By
RICHARD G. SEAVEY
Bachelor of Science
University of Minnesota
Minneapolis, Minnesota
1960

Submitted to the Faculty of the Graduate College of the Ok1ahoma State University in partial fulfillment of the requirements
for the Degree of MASTER OF SCIENCE

May, 1970

Thesis Approved:

'762916

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. DEFINITIONS FOR REFERENCE 8
III. GRAPHS 13
IV. DUALS AND PLANAR GRAPHS 2.6
V. DUAL IMPLIES PLANAR 45

LIST OF FIGURES

Figure Page
1 2
2 4
3 5
4 6
5 7
2.1 11
2.2 11
3.1 15
3.2 17
3.3 19
3.4 21
3.5 22
3.6 24
4.1 27
4.2 28
4.3 29
4.4 30
4.5 32
4.6 33
4.7 34
4.8 36

Figure
Page
4.9 . 38
4.10
4.11 . 42
4.1242
4.13 43
4.14 44
5.1 46
5.2 46
5.3 47
5.4 48
5.5 52
5.6 53
5.7 54
5.8 56
5.9 57
5.10 57
5.11 57
5.12 58
5.13 59
5.14 61
5.15 61
5.16 62

CHAPTER I

INTRODUCTION

The first several pages of this report will be introductory in nature. Judging from text and lecture material, the subject of Graph Theory seems to lend itself to a conversational form and to proofs that rely on intuition rather than elaborate detail. I would hope that my explanation would aid the development of this intuition.

It might be suggested that there be a way to restate the definitions and theorems in such a way as to make the proofs less conversational, but perhaps the strength of the subject is that it addresses itself to the diagram that commonly accompanies the understanding of a variety of problems.

Some examples might help. Consider the following old puzzle: You have two vessels with respective capacities of seven and ten pints. Beside you is a large tub of water. Using only the two vessels and excluding such things as marking the containers or tilting them to obtain fractional amounts, how can you obtain exactly, say, eight pints? With the aid of a diagram such as the one below in Figure 1 we can quickly solve the problem.

Figure 1

This method, using a directed graph was first explained by M. C. K. Tweedie in The Mathematical Gazette of July 1939. In this case, the horizontal line represents the contents of the ten pint vessel, and the obliquely vertical line the seven pint vessel. Arcs (or vectors) in the horizontal direction represent changes in the level of the ten pint vessel and arcs in the obliquely vertical direction (upward right), represent changes in the level of the seven pint vessel. Arcs in the other oblique direction indicate a pouring of water from one vessel to the other. For example, the arc from A to B indicates a filling of the seven pint vessel; the arc from B to C indicates the emptying of the seven pint vessel into the ten pint vessel. An arc such as EF indicates a dumping of the larger container while holding the amount in the smaller constant, at four pints.

As an aside, it might be noted that the diagram provides insight
into the more general problem of under what conditions can a given amount be measured. If we assume that only integral solutions z are possible for containers of x, y volume, x, y integers, and (x, y) = 1 , then it would follow that solutions for containers of x^{\prime}, y^{\prime} volume, where x^{\prime}, y^{\prime} are integers and $\left(x^{\prime}, y^{\prime}\right)=d$, must be integral multiples of d, since the scale of our "graph" is arbitrary.

The primary interest, however, with respect to this paper is that the understanding and the solution of this problem has been aided by a diagram of points and, in this case, directed lines.

As another example, consider an analysis of a proof that four statements p, q, r, s are all equivalent, as indicated by the diagram.

This would be done if we could show:

1) if p then q
2) if q then r
3) if r then p
4) if p then s
5) if s then r

Figure 2

With respect to Figure 2 we are interested in whether we can "get to" any vertex from any other while restricted by the arrows. If the joining lines are directed, they are commonly called arcs, whereas undirected lines are referred to as edges.

Further examples are to be found in the representation of chemical structures, electrical networks, flow charts, game theory and so on An interesting example of the application of a certain form of such a diagram to the solution of a game is referred to in the Scientific American (February 1968, Mathematical Games), attributed to Donald E. Knuth.

The solitare game is perhaps best known as "clock". The pack of cards is dealt into thirteen face down piles of four cards each, each pile assuming a position from ace to king, perhaps as shown in Figure 3.

Figure 3

The top card of the "king" pile is turned up and placed face up at the bottom of whichever pile corresponds to the card's value. For example if an eight is turned, it would be placed face up under the "eight" pile. Then the top card of that pile is turned up, and the play progresses in a like manner. The game is won if you get all fifty-two cards up. If you turn the fourth king before this happens, play is blocked and the game is lost. Playing this game requires no skill. Knuth, in his book Fundamental Algorithms (the first volume of a. projected seven volume series titled The Art of Computer Programing), demonstrates a simple way of determining in advance whether the game will be won or lost, merely by checking the bottom card in each of twelve piles, excluding the king pile. By drawing a line from each stack, to the pile corresponding to the value of its bottom card, we are able to form a graph that accompanies the game. No line is drawn if the card's value matches its own pile. As an example, see

Figure 4:

Figure 4

The game will be won if and only if the graph is a tree connecting all thirteen piles. Professor Robert Gibson points that having all thirteen piles (vertices) connected is necessary and sufficient, since the only way that this can occur is for the graph to be tree. The game shown in Figure 4 will be lost, while the game in Figure 5 will be won. The arrangement of the forty unknown cards is imnaterial.

Figure 5

In each example, our understanding of the situation or problem, and/or sometimes the mechanics of solution depend upon a diagram of vertices and connecting lines. In these examples, the validicy of such a diagram does not depend upon the position of the vertices and whether the arcs and edges are straight or curved, but only upon which edges or arcs are incident to which vertices. We may then say that a graph con. cerns itself with the incidence relation between vertices and arcs cr between vertices and edges. Graph Theory is a study of graphs.

CHAPTER II

DEFINITIONS FOR REFERENCE

The following definitions are taken from some of the more commonly used books on the subject, and are presented with the intention of acquainting the reader with the approach taken by these authors. According to F. Harary in A Seminar in Graph Theory (1967) [5],
a Graph G consists of a finite nonempty set V of points and a set X of lines each of which joins two distinct points. We assume that distinct lines do not join the same pair of points; otherwise, the configuration is a multigraph. Furthermore, if we permit loops, that is, lines joining a point with itself, the result is a general graph.

The two points joined by a line are adjacent, and each is incident with the line. Two graphs are isomorphic if there is a $(1,1)$ correspondence between their sets of points preserving adjacency.

Oystein Ore, Graphs and Their Uses. (1963) [6]

In other words, if G_{1} and G_{2} are isomorphic, they have the same number of vertices, and whenever two vertices in G_{1}, say (B_{1}, C_{1}) are connected by an edge, then there are corresponding vertices $\left(B_{2}, C_{2}\right)$ in G_{2} also connected by an edge and vice versa.

Claude Berge (Translation) The Theory of Graphs (1958) [1]
Strictly speaking, a Graph, which is denoted by $G=$ (X, T) is the pair consisting of the set X and the function「. Whenever possible, the elements of a set X will be represented by points in the plane, and if x and y are two points such that $y ~ T x$, they will be joined by a continuous line with an arrowhead pointing from x to y o Hence, an element of X is called a point or vertex of the graph, while

[^0]the pair (x, y), with $y \Gamma x$, is called an arc of the graph.
The concept which we shall now introduce is unoriented: we shall speak of edges, and not arcs. We are concerned only with finite graphs but for greater generality, we shall extend the definition to include s-graphs. An s-graph (X,U) is defined to be the pair formed by a set X of vertices and by a set U of edges connecting certain vertices; but con~ trary to graphs, there may be as many as s distinct edges the same initial and terminal vertices.

A graph (or an s-graph) G is said to be planar if it can be represented on a plane in such a fashion that the vertices are all distinct points, the edges are simple curves, and no two edges meet one another except at their terminals. A diagram G on a plane which conforms with these conditions is called a planar topological graph, and will also be denoted by G; two planar topological graphs will not be regarded as distinct if they can be made to coincide with one another by an elastic deformation of the plane.

Hasslex Whitney, Non-Separable and Planar Graphs (1930) [7]
A graph G consists of two sets of symbols, finite in number: vertices a, b, c, \ldots, f, and $\operatorname{arcs} \alpha(a b), \beta(a c), \ldots$, $\delta(c f)$. If an arc $\alpha(a b)$ is present in the graph, its end vertices a, b are also present. We may write an arc $\alpha(a b)$ or α (ba) at will; we may write it also ab or ba if no con" fusion arises, - if there is but a single arc joining a and b in G. We say the vertices a and b are on the arc $\alpha(a b)$, and the arc $\alpha(a b)$ is on the vertices a and b.

The obvious geometrical interpretation of such a graph, or abstract graph, is a topological graph, let us say. Coxresponding to each vertex of the abstract graph, we select a point in three-space, a vertex of the topological graph. Corresponding to each arc $\alpha(a b)$ of the abstract graph, we select an arc joining the corresponding vertices of the topological graph. An arc is here a set of points in (1, 1) cor* respondence with the unit interval, its end vertices corresponding with the ends of the interval. Moreover, we let no arc pass through other vertices or intersect other ares.

Given two graphs G and G^{\prime}, if we can rename the ver tices and arcs of one, giving distinct vertices and distinct arcs different names so that it becomes identical with the other, we say the two graphs are congruent.

The geometrical interpretation is that we can bring the two graphs into complete coincidence by a (1,1) continuous
transformation. ${ }^{1}$

Two graphs are called equivalent if upon being decomposed into their components, they become congruent except possibly for isolated vertices.

From the above definitions it should be clear that what we are talking about is the diagram itself, and to do this we must define such things as components. We are also interested in the space in which the diagram is embedded and perhaps under what conditions there is an embedding space homeomorphic to a plane. We are interested in establishw ing equivalence relations on the set of Graphs.

We wish to use definitions that will consider the following pair of graphs shown in Figure 2.1 equivalent even though there is no "elastic deformation of the plane" that will make them identical.

[^1]

Figure 2.1

Certain important results require that we be able to consider the following graphs in Figure 2.2 in some sense equivalent.

Figure 2.2

Generally, then, the aim of his paper is to give the reader some acquaintance with the subject of graph theory. More specifically, it
is the aim of this paper to discuss planar graphs as defined by Hassler Whitney in a paper on Non-separable and Planar Graphs $[7]$, in relation to other work.

CHAPTER III

GRAPHS

Since almost any two graph theorists use different terminology, [5] and since we wish this paper to be self-contained, we will preface our discussion with a list of definitions. In keeping with the purpose of this paper we are interested in finite graphs permitting isolated vertices and loops, and allowing the possibility of more than one edge connecting a pair of vertices. We will also restrict our attention to non-oriented graphs, and thereby refer to the lines as edges.

A graph, then, consists of two finite sets: a set A of edges $e_{i}, i=1,2,3, \ldots, E$ and a set B of vertices $v_{j}, j=1,2,3, \ldots, V$ where each edge is uniquely incident either with one vertex and is called a loop, or with two distinct vertices. In fact, an unoriented graph can be defined as a function on the set of edges to the collection of one or two element subsets of the set of vertices.

An unoriented graph can also be defined by a symmetric matrix of non-negative integers where the element in the $i \frac{\text { th }}{}$ row and $j-$ th column is the number of edges incident with $\left\{\mathrm{v}_{\mathrm{i}}\right\}$ if $\mathrm{i}=\mathrm{j}$ and with $\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right\}$ if $i \neq j$. A graph is called an m-graph where m is the largest element in the matrix, i.e., there are m distinct edges assigned to some vertex m pair of vertices.

It is sometimes convenient to label the edges incident with ${ }_{i}$ and v_{j} as $e_{1}\left(v_{i} v_{j}\right), e_{2}\left(v_{i} v_{j}\right), \ldots, e_{k}\left(v_{i} v_{j}\right)$ where $k \leq$ m. Furthermore
$e_{r}\left(v_{i} v_{j}\right)=e_{r}\left(v_{j} v_{i}\right)$. When $i=j$ the edges are loops. If there is but a single edge incident with vertices v_{i} and v_{j}, we may designate it by ${ }^{\mathrm{v}} \mathrm{V}_{\mathrm{j}}$.

It is frequently necessary to concentrate our attention on a portion of the graph. To avoid complicating subscript, we will agree to a local renaming of vertices and edges when it is convenient.

When orientation is given to the lines, they are most commonly called arcs. Whitney, does not follow this convention. It may be interesting to note that C. Berge [1] defines an edge joining points x and y if there is an arc from y to x or an from y to x.

We will define the degree of a vertex v_{i}, and denote it by $d\left(v_{i}\right)$, as the sum of the number of edges $e\left(v_{i} v_{j}\right) i \neq j$ incident with v_{i} plus twice the number of loops incident with v_{i}.

An isolated vertex is a vertex which is not on any edge; it has degree zero. The number of vertices V is called the order of the graph. A chain is a sequence of one or more distinct edges $e_{1}\left(v_{1} v_{2}\right), e_{2}\left(v_{2} v_{3}\right)$, $e_{3}\left(v_{3} v_{4}\right), \ldots e_{n}\left(v_{n} v_{n+1}\right)$ for some local renumbering of the vertices and edges where all the vertices are distinct. That is, a chain does not intersect itself. It is usual to apply the second condition to define a simple chain, and according the Harary [5], what we have described is called a path, though a path is a similar sequence of arcs in Berge [1]. It is not my intention to confuse, but only to exemplify the variation in terminology.

In figure 3.1 the sequence $v_{1} v_{2}, v_{2} v_{3}, e_{1}\left(v_{3} v_{4}\right)$ is an example of a chain of length three connecting vertices v_{1} and v_{4}. The length of a chain is the number of edges in it.

Figure 3.1

A suspended chain is a chain containing two or more edges such that no vertex of the chain, other than the first and last is on another edge of the graph; and these two vertices are each on at least. two other edges. In figure $3.1 \mathrm{v}_{2} \mathrm{v}_{1}, \mathrm{v}_{1} \mathrm{v}_{4}$ is such a suspended chains since $d\left(v_{2}\right)=3, d\left(v_{1}\right)=2$, and $d\left(v_{4}\right)=5$.

A cycle is a finite set of one or more edges which for some local renaming of vertices and edges can be put in a cyclic ordex $e_{1}\left(v_{1} v_{2}\right), e_{2}\left(v_{2} v_{3}\right), e_{3}\left(v_{3} v_{4}\right), \ldots e_{n}\left(v_{n} v_{1}\right)$, the vertices being distinct [5]. It is usual to call such a cycle simple; when the second condition is not satisfied, it is referred to as composite [1]. A k*cycle or cycle of length k contains k edges; a loop is a one-cycle.

A subgraph H of G is a graph consisting of a subset of the edges of G and a subset of the vertices of G with the incidence relation induced by G. If H contains $e_{i}\left(v_{i} v_{j}\right)$ then v_{i} and v_{j} are also in H.

A graph is connected if for every pair of distinct vertices there is a chain joining them. A graph, in general, will consist of P
connected pieces. That is, if vertices v_{1} and v_{2} are in one connected piece, and vertices v_{3} and v_{4} are in another connected piece there does not exist any chain joining v_{1} and v_{3} while there does exist a chain joining v_{1} and v_{2} and a second chain joining v_{3} and v_{4}. An isolated vertex is a connected piece. A graph consisting only of V isolated vertices contains V connected pieces.

Suppose G contains V vertices and is in one connected piece. The following procedure for building up a minimal connecting subgraph of G will indicate clearly the necessity of G having at least V - 1 edges. If $\mathrm{V}=1$ we may take this vertex to be the minimal connected subgraph: $1-1=0$. Suppose $V>1$. Choose a vertex, call it v_{1} and let H_{1} be the subgraph of G consisting only of that vertex. Since G contains more than one vertex and is in one connected piece there is a vertex, call it v_{2}, of G not in H_{1} that is adjacent (in G) to v_{1}. Let H_{2} be the subgraph consisting of v_{1}, v_{2} and a connecting edge $e_{1}\left(v_{1} v_{2}\right)$. If G contains some vertex, call it v_{3} adjacent (in G) to v_{1} or v_{2} and not in H_{2} then let H_{3} be the subgraph of G containing H_{2} and including v_{3} and a connecting edge. In general, suppose H_{i} is a subgraph of G built in the manner described above, that is, containing the subgraph $H_{i}-1$ and some vertex v_{i} of G not in $H_{i}-1$ but adjacent (in G) to a vertex in H_{i-1} and an edge connecting v_{i} to that vertex. Each graph H_{i} is a subgraph of G and H_{i} is a subgraph of H_{j} if $i \leqslant j$. Consider H_{v}; clearly H_{V} is also a subgraph of G containing V - 1 edges. Therefore G contains at least $V-1$ edges. H_{V} is what we have called a minimal connecting subgraph of G. Such a subgraph will contain no cycles and exactly V - 1 edges.

A connected graph containing no cycles is called a tree and contains
exactly V - l edges. A graph G containing P connected pieces and containing no cÿcles contains $\mathrm{R}=\mathrm{V}-\mathrm{P}$ edges. G is called a forest.

For every graph G we will define a number, called the rank of G as follows:
$\rho(G)=R=V-P$ where V is the number of vertices and P is the number of connected pieces.

A spanning subgraph H of G contains all vertices of G and some subset of the edges of G such that distinct vertices, connected by a chain in G, are connected by a chain in H. A minimal spanning subgraph is one with a minimum number of edges.

We have shown that a minimal spanning subgraph is a forest and the minimum number of edges is the rank of G. If $p=1$, then $V-R=1$.

Since every piece contains at least one vertex, $0 \leq R \leq V-1$. A graph consisting of V isolated vertices has only one subgraph con* taining all previously connected pieces and has rank zero.

A graph G is said to be cyclicly connected if every pair of vertices are contained in a cycle. The graph below, Figure 3.2, is an example of one that is cyclicly connected.

Figure 3.2

The process of building up a graph G edge by edge is common in Whitney's paper. It will be observed that during the process, connecting vertices in the same connected piece does not alter the rank, while connecting two vertices not already connected by a chain increases the rank by 1. In connecting two vertices in the same connected piece, (or the same vertex) we do, however, form a new cycle. We may express the number of edges which create new cycles in the process in relation to the number of edges E and the rank R as follows.

$$
\begin{aligned}
v(G) & =N=E-R \\
& =E-V+P
\end{aligned}
$$

The graph in Figure 3.2 has $N=16-10=6$.
$v(G)=N$ is called the nullity (or cyclomatic number or first Betti number) of the graph. Feeling for the meaning of this number might be improved by the proof of the following theorem.

Theorem. In a graph $G, N \geq 0$.
Proof. We will build up G edge by edge. To begin with $E=0$, $R=0$, so $N=0$. If we connect two vertices not already connected by a chain then both R and E are increased by one so N is unchanged. If we connect two vertices in the same connected piece, E is increased by 1, while the rank remains unchanged, so N is increased by 1 . Therefore $\mathrm{N} \geq 0$ 。

As noted above, the increase of the nullity by 1 is accompanied by the formation of at least one new cycle. Thus, suppose we connect vertices v_{i} and v_{j} in the same connected piece. There is a chain e_{1} $\left(v_{i} v_{2}\right), e_{2}\left(v_{2} v_{3}\right), \ldots, e_{n}\left(v_{n} v_{j}\right)$ connecting v_{i} and v_{j}. The addition of $e_{o}\left(v_{i} v_{j}\right)$ to such a chain forms a cycle; further it is a cycle not in the graph without the edge $e_{o}\left(v_{i} v_{j}\right)$.

What this suggests geometrically is that we may judge the nullity by looking at the "regions interior to the graph." This is an extremely intuitive statement, and depends on a drawing of the graph; more so, it depends on the graph's being represented in 2 -space.

The graph in Figure 3.3 has nullity five.

Figure 3.3

A graph G is a forest if and only if $N=0$. For, if $N=0$ then $V-E+P=0$ and $E=V-P$. In the previous discussion this was shown to be the minimum number of edges connecting the vertices in P connected pieces. So G is a forest.

Conversely, suppose G is a forest, then build up G edge by edge. If $E=0$ then $N=0$. Each time we add an edge, always connecting two previously unconnected vertices, both the rank R and the number of edges E are increased by 1 so N remains the same. Therefore, if G is a forest then $\mathrm{N}=0$ 。

We may now consider the nullity in terms of a forest spanning the
graph. Suppose G is a graph of P connected pieces; then there is a forest H containing P connected pieces spanning the vertices of G such that H is a subgraph of G. We may wonder how many edges must be removed from G to form H. H contains V - P edges. G contains E edges. So we must remove $E-(V-P)$ edges. $E-(V-P)=E-R=N$. We may then, by a process of removing N selected edges reduce a graph to a forest still connecting all previously connected vertices. In other words, the nullity is a measure of redundancy of edges relative to a minimal spanning subgraph. If $P=1$ then $V-E+N=1$ 。

We have already shown that if G is a graph and we form a graph G from G by adding an edge connecting vertices v_{1} and v_{2} of G then:
if v_{1} and v_{2} are in the same connected piece

$$
\rho\left(G^{\prime}\right)=R^{\prime}=R \text { and } v\left(G^{\prime}\right)=N^{\prime}=N+1
$$

and if v_{1} and v_{2} are not in the same connected piece $R^{\prime}=R+1$ and $N^{\prime}=N$

It also follows from the definition that the addition or subtraction of isolated vertices leaves the rank and nullity unchanged.

A subgraph H of a graph G as we have defined it is graph con taining some subset of the edges of G and those vertices of G which are on these edges: H may contain other vertices of G. At this point, we again enter an area where disagreement in terminology is common. There are times when it is convenient for the subgraph H to contain all the vertices of G. Then, for example, during the process of building a graph G edge by edge we would at each stage have such a subgraph of G. Further, each l-graph without loops would be a subgraph of some complete graph. A complete l-graph without loops (usually
referred to as a complete graph of n points and denoted by K_{n}) is the graph of n vertices and $\frac{v(v-1)}{2}=\binom{v}{2}$ edges wherein each vertex is con* nected to every other vertex by an edge, i. e., for every pair of vertices $v_{i}, v_{j} i \neq j$ there is exactly one edge $e\left(v_{i} v_{j}\right)$ in K_{n}. See Figure 3.4.

Figure 3.4

For a l-graph G of order n and without loops it is common to refer to the subgraph of K_{n} containing the complementary set of edges and the n vertices as the complement of G.

For the purpose of this paper, however, a subgraph H of a graph G
has as its complement \vec{H} with respect of G the subgraph of G containing those edges not in H, those isolated vertices of G not in H, and the non-isolated vertices of G.

Figure 3.5

In Figure $3.5, H$ and \bar{H} are complements with respect to G.
Whitney's paper on Non-separable and Planar Graphs [7] is divided into, as might be expected, two sections. The first is on non-separable graphs; the second is on duals and planar graphs. It is the contribu* tion of his paper that the results are established in terms of the
rank and nullity and that he is able to use these concepts to restrict the definition of a dual to the dual of a planar graph.

Basic to the understanding of non-separable graphs and the decomposition of graphs is his definition of a component. Suppose we consider two graphs H and H^{\prime} without a common vertex. Let v_{i} be a vertex of H and v_{j} be a vertex of H^{\prime}. If we rename v_{i}, v and v_{j}, v and let the edges of H and H^{\prime} be renamed accordingly then H and H^{\prime} have a single vertex v in common. A graph G is thus formed by letting a vertex v_{i} of H coalesce with a vertex v_{j} of H^{\prime}. Geometrically, we bring the vertices v_{i} and v_{j} together to form a single vertex v. Let G be a connected graph such that there exist no two graphs H and H^{\prime} each containing at least one edge which form G when joined at a single vertex, then G is said to be non-separable.

If G is not non-separable, then G is separable. A graph that is not connected is separable.

If some connected piece G_{1} is separable, then there are subgraphs H_{1} and H_{1}^{\prime} of G_{1} each containing at least one edge which share but a single vertex v 。 If H_{1} and H_{1}^{\prime} joined at a vertex v, form G_{1}, we call v a cut vertex [7] or articulation point [1] of G_{1}.

It is characteristic of a cut vertex v that if there exist vertices v_{i} in H and v_{j} in H^{\prime}, v_{i} and v_{j} different from v, then every chain joining v_{i} and v_{j} contains v. In the following example $v_{1}{ }^{\prime} v_{2}{ }^{\circ}$ v_{3}, and v_{4} are cut vertices. See Figure 3.6 .

Figure 3.6

A graph G is separable if it has more than one connected piece. If a graph G contains a connected piece which is not non-separable, we may separate that piece into two graphs which formerly had but a single vertex in common. Since each such graph must have at least one edge, or be an isolated vertex, and since there are only a finite number of edges and vertices, we may continue this process until every resulting piece of G is non-separable. We refer to such pieces as components of G 。

The following theorems are stated and proved by Whitney [7].
Theorem: A necessary and sufficient condition that a connected graph be non-separable is that it have no cut vertex.

Theorem: Let G be a connected graph containing no loop. A necessary and sufficient condition that a vertex v_{o} be a cut vertex is that there exist two vertices v_{1}, v_{2} in G each distinct from v_{o}, such that every chain connecting v_{1} and v_{2} contains some edge incident to V_{o}.

Theorem: Let G be a graph containing no loop and containing at least two edges. A necessary and sufficient condition that G be
non-separable is that it be cyclicly connected.
Theorem: A non-separable graph G of nullity 1 is a cycle.
Theorem: Every non-separable subgraph of G is contained wholly in one of the components of G.

Theorem: A graph G may be decomposed into its components in a unique manner.

Theorem: Let $H_{1}, H_{2}, \ldots, H_{m}$ be the components of G. Let R_{1}, R_{2}, \ldots, R_{m} and $N_{1}, N_{2}, \ldots, N_{m}$ be their ranks and nullities. Then $R=\sum_{i=1} R_{i}$ and $N=\sum_{i=1} N_{i}$.

CHAPTER IV

DUALS AND PLANAR GRAPHS

Although there are many aspects of topological graph theory which could be considered, this report is limited to the following considerations which dominate the subject, and which are basic to Whitney's paper. Any graph G can obviously be represented in Euclidean three-space with vertices as points and with edges as homeomorphic images of either the unit interval or the unit circle. The topological graph G is such that the geometric incidences of edges and vertices is precisely that prescribed by the abstract graph G, and the topology is that induced by the natural topology of the Euclidean space.

By abuse of the language, abstract graphs G and G^{\prime} are said to be homeomorphic if corresponding topological graphs $G t$ and G_{t}^{\prime} are homeo morphic as topological spaces. If the vertices of corresponding topological graphs G_{t} and G_{t}^{\prime} are also matched by the homeomorphism then G and G^{\prime} are said to be isomorphic; precise definitions will follow.

This means, of course, that such things as knot theory and braid theory are left to another study.

A graph G is planar if a corresponding topological graph G_{t} can be constructed on a sphere in such a way that distinct edges intersect only at vertices. A graph G_{t} that can be constructed on a sphere can also be mapped on the plane by a polar projection from some point on the sphere and not on the graph. And conversely, a graph G_{t} which is
embedded in a plane can be mapped on a sphere. We may choose the point of projection in such a way as to allow us to associate any enclosed region on the sphere with the infinite region of the plane. In fact, the reason for selecting a sphere for our definition rather than a plane, was to avoid distinguishing a particular region, or face, as infinite. We shall use sphere and plane interchangeably.

Then, an abstract graph G is planar if there is a corresponding topological graph G_{t} embedded on a sphere or plane.

Two graphs G_{1} and G_{2} are said to be isomorphic if we can rename the vertices and edges of one, giving distinct vertices and edges different names, so that it becomes identical with the other. Whitney uses the term congruent [7]. Isomorphism can be illustrated by the following example.

Figure 4.1

We shall call two graphs equivalent if upon being decomposed into their non-separable components they become isomorphic except for iso1ated vertices.

If two graphs are isomorphic, their corresponding topological graphs are homeomorphic; but the converse is not true, for consider the following graphs G and G'.

Figure 4.2

The topological graphs G_{t} and G_{t}^{\prime} are topologically homeomorphic, but certain1y not isomorphic by the above definition.

A sub-division of a graph G is any graph obtained from G by replacing an edge $e_{1}\left(v_{1} v_{2}\right)$ by some new vertex v_{0} and two new edges $e^{\prime}\left(v_{1} v_{0}\right)$ and $e^{\prime \prime}\left(v_{0} v_{2}\right)$. Two graphs are homeomorphic if there are isomorphic graphs which can be obtained from the other two by a sequence of sub-divisions [5].

Very nearly every discussion of planar graphs includes a reference to the "Utilities" graph, and it is appropriate to relate it to
homeomorphism of abstract graphs. The Utilities graph is associated with the problem of connecting each of three houses with each of three utilities in such a way that the connecting edges do not intersect. It is not difficult to show that such a solution is impossible in the plane.

Figure 4.3

Build up the graph G_{1} edge by edge. G_{2} is a subgraph of G_{1}, but the vertices u_{1}, and h_{3} are on opposite sides of the simple closed curve (Jordan Curve) associated with the cycle $h_{1} u_{2}, u_{2} h_{2}, h_{2} u_{3}, u_{3} h_{1}$.

A short disucssion which includes a nice definition of such graphs is to be found in Harary's book [5]. The complete bipartite graph (also called complete bicolored graph or complete bigraph) denoted by $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ or $K(m, n)$ has m vertices of a first color and n vertices of a second color, with two vertices connected by an edge if and only if they are of different colors. In general, the complete r-partite graph
$K\left(n_{1}, n_{2} \ldots, n_{r}\right)$ has n_{i} points of the $i \frac{\text { th }}{}$ color $i=1,2, \ldots, r$ and again two points are adjacent if and only if they are of different colors. We shall assume that there is exactly one edge connecting adjacent vertices. The Utilities graph is $\mathrm{K}_{3,3}$. Such graphs are often related to problems of matching members of two or more mutually exclusive sets, e. g. students with classes, men with jobs they are qualified for, etc. Frequent references are made to the graph $\mathrm{K}_{3,3}$ and to the complete graph of five points K_{5}, due to a result by Kuratowski (1930). He proved that a graph is planar if and only if it has no subgraph homeomorphic to $\mathrm{K}_{3,3}$ or K_{5}. In a particular example below, Figure 4.4 we may wish to find a subgraph of the graph G that is homeomorphic to $K_{3,3}$ or K_{5}. That G is not planar can be shown by a proof using the Jordan Curve theorem that is similar to that commonly given for the Utilities problem. Let H be a subgraph of G consisting of those ver tices and edges shown, then H is homeomorphic to $K_{3,3}$.

Figure 4.4

Since a non-planar graph is characterized by the existence of a subgraph, we may wish to relate this to an attempt to characterize all planar graphs. The source of this study is a series of comments and a general theorem stated by H. Whitney (1930): A graph G is planar if and only if it has a dual, (as H. Whitney defines dual).

For a given planar graph G, and an associated topological graph in a given plane, 0 . Ore introduces duality by construction. Inside each face, or region of G locate a vertex $v \underset{i}{*}$ of $G *$. If the faces cor responding to v_{i}^{*} and $\underset{j}{\underset{j}{*}}$ share a common boundary edge e_{i} of G then in clude the edge $e_{i}^{*}\left(v_{i}^{\stackrel{\rightharpoonup}{i}} \underset{j}{\dot{j}}\right)$. The graph $G *$ consisting of the vertices $v \underset{i}{*}$ and the edges e_{i}^{*} is called the dual [6].

In Berge [1], following a discussion of map coloring, in which the dual $G *$ of a graph G was introduced in the same manner there is a para* graph stating that it follows from certain general theorems that every finite graph can be represented on a surface S of sufficiently large genus: "further, given an S-topological graph G we can construct an S-topological graph $G \underset{t}{\dot{6}}$ in exactly the same way as we construct the dual of a planar graph."

In fact, we can by the technique described above construct a graph $\mathrm{K}_{\stackrel{*}{5}}$ which corresponds to the graph K_{5}. A surface of sufficiently large genus is in this case a torus. It is convenient to represent the torus in the following manner.

The complete graph of five points K_{5} can then be drawn as shown in Figure 4.6. No two edges intersect except at vertices. In Figure 4.6 the graph K_{5} divides the surface into five regions. If we place a vertex in each of these regions, connecting them with an edge whenever they share a common boundary, we build up a graph, call it $K \stackrel{L_{5}}{5}$ that fulfills the specifications of the construction. In this particular example K_{5}^{*} is also K_{5}.

Similarly, the graph $K_{3,3}$ can be represented on a torus. The

Figure 4.6

Figure 4.7
example in Figure 4.7 divides the surface into only three regions. A graph $\mathrm{K}_{3,}^{\infty}, 3_{\mathrm{t}}$, can be constructed with three vertices and nine edges. Dr. Robert Gibson has pointed out that both the graphs $K_{3,3}$ and K_{5} can be drawn on a projective plane but this construction cannot be done in Euclidean 3-space and is therefore more difficult to illustrate.

It would then seem that if we are to prove that a graph is planar if and only if it has a dual we must refine our definition of duality to one that will be satisfied by the "dual" of a planar graph, but not by a graph of similar construction on a torus or surface of genus greater than that of a sphere.

In order to restrict our definition to the sphere (or plane) we will involve numbers that can be used to characterize the plane, the rank R ; and the first Betti number or nullity N .

The nullity N is related to the sphere in the following manner. Given a planar graph G with nullity N, the corresponding topological graph separates the surface into $N+1$ non-intersecting regions or faces. That this is true can be seen by building up the planar graph G edge by edge. We have noted the nullity N is increased by one if and only if we connect two vertices that were previously connected by a chain, forming a new cycle. Since there was one region when we started and since each time we form a new cycle, we construct a closed curve closing off an additional face or region there will be $N+1$ regions in the final planar graph G. This is clearly not a characteristic of a surface such as a torus.

Whitney [7] then uses this relationship to develop a definition as follows. Suppose, we consider a planar graph G. For convenience, we will represent G on a plane, (one region or face becoming infinite).

Construct the dual G^{*} as before: place a vertex viri within every face f_{i} of G including the infinite face. For every edge e_{i} of G construct e_{i}^{*} of G^{*} connecting v_{i}^{*} and v_{j}^{*} corresponding to f_{i} and f_{j} having e_{i} as a common boundary. The graph G^{*}, represented by the broken line in Figure 4.8, will be in one connected piece. The existence of isolated vertices does not affect either G or G^{*} since we are relating our def. inition to regions and the correspondence is established between edges.

Figure 4.8

Now, build up G edge by edge; each time we add an edge of G we remove the edge of $G *$ that naturally corresponds to it. Suppose then if H is a subgraph of G, (the development of G up to some point) and $\bar{H} \%$ is the complement of the corresponding subgraph H^{*} of G^{*}. (H^{*} consists of the edges of G^{*} corresponding to the edges of H. Let \bar{H}^{*} be the complement of H^{*}; then this construction gives \bar{H}^{*} for each subgraph H_{0}) Then the rank of \bar{H}^{2}, call it \bar{r}^{*} is equal to R^{*} - n where R^{*} is the rank of $G \%$ and n is the nullity of H, that is, $\overline{r^{*}}=\rho\left(\overline{H^{*}}\right), R \%=\rho(G \%)$ and
$n=v(H)$.

This relationship holds for every subgraph H, as follows: sinces to begin with, $\bar{r} *=R^{*}$ and $n=0$ so $\bar{r} *=R *-n$. If we connect two vertices of G in the same connected piece or a vertex to itself by a. loop then n is increased by 1 while the number of pieces of $\bar{H} \%$ is increased by 1 (hence the rank of $\bar{H} *$ is reduced by 1) so if $\bar{r} *=R * \cdots n$ then $\bar{r} *-1=R *-(n+1)$. Suppose we connect two vertices not already connected by a chain, then n and $\bar{r} *$ are both unchanged so $\bar{r} *=R{ }^{*}=n$ 。

We then define a dual of a graph G as follows [7]: Suppose there is a $(1,1)$ correspondence between the edges of two graphs G and $G *$ such that if H is any subgraph of G containing all the vertices of G and if $\overline{\mathrm{H}} *$ is the complement of the corresponding subgraph of $G *$ and contains all the vertices of G^{*} then $\overline{r^{*}}=R^{*}-n$. We say G^{*} is a dual of G. Essentially, we are saying that the sum, of the rank of every subgraph of G plus the nullity of the complement of the corresponding subgraph of G^{*}, remains constant and is equal to R^{*}.

Theorem: If the nullity of H is n then $\bar{H} *$ including all the ver . tices of G^{*} is in n more connected pieces than G^{*}.

$$
\begin{aligned}
\mathrm{R}^{*}:= & \mathrm{V}^{*}-\mathrm{P}^{*} \text { and } \overline{\mathrm{r}} *=\overline{\mathrm{v}} *-\overline{\mathrm{p}^{*}} \\
& \overline{\mathrm{r}^{*}}=\mathrm{R}^{*}-\mathrm{n} \\
& \overline{\mathrm{~V}}^{*}-\overline{\mathrm{p}}^{*}=\mathrm{V}^{*}-\mathrm{p}^{*}-\mathrm{n}
\end{aligned}
$$

Since $\overline{H^{*}}$ includes all the vertices of G^{*} then $\overline{\mathrm{V}} \boldsymbol{*}=\mathrm{V} *$ so $\overrightarrow{\mathrm{p}} \%=$ $P *+n$ or \bar{H}^{*} is in n more connected pieces than G^{*}.

Theorem. If G^{*} is a dual of G then $R^{*}=N$ and $N^{*}=R$ 。
For, let $H=G$ then $H^{*}=G^{*}$ and \bar{H}^{*} is the graph consisting only of the isolated vertices of $\mathrm{G}^{*}, \overline{\mathrm{r}} *=0$.

Since G^{*} is a dual of $G, \bar{r} *=R^{*}-n$ for every subgraph H of G,
so $0=R^{*}-N$ and $R^{*}=N$

$$
\begin{aligned}
& R^{*}=N \\
& R^{*}=E-R \\
& E-R^{*}=R \text { but if } G^{*} \text { is a dual of } G \text { then } E^{*}=E \\
& E^{*}-R^{*}=R \\
& N^{*}=R
\end{aligned}
$$

This condition is sometimes sufficient to determine that two graphs are not duals in the sense we have defined them. For example, our diso cussion of "duality" with respect to a torus associated the graph K_{5} with itself, but $\rho\left(K_{5}\right)=5-1=4$ and $v\left(K_{5}\right)=10-4=6$ so they are not dual graphs by our definition. In fact, a graph G will be its own dual only if $R=N$, as in the case of K_{4}. See Figure 4.9.

$$
\begin{aligned}
& R=3 \\
& N=3
\end{aligned}
$$

Figure 4.9

This type of analysis is possible even when the associated graph
is not obvious. A topological graph $\mathrm{K}_{3,3}$ can be embedded on a torus, dividing the surface into three non-overlapping regions. (see Figure 4.7) If we attempt to construct a "dual" $\mathrm{K}_{3}^{*}, 3$ then $\rho\left(\mathrm{K}_{3}^{*}, 3\right)=3-1=2$ while $v\left(K_{3,3}\right)=9-6+1=4$, so at least we know that some graph constructed by the common method will not be a dual as we have defined it.

This, however, does not assure us that a dual does not exist.
Theorem. If G^{*} is a dual of G then G is a dual of G^{*}.
On the basis of this, when one graph has been shown to be a dual of another, we now speak of them as dual graphs. We offer, as a proof of the above statement the following argument.

$$
\begin{aligned}
& \text { Since } \mathrm{G}^{*} \text { is a dual of } G, \bar{r}^{*}=\mathrm{R}^{*}-\mathrm{n} \text { and } \mathrm{R}^{*}=\mathrm{N} \\
& \text { so } \overline{\mathrm{r}^{*}}=\mathrm{N}-\mathrm{n} \\
& \overline{\mathrm{r}^{*}}=\mathrm{E}-\mathrm{R}-\mathrm{e}+\mathrm{r} \text { where } \mathrm{n}=\mathrm{e}-\mathrm{r} \\
& \overline{\mathrm{r}} *=\mathrm{e}+\overline{\mathrm{e}}^{*}-\mathrm{R}-\mathrm{e}+\mathrm{r} \\
& \overline{\mathrm{r}^{*}}=\overline{\mathrm{e}}^{*}-\mathrm{R}+\mathrm{r} \\
& \overline{\mathrm{r}}^{*} \\
& \overline{\mathrm{e}}^{*}-\overline{\mathrm{e}}^{*}=-\mathrm{r}+\mathrm{r}+\mathrm{r}=\mathrm{R}-\mathrm{r} \\
& \overline{\mathrm{n}} *=\mathrm{R}-\mathrm{r} \\
& \mathrm{r}=\mathrm{R}-\overline{\mathrm{n}}^{*}
\end{aligned}
$$

The above proof is similar to Whitney's.
We continuously refer to a dual of G, while it is implied by the construction that $G *$ is the dual of G, "the" in this case meaning any graph isomorphic to G^{*}. If G_{1}^{*} and G_{2}^{*} are equivalent and G_{1}^{*} is a dual of G then G_{2}^{*} is a dual of $G[7]$, but the converse is not true. Consider the following example, Figure 4.10. The graph G is in each case, represented with a solid line, the dual then constructed using. a dotted
line.

Figure 4.10

It is obvious that G_{1}^{*} and G_{2}^{*} are not isomorphic.
Additional theorems are stated and proved, relating duality to the separation of a graph into its components.

The final result of this paper is to associate duality as defined here to Kuratowski's Theorem because it is primarily through this theorem that a test of planarity can be made. Given only the definition of duality due to Whitney it is very difficult, except for extremely
simple pairs of graphs, to determine the existence of this dual relationship. For convenience, we will repeat the definition here.

Suppose there is a $(1,1)$ correspondence between the edges of two graphs G and G^{*} such that if H is any subgraph of G containing all the vertices of G, and if \bar{H}^{*} is the complement of the corresponding subgraph of $G *$ and contains all the vertices of G^{*}, then $\bar{r} *=R^{*}-n$. Under these conditions, we said G^{*} was a dual of G.

Given two graphs with the same number of edges, and meeting the established condition that $R=N^{*}$ and $N=R^{*}$, we must search through all such possible correspondences, and for each (1,1) correspondence we must check these calculations for all possible subgraphs in order to fulfill the requirements of the definition. A logical question to ask is whether or not duality can be established for such a pair of graphs G and G^{*} by a single sequence of subgraphs $H_{1}, H_{2}, \ldots, H_{h}=G$ (where H_{i} is a subgraph of H_{j} if $i<j$) which for some (1,1) correspondence meets the requirement that $\bar{r}_{\dot{i}}^{+}=R^{*}-n_{i}$ for the appropriate subgraphs $\bar{H}_{\dot{i}}^{*}$ of G*.

The following example shows that this is not sufficient. Consider the graphs G and G^{*} as represented by the diagrams in Figure 4.11. Each has five edges. The rank of G is $4-1=3$. The nullity of $G *$ is $5-3+1=3$; so $R=N^{*}$. Further, $N=R^{*}$.

Figure 4.11

We establish the indicated correspondence between edges, (Figure 4.12) and consider the sequence $\left\{H_{i}\right\}$ of subgraphs represented in Figure 4.13. In each case, $\bar{r}_{\dot{i}}=R^{*}-n_{i}$.

$R=3$
$\mathrm{N}=2$

$$
\begin{aligned}
& R^{*}=2 \\
& N^{*}=3
\end{aligned}
$$

Figure 4.12

$\overline{r_{i}^{*}}=R *-n_{i}$

$$
2=2-0
$$

$$
2=2-0
$$

$1=2-1$

$$
H_{6}=G
$$

Figure 4.13

However, that this particular sequence is not enough to establish duality under this particular correspondence can be seen in Figure 4.14.

Figure 4.14

So it is not true for all subgraphs of G.
What we have shown, is that satisfaction of the condition $\bar{r}_{\hat{i}}^{\stackrel{1}{i}}=$ $R^{*}-n_{i}$ by a particular sequence of subgraphs, and their corresponding complements under some (1,1) correspondence is not sufficient to estab lish Whitney's criteria for duality.

GHAPTER V

DUAL IMPLIES PLANAR

We have shown, by the discussion preceding our definition of a dual graph, that if a graph G is planar, then a dual graph G^{*} can be defined (and exists), We now wish to establish by a logical sequence that includes Kuratowski's result, that if a graph has a dual in the Whitney sense, this implies the graph is planar.

We do so as follows: If a graph G has a dual, then each subgraph H of G has a dual. If H has a dual, then every graph homeomorphic to H has a dual. Neither K_{5} nor $K_{3,3}$ has a dual, so G cannot contain a subgraph homeomorphic to K_{5} or $K_{3,3}$. It follows then that G is planar since if a graph G contains no subgraph homeomorphic to K_{5} or $K_{3,3}$ then it is planar.

If a graph G has a dual then every subgraph H of G has a dual. It may, at first seem that we need only to select the subgraph H^{*} under the same (1,1) correspondence of edges that is used to establish duality of G and G^{*}. That this is not enough can be seen in this example, Figure 5.1. Corresponding edges intersect.

Figure 5.1

Consider the subgraph H and the corresponding subgraph H^{*}.

Figure 5.2

Clearly, they are not duals, since $\rho(H)=3-2=1$ while $v\left(H^{*}\right)=$ $1-2+1=0$. A dual could be found, if vertices v_{1}^{*} and v_{2}^{*} were to coalesce to form some vertex v_{0}^{*}. This insight leads us to a theorem and proof due to H. Whitney.

Theorem: Let G and G^{*} be dual graphs, and let $e_{1}\left(v_{1} v_{2}\right)$ and $e_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ be two corresponding edges. Form G_{1} from G by dropping out the
edge $e_{1}\left(v_{1} v_{2}\right)$ and form G_{1}^{*} from G^{*} by dropping out the edge $e_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ and letting v_{1}^{*} and v_{2}^{*} coalesce if they are not already the same vertex. Then G_{1} and G_{1}^{*} are duals preserving the correspondence between their edges.

Proof: Let H_{1} be any subgraph of $G_{1} . H_{1}$ does not contain $e_{1}\left(v_{1} v_{2}\right)$. Let \bar{H}_{1}^{*} be the complement of the corresponding subgraph of G_{1}^{α}. Case 1 (illustrated in Figure 5.3): Suppose v_{1}^{*} and v_{2}^{*} were dis= tinct in G^{*}. Let H be the subgraph identical with H_{1}; then $\mathrm{n}=\mathrm{n}_{1}$. Let $\overline{\mathrm{H}}$ * be the complement in G^{*} of the subgraph corresponding to H , then $\overline{\mathrm{r}} \dot{*}=\mathrm{R} *-\mathrm{n}$.

Figure 5.3
\bar{H}^{*} is the subgraph in G^{*} corresponding to \bar{H}^{*} in G_{1}^{*} except that $\overline{\mathrm{H}}$ * contains the edge e ${ }_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ while $\bar{H}_{\hat{1}}^{*}$ does not. If we drop out the edge $\mathrm{e}_{1}^{*}\left(\mathrm{v}_{1}^{*} \mathrm{v}_{2}^{*}\right)$ and let v_{1}^{*} and v_{2}^{*} coalesce to form v_{0}^{*}, we form \bar{H}_{1}^{*}. In this process, the number of pieces is unchanged while the number of vertices
is diminished by one, so $\bar{r}_{1}^{*}=\bar{r}^{*}-1$.
Since G_{1}^{*} was formed from G^{*} by dropping an edge and allowing the incident vertices to coalesce, G_{1}^{*} has the same number of pieces, but one less vertex so $R_{1}^{*}=R^{*}-1$. Therefore $\bar{r}_{1}^{*}+1=R_{1}^{*}+1-n_{1} \Rightarrow \bar{r}_{\hat{1}}^{\omega}=$ $R_{1}^{*}-n_{1}$. So G_{1}^{*} is a dual of G_{1}.

Case 2 (illustrated in Figure 5.4): Suppose $\mathrm{v}_{1}^{*}=\mathrm{v}_{2}^{*}$ in G^{*} 。 Define H and \bar{H}^{*} as above, that is, let H be the subgraph identical with H_{1}, and let $\bar{H} *$ be the subgraph in G^{*} corresponding to $\bar{H}_{\overline{1}}^{*}$ in G_{1}^{*} except that \bar{H}^{*} contains the loop e ${ }_{1}^{*}\left(v_{1}^{*} v_{1}^{*}\right)$. Then \bar{H}_{1}^{*} is formed from \bar{H}^{*} by dropping out the loop $e_{1}^{*}\left(v_{1}^{*} v_{1}^{*}\right)$. This does not change the number of vertices, or pieces; hence $R_{1}^{*}=R^{*}$ and $\bar{r}_{1}^{\star}=\bar{r}_{*}^{*}$ so $\bar{r}_{1}^{*}=R_{1}^{*}-n_{1}$. Therefore, G_{1}^{*} is a dual of G_{1}.

Figure 5.4

Given any subgraph H of G, since there are a finite number of edges in G, we can selectively and in accordance with the process described above, drop out the edges of its complement $\overline{\mathrm{H}}$. Thus if G has a dual H has a dual. The vertices of G not in H are isolated vertices with respect to H and therefore are unimportant in any discussion of a graph dual to H .

Theorem: If a graph G has a dual, a graph G_{1} formed from G by a subdivision of G has a dua1.

A subdivision is essentially the division of a single edge $e_{0}\left(v_{1} v_{2}\right)$ into two edges $e_{1}\left(v_{1} v_{0}\right)$ and $e_{2}\left(v_{0} v_{2}\right)$ by the insertion of a new
vertex ${ }_{0}$.
Let G and G^{*} be dual graphs. Form G_{1} from G by a subdivision of the edge $e_{o}\left(v_{1} v_{2}\right)$. Form G_{1}^{*} from G^{*} by dropping out $e_{0}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ and adding two edges $e_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ and $e_{2}^{*}\left(v_{1}^{*} v \stackrel{\star}{2}\right)$. Let $e_{1}\left(v_{1} v_{o}\right)$ and $e_{2}\left(v_{o} \cdot v_{2}\right)$ correspond to $e_{1}^{\star}\left(v_{1}^{*} v_{2}^{*}\right)$ and $e_{2}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ respectively, and the remaining edges be matched by the given (1,1) correspondence between G and $G *$. Now $R_{1}^{*}=R^{*}$. Since G and G^{*} are duals, $\bar{r} *=R^{*}$ - n for every subgraph H of G, and the complement \bar{H}^{*} of the corresponding subgraph H^{*} in G^{*}.

Let H_{1} be any subgraph of G_{1}.
Case 1. H_{1} contains $e_{1}\left(v_{1} v_{o}\right)$ and $e_{2}\left(v_{o} v_{2}\right)$. Let H be the corresponding subgraph of G containing $e_{o}\left(v_{1} v_{2}\right)$. Since both the number of edges and the number of vertices are increased by one, while the number of pieces is unchanged, $\mathrm{n}_{1}=\mathrm{n}$. $\overline{\mathrm{H}}_{\overline{1}}^{*}=\overline{\mathrm{H}}^{*}$ so $\overline{\mathrm{r}_{1}}=\overline{\mathrm{r}^{\dot{*}}}$. Therefore, $\overline{\mathrm{r}_{\hat{1}}}=$ $R_{1}^{*}-n_{1}$.

Case 2. H_{1} contains neither edge. Let H be the subgraph of G identical to H_{1} (except for the vertex v_{0}; which is isolated with re= spect to H_{1}). Then $n_{1}=n . \bar{H}_{1}^{*}$ contains $e_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ and $e_{2}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ so has the same rank as $\overline{H^{*}}$; i, e., $\overline{r_{1}^{*}}=\bar{r}^{*}$. Therefore, $\overline{r_{1}^{*}}=R_{1}^{*}-n_{1}$ 。

Case 3. H_{1} in G_{1} contains $e_{1}\left(v_{1} v_{o}\right)$ or $e_{2}\left(v_{o} v_{2}\right)$ but not both。 Let H be the corresponding subgraph of G such that H does not contain $e_{0}\left(v_{1} v_{2}\right)$. H will not contain the edge $e_{1}\left(v_{1} v_{0}\right)$ or $e_{2}\left(v_{0} v_{2}\right)$ and therefore will contain one less edge and one less vertex. The $p_{1}=p, v_{1}=$ $v+1$, and $e_{1}=e+1, \quad p_{1}=p$ and $v_{1}=v+1$ imply $r_{1}=r+1 . \quad r_{1}=$ $r+1$ and $e_{1}=e+1$ imply $n_{1}=n$. \bar{H}_{1}^{*} will contain either $e_{1}^{\star}\left(v_{1}^{*} v \underset{2}{*}\right)$ or e $\frac{\pi}{2}\left(v_{1}^{*} v_{2}^{*}\right)$ so will be in the same number of connected pieces as $\bar{H} *$ Since $\bar{v}_{1}^{*}=\bar{v}^{*}$ and $\bar{p}_{1}^{*}=\bar{p}^{*}$ then $\bar{r}_{1}^{*}=\bar{r}^{*}$. These equations give $\overline{r_{1}^{*}}=$ $\mathrm{R}_{\mathrm{I}}-\mathrm{n}_{1}$.

So if G has a dual, then a graph G_{1} formed from G by a subdivision has a dual.

Theorem. If G_{1} is a graph formed from a graph G by a subdivision of G and if G_{1} has a dual then G has a dual.

Consider a graph G, with G_{1} formed from G by a subdivision of the edge $e_{0}\left(v_{1} v_{2}\right)$. Again, this is essentially the division of a single edge $e_{0}\left(v_{1} v_{2}\right)$ into two edges $e_{1}\left(v_{1} v_{o}\right)$ and $e_{2}\left(v_{o} v_{2}\right)$. Since G_{1} has a dual G_{1}^{*} there are edges of G_{1}^{*} which correspond to $e_{1}\left(v_{1} v_{o}\right)$ and $e_{2}\left(v_{o} v_{2}\right)$ in the $(1,1)$ correspondence under which duality of G_{1} and G_{1}^{*} was established. Call them e_{1}^{*} and e_{2}^{2} 。

Lemma: e_{1}^{*} and e_{2}^{*} form a cycle of length 2 or are loops; that is, if e_{1}^{*} connects v_{1}^{*} and v_{2}^{*} in G_{1}^{*} then e_{2}^{*} also connects v_{1}^{*} and v_{2}^{*}.

To prove this lemma we will focus on that subgraph of G_{1}^{*} consisting of only the edges e_{1}^{*} and e_{2}^{*} (and all the vertices of G_{1}^{*}).

Consider the complement of $e_{o}\left(v_{1} v_{2}\right)$ in G. Call it H_{0}. . H_{o} is also a subgraph of G_{1}, the complement of $e_{1}\left(v_{1} v_{o}\right)$ and $e_{2}\left(v_{o} v_{2}\right)$. Actually, the complement in G and the complement in G_{1} differ in that one contains the isolated vertex v_{o} and the other does not. However, since this does not affect either the rank r_{0} or nullity n_{0} we may for purposes of this proof consider them to be the same. \bar{H}_{o}^{*} is that subgraph of G_{1}^{*} consisting of the edges e_{1}^{*} and e_{2}^{*} (and the vertices of G_{1}^{*}).

Case 1. Suppose $e_{0}\left(v_{1} v_{2}\right)$ is a loop, as illustrated in Figure 5.5. Since $e_{0}\left(v_{1} v_{2}\right)$ is a loop $r_{0}=R$. Further $R_{1}=R+1$ since $V_{1}=V+1$ and $P_{1}=P$. If G_{1}^{*} is a dual of G_{1} then G_{1} is a dual of G_{1}^{*}; therefore $r_{0}=R_{1}-\bar{n}_{0}^{*}$ and $R=R+1-\bar{n}_{0}^{*} \Rightarrow \bar{n}_{0}^{*}=1$ 。
Since $\overline{\mathrm{n}}_{\mathrm{o}}^{*}$ is the nullity of that graph consisting of the edges e_{1}^{*} and e_{2}^{*} (and isolated vertices) e_{1}^{*} and e_{2}^{*} form a cycle. Further, neither edge
is a loop since by a similar argument it can be shown that the nullity of a subgraph consisting of either e_{1}^{ω} or e_{2}^{*} (not both) is zero.

Figure 5.5

Case 2. $e_{0}\left(v_{1} v_{2}\right)$ is not a loop and $e_{0}\left(v_{1} v_{2}\right)$ is on a cycle, as illustrated in Figure 5.6. $r_{0}=R$ since e_{0} is in a cycle. Again $R_{1}=$ $R+1$. As noted before, H_{o} is a subgraph of G_{1} so $r_{o}=R_{1}-\bar{n}_{0}^{*}$.

$$
\mathrm{R}=\mathrm{R}+1-\overline{\mathrm{n}_{\mathrm{o}}^{*}} \Rightarrow \overline{\mathrm{n}}_{\mathrm{o}}^{*}=1
$$

Figure 5.6

Again we have shown that the nullity of the graph \bar{H}. formed by the edges e_{1}^{*} and e_{2}^{*} is one, and (neither edge being a loop, as before) therefore \bar{H}_{0}^{*} is a cycle. Hence, e_{1}^{*} and e_{2}^{*} connect che same vertices.

Case 3. $e_{o}\left(v_{1} v_{2}\right)$ is not a loop and e_{o} is not on a cycle, as illustrated in Figure 5.7. Let H_{o} be defined as before. Since $e_{0}\left(v_{1} v_{2}\right)$ is not on a cycle $p_{o}=P+1$ so $r_{0}=R-1$.
$r_{o}=R_{1}-\bar{n}_{o}^{*}$
$R-1=R+1-\bar{n}_{o}^{*} \Rightarrow \bar{n}_{o}^{*}=2$
Since \bar{n}_{0}^{*} is the nullity of the graph formed by the edges e_{1}^{*} and e_{2}^{*} we have shown that each edge is a loop.

Each loop is a non-separable component of a graph. The rank and nullity of a graph are the sums of the ranks and nullities of the components of the graph; but it does not matter which vertex two components have in common, if any. So in the dual graph G* it does not matter what vertex is both ends of the edge e_{2}^{α}; and we may take G_{1}^{*}
with e_{2}^{*} having the same vertex as $e_{1}^{*}{ }^{2}$

Figure 5.7

Therefore, we may write e ${ }_{1}^{*}\left(v_{1}^{*} v_{2}^{*}\right)$ and $e_{2}^{\star}\left(v_{1}^{*} v_{2}^{*}\right)$. (v_{1}^{*} and v_{2}^{*} are not necessarily distinct) Form a graph $G *$ from $G 1$ by dropping out the edge e_{2}^{*}. Let e_{1}^{*} in G^{*} correspond with e_{0} in G and the other edges of G and G^{*} be associated by the given (1,1) correspondence between G_{1} and G_{1}^{*}.

Let H be any subgraph of G and let H_{1} be the corresponding subgraph of G_{1}. Further if H contains the edge $e_{o}\left(v_{1} v_{2}\right)$ then let H_{1}
${ }^{2}$ Since the loop e* does not connect two vertices, its location in the graph does not affect rank or nullity. Moreover, it will be dropped out, so its location will have no effect on G^{*}.
contain both $e_{1}\left(v_{1} v_{0}\right)$ and $e_{2}\left(V_{o} v_{2}\right)$; otherwise H_{1} will contain neither edge. Then $R^{*}=R_{1}^{*}$ since G^{*} and G_{1}^{*} differ by only the edge e_{2}^{*}. Also $\overline{\mathrm{r}} *=\overline{\mathrm{r}}_{1}^{*}$ and $\mathrm{n}=\mathrm{n}_{1}$. Since $\overline{\mathrm{r}_{1}^{*}}=\mathrm{R}_{1}^{*}-\mathrm{n}_{1}$ then $\overline{\mathrm{r}^{*}}=\mathrm{R}^{*}-\mathrm{n}^{\text {. }}$. Therefore, G^{*} is a dual of G.

Two graphs are said to be home omorphic if by a finite sequence of subdivisions they become isomorphic. If G_{1} and G_{2} are isomorphic and G^{*} is a dual of G_{1} then $G *$ is a dual of G_{2}. By induction then, if G has a dual, every graph homeomorphic to G has a dual.

We shall show that neither of the graphs K_{5} or $\mathrm{K}_{3,3}$ has a dual.
Suppose K_{5} had a dual, call it K_{5} then:

$$
\begin{aligned}
& \rho\left(K_{5}\right)=R=N *=v\left(K_{5}^{*}\right)=4 \\
& v\left(K_{5}\right)=N=R *=\rho\left(K_{5}^{*}\right)=6 \\
& E=E *=10
\end{aligned}
$$

If K_{5} has isolated vertices, we drop them out; this does not affect the duality of K_{5}^{*}.

There are no loops, or cycles of length two or three in $\mathrm{K}_{5}{ }^{*}$. For if there were, dropping out the corresponding edges of K_{5} would reduce the rank of K_{5} but we cannot reduce its rank without dropping at least four edges.

K ${ }_{5}$ contains at least five cycles of length four, since if we drop out four edges at any one vertex, the rank of K_{5} is reduced while replacing any one of them restores $\rho\left(K_{5}\right)$ to its original value.

Since there are only ten edges in K_{5} at least two of these cycles must share an edge. There are only two ways to form a graph with two cycles of length four and sharing an edge, without cycles of length two or three. We argue as follows:

Suppose there are exactly three edges in common as in Figure 5.8
then the graph would contain a cycle of length two. In reference to the figures, the two cycles of length four are $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}$ $v_{1}^{\prime} v_{2}^{\prime}, v_{2}^{\prime} v_{3}^{\prime}, v_{3}^{\prime} v_{4}^{\prime}, v_{4}^{\prime} v_{1}^{\prime}$: Heavy lines indicate the edges which coincide.

Figure 5.8

Suppose there are exactly two edges in common. If the edges are non-adjacent, as in Figure 5.9 , then either $v_{3}=v_{3}^{\prime}$ and $v_{4}=v_{4}^{\prime}$ creating cycles of 1 ength two or $v_{3}=v_{4}$ and $v_{4}=v_{3}^{\prime}$ creating cycles of length three. If the edges are adjacent then three vertices coincide as in Figure 5.10. $v_{4} \neq v_{4}^{\prime}$, for otherwise there would be a cycle of length two. v_{4}^{\prime} does not coincide with the other three vertices on the graph because to do so would create a cycle of two or three. Choose v_{4}^{\prime} distinct from v_{1}, v_{2}, v_{3} and v_{4} to form a graph I官.

Figure 5.9

Figure 5.10

Suppose there is exactly one edge in common. Furthermore, at least one of the remaining vertices, say v_{4}^{\prime} does not coincide with v_{1}, v_{2}, v_{3} or v_{4} for otherwise there would be a cycle of length two or three. See Figure 5.11. If v_{3}^{\prime} coincides with v_{1} or v_{3} there is a cycle of length two. If v_{3}^{\prime} coincides with v_{2} or v_{4} there is a cycle of length three. If v_{3}^{\prime} is distinct, that, both v_{3}^{\prime} and v_{4}^{\prime} are distinct vertices, then the graph is $\mathrm{I}_{2}^{*} \cdot \mathrm{I}_{1}^{*}$ and I_{2}^{*} are shown in Figure 5.12.

Figure 5.11

Figure 5.12

There is no subgraph of the form I_{1}^{*} in K_{5}^{*} since this would imply there exists a subgraph of K_{5} of rank 2, and nullity 2. For, suppose there is some subgraph I_{1}^{*} of $K *_{5}$. Then since $K \underset{5}{*}$ is a dual of K_{5}

$$
\begin{aligned}
& \overline{\mathrm{r}} *=\mathrm{R} *-\mathrm{n} \\
& 4=6-\mathrm{n} \Rightarrow \mathrm{n}=2
\end{aligned}
$$

And since K_{5} is a dual of K_{5}

$$
\begin{aligned}
r & =R-\bar{n} * \\
r & =4-2 \Rightarrow r=2
\end{aligned}
$$

But such a subgraph contains a loop or two-cycle of which there are none in K_{5}^{3}. So K_{5}^{*} must contain a subgraph I_{2}^{*}. (Figure 5.13). Since

[^2]
or
Any attempt to create two cycles in either without changing the rank will clearly produce a loop or a cycle of length two.
K_{5} contains no loops or two-cycles, each vertex of K_{5}^{*} is on at least three edges. The vertices $v_{1}, v_{3}, v_{4}, v_{6}$ are on only two edges, so there must be at least one more edge at each of these vertices.

Figure 5.13
K_{5}^{*} contains ten edges; I_{2}^{*} contains sever; so we must connect two of these vertices.

If we connect v_{1} and v_{6} (or v_{3} and v_{4}) then the resulting graph contains a two-cycle. If we connect v_{1} and v_{3} (or v_{4} and v_{6}) the resulting graph contains a three-cycle. If we connect v_{1} and v_{4} (or v_{3} and v_{6}) the resulting graph contains I_{1}. Since K_{5}^{*} contains none of these subgraphs, K_{5} is not a dual of K_{5}.

Consider the graph $\mathrm{K}_{3,3}$. Suppose it has a dual $\mathrm{K}_{3,3}$ then:

$$
\begin{aligned}
& \rho\left(K_{3}, 3\right)=R=5=N^{*}=v\left(K_{3}^{*}, 3\right) \\
& v\left(K_{3,3}\right)=N=4=R^{*}=\rho\left(K_{3,3}^{*}\right) \\
& E=E^{*}=9
\end{aligned}
$$

$K_{3}^{*}, 3$ contains no loops or two-cycles. For if there were, dropping
out corresponding edges of $\mathrm{K}_{3,3}$ would reduce its rank, but we cannot reduce the rank of $\mathrm{K}_{3,3}$ without dropping out at least three edges. Since we can reduce the rank of $\mathrm{K}_{3,3}$ by dropping three edges in six possible ways, $\mathrm{K}_{3}{ }_{3}, 3$ contains six cycles of length three.
$\mathrm{K}_{3,3}$ contains nine distinct cycles of length four. There are $\binom{3}{2}$ distinct pairs of vertices in each set of three vertices, so there are nine ways of building a cycle of length four. Let. H_{i} for $\mathbf{i}=1$, $2, \ldots, 9$ be some numbering of these subgraphs. Each has $r=3, n=1$ so there are at least nine subgraphs \bar{H}_{1} in $K_{3}^{*}, 3$ such that

$$
\begin{aligned}
& \overline{\mathrm{r}} *=\mathrm{R} *-\mathrm{n} \\
& \overline{\mathrm{r}} *=4-1=3
\end{aligned}
$$

and $r=R-\bar{n} *$

$$
3=5-\overline{\mathrm{n}} * \Rightarrow \overline{\mathrm{n}} *=2
$$

A subgraph \bar{H}_{i}^{*} of $\mathrm{K}_{3}^{*}, 3$ of rank three and nullity two and containing no loops or two-cycles must have the form shown in Figure 5.14 (see footnote page 58), for: If we build up a graph satisfying the above conditions, adding necessary vertices and edges then the vertex v_{3}^{*} must be distance from v_{1}^{*} or v_{2}^{*}. If it were otherwise, the graph would contain a cycle of length one or two. Similarly, the vertex $v_{4}^{\text {空 must }}$ also be distinct from v_{1}^{*}, v_{2}^{*} or v_{3}^{*} for otherwise the graph would contain a cycle of length one or two. If we try to build up a graph of rank three in two or more pieces (except isolated vertices), it can contain at most one cycle whose length is not one or two.

Figure 5.14
$K_{3}^{*}, 3$ does not contain a subgraph of the form shown in Figure 5.15. A complete graph of four vertices has rank three and nullity three. If such a subgraph were contained in $\mathrm{K}_{3,3}^{*}$ then $\mathrm{K}_{3,3}$ would contain a subgraph of rank two and nullity one: that is, a two cycle, since $\mathrm{K}_{3,3}$ contains no cycles of uneven length.

Figure 5.15

Since there are nine subgraphs such as shown in Figure 5.14 and since $\mathrm{K}_{3}^{*}, 3$ contains nine edges, at least two of these subgraphs must share an edge.

A third cycle of length three may share an "outside" edge as in the graph I_{1}^{*}, Figure 5.16 , or may share the "inside" edge as in the graph I_{2}^{*}. It cannot share two edges without forming a subgraph of the form shown in Figure 5.15.

Figure 5.16

Since there are no one, two, or three-cycles in $K_{3,3}$, each vertex of $\mathrm{K}_{3}^{*}, 3$ is on at least four edges. I_{1}^{*} and I_{2}^{*} each contain seven edges. We have two edges to place in such a way that every vertex of I* or I_{2}^{*} is on at least four edges. Since this cannot be done, $K_{3}^{*}, 3$ is not a dual of $\mathrm{K}_{3,3}$.

Therefore, neither of the graphs K_{5} or $\mathrm{K}_{3,3}$ has a dual.

A SELECTED BIBLIOGRAPHY

1. Berge, Claude. The Theory of Graphs. (translated by Alison Doig) New York: John Wiley and Sons, 1964.
2. Gardner, Martin. "Combinatorial Problems Involving Tree Graphs and Forests of Trees." Scientific American, (February, 1968) pp. 118-123.
3. Gardner, Martin. "How to Solve Puzzles by Graphing the Rebounds of a Ball." Scientific American, (September, 1963) pp. 248-265.
4. Gardner, Martin. "Various Problems Based on Planar Graphs" Scientific American, (April, 1964) pp. 126-135.
5. Harary, Frank. A Seminar on Graph Theory. Holt, Rinehart and Winston. $1 \overline{9} 6 \overline{7}$ 。
6. Ore, Oystein. Graphs and Their Uses. Random House. 1963.
7. Whitney, Hassler. "Non-Separable and Planar Graphs." Transactions of the American Mathematical Society, 1932, pp. 339-362.

VITA
Richard Garland Seavey
Candidate for the Degree of
Master of Science

Report: DUALITY AND PLANAR GRAPHS
Major Field: Mathematics and Statistics
Biographical:
Personal Data: Born in Minneapolis, Minnesota, April 29, 1936, the son of Mr. and Mrs. Harold H. Seavey.

Education: Graduated from North High School, Minneapolis, Minnesota in June 1954; attended University of Minnesota from 1956-1960; received a Bachelor of Science degree from University of Minnesota (School of Education), with a major in mathematics, in June 1960; attended University of Minnesota during 1961 and 1962; attended Oklahoma State University under grant from the National Science Foundation in 1964 and 1965.

Professional Experience: Teaching assistant, University of Minnesota 1961 and 1962; Mathematics teacher, Independent School District 191, Burnsville, Minnesota 1962 through 1964, 1965 through 1968, Department chairman, Metcalf Junior High, from 1966.

[^0]: ${ }^{1}$ Current usage designates Γ as a binary relation on the set X.

[^1]: ${ }^{1}$ The point has been made by Professor Gibson that this may require a transformation in a space of higher dimension such as 4-Space.

[^2]: ${ }^{3}$ We may quickly analyse a simple graph given the rank and nullity if we recall that the rank was shown to be the number of edges in a minimal spanning subgraph, and the nullity was discussed as a measure of redundancy of edges of a graph to a minimal spanning subgraph.

 For example, if the rank of a graph G is two, there is a subgraph H of G containing two edges, such that if two vertices are joined by a chain in G they are joined by a chain in H. Excluding isolated vertices, H will be either of the graphs shown below:

