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THE SELF-ASSOCIATION OF TRIFLUOROACETIC ACID 

IN ORGANIC SOLVENTS

CHAPTER I 

INTRODUCTION

The association of carboxylic acids by means of hydrogen bonding 

is a subject of long standing interest. The lower molecular weight 

aliphatic acids have been extensively studied in the vapor phase. 

Equilibrium constants, enthalpy and entropy terms have been evaluated 

by classical physical chemistry and spectoscopic methods. In general 

it has been found that in the vapor phase, A H  = - 14 t 1 kcal/mole- 

dimer and A S  = - 35 t 3 e.u./mole-dimer (based on standard states of 

one atmosphere) for the association reaction, regardless of carbon- 

chain length, extent of chain branching or degree of halogen substi­

tution. Equilibrium constants do not show pronounced variation for 

saturated aliphatic acids but do exhibit a marked decrease when elec­

tronegative substituents are present or in the case of formic acid 

with only a single hydrogen adjacent to the carbonyl group.^

Electron diffraction and infrared spectral studies indicate 

that the vapor phase dimer is a cyclic, centro-symmetric structure.

Both cyclic dimer structures, as in benzoic acid,^ and linear chain 

, structures, as in acetic acid,^ have been found in the solid state by 

x-ray diffraction studies.

-1-
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In the pure liquid phase and in solutions the nature of the 

structure of the associated species is not definitely established.

It is, however, generally accepted that in dilute non-polar solution 

the cyclic dimer is the complex of primary importance, if not the 

only associated s p e c i e s . B o t h  open dimers and chain polymers have 

been postulated as major species based on the interpretation of IR
Q y

and NMR spectra. ’ Recent low frequency Raman spectral work indicates

that acetic acid is primarily (greater than 85%) in the form of cyclic

dimers in the pure liquid and exclusively cyclic dimer in concentrated
q

solution in pentane.

A wide variety of acids, primarily halogen substituted acetic 

and benzoic acids, have been studied in solution and a considerable 

amount of data, both qualitative and quantitative, have been collected. 

However, there is rarely good agreement among thermodynamic data, 

especially equilibrium constants, reported by different investigators 

for the same system even using the same general experimental approach. 

Also, the influence of solvent character on the thermodynamics of an 

association reaction has seldom been studied systematically. The need 

for accurate and systematic studies of hydrogen bonding behaviour
3

pointed out by Pimentel and McClellan in 1960 still exists.

The hydrogen bonding properties of trifluoroacetic acid (TFA) 

have been of interest for several years. Because of the strong induc­

tive effect of the trifluoromethyl group, TFA is a strong acid: pKa

of TFA is approximately 0.3 compared to pK^ = 4.76 for acetic acid,^^ 

the parent compound. The electron withdrawing power of the perfluoro- 

methyl group is also vividly shown in the carbonyl spectra: the
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monomeric carbonyl stretching mode in the vapor phase is found at 

1830 cm  ̂in T FA,while it is at 1791 cm  ̂in acetic acid.^^ This 

frequency is among the highest known for carbonyl groups. On the basis 

of acid strength the TFA hydroxyl group would be expected to be quite 

polar and capable of strong interactions with even weak bases. TFA has 

been extensively studied in the vapor phase but little is known of its 

association thermodynamics in non-polar solution.

Thermodynamic functions for the self-association of TFA in the 

vapor phase, determined by several experimental methods, are given in 

the table below. Enthalpy and entropy values are, with one exception, 

j^298°K  ̂min-l -AH, kcal/mole -AS, e.u./mole Method Ref.

0.32 14.0 V.D. 13

0.27 14.05 t .1 36.5 PVT 14

13.7 Î .4 IR(OH) 15

0.30 14.0 36.2 VD, PVT 16

17.7 41.6 t .3 IR(CO) 17

in the ranges - 14 t 1 kcal/mole and - 35 t 3 e.u./mole obtained for a

wide variety of other carboxylic acids.

Hetero-association reactions in the vapor phase between TFA and 

various oxygen bases have been studied by Ling, utilizing vapor density 

and PVT measurements. With acetic acid (HAc), the hetero-dimer TFA-HAc 

was found to form preferentially, as expected, with A R  and AS for the 

formation reaction being - 17.4 t .6 kcal/mole and - 53.8 t 2 e.u./mole, 

respectively.^^ By comparison with hydrogen bonding enthalpies for other 

carboxylic acids it was concluded that the bond between the TFA hydroxyl 

group and the acetic acid carbonyl has approximately a - 1 1 kcal enthalpy
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of formation. Equilibrium constants for the interaction of TFA with
1 Q

water and with 1,4-dioxane were obtained at only one temperature.

The water system was best described by a 1:2 acid-water complex; a 1:1 

complex was found with dioxane. Hetero-association reactions between 

TEA and acetone and TEA and cyclopentanone were studied over a range of 

temperature by a vapor density m e t h o d . T h e  hydrogen bond enthalpies 

determined for these complexes ( - 14.4 t 1 kcal/mole for TEA-acetone 

and - 11.7 t 1 kcal/mole for TEA-cyclopentanone) are among the highest 

known for the — 0 — H--— 0=  hydrogen bond.

A rather interesting microwave spectral study of the formation of 

carboxylic acid hetero-dimers was reported by Costain and Srivastava.^® 

They observed the pure rotational spectra for vapor mixtures of TEA 

with formic, acetic, and monofluoroacetic acids. Spectra attributed to 

TEA-formic and TEA-acetic acid hetero-dimers were observed. Oxygen- 

oxygen bond distances in these complexes were found to be 2.69 t .02 

and 2.67 t .02 A, respectively. The enthalpy of formation of the TEA- 

formic acid complex, determined from the temperature dependence of the 

J = 16f-15 line, was reported as - 15.9 t 1.5 kcal/mole. The bond 

involving the TFA hydroxyl group is again probably several kcals stronger 

than the bond involving the TEA carbonyl.

There are only a few reports in the literature giving thermo­

dynamic information about the association of TEA in non-polar solvents. 

Kagarise studied the infrared spectra of various halogen substituted 

acetic acids in carbon tetrachloride solution and reported an associa­

tion enthalpy of - 8.85 kcal/mole-dimer for T E A . T h i s  value was 

determined from the temperature dependence of the monomer and dimer
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hydroxyl stretching bands. No systematic dependence of the association 

enthalpy upon extent of halogen substitution was found. Equilibrium 

constants were not reported.

Neparko^^ determined activities and partial pressures of the TFA- 

carbon tetrachloride system using a total pressure and vapor density 

method. Vapor phase association of TFA was accounted for. TFA was 

assumed to be completely dimerized in solution at concentrations above

0.1 mole fraction. The system was found to exhibit positive deviation 

from ideality. Pereira^^ studied heat of mixing for the binary system 

TFA-and HAc-carbon tetrachloride and for some concentration lines in 

the ternary system TFA-HAc-carbon tetrachloride. The maximum value of 

the heat of mixing was found to be more endothermie for the TFA system 

than for the HAc system. Heat effects in the ternary system were found 

to be strongly exothermic. It was inferred that the hetero-dimer, 

TFA-HAc, formed preferentially to either of the homo-dimers.

A classical vapor pressure method was used by Taha to study the

association of a variety of compounds, including TFA, in the non-
21volatile solvent diphenylmethane. The association constant was

reported to be 4.0 1/m at 30°C; -AH for the reaction was 9.0 t 2 kcal/

mole-dimer. Recent unpublished work indicates that this value may be

too high. The interaction of TFA with the non-volatile solute benzo-

phenone was also studied. The data were interpreted in terms of

formation of a 1:1 and a 2:1 TFA-benzophenone complex. Equilibrium
2

constants for the complexes were found to be 40 1/m and 275 (1/m) , 

respectively, at 30°C. Similar complex stoichiometries were reported 

for the interaction of water with TFA in carbon tetrachloride solution
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21by Josien, et al. These results were based on the IR spectra of the 

free and bonded water species and on the carbonyl spectra of TFA.

From a dielectric constant study of TFA in cyclohexane, Thyrion 

and Decroocq reported a dimerization constant of 320 1/m at 25°C.^^

In order to obtain equilibrium constants for the association of 

TFA in a variety of non-polar solvents a new experimental technique, 

termed the vapor-solution method, has been developed. The vapor- 

solution method is strictly analogous to 'classical' vapor pressure 

methods where the vapor pressure of a volatile solute is measured 

manometrically as a function of its concentration in a suitable solvent. 

In such studies suitable implies non-volatile— for solvents with 

appreciable vapor pressure the problem of determining the vapor pres­

sure of an association solute becomes quite unwieldy. The number of 

common non-volatile non-polar solvents is, however, rather limited. By 

utilizing a non-manometric means of measuring the pressure, the restric­

tion of solvent volatility is removed. This method involves measuring 

the pressure of TFA indirectly by the vapor phase IR absorption of the 

monomeric hydroxyl stretching band.

A somewhat similar method was used by Denyer, et al.,^^ in study­

ing complex formation between various amines and phenols. Their method 

involved the partitioning of a volatile solute (amine) between the vapor 

phase and a volatile solvent containing a non-volatile solute (phenol). 

They analyzed the vapor phase condensate obtained by sweeping the system 

with dry nitrogen. This involved a rather complex experimental set-up 

requiring flow-rate calibration"and wet-chemical analysis of the 

condensate. In comparison, the vapor solution method developed here
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requires a relatively simple experimental apparatus with the direct

measurement of the spectra of the volatile solute over the solution

providing a much simpler means of analysis.

The effect of solvent properties on the association thermodynamics
25of carboxylic acids is well illustrated in a paper by Allen, et al.

They studied the association of benzoic acid in the vapor phase and in 

dilute cyclohexane, carbon tetrachloride, and benzene solutions. 

Association constants in solution were determined as a function of 

temperature by means of the carbonyl IR absorption of the free and 

bonded species. A summary of their results is given below. The thermo­

dynamic functions given all decrease markedly in the order of increasing 

solvent K2 , 1/m -AH, kcal/mole -AS, e.u./mole

vapor 16.2

cyclohexane 7500 12.8 24.4

carbon tetra- 3660 11.0 21.2
chloride

benzene 462 7.6 12.8

solvent interaction capability, i.e. cyclohexane < carbon tetrachloride < 

benzene. Allen, et al., discussed these results qualitatively in terms 

of solvation effects. Since both the monomer and dimer of benzoic acid 

will be solvated in solution, the experimentally determined enthalpy and 

entropy changes will contain contributions arising from the difference in 

extent of solvation. This is expressed by the equations

A H =  AH^ggQj,!^ ^^olv'n 

A s  = ^assoc'È ^^solv'n
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The association terms are negative, whereas the solvation terms are 

positive, since the monomer is more extensively solvated than the dimer. 

The solvation terms are evidently smaller than the association terms 

since the experimental terms are negative. However, the solvation terms 

will increase in magnitude as the solvating power of the solvent in­

creases, because of increased solvation of the monomer relative to the 

dimer, leading to the observed decrease in the experimental values.

While this discussion of solvation effects is qualitatively correct, 

Allen, et al., made no attempt quantitatively to corr.ilate the observed 

effects with solvent properties.

Christian,et al., have developed a method for quantitatively 

predicting the effects of solvation on the thermodynamics of hydrogen 

bonding association equilibria from a minimum amount of experimental 

data. Briefly, the method is based on the assumption

(1

where Af?d is the change in free energy of the associated complex AB 
l->2^

upon transfer from medium 1 to 2 , and ApO and Ap° are the corres- 

ponding free energy changes for the monomers A and B. c< is a para­

meter representing the fraction of free energy of solvation of the 

monomers that is retained in the associated complex. is presumably 

less than unity and not strongly temperature or solvent dependent. The 

relationships 2 and 3

^AB _ , - 1 (2
(^,A ^,B^

A h°-AH° = (<X-1) ( AH° + A Eg ) (3
1 ->2 l- » 2
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are obtained from equation 1 by application of the thermodynamic 

relationships AF° = -RTlnK and = Ah. and K.|g are the

equilibrium constants for the association reaction A + B = A5 in two 

different media and ^  ^ and ^ are the monomer distribution con­

stants: the AH's in equation 3 are the corresponding enthalpy changes.

In order to compare vapor phase data directly with solution data, 

standard states of one mole/liter are used throughout.

This method has been used successfully in treating pyridine- 

water^^ and triethylamine-water^® association data in several non-polar 

solvents. The TFA association data obtained in this research will be 

used to provide a further test of the method. Also a simple lattice 

theory of solutions will be used to provide an a priori means of obtain­

ing the parameter oA.



CHAPTER II

OBJECTIVES

The objectives of this research were;

1. To develop a method for obtaining equilibrium constants for the 

association of TFA in a variety of non-polar organic solvents.

2. To obtain as completely as possible the thermodynamic parameters 

describing the association of TFA in these solvents.

3. To examine the effect of solvation on the association of TFA in

terms of the method of predicting solvation effects proposed by 
26Christian, et al.

4. To develop an a priori means of calculating the parameter c< 

involved in the theory of solvation of Christian and co-workers.

-10“



CHAPTER III

EXPERIMENTAL

Chemicals

Trifluoroacetic acid, Matheson, Coleman and Bell Co. reagent grade, 

was distilled through a 30 plate Oldershaw column at a reflux ratio of 

10:1. The middle portion of distillate (boiling point 72.0°C corrected 

to 760mm) was used. Distilled TFA was stored in a desiccator over cal­

cium sulfate until needed.

Eastman Spectrograde carbon tetrachloride and benzene were used 

as received except for removal of water. Cyclohexane and 1,2-dichloro- 

ethane were distilled through a 30 plate Oldershaw column at a 10:1 

ratio. Solvents were dried by storing them in vapor contact with PgO^ 

or CaSO^.

Instrumentation

A Beckman DK-la spectrophotometer was used in making measurements 

in the 2.8 - 3.4 micron region. The instrument is a direct recording, 

double-beam quartz prism spectrometer with a lead sulfide detector and 

automatic slit-width control. A germanium stray-light filter, having 

a 1.8 micron cut-off, was used at all times- All measurements were 

recorded directly in absorbance units.

Beckman near-infrared silica spectrophotometer cells were used.

For vapor measurements cell path lengths were 10.0 cm; for dilute

-11-
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solution work, 5.0 cm. A variable path-length cell with near-IR silica 

windows manufactured by Research and Industrial Instruments Co., London, 

England, was used to obtain qualitative spectra in concentrated solutions.

A water cooled cell holder was used in conjunction with a Haake 

Series F constant temperature bath for temperature control. This unit 

contains a circulating pump, mercury thermo-regulator, and high and low 

wattage heaters. A separate refrigeration unit provided cold water for 

cooling. With a coolant volume of approximately 1.5 liters, tempera­

ture changes of about 10°C could be achieved in roughly 10 minutes. Two 

thermometers were placed in the coolant flow stream, one before and one 

after the cell holder, to monitor temperature. Temperature control was 

better than t 0.2°C.

A Perkin-Elmer 12C Model spectrophotometer, a single-beam instru­

ment equipped with a CaFg prism, was used in measuring the TFA carbonyl 

absorption spectra in the 1800 cm”  ̂region. In order to study the car­

bonyl spectra as a function of temperature a Beckman VLT-2 variable 

temperature infrared cell having silver chloride windows was used. A 

cell path length of approximately 1 .0mm was used in the carbon tetra­

chloride system; in cyclohexane and 1 ,2 -dichloroethane a path length 

of 0.2mm was chosen. The cam number-frequency calibration chart was 

kindly furnished by Mr. E. E. Tucker. Frequency accuracy is about 

t 3 cm” .̂ Temperature measurement was made by a Yellow Springs Instru­

ment Co. Model 4250 Tele-Thermometer. The thermistor probe was imbedded 

in one of the cell windows. These temperature measurements are believed 

to be accurate to within ̂  0.5°C.
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Auxiliary Apparatus

Several pieces of equipment were used in the vapor phase and 

vapor-solution work. The device shown schematically in Figure 1 was 

used to dry and transfer TFA and could be connected to either the 

vapor or vapor-solution apparatus.

The vapor apparatus, shown schematically in Figure 2, is a 

modification of the single bulb vapor pressure apparatus developed by 

Christian,et al. The only real modification is its adaptation for 

use in obtaining spectra as a function of pressure.

Figure 3 depicts the vapor-solution 'apparatus'. This is simply 

a device designed for forming dry TFA solutions. Its application will 

be further discussed in the procedure section.

Experimental Procedures 

Dilute Carbon Tetrachloride Solution Study

Solutions were made up gravimetrically; aliquots of a dried TFA- 

carbon tetrachloride stock solution were added to weighed volumes of 

dry carbon tetrachloride in the five centimeter spectrophotometer cells. 

Drying was accomplished using the equilibrator caps developed by 

Christian,et al., containing either PgOg or CaSO^. The cells were 

then stoppered and sealed with either Py-seal or polyethylene. Formal 

concentration of TFA was determined by titration of the stock solution 

with standard base.

Base-line absorptions of the solution cells were determined 

before adding the TFA solution by scanning against a reference cell
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containing dry carbon tetrachloride. The DK-1 was standardized at the 

peak wavelength of the free OH stretching band, 2.847 micron. The 

mechanical slit-width was 0.12-0.13 mm over the peak.

Spectra of the TFA solutions were recorded after thermal equilib­

rium had been reached. This process was judged complete when a constant 

value of the hydroxyl peak absorbance was obtained. The Tree hydroxyl 

peak was then scanned three or four times and an average value of the 

peak absorbance was used.

Vapor Phase System

The TFA reservoir. Figure 1, containing TFA over CaSO^ was con­

nected to the single bulb apparatus. Figure 2, through a mercury-sealed 

ball joint.

Standardization of the D K - 1  was carried out at the free hydroxyl 

peak wavelength of 2.788 micron with the sample cell evacuated and the 

reference cell containing dry air. With the slit adjusted to 0.11 mm 

at 2.820 micron, a convienent checkpoint, a slit-width of 0.12 - 0.13 mm 

was obtained over the monomer peak. Base-line spectra were then recorded.

TFA in the reservoir was degassed by several cycles of freezing- 

thawing in the evacuated system. A small quantity, approximately 0.5 

ml, of TFA was then frozen out into the second reservoir bulb. The 

system was then flushed several times with TFA vapor and re-evacuated.

Small increments of TFA vapor were admitted to the system from 

the reservoir. After each increment the pressure was measured mano­

metrically and the spectra recorded. The peak absorbances recorded are 

an average of four scans. Measurements were made up to a total pressure
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of 60 mm. Increments of TFA were then pumped from the system, each 

followed by pressure and absorbance measurements, until near zero 

pressure was obtained. About ten minutes between addition or removal 

of TFA samples was required for equilibrium to be established, as 

judged by cessation of drift in the peak absorbance reading. The 

spectrophotometer cell proper was thermostated at 25.0 t 0.2°C. Room 

temperature, ie., the temperature of the half-liter bulb, was 25.0 

t 0.5°C.
Vapor-Solution Method 

Base-line spectra were recorded with the vapor cell evacuated, 

as previously described and under the same instrument operating con­

ditions. The TFA reservoir was then connected to the cell, again through 

a mercury-sealed ball joint. After degassing of TFA in the reservoir, 

a small quantity--approximately 0 . 0 0 2  - 0 . 0 1  grams, or a sufficient quant­

ity to give an initial monomer absorbance of 0.2 to 0.7 depending upon 

the solvent used— of TFA was frozen out into the cell. The cell was then 

disconnected from the reservoir and placed in the spectrophotometer.

After thermal equilibrium had been reached the monomer absorption peak 

was scanned six times and the average reading recorded. This value was 

used in calculating the initial formal pressure of TFA in the system.

A 0.2 ml micro-buret, manufactured by Roger Gilmont Industries (no. S- 

1 2 0 0a), was used to add small increments of dry solvent to the system 

through the mercury-sealed sintered-glass disc. After each addition a 

period of 10-15 minutes was allowed for equilibrium to be attained.

The free hydroxyl peak of the vapor phase TFA was then scanned and an
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average of four readings taken. Solvent was added up to a maximun 

volume of 4 or 5 ml. Temperature control was the same as described 

in the vapor phase system section.

Carbonyl Spectra Measurements 

In order to remove interfering water vapor absorption bands, the 

12C was flushed with dry air from a Puregas Manufacturing Co. Heatless 

Dryer purging unit. The cell container (vacuum jacket) and cell were 

oriented to obtain maximum transmission. Dry solvent base-lines were 

set to 90-957oT. The base-lines exhibited negligible change at the 

extremes of the temperature ranges used. At temperatures below ambient, 

temperature control was maintained by balancing the electrical input to 

the cell heater (50 watt maximum), adjusted with a variable transformer 

against the ice-bath heat-sink. The vacuum jacket salt windows were 

also heated to prevent fogging. Temperatures above ambient were main­

tained with the cell heater alone. A period of five to ten minutes was 

allowed for equilibrium to be re-established after changing temperature.

A slow scanning speed, 25 seconds/10 cm was used with high pen 

response suppression. At the gain setting used this provided a low- 

noise spectra. The mechanical slit-width was 0.180 - 0.190 mm over the 

carbonyl doublet.

The spectra, recorded in %T units, were converted to absorbance 

units point-by-point.
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CHAPTER IV

CALCULATIONS AND RESULTS 

Dilute Carbon Tetrachloride Solution

In order to have a means of comparing results obtained from the 

vapor-solution method, the association of TFA in dilute carbon tetra­

chloride solution at several temperatures was first studied using a

conventional infrared method. Data treatment is similar to that of 
31Harris and Hobbs.

If only dimerization occurs, the association reaction may be 

written 2TFA = (TFA) 2 and is governed by the equilibrium constant

(1

where Cg and Cjj are the dimer and monomer concentrations. It is 

assumed that the individual species concentrations are sufficiently 

low so that activities may be replaced by concentrations; that is, it 

is assumed that each species obeys Henry's law. The formal concen­

tration, an observable, is given by

fA=Cj,+ 2CB (2

or, substituting from the equilibrium expression

- C» + ZKzSi P

Assuming that the free hydroxyl-stretching band at 2.848 micron is a

-20-
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function of monomer concentration only, and that Beer's law is obeyed, 

the equation

Ajj = (4

is obtained. A^ is the peak absorbance, 6 )̂ the peak absorptivity and 

b is the cell path length. Combining equations 3 and 4 gives the 

equation

(5

or the linear equation

^A 1 2K2
(6

4 i ^

If the assumptions made in obtaining equation 6 are valid, then 

a plot of vs. A^ should be linear; the dimerization constant and

monomer hydroxyl absorptivity may be evaluated from the slope and inter­

cept. Positive curvature in this type plot would result if associated 

species other than the cyclic dimer were formed in significant concen­

trations .

Data for this dilute solution investigation, over a concentration 

range of approximately 1.6(10 "^) to 1.7(10"^) molal, at 15, 25, and 

40°C are given in Table 1. Figure 4 is the ratio plot, vs. A^

of the data. While there is some scatter in the data, a not uncommon 

occurance in spectrophotometric studies, there is no trend indicating 

positive curvature. The apparent linearity of the data supports the 

initial assumptions. Equilibrium constants and monomer hydroxyl peak 

absorptivities given in Table 2 were obtained by least squares analysis 

of the data at each temperature. The RMSD— defined as the square root 

of the sum of deviations, calculated minus observed, squared, divided by



T = 288°K T = 298°K T = 313°K

AM V * M  » *M f^/A„ X 103 Am
3.62 molal .338 1.071 .363 .998 .371 .976
1.64 .165 .994 . 168 .976 .170 .965

11.95 .880 1.358 .982 1.217 1.088 1.098
6.49 .544 1.193 .593 1.094 .625 1.039
7.18 .587 1.223 .634 1.132 .683 .1.051

11.74 . 8 6 6 1.357 .973 1.206 1.071 1.096
13.83 .971 1.424 1.082 1.278 1.480 1.173
15.38 1.036 1.484 1.173 1.311
17.36 1.150 1.510 1.303 1.332 --- -  -

7.34 .590 1.244 .649 1.131 .695 1.056

Dilute TFA-CCI4 Solution Data

r ohOj

Table 1
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Table 2

Results of Dilute TFA-CCl^ Solution Study

-1T°K

288

298

313

K2 , M 

205 f 8 

128 i 7 

58 ± 4

138 i 2

139 i 2 

137 ± 2

A h  = -9.0 i .4 kcal/mole 

As° = -2 0 . 6 + 1.4 e.u./mole

log K_

2.3

2.1

1.9

3.1 3.2 3.3 3.4 

3

3.5

X 10

Figure 5. log ^ 2  vs. 1/T Plot for Dilute TFA-CCl^ Solution 
Dimerization Constants.
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the number of data points less the number of parameters— of each fit is 

somewhat better than the expected maximum uncertainty of approximately 3% 

fĵ /Ay[. Uncertainties given for derived quantities are standard errors 

obtained from the least squares treatment. While molal concentration 

units were used for convienience in the experimental work the thermo­

dynamic parameters are based on molar units for later correlations. The 

enthalpy change for the association reaction was found to be - 9.0 t .4 

kcal/mole from the log K£ vs. 1/T plot. Figure 5. This is in good 

agreement with the value - 8.85 kcal/mole found by Kagarise.^^

Vapor Phase System

The vapor-solution method requires knowing the vapor phase absorp­

tivity, e^, of the free hydroxyl peak and the vapor phase association 

constant K^. is available from several sources. Both and 

may be determined through the following considerations. The equilibrium 

constant for the vapor phase association reaction 2TFA = (TFA) 2 is

KÏ - (7

where pg and p^ are dimer and monomer partial pressures. Total pres­

sure of the system is

Pi = ? M +  PD (8

or

^T = + (9

Again, assuming that the monomer hydroxyl stretching peak is a function 

of monomer pressure only and that Beer’s law is obeyed, the equation

4% = ( 1 0
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is obtained. Combining equations 9 and 10 gives the equation

Pt = __ ^  + 2 ^  (II

or, in linear form

’’l = b + ^ 2  4  ( 1 2
«Jb ( € ÿ ) 2

Thus, by following monomer absorbance as a function of total TFA pres­

sure the vapor phase absorptivity and association constant may be 

obtained.

Data for the vapor phase association of TFA at 25.0°C up to approx­

imately 50 mm total pressure are given in Table 3. The data are plotted 

in the form ^T/A^ vs. A^ in Figure 6 . Again there is some scatter but 

the plot appears linear within experimental error. Least squares fitting 

of the data in this form gave an equilibrium constant of 0.30 t .02 mm 

in good agreement with the value 0.30 mm  ̂obtained by Chii Ling.^^ 

Evaluation of the vapor phase monomer absorptivity was the main objective 

of this experiment. This quantity was found to be (7.73 t .30)xl0  ̂cm  ̂

mm"^, or, in more familiar units, 143 t 5 cm  ̂1/m. It is interesting to 

note that there is little change in the monomer absorptivity on going 

from dilute carbon tetrachloride solution to the vapor phase.

Vapor-Solution Method

Calculations involved in the vapor-solution method are formally 

quite similar to those required in usual methods for inferring associa­

tion constants from solution spectral data. In the vapor-solution method, 

the solution concentration of TFA is calculated from the decrease in
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Table 3

TFA Vapor Phase Syccem Data 

T = 298°K

Am Pt Pt/4

.188 4.2 22.4

.291 8.3 28.5

.409 14.3 35.0

.522 2 1 . 1 40.4

.633 29.5 45.6

.735 37.8 51.4

.808 44.5 55.5

.880 51.1 58.1

.845 48.4 57.2

.742 38.6 52.0

.676 33.0 48.8

.584 25.2 43.2

.502 19.6 39.0

.439 15.6 35.5

.377 12.3 32.6

.307 8.9 29.0

.257 6 . 8 26.4

.204 4.8 23.5

.132 2 . 6 19.7

.085 1.5 17.6

,091 1.5 16.5
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Table 3 (Continued)

.V
Pt Pt/4

.152 3.0 19.7

.195 4.3 2 2 . 0

.251 6.9 26.4

.319 9.3 31.2

.369 11.5 31.2

.413 13.8 33.4

.475 17.5 36.8

.530 20.9 39.4

.576 24.1 41.6

.638 28.6 44.8

.695 31.9 45.9

.753 37.5 49.8

.798 41.9 52.6

.842 46.1 54.7

.911 52.5 57.6
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Figure 6 . Ratio Plot, p % / v s .  A^, of Vapor Phase TFA Data.
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formal pressure of IFA in the vapor phase after addition of each incre­

ment of solvent. Formal pressure is analogous to formal or analytical

concentration used in solution studies and is given the symbol 77” • Thus, 

initially, with no solvent present the formal pressure o: TFA is

Tfo = Pm + 2Po (13

From the equilibrium expression, equation 7, the formal pressure may be 

written in terms of monomer pressure

iTo = Pm  + Pm  (14

Monomer pressure is calculated from the vapor phase Beer's law expres­

sion, equation 10. When solvent is added to the system an amount of 

TFA dissolves. Monomer concentration in solution is then related to 

monomer pressure in the vapor phase by Henry's law

Pm  - Kg Cm  (15

where Kg is the Henry's law constant. The decrease in TFA formal pres­

sure r̂fiich occurs when solvent is added to related to the number of 

moles of TFA that dissolve by the ideal gas law. Thus, A(ffV) = AnRT 

or

A». = (TTo (16
 ̂ RT

yyt is the calculated formal pressure after the i^" addition of solvent;

is the vapor volume of the system. The formal concentration of TFA

in the solution, in molal units, is then

f = An 10^ = (TT'o - /Tj^ i)lp3 q7
gg gg RT

where g^ is the weight of solvent, g^ is obtained by applying a Raoult's
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law correction to g^, the total weight of solvent added to the system.

Simply, gg = g[ - g^, where g^ is the weight of solvent in the vapor phase.

is a variable and is determined from the total vapor volume of the

empty system less the volume of solvent added (ĝ  /d to an adequate

approximation, where d is the density of the solvent).

Once the formal concentration is obtained the formulation is 

quite similar in form to the equation obtained in the dilute solution 

work. The formal TFA concentration is related to monomer and dimer con­

centrations by equation 3. Combination of Beer's law and Henry's law 

equations gives

= E % B # b  Cy (18

Substitution in equation 3 yields

fA = - t t A t  <»

or the linear equation

b Kg
A *

This equation relates vapor phase monomer absorbance and formal TFA 

concentration to the solution association constant and the monomer 

Henry's law constant.

Data for the systems TFA-cyclohexane, TFA-carbon tetrachloride, 

TFA-benzene, and TFA-1,2-dichloroethane, all at 25°C, are given in Tables 

4 through 7. With the exception of the benzene system the ratio plots 

f^/^ vs. A^ Figures 7 through 10, are linear to within experimental 

error. The benzene system shows pronounced curvature at the higher



V ml 8 t 8 , PM TT A(77V) fA ^A/AR
34.66 0 .654 8.45 52.12
34.16 .50 .387 .372 .532 6,89 35.77 586 .0845 .1588
33.96 .70 .542 .527 .492 6.36 31.08 751 .0766 .1557
33.56 1 . 1 0 .851 .836 .434 5.61 24.84 973 .0626 .1442
33.16 1.50 1.161 1.146 .395 5.11 21.04 1109 .0520 .1317
32.76 1.90 1.470 1.456 .358 4.64 17.72 1226 .0453 .1265
32.16 2.50 1.934 1.920 .322 4.16 14.75 1332 .0373 .1158
31.36 3.30 2.554 2.540 .286 3.70 12.05 1429 .0302 .1057
34.66 0 .516 6 . 6 8 33.85
34.36 .30 .232 .217 .457 5.91 27.23 238 .0589 .1288
33.86 .80 .619 .604 .380 4.91 19.66 508 .0452 .1189
33.36 1.30 1.006 .991 .328 4.24 15.23 665 .0361 . 1 1 0 0

32.86 1.80 1.393 1.378 .287 3.71 1 2 . 1 2 ■ 775 .0302 .1054
32.16 2.50 1.934 1.920 .252 3.26 9.74 860 .0241 .0956
31.26 3.40 2.631 2.619 . 2 2 1 2 . 8 6 7.84 928 .0191 .0862
30.26 4.40 3.405 3.392 . 193 2.50 6 . 2 0 983 .0156 .0807

IwN>
I

TFA-CgH22 System Data

Table 4
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Figure 7. Ratio Plot, f^/Ay vs. of îFA-CgHj^2 System Data.



V ml 8 t 8 s ''ü Pm U A(7TV) fA
34.66 0 .675 8.73 55.25
34.46 . 2 0 .317 .284 .538 6.96 36.51 657 .1244 .2313
34.36 .30 .476 .443 .485 6.28 30.29 877 .1065 .2196
34.26 .40 .634 .602 .439 5.69 25.35 1045 .0935 . 2130
34.16 .50 .792 .760 .409 5.30 22.37 1151 .0815 .1992
33.86 .80 1.268 1.236 .337 4.36 15.95 1375 .0598 . 1776
33.26 1.40 2.219 2.187 .264 3.42 10.53 1565 .0385 .1458
34.66 0 .615 7.96 46.61
34.36 .30 .476 .443 .442 5.72 25.66 734 .0891 .2016
34.06 .60 .951 .919 .354 4.58 17.37 1024 .0599 . 1693
33.76 .90 1.426 1.394 .302 3.91 13.22 1169 .0451 . 1494
33.46 1 . 2 0 1.902 1.870 .268 3.47 10.80 1254 .0361 .1364
33.06 1.60 2.536 2.505 .237 3.07 8.80 1325 .0285 . 1 2 0 0

32.46 2 . 2 0 3.487 3.456 .203 2.62 6.83 1394 .0217 .1069
31.86 2.80 4.438 4.401 .181 2.34 5.69 1434 .0175 .0969

Iw
I

TFA-CCl^ System Data

Table 5



V ml 8 t 8 s Pm rr A(7fV) fA ^A/^M
34.66 0 . 6 8 6 8.87 56.92

34.46 . 2 0 .317 .284 .537 6.95 36.38 719 .1362 .2537

34.26 .40 .634 .602 .443 5.73 25.76 1090 .0974 . 2 2 0 0

34.06 .60 .951 .919 .385 4.98 2 0 . 1 1 1288 .0754 .1958

33.76 .90 1.426 1.394 .328 4.25 15.23 1459 .0563 .1716

33.16 1.50 2.377 2.346 .261 3.38 10.33 1630 .0374 .1432

32.26 2.40 3.802 3.774 .205 2 . 6 6 6.94 1749 .0249 . 1216

31.36 3.30 5.230 5.200 . 174 2.25 5.34 1805 .0187 .1073

34.66 0 .284 3.67 11.91

34.46 . 2 0 .317 .284 .214 2.77 7.44 156 .0296 .1385

34.26 .40 .634 .602 .182 2.36 5.74 216 .0193 .1061

33.96 .70 1.109 1.077 . 150 1.94 4.24 269 .0134 .0895

33.66 1 . 0 0 1.584 1.553 .130 1 . 6 8 3.41 298 .0103 .0794

33.16 1.50 2.377 2.346 .108 1.40 2.59 327 .0075 .0694

32.26 2.40 3.804 3.774 .086 1 . 1 1 1.87 352 .0050 .0584

31.36 3.30 5.230 5.200 .068 . 8 8 1.35 370 .0038 .0564

LOL nI

TFA-CCI4 System Data

Table 5 (Continued)
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Figure 8 . Ratio Plot, vs. of IFA-CCl^ System Data.



V ml St s. ^m rr A  (/TV) fA ^ A / <
34.66 0 .296 3.83 12.77

34.36 . 1 0 .087 .070 .216 2.80 7.56 181 .1394 .645

34.46 . 2 0 .175 .157 .163 2 . 1 1 4.82 276 .0947 .581
34.36 .30 .262 .245 .125 1.62 3.21 333 .0730 .584
34.26 .40 .349 .332 .105 1.36 2.48 358 .0579 .552

34.06 .60 .494 .477 .081 1.05 1.72 384 .0433 .535

34.66 0 .862 11.16 90.13

34.46 . 2 0 .175 .157 .528 6.83 35.29 1908 .654 1.238
34.36 .30 .262 .245 .462 5.98 27.79 2169 .476 1.031
34.26 .40 .349 .332 .413 5.34 22.76 2345 .380 .920
34.16 .50 .437 .420 .367 4.75 18.50 2492 .319 .870
33.96 .70 .612 .594 .312 4.04 13.97 2649 .240 .769

33.76 .90 .787 .769 .271 3.51 1 1 . 0 0 2752 . 192 .710

33.36 1.30 1.136 1.119 . 2 1 2 2.74 7.33 2879 .138 .653
32.96 1.70 1.485 1.468 .176 2.28 5.44 2945 .108 .613

32.56 2 . 1 0 1.845 1.818 .150 1.94 4.29 2984 .088 .589
32.06 2.60 2.272 2.255 . 1 2 0 1.56 3.02 3027 .072 .600

Iw
I

TFA-CgH5  System Data 

Table 6
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V ml 8% 8s < Pm TT a (/Tv ) fA fA/
34.66 0 .550 7.12 38.00
34.56 .10 .124 .109 .400 5.18 21.51 574 .283 .707
34.46 .20 .249 .236 .308 3.98 13.67 846 .193 .62b
34.36 .30 .374 .361 .244 3.16 9.23 1000 .149 .611
34.26 .40 .498 .485 .204 2.64 6.89 1081 .120 .588
34.16 .50 .623 .610 . 180 2.32 5.64 1124 .099 .551
34.06 .60 .747 .734 .158 2.04 4.59 1162 .085 .528
33.86 .80 .996 .984 .130 1.68 3.41 1202 . 066 .505
33.56 1.10 1.370 1.357 .099 1.28 2.28 1241 .049 .497
33.36 1.30 1.619 1.606 .086 1.11 1.87 1255 .042 .489
33.16 1.50 1.868 1.856 .076 0.98 1.57 1265 .037 .482
32.76 1.90 2.366 2.354 .061 0.79 1.17 1277 .029 .479
32.16 2.50 3.114 3.102 .048 0.62 0.86 1289 .022 .466
31.56 3.10 3.861 3.849 .041 0.54 0.70 1295 .018 .441

IwVO
I

TFA-C2H4CI2 System Data

Table 7



V ml »t 8 s Am Pm TT A(/rv) fA fA/Ai;
34.66 0 .587 7.59 42.77

34.46 . 2 0 .249 .236 .329 4.25 15.26 956 .218 .661

34.36 .30 .374 .361 .265 3.43 10.60 1118 .167 .629

34.26 .40 .498 .485 .217 2.81 7.61 1 2 2 2 .136 .624

34.16 .50 .623 .610 . 184 2.38 5.84 1283 .113 .615

34.06 .60 .747 .734 . 162 2 . 1 0 4.77 1320 .097 .597

33.86 .80 .996 .984 . 130 1 . 6 8 3.41 1367 .075 .575

33.66 1 . 0 0 1.245 1.233 .113 1.46 2.76 1389 .061 .536

33.26 1.40 1.744 1.731 .086 1 . 1 1 1.87 1420 .044 .513

TFA-C2H/̂ ,Cl2 System Data 

Table 7 (Continued)

01
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concentrations; data points above a concentration of approximately 0.3

molal were not included in the data fitting. Taha, working with TFA

in the aromatic solvent diphenylmethane, observed similar curvature at
21concentrations above 0.3 molal. Least squares fitting was used to 

obtain the dimerizaion equilibrium constants and the monomer Henry's 

law constants.

The formal acid concentration ranges were from approximately 

0.01 to 0.08 molal in cyclohexane; 0.005 to 0.15 molal in carbon tetra­

chloride; 0.04 to 0.3 molal in benzene; 0.02 to 0.2 molal in 1,2-di- 

chloroethane. These concentration ranges are considerably higher than 

normally encountered in 'dilute' solution studies. The linearity of 

the ratio plots justifies the assumed monomer-dimer equilibrium.

The results of this study are given in Table 8 .

Table- 8

TFA Dimerization and Henry's Law Constants 

From the Vapor-Solution Method 

System Ku, mm M  ̂ RMSD (f^/A^)

TFA-CgHj^2 192 t 36 592 t 110 .0052

TFA-CCI4  149 t 19 275 t 35 .076

TFA-CgHg 2.6 t 9 32.5 t 3.5 .018

TFA-C2H4 CI2 1.5 t .4 23.8 t 4.2 .084
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In conjunction with the solution study by the vapor-solution 

method, the TFA free and associated hydroxyl stretching mode spectra 

in the near-IR region were examined in the four solvents used. Peak 

frequencies and monomer half-peak-height band widths are given below.

Table 9

TFA Hydroxyl Peak Frequencies

Solvent M
OH

A^ ^ M

‘̂6 ^ 1 2 3519 46 t 6 3109

CCI4 3508 6 5 - 6 3115

3390 105 t 10 3120*

C2 V I 2
3381 183 t 10 3110*

Vapor 3589 28 1 3 3138

These values are rather approximate because 
of overlapping by the monomer and broadness 
of the peak.

Enthalpy Calculations

The enthalpy change in an association reaction may be calculated 

from the general thermodynamic relationship

(21S>lnK = - A h
3Ci)

I
R

In K = tA S  + C 
RT

or the integrated form obtained by assuming A h to be constant

(22

where K is the association reaction equilibrium constant. Thus, A h may 

be determined if K's are known at several temperatures as in the case of 

the dilute TFa-carbon tetrachloride system.
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The enthalpy change may also be evaluated without directly 

determining equilibrium constants if a quantity proportional to the 

equilibrium constant may be obtained. This may be readily done through 

spectroscopic measurements if it is possible to ascribe separate absorp­

tion bands to each of the species in equilibrium. The carboxylic acids, 

in general, have both hydroxyl and carbonyl absorption bands that may 

be assigned to monomeric and associated (dimer) species. Both vibra­

tional modes have been used in the evaluation of association enthal­

p i e s . 2^,15 2 he carbonyl bands have a greater utility in this type of 

determination because the molar absorptivity values are larger than 

those of the hydroxyl bands and because they fall in a frequency region 

usually having fewer interfering absorption bands.

Evaluation of A H  is accomplished in the following way. Assuming 

the validity of Beer's law for both absorption bands (A^ = €^^c^ and 

Ajj = €jjbCjj , where A is absorbance, £ the molar absorptivity, b the 

path length, c the concentration, and the subscripts M and D refer to 

monomer and dimer) and the equilibrium expression K£ = it is

possible to obtain the equation

4) eâK = (23
CD

This equation combined with equation 22 gives

2
In + In = - A h  4- c' (24

2 €-d RT

or In 4) = - A h  + C (25
^2 RT
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if the ratio of absorptivities may be assumed constant with temperature. 

This appears to be a reasonable assumption within experimental error 

according to the work of Allen, et al.,^^ with benzoic acid carbonyl 

spectra over a thirty degree temperature range. It should be empha­

sized that it is not necessary to know the concentration of the asso­

ciating compound or the individual species in order to determine A H  

by this method.

Table 10 lists the TFA carbonyl peak positions and half-peak- 

height band widths in cyclohexane, carbon tetrachloride and 1 ,2 -di- 

chloroethane. Spectra were not obtainable in benzene solution because 

of the presence of a strong benzene peak at approximately 1800 cm"^.

With a cell path length of 0.2 mm this band had an absorbance of 0.8. 

While a shorter path length cell could have been used to reduce the 

absorbance of this peak to a workable level the increase in formal TFA 

concentration needed to produce a useable TFA spectrum would be un- 

acceptably high.

Table 10

Solvent

Vapor

C6 % 1 2
CCI4

C2S4 CI2

1830

1816

1813

1805

TFA Carbonyl Frequencies

0=0

1792

1781

1780

1789

38

35

31

16

12

11

14

14

16

19
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Carbonyl absorbance data as a function of temperature for the 

three TFA-solvent systems are given in Tables 11, 12, and 13; the absorb­

ances are peak values. The data are plotted in Figures 11, 12, and 13
2

in the form log vs. 1/T. These plots are linear within experi­

mental error. The enthalpies obtained were as follows: - 11.7 - .6 

kcal per mole in cyclohexane; - 9.2 - .4 in carbon tetrachloride; - 7.0 

- . 8 in 1 ,2-dichloroethane.

Since the monomer and dimer bands overlap— slightly in the cyclo­

hexane and carbon tetrachloride systems and severely in the 1 ,2 -dichloro­

ethane system— wing corrections had to be made. These corrections were 

accomplished by the graphical procedure described below.

Figure 14 depicts the TFA carbonyl spectra in 1,2-dichloroethane 

at 32.°C. The dimer peak, having a larger half-band width than the 

monomer peak, infringes more on the monomer peak than the monomer does 

on it. Each peak appears to be nearly symmetrical with respect to the 

frequency of maximum absorption. It is assumed that band shape does 

not change significantly with temperature. The graphical wing correc­

tion process is carried out in the following way. The low frequency 

side of the dimer peak is reflected about the peak maximum, resulting 

in curve a in the figure. Curve a is subtracted point by point from 

the high frequency side of the monomer band envelope giving curve b 

which is then reflected about its maximum and subtracted from the low fre­

quency side of the dimer envelope, giving curve c. Curve c, upon reflec­

tion about its maximum, gives curve d which is then subtracted from the 

high frequency side of the envelope, giving curve e. This process of 

reflection and subtraction is repeated
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Table 11

TFA Carbonyl Absorbance in CgHj 2̂ ^ f(T)

b = 0.2 mm

t°C 1/T X 10^ % log Ajj/Â _

2 0 . 0 3.411 .040 .476 298.0 2.474

24.0 3.365 .044 .448 231.5 2.364

28.5 3.314 .055 .470 155.3 2.191

30.7 3.291 .056 .458 146.0 2.164

35.9 3.235 .060 .441 122.5 2.088

40.8 3.185 .078 .434 71.3 1.853

49.8 3.096 .092 .398 47.0 1.672

A H  = - 11.7 t .6 kcal/mole 

RMSD (log A^/A^) = 0.0346
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Table 12

TFA Carbonyl Absorbances in CCl^ as a f(I)

b = 1.0 mm

t°c 1/T X 10^ v4 log Ag/Aj

10.5 3.525 .184 .452 13.36 1.126

16.5 3.452 .217 .406 8.63 .936

2 2 . 0 3.388 .224 .346 6.90 .839

2 2 . 8 3.378 .214 .295 6.44 .809

25.3 3.350 .218 .306 6.44 .809

33.0 3.298 .247 .253 4.15 .618

40.5 3.188 .254 .177 2.74 .438

49.0 3.104 .253 .117 1.84 .264

A h = - 9.2 t .4 kcal/mole

RMSD
, 2

(log Ao/A#) = 0.0262
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Table 13

TFA Carbonyl Absorbances in CgH^Cl^ as a f(T)

b = 0.2 nm

t°C 1/T X 10^ ^M Ajj/Am 2log Aj)/Am

9.8 3.524 .131 .286 16.68 1 . 2 2 2

14.9 3.471 .144 .287 13.83 1.141

18.0 3.434 .157 .285 11.57 1.062

25.7 3.346 .175 .280 9.15 0.962

29.8 3.300 .191 .246 6.75 0.829

32.8 3.268 .196 .256 6 . 6 6 0.824

41.4 3.179 . 2 2 1 .232 4.75 0.677

51.2 3.083 .233 .205 3.78 0.578

A H = - 7.0 t .8 kcal/mole
RMSD (log = 0.024
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Figure 11. log Ap/Ajjvs. 1/T Plot for TFA-C^E]̂2 System.
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Figure 12. log vs. 1/T Plot for TEA-CCl^ System.
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Figure 13. log A^/A^vs. l/l Plot for TFA-C2H^Cl2 System.
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Figure 14. TFA Carbonyl Spectrum in CgH^Clg at 32.8°C.
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until the individual bands are consistent with the overall band envel­

opes; in most cases no more than two reflections of the dimer peak 

were required. Some disagreement between calculated and observed curves 

exceeding the experimental error of about t 0.005 A was noted in the 

valley region between the apparent peak maxima; however, quite good 

agreement was obtained over the peak maxima.

The energies involved in partitioning TFA between vapor and 

solution, as in the vapor-solution method, may be represented by the 

thermodynamic cycle

A H 2vapor 2TFA (TFA) 2

2AH i 
s

solution 2TFA (TFA),
a h ^

For the cycle, AH^ + A H q -Ag^ + 2Aiy = 0- The association enthal-
S-»v s— »v

pies in the vapor, AH^, and in solution, AH|, are known. The

enthalpies associated with the transfer of monomer and dimer molecules

from solution to vapor can be obtained from the temperature dependence

of the respective Henry's law constants. The vapor-solution method was

used to obtain these quantities.

Tables 14 through 17 contain the data obtained for the four 

solvent systems. Formal TFA concentrations were calculated as before 

and were corrected for solvent density changes. Equilibrium constants 

at the lower temperatures were calculated from the known association 

enthalpies and equilibrium constants at 25°C. It was assumed that the 

vapor phase absorptivity of the TFA monomer hydroxyl peak does not



t°c ^A* ^ mm Kg mm ^ Pjj mm Kg M  ̂ M Cp M 1̂  mm M-1 Kjj ram M-1

25 .400 .0382 5.18 ,30 8.19 192 .0088 .0147 590 556

18 .290 .0386 3.76 .52 7 .29 305 .0072 .0157 522 464

10 .202 .0389 2.62 1.02 7.00 550 ,0055 .0167 476 419

Data for Calculation of AHj^ and A  Hg in the TFA-CgHj^g System
s—» V s—* V

Table 14

ILnLn
I



M  Pĵ  nun Kg mm -1 8 „-LPjj mm K^ M Cm M Cjj M mm M-1 DKjj mm M -1

25 .218 .0385 2.82 .30 2.42 149 .0098 .0144 275 168

25 .296 .0668 3.83 .30 4.48 149 .0134 .0267 275 168

25 .256 .0513 3.31 .30 3.34 149 .0115 .0199 275 168

10 .137 .0681 1.77 1.02

10 .120 .0523 1.55 1.02

3.20 340 .0093 .0294

2.45 340 .0080 .0222

190

194

109

110

ILno\I

10 .107 .0392 1.38 1.02 1.94 340 .0069 .0162 200 120

Data for Calculation of A  Hĵ  and A H q in the TFA-GCl^ System
8— > V 8 — >v

Table 15



t c M Px mm Kg mm"^ Pg mm Kg M Cg M mm M  ̂ rara M“^

25 .224 .130 2.90 .30 2.56 2.6 .089 .021 32.5 122

18 .131 .166 2.15 .52 2.38 3.5 .083 .024 25.9 99

10 .133 .114 1.48 1.02 2.24 5.1 .075 .029 19.8 77

Data for Calculation of A H ĵ  and A  Hg in the TFA-CgHg System
s — » V 8-+V

Table 16

1Ln



t°C M Pm  mm mm“  ̂ pp mm M Cjj M mm, m ”  ̂ mm M"^

25 ,346 .294 4.48 .30 6.12 1.5 .188 .053 23.8 115

18 .254 .297 3.29 .52 5.58 2.0 .174 .062 18.9 90

10 .174 .300 2.25 1.02 5.16 2.8 .158 .071 14.2 73 ILn
00
I

Data for Calculation of A H ^  and A H jj in the TFA-CgH^Clg System
S - *  V  8 - > v

Table 17
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Figure 15. log Kg vs. 1/T Plot for lEA-C^Hig System.
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Figure 16. log Kg vs. 1/T Plot for System.
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Figure 17. log vs. 1/T Plot for TFA-C2H4 CI2 System.
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change with temperature. Monomer and dimer concentrations and pressures 

were calculated from these quantities. In the benzene system the solu­

tion AH 2 was assumed to be - 7.5 kcal/mole. This value was obtained 

by comparison with the enthalpy changes in the carbon tetrachloride and 

1 ,2 -dichloroethane systems and the similarity in solvation properties 

of benzene and 1,2-dichloroethane. While assumption of this value casts 

more uncertainty on the results for the benzene system it seems to be a 

reasonable estimate in light of the determined equilibrium constants 

and hydroxyl frequency shifts and the results reported by Allen, et al.^^ 

Figures 15, 16, and 17 are the log Kg vs. 1/T plots from which the 

AH's were determined. The temperature range of these measurements 

was limited because of fogging of the cell windows. Results of this 

study are summarized below.

Table 18

Enthalpies of Vaporization of TFA Monomer and Dimer from Solution

Solvent ^^yM kcal kcal
mole mole

C6 S1 2
2.7 3.6

CCI4 3.8 4.4
CgHg 5.6 4.9
CgH^Cl^ 5.7 5.5



CHAPTER V 

DISCUSSION AND CONCLUSIONS

In order to facilitate the discussion of the results obtained 

in this research on the hydrogen bonding behaviour of TFA, this chap­

ter is divided into three major sections. Thermodynamic data for the 

association of TFA will be considered in the first section along with 

thermodynamic data describing the solution to vapor distribution of 

TFA. In the second section the effect of solvation on the association 

parameters of TFA will be examined in terms of the method of predicting 

solvation effects proposed by Christian and co-workers. The use of 

group interaction energies (as developed in the Appendix) in calcu­

lating the parameter oc will also be considered in this section. The 

last section of the discussion is devoted to empirical correlations 

of solvent induced frequency shifts of the TFA free and associated 

hydroxyl and carbonyl stretching bands and with various thermodynamic 

properties of the association reaction.

Thermodynamic Data

Thermodynamic data for the self-association of TFA in the vapor 

phase and the four solvents used in this study are summarized in Table

19. Entropy changes are based on standard states of one mole/liter.
-63-
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Each system is adequately described by the monomer-dimer association 

scheme. In the few instances where literature results on the associ­

ation of TFA in solution are available for comparison, good agreement 

is obtained. The association enthalpy in carbon tetrachloride solution 

( - 9.2 t .4 kcal/mole from dilute solution equilibrium constants) 

agree quite well with each other and with the - 8.85 kcal per mole 

value reported by Kagarise.^^ The dimerization constant at 25°C in 

cyclohexane, 192 1/m, obtained by the vapor-solution method, is in

fair agreement with the value 320 1/m reported by Thyrion and Decroocq•
23from a dielectric study. Thermodynamic parameters obtained for the 

TFA-carbon tetrachloride system by the vapor-solution and dilute 

solution methods are also in fair agreement. Taking the dilute 

solution work as a reference, the close agreement with the vapor- 

solution method implies that systematic errors have largely been 

eliminated from it.

In order to compare the thermodynamics of association of TFA 

with other substituted acetic acids, some of the available data from 

the literature are compiled in Table 20. Fairly complete data are 

available for the acids in carbon tetrachloride solution, but for the 

most part only equilibrium constants are available in benzene solu­

tion. It is seen that there is a marked decrease in the dimerization 

constant in both solvents as the electronegativity of the acid substi­

tuent increases. Enthalpy and entropy changes, in carbon tetrachlor­

ide solution, show some variation but exhibit no trend with type of 

substituent. There is a pronounced decrease in the equilibrium cons­

tant upon going from carbon tetrachloride to benzene as solvent for
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Table 19

Thermodynamic Functions for the Dimerization of TFA

T = 298°K

Solvent

vapor

C 6 » 1 2

CCI/

C6 % 6

C2H^Cl2

K2 , 1 /m 

5660 t 370 

192 t 36 

149 + 19 

128 + 7*

2.6 t .9

1.5 t .4

•AE, kcal/mole 

14.0^

11.7 ± .6 

9.2 t -4 

9.0 + .4 

(7.5)= 

7.0+ .8

-AS 5 e.u./mole 

29.8

28.7 t 2.8

21.0 t 2.0
20.6 + 1.4 

(23.3)C

22.7 t 3.2

dilute solution method values 
C. Ling, reference 
^estimated
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all of the acids; the decrease is particularly large in the case of TFA. 

This decrease in the dimerization constant of TFA might be expected in 

view of the much greater acidity of TFA and the possibility of more 

extensive monomer-solvent interaction.

As shown in Table 19 there is a marked decrease in the TFA dimer­

ization constant upon going from the vapor phase to solution. In 

solution K£ decreases as the interacting ability of the solvent in­

creases, i.e.; in the order cyclohexane > carbon tetrachloride > 

benzene > 1,2-dichloroethane. A like trend is observed for the asso­

ciation enthalpy. The entropy function, interestingly, does not exhibit 

such a trend. A S  values fall into two groups: vapor phase and cyclo­

hexane values are of similar magnitude as are the carbon tetrachloride, 

benzene and 1,2-dichloroethane values. In comparison, the association 

entropy values for benzoic acid reported by Allen, et al., show a 

pronounced decrease in the solvents cyclohexane, carbon tetrachloride, 

and benzene, in that order.

In Table 21 are given the Henry's law constants and enthalpy 

changes for the solution to vapor distribution of TFA monomer and dimer 

species. The Kg 's indicate increasing solvation of the monomer in the 

order cyclohexane < carbon tetrachloride < benzene < 1 ,2 -dichloro­

ethane with a considerable increase shown between carbon tetrachloride 

and benzene solution. The enthalpy change for transferring a mole of 

monomer from solution to the vapor phase increases in the same order; 

here, however, the biggest difference in solvation occurs between cyclo­

hexane and the three other solvents. The enthalpy changes for transfer 

of monomer or dimer from solution to the vapor phase show several
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Table 20

Thermodynamic Functions for the Dimerization of

Various Substituted Acetic Acids 
T = 298°K

Carbon Tetrachloride Solution

Acid

Trimethylacetic^

Acetic^Z

Trichloroacetic^^

Trifluoroacetic

K2 , 1/m -AH, kcal/mole 

2750 ± 150 9.6 i .5

2020 -fc 250 10.7 ± 1.2
1 0 . 7  t]5)

271 t 30 

149 ± 19

-As , e.u./mole 
16.1

20.8 
15.4

21.0 ± 2.0

Benzene Solution

Acid
34Trimethylacetic

Acetic^S

Trichloroacetic^^

Trifluoroacetic

K2 , 1/m 

420 

360 

24

2.6 t .9
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•Table 21

Henry's Law Constants and Solution — * Vapor 

Distribution Enthalpies for TEA

C6 & 1 2 CCIa CeH6 C2H4CI2

nm

Kg, mm M"^

A % ,  kcal/mole 
s-*v

A H q , kcal/mole 
s-»v

592 ± 110 275 f 35 32.5 ± 3.5 23.8 ± 4.2

556 168 122 115

2.7 3.8 (5.6)3 5.7

3.6 4.4 (4.9); 5.5

using estimated AH2
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significaat features. First, in progressing from the least active (in 

the sense of solvating ability) solvent, cyclohexane, to the most active,

1.2-dichIoroethane, the TFA monomer is increasingly extensively solvated. 

In cyclohexane and carbon tetrachloride the monomer solvation energy is 

slightly less than the dimer solvation energy; in both benzene and 1,2- 

dichloroethane the monomer is solvated to a slightly greater extent than 

the dimer. Secondly, it is seen that the dimer solvation energy also 

increases regularly from cyclohexane to 1,2-dichloroethane solution.

The TFA free hydroxyl-stretching spectra qualitatively show the 

same trend in solvation effects in the frequency shifts from the vapor 

phase to solution. The vapor to solution frequency shifts,

(Table 9) fall into the same two groups to do the monomer Henry's law 

constants; cyclohexane and carbon tetrachloride in one and benzene and

1.2-dichloroethane in the other. The associated hydroxyl-stretching 

band, found at approximately 3115 t 5 cm"^ in the four solvents, does 

not reflect the trend shown by the dimer Henry's law constants. Rather, 

this indicates that the hydrogen bonded hydroxyl group is in roughly the 

same environment in each of the solvents. This is in accord with the 

view that solvent frequency shifts are primarily due to specific 

interactions.

Correlation of Solvent Effects by the 

Method of Christian, et al.^^

One of the major problems encountered in studies of association 

reactions is predicting variations of the association reaction thermo­

dynamic parameters as the solvent is changed. Qualitatively, the
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solubility of water in various organic solvents is a good index to 

solvation ability. Attempts have been made to correlate thermody­

namic properties of association reactions with solvent dielectric
1 3constant but this has generally been an unsuccessful approach. ’

The method of predicting solvent effects on association reaction 

thermodynamics recently proposed by Christian and co-workers has 

been successfully applied to several hydrogen bonding reactions in a 

variety of solvents.

The data describing the self-association of TFA and its distri­

bution between solution and vapor may be treated by and used to 

examine the validity of the solvation theory of Christian, et al.,^^ 

in several ways. The parameter may be obtained from the equilibrium 

constants and Henry's law constants by a log-log plot of equation 26.

The slope of this plot is c\- 1.

k| / 4  =  (26

Kjj is the reduced (or relative) solution-vapor distribution constant 

of the monomer. It may be calculated from the monomer Henry's law 

constant. Ky in mm/molar units is converted to the vapor standard 

state of one mole per liter by multiplying by the factor 5.38(10 

mole/liter/mm (at 25°C). Kg is then taken as The relevant data

are given in Table 22. Figure 18 is the log K£ vs. 2 log or ol-plot.

It was expected from the solvation theory that the parameter 

would be nearly constant for a given association reaction in various 

non-polar solvents. The a(-plot of the TFA data appears to define 

two lines. The carbon tetrachloride, cyclohexane and vapor phase data 

define a line giving an o(= 0.55. Considering the vapor phase, benzene



Solvent

Vapor

CCI,

CaH6"6

log Kg

2.283

2.179

0.415

0.176

592

275

32.5

23.8

0.0319

0.0148

0.00175

0.00128

%

31.4

68.5 

571 

780

2 log Kp

2.994

3.672

5.512

5.784 I

Data for the Graphical Determination of the Parameter #<

Table 22
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Figure 18. log vs. 2 log Kg Plot for Determination of the Parameter o<.
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and 1,2-dichloroethane data together gives an c* of 0.39. This is 

not surprising considering that the spectral and thermodynamic para­

meters are similarly grouped.

Values of oc may be obtained directly for each solvent from the 

monomer solution-vapor distribution enthalpies by using equation 27.

s_ „ 2v^ (27
2 AIL 
s—*v*

It is necessary to subtract 0.6 kcal from the A h values to obtains-»v
A  Ü . Internal energies are used here because of the irrelevance of 
8-*v
the P A V  term to solvation energies. values calculated in this

manner are given below.

Solvent ^6^12 CCl^ C2H^Cl2

0 < 0.72 0.59 0.43 0.48

Considerable variation in the value of the parameter is seen. Part

of the difference undoubtedly arises from the uncertainty of the Au^

values, especially in the case of the cyclohexane data.

Specific monomer-solvent interaction effects could account for

the lower value of o< in the solvents benzene and 1,2-dichloroethane.

This is supported by the hydroxyl frequency shifts discussed above. It

is known that the hydroxyl group in acids and alcohols can interact with
37 38piaelectron systems. ’ While only a single monomer hydroxyl peak 

was observed in these two solvents, the half-peak-height band width showed 

a two- to three-fold increase over that in cyclohexane or carbon tetra­

chloride .
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The parameter <X may be estimated from group interaction energies 

given in the Appendix by calculating the energy of vaporization of TFA 

monomer and dimer from infinitely dilute solution and using equation 27. 

In terms of the individual group interaction energies, the are

given by the equations (from equation 3 of the Appendix) below.

4^03  ̂ -

^ " A  = + 2€o'h, + 2 ^ h, h, E,

Cyclohexane is the solvent chosen for this sample calculation. The 

terms £j.g^, €o'h,’€ OH, » €OHH, » ^^‘̂ ^H,E, refer to the fluoro-, keto- 

oxygen lone-pair electrons-, etheric oxygen 1one-pair electrons-, 

hydroxyl group-, and solvent-solvent group interactions. Substitution 

of the appropriate interaction energies for the specific groups, from 

Table 29. in the Appendix, gives the following results: A U ^  = 5.4

kcal and A U a = 6.2 kcal. From equation 27 o(is found to be 0.44.S -fV^
This is slightly lower than the value 0.55 obtained from the cK-plot 

and considerably lower than the 0.72 obtained from experimentally 

determined A U a and gA^^ . Values of (K from group interaction
s-w

energies in carbon tetrachloride and benzene are 0.59 and 0.56. It 

was necessary to estimate the interaction energies and

^O'H, these calculations, since the required heat of mixing data 

were not available for their calculation. The estimation was accom- 

lished by comparing series of similar interaction energies and 

recognizing trends within the appropriate group-solvent interactions.

The values used were 1.0, 1.2, and 2.0 kcal, respectively. These 

values are in slightly better agreement, although still lower than.
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the o('s from the o(-plot and experimental All's: 0(= 0.55, and 0.59, 

respectively for the carbon tetrachloride system; o<. = 0.39, and 0.43, 

respectively, for the benzene system.

Calculation of ol, from group interaction energies for association 

reactions in solvents with two or more different sites, such as 1 ,2 - 

dichloroethane, presents a problem since the were derived by

considering only solvents with a single site. This problem was treat­

ed by taking the arithmetic mean of the individual interaction 

energies. For example, (fluoro-1,2-dichloroethane interaction) 

was taken as — — 6fc1 ' -bis gave 6 ,̂̂ a value of 0,91 kcal.

The remaining TFA-1,2-dichloroethane group interactions were obtained 

similarly. The value of Ot for TFA in 1,2-dichloroethane was found to 

be 0,42 from this type treatment. Comparatively, the oC-plot gave

0^= 0,39; experimental AUg yielded 0,48. Table 23 summarizes the
s-»v

values obtained by the three independent methods.
26The solvation theory of Christian, et al,, is probably best 

tested in this case by comparison of predicted and observed enthalpy 

changes. From the available data there are two routes to this com­

parison. First, o< values obtained from free energies (the o(-plot) 

may be combined with the experimentally determined monomer enthalpy 

changes for the solution to vapor distribution by means of equation 28. 

AH^ = AH^ - (0^-1) (2 ^ A ^ )  (28

Alternately, the X  values determined from the group interaction 

energies may be used. Both methods have been used and the results are 

presented in Table 24. The benzene system was not included in this
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Table 23

Values of the Parameter ûC Calculated by Three Independent Methods

o<-plot

AU's
s-»v
Group Inter­
action Energies 

Average Value oc 
•fc avg. dev.

CeHiz

0.55

0.72

0.44

CCI4

0.55

0.59

0.59

C6H6

0.39

0.43

0.56

C2H4CI2
0.39

0.48

0.42

0.57 ±.10 0.58 ± .02 0.46 ± .07 0.43 ± .03

Table 24

Experimental and Predicted Association Enthalpies

C6H1 2 CCI4 C2H4 CI2

Experimental - A H 11.7 9.0 7.0

- A h ,  0  ̂from of, -plot 11.5 10.5 7.2

- A H ,  0 4 from group 1 1 . 0 1 0 . 8 7.5
interaction energies
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comparison because was determined from an assumed AE 2 . Good

agreement between experimental and calculated values is observed except 

for the carbon tetrachloride system value. Here the calculated values 

are about 1.5 to 2 kilocalories higher than experimental. This may 

probably be accounted for by the uncertainty in the monomer distri­

bution enthalpy. The agreement for the other two systems is within 

the estimated error of the experimental values.

From the standpoint of calculation of the parameter cX from the 

group interaction energies, TFA does not appear to be a very good 

choice as a test compound because the strong inductive effect of the 

perfluoromethyl group makes the keto and etheric oxygen and hydroxyl 

group interactions atypical. While the assumption that group inter­

action energies are independent of other molecular structural factors 

is not strictly true, the variation in calculated solvation energies 

does not appear to severely effect the calculated values of the para­

meter d  beyond use. Undoubtedly this is partly because the errors due 

to these variations tend to compensate in the calculation of o< since 

a ratio of energies is taken.

Spectral Effects

The effect of solvent on IR absorption band frequencies is a 

subject closely related to the solvent effect on association thermo­

dynamics. Considerable work has been done in attempting to correlate
39frequency shifts and solvent properties. Frequency shifts in gen­

eral have been treated from the standpoint of bulk dielectric effects—
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such as the Kirkwood-Bauer-Magat relationship^^’̂ ^— and more recently, 

qualitative approaches have been made on the basis of specific solvent-

solute i n t e r a c t i o n s T h e  effect of solvent properties on the

stretching vibrations of hydrogen bonded groups has been studied by 

a number or workers

Bellamy and co-workers have studied the effect of solvent on 

the frequencies of a number of common bond vibrations and have sug­

gested that frequency shifts may be correlated by plotting the relative

frequency shift, against the relative shift of a

reference compound.They propose the reference compound pyrrole for 

X— H type bonds and acetophenone for carbonyl b o n d s . T h e  A^/4^vs.

( type plot should eliminate those solvent properties which

operate to similar extents on both reference and test compound X— H 

bonds. Thus, if the frequency shifts were solely dependent upon some 

bulk property of the solvent, such as dielectric constant, a simple 

linear relationship with a slope of one should result, but if proper­

ties of the test molecule were also involved, a line of different 

slope would be obtained. In cases where the interaction between the 

test and reference solutes and any one solvent are entirely different 

in character a marked departure from the linear relationship should 

occur. Local association effects of a dipolar or hydrogen bonding 

nature are claimed to be the dominant factors in producing frequency 

shifts.

The effect of solvent of the monomer TFA hydroxyl-stretching 

vibration is quite pronounced compared with other hydroxyl compounds.
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Frequeacy shifts, relative to the vapor phase, are given for TFA, 

trichloroacetic acid, acetic acid, phenol and methanol in the solvents 

used in this work in Table 25. The relative frequency shifts are 

plotted against the corresponding shifts for methanol in Figure 19. 

Methanol may be taken as the reference compound since it gives a slope 

of almost unity on a methanol against pyrrole plot.^^

In this plot linear relationships are observed, although the lines do 

not pass through the origin. In Figure 20, a V j, of TFA is plotted 

against A ^  of phenol. Again a nearly linear relationship is 

obtained. These plots indicate that the TFA hydroxyl group interacts 

in a similar manner, although to a greater extent, with a given solvent 

than do other less acidic hydroxyl compounds.

The monomeric carbonyl-stretching vibration of TFA reveals the 

same sort of linear relationship when the relative frequency shift is 

plotted against the relative frequency shift of acetophenone (Figure 21). 

The relevant data for TFA, and acetic acid are given in Table 26. The 

acetic acid data lie above those for TFA and both lines pass through 

the origin. The fact that the TFA data fall below those for acetic acid 

is not surprizing considering again the nature of the perfluoromethyl 

group's inductive effect in reducing the electron density of the carbon­

yl oxygen, thereby reducing its potential for interacting with the 

solvent.
44Allerhand and Schleyer proposed the empirical free energy 

relationship = a G for correlating hydrogen bonded IR

vibrations; ±s the vapor phase frequency of the X— H vibration in



TFA Methanol Phenol

'Von A  >2̂/ ̂  X lo3 ^OH (^P!  ̂ X 3 M10 2/pH A ^ / ^ x  1 0 ^
Vapor 3589 3685 3652

^6^12 3519 19.5 46 3646 10.6 3616 9.6
13.0

CCI4 3508 22.6 65 3646 11.1 3611 11.0 17.03
3390 55.5 105 3615 19.0 3563 24.4 57.0
3381 58.0 183 3618 18.2 3558 25.7 41.0

Acetic AcidSG Trichloroacetic Acid^®

'̂ on X 1 0 ^ ^  X 10^

3584 3583

3536 12.5 3508 20.5

3466 32.1 3389 54.0

I0001

Relative Frequency Shifts for Several Hydroxyl Compounds

Table 25
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O  TFA
60

A  Trichloroacetic acid

Acetic acid
50

O  Phenol

40

30

X 10

20

10

0
200 4 8 1612

X 10^ Methanol

Figure 19. vs. ^  1*̂  Methanol Plot for Several
Hydroxyl Compounds.
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200

100

0
A ^ %  Phenol 

Figure 20. TFA vs. Phenol Plot.



Vapor

0 6 ^ 1 2

CCl^

0 6 * 6

C2H4 CI2

TFA

■V  M C =  O

1830

1816

1813

1805

Acetic Acid 122

A  '^I'y X 1 0 ^

7.6

9.3

13.6

1791

1773

1762

1767

1762

A  X 1 0 '

10.0
10.0
13.4

16.2

49Acetophenone

X 1 0 ^

7.6

9.9

11,1

13.5

I
00w
I

Relative Carbonyl Frequency Shifts for TFA, Acetic Acid and Acetophenone

Table 26
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16

1 2

□  TFA 

O  Acetic

12 16
A ̂ /^Acetophenone

Figure 21. TFA Free Carbonyl and Acetic Acid
Free Garb only vs. A^^/^ Acetophenone.
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the complex, is the solution value of the same vibration, a is 

a function of the particular vibration and is a measure of its solvent 

sensitivity. 6  is a function of the solvent only, determined from the 

solvent shift of various carbonyl compounds. G has the value 0, 49,69, 

80 and 95 in the vapor phase, cyclohexane, carbon tetrachloride, benzene 

and 1,2-dichloroethane, respectively. The TFA associated hydroxyl 

frequency data are plotted, in Figure 22, according to the above equa­

tion. The plot does not appear to be linear. This is in accord with
42,49specific interaction approach to solvent shifts. Since the 0— H

group is already involved in hydrogen bonding it is not available to

interact with the solvent. Therefore the 0— H group is in a relatively

constant environment. It should be observed, however, that it is

rather difficult to determine accurate values of the frequencies in
51 52solution because the bands are broad and overlap significantly. ’

The associated carbonyl-stretching band exhibits virtually the 

same frequency in cyclohexane and carbon tetrachloride. In 1,2-di­

chloroethane, however, it is found some seven or eight cm  ̂higher.

This is interesting considering that the free carbonyl frequency in

1 ,2-dichloroethane correlated well with the corresponding frequencies 

in cyclohexane and carbon tetrachloride.

Many attempts have been made to correlate spectral changes with
3 53other properties of hydrogen bonding systems. Badger and Bauer

proposed a linear relationship between the difference in free and 

associated hydroxyl stretching bands and the association enthalpy.

The TFA data, plotted in this form in Figure 23, indicate the relation­

ship between')^OH “ and AH_ is not a simple one. Such a
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Figure 22. TFA Associated Hydroxyl Frequency vs. Solvent G.
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vapor

CCI4400

300

200

100

0
0 1 43 5 62 7

- A H

Figure 23. ̂  ^  vs. - A H  Plot for TFA.
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relationship is, however, of qualitative value.

Josieti^^ noted a systematic correlation between for

either methanol or pyrrole and the Henry's law constant of HCl in a 

series of aromatic solvents. A nearly linear relationship obtains 

(Figure 24) between the frequency shift of the TFA monomer hydroxyl 

group upon going from vapor to solution and the logarithm of the 

monomer Henry's law constant. The data tend to cluster, as in the 

-plot, into two groups; cyclohexane and carbon tetrachloride in one 

and benzene and 1,2-dichloroethane in the other. This again indicates 

the similarity of the solvation effect on spectra and thermodynamic 

parameters and points to the importance of specific solute-solvent 

interactions.

A relationship between and Al^ might be expected
s J»V

on the basis of similarity of spectral and thermodynamic solvation 

effects. Figure 25 is such a plot. A roughly linear relationship 

is obtained and it is seen that the data again fall into two groups; 

the 'inert' solvents cyclohexane and carbon tetrachloride and the 

'active' but non-polar solvents benzene and 1 ,2 -dichloroethane.

It is clear that the TFA monomer hydroxyl group interacts 

strongly with benzene and 1,2-dichloroethane. An interesting extension 

would be the spectral study of the ternary systems TFA-benzene- and 

TFA-l,2-dichloroethane-carbon tetrachloride in order to observe spectral 

effects of the specific TFA interaction and also to obtain thermo­

dynamic parameters for the interaction.
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M
Figure 24. vs. log Kg for TFA.
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Brief Summary

The self-association of TFA has been studied in the vapor phase 

and in the solvents cyclohexane, carbon tetrachloride, benzene and

1,2-dichloroethane. A monomer-dimer association scheme is sufficient 

to describe the data in each system. Thermodynamic data have been 

obtained for the association reaction and for transfer of monomer and 

dimer species from solution to vapor. Equilibrium constants and asso­

ciation enthalpies decrease in the order of increasing monomer-solvent 

interaction, i.e., cyclohexane> carbon tetrachloride> benzene> 1 ,2 - 

dichloroethane.

The vapor-solution method developed here has some potential as 

a method of general utility for studying association reactions of highly 

volatile compounds.

The TFA spectral frequency shifts have been examined and are con­

sistent with the view that frequency shifts are due primarily to spe­

cific solute-solvent interactions. The TFA hydroxyl group interacts 

strongly with benzene and 1 ,2 -dichloroethane.

The solvation theory of Christian and co-workers has been used to 

correlate the association thermodynamics of TFA with fair success. It 

is clear that the theory has great potential utility in correlating and 

predicting the effect of solvent on association reaction thermodynamics. 

Calculation of the parameter oC. from group interaction energies as 

developed here(Appendix) will be a valuable adjunct to the solvation 

theory.



APPENDIX

APPLICATION OF A SIMPLE LATTICE THEORY OF 

SOLUTIONS TO THE CALCULATION OF C<

a priori calculation of the p a r a m e t e r i n  the solvation theory 

of Christian, et al., for an association reaction involving monomer 

and postulated complex structures, would be of great value in predicting 

thermodynamic parameters from a limited amount of data. For such pre­

dictions one would need to know, in addition tooc , the equilibrium 

constant, preferably in the vapor phase or inert solvent such as cyclo- 

hexane, and the monomer distribution constants between the reference 

medium and the solvent of interest. This would permit estimation of 

the equilibrium constant in that solvent through equation 1 .

^  -  <%,A (1
%

Estimation of A H  for the association reaction would require knowing 

the corresponding enthalpy changes.

Such a calculation of could be carried out if it were possible 

to determine specific interaction energies between solute and solvent. 

The parameter is then given by equation 2.

^:^AB
o < ------- ÊZÊY______  (2

+ AUg 
S~y\ S-*v

-92-
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where the All’s refer to the energy change in transfering one mole 

of complex and of monomer from infinitely dilute solution to the vapor 

phase— solvation energies— calculated from specific interaction 

energies.

Examination of the literature revealed several approaches to 

the determination of group interaction energies. Langmuir,^^ in 1925, 

discussed the distribution and orientation of organic molecules in 

terms of group (e.g. - CH^, - CS2CH2 , - OH) surface energies. Inter­

estingly, a promised second paper further explaining and utilizing this 

concept did not appear. Barker^^ developed a lattice theory of solutions 

for treating the thermodynamic properties of mixing of binary solutions. 

This theory is based on a quasi-lattice model that has been generalized 

by considering different types of sites in a molecule, interacting with 

surrounding molecular sites in a pair-wise manner. Barker's theory has 

been applied with fair success to mixtures of polar and non-polar mole­

cules where strong orientational forces are involved.^" A much 

simplified lattice model is used here to treat infinitely dilute solu­

tions in order to develop a consistent set of molecular group inter­

action energies.

In the simplified lattice model it is assumed that the main 

structural atoms of a molecule occupy locational sites on the coordin­

ated lattice. Following Goates, et al.,^^ a four-fold lattice is 

choosen. Each atom attached to, and 1one-pair electrons of, the struc­

tural atoms are considered to interact on a one-to-one basis with 

adjoining solvent sites. Thus, methanol for example, has two locational 

sites, C— 0 , and a total of six interacting sites: three C— E, two lone
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pairs from the oxygen, and the 0— H group. Typical groups and the

number of interacting sites ascribed to them are given below, again
64following Goates, et al.

Group Number of Interacting
Sites

— H (non-aromatic) 1
— H (aromatic) 2

- '0-  2
=0; 2

(aromatic) 2
-F 1
-Cl 3
— Br 3
— 0-H (hydrogen) 1
— N-E (hydrogen) 1
$N: 1

The number of sites on a given molecule is obtained from its structural 

formula, using the above table.

This treatment is simplified by assuming the infinitely dilute 

solution. Any solute molecule in the infinitely dilute region (monomer 

or complex) interacts only with solvent molecules.

Values of group interaction energies are obtained from heats of 

vaporization and heats of infinite solution in the following manner. 

First consider a pure solvent and the process of vaporization illus­

trated in the following schematic diagram.

S (vapor)

S (vapor)AU^
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In the bulk liquid, by the model, each molecule is interacting through 

the sites s with sites on surrounding molecules, z represents the 

number of sites of a given type. In this example a molecule with only 

one type of site is being considered. If the energy per interaction is 

denoted by 6 gg, a total energy of z€gg must be supplied to transfer a 

single molecule to the vapor phase, leaving a 'hole' in the liquid.

This process is illustrated by step 1 in the diagram. Upon collapse of 

the hole, step 1 1 , z/ 2 new interactions are formed with a lowering of 

energy z/2Égg. This can be explained by noting that the molecules 

, surrounding the hole lack a total of z interactions. When the liquid 

rearranges to eliminate the hole, z/ 2 new interactions (each of energy 

-€gg) will result since each interaction involves two of the available 

z sites. The net result, vaporization (step 1X1) takes place on a mole 

basis with the energy of vaporization AU^. Thus, for the cycle, AU^ = 

z £gg - z^:gg = £^gg> and the interaction energy 6 gg may be obtained. 

In this way the specific group interaction energies of the commonly used 

non-polar solvents have been evaluated.

Interaction energies for the functional groups mentioned above 

are evaluated in a similar manner by a step-wise process of expansion, 

using available heat of solution and heat of vaporization data. An 

important assumption made at this point is that a group interaction 

energy calculated from one type of molecule is unchanged in a different 

type of molecule; i.e., it is independent of the nature of the molecule. 

Langmuir termed this the principle of independent surface action. In 

the context of this discussion it might be called the principle of 

independent group interaction energy.
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Consider the vaporization of a solute molecule with two different 

types of sites, a and b, from an infinitely dilute solution in a solvent

having all sites of type s. The vaporization energy from the infinitely

dilute solution, , of the solute is then given by the equation

= 2^ 6 as + ̂b^BS ■ ^ 2  ̂ €ss represent the

number of a and B type sites and 6 ^  and (gg are the specific site- 

solvent interaction energies. In general this process may be formulated

= Ç ^i^iS ^ES

The energy of vaporization from the infinitely dilute solution,

, is obtained from the energy cycle below.

X (liquid) --------------^ X (vapor)

Alto

X (infinitely dilute solution)

A  1^0 represents the energy of infinite dilution; this is practically 

the same as the heat or enthalpy of infinite dilution. By the cycle 

AU"^ = Aljp + AU%, or

A U »  = AU^ - AU qo (4

Heats of infinite dilution have been obtained from the litera­

ture— directly in a few cases, but usually indirectly from excess heat 

of mixing data. The data are given in Table 27. For functional groups 

other than the OH, CH, or CCI groups, data were rarely found for more 

than one compound. Good agreement was obtained for different CH-and 

CCl-solvent interactions. Rather poor agreement in the OH-solvent
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interactions calculated from different alcohols— usually methanol,

ethanol, and butanols— was obtained. This appears to be due to several

factors. First, many published heat of dilution data are unreliable;

where possible, data from recent systematic studies were chosen. Second,

rather variant AU^ values for the pure alcohols were found. Last, and

probably most important, these variation in the ^Qgg values are due to

intrinsic differences in alcohol acidities, which depend on structural

features. Stated differently, the assumption that group interaction

energies are independent of the bonding and structure in the remainder

of the molecule is only a loose approximation. The listed in the

table are compromise values.

For the purpose of illustration the interaction energy of a keto

oxygen with an alkyl hydrogen will be calculated. The heat of infinite

dilution of acetone in n-hexane was reported to be 2.15 kcal/mole by 
81Murikami, et al.. The energy of vaporization of pure acetone is 7.2 

109kcal/mole. From equation 4 the energy of vaporization of acetone 

from infinitely dilute n-hexane solution is 7.2 - 2.15 = 5.05 kcal/mole. 

The total number of interactions of acetone with n-hexane, from the 

structural formula of acetone, is eight; six alkyl hydrogen-alkyl 

hydrogen (€gfl) interactions and two keto oxygen-alkyl hydrogen ( 6  o'h) 

interactions. By equation 3 the energy of vaporization of acetone from 

the infinitely dilute solution is

= 6 6 g a + 2  Coe ■

The value of (1.00 kcal) was previously found from the energies of

vaporization and heats of infinite dilution of various alkanes by means
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of equation 3. By substitution of = 5.05 and 6 gg-1-00 in the

above equation, g is found to be 1 . 6 kcal.

Using the values of group interaction energies in Table 29, it

is possible to calculate the energy required to vaporize a molecule

(complex or monomer) from infinitely dilute solution: that is, the

solvation energy of the molecule considered. The parameter ot is then

calculated from equation 2 .

Values of o( obtained by this method have been used to correlate
27association data in several hydrogen bonded systems. Johnson, et al., 

studied the hydration of pyridine in several organic solvents by distri­

bution, water solubility, and water activity measurements. Experimental 

values of o( for the pyridine-monohydrate, dipyridine-hydrate, and pyri­

dine-tryhydrate complexes in carbon tetrachloride were reported to be

0.71, 0.75, and 0.33, respectively. Values of a( calculated from the 

group interaction energies are 0.75, 0.71, and 0.51 for the same series

of complexes. This is rather encouraging agreement, with the exception
28of the oC value calculated for the trihydrate species. Gregory 

studied the hydration of triethylamine in various solvents, again by 

distribution, water solubility, and water activity measurements. Using 

the experimental association and distribution constants for the hydra­

tion reaction in cyclohexane along with the parameter o( calculated 

from the group interaction energies it was possible to calculate the 

equilibrium constant for the association reaction in benzene and

toluene. By way of example the solvation energy AU^ for the tri-
S-»v

ethylamine-water complex in cyclohexane solution is calculated from group 

interaction energies below. From the assumed structure of the complex
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HOH there are fifteen alkyl hydrogen-solvent interactions, 

two etheric oxygen-solvent interactions, and one hydroxyl-solvent inter­

action. Thus,

A ü ^  = 1 5 ^ jqj  ̂ +  2 € q h  +  6 ohS, ■ ^
s-»v

Substitution of interaction values from the table gives 8.5 kcal/mole.

Similar considerations for the triethylamine and water monomers gives

AU. = 9.2 and AU, ,= 2.7 . From equation 2 o< is found tomole mole

be 0.72, in comparison with 0.71 from the ' o<, -plot' for the pyridine-

water complex. Monomer distribution constants were calculated between

cyclohexane aid benzene and cyclohexane and toluene. Application of
-1

equation 1 gave the predicted association constants 3.41 M in benzene

and 3.90 M  ̂in toluene. These predicted values are in very good agree-
-1

ment with the experimentally determined values of 3.47 M in benzene 

and 3.72 in toluene.

This method of calculating energies of vaporization and the 

parameter has been applied to TEA and used in predicting enthalpies

of association in several solvents (in Chapter 5) with fair success.

It is hoped that the group interaction energy values in Table 29 

can be refined and expanded as additional heat of mixing data becomes 

available, particularly for evaluation of hydroxyl group-solvent 

interactions.
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Table 27

Heats of Infinite Dilution

T = 25° unless otherwise noted

System A H bq Dilution kcal/mole Reference

C2H4C12 - C5H12 1.38 70
C2H4C12 - CC14 0.57
C2H4CI2 - CgHg 0.62

'̂”̂ 6̂ 14 " GCI4 .18 71
CCI4 - n-C^H]̂ 4 .29

%  - CCI4 .104 72
CgHg - C5H10 .56 73

■ *̂6^12 .812 74

CCl̂  - CgHĵ 2 .14 75
C6H6 - CgHgCHg .07 75
CgHô - n-C5H^4 .694

’̂■̂ 6̂ 14 ■ ^6^6 1.07

V 12 - (=6% .567
CgH5CH3 - CgH;L2 .472

^6^12 ■ °"̂ 6̂ 14 .078

>̂ ■̂ 6̂ 14 ■ ^6^12 .222

n-CyHie - n-CgHi4 .015

6̂%  ■ ^6®12 .442
^6^12 - c&Ba .725
CgHg - n-CyHĵ g 1.17



System

-1 0 1 - 

lable 27 (Continued

A H oo Dilution kcal/mole Refer<

"'^7^16 ■ .015

CôHô - .442

^6 ^ 1 2  “ ^6 ® 6 .725

CgHg - n-CyHi6 1.17

“■^7^16 ■ CgHg 1.17

CgHiz - .123

^■^7^16 “ ^6 ^ 1 2
.252

CgHiz - CCI4 .144 78

*̂ 6̂ 12 ■ C5B10 .565 73

^6%  ■ ^6^-12 .663

^6^12 ■ C7H14 .635

C(CHg)^ - CCI4  (0 °) .30 79

MeOH - CCI4 4.56 80

EtOH - CCI4 4.89

PrOH - CCI4 4.73

n-BuOH - CCI4 4.78

i-BuOH - CCI4 5.22

s-BuOH - CCI4 4.88

t-B OH - CCI4 5.04

n-BuOH - CgHg 4.51 80

n-BuOH - C^H^ 2 4.40

n-BuOH - CgH]^4 5.31



-102-

Table 27 (continued)

Sys tern AHeo Dilution kcal/mole Reference

n-BuOH - Cgl'14. 5.5 81

EtOH - CgHg 3.1 92

n-PrOH - CgHg 2.65

n-BuOH - CgHg 3.0

MeOH - CCly (20°) 1.14 75

MeOH - Bz (20°) 2 . 2 0

MeOH - Bz 1.585 116

EtOH - CCI4 (45°) 2.73 84

t-BuOH - CôHô (30°) 3.26 85

EtOH - i-CgHig 1.3 8 6

C^HgOg - CCI4 -.226 87

(n-Bu) 2 0  - n-CgHj^4 0 . 1 0 81

(Et) 2 0  - C^H^ 2 .48 8 8

C^HgOg - CgHig (2 0 °) 2 . 0 89

(Et) 2 0 - CCI -.603 90

(Et)^O - CgEg 0.06 91

^2 ° - % 6.53 92

HgO - CCI4 5.16 93

C5H1 0O - CgHi2 (2 0 °) .62 124

OgHgO - CgHi4 2.15 81

C3%0 - CgHg (45°) .31 95

CgHgO - CCI4  (45°) .07
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ïable 27 (continued)

System A H »  Dilution kcal/mole Reference

-.57^6%  - ^6 ^ 6  
n-CgFĵ  ̂- a-Ĉ Eit (35°) 4.17
CgH5F - CgEiz (25°) .87

CgH^F - CCI4 (30°) .23
CCl̂  - Ĉ Ĥ F (30°) .22
C6H5NH2 - CgHg .96
C^H^NE2 - C&l̂ . 1.82

CgE^^oNE - C6E1 2 (20°) 1.24

96

97

98

99

CjEgO - CCI4  .625

C3H6 O - CgEg (30°) .24

C3H6 O - CgEi4  (20°) 2.24

CjÊ O - C3E12 (20°) 2.22

CgE^O - n-CyFi6 (35°) 1.0

C3H5 N - CCI4  -.32 90

C3H3N - CgÊ CÊ  .1 100

(Et)jN - CgEi2 -35

C5 H5 N - CCI4  -.01 101

n-CyF^^ - i-CgE^g (30°) 2.97 102

°"06^14 ■ °"06%4 4.06
U-C3 F2 2 ■ n"C3 E^ 2 2.15 103

^6 ^ 6  ■ OgHg .16 104

105

106

107

108 

124
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Table 28

Energies of Vaporization

Compound AUggg kcal/mole Reference

CCI,

(=6 : 6
C6H5CH3

C5B1 0

EgO

n-CgHj_2

C5H5N
C4H8 O2

""■̂ 6^14
n-CyFig

(=6 ^ 6
MeOH

EtOH

n-PrOH

C3H6

EtzO

EtjN

7.35 

7.45

8.48

7.37

6.38 

6.97

8.15 

9.90 

5.37 

9.06

8.36

5.48

7.15 

8.09 

7.99 

7.44 

9.52

10.45

7-20

5.83

7.1

109

110 

94

111
94

110

109

94

112

110

113

109

57
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Table 28 

(continued)

Compound ^U298 kcal/mole Reference

C5H1 0NH

C5H1 0O

8.79

7.75

114

115
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Table 29

Calculated Group Interaction Energies

kcalInteraction Symbol Cij

alkyl“alkyl 1 . 0 0

C“alkyl“C“alkyl 1.23

aromatic“aromatic Ca'H' 1.24

chloro“Chloro ^•ClCl 1 . 2 2

fluorO“fluoro (alkyl) E pp 0.98

fluoro-fluoro (aromatic) Çp'F* 1.33

alkyl“C“alkyl 1 . 1 0

alkyl“aromatic ^ h h' 1.05

c-alkyl“aromatic H' 1.18

alkyl“Chloro ^HCl 1 . 1 0

C“alkyl“Chloro ^H,C1 1 . 2 1

aromatic-chloro ^H'Cl 1 . 2 2

alkyl“fluoro ^HF 0.77

C“aklyl“fluoro ^H,F 0.73

aromatiC“aromatic fluoro G H'F' 1.30

ether“alkyjL € qh 0.50

ether“C“alkyl 6 OH, 1 . 1 0

ether“aromatic  ̂oh' 1.36

ether-chloro €oci 1.50

ketO“alkyl (:0'H 1.57

•keto-c-alkyl € o 'h , (2.0)
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Table 29 

(continued)

Interaction Symbol

keto-aromatic € o'h ' 2.80

keto-chloro ^O'Cl 2.43

keto-fluoro ^ o'f 2.56

hydroxyl-alkyl ^OHH 1.80

hydroxyl-c-alkyl ^OHE, 2.70

hydroxyl-aromatic € ohh’ 2.80

hydroxyl-chloro € ohci 2 . 0 0

pyridine N-chloro € n 'ci 3.0

pyridine N-aromatic € n 'h ' 3.0

ter-amine-c-alkyl ^NH, 2.5

amine-c-alkyl CNHS, 1 . 1

amine-c-alkyl ^NH, 1.53
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