IIEIIORY *LSP0222 
* IN THE JC-TH CllLUNII *LSP0223 * _ - *LSPOZ2~ 
.... ._. •• , .. ,....,..._..,......_, , ....................... _.. .... _.. ... LSP0225. 
COIUION /AU./ NI.1111,'IR.,U.llt,IXH•,ll61,IYD6,40l,lZl6,401.Sl~,l61 LSP0226 
COllllON /Ellfl/ X141, Yl:361, Zl61, !lt51'\n,i6Jo NCl16,I9J LSP0227 
COIUIIJN IASIJI IGU9,20J LSPD228 
CIJIIIIO!I /IINII IDE11C20I LSPOZ29 
INTEGER X, Y, Z, S LSPOZ30 

-1 FORl'IATl20AU LSPOZ3l 
2 FOIUIATl312J - LSPOZ32 
3 FORl'IATC3011,4Ill LSPOZ33 
4 FD11-'IATl(l91211 LSP0234 -
5 FORJIATl1Hl,3!1X'LDGIC Sl!IULATID11•12ox·- "Jl" INPUTS. •n LSP0235 

• • OUTPUTS, •12• NEIIORIEs.•,,,,10x•s1J1ULATED FLGII TABLE FOR 9 LSP0Z36- -
• -115X, ZOl.4/ I/ I LSP0237 . · 

6 FORIIATIIOX,•THE Sl..,LATED FLOII TABLE NILL BE LONGER THAN 40 ROYS'/LSP0238 
• 1ox.•THE PARTIAL FLOY TABLE IS GIVEN BELOW'/1 LSPOZ39 

9 FORJIAHlHU LSP0240 
16 FORJIATC1Hl,9X"llll!!IIIER i1!F llliil'IRS = •12•. NUt!IIER OF OUTPUTS s •Iz LSP0241 

• •• l!IUIIIIER OF NEllml.IES = •1211111x•rn RUN A PRIIBLE" OF THIS "LSPOZ42 
• •SIZE, THE ARllAY SIZES ll!UST BE ALTEllED.•J LSP0243 

17 FORIIATUH1,9X•THE NUMIER OF --IES IN mu,1111 •1z• z •1211ox LSPO-
• •TD Rll:II A PROBLEN OF THIS SIZEe IIHE AltRAY SIZES MUST BE' LSP0245 
• 'ALTEREO.•J LSP0246 
·READ15,U IDEN LSP0247 
READ15,21 NI, 1111, NII LSP0248 
ERROR= 0 LSP0249 
IF 11\11 .GT. 41 ERIIIIR = l LSP0250 
ll'INO .GT. 61 ElllUJR s l LSPOZ51 
IFIN" .GT.361 ERROR a l LSP0252 
!FIERROR .EQ.l.01 1111111"'1:16,161 NI, lllio !Im LSP0253 
INC s Z**NI LSPOZ54 
ltEA015,3JIYINl,ll!lcbl\llll,IXlll,lzl,41 LSPOZ55 

- ------- ---- ------- ---------

READl5,4IIIMCIJC,JMl,JM•l,191,Jt•l,NCI 
00 19 JC=l,,.C 

19 JFIMCIJC,11 .GT. 161 WRITE16,171 JC, MCIJC,11 
WRITEl6,51 NT, NO, NM, !DEN 
NIS = 2**NI 
CALL ASS IGNINIS.,11 
DO ll J=l,NC 
JC = J 
DO 10 l=l,NI 
IFIXIII .NE. JGll,JII GO TO 11 

10 CONTINUE 
GO TO 12 

11 CONTINUE 
12 IR = l 

CALL OIGEQN 
NR = 1 
NRS = 1 
DO 13 M=l.NM 

13 IYlH,NR) ~ Y(MJ 
DO 14 J=l,NO 

14 IZIJ,NRI = ZIJI 
00 15 l•I.40 
DO ·15 J=l,NC 
KS(r,Jt = 0 

15 Sll,JI = 0 
SINR,JCI • 1001 

20 DO 21 1•1,NI 
IXll,JCI • IGil,JCI 

21 XIII• JXll,JCI 
DO 50 l=l,NI 
XIII = NOTIXIII I 
CALL OIGEQN 
NR a NR+l 
NRS = NRS+J 

·DO 21·~-J=l,NC 
00 22 11•1,NI 
JFIXIIII .NE, IGill,JII GO TO 23 

22 CONTINUE 
JC = J 
GO TO 24 

23 CONTINUE 
24 IFINR .LT. 401 GO TO 25 

WRITEl&,61 
CALL PRTNTINMI 
RETURN 

25 SINR,JCI • NRS+lOOO 
SIIR,JCI • NRS 
DO 26 ,..,1,NM 

26 IYIH,NRI • YIMI 
DO 30 J•l,ND 

30 IZIJ.NRI • ZIJI 
KSINR,JCI • I 

50 XIII• NOTIXIIII 
CALL EOUIVINl!I 
00 60 JR•Z,NR 
00 60 IC•l,NC 
IFIKSIJR,ICI ,EO, DI GO TO 60 
KSIJR, ICI • 0 
IR• JR 
JC • IC 

LSP0256 
LSP.0257 
LSP0258 
L·SP0259 
·LSP0260 .. 
LSP0261 
LSP0262 
LSPD263 
LSP0264 
(SP0265 
L.SP0266 
LSPD267 
LSP0268 
LSP0269 
LSP0270 
LSPD27l · 
LSP0272 
LSP0273 
LSP0274 
LSP0275 
LSP0276 
LSP0277 
LSP0278 
LSP0279 
LSP0280 
LSP028l 
LSP0282 
LSP0283 
LSP0284 
LSP0285 
LSP0286 
LSP0287 
LSP0288 
LSP0289 
LSP0290 
LSP029l 
LSP0292 
LSP0293 
LSP0294 
LSP0295 
LSP0296 
LSP0297 
LSP0298 
LSP0299 
LSP0300 
LSP0301 
LSP0302 
LSP0303 
LSP0304 
LSP0305 
LSP0306 
LSP0307 
LSP0308 
LSP0309 
LSP0310 
LSP0311 
LSP0312 
LSP0313 
LSPD314 
LSP0315 
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DO 55 M:cl.NH 
55 YIMI = lYIM,lRI 

GO TO 20 
60 CONTINUE 

DO 100 l=I.NR 
DO 90 J=l,NC 
iS = SII,Jl-1000 
IFIIS .LT. 01 GO TO 90 
DO 80 Il=l, NR 

80 IFIS1Il,JI ,EQ. ISi Slll,JI 
Sll,JI = -11+10001 
GO TO 100 

90 CONTINUE 
100 CONTINUE 

DO llO 1=1,NR 
DO 110 J=l ,NC 

110 Sll,JJ = -Sll,JI 
CALL PRU.T (NM) 
WRITEl6,9l 
RETURN 
END 

-I 

LSP0316 
LSP03l7 
LSP031B 
LSP03l9 
LSP0320 
LSP032l 
LSP0322 
LSP0323 
LSP0324 
LSP0325· 
LSP0326 
LSP0327 
LSP0328 
LSP0329 
LSP0330 
LSP0331 
LSP0332 
LSP0333 
LSP0334 
LSP0335 
LSP0336 
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C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

SUBROUTINE OIGEQN DIGEQNOl 
**********'**'**'*11<****'************,:.*********************************0IGEQN02 
* *OIGEQN03 
• SUBROUTINE OIGEQN CONTAINS THE OUTPUT ANO SWITCHING *DIGEQN04 
• EQUATIONS NECESSARY TO PERFORM SYSTEH SIMULATION. THE USER *OIGEQN05 
* MAY FIND IT ADVANTAGEOUS TO USE THE TOTAL IN~UT STATE ARRAY *DIGEQN06 
~ !TSIJC), INSTEAD OF FORMING THESE STATES JN HIS EQUATIONS. THE*OIGEQN07 
* SWITCHING EQUATIONS ARE REPEATED TO ALLOW FOR ANY INTERNAL *OlGEQN08 
* STATE SWITCHING OR CYCUNG. *DIGEQN09 

* THE USER SHOULD ONLY SUPPLY THE SWITCHING EQUATIONS ANO *O!GEQNlO 
* lHE OUTPUT EQUATIONS IN THIS SUBROUTINE. *OIGEQNlJ 
* FUNCTION NOT MAY BE USED TO PERFORM THt LOGICAL *DIGEQN12 
* COMPLEMENT *O!GEON13 

* 
* 
* 
* 
"' * 
* 
* 
* 

XI ll 
YIM! 
ZIJI 
ITS(JCI= 
HSI M) 

!<RIMI 

THE 
THE 
THE 
THE 
THE 
THE 

CURRENT ST ATE OF THE I-TH INPUT 
CURRENT STATE OF THEM-TH MEMORY 
CURRENT STATE OF THE J-Ht OlJTPUT 
TOTAL INPUT STATE FOR THE JC-TH. COLUHN 
"SET" SIGNAL FOR. THE M-TH r4EMORY 
"RESET" SIGNAL FOR. THE M-TH MEMORY 

*DIGEQN14 
*DIGEQNi5 
*O!GH/Nlb 
*OIGEQN17 
*DIGEQN18 
*OIGEQNl9 
*D1GEQN20 
*OIGEQN21 
*DIGEON22 

•~#***'*********:e:.***************'-**********'*********#********:c..**'***DIGEQN23 
COMMON /ALL/ Nl,NO,NR,NM,NC,IX{4,16J,IY(36,40),[Z(6,40),S(40,16, OIGEQN24 
COMMON /EQN/ X(4), Y{36), 2(6), KS{40,l6), MCllb,19) OIGEQN25 
DIMENSION ITS(lb), MS(36J, MR(36J OIGEQN26 
INTEGER X, Y, Z, S DIGEQN27 
FORMAT(lOX,'SET AND RESET SIGNALS APPEARED SIMULTANEOUSLY'/ OIGEQN28 

* 1ox,•x == 1 411 1 Y == 1 1811} DIGEQN29 
ITS( ii= NOTIXl1ll*NOT(X(2ll*NOT(X(311*NOTIXl4)) DIGEQN30 
ITS! 2) = Xlll ",NOTIX(2)l*NOTIXl3ll*NOT(Xl4)l DIGEQN31 
ITS( 31 X(ll * X(Zl *NOT(X(3ll*NDTIXl4l) OIGEQN32 
ITS! 4j = NOTIX( ll l* X(21 *NOTIXf31 l*NOTIXl4) I DIGEQN33 
ITS! 5) = NOTIX(lll* X(21 * Xl31 *NOTIXl4ll DIGEQN34 
ITS( 6) = Xlll * Xl21 * Xl31 *NOTIXl411 D!GEQN35 
ITS( 71 = XIII *NOT(X{Zl)* X(3) •NOT!Xl411 DIGEQN36 
ITS( Bl= NOTIX(lll*NOT!X12ll* X(31 *NOT(X(4)1 D1GEQN37 
ITSI 91 = NOTIX1lll*NDTIXl2)1* X(3) * X(41 OIGEQN38 
!TSllOJ = Xlll *NOT!XIZil* Xl31 * X!4) DIGEQN39 
ITSllll = Xlll * Xl21 * Xl3) * X!4) D!GEQN40 
ITSl121 = NOT!Xll)I* X(21 * Xl3l * X!4l OIGEQN41 
ITS!l31 NOT{Xlll)* 1121 *NOTIXl311* X14) DIGECN42 
ITSl14l = X(ll * X(21 *NOTIX(3)l* Xl4) DIGEQN43 
!TSl15) = XllJ *NOT!X12l>*NOTIXl311• Xl41 O!GEQN44 
!TSl16l = NOTIX(ll l*NOTlr!21 )*NOTIX(31)* X{4) OIGEQN45 

10 !CH= O DIGEQN46 
OIGEQN4 7 

-~---~-~-~-------ENTER SWITCHING EQUATIONS------~--~----~DIGEQN48 
DIGEQN49 

HSIU 
MP.Ill 
MSIZI 
MRl2) 
MS131 
MRD J 
>!5(41 
HRl4) 
MS151 
HRl5) 

!TSl2l*Yi2l*Y(3) + ITS141 
ITS12l*Yl2l*NOT(Y(3l) 
ITS(II + ITSl31*Yl41 
ITSl3l•NOTIYl4l I 
ITS! H*YI I) 
ITSlll*NOT!Yllll + ITSl31*Yl41 
!TS(2l*Y12l*Yl3) + !TS(41*Yl5) 
ITS(2l*Y(2)*NOTIYl3)l + !TS12)*N0T!Y(2l) +!TSl4l*NOT!Yl51l 
ITS(ll*Ylll + ITS13)*Y(4I 
ITSl3l•NOTIY(4) I 

D1GEQN50 

C 

C 
C 
C 

C 
C 

--~-----~~---~---~--~-~-~~----------~-~--~~~~----O!GEQN51 
DO 15 M=l,NM OIGEQN52 
~CH = YI Ml O!GEQN53 
Y(MJ == MEMORY{YCMJ,MS{MJ,MR(MJ) OIGEQN54 
IF(MSIMl*MRIMI .EQ. 11 WRITEl6,ll (Xlll,!=1,41, (YIJ!,J=l,NMJ DIGECN55 
!F(Y(Ml .NE. MCH) !CH= l DIGEQN56 

15 CONTINUE OIGEQN57 
!F( !CH ,EQ. 11 GO TO 10 OJGEQN58 

OIGEQN59 
-..:..-------------~-~ENTER OUTPUT EQUATIONs~~-----~~~~---OIGEQN60 

0IGEQN61 
Zill= !TSf2l*NOT(Y(2ll + !TSl3l*NOTIY(4ll + ITS14)*NOTIV!5ll 

OIGEQN62 
-------------------------------------------------01 GECN63 
DO 20 J=l,NO D!GEQN64 
lFIZIJl .GT. ll Z(JI = 1 OIGEQN65 

20 CONTH<UE OIGECNb6 
RETURN D1GEQN67 
END OIGEQN68 

"° Vl 



SUBROUTINE EOUIVIKNMI LSP0337 
C ************* .. ********'**************lt******* .. ****** ... *******....-LSP0338 
C * . *LSP0339 
C * SUBROUTINE EQUIV.SENSES ANY REDUNDANT STATES IN THE *LSP0340 
C • PRIMITIVE FLOW TABLE AND REPLACES THESE STATES WITH THEIR *LSP034l 
C * EQUIVALENT STATES. THIS ROUTINE IS USED WI~H EITHER THE *LSP0342 
C * SYNTHESIS OR SIMULATION PROGRAMS. *LSP0343 
C • . *LSP0344 
C * *LSP0345 
C • KNM = THE NUMBER OF MEMORY B.EMENTS TO BE CHECKED FOR *LSP0346· 
C· * EQUIVALENCE DURING SYSTEM SIMULATION. KNM = 0 FOR *LSP0347 
C * SYSTEM SYNTHESIS. . *LSP0348 
C * MCIJC.11 = THE NUl!SER OF MEK!IRY ELEMEl'ITS ASSOCIATED WITH. THE *LSP0349 
C • JC-TH COLUMN *LSP0350 
C * MCIJC.JM+ll = THE NUMBER DESIGNATION OF THE JII-TH MEMORY *LSP0351 
C * IN THE JC-TH COLUMN *LSP0352 
C *********************** .. *****************************************LSP03S3 

COMMON /ALLJ. NI .ND,l'IR,Nll,NC. IX14,161 • lYl36·,401,Iz.16•401 ,SI 40,161 LSP0354 
COIIHON /EQN/ X141• Yl361• Zl61• K.5140.161, MCl16,191 LSP0355 
DIMENSION ITl16l . LSP0356 
INTEGERS LSP0357 

l FORMATf//!/l LSP0358 
2 ~ORHAT(lOX,'STATE '13' WAS EQUIVALENT TO STATE '13• AND HAS BEEN• LSP0359 
* • REMOVED.•! LSP0360 

IFINR .LE. 21 RETURN LSP036l 
IF!!C!'.ll .EQ. 01 WRITEl6,ll LSP036Z · 

7 IRC = 0 LSP0363 
DD 70 JC=l.NC .LSP0364 

· NRl = NR-1 LSP0365 
DO 40 11=1,NRl LSP0366 
Ill = 11+1 • "LSP0367 
IFI S 111. JC) .LE. 1000 I GO TO 40 LSP0368 
00 30 12=111,NR LSP0369 
IFISIIZ,JCI .LE. 10001 GO TO 30 LSP0370 
DO 10 J=l•NO LSP0371 
IFIIZIJ;lll .GT. 11 IZIJ.UI = -1 LSP0372 
IFllztJ·,u,.u.o .oR. lllJ,121.LT.OI GD Til 10 LSP0373 
IFIIZIJ;Ill .NE. fl.lJ,1211 GO TO 30 LSP0374 

10 CONTINUE LSP037S 0 

IF IKNM .eo. 0 I GD TO 12 LSP0376 
NMC = MCIJC, 11 LSP0377 
IFINMC .EQ. 01 GO TO 12 LSP0378. 
DO 11 Jll=l,NMC LSPD379· 
Ml = MCIJC.JM+ll LSP0380 
IFIIYIMl,111 .NE. lYIKl.1211 GD TO 30 LSP038l 

li CONTINUE LSP0382 
12 DO 13 J=l.NC LSP0383 

. l'FIJ .EQ. JCI GD TO 13 LSP0384 
ITIJI = Sill.JI + S112.JI .LSPD385 
·IFISI n.JI .EQ. 0 .OR. SIIZ,JI .Eo. 01 GD TO 13 LSP0386 
IFlSlll•JI .NE. SII2,JII GO TO 30 LSPD387 
ITIJI = Sill.JI LSP0388 

13 CONTINUE LSP0389 
IRC·= l LSP0390 
IR= S112.JCI - 1000 LSP0391 
IS= SIil.JC! - 1000 LSP0392 
IFIKNK .EQ. 01 WRlTEH,,21 IR, ·1s LSP0393 
ITIJCI = SI 11.JCI LSPD394 
DO 14 13=1,NR LSP0395 

14 IFIS113,JCI .EO. Sll2,JCI-IOOOI S113.JCI = SIil.JC) -1000 LSP0396 

NR = NR-1 
IFIIZ .eo. NR+ll GO TO 25 
DD 24 14=12,NR 
DO 20 J=l.NC 
Slll,JI = ITIJI 
S(l4wJl = Sfl4+1.·Jt 

20 IFIKNM .GT. 01 KS114,JI = KS114+1,JI 
DO 21 J•l ,NO 

21 IZIJ,!41 = IZIJ,14+11 
IFIKNM .EQ. 01 GD TO 23 
00 22 M= l 9KNM 

22 IYIM,141 = lYIM.14+11 
23 CONTINUE 
24 CONTINUE 
25 DD 26 J=l ,NC 

S(NR+l ,JI = 0 
26 KSlNR~l.J) z 0 
30 CONTINUE 
40 CONTINUE 
70 CONTINUE 

!FllRC.NE.·D .AND. KNM,EQ.OI GD TO 7 
RETURN 
END 

LSP0397 
LSP0398 
LSP0399 
LSP0400 
LSP0401 
LSP040Z 
LSP0403 
LSP0404 
LSP0405 
LSP0406 
LSP0407 
LSP0408 
LSP0409 
LSP0410 
LSP04ll 
LSP0412 
LSP0413 
LSP0414 
LSP0415 
LSP0416 
LSP0417 
LSP0418 
LSP04l9 

\0 
O"I 



C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE CANON LSP0420 

***************.**********·*****************************************LSP042 l * *LSP0422 
* SUBROUTINE CANDI'! TAKES THE PRIMITIVE HOW TABLE FROM *LSP0423 
* THE SYNTHESIS PROGRAM AND REORDERS THE ROWS ACCORDING TO *LSP0424 
* SYSTEMATIC INPUT CHANGES AS OUTLINED IN THE THESiS. THE STATE*LSP0425 
• NUMBERS ARE THEN RESEQUENCED TO PRODUCE THE CANONICAL FLOW *LSP042b 
* TABLE. *LSP0427 
* *LSP0428 
*******"****~********'***********************'***********************LSP0429. 
COMMON /ALL./ .Ni: ,NO,NR ,N·H,-NC, IX ( 4, 16) . ., lY (36 ,40), IZ( 6 ,40 I.St 40 _, 16 l LSP0430 
COMMON /EQN/ X,141, Yl3&1, 2161, KS.(40,H,1,. HCl16,191 LSP0431 
lflTEGER S, X LSP0432 
FORHA'HlOX•THERE IS NO STASH STATE IN THE FIRST ROW.' I LSP0433 
DO 10 l=l,NR LSP0434 
DO lD J=l ,NC LSP0435 

10 KSl!,,JI = O LSP043b 
DO 11 J=l ,NC L SP0437 
IFIS11,JI .LT, 10001 GO TO 11 LSP043B 
IR = l LSP0439 
IRR= l LSP0440 
JC= J LSP0441 
GO TO 20 ,LSP0442 

11 CONTINUE LSP0443 
WRITElb,11 LSP0444 

20 DO 22- I::;;l,Nl LSP0445 
22 XIII = IXII.JCI LSP044b 

00 50 l=l,Nl LSP0447 
· XIII = NOTIXIIII LSP0448 

DO 30 Jl=l,NC LSP0449' 
DO 23 11=1,NI , LSP0450 
I FtX I II I .NE. !XI ll,Jll I GO TO 30 LSP045l 

23 CONTINUE LSP0452 
IFISII.RR,Jll .E~. DI GO TO 50 LSP0453 
IRI : IR+l LSP0454 
DO 26 IRl=IRI,NR LSP0455 
IF(S!IRI,.Jil-1000 .NE. SHRR,Jll I GO TO 2& LSP0456 
lR = IR+l LS·P0457 
KSIIR,Jll = l LSP0458 
DO 24 JCI=l ,NC LSP0459 
S,T = SUR ,JCll LSP0460 
SIIR,JCll = S.(lRl,JCH LSP04bl 

24 Sl!Rl ,JCll = ST LSP0462 . 
DO z·s JZ=l,NO LSP0463 
ZT = IZIJZ,IRI LSP04b4 
IZIJZ,IRI = IZIJZ,!Rll LSPOt,&5 

zs· lZ(JZ,IRU = ZT LSP041',b 
. GO TO 31 LSP04&7 

21, CONTINUE LSP0468 
30 CONTINUE LSP04&9 
31 IFIIR .GE. NRI GO TO bl LSP0470 
50 XII I = NOH X 1111 LSPOt,71 

DO 60 12=2,NR LSP0472 
DO 60 JZ=l,NC LSP0473 
IFIKSI 12,JZI ,EQ- OJ. GO TO 60 l.SP0474 
KS112,J2 I = 0 LSP04T5 
IRR = 12 . LSP0476 
JC= J2 LSP0477 
GO TO 20 LSP04T8 

bO CONTINUE LSP0479 

6.1 00 100 l=l,NR 
00 90 J=l,NC 
IS= Sll,J)-1000 
!F(IS .LT- O'I GO TO 90 
DO 80 ll=l,NR 

80 IF!S!ll,Jl .EQ. ISi S{ll,JI 
Sll,Jl = -11+10001 
GO TO 100 

90 CO>!HNUE 
100 CONTINUE 

DO HO l=l,NR 
00 l !.O J::l.,NC 

110 St! ,JI = -Sll,Jl 
RETURN 
END 

-1 

LSPO~BO 
LSP0481 
LSPOt,82 
LSP04B3 
LSP0484 
LSP04B5 
LSP048fr 
LSP0487 
LSP04S8 
LSP0469 
lSP0490 
LSP0491 
LSP0492 
LSP0493 
LSP0494 
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C 
C 
C 
C 
C 
.c 
C 
t 
C 
C 
C 
C 
C 
C 
C 
t 
t 
C 
C 
C 
C 
C 
C 

SUBROUHNE OUTPUT ·L.SP0495 
**************************..-.************•************ ....... ***.**'*LSP0496 
* $.LSP0497 
* SUBROUTINE OUTPUT OETERIUN·ES THE MEMORY REQUIREMEN·TS, *.LSP0498 
• PRINTS THE STATE SIGNALS, THE SWIT.CHING CDND1Tl0NS, ANO THE *LSP0499. 
• OUTPUT SIGNALS. . •LSP0500 
* *LSP050l • ~~= * SETl·K;MI = THE H-TH STATE SIGNAL .USED TO SET THE K-TH ·•LS.PD503 
* HEHDRY ELEMENT •LSP0504 * RESETtK,HI =THEM-TH STATE SIGNAL USED TO RESET THE K-TH *LSP0505. 
* MEMORY ELEMENT . *LSP050& 
* PSIHI . = THE H-TH PREVIOUS STATE TQ A STABLE STATE *LSP0507 
* SET!K,11 = THE NUMBER OF "SET• SIGNALS FDR THE K-TH HEH.OR¥ *LSP0508 
* RESETIK,11 = THE NUMBER OF "RESET" SIGNALS FOR THE K-TH H.EHORY*LSP0·509 
·• HC(JC,11 = THE NUM!iER OF MEMORY ELEHEN.JS IN THE JC-TH C.OLUHN*LSP0510 
* *LSP0511 

. * IN THE R.ESULHNG PRINT-OUT• •·LSP0512 
* - ·THE STATE SIGNALS ARE TO BE SUBSTITUTED FOR THE STATE *LSP0513 
* NUMBERS IN THLSIIITCHING AND OUTPUT EOuAnoNS. *LSPD514 
* i - "*" IMPLIES THE LOGICAL "AND'' · •LSP0515 
*. - - .-+-..-iHPLiEs THE-LO.GICAL •oRn •LSPOS16 
* *LSPOSlT .. ·· 

*****************************~•**************************.*********LSP0518 
COM>ION //!ill/ Nl,NO,NR,NM,NC,IX!4, 16J.1Yl3&,401, IZ16,401,Sl40,16l LSP0519 
COMMON· /OUT/ SSC! 16,Zll, SSRl40t LSP05ZO 
COMMON /EON/ Xt41, Yl361, Zl61, KS140,161, liCl16,i9·1 LSl'(l52l 
COMMON. /ASN/ IGfl9,201 . . . . LSPOSZZ 
.DIMENSION SET!36,ZOI, RESET(36,201, PSIZOI, IZS16,401, JLH9h LSP0523 

* IYP15,ZOI, INOTt5,20l, NVl51, ·!01401 . LSP0524 · 
INTEGER S, SSC, SSR, SET, RESET, PS . LSP0525 
DATA lAB,!AN/lH ,l!i.:I, NY/5>0.4H * Y/, 10/lH ,39*1H~/ LSP0526 

3 FORHATl/llOX•(PASSIVE tlEHIIRY ASSIGNHENTl'J.I LSP0521 
4 FDl\HATll/lOlt!S.TATE SIGNALS:'/i ·LSP052B 
5 FORMAT! 15X, lHI, IZ,4HI =,4X,i 11, UIA4,.J.Zll LSP0529 
6 FORMATllSX,l.HI ,i2,4HI =,3.X,2Il.l2 IA4, IZI I .LSP0530 
1 FORHATll5X,lHl,12,4KI =,ZX,31lt1ZIA4,!211 LSP0531 
8· FORMAT(15X,.lHl,IZ,4HI =,lX,411..121A4,1211 LSP0532 
9 FORMAT( 1H+,26X, I 1613X,Al,2Xlfl I LSP0·533 

10 FORMAT uox•OUTPUT SIGNALS•• fl LSP0534 
H ·FORMATl15X,'Z',Ir,• =• 13113,1X,Ali,lll9X,13113.lX,Allll LSP0535. 
12 FORMATllOX'S·WlTCHING CONDITIONS:' II LSP0536 .. 
1:3 FORHATUSX'Y', 12,6X'·SET =• ,10( 13, 1X,All ,/121X,101I3,1X,All I I LSP0537: 
14 FORMATl24X,'RESET =•,1DII3,1X,All,/!21X,101I3,1X,Allll LSP0538. 
15 FORMATllilX'THERE ARE NO TRANSITION PATHS TO STATP,141· LSl'0539 
16 FORMATUXI . . LSP0540 

.NH = O LSPOSH 
· DO 20 J=l..NC LSP0542 

HCIJ,ll s LOGISSCIJ.,11,21 LSP0543 
20 NM= NH +·MCIJ,11 LSP054t, 

IFINII ,·Ell, 01 GO TO 26. LSP0545 
WRITElt,.,31" LSP054& 
DO 25 K=l.,NM LSP0547 
SETI-K,11 = 0 LSP0548 

·25 RESETIK,11 = 0 ·tSPOS49 
26 Uf = 0 LSPD550 

MCL = l LSP0551 
Htl = D .LS.P0552 
WRHEH, .. 4J . LSP0553 
DO· 170 JC=l.NC· LS.P0554 

.IICl = MCl + HCIJC,11 LSP0555 
L = SSC(JC,11 LSP055& 
IFIL-11170,160,30 LSP0557 

30 CALL ASSIGNIL,21 LSP0558 
·DO 100 1=1,l LSP0559 
Ml= 0 LSP05&0 
DO 35 IR=l,NR LSP0561 
JFIS{IR,JCl .NE. SSCIJC;l+lll .GD TO 35 LSP0562 
Ml= Ml+l LS1'05&3 
PSIMll = SSRIIRI LSPD564 

35 CONTINUE LSP0565 
IFIMl .EQ. 01 WRITEl6,151 SSCIJC,I+ll LSP0566 
Jl = 0 LSP0567 
00 90 K=MCL,MCI LSP0568 
JK = K-MCHl LSP0569 
lFI IG.IJK,11 .LT. 01 GO TO 90 LSP0570 
Jl = JI+l LSP057l 
.INOTIJ·l,U = IAB LSP0572 
IYPIJl,11 = K. . LSP0573 
lfllGiJK,11 .EQ. 01 lNOTIJl,11 = IAN LSP0574 
NS1 = SETIK,11 . LSP0575 
·NRl = RESET! K, 11 LSP057& 
l"FIIG!JK,ll ,EQ. 01· GO TO 83 ·LSP0577 
SET(K,11 = NS1 + Ml LSP0578 
00 82 H=l,Ml LSP0579 

82· SETIK,.l+H+NSll = PSIMI LSP0580 
GO TD 85 LSP0581 

53 .RESETIK,ll = NRl + Ml LSP0582 
00 ·8·4 M=l,Ml LSP0583 

84 RESET! K,l+Pl+NRll. = PSINI LSP0584 
85 CONTINUE LSP0585 
90 CONTINUE LSP058& 

JLIII = Jl LSP0587 
100 CONTINUE LSP0588 

.DO 156-KK=l,L LSP0589 
Jl = JLIKKI LSP0590 
GO TO 1150,151,152,1531,NI LSP059l 

150 WRITEl&,51 SSCIJC,KK+ll,IIXll,JCl,l=l,Nll,INYIKl,IYPIK,KKl,K=l,JllLSP0592. 
WRITE l&,91.IINOTI H,KK I ,H=l,Jl I LSP0593 
GO TO 155 LSP0594 

151 WRITE 1&,61 SSC( JC,KK+ll ,tlXI l ,JCI ,Izl,NI 1, INY IKI ,l'fP.(K,KKI ,Kml,Jl ILSP0595 
• WRITEl6,911{NOTIH,KKl,M=l·,Jll LSP059b 

GO TO 155 LSP0597 
152 WR!TE16,7l SSC!JC,KK+ll,IIX!l,JCl,I•l,Nll,!NV(Kl,IYP{K,KKJ,Knl,JlllSP0598 

WRITEl6,91 I INOTIM,KKI ,M=l, Jl I LSP0599 
GO TO 155 LSP0600 

153 WRITE16, 81 SSC( JC,KK+ll, I IX! I ;JCl, 1=1,Nll, CNY IKI ,IYPIK,KKI ,K=l,JllLSP0601 
WR!TEl6,91 IINOTI H,KKI ,H=l,Jll. LSP0602 

1"55 CONTINUE LSP0603 
WRITEl6,l&I LSP0604 
GO TO 110. . LSPD605 

l&O !FINI ,LE, 21 WRITEl6,.61 SSC(JC,21.!IXC!,JCl,I•l,Nll LSP0606 
!FINI .EQ, 31 WRITEl6,71 SSCIJC,21,IIXll,JCl,1=1,Nll LSPD607 
IFCNI ,EQ. 41 WRITEll,.81" SSCIJC,2>.IIXCl,JCl,1*1,Nll LSP0608· 
WR!TEll>t 161 LSP0609 

170 PICL = MCL + MCIJC,U LSP0610 
IFCNM .EO. 01 GO TO 176 LSP0611 
WRITEl&,121 LSP0612 
00 175 K•l,NM LSP0613 
Ml= SETCK,11 LSPD614 

'° co 
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C 
C 
C 
C 
C 
C 

SUBROUTINE PR! NTIKNHI LSP063l 
***:Cc****************************.(r.$:*********tr********~************* LSP0632 
* *LSP0633 * SUBROUTINE PRINT IS USED TO PRINT THE FLOW TABLES *LSP0634 
* INVOLVED IN EITHER SYNTHESIS OR SIMULATION. *LSP0635 
* *LSP0636 
~•*************~********~*******~**************~*****'*~****$******LSP0637 
COMMON I ALL/ NI,. NO,NR,NM,-NC, IX( 4, 16) ,_ IV( 36, 40), I Z ( 6,.40), S( 4.0., 161 
DIMENSION MSl16l, MSSl16l, IN3(4ll, IXP(41, IZP(6) 
HlTEGER S 
DATA JAB, IAP, IN3, IXP, IZP/4H ,4H( ),41*3H--,.4*lHX,6*1HZ/ 

1 FORMATlllX,.4(1X,.Al,IlJ/J 
2 FORMATC!OX,2f5X, IU,3X11b(lX,Al, Il}) 
3 FORMAT ( !OX, 4 (4X .211) ,3X ,6( lX ,Al, ll)) 
4 FORMAT ClOX,8( 3X,3I l J ,3X,6( lX,Al, I 1) J 
5 FORMAT( 16{2X,4I1J,3X,6(1X,Al,11J) 
6 FORMATl12X,41A3l 
7 FORMAT ( 2X,41A3 J 
8 FORMAT(lOX,216,3X,6(2-X,Il)J 
9 FORHAT(lOX,416,3X,6(2X,IlJJ 

10 FORMATUOX,BI6,3X,6(ZX,Il}J 
11 FORMAT( l6l6"3X';'6(2X,11l) 
12 fC~HAT<lH+, 50X,1612) 
13 FORMAT(lH+, 62X,16I2) 
14 FORMAT{lH~, 86X,l612) 
15 FORMAT(lH+,115X,16ll) 
16 FORMAT(lH+,10X,lH1,lX,A4,3t2X,A4l,2H IJ 
17 FORMAT(lH+,lOX,lHl,1X,A4,7(2X9A4J,ZH I) 
18 FORMAT·(3H+I ,A4,15(2X,A4);2H I) 

I NC = l +NC*Z+NO 
WRT.TE(6,Ut IXP( I ),I,l=l,NI) 
GO TO' (20~25,30,35}\ NI 

20 WRITE {6,2J ( l IX l I ,JC), I='l ,Nl) .,.JC='l.,NCi, { IZP(J·) ,J,J=!,NO} 
WRITE{ 6,6) { IN3( 1 l, 1=1,- [NC} 
DO 22 IR=!.NR 
DO 21 JC=l ,NC 
MS[JC! = S!IR,JCJ 
MSS(JCJ= !AB 
IF(SIIR,JCI .LE. 10001 GO-TO 21 
MS(JCI = SIIR,JC) - 1000 
MSSI JCI= !AP 

21 CONTINUE 
WRITE(6, 8J(HS(JCJ,JC=l,NC),(IZ{J. IR)9J=l,NO) 
IF!KNH .NE. 01 WRITEl6,12l UYIH,IRl,H=l,KNMI 

22 WRITEl6.,161!MSS[JCl,JC=l,NCI 
GO TO 40 

25 WRITE(b,3J(tlX(l.JC),I=l,Ntl,JC=l,NCJ,(IlP(JJ~J9J=l,NOl 
WRITE ( 6,6) ( IN3( I ),°l=l, INC) 
DO 27 IR=l ,NR 
DO 26 JC=! ,NC 
MSIJCI = 5( IR,JCI 
MSS! JC!= JAB 
IF!S! IR,JCI .LE. 10001 GO TO 26 
MS!JCI = SCIR,JCI - 1000 
MSS(JCI= !AP 

26 1:0NTINUE 
WRITE (b, 9l I MS( JCl ,JC=l.,NC J • ( IZC J, IR> ,J=l,NO) 
IF(KNH ,NE. Ol WRITEl6,13IIIYIH,IRI ,H=l,KNMl 

27 WR!TE!6,l6IIMSS!JCl,JC=l,NCI 
GO TO 40 

LSP0638 
LSP0639 
LSP0640 
LSP064l 
L5P0642 
LSP0643 
LSP0644 
LSP0645 
LSP0646 
LSP0647 
LSP0648 
LSP0649 
LSP065D 
LSP065J 
LSP0652 
LSPD653 
LS?0654 
LSP0655 
LSP0656 
LS-P0657 
LSP0658 
LSP065'1 
LSP0660 
LSP066l 
LSP0662 
LSP0663 
LSP0664 
LSP0665 
LSP0666 
LSP0667 
LSP0668 
LSP0669 
LSP0670 
LSP067l 
LSP0672 
LSP0673. 
LSP0674 
LSP0675 
LSP0676 
LSP0677 
LSP0678 
LSP0679 
LSP06BO 
LSP068l 
LSP0682 
LSP0683 
LSP0684 
LSP0685 
LSP0686 
LSP06B7 
LSP0688 
LSP0689 
LSP0690 

30 WRITE-16,41 t I IX( 1,-JC), I:s-1.,NI) 11JC=l, NCJ, ( I ZP(J J ,J ,J=l ,NOl 
IIR!TE16,61 I IN3( I I ,I=l,INCI 
DD 32 !R=l,NR 
DO 31 JC=l,NC 
MS!JCl = SIIR,JCI 
MSS!JCI= !AB 
!F!S(IR,JCI .LE. 10001 GO TO 31 
MS[Jtl g S(IR1JCJ - 1000 
MSS(JCl= !AP 

31 CONTINUE 
HR ITE( 6 1 10 J \ MS i JC), JC=l ,NC l, ( 121 J, IR t ,J=l,NO J 
JF!KNN .NE. 01 WRITEl6,14lllYIM,IRl,~=l,KNMl 

32 WRITE{6,17!(MSS(JCl9JC=l,NC) 
GO TO 40 

35 WRITE f 6,5) l ( 1 Xf I ,JC) j J=l ,Nl) ,JC=l, NC) tt ( I ZPCJ) t J ,J='l ,NOJ 
WR[TEf 6,7} ( lN3( I I, I=l., lNC) 
00 37 1R=l,NR 
DD 36 JC;::l, NC 
MSUC} = SllR,JCJ 
MSSIJC!= !AB 
IF!Sl!R,jCl .LE. 1000) GO TO 36 
HSCJCl = S(lR,JCl - 1000 
MSS!JCl= IAP 

36 CONTINUE 
WRITE i 6,11 l ( MS (JC), JC=l,NC), (I ZC J, IR) ,J=l,NO) 
IFIKNM .NE .. Ol WRITE(69}5)(IY(M,IR),H=l,KNMJ 

37 WRITEl6,18llMSS!JCl,JC=l,NCI 
WRITE(6,1)ftN3lI),1=1,INCJ 
RETURN 

40 WRITE!6,61IIN3111,l=l,INCI 
RETURN 
END 

LSP0691 
LSP0692 
LSP0693 
LSP0694 
LSP069S 
LSP0696 
LSP0697 
LSP0698 
LSP0699 
LSP0700 
LSP0701 
LSP0702 
LSP0703 
LSPD704 
LSP0705 
LSP0706 
LSP0707 
LSP0708 
LSP0709 
LSP0710 
LSP07l l 
LSP0712 
LSP0713 
LSP0714 
LSP0715 
LSP0716 
LSP0717 
LSP0718 
LSP0719 
LSP0720 
LSP0721 
LSP0722 

f->. 
0 
0 



SUBROUTINE ASSIGNIK,NAI LSP0·723 
t *********************************••••~•~••*********************-***LSP0724 
C . * *LSP0725 
C * SUBROUT !NE ASSIGN PRODUCES EITHER THE PASSIVE MEMORY OR *LSP072b 
C * GRAV ASSIGNMENT CODE. THE PASSIVE MEMORY ASSIGNMENT CODE IS •LSP0727 
C * USED FOR MEMORY ASSIGNMENT IN THE SYNTHESIS PROGRAM AND THE *LSP0728· 
C ;;. GRAY CODE IS USED FOR INPUT STATES IN THE ·s1AULATION PROGRAM. *LSP0729 
C * THE GRAY CODE PRODUCED BY THIS SUBROUTINE HAS THE ELEMENT ON *LSP0730 
C * THE LEFT MOST FREQUENTLY CHANGING. *LSP0731 
C * *LSP0732 
C * *LSP0733 
C * NA= OPTION SPECIFYING CODE *LSP0734 
C * 1 = GRAY CODE !INPUT STATES! *LSP0735 
C * 2 = PASSIVE CODE !MEMORY ASSIGNMENT! *LSP0736 
C * K = THE NUMBER OF STATESIOR COLUMNS) REQUIRED *LS·P0737 
C * IGll,JI = THE VALUE OF THE I-TH MEMORY IOR INPUT! IN THE *LSP0738 
C * J-TH STATE !OR COLUMN). . *LSP0739 
C * *LSP0740 
C ***-******************************•**~*************~*************-*LSP0741 

COMMON /ASN/ IG119,20I LSP0742 
DIMENSION IAl161, RAl161 LSP0743 
INTEGER RA LSP0744 
!Fil< .LE. 11 RETURN .LSP0745 
NHl = LOG I K ,NA I LSP0746 
!FINA .eo. 21 GO TO 30 LSP0747 

10 DO l! · !=l,K . LSPli74S 
DO 11 J=l, NHl LSP0749 
IGIJ,ll = 0 LSP0750 
JH = 2**1NM1-JI LSP0751 
00 11 H=l,JM,2. LSP0752 · 
AM = H LSP0753 
Al = Z**J*I AM+0.51 LSP0754 
AZ= 2**J*IAM-0.51 LSP0755 
IFII.G•.Al .OR. I.LE.A21 GO.TO 11 LSP0756 
IGIJ,TI = 1 LSP0757 

11 CONTINUE LSP0758 
RETURN LSP0759 

30 DO 31 t=l,19 LSP0760 
DO 31 J=l,20 l.SP076l 

31 IGI hJ I = -1 LSP0762 
NRA= 1 LSP0763 
NR ·= 1. LSP0764·. 

32 H = l LSP0765·. 
DO 33 !=!,NRA LSP0766 

33 IAIII = 0 LSP0767 
IFINRA·oGT. 11 !Alli= 1 LSP0768 

34 H = M*2 LSP0769 
DO 35 J=t,14,2 LSP0770 

· 35 lAll+J*NRA/HI = IAll+IJ-ll•NRA/HI + H/2 LSP0771 
IF(M .LT. NRAI GO TO 34 LSP0772 
DO 37 l=l,NRA LSP0773 
JK = O LSP0774 
IRl = I LSP0775 
DO 36 14=1, IRl LSP0776 

36 IFIIMUJ .LT. IA0.11 IK = IKH ,Ls,po-u;r 
37 R.All 1 -= .HIIII .. rH< ~$Pllntll 

NRR " ·Nit«NU I.-S9,ffl9 
DO '3'9 i"'J.,NRA ~?.0-7.41,!1 
IM·= •NR~l+l J.:SiP;ll1:!IJ 
U = R.AI U i§l'#n 

00· 38 ll=IR,NRR 
12 = NRR+IR-11 
DO 38 Ml=l, IM 

38 IGIMl,12+11 = IG~Ml,121 
JGIIN,IRI = l 
IGIIH, IR+ll = 0 
IFINR+l .EQ. Kl GO TD 40 

39 CONTINUE 
NR = NRR 
NRA = NRA*2 
GO.TO 32 

40 CONTINUE 
RETURN 
ENO 

LSP0783 
LSP0784 
LSP0785 
LSP0786 
LSP0787 
LSP0788 
LSP0789 
LSP0790 
LSP0791 
LSP0792 
LSP0793 
LSP0794 
LSP0795 
LSPD796 

!..I. 
0 
!..I. 



t 
C c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FUNCTION LOGIK,NAI LSP0797 
***************************************.**************************LSP0798 * *LSP0799 
* FUNCTION LOG DETERMINES THE NUMBER OF MEMORIES *LSPOBOO 
* (OR INPUTSI REQUIRED FORK ROHS !OR COLUMNS) USING THE PASSIVE*LSP0801 
* MEMORY (OR GRAYS ASSIGNMENT CODE. *LSP0802 
* *LSP0603 
* *LSP0804 
* NA - OPTION SPECIFYING CODE *LSP0805 
* l = GRAY CODE I INPUT STATES I *LSP080b 
* 2 = PASSIVE MEMORY CODE !MEMORY STATES) *LSP0807 
* K = THE NUHBER OF ROWS (OR COLUMNS). *LSP0808 
* *LSP0809 
******************************************************************LSP0810 
LOG = 0 LSPOBll 
!FINA .EC. 21 GO TO 30 LSP0812 

10 KK = 1 LSP0813 
DO 11 I=l,10 LSP0814 
IFIKK .LT. Kl LOG= [ LSP0815 

ll KK = KK*2 LSP0816 
RETURN LSP0817 

30 IFIK .GE. 21 LOG= K-1 LSP0818 
RETUR~ LSP0819 
END LSP082~ 

C 
C 
C 
C 
C 
C 

FUNCTION NOTl!Al LSP0821 
t**************************~******************************$*******LSP0822 
~ " *LSP0823 
* FUNCTION NOT PERFORMS THE LOGICAL COMPLEMENT OF THE *LSPC824 
* VARIABLE IA. *LSP0825 
* *LSP082b 
**$***************************************************************LSP0827 
IF(!A .GE. 11 NOT= 0 LSP0828 
lfllA .EQ. Ol NOT= l LSP0829 
RETURN LSP0830 
END LSP0831 

..... 
0 
I\) 



FUNCTION MEMORY (IV, MS,MRI L SP083Z 

C ***************"***********************-****************************LSP0833 
C * *LSP0834 
C * FUNCTION MEMORY CONTAINS THE SIMPLIFIED MEMORY EQUATION. *LSP0835 
C • - *LSP0836 
C * *LSP0837 
C * MS= SET SIGNAL *LSP0838 
C • MR= RESET SIGNAL *LSP0839 
C * IV= PREVIOUS MEMORY STATE *LSP0840 
C * *LSP084l 
C ************************************************·******************LSP0842 

MEMORY= MS +-IY*NOTIMRI LSP0843 
IF (MEMORY .GT. 11 MEMORY s l LSP0844 
RETURN LSP0845 
ENO LSP0846 

SENTRY 

.... 
0 
w 
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SJOB 
CALL LOGSYN 
STOP 
END 

DATA CARDS: 
000000000 l l lll l ll 112222222222333333333344444444445555555555666666666677777777778 
1234567890!234567890123456789012345678901234567890123456789012345678901234567890 

EXAMPLE C.l - TABLE XI REPRESENTING EXAHPLE 3.3 
2 210 

00 10 11 01 
1001 2 

81002 3 
41003 

81004 5 

7 

7 

91005 6 
l 101006 
8 101007 

1008 2 
81009 10 

91010 

7 

7 

00 
00 
00 
00 
00 
10 
01 
01 
01 
01 

t-l. 
0 
\Jl 



LOGIC SYNTHESIS . 
FOR 2 INPUTS, 2 OUTPUTS. 

ORIGINAL PRIMITIVE FLOW TABLE FOR 
EXAMPLE C.1.- TABLE XI REPRESENTING EXAMPLE 3.3 

Xl XZ 
00 10 11 01 Zl ZZ. ----~---~------~~--~---

11 2 0 7 I 0 0 
8 ' 2) 3 0 I 0 0 
0 4 '3) 7 I 0 0 
8 ' 4) 5 0 I 0 0 
0 9 I 51 6 I 0 0 
l 0 10 I 61 I 1 0 
8 0 10 ( 71 I 0 l 
Bl 2 0 1 l 0 1 
8 I 91 10 0 I 0 1 
0 9 110) 7 I 0 l ------------------. ----

CANON !CAL FLOW TABLE FOR 
EXAMPLE C.l - TABLE XI REPRESENTING EXAMPLE 3.3 

Xl X2 
00 ,10 11 01 ll Z2 

l) 2 0 3 I ·o 0 
4 I 2l 5 0 I 0 0 
4 0 6 I 31 I 0 1 
41 2 0 3 I 0 1 
0 1 I 51 3 I 0 0 
0 8 ( 6.J 3 I 0 1 
4 I 71 9 0 I 0 0 
4 I 81 6 0 I 0 l 
0 8 I 91 10 I 0 0 
l 0 6 110 I I l 0 -----------------------

!PASSIVE MEMORY ASSIGNMENT! 

STATE SIGNALS: 

1) = 00 * Y 
41 = 00 * .I'. 

21 = 10 * Y 2 * Y 3 
71 = 10 * Y 2 * .I'. 3 
8) = 10 • .I'. 2 

51 = ll*Y4*Y5 
6) = 'll*Y4*.1'.5 
9) = 11 * .I'. 4 

I 3) = 01 * V 6 
(10) = 01 * .I'. 6 

SWITCHING CONDITIONS: 

>/ l SET = 10 
RESH= 2 + 3 + 7 + 

y 2 SET = l + 4 + 
RESET = 6 + 9 

y 3 SET = l + 4 
RESET= 5 

y 4 SET = 2 + 3 + a + 10 
RESET = 7 

v 5 SET = 2 
RESET = 3 + 8 + 10 

y 6 SET = 1 + 4 + 5 + 
RESET = 9 

OUTPUT SIGNALS: 

Zl = 10 
Z2 = 3 • 4 ,,. 6 + 8 ..... 

0 
O'\ 



$JOB 
CALL LOGSYN 
STOP 
ENO 

DATA CARDS: 
000000000 l l l l l l l I l 12222222222333 33333334444444444555 5555 55 56666666666 77777777778 
12345678901234567690123456789012345678901234567890123456789012345678901234567890 

EXAMPLE C.2 ~ TABLE 6.4 FROM FLUID LOGIC TEXT BY E.C. FITCH 
2 112 

00 10 ll 01 
1001 2 7 

81002 3 
41003 9 

101004 5 

l 
l 

1008 

111005 6 

2 

121006 
1007 

31009 
1010 4 

1011 5 
1012 6 

0 
0 
0 
0 
l 
l 
0 
0 
0 
0 
l 
l 

.... 
0 
"'1 
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LOGIC SYNTHESIS 
FOR 2 INPUTS, l OUTPUTS. 

OR'IGINAL PRIK!TIVE FLOW TABLE FOR 
EltAHPLE c.2 - TABLE f>.4 FROM FLUID LOGI.C TEXT BY E.c. FITCH 

Xl X2 
00 10 11 01 Zl ----------------

I I 11 2 0 7 I 0 
I a I 21 3 0 I 0 
I 0 4 I 31 9 I 0 
I 10 I 41 5 0 I 0 
I 0 11 I 51 b I 1 ., l 0 12 I bl I I 
I l 0 0 I 71 I 0 
I 1 Bl 2 0 0 I 0 
I 0 0 3 t 91 I 0 
I 1101 4 0 0 I 0 
I 0 1111 5 0 l l 
! 0 0 1121 b I l ---------------

STATE 
STATE 
STATE 

8 WAS EOUI VALENT TO STATE 
12 WAS EQUIVALENT ro· STATE. 

9 WAS EOll!VALENT TO STATE 

1 ANO HAS BEEN REMOVED. 
5 ANO HAS BEEN REMOVED. 
7 AND HAS SEEN REMOVED. 

CANONICAL FLOW TABLE FOR 
EXAHPLE C.2 - TABLE 6.4 FROM FLUID LOGIC TEXT 8Y E.C. FITCH 

Xl X2 
00 10 11 01 Zl -------------------

11 2 0 3 I 0 
l I 21 4 0 l 0 
I 0 4 I 31 I 0 
0 5 I 41 3 I 0 
6 C 51 7 0 I 0 
bl 5 0 0 I 0 
0 9 I 71 6 I l 
l 0 7 I Bl I l 
0 I 91 7 0 I l -------------------

I PASSIVE MEMORY ASSIGNMENT I 

STATE S.IGNALS• 

11 . 00 • Y 
bl = oo • X 

21 = 1o•v2·•v3 
51 = 10 • Y Z * :t. 3 
91 = 10 • X 2 

41 = 11 • Y 4 
71 = 11 • X 4 

31 . 01 * Y 5 
81 . 01 • X 5 

SWITCHING CONDITIONS: 

y l SET . 2 + 3 + 8 
RESET • 5 

y 2 SET = l + 4 + -6 
RESET • 7 

y 3 SET 
RESET• 4 + 6 

y 4 SET . 2 + 3 
RESET• 5 + 8 + 9 

y 5 SET C l + 4 
RESET= 7 

OUTPUT SIGNALS: 

Zl c 1 + 8 + 9 

'""' 0 
C):) 



SJOB 
CALL LOGSYN 
STOP 
END 

DATA CARDS: 
00000-0000 u 111111112222222222333 333333344444444445 5555555556666&66M>&T7777711'TT~ 
l234567890l23456789012345678901234567B901H4567890l23456789012345678901234567B90. 

EXAM·PLE C.3 - ·4-INPUT, 30 ROW 
4 630 

0000100011000 lODO 11011101010001000111011111101110101110110010001 
1001 2 10 13 14000000 

11002 3 15 16 100000 
21003 10 4 17 110000 

3 181004 15 5 111000 
4 191005 6 17 111100 

18 7 51006 11 011100 
131D07 19 6 8001100 

9 7 11 161008000110 
1009 20 10 13 000000 

l 31010 18 11 010000 
10 61011 17 12010100 

l 7 11 161012000111 
l 18 151013 7 001000 

. l 7 11 161014000111 
2 41015 13 19 101000 
2 19 171016 12100100 

3 5 111017 16 110100 
101018 4 13 6 011000 

15 71019 5 16 101100 
211020 3 15 16 100000 

1021 22 10 13 14000000 
231022 3 15 16 100000 

1023 24 10 13 14000000 
251024 3 15 16 100000 

1025 20 10 13 26000000 
9 27 11 161026000100' 

281027 19 6 8001100 
18 291028 7 101000, 

30 41029 13 19 101000; 
11030 3 15 u 10001.01 

I-' 
0 

'° 



LOGIC SYNTHESIS 
l'OR 4 INPUTS, 6 OUTPUTS. 

ORIGINAL PRIMITIVE FLOW TABLE FOR 
EXAMPLE C.3 - 4-INPUT, 30 ROW 

Xl X2 X3 X4 

0000 1000 1100 0100 0110 1110 1010 0010 0011 1011 1111 0111 0101 1101 1001 0001 21 22 23 Z4 25 26 -- ---------------------------------
11 2 0 10 0 0 0 13 0 0 0 0 0 0 Q 14 I 0 0 0 Q Q 0 
1 I 21 3 Q 0 0 15 0 0 0 Q 0 0 Q 16 0 I 1 0 0 0 0 0 
0 2 I 31 10 0 4 0 0 0 0 Q 0 0 17 Q Q I 1 l 0 0 0 0 
·o 0 3 0 18 . I 41 15 0 .0 Q 5 0 0 Q 0 0 I 1 1 1 0 0 0 
0 0 0 11 0 4 0 0 Q 19 I 51 6 0 17 0 0 I l 1. 1 l 0 Q 
0 0 0 0 18 0 0 0 7 0 5 I 61 11 0 0 0 I 0 l l 1 0 0 
0 0 0 0 0 0 0 13 I 71 19 0 6 0 0 0 8 · I 0 0 1 l 0 0 
9 0 0 0 0 0 0 0 7 0 0 0 11 0 16 I 81 I 0 0 0 1 1 0 
91 20 0 10 0 0 0 13 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 
1 0 3 1101 18 0 0 0 0 0 0 0 11 0 0 0 I 0 l 0 0 0 0 
0 0 0 10 0 0 0 0 0 0 0 6 1111 17 0 12 I 0 1 0 1 0 0 
1 0 0 0 0 0 0 0 7 0 0 0 11 0 16 1121 I 0 0 0 l 1 l 
l 0 0 0 18 0 15 1131 7 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 0 0 7 0 0 0 11 0 16 1141 0 0 0 l 1 1 
0 2 0 0 0 4 1151 13 0 19 0 0 0 0 0 0 1 0 1 D 0 0 
0 2 0 0 0 0 0 0 0 19 0 0 0 17 1161 ·12 1 0 0 1 0 D 
0 0 3 0 0 0 0 0 0 0 5 0 ll 1171 16 0 1 1 0 l 0 0 
0 0 0 10 1181 " 0 13 0 0 0 6 0 o· 0 0 0 1 1 0 0 0 
0 0 0 0 0 Q 15 0 7 1191 5 0 Q 0 16 0 1 0 1 l 0 0 

Zl 1201 3 q 0 0 15 0 0 0 0 0 0 0 16 0 1 0 0 0 0 0 
1211 22 0 10 0 0 0 13. 0 0 0 Q 0 0 0 14 0 0 0 0 0 0 

23 ·1221 3 0 0 0 15 Q 0 0 0 0 0 0 16 0 1 Q 0 0 0 0 
1231 24 0 10 0 0 0 13 0 0 Q 0 0 0 0 14 0 0 0 0 0 0 
25 1241 3 0 0 0 15 0 0 0 Q 0 0 0 16 0 1 0 0 0 0 0 

1251 20 0 10 0 0 0 13 0 0 0 0 0 0 0 26 I 0 0 0 0 0 0 
9 0 0 0 0 0 0 0 21 0 0 0 11 0 16 1261 I 0 0 0 1 0 0 
0 0 o· 0 0 0 0 28 1271 19 0 6 0 0 0 8 I 0 0 1 1 0 0 
1 0 0 0 18 0 29 1281 7 0 0 0 0 .Q 0 0 I l 0 1 0 0 0 
0 30 0 0 0 " 1291 13 0 19 0 0 0 0 0 0 I 1 0 1 0 Q 0 
1 1301 .3 0 0 0 15 0 0 0 Q 0 0 0 16 0 I 1 0 0 0 1 0 -~~~----------- ----------------------------------------------------

S7ATE 25 WAS .EQUIV.ALENT TO STATE 9 AND HAS BEEN REMOVED. 
STATE 14 WAS.EQUIVALENT TO STATE 12 AND HAS BEEN REMOVED. 

.r 
..... 
..... 
0 



CANONICAL FLOW TABLE FOR 
EXAMPLE .C.3 - 4-INPUT, 30 ROW 

Xl X2 X3 X4 

0000 1000 1100 0100 0110 1110 1010 0010 OOll 1011 1111 0111 0101 1101 1001 0001 Zl ZZ l3 Z4 Z5 Z6 --·------------------------------------
I I lJ 2 0 3 0 0 0 ,. 0 0 0 0 0 0 0 5 I 0 0 0 0 0 0 
I 1 I 21 6 0 0 0 7 0 0 0 0 0 0 0 8 0 I l 0 0 0 0 0 
I 1 0 6 I 31 9 o· 0 0 0 0 0 0 10 0 0 0 I 0 l 0 0 0 0 
I 1 0 0 0 9 0 7 I 41 11 0 0 0 0 0 0 0 I 0 0 1 0 0 0 
I 1 0 0 0 0 0 0 0 11 0 0 0 10 0 8 I 51 I 0 0 0 l l 1 
I 0 2 I 61 3 0 12 0 0 0 0 0 0 0 13 0 0 I l l 0 0 0 0 
I 0 2 0 0 0 12 I 71 ,. 0 14 0 11 0 0 0 ·o I l 0 1 0 0 0 
I 0 2 0 0 0 11 0 0 0 14 0 0 0 13 I 81 .5 I 1 0 0 I 0 0 
I 0 0 0 3 I 91 12 0 4 0 0 0 15 0 0 0 0 I 0 1 1 0 0 0 

0 0 0 3 0 0 0 0 0 0 0 15 1101 13 0 5 I 0 I 0 l 0 0 
0 0 0 0 0 0 0 ,. llll 14 0 15 0 0 0 16 I 0 0 l l 0 0 
0 0 6 0 9 1121 7 0 0 0 17 0 0 0 0 0 I 1 l l 0 0 0 
0 0 6 0 0 0 0 0 0 0 17 0 10 1131 8 0 I l l 0 l 0 0 
0 0 0 0 0 0 7 0 11 1141 17 0 0 0 8 o I 1 0 l l 0 0 
0 0 0 0 9 0 0 0 11 0 17 1151 10 0 0 0 0 1 l l 0 0 

18 0 0 0 0 0 0 0 11 0 0 0 10 0 8 1161 0 0 0 l l 0 
0 0 0 0 0 ·12 0 0 0 14 1171 15 0 13 0 0 1 l l l 0 0 

1181 19 0 3 0 0 0 ,, 0 0 0 0 0 0 -0 20 0 0 0 0 0 0 
21 1191 ,. 0 0 0 7 0 0 0 0 0 0 0 8 0 l 0 0 0 0 0 
18 0 0 0 0 0 D 0 22 0 0 .o 10 0 8 12.01 0 0 0 l 0 0 

.1211 23 0 3 0 0 0 ,, 0 0 0 0 0 0 0 5 0 0 0 0 0 0 
0 0 0 .0 0 0 0 Zit 1221 14 0 15 0 0 0 16 0 ·o 1 1 0 0 

I 25 1231 6 0 0 0 7 0 0 0 0 0 0 0 8 0 1 0 0 0 0 0 
I 1 0 0 0 9 0 2b IZltl 11 0 0 0 0 0 0 0 1 0 l 0 0 0 

· I 1251 27. 0 3 0 0 0 ,. 0 0 0 0 0 0 0 5 0 0 0 0 0 0 
I 0 28 0 o·· 0 12 l2bl ,, 0 14 0 0 0 0 O· 0 l 0 l 0 0 0 
I 18 1271. ,. 0 0 0 7 0 0 0 0 0 0 o· 8 0 l 0 0 0 0 0 
I 1 1281 6 0 0 0 7 0 0 0 0 0 0 0 8 0 1 0 0 0 1 0 ---------------------------------------------------------

I PASSIVE MEMORY ASSIGNMENT I 

STATE SIGNALS: 

I ll :0000*Yl*Y2 
1181 = 0000 • Y l • Y 2 
I 211 · = 0000 * Y l • Y 3 
125) .= 0000 • Y, l • :y 3 

. I 21 =:1000 • y·4 * Y 5 • Y 7 
119) · = 1000 * Y 4 * Y 5 * :I. 7 
1231 s 1000 • -y 4 * :t. 5 
1271 = 1000 ·~ Y 4 * Y· 6 
1281 =·1000 • Y 4.• Y 6 

61 s 1100 

.31 = 0100 

t->-
t->-
t->-



l 91 = 0110 

1121 = 1110 

( 11 = 1010 * Y 8 
(261 = 1010 •:ta 

l 41 = 0010 • Y 9 
1241 = 0010 * Y. 9 

(111 = 0011 * YlO 
1221 = 0011 • no 
1141 = 1011 

l 171 = 1111 

(151 = 0111 

[101 = 0101 

1131 = 1101 

I 81 = 1001 

l 51 = 0001 * Yll * Yl2 
1161 = 0001 * Yll * ~12 
(201 = 0001 * Ill 

SWITCHlNG CONDITlONS: 

y l SET = 2 + 3 + 4 + 5 + 24 + 28 ·+ 16" + 20 + 27 
RESET = 19 + 23 . 

y 2 SET 2 + 3 + 4 + 5 + 24. + 28 
RESET= 16 + 20 + 27 

y 3 sn = 19 
RESET = 23 

y 4 SET = l + 6 + 7 + 8 + 18 + 2·1 
RESET = 25 + 26 

y 5 SET = t + 6 + 7 + 8 + 18 
RESET = 21 

y 6 SET = 25 
RESET = 26 

y 7 SET = l + 6 + 7 + 8 
RESET = 18 

y 8 SET = 2 + 4 + 12 + 14 + 19 + 23 + 27 + 28 
RESET= 24 

y 9 SET = l + 7 + 9 + 11 + 18 + 21 + 25 + 26 
RESET = 22 

no SET = 4 + S ~ 14 + 15 + 16 + 24 

RESET= 20 

Yll SET = 1 + 8 + 10 + 21 + 25 + 11 + 22 
RESET = 18 

Yl2 SET 
RESET 

1 + 8 + 10 + 21 + 25 
11 + 22 

OUTPUT SIGNALS: 

ll = 2 + 6 + 7 + 8 + 12 + 13 + 14 + 17 + 19 + 23 + 24 + 26·+ 27 + 
28 

Z2 = 3 + 6 + 9 + 10 + 12 + 13 + 15 + 17 
Z3 = 4 + 7 + 9 + 11 + 12 + 14 + 15 + 17 + 22 + 24 + 26 
Z4 = 5 + 8 + 10 + 11 + 13 + 14 + 15 + 16 + 17 + 20 + 22 
Z5 = 5 + 16 + 28 
Z6 = 5 

I 

..... ..... 
[IJ 



SJOB 
CALL LOGSYN 
STOP 
EN.O 

DATA CARDS: 
000000000llllllllll222Z2Z22Z23333333333444444"4"45.55555555566666666667T777771778 
lZ345678'1012345678901234567890lZ34567890lZ345678CJOl234567890123't5678CJOl234567890 

·EXAMPLE C.4 - 8 EVENT COUNTER 
l 116 

0 l 
1001 Z 

31002 
1003 It 

51004 
1005 6 

71006 
1001 a· 

91008 
1009 10 

·111010 
1011 12 

131012 
1013 14 

151014 
1015 16 

11016 

0 
0 
o· 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

·o 
l 

.. .. 
\..) 



LOGIC SYNTHESIS 
FOR l INPUTS, l OUTPUTS·. 

ORIGINAL PRIMITIVE FLOW TABLE FOR 
EXAMPLE C.4 - 8 EVENT COUNT ER 

Xl 
0 l Zl --------
11 2 0 
3 I 21 0 
31 4 0 
5 I 41 0 
51 6 0 
7 I 61 0 
71 8 0 
9 I 81 0 

I 91 10 0 
11 1101 0 

1111 12 0 
13 1121 n 

ti31 14 0 
15 1141 0 

1151 16 0 
l 1161 1 ----------

CANONICAL HOW TABLE FOR 
EXAMPLE C.4 - 8 EVENT COUNTER 

Xl 
0 1 Zl 

---~-------------
I I 11 z 0 
I 3 I 21 0 
I I 31 ... 0 
I 5 ( 4) 0 
I I 51· 6 0 
I 7 I 61 0 
I I 71 8 0 
I 'I I 81 0 
I I 91 10 0 
I 11 1101 0 
I I 111 12 0 
I 13 1121 0 
I I 131 14 0 
I 15 1141 0 
I 1151 16 0 
I 1 1161 1 -------------

!PASSIVE MEMORY ASSIGNMENT! 

STATE SIGNALS: 

I 11 = 0 • Y 1 • Y 2 * Y 4 
I 31 = o • • 1 • Y 2 • X 4 
I 51 . o -• v·1 * X 2 * Y 6 
I 71 = O • Y 1 • X 2 • X 6 

'•t 'II = o • X 1 • Y 3 • Y 5 
1111 = o • l 1 • Y 3 • X 5 
1131 = o • l l • X 3 • Y 7 
1151 . 0 * l I * l 3 * l 7 

I 21 = l * Y 8 * Y 9 * Yll 
I 41 . I• Y 8 • Y 9 • Ill 
I 61 = l * Y 8 • l 9 * Yl3 
I 81 = 1 • Y 8 * l 9 * 113 
HOI . l * l 8 * YlO * Yl2 
1121 = 1 * l 8 * YlO • 112 
(141 = 1 * l 8 • 110 * Yl4 
116) = I * l 8 • llO * 114 

SWITCl<I NG CONDI HONS: 

Y l · SET a 16 + 2 + 4 + 6 
RESET • 8 + 10 + 12 + 14 

Y 2 SET • 16 + 2 
RESET :e 4 + 6 

Y 3 · SET = 8 + 10 

..... ..... 

..i::-



RESET = 12 + 14 

y 4 SET = 16 
RESET = 2 

y 5 SET = 8 
RESET = 10 

y 6 SET 4 
RESET= 6 

y 7 SET = 12 
RESET = l', 

y 8 SET = 1 + 3 + 5 + 7 
RESET= 9 + 11 + 13 + 15-

y 9 SET = l + 3 
RESET= 5 + 7 

YlO SET = 9 + 11 
RESET = 13 + 15 

YU SET = l 
k.l:SET = 3 

Y12 SET . 9 
RESET = 11 

Y13 SET = 5 
RESET = 7 

Y14 SET = 13 
RESET = 15 

OUTPUT SIGNALS: 

Zl = 16 

,-,. 
,-,. 
Vl 



SJOB 
CALL LOGSIM 
STOP 
END 

DATA CARDS: 
000000000111111111122222zz2223333333333444441tlt444555555555566666666667777777777B 
123456789012345678901234567890123456789012345678901234567890123456789012345678'!0 

EXAMPLE C.5 - TABLE XII -·CLASSICAL EQUATIONS 
2 2 2 

0000 
2 l 2 
2 l 2 
2 l 2 
2 I 2 

MSlll = ITS131 + Xl21*Yl21 
MRlll z ITS111 + NOTIX1211*Yl21 
MS121 • ITS121*Ylll + ITS14l*Yl11 
MRl21 = ITS131*Ylll + ITS·lll•NOTIYllll 
ZIii • ITS12.l~OTIYl111*Y12.I 
Z12.I = ITS14l*Y1ll*Yl21 

-~ 
~ 

°" 



LOGIC SIMULATION 
FOR 2 INPUTS, Z OUTPUTS, 2 MEMORIES. 

SIMULATED FLOW TABLE FOR 
EXAMPLE t.5 - TABLE XII - ~LASSICAL EQUATIONS 

Xl X2 
DO 10 11 01 Zl 12 ---------------
ll 2 0 3 I 0 0 
l I 21 " 0 I 0 0 
l 0 " I 31 I 0 0 
0 f, I 41 5 I 0 ·O 
1 D " ·I 51 I 0 1 
1 I 61 " 0 I 1 0 ------------------

0 0 
0 0 
0 o. 
1 0 
l 1 
0 l 

,-i. 
,-i. 
--..] 



SJOB 
CALL LOCSIM 
STOP 
END 

DATA CA~os: 
00000000011111111112222222222333333333344444444445555555555666666666677777777778 
12345676901234567890123456789012345676901234567890123456789012345678901234567890 

EXAMPLE C.6 - ROTATION DIRECTION SENSOR - STATE MATRIX EQUATIONS 
2 1 4 

000000 
l l 
l 2 
1 3 
I 4 

MS111 = ITS14l*NOT1Yl411 
MR!ll = ITS121 + ITS14l*Yl4I 
MS121 = I TSl31 
MRIZI = !TSUI 
MS131 = ITS141 
MRl31 = ITS121 
MS141 = ITSl31 
MRl41 = tTSll I 
ZI 11 = ITSI ll*YI ll + ITS12l*NOTIY12ll + ITSl31*NOT1Y131l + 

ITS141*Yl4I 

..... 

..... 
00 



LOGIC SIMULATION 
FOR Z INPUTS, l OUTPUTS, 4 MEMORIES, 

SIMULATED FLOW TABLE FOR 
EXAMPLE C,6 - ROTATION DIRECTION SENSOR - S.TATE ~ATRIX EQUATIONS 

Xl X2 
00 10 11 01 Zl ------~-----~--~----------

11 z 0 3 I 0 0 0 0 0 
l I 21 4 0 I l 0 0 0 0 
6 0 5 ( 31 I 0 l O l 0 
0 a l 41 7 I l 0 l O l 
0 a l 51 7 I 0 l l l l 
61 z 0 3 I 1 l O l 0 
1 0 5 I 71 I 1 0 l l l 
l l 81 4 0 I 0 0 l O l 

-----------------------~-----

.... .... 
'° 



SJOB 
tUL LOGSIM 
STOP 
END 

DATA CARDS: 
00000000011111111112222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

EXAMPLE t.2 - TABLE 6.4 FROM FLUID LOGIC BY FITCH - STATE MATRIX EOUATIDNS 
2 I 5 

1111100 
l l 
2 2 3 
l 4 
1 5 

MSIII = 1TS12l•Yl2l•Yl3l + ITSl41 
MR(ll = ITSl21•Yt21*NOT(Yl311 
MS121 = ITSlll + ITSl3l•Yl41 
MRIZI = ITSl3l•NDHYl41l 
MS131 = ITStll*Ylll. 
MRl31 = ITSlll*NOTIYllll + ITS13l•Yl4l 
MS141 = ITS121•Y12l•Yl31 .+ 1TS14l•Yl51 
MRl41 = JTS12l•Y121•NOTIYl3ll + lTS12l•NDTIY(2II +ITSl41•NDTIYl511 
MS151 = ITSlll*Ylll + ITS13l*Yl4I 
MRl51 s ITS13l*N0TIYl411 
ZIii = ITS12l*NOTIYl2ll + ITS13l•NDTIY141I + ITS141*N0TIYl511 

~ 
N 
0 



LOGIC SIMULATION 
FOR 2 INPUTS, l OUTPUTS, 5 MEMORIES. 

SIMULATED FLOW TABLE FOR 
EXAMPLE C.2 - TABLE &.4 FROM FLUID LOGIC BY FITCH - STATE MATRIX EQUATIONS 

Xl X2 
00 10 11 01 Zl --------------
ti 2 0 3 I 0 l l l l l 
1 I 21 4 0 I 0 1 1 1 1 1 
l 0 4 I 31 I 0 l 1 l 1 l 
0 5 I 41 3 I 0 1 1 0 l l 
& I 51 7 0 I o 0 1 0 0 l 
61 5 0 3 I 0 0 l O O 1 
0 9 I 71 8 I l 0 0 0 0 0 
1 0 7 I 81 I l l O O O 0 
1 I 91 7 0 I l 10000--------------

1--'
l'v 
1--'-
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