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CHAPTER I
INTRODUCTION

The first several pages of this report will be introductory in.
nature. Judging from text and lecture material, the subject of Graph
Theory seems to lend itself to a conversational form and to proofs
that rely on intuition rather than elaborate detail. I would hépe that
my explanation would aid the development of this intuition.

It might be suggested that there be a way to restate the defini-
tions and theorems in such a way as to make the proofs less conversa-
tional, but perhaps the strength of the subject is that it addresses
itself to the diagram that.commonly accompanies the understanding of a
variety of problems.

Some examples might help. Consider the following old puzzle:

You have two vessels with respective capacities of seven and ten pints.
Beside you is a large tub of water. Using only the two vessels and
excluding such things as marking the containers or tilting them to
obtain fractional amounts, how can you obtain exactly, say, eight
pints?. With the aid of a diagram such as the one below in Figure 1

we can quickly solve the problem.



Figure 1

This method, using a directed graph was first explained by M. C. K.
Tweedie in The Mathematical Gazette of July 1939. 1In this case, the
horizontal line represents the contents of the ten pint vessel, and the
obliquely vertical 1line the seven pint vessel. Arcs (or vectors) in
the horizontal direction represent changes in the level of the ten
pint vessel and arcs in the obliquely Qertical direction (upward right),
represent changes in the level of the seven pint vessel. Arcs in the
other oblique direction indicate a pouring of water from one vessel to
the other. For example, the arc from A to B indicafes a filling of the
seven pint vessel; the arc from B to C indicates the emptying of the
seven pint vessel into the ten pint vessel. An arc such as EF indi-
cates a dumping of the larger container while holding the amount in the
smaller constant, at four pints.

As an aside, it might be noted that the diagram provides insight



into the more general problem of under what conditions can a given
amount be measured. If we assume that only integral solutions z are
possible for containers of x,y volume, x,y integers, and (x,y) = 1,
then it would follow that solutions for contéiners of x",y' volume,
where x',y' are integers and (x',y') = d, must be integral multiples of
d, since the scale of our 'graph! is arbitrary.

The primary interest, however, with respéct to this paper is that
the understanding and the solution of this problem has been aided by a
diagram of points and, in this case, directed lines.

As another example, consider an analysis of a proof that four
statements p, q, ¥, s are all equivalent, as indicated by the diagram.

This would be done if we could show:

1) if p then q

2) if q then r

3) if r then p

4) if p then s

5) if s then r
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Figure 2

With respect to Figure 2 we are interested in whether we can '"get
to' any vertex from any other while restricted by the arrows. If the
joining lines are directed,. they are commonly called arcs, whereas un-
‘directed lines are referred to-as edges.

Further examples are to be found in the representation of chemical
structures, electrical networks, flow charts, game theory and sc on.
An interesting example of the‘applicatiqn of a certain form of such a
diagram to the solution of a game is referred to in the Scieatific
American (February 1968, Mathematical Games), attributed to Donald E.
Knuth.

The solitare game is perhaps best known as "clock". The pack of
cards is dealt into thirteen face down piles of four cards each, each
pile assuming a position from ace to king, perhaps as shown in Figure

3.
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Figure '3

The top card of the "king'" pile is turned up and placed face up at the
bottom of whichever pile corresponds to the card's value. For example
if an eight is turned, it would be placed face up under the "eight"
pile. Then the top card of that pile is turned up, and the play
progresses in a like manner; The game is won if you get all fifty-two
cards up. If you turn the fourth king before this happens, play is
blocked and the game is lost. Playing this game requires no skill,
Kaouth, in his book Fundamental Algorithms (the first volume of a
projected seven volume series titled The Art of Computer Programming),
demonstrates a simple way of determining in advance whether the game
‘will be won or lost, merely by checking the bottom card in each of
twelve piles, excluding the king pile. By drawing a line from each
“stack, to the pile corresponding to the value of its bottom card,

we are able to form a graph that accompanies the.game. No line is

drawn if the card's value matches its own pile. As an example, sece



Figure 4:
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Figure 4

The game will be won if and only if the graph is a tree connecting
all thirteen piles. Professor Robert Gibson points that having all
thirteen piles (vertices) connected is necessary and sufficient, since
the only way that this can occur is for the graph to be tree. The
-game shown in Figure 4 will be lost, while the game in Figure 5 will

be won. The arrangement of the forty unknown cards is immaterial.



Figuge 5

In each example, our understanding of the situagtion or problem,
and/or sometimes the mechanics of solution depend upon a diagram of
vertices and connecting lines. ' In these examples, the validity of such
a diagram does nct depend upon the position of the vertices and whether
the arcs and edges are straight or curved, but only upon which edges or
arcs are incident to which vertices. We may then say that & graph con-
cerns itself with the incidence relation between vertices and arcs or

between vertices and edges. Graph Theory is a study of graphs.



CHAPTER II
DEFINITIONS FOR REFERENCE

The following definitions are taken from some of the more commonly
used books on the subject, and are presented with the intention of
acquainting the reader with the approach taken byvthese-authors.

According to F. Harary in A-Seﬁinar in Graph Theory (1967) [57,

a Graph G consists of a finite nonempty set V of points and

a set X of lines each of which joins two distinct points. We
assume that distinct lines-do not join the same pair of
points; otherwise, the configuration is a multigraph. Fur-
thermore, if we permit loops, that is, lines joining a point
‘with itself, the result is a general graph.

The two points joined by a line are adjacent, and each
is- incident with the line. Two graphs are isomorphic if
there is-a (1,1) correspondence between their sets of points
preserving adjacency.,

Oystein Ore, Graphs and Their Uses. (1963) [6]

In other words, if G) and Gy are isomorphic, they have
the same number of vertices, and whenever two vertices in
Gi, say (By,Cy) are connected by an edge, then there are
-corresponding vertices (By,C2) in Gy also comnected by an
edge and vice versa.

Claude Berge (Translation) The Theory of Graphs (1958) [1]

Strictly speaking, a Graph, which is denoted by G =
(X,T) is the pair consisting of the set X and the function
T". Whenever possible, the elements of a set X will be rep-
resented by points. in the plane, and if x and y are two
points such that y " x, they will be joined by a continucus
line with an arrowhead pointing from x to y. Hence, an
element of X is'called a point or vertex of the graph, while

1 . . . .
Current usage designates [" as a binary relation on the set X.



the pair (x,y), with y T x, is called an arc of the graph.

The concept which we shall now introduce is unoriented:
we shall speak of edges, and not arcs, We are concerned
only with finite graphs but for greater generality, we shall
extend the definition to include s-graphs. An s-graph (X,U)
is defined to be the pair formed by a set X of vertices and
by a set U of edges connecting certain vertices; but con-
trary to graphs, there may be as many as s distinct edges
the same initial and terminal vertices.

A graph (or an .s=-graph) G is said to be planar if it
can be represented on a plane in such a fashion that the
vertices are all distinct points, the edges are simple
curves, and no two edges meet one another except at theirx
terminals. A diagram G on a plane which conforms with these
conditions is called a planar topological graph, and will
also be denoted by G; two planar topological graphs will not
be regarded as distinct if they can be made to coincide with
one anather by an elastic deformation of the plane.

Hassler Whitney, Non-Separahle and Planar Graphs (1930) [7]

A graph G consists of two sets of symbols, finite in
number: vertices a,b,c,...,f, and arcs g(ab), B(ac),...,
$(cf). If an arc y(ab) is present in the graph, its end
vertices a,b are also present., We may write an arc g(ab)
or o(ba) at will; we may write it also ab or ba if no con-
fusion arises, - if there is but a single arc joining a
and b in G. We say the vertices a and b are on the arc
o (ab), and the arc ¢(ab) is on-the vertices a and b,

The obvious geometrical interpretation of such:.a graph,
.oy abstract graph, is a topological graph, let us say. Cor-
responding to each vertex of the abstract graph, we select a
point in three-space, a vertex of the topological graph.
Corresponding to each arc y(ab) of the abstract graph, we
select an arc joining the corresponding vertices of the topo-
logical graph. An.arc is here-a set of points in (1,1) cor-
respondence with the unit interval, its end vertices
corresponding with the ends of the interval. Moreover, we
let no arc pass through other vertices or intersect other
-ares .

Given two graphs G and G', if we can rename the ver-
tices and arcs of one, giving distinct vertices and dis-
tinct arcs .different names so that it becomes identical with
the other, we say the two graphs: are congruent.

The  geometrical interpretation is that we can bring the
two graphs into complete coincidence by a (1,1) continuous
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transformation,

Two graphs are called equivalent if upon being decom-

posed into their components, they become congruent except

possibly for isolated vertices.

From the above definitions it should be clear that what weare
talking about is the diagram itself, and to do this we must define such
things as components. We - are also interested in the space in which the
diagram is embedded and perhaps under what conditions there is an em-
bedding space homeomorphic to a plane. We are interested in establish-
ing equivalence relations on the set of Graphs.

We wish to use definitions that will consider the following pair

of graphs shown in Figure 2.l equivalent even though there is no

"elastic deformation of the plane" that will make them identical.

1 . \
The point has been made by Professor Gibson that this may require
‘a transformation in a space of higher dimension such as 4-Space.
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Figure 2.1

Certain important results require that we be able to consider the

following graphs in Figure 2.2 in some sense equivalent.

Figure 2.2

Generally, then, the aim of his paper is to give the reader some

acquaintance with the subject of graph theory. More specifically, it



is the aim of this paper to discuss planar graphs as defined by
Hassler Whitney in a paper on Non-separable-and Planar Graphs [7], in

relation to other work.



CHAPTER III
GRAPHS

Since almost any two graph theorists use different terminology,
[5] and since we wish this paper to be self-contained, we will preface
our discussion with a list of definitions. 'In keeping with the purpose
of this paper we are interested ih.finite graphs permitting isolated
vertices and loops, and allowing the possibility of more than ocne edge
connecting a pair of vertices. We will also restrict our attention to
non-oriented graphs, and thereby refer to the lines as edges.

A graph, then, consists of two finite sets: a set A of edges
e., i=1, 2, 3, ..., E and a set B of vértices Vj’ i=1,2,3,..., V
where each edge is. uniquely incident either with one vertex and is
called a loop, or with two distinct vertices. In fact, an unoriented
graph can be defined as a function on the set of edges to the collection
of one or two element subsets of the set of vertices.

An unoriented graph can also be defined by a symmetric matrix of
non-negative integers where the element in the :i.Eh row and jEE‘COlumn
is the number of edges incident with {vi} if i = j and with fvi,vj} if
i # j. A graph is called an m-graph where m is the largest element in
the matrix, i. e., there are m distinct edges assigned to some vertex
m pair of vertices.

It is. sometimes conveniént to label the edges incident with vi

and vj as el(vivj), eZ(ViVj)""’ek(viVj) where k < m. Furthermore

13
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er(vivj) = er(vjvi), When i = j the edges are lqops. If there is but
a single edge incident with vertices A and yj, we may designate it by
vivj.

It is frequently necessary to concentrate our attention on a por-
tion of the graph. To avoid complicating subscript, we will agree to
a local renaming of vertices and edges when it is convenient.

When orientation is givén to the lines, they are most commonly
called arcs. Whitney, does not followlthis éonvention. It may be
interesting to note that C. Berge [17 defines an edge joining points
x and y if there is‘an arc from y to x.or an arc from y to x.

We will define the degree of a vertek Vo, and denote it by d(vi),
as the sum of the number of edges‘e(vivj) i # j incident with A
plus twice the number of loops incidept with v, -

An isolated vertex is a vertex which is notbon any edge; it has
degree zero. The number of vertices V is called the order of the graph.
A chain is a sequencevof one or more distinct edges el(vlvz), eZ(VZVS)’
e3(ﬁ3v4),...en(vnvn+l) for some local renumbefing of the vertices and
edges~where-éll the vertices are distinct. That is; a chain does not
intersect itself. It is usual to apply the second condition to define
a simple chain, and according,the~Harafy [5],‘what we have described
is called a path, though a path is a similar sequence of arcs in
Berge [1]. It is not my intention to confuse, but only to exemplify
the variation in terminology.

In figure 3.1 the sequence v s el(v3v4) is an example of

1V2r Y2Y3

a chain of length three connecting vertices 2 and Vo ‘The length of

a chain is the number of edges in it.
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oaX

~Figure 3.1

A suspended chain is a chain containing two or more edges such
that no vertex of the chain, other than the first and last is on
another edge of thevgraph; and these tﬁo vertices are each on at least
is such a suspended chain,

two other edges. 1In figure 3.1 v y V.V

2"1° V174
since d(vz) = 3, d(vl) = 2, and d(v4) = 5.

A cycle is a finite set of one or more edges which for some
local renaming ofvvertices and edges can be put in a cyclic order
el(vlvz), ez(v2v3),;e3(v3v4),,,,en(vnvl), the vertices. being distinct
[57. It is usual to call such a cycle simple; when the second condi-
tion is not satisfied, it is referred to as composite [17]. A k-cycle
or cycle of length k contains k edges; a loop is a one-cycle.

A subgraph H of G is a graph consisting of a subset of the edges
of G and a subset of the verticeé of G with the incidence relation
induced by G. If H contains ei(vivj) then ] and vj are also in H.

A graph is connected if for every pair of distinct vertices there

is a chain joining them. A graph, in general, will consist of P
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connected pieces. That is, if vertices vy and v, are in one connected

piece, and vertices v, and v, are in anothdr connected piece there does

3 4

not exist any chain joining v, and v while there does exist a chain

3

joining v. and v, and a second chain joining v

1

3 and v4. An isolated

. vertex is a connected piece. A graph consisting only of V isolated

1 2

vertices contains V connected piece55

Suppose G contains V vertiées aﬁd is in one connected piece. The
following procedure for building;up é minimal connecting subgraph of G
will indicate clearly the nécessity of G having at least V - 1 edges.
If V=1 we may take this vertex to be the minimal connected subgraph:

1 -1 =-0. Suppose V> 1. Choose a vertex, call it vy and. let H1 be

the subgraph of G consisting only of that vertex.  Since G contains
more than one vertex and is in one connected piece there is a vertex,

call it Voo of G not in H Let H, be

1’ 2

1 that is adjacent (in G) to v

-the subgraph consisting of VsV

9 anq g cqnnectlng edge el(vlyz). If G

adjacent (in G) to v, or v, and not in

contains some- vertex, call it v 1 2

3

H2 then let H3 be the subgraph of G containing H

a connecting edge. In general, suppose Hi is a subgraph of G built in

and including v, and

2 3

the manner described above,.that is, containing the subgraph Hi -1 and
some vertex v, of G not in Hi -1 but adjacent (in G) to a vertex in
Hi 1 and an edge connecting 4 to that vertex. Each graph Hi is a

,subgréph of G and Hi is a subgraph of Hj if i < j. Consider HV; clearly
HV is also a subgraph of G containing‘v -1 edges. Therefore G con-
tains at least V - 1 edges. .Hv is what we have called a minimal con-~
necting subgraph of G. Such.a subgraph will contain no cycles and
exactly V - 1 edges.,

A connected graph containing no cycles is called a tree and contains
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exactly V - 1 edges. A graph G containiﬁgrP'connected pieces and con-
taining no cycles contains R =V ;‘P>édges. G is called a forest.

For every graph G we will defineva number, called the rank of G
as follows:

p(G) = R =V - P where V is'ﬁhe'number of vertices and P is the
number of connected pieces.“

A spanning subgraph H of G contains all vertices of G and some
subset of the-edges of G such thatvdiStinctIVErtices, connected by a
chain in G, are connected by a chain iﬁ H. A minimal spanning sub-
graph is one with a minimum number pf edges.

We have shown that a minimal spanning subgraph~is»a forest and the
minimum number of edges is the rank of G. if p=1, then V - R = 1.

Since every piece contains at least one vertex, 0 < R_s V-1.

A graph consisting of V isolated vertices has only one subgraph con-
taining all previously connected pieces and has rank zero.

A graph G is said to be cyclicly_connécted if every pair of
vertices are contained in a cycle. The graph below, Figure 3.2, is an

example of one that is cyeclicly connected.

Figure‘3.2
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The process of building up:a graph G edge by edge is common in
Whitney's paper. It will be observed that during the process, connect-
ing vertices in the same connected piéce-doeé not alter the rank, while
connecting two vertices not already connected by a chain increases the
rank by 1. In connecting two vertices in the same connected piece,

(or the -same vertex) we do, ho&éver, form a new cycle. We may express
the number of edges which‘creafe'new‘cycles in the process in relatien

to the number of edges E and the rank R as follows.

p(G) = N=E-R

E-V+P

The graph im Figure 3.2 has N =16 ; 10 = 6.

v{G) = N is called the nullity (or cyclematic number or first
Betti number) of the graphf Feeling for ﬁhe meaning of this number
might-be improved by the proof of the following theorem.

Theorem. 1In a graph G, N =2 0,

Proof. We will build up G edge by edge. To begin with E = 0,
R =0, so N=0. If we copnect two Ve;tices not already connected by
-a chain then both R and E are increased by eone so N.is unchanged. If
we connect two vertices in the same-connected piece, E is increased by
1, while the rank remains unchanged, so ﬁ is increased by 1. Therefore
N = 0.

As noted above, the increase of the nullity by 1 is accompanied
by the formation of at least one new cycle. Thus, suppose we connect
vertices v, and Vj in the samé-gonneéted piece. There is a chain e
(Vivz),.eZ(VZVS),,..,en(Van)‘connectingvi and Vj. The addition of
eo(vivj) to such.a chain. forms a cycle; further it is a cycle not in

the graph without the edgeveo(vivj).
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What this suggests geometrically is that we may judge the nullity
by looking: at the 'regions interior to.the graph.! This is an extreme-
ly intuitive statement, and depends on a drawing of the graph; more so,
it depends on the graph's being'gepresented in 2-space.

The graph in Figure 3.3 has nullity five.

Figure 3.3

A graph G is a forest if and only if N = 0. For, if N = 0 then
V-E+P=20and E=V - P, In the previous discussion this was
“shown to be the minimum number of edges connecting the vertices in P
connected pieces. So G is a forest.

Conversely, suppose G is a forest, then build up G edge by edge.
If E=0 then N = 0, Each time we add an edge, always connecting two
previously unconnected vertices, both the rank R and the number of
edges E are increased by 1 so N remains the same. Therefore, if G is
a forest then N = O.

We may now consider the nullity in terms of a forest spanning the
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graph. Suppose G is a graﬁh of P connected piecesj then there is a
forest H containing P connected pieceé spanning the vertices of G such
that H isva subgraph of G. We may wonder how many edges must be re-
moved from G to formbH. H contains V - P edges. G contains E edges.
So we must remove E - (V - P) edges, E - (V- P) =E -R =N. We
may then, by a process of removing ﬁ selected edges reduce a graph to
a forest still conneéting all preQiously connected vertices. In other
words, the nullity is a measure of redundancy of edges relative to a
minimal spanning subgraph. If‘P.= 1l then V- E+ N = 1.
We have already shown that if G is a graph and we form a
graph G' from G by adding an edge éonnectiﬁg vertices vy and Vz‘of G
then:
if 2 and v, are in the. same connected piece
p(G') =R' =R and v(G') = N' =N +1
and if v, and.v

1 2 _
R' =R+ 1and N' =N

are not in the same connected piece

It also follows from the-définition that the addition or sub-
traction of isolated vertices ieaves the rank and nullity unchanged.

A subgraph H of a graph‘G-as we have defined it is a graph con-
taining some subset of the edges of G and those vertices of G which
-are on thesé-edges: H may contain other vertices of G. At this point,
we again enter an area where disagreement in terminology is common.
There are times when it is:convenient for the subgraph H to contain
all the vertices. of G. Then, for example, during the process of build-
ing a graph G edge by edge‘we'wbuld at each stage have éuch a subgraph
of G. Further, each l-graph without loops would be-a subgraph of

some complete graph. A .complete l-graph without loops (usually
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referred to-as a complete graph of n points and denoted by Kn) is the
graph of n vertices and 2&¥:ll = (Z) edges wherein each vertex is con-
nected to every other vertex by an edge, i. e., for every pair of
vertices L vj i # j there is exactly one-edge-e(vivj) in Kn. See

Figure 3.4.

Figure 3.4

For a l-graph G of order n and without loops it is commen to re-
fer to the subgraph of Kn containing the complementary set of edges and
the n vertices:as the complement of G.

For the purpese of this paper, however, a subgraph H of a graph G
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has as its complement H with respect of G the Subgraph»of G containing
those-edges not in H, these isolated-vertices of G not in H, and the

non-isolated vertices of G..

Ve V3
G T A
v, Y
&
vh v
H S "
Ve .
vy v
\ oo ,

Figure 3.5

In Figure 3.5, H and H are complements with respect to G.

Whitney's paper on Non-separable:and Planar Graphs [7] is divided
into, as might be expected, two sections. The first is on non-separable
graphs; the second is on duals and,planar'graphs. It is the contribu-

tion of his paper that the results are established in terms of the
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rank and nullity and Ehat he‘is.able to use these concepts toe restrict
the definition of a-duél to the-dﬁal of'avplanar graph.

Basic to the understanding of non-separable graphs and the decom-
position of graphs is hisbdefinitioh of a component. Suppose we con-
sider two graﬁhs H and H/ without a common vertex. Let 2 be-a vertex
of H and vj be:a vertex of H'. If we rename vi, v and Vj’ v and let
the edges of H and H’ be renamed:accordingly then H and H’ have a
single vertex v in common . A graph G is thus formed by letting a
‘vertex vy of H coalesce with a vertex.vj éf H’. Geometrically, we
bring the vertices v, and Vjvtpgether»to form a single vertex v.

Let G be-a connected gra§h~such that there exist no two graphs
H and H’ each containing at least one edge which form G when joined at
a single vertex, then G is said t9 be non-separable.

If G is not non~separable; then G iS'éeparable. A graph that is
not connected is separable,

If some- connected piéce G, 1s separable, then there are subgraphs

1

H1 and Hi of G, each éontaining;at least one edge which share but a

single vertex v, If H1 and H{ joined at a vertex v, form Gl’ we call

v-a cut vertex [7] or articulation point [1] of Gy-
It is characteristic of a cut vertex v that if there exist ver-

tices v. in H and vj in H’,»vi and vj different from v, then every
i ' v

" chain joining vi~and Vj contains v. 1In the following example Vis Voo

Vs and v, are cut vertices. See Figure 3.6.

4
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Figure 3.6

A graph G is separabie if it has more than one connected piece.
If a graph G contains a connected piece which is not non-separable,
we may separate that piece‘into twbvgraphé_which formerly had but a
single vertex in common. Since eacH such graph must have at least one
edge, or be an isolated vertex, and since there are only'a finite
‘number of edges and vertices, we may coﬁtinue this process until every
resulting piece of G is non-separable. We refer to such pieces as
components of G. |

The following theorems are stated and proved by Whitney [77.

Theorem: A necessary and sufficient condition that a connected
graph be non-separable is that it have no cut vertex.

Theorem: Let G be a connected graph containing no loop. A
necessary and sufficient condition that a vertex v be a cut vertex

is that there exist two vertices v v

1’ in G each distinct from Vs

2

such that every chain connecting v. and v, contains some edge incident

1 2

to v .
)
Theorem: Let G be a graph containing no loop and containing at

least two edges. A necessary and sufficient condition that G be



non-separable is that it be cyclicly connected.
Theorem: A non-sepérable graph G of nullity'1

is a cycle.
Theorem: Every non-separéble subgraph of G is

contained wholly
in one of the componenté of G.

Theorem: A graph G may be decomposed into its

components in a
unique manner. |
Theorem: Let Hl’ H2,'...,,Hm be the components of G. Let Rl’
R2,....,R and Nl’ NZ’ ..,N_ ‘be their ranks and nullities. Then
R=1y% R, and N=%  N,.
. 1 .
i=1 i

=1. 1



CHAPTER IV
DUALS AND PLANAR GRAPHS

Although there are many aspects of topological graph theory
which could be considered, this report is limited to the following
considerations which'dominaté the subject, and which are basic to
Whitney's paper. Any graph G can obviously be represented in Euclidean
three-space with vertices as poiﬁts and with edges as homeomorphic
images of either the unit iﬁterval or the unit circle. The topological
graph Gt is such that the geometric incidences of edges and vertices
is precisely that,preS§ribedTby the ébsfract graph G, and the topology
is that induced by the natural tOpolpgy of the Euclidean space.

By abuse of the language, ébstract graphs G and G' are said to be
homeomorphic if cérrespéndingvtopological graphs Gt and Gé are homeo-
morphic as topological spaces, If the vertices of corresponding topo-
logical graphs Gt and Gé are alsO-météhed by tﬁe homeomorphism then
G and G' are said to be isomorphic; precise definitions will follow.

This means, of course, that_such things as knot theory and braid
theory are left to another study.

A graph G is planar if a corresponding topological graph Gt can
be constructed on a sphere in such a way that distinct edges intersect
only at vertices. A graph Ct that can Be constructed on a sphere can
also be mabpedvon the plane by a polar projection from some point on

the sphere and not on the graph. And conversely, a graph Gt which is

26



embedded in a plane can be mapped on a sphere. We may choose
point of projection in such a way as to allow us to associate
enclosed region on the sphere with the infinite region of the

In fact, the reason for selecting a sphere for our definition

than a plane, was to avoid distinguishing a particular region,

the
any
plane.
rather

or

face, as infinite. We shall use sphere ‘and plane interchangeably.

Then, an abstract graph G is planar if there is a corresponding

topological graph Gt embedded on a sphere or plane.

Two graphs Gl'and G2 are said’to be isomorphic if we can

rename

the vertices and edges of one, giving distinct vertices and edges

different names, so that it becomes identical with the other.

Whitn

uses the term congruent [7]. Isomorphism can be illustrated by the

following example.

Figure 4.1

27

ey



28

We shal% call. two gfaphéIQQ?ivalent if upon being decomposed into
théir non;sepaféblé éompohehfs‘fhey Become isomorphic except for iso-
lated vertices.

If two graphs are isomorphic,vtheir.corresponding topological
graphs are homeomorphic; but thé cdﬁvgrse“is‘not?true,’for‘consider the

following graphs G and G'.

Figure 4.2

The topolegical graphs Gﬁ»and Gé,are'tOpologically homeomorphic,
but certainly not isomorphic by the above definition.

A sub-division of a graph G is any graph obtained from G by re-
placing an edge el(vlvz) by some new vertex.vo‘and two newvédges
e'(vlvo),and e”(vbvz). Two graphs_aré_homeomorphic if there are-iso-
morphic graphs which can be obtained from the other two by a sequence
of sub-divisions [5].

Very nearly every discussiqn'of planar graphs includes a reference

to the "Utilities" graph, and it is appropriate to relate it to
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homeomorphism of abstract graphs. The Utilities graph is associated
with the problem of connecting each of three -houses with each of three
utilities in such a way that the connecting edges do not intersect. It

is not difficult to show that such a solution is impossible in the

plane,
G, Gy
&1 Uy Ua s
 Figﬁre 4.3

Build up the.graph'Gi‘edgé by edge. GZ

the vertices ups and'hj are on oppOSite sides of the simple closed

is::a  subgraph of G15 but

h h u,h

curve (Jordan Curve),gssoc1ated with the cycle hlu2"u2 50 2u3, 3hy -

A short disucssion which includes a nice definition of such graphs
is to be found in Harary's book rS]; The complete bipartite graph (also
called complete bicolored graph or complete bigraph) denoted by Kmsn or
K(m,n) has m vertices of a first color and n vertices of a second

color, with two vertices connected by an edge if and only if they are

of different colors. In general, the complete r-partite graph
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K(nl,nz...,nr) has ni points:of,the iEE color i"="1,2,...,r and again
two points are-adjacent if and only‘if'they are of different colors.

We shall assume that there is exactly one edge connecting adjacent ver-

tices. The Utilities graph is K Such graphs: are often related to

3,3°

problems of matching members of two or more mutually exclusive sets,
e. g. students with classes, men with jobs they are qualified for, etc.

Frequent references. are made to the graph K and to the complete

3,3

graph of five points K_, due to a result by Kuratowski (1930). He

5,

proved that a graph is planar if and only if it has no subgraph homeo-

morphic to K K5. In a particular exémple'below, Figure 4.4 we

3,3 or ‘

may wish to find a subgraph of the graph G that is homeomorphic to

K3 3 OT K5. That G is not planar can be shown by a proof using the
] -

Jordan Curve theorem that is similar to that commonly given for the

Utilities problem. Let H be a subgraph of G consisting of those ver-

tices -and edges shown, then-H is homeomorphic to K3 3°
; : ,

Figure 4.4



Since a non-planar graph is characterized‘by the existence of a
subgraph, we may wish to relate this to an attempt to characterize all
planar graphs. The source of this study is a.series of comments and a
general theorem stated by H. Whitney (1930): A graph G is planar if
and only if it has a dual, (as H. Whitney defines dual).

For a given planar gfaph'G, and.an associated topological graph
in a given plane, 0. Ore intréduces.duality by construction. Inside
each face, or regioﬁ of G locate a vertex Vf of G*, If the faces cor-
responding to v? and V? share a'common‘boundary edge e, of G then in-
clude- the edge-e?(v;v?). The graph G* consis;ing_of the vertices v%
and the edges e¥ is called the dual [67.

In Berge [17], folldwing-a‘discussioh éf map coloring, in which the
dual G* of a graph G was introduced in the same manner there is a para-
graph stating that it follows from certain géneral theorems . that every
finite graph can be represeﬁted on a surface é of sufficiently large
genus: 'further, given an’S-topolpgical graph Gt we can construct an
S-topological graph ? in éxactiy the same way as WQ construct the
dual of a planar graph."”

In fact, we can by the technique described above construct a graph

K% which corresponds>to.the graph: K A surface of sufficiently large

5 5°

‘genus is in this case a torus. It is convenient to represent the torus

in the following manner.
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A" "

,"T“ ..__'_,_._—‘ — . :

\\

Figure 4.5

The complete graph of five’points:K can then be drawn as shown

?

in Figure 4.6. No two edges intersect except at vertices. 1In Figure

4,6 the graph K

5 divides the surface into five regions. If we place a

vertex in each of these regions; connecting them with an edge whenever

they share a common boundary, we build up a graph,.call it th that

fulfills the specifications of the construction. In this particular

example‘Kg is also=K5.
Similarly, the graph-K3 3 can be-representéd on a torus. The
: b
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-example in Figure 4.7 divides the surface into only three regions. A

graph K§ 3 can be constructed with three vertices and nine edges.
3 t . .
Dr. Robert Gibson has pointed out that both the graphs K and K5

3,3,

can be drawn on a projective plane but this construction cannot be
done in Euclidean 3-~space and is‘theréfore more difficult to illustrate.

It would then seem that if we are to. prove that a graph is planar
if and only if it has a dual we mus t refiné our definition of duality
to one that will be satisfied by the "dﬁél" of a planar graph, but
not by a graph of.similar construétioﬁ on a torus or surface of genus
greater thanvthat of a sphere.

In order to restrict our definition‘to the sphere (or plane) we
‘'will involve numbers that can be used to characterize the plane, the
rank R; and the first Betti'numbér or nullity N.

The nullity N is rela;ed to the spherevin the following manner.
Given a planar graph.G with nullity N, tﬁe corrésponding topological
graph separates the surface into N+ 1 nqn-inﬁersecting regions or
faces. That this is true cén be seen.by building up the planar graph
G edge’by edge. We have noted the nullity N is increased by one if
and only if we connect two vertices'that were previously connected by
a chain, forming a new cycle. Since there was one region when we
started and since-each time we form a new cycle, we construct a closed
curve closing off an additional face‘or region there will be N + 1
regions in the final planar graph G. This is clearly not a character-
“istic of a surface such as a torﬁs.,

Whitney [7] then uses this relatipnshiﬁ to develop a definition
as - follows. Suppose, we consider a planar graph G. For convenience,

we will represent G on a plane, (one region or face becoming infinite).
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Construct the AUal G¥* as before: place a verte#‘yT within every face
fi of G including the infinite face. For‘every edgé e, of G construct
ei of G¥* connecting V? andvv? cofrespdnding to fi and fj having e, as
a common boundary. The graph G*, represented by the broken line in
Figure 4.8, will be inbone connecﬁed piece. The existence of isolated
vertices does not affect eithef Gvor G* sinée we are relating our def-

inition to regions and the correspondence is established between edges.

.Figure 4.8

Now, build up G edge by edge; each time we add an edge of G we
remove the edge of G* that naturally.corresponds to it. Suppose then
if H is a subgraph of G, (the development of G up to some point) and H*
is the complement of the corresponding subgraph H* of G*. (H* consists
of the edges of G* corresponding to the edges‘of H. Let H* be the
complement of H¥*; then this construction gives E* for each subgraph H.)

Then the rank of ﬁ*, call it ;* is equal to R*. - n where R* is the rank

of G¥ and n is the nullity of H, that is, T* = p(ﬁ*), R* = .p(G*) and
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n=vH).
This relationship holds for every‘subgraph H, as follows: since,
to begin with, % = R* and n = 0 so r* = R¥ - n. If we connect two

vertices of G in the same connected piece or a vertex to itself by a

loop then n is increased by 1 while: the number of pieces of H* is in-

creased by 1 (hence the rank of H* is reduced by 1) so if 4 = R¥ = n
then r* - 1 = R¥ - (n + 1). Suppose we connect two vertices not already
connected by a chain, then n and r* are both unchanged so % = R* - n,

We then define a dual of a graph G as follows [7]: Suppose there
is a (1,1) correspondence between the edges of two graphs G-and G¥*
such that if H is any subgraph of G containing all the vertices of G
and if H* is the complement of the .corresponding subgraph of G* and
contains all the vertices of G¥ then r* = R¥ - n. We say G* is a
dual of G. Essentially, we are séying,that the sum, of the rank of
every subgraph of G plus the nullity of the complement of the corre-
sponding subgraph of G*, remains constant and is equal to R¥*.

Theorem: If the nullity of H is n then H* ihcluding'all the ver-
tices of G* is in n more connected pieces than G*.

R* = V¥ - P¥ and % = v¥ - p¥

;?'\‘ = R¥% - n

e

vk - pk = V¥ - p¥ - n
Since E* includes all the vertices of G* then ;*'= * so p* =
P* + n or H* is in n more connected.pieces than G¥*.
Theorem. If G* is a dual of G then R*¥* =N and N* = R.
For, let H = G then H* = G* and H¥ is the graph consisting only of

the isolated vertices of G*. r* = 0.

Since G* is a dual of G, T* R* - n for every subgraph H of G,
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s0.0 = R* - N.and R¥ = N

R* = N

R¥ = E - R

E - R* = R but if G* is a dual of G then E¥* = E
E*¥ - R¥ = R

N¥* = R

This condition is sometimes sufficient to determine that two graphs
are not duals in the sense we’have defined them. For example, our dis-
cussion of "duality'” with respect to a torus associated the graph K5
10 -‘4.= 6 so they are

with itself, but p(KS) =5 -1=14 and v(KS)
not dual graphs by our definition. In fact;’a graph G will be its own

dual only if R = N, as in the case of K See Figure 4.9.

4"

Figure 4.9

This type of analysis is possible even when the associated graph
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is not obvious. A topological graph K can be embedded on a torus,

3,3
dividing the surface into three,nod-oveflapping regions. (see Figure

4.7) 1f we attempt to construct a "dual“.Kg 3

3

then p(K§’3) =3 -1=72
while u(K3’3) =9 -6 + 1 =14, so-at Igastvwelkﬁow that some graph
constructed by the common method will not Bé;é dual as we have defined
it.

This, however? does not assure uévthat a dual does not exist,

Theorem. If G* is a dual-of.G:thgn G is a dual of G*.

On the basis of this,vwhén oneigraph has been shown to be a dual
of another, we now.épeak of them‘as‘dﬁal graphs. We offer, as a proof
of the above statement the followingfargument.

Since G* is a dual of G, t* = R* - n and R* =N

so r* =N -n |

"R - e+ r . wheren=e ~r

3
ES
I

=

1

r*=e +e%* ~R - e +7r
rs = e¥ «- R +r

rk - e*=-R + 1

n¥ =R - 1
r =R - n¥
The above proof is similar tq,Whitnéy‘s.
We continuously refer to a.duél of‘G, while if is implied by the
construction that G* is the dual of_é, "the" in this case meaning any

1 2

of G then G§ is a dual of G [7], but the converse is.not true. Con-

graph isomorphic to G¥*. If G*.and G¥ are equiva1ent and GT is a dual

sider the following example,‘Figure'4.10._ The graph G is in each case,

represented with a solid line, the dual then constructed using a dotted



o~
o

line.

Figure 4.10

It is obvious that G? and‘ngaré not isomorphic.
Additional theorems arevétated and proved, relating duality to the
separation of a graph into its components.
The final result of this paper is to associate duality as defined
here to Kuratowski's Theorem because it is primarily through this

theorem that a test of planarity can be made. Given only the definition

of duality due to Whitney it is very difficult, except for extremely
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simple pairs of graphs, to.determiﬁé';he_exisﬁeﬁce of this dual relation-
ship.‘ For convehience,vwejWill répééf»fh& définition here.

Suppose there is a (1,1)chrfespbndeﬁée betwéen the edges of two
graphs G and G* éuch thét,if H.is}éﬁy subgféphvof G containing all the
' vertiﬁes of G, and if H* is‘tﬁe-cbmpiémenﬁbdf thé ﬁorreSponding subgraph
of G* and .contains all the Veftiées of G*{ then T* = R* - n. Under
these coﬁditipns, we said G¥ Was ardua1'of C,

Given two:graphs with the ‘same ﬁumbér of edges, and meeting the
established cénditidn that‘R'= N* and N %.R*,‘we must search through
-all such possible corrgspondenées, aﬁdvfér each (1,1) correspondence
‘we must check these calculaﬁionsvar;all possibie subgraphs in order to
fulfill the requirements of the'def;nition."A logical question to ask
is Whethér or not dualiﬁy éan'be eétablishéd.for such a pair of graphs
G and G* by .a single sequence Qf subgraphs Hl, H2"°”Hh = G (where Hi
is a. subgraph of Hj if i < j)‘wHiChbfor somg_(l;l) correspondence meets
the requirement that ;f = R* = ni féf Ehe appropriate subgréphs —f of
G*. | ‘

The-following.example shows that this is not sufficient. Consider
the~graph$ G and G* as‘represehted_by the diagrams in Figure 4.,11. Each
has five edges. The rank of.G is.4 -1 = 3, The nullity of G¥ is

5.- 34+ 1=13; 80 R .= N¥, Fufﬁher, N.=vR*.
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- Figure 4.11

We establish the indicated correspondence between edges, (Figure
4.12) and consider the sequénce~[Hi} of subgraphs represented in

Figure 4.13. 1In each case, ;f = R¥ -n.

Figure 4.12



‘ vFigure 4.13
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However, that this particular sequence is not enough to establish

duality under this particular correspondence can be seen in Figure 4.14,

/

[ LS.

-]:::'c,. R*. -
(o) # : n0

Figure 4.14

So it is not true for all subgraphs of G.
What we have shown, is that satiéfaction of the condition ;? =
R* - n, by a:particular sequence of.subgraphs, and their corresponding

complements under some (1,1) correspondence is not sufficient to estab-

lish Whitney's criteria for duality.



 CHAPTER V.
 DUAL IMPLIES PLANAR

We have shown; by the discugsion preceding our definition of a
dual graph, that if a graph-G’ié planér; then. a dual graph G* can be
defiﬁed (and.exists), We'now~wisﬁvtO;establish-by a logical sequence
that includes Kurétéwski'éiresult3 Ehat if a graph has a dual in the
Whitney sense, this implies the graph'is planar.

We do'so as folloWs:v If a graph G has  a dual, then each subgraph
H of G has a dual. If H hés g.dual,3theh every graph homeomorphic to
H has a dual.  Neither K5 nor_KB’g has a duai, s0 G cannot contain a

subgraph homeomorphic to.K5 or K It follows then that G is planar

3,3°
since if a graph G containé'no-subgraph'homeOmbrphic to K or K3’3 then
it is planar, |

If a graph G has a dual then every subgraph H of G has a dual. It
may, at first seem that we‘need‘ohIY'to select the subgraph H* under
the same (1,1) correspondence'of edges that is used to establish duality

of G and G*. ' That this is hOt enough can be-seen in this example,

Figure 5.1, Corresponding edges interséct.

45
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 .Figure 5.1

Consider the subgraph H and the corresponding subgraph H¥*,

- N
: ¥
Vo, =~
G
Cowr A |
\ S \ }
~ R, /
H* N~

Figure 5.2

Clearly; they are not duals, since g kH) =:3 ; 2 = 1 while vy (H*) =
1-2+1 =’O.. A dual could be found, if vertices vy and v% were to
coalesce to form some vertex~vg. This insight leads us to a theorem
and proof due to H. Whitney.

Theorem: Let G and G* be dual graphs, and let el(vlvz) and

ef(v%v%) be two corresponding edges.. Form Gl from G by dropping out the
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% * : { ) ' % (Vv
edge el(vlvz) and form ¥ from G ‘by dropplng,out the edge ef(vlvz) and

letting VT and v% coalesce  if they are not already the same vertex.

Then G1 and Gf are duals preserving the éorrespondence between their

vedges.

Proof: Let Hl be any sUbgraph»of‘G H, does not contain el(v1

1’ 1

Let ﬁ? be the complement of the corresponding subgraph of GT.

Vzn

Case 1 (illustrated in Figure 5.3): ‘Suppose'vT and VE were dis-

1; then n = nl.

Let H* be the complement in G* of the- subgraph corresponding to H,

tinct in G*. Let H be the subgraph identical with H

then r* = R* - n.

Figure 5.3

ﬁ*;is the subgraph in G* corresponding to ﬁf\in GT except that H*
contains the>edge‘eT(viv§) while ﬁ? does not. If we drop out the edge
X *UN * X £ ¥ —>'r ’ i
ef(vlvz) and let vi and vy coalesce to form V¥, we form Hl' In this

procéss, the number of pieces is unchanged while the number of vertices
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is diminished by onme, so rf = r* - 1.

Since Gf was formed from G* by dropping an edge and allowing the

incident vertices to coalesce, G? has: the same number of pieces, but

one less vertex so R“1 = R*% - 1. Therefore —f'f + 1 = R’1 +1 - ny =>;1 =

‘Y - nl. So GT is a dual of Gl'

Case 2 (illustrated in Figure 5.4): Suppose v? = vg in G¥., Define

H and H* as above, that is, let H be the subgraph identical with Hl’

‘and let H* be the subgraph in G¥* corresponding. to Ef in GT except that

H* contains the loop ef(v?v?). Then ﬁf is formed from H* by dropping

out the loop eT(v?v?). This does not change the number of vertices,

or pieces; hence Rf = R* and £* = r* so f? = RT - ng. Therefore, G¥

1 1

is a dual of Gl.

D e

R =
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Figure 5.4

Given any subgraph H of G, since there are a finite number of
edges in G, we cén selectively and in accordance with the process de-
scribed above, drop out the edges of its complement H. Thus if G
has a dual H has a dual. The vertices of G not in H are isolated ver-
tices with respect to H and therefore are unimportant in any discussion
of a gréph dual to H.

Theorem: If a graph G has a dual, a graph G, formed from G by a

1
subdivision of G has a dual.

A subdivision is essentially the division of a single edge eo(leZ)

into two edges el(ylvo) and ez(vovz) by- the insertion of a new
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vertex v
o _ :
Let G and G* be dual graphs.  Form Gl’from G by a subdivision of

the edge eo(v Form GT from G* by dropping out eg(vag) and adding

1Y)
T (viyk *(vivE Te ' -

two edges ef(vaz) and e2(v1V2). Let el(vlvo) and ez(vovz) correspond

to ef(vag) and e§(v¥v§) respectively, and the remaining edges be

matched by the given (1,1) correspondence between G and G*. Now

RT = R*¥. Since G and G* are dualsy r* = R* - n for every subgraph H
of G, and the complement H* of the corresponding subgraph H* in G*.
- Let H1 be any subgraph of GI}

Case 1. H1 contains el(ylvo) and e2(vov2). Let H be the corre-

sponding .subgraph of G containing-eo(vlvz). Since both the number of

edges and the number of vertices are increased by one, while the number

of pieces is unchanged, n, = n. —%'5 H* so —% = r*, Therefore, ;f =
R* - .
1~ ™M |
Case 2. H1 contains neither edge. Let H be the subgraph of G

identical to H1 (except for the vertex Vs which is isolated with re-

. = . . —i i * *yx d P ey e 4.
spect to Hl) Then n; n Hf contains gl(vlvi) an ez(vlvi) so has
the same rank as ﬁ%; i, e., ;f = %, Therefore, ;f = Rf - 0.

Case 3. H1 in G1 contalns'el(vlvo) or e2(vov2) but not both. Let

H be the corresponding subgraph of G such that H does not contain
eo(vlvz). H will not contaln_thg'edge el(vlvo) or e2(vov2) and there-
fore will contain one‘ less edge and one less vertex. The Py =Py Vv, <

v + 1, and e} = e + 1. Pl'#-p'and Vi =V +-1 'imply r, =« + 1. r, =

r+1and e =e+ 1 imply n

= i wi in ei % (VIVE
1 n. Hl_W111 contain either ef(vlvz) or

1

e%(v¥v§) so will be in the same number of connected pieces as H*.

Sincef;%'= ;* and 5% = E* then ;f = r¥%, These equations give r% =

R¥ - n

1 1°
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So if G has a dual, then a graph .G formed from G by a subdivision -

1

has a dual.

Theorem. 1If G, is a graph formed from a graph G by a subdivision

1

of G and if G1 has a dual then G has a dual.

Consider a graph G, with G, formed from G by a'subdivision of the

1

edge eo(vlvz). Again, this is essentially the division of a single

edge eo(vlvz) into two edges el(vlvo) and e2(vov2). Since G, has a

1
* 1".
dual G1 there are edges. of Gf which correspond to el(vlvo) and ez(vovz)
in the (1,1) correspondence under which duality of G1 and Gf was

established. Call them ef and ego

Lemma: e¥% and e¥ form a cycle of length 2 or are loops; that is,

1 2
{ * X v 4 % % vk %*
if el connects VI and vi 1q Gl then ez alsokconnects v1 and v2.
To prove this lemma we will focus on that subgraph of Gf consisting

of only the edges e? and eg (and all the vertices of GT),

Consider the complement of eo(v1v2) in G. Call it Hoa Ho is also
a subgraph of Gl’ thg complement of el(vlvo) and ez(vovz)° Actually,

the complement in G and the complement in G, differ in that one contains

1
the isolated vertex vovand the other does not. However, since this does

not affect either the rank r, or nullity n0 we may for purposes of this

proof consider them to be the same. ﬁ% is that subgraph of Gf consisting

1

Case 1. Suppose eo(vivz) is a loop, as illustratéd in Figure 5.5.

of the edges e¥* and eg (and the vertices oquf).

Since eo(vlvz) is a loop r =R. Further R, = R + 1 since V., =V + 1

1 1
and Pl = P, If Gf is a dual of‘G1 then G1 is a ‘dval of GT; therefore
- = '—1* = ! az_-* w‘k:
r Rl n¥% and R = R + 1 n¥ % n¥ 1.

Since Hﬁ is the nullity of that graph consisting of the edges ef and eg

(and isolated vertices) ef and ef form a cycle. Further, neither edge
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is a loop since by a similar.argument it can be shown that the nullity

of a subgraph consisting of either'ef or é% (not both) is zero.

Figure 5.5

Case 2. eo(vlvz) is not a loop andveo(vlvz) is on a cycle, as

illustrated in Figure 5.6. r, = R sihce eé is in a cycle. Again Rl =
R + 1. As noted before, H -is a subgréph of G, sor =R, - n*.
o : : 1 o} 1 o}

R=R+1-n%dnk=1

x
o o
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Figure 5.6

Again we have shown that the nullity of the graph Hg formed by -the
edges ef and eg is one, and (neither edge being a loop, aé béfore)
therefore ’g is a cycle. Hence, e? and eg connect the same vertices.

Case 3. eo(vlvz) is not a loop and e, is not on a cycle, as
illustrated in Figure 5.7. Let HO be defined as before; Since
eo(vlvz) is not on a cycle P, = P+ 1 so ro = R:-~1}5

Yo ='Rl B Eg

R-1=R+1-Ejgf—>§~g=2
Since ;3 is the nullity of the graph formed by the edges ef and e%
we have shown that each edge is a loop.

Each loop is a non-separablebcomponent of a graph,. Thé rank and
nullity of a graph are the sums of the ranks. and nullities of the
components of the graphj; but it does not matter which vertex two com-

ponents have in common, if any. So in the dual graph Gf it does not

matter what vertex is both ends of the edge eg; and we may take GT
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. . . 2
with e¥ having the same vertex-.as eT. :

Figure 5.7

‘may write e¥(vivk ek (yEyk %* .
Therefore, we may‘w?;te él(vlvz).and e2(viv2). (v1 and v} are

not neceééarily distinct) Form a graph G* from GT by dropping out

the edge ef. Let e? in G*_corfespond with'eobin G- and the other edges

of G and G* be assqciated by the given (1,1) correspondence between

G1 and GT.

1 be the corresponding sub-

Let H be any subgraph[of G‘andzlet H

graph of.Gl. Further if H contains the edge eo(V1V2) then let H1

2 ' - o : . . . .

: Since  the loop ek does . not connect two vertices, its location in
the graph does not afféct rank or nmllity. Moreover,-it will be drop-

ped out, so its location will have no effect on G*,
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contain both el(vlyo) and e2(vov2); otherwise H1 will contain neither

edge. Then R¥* = T since G* and GT differ by only the edge ega Also
—7’ = T % = i oy = % - _'k = N - ¢
J ri and n n . Since rT R1 ny then r R n. Therefore,

* is a dual of G.
Iwo graphs are said to be homesmorphic if by a finite sequence of

subdivisions they become isomorphic. If G1 and G2 are isomorphic and

G* is a dual of 6, then G* is a dual of G,. By induction then, if G

has a dual, every graph homeomorphic to G has a dual.

We shall show that neither of the graphs K5 or K has a dual.

3,3
Suppose K_ had a dual, call it K? then:

5
p(Kg) = R = Nt = v(Kg) = 4
u(KS) =N = R* = p(K75'c) = 6
E. = E* = 10

If Kg has isolated vertices, we drop them out; this does not
affect the duality of g.
There are no loops, or cycles of length two or three in Kg. For

if there were, dropping out the corresponding edges of K5 would reduce

the rank of K_ but we cannot reduce its rank without dropping at least

5
four edges.

g contains at least five cycles of length four, since if we drop
out four edges at any one vertex, the rank of K5 is reduced while re-
placing any one of them restores p(KS) to its original valué.

Since there are only teﬁ edges in Kg at least two of these cycles
must share an edge. There are only two ways to form a graph with two
cycles of length four and shafing an edge, without'qycies of length

two or three. We argue as follows:

Suppose there are exactly three edges in common as in Figure 5.8
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then the graph would contain a cycle of length two. In reference to

the figures, the two cycles of length four -are ViVys VoVg, ViV, v4v1

3V V vi. Heavy lines indicate the edges which coincide.

/
V=V 3V =Vy

Figure 5.8

Suppose there are exactly two edges in common. If the edges are

non~adjacent, as in Figure 5.9, then either v3 = vé and v4>= VA creat-
ing cycleé of length two or ‘v, = VA and A vé creating cycles of

length three. If the edgesvare adjacent then three vertices coincide
as in Figﬁre 5.10. v, # vé, for oﬁhetwise there would be a cycle of

length two. vé does not coincide with the other three vertices on the

graph because to do so would create a ¢ycle of two or three. Choose

e o .
v4 distinct from Vis Vg v3 apd v4 Fo form a graph I?.\

1
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/
Vl?V{ V3 V=V, VE‘\G’
ey Vg
2
| q ‘ \]‘"':V',‘/ V:I
Figure 5.9 | . Figure 5.10

Suppose ‘there is exactly one edge in common. Furthermore, at
least one of the remaining vertices, sayvvi.does not coincide with
1> Vg» V3 OF v4 for otherwise there would be a cycle of length two

or three. See Figure 5.11. If v/ coincides with vy OT Vg4 there is a

v

3.
cycle of length two. TIf vé coincides with v, or v4-there is a cycle
-of length three. 1If vé is distinct, that, both vé and v& are distinct

vertices, then the graph is«I%. Ii and'Ig are shown in Figure 5.12.

v
=
s

!/
vevt oy

Figure 5.11
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| |
P(I) = 4 | o (1) S

¥ - | *\_
N1*) =2 | | . (IT)=2

Ny

Figure 5.12

There is no subgraph of the form»If in Kg since this would imply

there exists a subgraph of K. of rank 2, and nullity 2, For, suppose

5

there is some subgraph IT of K% Then since Kg is - a dual of K

5° 5

r¥% = R* - n
4= 6 - nPn.=2

isa -dual’of K¥*

And since: 'K H

r =R = n?'\‘\

r=4 -2 %»r =2
But such a.subgraph contains a loop or two-cycle of which there-are

none in KS' So K% must .contain avsubgraph-Ig. (Figure 5.13). Since

'3We may quickly analyse-a simple graph given the rank and nullity
if we recall that the rank was shown to be the number of edges in a
minimal spanning subgraph, and the nullity was discussed as a measure
of redundancy of edges of a graph to.a minimal spanning subgraph.

For example, if the rank of a graph G is two, there is a subgraph
H of G containing two edges, such that if two vertices are joined by a
chain in G they are joined by a chain in H. Excluding isolated ver-
tices, H will be either of the graphs shown below:

L SN

Any attempt to create two cycles.in either without changing the rank
will clearly produce-a loop or a cycle of length two.
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K5 contains no loops or two-cycles, each vertex of Kg is on at least

‘three edges. The vertices Vs y3, v4, Ve

there must be at least one more edge at each of these vertices.

are on.only two edges, so

1% ] Va. V3
2
Ve V& Ve |
1Eigure 5.13

K§ contains ten edges; 15 contains sever; so we must connect two

of these vertices.

If we connect v, and v6.(or v andvva) then the resulting graph

1 3 ‘
contains a twe-cycle. If we connect vy and Vg (or va'and v6) the
‘resulting graph contains a three-cycle, 1If we connect vy and 7
(or Vg and v6) the resulting graph coﬁtains If. SincevKg contaiﬁs
-none of these subgraphs, K? is not a dual . of KS;
Consider the grapthB’B. Juppose it has a dual K§’3 then:

p(Ky 3) = R.=5 =W =y(X§ ,)

u(K3’3) =N =4 =R¥= p(K§’3)

E o= E* =09

K§ 3 contains no‘'loops or two-cycles. For if there -were, dropping
3
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out corresponding edges of K would reduce its rank,.but we cannot

3,3

reduce the rank of K3 3 without dropping out at least three-edges.

Since we can reduce the rank of K3 3 by dropping three edges in six

possible ways, Kg 3 contains six cycles of length three.
3

K3 3 contains nine distinct cycles of length four. There are

H .

(g) distinct pairs of vertices in each set of three vertices, so there
are nine ways of building a cycle of length four. »Let.Hi for i =1,

2, ..., 9 be some numbering. of these subgraphs. Each has ¥ = 3, n =1

so there are at least nine subgraphs ﬁ? in K§ 3 such that
>

r* R* - n

;*:4-]_:3
and T = R - n¥

3= 5= n% 30k =2

It

A subgraph ﬁ? of K% of rank three and nullity two and containing

3,3
no. loops or two-cycles must have the form shown in Figure 5.14 (see
footnote page 58), for: 1If we build up a graph satisfying the above
conditions, adding necessary vertices and edges then the vertex v§
must -be distance from.vf or v%. If it were otherwise, the graph would
contain a cycle of length one or two. Similarly, the vertex VZ must
also. be distinet from'vf’ v§ or'vg-for otherwise the graph would con-
tain a cycle of length one or two. If we try to build up a graph of

rank three in two or more pieces (except isolated vertices), it can

contain at most one cycle whose length is not one or two.
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Figure-5.14

K§ 3 does not contain a subgraph of the-form shown in Figure 5.15.
3
-A complete graph of four vertices has rank three and nullity three. TIf

such'a subgraph were contained in K§ 3 then K3 3 would contain a.sub-
. > b

graph of rank two and nullity one: . that is, a two cycle, since'K3 3
3

contains no cycles of uneven length.

Figure 5.15
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Sinéé there are nine subgraphs such as shown in Figure 5.14 and
since K§’3 contains nine edges, at least two of these subgraphs must
share an edge.

A third cycle of length three may share an "outside' edge as in
the graph IT, Figure 5.16, or may share the '"inside' edge as in the

graph Ig. It cannot share two edges without forming a subgraph of the

form shown in Figure 5.15.

% I %
If 5
Figure 5.16
Since there are no one, two, or three-cycles in K3 3> each vertex
3
of K§ 3 is on at least four edges. IT and Ig each contain seven edges.
, \

We have two edges to place in such a way that every vertex of IT or

Ig is on.at least four edges. Since this cannot be done, Kg 3 is not
dual of .
a dual o K3,3
Therefore, neither of the graphs Ks.or K3 3 has a dual.
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