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ABSTRACT

In recent research in the Process Control Laboratory
of the University of Oklahoma a time domain technique for the
identification of linear systems was formulated, at which
time the ié;ntification of the system's poles was investigated.
The major goal of the present work was to complete the develop-
ment and verification of the technique with particular refer-
ence to determination of the system zeros.

The procedure for determining the system's zeros is
based on the analysis of the input and response functions.
For an ntn order system with n-l1 zeros, n, linearly-independ-
ent input-output records are reguired. A prior knowledge of
the number of zeros, perhaps from theoretical considerations,
is helpful but not necessary. The correct number of zeros
can be determined from interpretation of the identification
results.

The investigation of the technique was conducted
utilizing analog and digital computer simulations of second
and third order systems. Studies were made to determine the
sensitivity of the identification program to many factors
which might be encountered in chemical processes. In addi-
tion a laboratory heat exchange process was also used to

confirm the experimental applicability of the technigue.
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The results of the identification of the laboratory process
were compared to models obtained from frequency response
testing and pulse testing. An analog simulation of the
identified model was also used to compare the response of
the model to the response of the actual process.

This technique has two major advantages over the
common frequency domain methods. These advantages are:
the system parameters are determined explicitly, and an error
propagation analysis enables one to determine the uncertainty

of the identified model.
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TIME DOMAIN IDENTIFICATION OF THE
ZEROS OF LINEAR SYSTEMS

CHAPTER I

INTRODUCTION

In recent years great advances have been made in the
techniques for the design and analysis of process controls.
Basic to these techniques is a complete description of the
dynamic behavior of the process. Theoretical considerations
are useful in determining the general topology of the equa-
tions describing the process; however, it is frequently
impossible to evaluate the actual parameters numerically
with any degree of confidence. Since the theoretical approach
may not yield a satisfactory dynamic model of the process,
it is frequently necessary to rely upon experimental methods
for determining z model.

Several analysis and testing techniques for system
identification have been developed in the past. Although
there is diversity in the mathematical techniques employed
for data manipulation and in the types of test signals applied,
all of the testing methods have been based on the analysis
of input-output relationships. The basic methods may be
classified as: 1. sinusoidal (frequency response) testing,

2. pulse testing and Fourier transformation, and 3. random
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or statistical testing. It is possible to consider all of
these identification methods as frequency-domain techniques
because at some stage of the analytic process, the data is
transformed into the frequency domain. Each of these methods
depend on frequency domain representations, usually magnitude
and phase lag versus frequency diagrams (Bode plots), for the
final plant evaluation.

Direct frequency response testing was adapted from
electrical engineering. Although it has been widely used
in the past, Hougen (H5) points out that it is generally un-
satisfactory in the process industries. The principal virtue
of this method is the simplicity with which the data can be
interpreted. General drawbacks of the method are: (1) the
lengthy tests may cause extreme deviations of the system
from its normal mode of operation, (2) many tests over a wide
range of frequencies are required regardless of the complexity
of the system, and (3) even slight nonlinearities will distort
the expected sinusoidal response (S3).

The necessity for evaluating the system model from the
Bode plots or other frequency domain representations is a
limitation which will be discussed later. Although work has
been done on the utilization of direct frequency response
testing, usually it has been used for model verification,
rather than identification.

Pulse testing and Fourier transformation was first
introduced by Hougen (H5). The method was developed to over-

come some of the major problems encountered with direct
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sinusoidal testing. The forcing variable is excited by a
single pulse and the input and response are recorded. They
are then transformed numerically into the Fourier domain.
The frequency response function is obtained as the ratio of
the transform of the response to the transform of the input.

This method has a notable advantage over direct sinu-
soidal testing. The power spectral density of an impulse
covers the whole frequency range; therefore a single test
is theoretically adequate to evaluate the complete frequency
response function, and it can replace a whole series of sinu-
soidal tests.

In practice the above statement must be qualified.
It is physically impossible to generate an impulse, necessi-
tating the use of a pulse with a power spectral density less
than one. Dreifke (D2) has demonstrated the sensitivity of
the identification to pulse shape and duration. Therefore
some experimentation is necessary to determine the proper
pulse for any given system. Dreifke, Hougen, and Mesmer (D3)
have studied the problems of truncation error due to the use
of limited (finite) record segments, i.e., use of response
records which end before returning to steady-state. The
effects of this truncation error and of improper input pulses
appear in the resulting frequency response function as a "cut-
off frequency?. Cycling occurs at frequencies above the
cut-off frequency and the scatter of the results becomes ex-
cessive, indicating that the response function is unreliable.

To eliminate the problem of truncation one might record the
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response function until steady state is "practically" reached;
however, in chemical processes where the time constants are
long, the possible drifts in steady state operating conditions
may offset the decrease in truncation error.

Noise will effectively increase the truncation error.
In the later stages of response curves, where the amplitudes
are low, the effect of noise may completely overshadow the
signal, and the frequency response function is unreliable.

The limitations due to noise have been incorporated
into another identification technique, random testing followed
by statistical analysis of the response curves. Since this
present work does not involve this technique the reader is
referred to Gallier (Gl) for a further discussion of randem
testing.

The methods discussed have an inherent disadvantage
in the representation of the results. This representation
is usually in the form of a magnitude versus frequency plot
and phase lag versus frequency plot, commonly called the Bode
plot. From the Bode plot it may be very difficult, if not
impossible, to evaluate numerically the parameters of com-
plex systems (system order greater than one).

Generally, the useful range of the magnitude ratio
plot does not exceed one to two decades on the logarithmic
frequency scale. Thus the identifiable poles and zeros are
limited to this range. The identifiable order of the system

is also limited to this range. Since the phase lag versus
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frequency is usually less reliable than the magnitude plot,
it offers little additional information.

Heymann (H2,H3) has proposed a technique for linear
system identification based exclusively on time domain analysis.
This technique circumvents the problem of obtaining the system
parameters from frequency response representations. The system
parameters are explicitly determined; in addition, error
bounds associated with each of the system parameters are ascer-
tained. However, Heymann has formulated and verified only
a portion of the technique, the pole identification. It is
the major goal of this work to complete the formulation of the
technique and to demonstrate its usefulness for system identi-
fication.

The completion of the time domain identification tech-
nigque is accomplished by implementation of the theory describing
the determination of the system zeros. An error propagation
analysis is also developed to predict the reliability of the
identified results.

The test for the applicability of the technique is con-
ducted in two parts. Computer studies are used to determine
the sensitivity of the method to the many factors which are
encounterad in actual chemical processes. The technigue is
then used to identify a laboratory process, and the results
of the identification are compared to the results obtained

from direct frequency response testing and pulse testing.




CHAPTER II
THEORY

A synoptic review of the background theory necessary
for the zero identification problem is presented here. For
a complete analysis of the theory of the time domain identi-
fication technique the reader is referred to Heymann (H2,H3).

Any one of the outputs (ith) of a general linear

system of the form

Xl (t) —— — yl (t)
: GENERAL .

) CHEMICAL )
Xj (t) — ——» yi(t)
) PROCESS )
x_ (£) — — v (%)

FIGURE 2~-1 General Chemical Process

can be described in terms of an nth— order linear ordinary

differential equation of the form

6




&y, (£) &y, (1)
on + bl(t) dtn—l + .. + bn(t)yi(t) =
(2-1)
m dn_lx.(t)
jzlgjl(t)—_]—atn'l + oo 4 gjn(t)xj(t)-

The system can also be expressed in operator notation as

Ln[yi(t)] = Mj (kj) [xj (t)] (2-2)

J

U =i
‘.—l

where Ln[ ] and Mj(kj)[ ] are linear differential operators,
with time dependent parameters, of order n and kj respectively,
where kj < n~1. If the right hand side of Equation (2-2) is
lumped into a general time function £(t), Equation (2-1)

transforms into
L7y, (£)] = £(8) . (2-3)

The response of the system given by Equation (2-3) can
also be expressed in terms of the system weighting function,
W(t,\), i.e. the impulse response, by the following equation:

t
y;(8) = j w(t,x) £()) dx (2-4)

-C0
If yi(t) = 0 prior to t = 0, i.e. the system is operating at

steady state, then




t
y; (t) = f W(EA) £0) @ (2-5)
0

Considering Equations (2-2) and (2-3), Equation (2-5)

can be rewritten as

t
T (k)
y; (&) = f wit,a) g My x5 (0 Jax
5 j=1
. (2-6)
n f (x.)
=5 5 w(t,a) Myt [xs () JdA
J:

Equation (2-6) can be expressed in an equivalent, but more
convenient, form as

t

. Of (e %00 & (2-7)

I~

where the weighting function* Wj(t,k) is related to the weighting
function W(t,)\) in Eguation }2-6) by the expression
X dk'
Wo(t,0) = (<173 T={g., () W(E,R) T+ o+
(2-8)

Tyx (I LEA)

*

The weighting function W. (t,)\), which relates a
particular input variable x. (t) td the output yi(t), will be
called the Particular Weighging Function.-
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In operator form, Equation (2-8)can be written as
*
W, (£ = Mj(kj) Lw(t,A) ]

where Mj(kj)*[ ] is the adjoint operator of Mj(kj)[ ]

Equation (2-7) relates the ith response to all of the
input variables. If all of the input variables except xe(t)

are kept zero, then Equation (2-7) can be written as:

t

Yi(t) = _[.We(t.k)xe(k) d (2-10)
0
where
W (t,3) = (-1 ae (t)W(t
e A = - ) ec_i'tz [gel ,X) ]+--- +
(2-11)
Iex (B)W(E.N).
e

w(t,x) is determined by the methods described by Heymann [H2,

H3]; thus, in order to determine We(t,x) the operator Me(ke)[ ]

remains to be evaluated.
If the process is stationary (constant parameter),
the evaluation of the operator Me(ke)[ 1 is simplified. Equa-

tion (2-11) can be written as:

dke

- k, d’e :
We(t,x) = (-1)"e tke [gelw(t—x)]+... + geke W(t-3) 12-12)

The coefficients gej can be determined numerically by the
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following procedure: the system is forced ke times with lin-
early independent forcing functions, which are recorded to-
gether with their corresponding responses. By numerical solu-
tion of ke relations of the type,
t

k jr dke
y;(8) = (-Dfe gy J S w(E-Mx (M)A + ..+
0 dt'e

(2-13)
t

Iex f W(t-1)x, (1)
e
0
the coefficients gej are evaluated.

For simplicity in the following development, only one
of the input-output relationships will be considered. Equa-
tion (2-13) then reduces to

t t

x J( a* J[

y(t) = (-1)7gy — W=D x)d + ...+ g wW(t-x)x (1) dx
0 dt 0
(2~14)

The computation of these integrals is accomplished by first
calculating the coefficients of the weighting function and
k-1 of its derivatives.

The homogeneous transfer function as determined by the

pole identification is of the fomm

H(s) = 1 . (2-15)
(S+pl) PR (S+pn)
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The weighting function is then

W(t-)) = ale_pi(t_k)+ cee + ane_pn(t;x)
(2-16)
= ; a.e‘pl(t-k)
i=1 *t
where
a. = 1
" (pl-pi) e (pj__]_-pi) (Di+l_°i) v (pn“pi) (2-17)

The jth derivation of the weighting function is then given

by

AIW(E=)) _ (1) 3 (a dompy (E71) =P (E1).
dtj = (-1) (alple 1 + e + anp%e n )
(2-18)
3 5 a.giepy (E71)
= (—l) 2 aipie Dl <
i=1
Equation (2-14) can now be written as a general term
t
k-1 . n . :
y(t) =5 (1) Jgk_.f £ (-D7a7ePi "My a
3=0 Jo” i=1
(2-19)

t

k-1 n .
_ J.p; (E=A)
=% g _-.jr T a.pie Pl x (1) dx
j=0 F3g o ¥R
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Consider Equation (2-19) as composed of two parts, the integral
and a coefficient. The integral for any i is the same for all
of the coefficients. Therefore, only k integrations are required
where k2 integrations would be required by a straightforward
solution of Equation (2-14).

To determine the unknowns gk-j’ k simultaneous equations
of the type of Equation (2-19) are necessary. These equations
are generated by varying x()) (the forcing function). The
only constraint upon these x())'s is that they must all be
linearly independent.

Theoretically the solution of the k simultaneous
equations at any time T is sufficient to determine the particular
weighting function. In practice, however, the uncertainty of
the data portends the danger of relying upon the one solution.

It is therefore desirable to obtain a solution at many points
of time and to have some measure of the reliability of the
results at these various points.

The error propagation analysis to be discussed in the

next chapter provides this measure of the reliability.




CHAPTER III
ERROR PROPAGATION ANALYSIS

Two types of error exist in a numerical computation.
One is the error associated with the uncertainty of the data,
which is primarily responsible for the uncertainty of the
results. It is the purpose of the error propagation analysis
to predict when the interaction of the uncertainties of the
data have a minimum effect upon the final identification
results. The other source of error is computer round-off or
truncation error. This error effects the numerical value of
the computation, but it has no appreciable effect upon the
uncertainty of the results. This type of error is discussed
more fully in the computer studies section on the effect of
the number of significant figures in the data.

If a true value were known for the results of a compu-
tation, then a true error could be calculated. Whenever the
true result is not known it is necessary to predict an error
limit for each stage of the computation. This error limit
may be either an extreme or an expected error. The present
work is concerned with the latter approach.

Before proceeding with the details of the error propa-
gations analysis, it may be helpful to review the sources of
error and the computational steps involved.

13
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The sources of error in the data are:
1. The accuracy of the homogeneous weighting function,
i.e. the poles of the system.
2. The reliability and accuracy of the input and
response functions.
Several factors enter into the reliability of the input and
response functions. They are: values of the steady-state,
measurement error, and noise. In this work it is assumed
that any noise present is stationary and ergodic random noise.
The identification values will therefore have an equal chance
of being distributed above or below their mean value and
essentially no drift will occur because of the integration of
the input function. It is further assumed that the steady-state
and measurement error can be lumped together into a percentage
error term which is relatively small.
The computational steps involved in the identification
are:
1. Calculation of the integral coefficients of gej
in the operator,Méke)[ J.
2. Solution of the simultaneous algebraic equations
thus obtained.
For the purposes of the error analysis it is assumed that the
calculation of the coefficients is done in one step. The
solution of the simultaneous equations is performed in two
steps, inversion of the coefficient matrix and premultiplication

of the response vector by the coefficient inverse matrix.
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Expected Error in the Coefficients of Jei

If F is a function of x,y, and z, the linear term in
the Taylor series can be used to express the effect of a small
error in x, y, and z. Thus, if Ax is the error in x and 4y
is the error in y and 4z is the error in z, the expected error

in F is AF. These errors may be related by

OF

aF
t 3z

3F
AF = 3% Ax + §§-Ay Az (3-1)

Applying this relationship then to the integral part of Equa-

tion (2-19)
t
n
6y =;I, 6[ aie“’i(t‘”x(x)dx (3-2)
yields
aGk BGk aG

where Apl, - Apn are the expected errors in the poles of
the homogeneous weighting function and Ax is the expected
error in the input. The coefficient is given by Equation
(2-17) as

1

a. = oo
L (pypy) e By B (B +6,) .. . (p_—py) (2717
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The various partial derivatives are required to
evaluate the expected error AGk. Differentation of the general

term of Equation (3-2)

G (i) = f a;e it M yar (3-4)

with respect to pj yields two results:

when j#£ i
t
3G, (i) da, [ da, G, (i)
k i -0. (t-2) i 7k
= e "1 x(A)dr = (3-5)
apj apj 0 Epj a;

and when j = 1

t
9G, (1) da.
k 1 fe_pl(t-}‘)x(l)dk + ai /(t—}\) e-pi(t—)\')X(K)d)\
0

(3-6)

t

da, G, (i) [
_ i X . -p. (t-A)
= api 2, + t Gk(l) - a; 5 Ae Ti x(A)dr.

From the definition of a;, Equation (2-17), the various partials
of a, can be obtained. When i # j only one term of a; contains

pj so the derivative is straightforward and after rearrangement

is

da. a.
i i
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When i = j, P; is contained in every term. It is
necessary to differentiate the function as a group of successive
products. After differentiation and rearrangement the result

is

da
- + ee. + L
303 ol S T Pi-1 ™ P
(3-8)
+ L + + L
Pir1 ~ Py Pn = Ry
For simplicity let
1 1
da, = ——— + ... 4+ ———
1 Ry =Ry pn - Py (3-9)
and Equation (3-8) becomes
aai
B—E—i' = - ai d ai. (3-10)
The last term of Equation (3-6)
t
- (+_
H (i) = a; fwe P it N e (3-11)

can be expressed in terms of Gk(i)’ When the right hand side
of Equation (3-11) is integrated by parts, the resultant

equation, with the use of Equation (3-4), becomes

B (1) =t & (1) - /PGk(i)dk . (3-12)
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After substitution of Equations (2-7), (3-10), and (3-12) into

Equation (3-5) and (3-6), the resultant partial derivatives are

aGk(i) G i) (a)
£ (3-13)
oG (1)
———— =- G (i)da; + jr G, (i)dr. (b)
P4y * 0

The next term of the operator M(k)[ ]is

d w(t-})
G = f —_— x(}x) ai . (3-14)
k-1 g at

The form of the general term of this expression can be

expressed by

Cr-1

t
- p.(t-A)
Jrai gte 1 x (L) d\

t
- =P (t-})
= —aipi jfe i x(A)dAa (3-15)
0
The partial derivatives of Equation (3-15) are
8G 1 (3) Py
_— = - —— (1), (a)
(3-16)
8G, _; (1) G, (1)
-1 . o
apl == pl 3P = Gk(l)b (B)/
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This procedure can be carried out for all of the terms of the
operator M(k)[ ], and general expressions can be developed to
describe the coefficients and their partial derivatives. These

general expressions are

G (1) = (-D*"p " g (1) (2)
3G_(i) ) 3G, (1)
—2ap, = (-FT T K e, (b)
3p. J 3p. J
J J (3-17)
3G_ (1) [ 3G, (i)
—— 8, =D p, ! -[pi —E— 4 (k-n) Gy (1) [ 46, . ()
api api

All that remains to describe completely the error
propagation in the computation of the integral coefficients
is to define the last term in Equation (3-3), (8G/AX)4x.
From the general term of the describing equation for Gy

t
G, (1) = [ a, e Pi(t N yonar (3-4)
i
0
the error caused by a small change in x(X) can be determined.

This error is

8 Gy (1) - -0, {t-})
T Ax = f aie it ) AX(A.)d)\. (3-18)
0
The errors caused by the input for the other terms of the opera-

tor M(k)[ ] can be found in a similar manner. The general
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expression is

t
9G_ (1) - -
— D Ax = a, (-1) KR g K f ePiltM gy an.
dx * g
(3-19)
Gn(i) is calculated from the general term of the weighting

function and is obtained by summing all of the terms of the

weighting function:

k
6, =% &_(i) (a)
1i=1
(3-20)
aGn k aGn(n
53; APj =i§1 —55;——— APj. (b)

Substituting Equations (3-19) and (3-20) into Equation (3-3),

the total error in Gn is obtained

k k 3G_ (i) k 9G_(1)
AG. =2 0§ —B ap. o+ T B ax. (3-21)
=1 i=l  3p, 3 i=1 3x

As n goes from 1 to k, k-element row vector is generated which
corresponds to the row vector for the integral coefficients
G- When k inputs have been computed in this manner, a k x k
matrix of error values is obtained corresponding to the

coefficient matrix.
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Expected Exrror in the System Zeros

The next stage of the computation is the inversion of
the coefficient matrix and premultiplication of the response

vector by the inverse. 1In matrix notation

g=clvy (3-22)

where G is the coefficient matrix, g is the solution vector
and Y is the response vector. The desired error is the error

in the g vector. Again using the total differential

) -
by = 53067t L 85 oy (3-23)

a relationship for the error is obtained. The partial

1

derivative of g with respect to G =~ and Y are easy to find as

they are independent functions. They are

3
g%:r =Y (a)
(3-24)

3
-1
v -6 o

AG_l is harder to determine as it is derived from the error
matrix obtained at stage one of the calculation. It is not
simply the inverse of this matrix. The easiest way to determine
2671 is a brute force method

st = (g +2e -t (3-25)
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but it does give a good estimate of the error limits in the

inverse. AY is estimated from the response curves.




CHAPTER IV
COMPUTER STUDIES

Many tests of the identification technique were con-
ducted using digital and analog computer generated data.
This technique was used to provide complete control of all
conditions which might affect the identification. 1In this
manner it was possible to study the specific effect caused
by a potential identification problem. Some of the condi~
tions of interest were: errors in the poles and steady
state values, transportation delays, non-linearities, and
noise. Other tests were run to determine the best forcing
functions and also to determine how the relative location
of the poles and zeros affected the identification.

The digitally-generated data were obtained as the

solution of the following general transfer function

G (As+l) (Bs+1) (4-1)

Y{s) = 7es+1) (Ds+1) (Es+1)

with three different forcing functions

X(S) = ’ L_z'r 2M 2 (4"'2)
S

S s +w
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In the time domain these are respectively: a step of ampli-
tude, K; a ramp of slope, L; and a sinusoid of amplitude, M,
and angular frequency, w.

Tﬁe time domain expressions including transport delay

and steady state were programmed as:

= o o—t/C__ _-t/D__ _-t/E
Ystep(t+1-) + Yss = Xss + KG(1 ae aje aje ) (a)
Y (t+r) + Y = X__ + LG(A+B-C—D-E+t+ca.e t/C
ramp ss Ss 1
+ Daje t/Dima o /B (®) (4-3)
Ysine(t+7-) tY =X 4 MG[—(bl+b2+b3)coswt
+ (l-wbl-wbz-wh3)sinwt
-t/C -t/D
+ ble +b2e
+ b3e—t/E] (c)
where
a; = (a-c) (B-C)/(D-C) (E-C)
a, = (a-D) (B-D)/{C-D) (E-D) .
a; = (A-E) (B-E}/(C-E) (D-E)
b, = Cum /(1+¢%4)
b, = Dwaz/(l+D2w2)

3 = Buway/ (148249,

o
I
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Effect of Forcing Functions

The first series of tests were conducted to determine
the best range of frequencies for a forcing sine wave. Figure
4-1 shows some of the results of the gain identification ob-

tained when the system

Y,y _ ___80(25s+1) (5s+1)
x(8) = TT6s+1) (20s+1) (505+1) o

was forced with a step, a ramp, and a series of sine waves,
ranging from 0.0001 radians/second to 1 radian/second.

As can be seen in Figure 4-1, the results were not
very good at the two extremes (0.0001 radians/second and 1
radian/second). The results did, however, tend to converge
to the correct answer. The best results were obtained when
the forcing freguencies were between 0.01 and 0.2 radians/
second. As this condition was also the case when two or
three sine functions of different frequencies were used for
the input functions, a general rule of thumb is obtained. The
angular frequency of the forcing sine functions should be
between one half the lowest natural frequency and twice the
highest natural frequency.

The identification of the zeros is affected in the
same manner as the gain. Part B of Figure 4-1 shows the

identification results of the zeros.




26

[§] T T T T -

109k O W= 0.0l RADIANS/SECONDS |
X W =000l

0 W = 0.000! R

AW=10

107 ~

1.08

.06 =
1.05F
1.04-

103

102t \

1Ol

VLY,

0.98

CORRECT |
VALUE
OF GAIN

VALUE OF GAIN

|

097

095+ -

| 1 1 1 !
10 20 30 40 50

094

TIME, SECONDS

D/
Q
\

o
P
1

2 o o o

o ~ » o

T T T T
1

IDENTIFIED VALUE OF ZERO
o

o

@

T

0 ) I 1 I
(o] 10 20 30 40 50

TIME, SECONDS

Figure 4-1. Effect of Frequency of Forcing Sine Function
upon the Identification.
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Effect of the Relative Location

of Poles and Zeros .

The relative natural frequencies of the poles and
zeros had very little effect upon the identification. Tests
were made on third order systems where factors of as much as
250 existed between the largest and smallest poles, with the
zero ranging from less than to greater than the poles. The
rate of convergence to the correct answer was the only effect
upon the identification. The convergence was the slowest when

the zeros were less than the poles (Table 4-1).

TABLE 4-1

EFFECT OF THE RELATIVE LOCATION OF THE POLES AND ZEROS

Pole 1 Pole 2 Pole 3 Zero 1 Zero 2 Time to Converge
to Less Than
l-Percent Error

(Sec)

0.1 0.05 0.02 0.04 0.01 18
0.1 0.05 0.005 0.2 0.01 12
0.5 0.05 0.02 0.2 0.04 12
0.1 0.05 0.02 0.1 0.04 8
0.1 0.05 0.02 0.2 0.05 8
0.1 0.05 0.02 0.2 0.02 10
0.1 0.02083 0.02 0.2 0.02 10
T 0.1 0.02083 0.02 0.02083 0.02 16
0.1 0.05 0.02 0.2 0.04 8

0.5 0.02 0.002 0.2 0.04 24




Effect of the Order of the System

To determine the effect of an incorrect estimate of
the number of poles of a system, i.e. the order of the system,
upon the zero identification, a series of identification tests
was conducted with poles deleted. In addition a series of
tests with poles added was carried out. When the assumed
order of the system was greater than the actual order, no
problems arose since zeros were determined which cancelled
the extra poles.

When the assumed system order was less than the actual
order, the quality of the identification depended upon the
relative values of the poles and zeros. 1In all cases the gain
and zeros approach their values asymptotically; the rate of
convergence and initial displacement again depend upon the
relative values of the poles and zeros.

Figure 4-2 shows the results of the gain identifica-
tion when the system is correctly identified as a third order

system,

= _gX(s)
¥(s) = 1570.5) (5+0.02) (s70.002) ' (4-5)

as a second order system

- gX(s)
¥(s) = 1576.02) (s+0.002) (4-6)

and as a first order system

gX(s) . (4-7)

Y(s) =
(s+0.002)
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R
When the correct poles are used the result of the identifica-

tion is within 0.2 percent of the correct value of 1.0 by the
time of two seconds. However, when identified as a second
order system the value of the gain increases with time,
eventually becoming asymptotic to 2.0, which is the correct
gain divided by the magnitude of the neglected pole (1/0.5).
The DC gain of the system of Equation (4-5) is determined by
replacing s by jw and setting the frequency w equal to zero,
DC gain = 1/(0.5x0.02x0.002) = 50000. To match this DC gain,
the gain, g, of the system of Equation (4-6) must be equal
to the neglected term (1/0.5). When identified as a first
order system, the initial error is very large, but the gain
may be approaching the theoretical value of the gain of the
third order system divided by the neglected poles, 1/(0.5)
(0.02) = 100.

Figure 4-3 gives the results of the same type of
tests when the actual system contains one zerc. When identi-
fied as a second order system the zero apprcaches the correct
value of 0.0l while the gain approaches the valve of the cor-
rect gain divided by the omitted pole, 2.0. When identified
as a first order system g/s+0.002, the gain levels off at
about 1.6 and does not approach the theoretical value of 1.0.
No explanation has been found for this behavicr.

Figure 4-4 shows the results of these tests cn a
system which contains two zeros. When one pocle is neglected,
a zero is also cmitted from necessity. The omitted zero is

the highest frequency zero (s+0.2). The zero at 0.04 is
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approached asymptotically. The value of the gain approaches
the correct gain times the omitted zero divided by the ne-
glected pole 1.0 x 0.2/0.5 = 0.4. When the technique is
applied assuming a first order system g/s + 0.002, the gain
appears to level out at a value of 0.57. The theoretical
result is 0.2 x 0.04/0.5 x 0.02 = 0.8.

To determine the effect of the neglected pole upon
the identified gain in relation to the magnitude of the
neglected pole, a series of three tests of third order sys-
tems was run using two poles (pl = -0.02, A, =-0.01) in the
identification. The third pole, which was omitted in the
identificaticn, was varied from 0.1 to 0.50. The results
of these tests are given in Figure 4-5. To show the rela-
tive rates of convergence, the scales have been normalized.
If the result of a ccrrect third order identification were
also shown on Figure 4-5, it would be a straight line at 1.0.
When the system was identified correctly, the gain was in
error only 0.2 percent at time t = 2 in the worst case.

The preceding tests were conducted upon a system
which had only & gain and no zeros. When a zero is added,
convergence is also dependent upon the natural frequency of
the zero relative to the omitted pole. The results of the
gain identification cf a system when the neglected pole had
a value four times the magnitude of the zero and one where
the neglected pole was only twice the magnitude of the zero

are also shown in Figure 4-5. As can be seen, the identification
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TABLE 4-2.

EFFECT ON THE IDENTIFICATION OF THE RELATIVE LOCATION OF THE POLES FOR
AN ASSUMED SYSTEM ORDER LESS THAN THE ACTUAL ORDER.

Pole 1 Pole 2 Pole 3 Zero l Zero 2 Neglected Poles Omitted Zeros Percent Error
Pole 1 Pole 2 Zero 1l Zexo 2 in Identified

Gain at
t = 50 seconds

0.5 0.02 0.002 0.5 6.5
0.5 0.02 0.002 0.5 0.02 65.15
0.5 0.02 0.002 0.01 0.5 15.0
0.5 0.02 0.002 0.01 0.5 0.02 0.01 16.0
0.5 0.02 0.002 0.2 0.04 0.5 0.2 30.5
0.5 0.02 0.002 0.2 0.04 0.5 0.02 0.2 0.04 68.3
0.5 0.02 0.002 0.04 0.01 0.5 0.04 171
0.5 0.02 0.002 0.04 0.01 0.5 0.02 0.04 0.01 122
0.5 0.02 0.01 0.05 0.025 0.5 0.05 154
0.2 0.02 0.01 0.05 0.025 0.2 0.05 116
0.1 0.02 0.01 0.05 0.025 0.1 0.05 66.8
0.1 0.02 0.01 0.05 0.1 77.9
0.2 0.02 0.01 0.05 0.2 49.5
0.1 0.02 0.01 0.1 30.0
0.2 0.02 0.01 0.2 16.4
0.5 0.02 0.01 0.5 6.5

S¢
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is much worse than when there is a gain only. From other
tests which were conducted, where the neglected pole was less
than or equal to the zero, it can be concluded that the closer
the neglected pole approaches to the magnitude of the largest
zero, the worse the approximate identification. When the

pole and zero are equal, no approximation is possible.

Effect of Errors in Identified Values of the Poles

The preceding sections have given an idea of the con-
sequences of an incorrect identification of the order of the
system, with the resultant conclusion that it is better to
include a pole even though its validity may be in question.
Assuming the order of the system is correctly determined,
there are still many things which could affect the identifi-
cation. One of these problems, which is very probable, is an
error in the identification of the poles. To determine this
effect, a series of tests was run in which an actual + 5-per-

cent error was introduced into the poles of the system

_ (s+t0.04) (s+0.2) X(s) (4-8)
(s+0.1) (s+0.05) (s+0.02)

Y(s)

The worst effect occurs when the errors in all of the poles
are in the same direction, either positive or negative. The
other combinations of positive and negative errors are con-
fined within these limits.

The results of these two limiting cases are plotted

in Figure 4-6. It is interesting to note that even though
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all three poles were in error by 5-percent, the effect on the
gain was at most 0.59-percent, and in the largest zero, only
3.5-percent after fifty seconds. The error in the smallest
zero was nearly twelve percent at the same time. However,
this error is decreasing with time while the other errors are

increasing.

Effect of Steady State Errors

Another cause of a poor identification could be that
the steady state value of both the forcing and response
function has been incorrectly determined. It was expected
that a steady state error in the input would have a serious
effect on the quality of the identification because of the
integration of the homogeneous weighting function times the
input, which was required in the identification procedure.
However, from the tests which were conducted, it was shown
that correct identification is still possible as long as
this steady state error is not too great. Even when the
steady state error is as much as ten percent of the ampli-
tude of the inputs, the identification appears to converge
eventually to the correct value, as shown in Figures 4-7
and 4-8.

When there is an error in the response, its effect
upon the identification is not nearly as great as an error
in the forcing function. As can be seen from Figure 4-9
the identification did tend to converge to the correct values,
with the errors in the identified zeros and gain being less

than the error in the response by the time of fifty seconds.
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Effect of Transport Delav

Any transport delay contained in the process or measure-
ment and transducing equipment will normally cause a poor iden-
tification. To study the exact effect that transport delay has
upon the identification, the response from a three-pole, two-
zero system was actually shifted to simulate transport delay
of one, five, and ten seconds. The identification was then
carried out with these shifted data. The results when the
shift was one second are plotted in Figure 4-10. The gain and
zeros tend to converge to the correct values. The lowest fre-
quency zero is least affected by this time delay.

Figure 4-~11 shows the results when the response is
shifted by ten seconds. Here again the lowest frequency zero
is less affected and appears to converge to the correct value.
The other zero and gain, however, converge to a value which

is the negative of the correct value.

Effect of Number of Siqﬁificant Figures in the Data

To explain some effects which were noted in the results
of both the analog computer studies and the identification of
the experimental process, a series of studies were conducted
to determine the effect of data precision. This series of
studies consisted of digitally computing the response of the

system

_ 0.000156 (s+0.033)W )
Tw = [570.0117) (5+0.045) (s+0.0583) (4-10)
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for inputs of a step of amplitude, 13.0169; a ramp of slope,
0.09918; and a sine wave of amplitude, 30.6253, and angular
frequency, 0.0628.

The data from this system were recorded to seven sig-
nificant figures and were used as input to the identification
program. The data were then truncated to six significant
figures and the identification computed. This process of
deleting one significant figure and computing the identifi-
cation was repeated through two significant figures. Partial
results of this series of studies for step and sinusoidal
forcing are shown in Figure 4-12. The identification has
less than O.l-percent error when seven or six significant
figures are used. With five figures, a deviation of 3.6-per-
cent occurs at 5 seconds and 55 seconds. With fou; signifi-
cant figures these deviations are greater (34--percent) with
a new deviation occurring at t=175 seconds. With two or
three significant figures these deviations are very pro-
nounced and a new deviation occurs at t=130 seconds. The
initial convergence is also seen to be slow.

These deviations, with the exception of the one at
t=130, are caused by the approximate singularity of the co-
efficient matrix generated by k solutions of Equation (2-19).
In this specific case, the determinant of the coefficient
matrix changes sign at t=55, 130, and 175 seconds. At these
points two ten digit numbers are being subtracted to obtain

a six digit number, i.e., a loss of four significant figures.
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At t=130, the response is also crossing zero which has a
greater effect than the truncation of the determinant.

The determinant is still an eight digit number.

Effect of Noise

To investigate the effect of noise on the identifi-
cation, and in preparation for a study of the effect of a
non-linearity in the system, the analog computer was used
to simulate the theoretical model of the experimental equip-
ment described in the next chapter. For this discussion and
the discussion on non-linearities the experimental equipment

can be represented by the schematic diagram of Figure 4-13.
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Figure 4-13. Schematic Diagram of Experimental Equipment.
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The linear model was used and is described by the differential

equations
T, = -0.0569T, + 0.006T + 0.00293W (a)
f f w
T, = 0.00532T_ - 0.0252T_ + 0.00994T__ (b) (4-9)
T = 0.0273T - 0.329T - 0.208W (c)
coO W cO C

The noise was assumed to be caused by either of two mechanisms.
The first is the introduction of noise into the system from
noise in the forcing input function, with no other noise
sources present. The second mechanism of noise generation
assumed no noise in the forcing input function. It was fur-
ther assumed that all of the noise was either generated with-
in the system, or introduced from an input other than the one
being forced, or was generated in the transducing and measure-
ment equipment. To study these two mechanisms, a random,
square-wave, noise generator designed especially for the
Process Control Laboratory was used as a noise source.

For the first case the noise was superimposed on the
forcing function to provide the system input. As the noise
was a part of the input, and therefore measured as a part of
the total input variable for the zero identification, there
was no appreciable effect upon the quality of the identifica-
tion.

For the second mechanism, which is by far the most
likely to occur, the result was not so simple. To study
this case, the signal from the noise generator was superim-

posed upon the response signal before recording. The noise
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signal was of constant amplitude, independent of the amplitude
of the response, The amplitude of the noise signal was ap-
proximately + five percent of the maximum amplitude of the
response signal. Figure 4-14A shows the results of the gain
identification for the system of Equations (4-9) when the
forcing functions for the hot oil flow (W) input were a step
of 100 volts and a ramp of slope 1.0. The average frequency
of the noise used was 0.77 zero crossing per second. Figure
4-14B shows the zero identification for this same system.

As can be seen from these graphs, the identifications tend

to oscillate about the correct values with an error of ap-
proximately + five percent in the gain and + one hundred
percent in the zero. However, the average value of the gain
past the time of twenty seconds is 0.998, or only 0.2-per-
cent in error, and the average value for the zero is 0.039,
about eighteen percent in error. From this result it

appears that to best determine the gain and zero, it is
better to calculate these guantities at many points of time
and then average the results, than to depend upon an identifi-

cation at any one point in time.

Effect of System Non-linearities

The system used in this study was very similar to
the non-linear model of the experimental system. The system

is given by
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g = 0.0569T; + 0.006T, + 0.0293W - 0.00307 WT. (a)
T, = 0.00532T. - 0.0252T_ + 0.00994T __ (b) (4-11)
T, = 0.0273T, - 0.032T_ - 0.208W_ - 0.00844W_ T__

(c)

The linearized version of this system is:

Tf = -0.0569T_ + 0.006T, + 0.0293w (a)

£

0.00532T,. - 0.0252Tw + 0.00994'1‘co (b) (4-12)

\ £

=]
I

3
]

0.0273Tw - 0.032TCo - 0.208Wé (c)

When the wall temperature is the response, and the two flow
rates are the forcing variables, the transfer function for
this system is

3

1.56x10 > (s+0.0329)W - 2.07x10 (s+00569) W,
w o (s+00117) (s+0045) (s+005833)

T (4-13)

This system was programmed on the analog computer in
such a manner as to allow both the linear and non-linear ver-
sions to be investigated. The analog program is shown in
Figure 4-15.

The same forcing was used for both the linear and
non-linear models so that these identifications could be com-
pared. The greatest difference between the forcing of the
models and the actual experimental equipment was the magni-
tude of the forcing function and consequently, the magnitude
of the deviation from the steady state and the relative
magnitudes of the non-linear term. Table 4-3 gives a quick

comparison of these systems for step forcings.
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TABLE 4-3.

COMPARISON OF THE MAGNITUDE OF THE NON-LINEARITIES IN THE
ANALOG SYSTEM AND THE EXPERIMENTAL PROCESS

Analog System Experimental Process
Forcing Magni tude TW Ratio Magnitude TW Ratio
+13 v +18.82 v +0.0125 lb/sec 5.15°F
oil 1.115 1.082
-13 v -21.81 v -0.0125 1b/sec 5.58°F
+10 v -26.31 v 40.002 1lk/sec 6.54°F
coolant 1.89 1.37

-10 v +49.64 v Q0002 1lk/sec 8.95°F

€S
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As can be seen from this table, the analog system, especially
for coolant forcing, is quite a bit more non-linear than the
actual experimental process.

If in Equation (4-1la) the non-linear term is lumped
in with the fluid temperature, and in Equation (4-1lc), it
is lumped in with the coolant term, a good idea can be ob-
tained as to the extent that the non-linear term affects the

system.

= -(0.0569 + 0.00307W)T

T + O.OO6Tco + 0.0293wW

£ £

(4-14)

Tco = 0.0273’1‘w - (0.0329 + 0'00844WC)ch - O.208Wc

If the magnitude of the step is then substituted into these

lumped terms,

(0.0569 £ 0.00307 x 13)T, = 0.0969T or 0.0169T,
(4-15)

1+

(0.0329 0.00844 x lO)Tco = 0.1173Tco or -0.0SlSTc

o

It can easily be seen that the non-linear term has a drastic
effect upon these coefficients. In the case of the oil, the
coefficient is changed by pa 70-percent and for the coolant
by t 250-percent. The coolant coefficient even changes signs.
The non-linearity, however, has no effect upon the
identification of the poles of the model as can be seen in
Figure 4-16. This result is to be expected since the tests
used in the pole identification are relaxed responses, where
both of the forcing variables are egual to zero, and the non-
linear terms drop out of the describing equations. The

identified poles are therefore the same for the linear and
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non-linear system, even though in Equation (4-15) it is shown
that the poles are drastically changed by the non-linearity.
This result would lead one to the conclusion that it would be
impossible to determine a gain and zero for the non-linear
system.

In the case of the oil forcing, which has been shown
to be the weaker of the non-linearities, a good linear approxi-
mation is obtained. This model is, under certain conditions,
very similar to the model for the linear system. This approxi-
mation, however, cannot be considered a general model because it
applies only under the conditions of the tests which produced it.

Figure 4-17 shows the results of an identification of
the non-linear system in which the forcings were such that a
very good linear model is obtained. This linear approximation
varies little from the results of the identification of the
linear system, which also are plotted in Figure 4-17 for com-
parison purposes.

As can be seen, the system gains are the same until
t = 175 seconds, at which time the gain of the non-linear system
begins to decrease. This is probably due to the increasing
magnitude of the non-linearity caused by the ramp forcing.
The results of another identification of the non-linear sys-
tem are plotted in Figure 4-18. Again for comparison purposes,
the results for the linear system are also shown. TUnlike
Figure 4-17 there is quite a difference between the models.
This case, however, was the worst one encountered in all of

the test combinations.
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The forcing inputs used in the construction of Figure
4-18 were a positive step and a negative ramp. If a negative
step and a positive ramp are used, the deviation in the identi-
fication is similar but opposite in direction. The combina-
tion of inputs used in Figure 4-17 was a positive step and a
positive ramp. If a negative step and a negative ramp are
used, the identification is again similar but with opposite
deviations. This trait is very well pointed out in Figure
4-19 where the forcings are a positive step and a sine wave.

The identified value alternates above and below the
identification results for the linear system at a frequency
equal to the forcing frequency. The discontinuities which
occur at t=55, 130, and 180 seconds are explained in the
section on the effect of the number of significant figures
in the data. Figure 4-20 shows how the predicted error varies
with time. For both the gain and the zero, the error mini-
mizes within the periods when the gain and the zero are
closest to the values for the linear model. The error in
the gain minimizes rapidly following a discontinuity, while
the error for the zero minimizes just prior to the next dis-
continuity.

When an identification of the coolant forced system
was tried, the results were not nearly as good as for the oil
forced system. This behavior was to be expected because of
the larger magnitude of the non-linearity. The best identifi-
cation using step and ramp forcings occurred when these two

forcings were in opposite directions. The results of these
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identifications are shown in Figure 4-21, along with the
identified results for the corresponding linear system. Here
again the results of the identified linear model are bounded
by the results of the two oppositely forced non-linear model
identifications.

It is interesting to note the times at which the error
analysis predicted the minimum error would occur. This time
was t=235 seconds for the identified gain of (A). It is at
this point that the identified gain of (A) is equal to the
gain of the linear system. For the gain of (B) no minimum
predicted error occurred. Howevey at t = 240 the predicted error
is still decreasing and the identified gain is still approach-
ing the gain of the linear model. The times at which the
minimum predicted errors for the identified zeros occurred
are (A) t=185 seconds and (B) t=160 seconds.

When the forcings were in the same direction, an
identification could not be made because of the drift in the
results. The error propagation analysis did, however, pre-
dict that the error was a minimum at the time the identified
gain of the non-linear system was the same as the gain of the
linear system.

Figure 4-22 shows a representative identification of
the coolant forced non-linear system when one of the forcing

functions was a sine wave.
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Conclusions About the Identification of Non-linear Systems

Because of the results which have been discussed in
this section, and the fact that the system is so strongly
non-linear, the author feels that it is possible to determine
a2 linear model of a non-linear system using this technique.
This model could be either a general model or a specific
model. For example, a specific model could be used when
there is to be a programmed change in plant operating condi-
tions, such as a new steady state flow. It would only be
necessary to test the plant between these steady state con-
ditions. A general model would be useful for control pur-
poses where the flow changes are small. The best model in
this case would be the linear system. This model could be
obtained by averaging the results of the various combinations
of opposing identifications. It could also be easily obtained
when one of the forcing functions was a sinusoid because of
the fact that the identification for sinusoidal forcing gives

the two distinct levels which bound the linear model.




CHAPTER V

EXPERIMENTAL STUDIES

In the Heymann (H2) dissertation and other chapters
of this work the identification technique has been thoroughly
computer tested on analog and digitally simulated processes.
This technique was used in the identification of a laboratory
process to evaluate its performance under conditions similar
to those which would be encountered in a chemical processing
plant.

Although the laboratory process was a simple stirred
tank heat exchanger, it served as a good test of the identifi-
cation procedure because of the unknown quantities present.
Some of these unknowns include system non-linearities, steady
state drifts, heat losses, measurement errors, and noise
from several sources: the process, instrumentation, and
transmission lines. Although every possible means was em-
ployed to eliminate or minimize these conditions some of

these effects were still noticed.

Experimental Equipment

The experimental work described in the following
sections was performed on equipment located in the Process

control Laboratory at the University of Oklahoma. This

66
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equipment is the evolutionary result of several previous
identification studies (Bl1, F2, Gl, S3) and has been used
by two researchers (H1, L2) in the investigation of control
systems. Because many changes have been made in the equip-
ment since the most recent identification study, especially
in the heat transfer-reactor simulator, a complete descrip-
tion of the equipment will be given.

The heart of the experimental system is a simulated
continuous stirred tank reactor. Here, by simulated, is meant
that heat transfer is the only rate operation occurring. This
simulation is done as a matter of convenience in that it is
easily accomplished and that no Arrenhius type non-linearity

is needed in the model.

The Reactor

The reactor (Figure 5-1) is similar to that used in
the identification study by Bishop (Bl) and the invariance
investigation of Haskins (H1). It is of a thick-walled de-
sign so that the heat capacitance of the wall must be con-
sidered creating a third order system. Many improvements
have been made in the design of the reactor since these studies.

The new reactor wall has been precisely machined fol-
lowing the rough casting. The wall construction material is
Type metal and contains Lead 75%, Antimony 15%, Tin 8%, Cop-
per 2%. Because of this careful construction the volumes and
heat transfer areas are well defined. Eight Iron-Constantan

thermocouples were inserted in approximately the middle of
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the wall thickness at 45° intervals around the wall and
equally spaced along the height of the wall. In the experi-
ments which were conducted, all of these thermocouples were
connected in parallel to obtain an average wall temperature.
The outer wall of pyrex provides an annulus for the flow of
the coolant solution. Pyrex was chosen for its low thermal
capacitance and because of its relatively low thermal con-
ductivity (1:40) compared to the wall, as well as for the
visibility provided.

The two walls are terminated on the ends by lucite
plates, chosen for the same thermal properties as the pyrex
outer wall. Also, the machinability of the lucite was de-
sirable for several reasons: both the hot oil and the cool-
ant enter through these ends, as do the thermocouples and
the impeller shaft. These end plates include "distributors"
for the coolant solution. These distributors are annular
rings within the lucite with holes to distribute the coolant
solution flowing concurrently with the oil.

The hot o0il enters the bottom of the reactor and leaves
through the top of the reactor. The oil in the reactor is
stirred by a four-bladed, paddle-type impeller, 2.25 inches
in diameter, located at the vertical midpoint of the reactor.

The stirrer was driven by a 1/10 Hp. 1800 rpm motor.

Constant Temperature Baths

The light turbine o0il is maintained at the desired

temperature in two thirty gallon insulated stainless steel
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tanks, each containing heating and cooling coils. The tem-
perature in,the tanks are independently controlled. The
cooling water flow is changed manually to adjust the control
system characteristics. With steam used as a heating med-
ium, the flow rate to each tank is controlled by Research
Control valves type 75 G with D trim. The pneumatic control
signals for the valves are generated by Minneapolis-Honeywell
model 152P14P recording controlling pyrometers. The measure-
ment signals are obtained from copper constantan thermocouples
located near the outlets of the tanks.

The two tanks are used in series because of the nature
of the control loops. If used separately a drift of about
+ 1°F in steady state temperature occurs. However, when in
series, the temperature of the first tank is allowed to
oscillate over this range at a fairly high frequency (approxi-
mately 1 cycle per minute). The second tank is then used to
smooth this variation and to correct for any long term drifts.
In this manner the o0il temperature to the reactor never
drifted more than = .25°F. Both tanks were stirred with 1/8
Hp Lightning model NC2 mixers. The 0il was circulated by a
Gould 1/2 inch helical gear pump.

The coolant, a 33~percent mixture of ethylene glycol
in water, was maintained at its desired temperature in a 25
gallon bath. The coolant was stirred with a Lightning type
RR 1/4 HP 100-1800 rpm mixer. The glycol mixture was cooled
by a Copeland 1.5 ton, Freon-12 compressor with evaporator

coils located in the glycol bath. A certain amount of manual




temperature control was provided by means of the expansion
valve, a Hoke type 4RB281, 20 turn, 1/16 inch orifice valve
with a micrometer adjust handle. This valve could be used
to change the evaporator pressure, and thus, the evaporator
temperature.

Automatic control of the temperature was provided by
another set of heat exchange coils in the bath. Another
Minneapolis Honeywell pyrometer, Model 152P14, was used as
the recording controller on this bath, with the temperature
being sensed by a copper constantan type thermocouple. The
final control element was a Research Controls type, 175 D,

G trim, 1/4 inch air-to-close control valve which controlled
hot water flow through the heat exchanger. 1In operation, the
temperature of this bath never drifted over ¥ .25°F. The

glycol solution was circulated by a 1/2 inch, gear pump.

Flow Measurement and Control

To take advantage of the operating characteristics
of the Research Controls control valves used to regulate both
the oil and coolant flow rates, it was necessary to utilize
a flow splitting arrangement on both of these flow systems.
The trim used in the control valves was linear, i.e.,
for a constant differential pressure across the valve, the
flow is proportional to the stem position which in turn is
proportional to the pressure on the top. To maintain the
constant differential pressure across the valves the flow
through the pumps had to remain constant; therefore, a by-

pass arrangement was used. Flow to the reactor was varied
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by an air-to~open valve. The remaining portion of the flow
was returned to the feed tanks through an air-to-close-valve.
The air-~-to-open and air-to-close valves were positioned by
the same pneumatic signal.

All of the valves were Research Controls, type 75B,
1/4 inch valves, with 3 to 15 psi range springs, I trim for
coolant, G trim for oil. The pneumatic signals for these
valves were generated by Taylor Transet electro-pneumatic
transducers, type 701TF111SIS124, which had a pneumatic out-
put range of 3 to 15 psi with a 9 psi center. The electrical
signal required was z 2.5 milliamps. These transducers are
specially designed for good frequency response.

The desired electrical signals were generated on
the analog computer. Use of this computer made it possible
to develop controllers to overcome the sluggishness and hy-
steresis of the control valves.

The flow rate of the o0il was measured by a Waugh,
type 6FLS, turbine flow meter located in the constant hot
temperature stream and a Waugh, type Flll, pulse rate con-
verter with an output of 0-250 millivolts. This output was
then amplified on the analog computer and was used as a
measure of the flow rate and as an input to the valve
position controller (Figure 5-2).

It was necessary to have the same sort of controller
for the coolant flow system (Figure 5-3). However, because
of equipment availability, the flow rate measurement was

guite different. The measurement here was the pressure drop
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across a length of capillary tubing, which was used instead

of an orifice because of the linear relation between flow rate
and differential pressure. The capillary consisted of the
annulus formed by inserting a 10 gauge, vinyl-insulated wire
(0.D. = 0.165) through a 10 foot length of Imperial polyflo
tubing (I.D. = 0.190). This capillary was located in the
coolant feed stream where the temperature was constant to
eliminate errors caused by viscosity or density changes. This
location required the measurement of both the upstream and
downstream pressures. These measurements were accomplished

by use of a strain-gage type, differential pressure transducer
obtained from a Beckmann, model 112, Data Logger. The supply
voltage of 7.000 volts was also obtained from this data-logger.
The output of the transducers was -3 to 12 millivolts for 0 to
15 psig with this supply voltage. These millivolt signals were
then amplified differentially using a Sanborn model 350-1500
preamplifier. This amplified signal representing the flow
rate was transmitted to the analog computer for use in a
feedback controller similar to the one used for the oil flow
rate (Figure 5-3).

The controllers for both the o0il and coolant flow
rates consisted of a proportional controller to overcome the
friction and a small amount of integral control to correct
for variations from the set point (hysteresis). The time
constants of these integral controllers were about one
twentieth the size of the smallest time constant of the

system.
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Because of the high frequency noise developed in the
transducers, the thermocouples and their transmission lines,
it was necessary to provide filtering for these signals.
These filters were programmed on the analog computer and
were simply exnonential dampers. The time constants of these
exponential filters were several orders of magnitude less
than the time constants of the system so that they would not

interfere, or even be noticed in the identification.

Support Equipment

The basic support equipment consisted of the analog
computer, its associated panel board and transmission lines,
and the analog to digital conversion and recording equipment
located in one room. The analog computer, panel board,
transmission lines, etc. have been described in detail by
Bishop and Sims (B3). The analog computer is a Donner,
Model 3400, thirty-amplifier, 100V computer with six
electronic multipliers. The computer has been modified (B2)
to accommodate thirty additional amplifiers, four, variable-
base dicde function generators, two transport delay genera-
tors, and a guarter sguare multiplier.

The panel board, located in an adjacent room con-
taining the process equipment, includes the various tem-
perature reccrder ccntrollers, transducers, and process
equipment power control switches. Also on the panel board
are the terminatiocns of coaxial cables which are used to
transmit low level signals between the process equipment

room and the analcg computer room. The other ends of these
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lines terminate within the analog computer programming area,
making it easy to patch into the computer, signals from the
remote equipment.

The analog to digital converter made it possible to
process the large volumes of data that were taken. The con-
verter consisted of a Dymec, Model 42900B, Input Scanner; a
Dymec, Model 3440A, Digital Voltmeter with a Model 3443a,
Range Unit; a Hewlet Packard, Model V562A, line printer; a
Dymec, Model 2540, coupler; and a Friden, Model SP2, paper
tape punch. With this equipment it was possible to scan the
input and response signals and to record them at the rate of
one point per second on the paper tape. It was possible to
analyze these data directly with the Osage High Speed com-

puter using a special read-paper-tape program.

Theoretical Description of the Experiment Process

A mathematical model of the heat transfer process is
obtained from energy balances on the oil, the coolant, and
the wall. The following assymptions are used to simplify
the balances.

1. The fluid within the reactor vessel is all at the

game temperature, i.e., perfect mixing.

2. The oil inlet temperature is constant.

3. The coolant inlet temperature is constant.

4. Densities, heat capacities, volumes, heat trans-

fer coefficients and areas are constant.

5. The heat transfer to the coolant occurs at the mean

temperature of the coolant; T__ = (T__+ Tci)/2.
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With these assumptions the following equations are

obtained from the energy balances:

* - *x* * *
= h.A. - h.A. + .
(pVCP)fo hlAlTW hlAle cpf Tln w
*
- w *
cpf TF (a)
(eVC_) T° = n.a.T* + BRo T
pww iTitf 5 “Cco
- * 5-1
(h,A. + h A )TH (b) (5-1)
® _ 2 *x * + *
(pvcp)cTco = 2RATy T BRI 20 Teie
*
-2C_ W T -hAT.. (c)
pc ¢ “¢co oo ci
where p = density subscripts £ = oil
V = volume w = wall
Cp = specific heat c = coolant
*
T = temperature i = inside
h = heat transfer coefficient ©0 = outside
A = heat transfer area in = 0il in
W = flow rate ci = coolant in
Q = heat loss ss = steady state

superscript

Y= total variable

Equations (5-1) are the non-linear, total variable

model of the system. For convenience these equations can

be changed to the perturbation model by assuming that each

of the variables is composed of a transient and steady-state

portion. Thus
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*

Tf = Tf + Tfss (a) W
* * *
Tw = mw + Twss (b) Wc
* *

TCO = co TCOSS(C)

When Equations (5-2) are substituted into Equations

(5-1) and the steady state equations corresponding to Equa-

tions (5-1)

tracted from these substituted equations, the pertubation

model results:

*
W

o3 Tin - Cpf Tess

(pvcp)f = - (hiAi+Cpf ss) To+h,A T+ (c
W - Cpf WTf
. hvo
(pVCp)wTw = hiAin - (hiAi+hOAO)Tw + - T
. *
(pVCp)CTw = ZhvoTw_(hvo+2cchcss)Tco
-2C_ WT
pc cw -

co

(2)

(the time derivatives equal to zero) are sub-

*

)

These pertubation equations contain product-type non-

linearities involving the flow rates and their respective

temperatures.

product of these terms, which was shown by Stewart (S3) as

A linear model is obtained by neglecting the

being equivalent to using a Taylor Series expansion and re-

taining the constant and first order terms.

When the values from Table 5-1 are substituted into

Equation (5-3) the resultant non-linear model for these

specific operating conditions are
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TABLE 5-1

LIST OF SYSTEM CONSTANTS

Symbol Nomenclature Value TUnits Source
CPC coolant heat capacity 0.823 BTU/lb°FI 1
pr wall heat capacity 0.037 BTU/lb°E 1
Cpf oil heat capacity 0.405 BTU/1b°F 2
h. oil side heat transfer 0.0078 BTU/sec®F £t 3
coefficilent
h coolant side heat transfer 0.0166 BTU/sec®F £t 3
coefficient
Ai inside heat transfer area 0.322 ft2 2
A outside heat transfer area 0.444 ft2 2
Tci coolant inlet temperature 46.8 °F 3
Tcoss coolant steady state out- 71.5 °F 3
let temperature
Tess 0il steady state tem- 146.8 °F 3
perature
in 0il inlet temperature 156.2 °F 3
WSS steady state wall tempera- 73.5 °F 3
ture
v, coplant volume 0.0102 ftz 2
Ve 0il volume 0.0170 ft 2
Ve wall volume 0.0153 ft3 2
Weo steady state oil flow 0.0467 1lb/sec 3
Wess steady state coolant flow 0.00667 lb/sec 3
o, coolant density 65.4 1b/ft> 2
Pe 0il density 53.0 1b/ft> 2
P, wall density 640.5 1b/ft> 2
QL heat loss 0.035 BTU/sec 3

Sources: 1. Handbook: 2. Laboratory measurements;
3. Steady state data.
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T, = - 0.0583 T  + 0.00688 T + 10.54 W - 1.11 WT, (a)
T = 0.00693 T - 0.0273 T + 0.0102 T (b)
w c w co (5-4)
T =0.0268 T - 0.0334 T - 74.05 W
cO w coO C
- 3.00wW_ T, (c)
The linearized process model is then
T, = -0.0583 T, + 0.00688T_ + 10.34 W (a)
T = 0,00693T_. - 0.0273T + 0.0102T (b) (5-5)
w £ w co
Tco = 0.0268Tw - 0.03341‘co - 74.05WC . (e)

When the wall temperature is the response variable,

the transfer function corresponding to the linear model is:

0.073 (s+0.0334)w - 0.752(s+0.0587)Wc

w -~ (5+0.0129) (540.0458) (s+0.0607) (5-6)

T

This equation represents the transfer function for
which the time domain identification technique will be test-

ing.

Experimental Determination of the System Characteristics
by Standard Methods

To evaluate the performance of the identification
technique, which is the basis of this work, two other iden-
tification procedures were used also: fregquency response
testing and pulse testing. Transient response tests were
also conducted for an independent determination of the sys-
tem gains. The individual technigques and their ramifications
and results will be discussed first, and a general comparison

will be made along with pertinent conclusions.
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Transient Response Tests

This technique is called transient response’ testing
because the experimental system is forced away from the steady
state and is allowed to come to a new steady state. However,
no data were taken on the actual transient portion of the
tests, which served only as a convenient means for deter-
mining DC gains of the system for comparison purposes. The

results of these tests are listed in Table 5-2.

TABLE 5-2

DC GAIN OF EXPERIMENTAL EQUIPMENT AS DETERMINED
BY TRANSIENT TESTS

————

Forcing Direction DC Gain
°F/1b/min.
coolant + 19.7
coolant - 42.9
oil + 1.35
oil - 2.97

The data of these tests were recorded in two ways:
the voltage output of the transducers and amplifier systems
versus potentiometric readings of the temperatures and
versus scale and stop watch measurements on the flow systems.
These recordings provided calibration of the measurement

systems.
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Frequency Responsé Tests

Frequency response tests were conducted following
the standard procedure of forcing the system with sinusoidal
variations of many different frequencies. The frequency of
the forcings ranged from 0.0118 cycles/minute to 17.65 cycles/
minute. The electrical signals for these forcing functions

were generated on the analog computer by solving the equations

X = - @ sin Wt (a)
y =W cos ut (b) (5-7)
'§(O) = A (volts) (c)

where ; was the desired sine function and A was the desired
amplitude.

These electrical signals from the analog computer
were then converted to pneumatic signals by the Taylor trans-
ducers, and the flow rate was varied by the control valves
in response to the pressure signal. The signals from the
flow rate transducers and amplifiers were then recorded on
the Sanborn 6-channel recorder. The amplitude and phase
lag of the resonse function were then determined from these
response record;as a function of the forcing freguencv.

The results of the tests are given in the form of a stan-
dard Bode Plot in Figure 5-6 and Table 5-3.

The difficulties with these tests are many and

varied, three of which will be listed here.

1. The length of time regquired to conduct the test

is very great. The lowest frequency used in the tests required
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about ninety minutes for just one cycle, and extrapolation
still was necessary to determine the DC gain.

2. The disturbances to the system were great.

The variations do tend to average out, however, due to the
plus-minus nature of the forcing. However, there is still
a transient response associated with this fércing.

3. Results obtained in the form of the Bode Plot
are limited in usefulness for further theoretical considera-
tions.

TABLE 5-3

DC GAIN OF EXPERIMENTAL EQUIPMENT AS DETERMINED
BY FREQUENCY RESPONSE TESTS

Forcing DC gain
°F/1b/min.

coolant 33.2

oil 2.36

Pulse Tests

Due to the product non-linearities associated with
flow forcing of the reactor, pulse testing provides a means
of estimating the extent to which these non~linearities affect
the system description. This estimate is given as a result
of forcing the flow in both directions from the steady state.
The pulses used in the tests were sawtooth-shaped with an
approximate duration of seventy five seconds. This magnitude

represents a long pulse, far from an impulse. Because of the
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physical limitations imposed by the flow systems, the magni-
tude of the forcing pulse could not be made great enough to
provide sufficient energy to the system in a shorter period
of time. However, this long pulse did not disturb the sys-
tem greatly. The wall temperatures changed about six degrees,
or about eight percent of the steady state temperature.

As can be seen from Figure 5-7, which is a standard
Bode Plot, i.e., magnitude ratio and phase lag versus fre-
quency, the non-linearity did not have a great effect on
the system dynamics. However, there was a significant effect
upon the DC gains of the system (Table 5-4) when both coolant
and oil were forced. 1In both cases there was a factor of

approximately 2 between the respective DC gains.

TABLE 5-4

DC GAIN OF EXPERIMENTAL EQUIPMENT AS DETERMINED
BY PULSE TESTING

Forcing Direction DC Gain
°F/1lb/min.
coolant + 22.8
coolant - 39.8
oil + 1.66
oil - 2.98

The pulse testing technique seems to be very sensi-
tive to pulse duration, pulse shape, noise, and amount of

energy developed in the system. In the pulse tests conducted
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on this system, it was impossible to obtain good information
over more than one decade of magnitude in the Bode plot.
This limitation is not intended to imply that pulse testing
technique is not a valuable tool in general. Because the
application of this technique is not the prime purpose of
this work, essential refinements in the technique, such as
smoothing the data and using a wide variety of forcing
pulses, were not employed.

The computations involved in pulse testing are much
more difficult than those of frequency response testing, but
once a computer program is developed, the results are quickly
obtained. Theoretically the identification can be made with
only one short test. The computational procedures used in
this work were presented by Dreifke and Hougen (D2) and were

programmed by the author for the Osage computer.

Time-Domain Identification

The determination of a model for the experimental
process was conducted in two stages. First the pole identifi-
cation was carried out and then the major concern of this

present work, the zero identification, was executed.

Pole Identification
The theoretical model of the process describes it as
having three poles. 1In order to identify the system as
third order, it is necessary to have three linearly independ-
ent responses of the unforced process (H2, p. 43 ). In an

effort to obtain at least three independent responses, six
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tests were conducted using various combinations of the two
flow streams to force the process from steady state. These

combinations are listed in Table 5-5.

TABLE 5-5

FORCINGS USED FOR POLE IDENTIFICATION

Test Forcing (Flow Rate)
Number 0il Coolant
1 increased
2 decreased
3 increased
4 decreased
5 increased increased
6 decreased decreased

With each of these forcings, the system was driven
a small amount from steady state (a wall temperature change
of about six degrees F). The forcing was then removed and
the wall temperature recorded as it again approached steady
state.

All twenty possible combinations of these six tests
(taken three at a time) were used in the digital computa-
tions for the poles. Many of these combinations yielded no
significant results. The precise reasons are now known,
but there are several possibilities.

1. The tests were not linearly independent: A

probable cause, but not conclusive, since the tests appear
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to have different initial values, initial slopes, and
initial rates of change of slope which would indicate they
were linearly independent.

2. The noise level was too great: An improbable
cause as an inspection of the recorder traces shows them
to have a very low noise level (especially in the early
portions of the tests where the energy levels were high)
of no more than one or two percent. Heymann (H2) was able
to obtain identifications with as much as eight percent
noise.

3. The steady state conditions changed while the
tests were being conducted: A most probable cause of trouble
as there were basically four factors controlling the steady
state. They include the oil flow rate, the coolant flow
rate, the o0il temperature and the coolant temperature.

Every possible effort was made to control these factors as
closely as possible, but there were limitations on the
equipment available. 1In controlling the oil and coolant
temperatures a deadband existed in the controllers, making

it impossible to hold these temperatures any closer to the
desired values than =z 0.25 degrees. Because of the measure-
ment technique required by available equipment for the
coolant flow, the pressure drop and the recorded voltage
could be maintained constant, but the flow rate changed
because of air bubbles adhering to the walls of the capillary.

All of these factors add up to what the author be-

lieves to be a rather unreliable steady state, and therefore




the most probable cause of trouble. Heymann (H2, p.199)
states, "Low frequency disturbances such as changes or

drifts of steady state operation level cannot be tolerated
for this identification." (He makes no other reference to
this problem except for one other short qualitative statement
as to the effect of steady state changes.) There exists no
quantitative measure of this effect, so that it is impossible
to tell the extent of the corruption of the identifications
by the o0il and coolant temperature changes, etc. It was
possible, however, to obtain from many of the tests good
identification results. The results of a mean and standard

deviation analysis of the identifications are listed in

Table 5-6.
TABLE 5-6
RESULTS OF POLE IDENTIFICATION

Pole Mean Value Standard
Deviaticn

1 -0.0498 (.0098

2 -0.0182 2.0055

3 -0.00987 .0024

This averaging was necessitated by the general instability
of the identifications, and it is believed that they provide
a reliable identification of the process dynamics in this

range of operation.
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The instability of the identifications can be seen
in the plots of Figures (5-8) and (5-9). In both cases the
high frequency pole is the most unstable, but this result
does not seem unreasonable when compared with Figure 34 of
Heymann (H2, p. 184) which shows that even under ideal com-
puter conditions this pole is not identified as well as the
others.

During the early parts of the identifications, the
two lowest frequency poles are shown as being equal because
they were identified as being complex. The complex part was
very unstable, and consequently it was assumed that these
poles were real and close to being equal. Heymann (H2, p. 167)
found that when two poles were very nearly equal the identifi-
cations tended to oscillate between real and complex poles
with the complex part being unstable.

In Figure 5-9 there is an abrupt change in the
identification at delta = 61, which corresponds to time = |
183 seconds. This identification is with tests 2, 4, and 6.

A close look at the trace of response 4 showed a sudden
shift in the response at about 180 seconds, which probably
causes this instability in the identification.

To summarize the results of the pole identification,
this author believes that a reliable identification has been
made through the use of the mean of all twenty combinations
of tests even though some instability exists within each

test.
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Zero Identification

In all of the computer studies the zero identification
technique worked very well and an identification was obtained,
even when there was a quite large error in some of the factors.
However, in all of these tests there was only one error, which
had a known magnitude. In order to test the technique under
more realistic circumstances, the experimental process was
used in place of the computer. In the process there were
a multiplicity of errors, the magnitude of which were un-
known. These include all of the errors assumed in the com-
puter studies: misidentification of poles, incorrect steady
state, noise, transportation delay, non-linearities, etc.,
and probably some items which were not considered in the
computer studies.

Here again, as with the pole tests, in order to assure
a good selection of independent tests, seven tests were
conducted with both the o0il flow rate forcing and coolant
flow rate forcing. Table 5-7 is a summary of these forcings.

Unlike the pole tests where the required information
is the relaxed response for the zero test, the forced
response is the desired information along with the forcing.
The system was therefore forced from steady state by each of
the forcings of Table 5-7, while the response and input were
alternately recorded versus time as output of the analog to
digital conversion equipment.

In the analog computer tests of the non-linear system

the coolant forced process was much more non-linear than the
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TABLE 5-7

FORCINGS USED FOR ZERO IDENTIFICATION

t

Test 0il flow lb/sec Coolant flow]iVsec
1 - 00125 +0.001
2 +0.0125 -0.001
3 -0.00025¢t -06.00001t
4 +®.00025¢ +4.00001t
5 -0.025 sin (0.091t) -§€.002 sin (0.091t)
6 -0.025 sin (0.050t) -0.002 sin (0.050t)
7 -0.025 sin (0.010t) -©0.002 sin (Q.015t)

oil forced system. In the actual experimental process the

opposite is true. If one assumes that the theoretical model

of the experimental system given by Equations (5-4) is cor-

rect, then an idea of the degree of non-linearity can be

garnered by lumping the non-linear terms with the respective

temperatures as

T_ = - (0.0583+1.11W)T

£ £

Cc

+0.00688Tw + 10.54 W (a)

(5-8)

T o =0.0268Tw - (0.0334 + 3.00 Wc)Tco - 74.05 Wc

(b)

Substituting the values of the step forcing into these

lumped terms,

0.0583 + 1.11w =0.0583% 0.0139
0.0334 + 3.00W =0.0334 +0.003
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It can be seen that this term for oil forcing will vary + 24-
percent, and the coolant forced term will vary + 9-percent,
thus indicating that the o0il is almost 3 times more non-linear
than the coolant side. On the basis of this information, the
coolant side identification should be better than the oil
side. The truth of this prediction will be seen as the re-
sults are discussed.

Nineteen combinations of these tests were used in the
identification of each transfer function. Table 5-8 summarizes
these combinations.

Table 5-9 gives a summary of the mean values of the
identified gains and zeros for the nineteen combinations of
tests with both the o0il and coolant forced systems. These
values are all within about + 50-percent of the overall mean
value and approximately half of them are within = lC-percent
of the overall mean value.

A close inspection of some of the extreme cases will
show why their individual mean values should be eliminated
from the overall, or at least modified. One good example is
in the case of sets eleven and fourteen, where the forcings
were ramps and a very low frequency sine wave. As was deter-
mined in the computer studies of linear systems, this con-
dition did not produce good results (page 25). The early
part of the sine forcing appears very similar to a ramp, and
therefore the linear independence of these tests is tenuous.
In practice these identifications were poor with a large

drift and slow convergence. In the case of set fourteen of
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the oil system, no identification at all was made for the gain
of the system. These tests should therefore be eliminated
from the overall identification.

Sets eighteen and nineteen of the coolant tests,
which have the extreme values of the gain are valid in that
taken as a pair, they represent the worse cases of step and
ramp forcing, but their identified results when averaged give
the linearlized model.

Sets eleven and fourteen are the only ones for which
it seems reasonable to eliminate the mean values. The

corrected overall mean values are:

0il gain = 5.47 x 1073
oil zero = 3.75 x 10°°
coolant gain = 4.08 x 1073

coolant zero = 5.88 x 10 °.

Figure 5-10 shows the results of a pair of identifi-
cations of the coolant system. For a negative step and
negative ramp the gain and zero curves have positive slopes,
while for positive forcings the slopes are negative. It is
possible to see that these curves bound the overall mean
value with the gain curves crossing at almost the exact value
of the mean. This result would indicate that the mean value
is a very good linear identification for this pair of tests.

In the computer analysis of a non-linear system, when
step and sine forcings were used, the identification divided

into distinct groups bounding the linear system. The same is
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TABLE 5-8

TEST COMBINATIONS USED FOR ZERO IDENTIFICATION

Set Numbers

345617891011 12 13 14

15 16 17 18 19

step -

step +

ramp
ramp +

sin (0.091t)
sin (0.05t)

sin (0.01t)

step_+
step -
ramp -
ramp +
sin (0091t)
sin (0.05t)

sin 0.015t)

X X X X

0il
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TABLE 5-9

RESULTS OF ZERO IDENTIFICATION OF EXPERIMENT EQUIPMENT

Qil Forced System Coolant Forced System
Gain x lO3 Zero x lO5 Gain X lO3 Zero x lO5

1 5.55 3.66 4.64 3.86
2 5.62 3.80 3.41 6.69
3 5.53 3.20 3.60 4.25
4 4.54 2.61 5.79 7.10
5 7.05 3.77 4.14 7.19
6 5.84 4.05 3.97 5.07
7 5.24 3.32 4.02 6.45
8 3.41 3.98 5.34 6.17
° 5.93 3.88 3.00 6.98
10 5.71 3.75 3.92 6.08
11 4.92 2.44 3.67 9.67
12 6.14 4.67 2.52 5.21
13 6.16 4.46 3.81 4.96
14 * 5.25 4.68 9.60
15 5.29 5.17 3.98 6.97
16 5.39 4.02 4.21 7.01
17 5.29 3.27 4.30 7.21
18 6.73 4.34 6.33 1.91
19 4.54 3.98 2.48 7.95
Mean 5.45 3.78 4.09 6.28

*no identification obtained.
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true with the results from the experimental process, which
can be seen in Figure 5-11. The overall mean values fit
pretty well within the identification results, indicating
that these mean values are also valid for these tests.

In the identification for the oil system it appeared
that the ramp was the predominant test when the forcings
were a ramp and a step. Therefore, Figure 5-12 shows the
results of the pair of ramp forcings with a positive step.
Although these tests do not show the clear cut opposition
in the gain, as was noticed with the coolant system, the
overall mean value does appear to be a good linear identifi-
cation of the tests.

In Figure 5-13 the identification for positive step
and sine forcings is plotted. Here again, as in Figure 5-12,
there is not the distinct separation in the identification
of the gain as was noticed with the coolant system. However,
again the overall mean value does appear to be a good linear
identification, in that the mean value of the 45 points which
are plotted for the gain is 0.000524, plus the nine points
which are off the graph, is 0.00101.

With this verification that these overall mean values
comprise a good identification, they will be used to deter-
mine the actual model in terms of the wall temperature and
flow rates. The actual zero is merely the identified zero
divided by the gain. The values are given in Table 5-10.

To determine the gain in terms of °F/lb/sec, it is necessary

to multiply the identified gain, which is in terms of volts
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temperature secz/volts flow by a factor of °}?/volttemp X

voltflow/lb/sec.

For the oil system this factor is 333, and for the
coolant system it is 2083, as determined by the measurement
and amplification equipment. The results are given in

Table 5-10.

TABLE 5-10

FINAL MEAN RESULTS OF ZERO IDENTIFICATION
OF EXPERIMENTAL EQUIPMENT

System Gain Zero
0il 0.181 - 0.00675
coolant 0.852 - 00154

The linearized transfer function as obtained by the

pole and zero identification is then

0.181 (s+0.00675)W - 0.852 (s+0.0154)Wc

W~ (s+t0.498) (s+0.0183) (s+0.00987) (5-10)

T

Comparison of Results

The Bode diagram is used to present the results of
the three identification methods for comparison. This pre-
sentation was chosen because it is the final form of two of
the identification techniques, and the time-domain results
are easily converted to this form. The reverse is not nearly

as easy Or as accurate.
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Figures 5-14 and 5-15 give the Bode diagram of the
coolant forced system. These graphs show that the results
of the time dcmain identification compare very favorably with
the results of the other testing methods and the theoretical
model. The Bode diagrams of the oil forced system (Figures
5-16 and 5~17) do not show this good comparison. Examina-
tion of the curve for the time domain identification reveals
a peak in the magnitude ratio at approximately 0.1 cycles
per minute. This peak is a result of the low natural fre-
quency of the identified zero.

To obtain some idea of the quality of this identified
system, analog computer tests were run to compare the iden-
tified system to the theoretical system and to actual data
from the plant. The procedure used in these tests was to
match first, as closely as possible, the actual plant data
with the theoretical non-linear model. The response of the
theoretical linear model was then obtained by removing the
product term. The last step was to determine the response of
the identified model. To compare the dynamics of the models
closely, the amplitude of the response of the identified
model was adjusted to equal the amplitude of the theoretical
linear model over the first guarter cycle.

As can be seen in Figure 5-18, the identified model
matches the actual data much better than does the theoretical
linear model--almost as well as the non-linear model. The
dissimilarity between the model in question and the models

obtained by other means can therefore be attributed to an
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attempt by the time domain identification technique to approxi-
mate the dynamics of the non-linear process. For this reason
it is assumed that the identified model is as good a linear
approximation as can be determined.

The DC gains of the oil forced system as determined
by all of the experimental methods are very similar if an
average is used for the pulse and transient tests. The aver-
age of the DC gains of the frequency response, pulse, and
transient tests is 2.28. The DC gain, as determined by the
time domain identification, is 2.27, which appears to be a
very reasonable value.

Although the DC gains of the coolant forced systems
compare less favorably with the average of the results from
the other experimental methods than the DC gain of the oil
forced system does, the identified gain lies within the range
of values experimentally determined for positive and negative
forcings. The identified gain of 24.33 is therefore believed

to be a valid result.

TABLE 5-11
SUMMARY OF DC GAINS (°F/lb/min.)

Testing Method 0il Coolant
Theoretical 1.18 20.51
Time domain 2.27 24.33
Frequency response - 2,36 33.21
Pulse positive 1.66 22.82
Pulse negative 2.98 39.81
Transient positive 1.35 19.70

Transient negative 2.97 42.90




CHAPTER VI

CONCLUSIONS AND RECOMENDATIONS

Conclusions

This technique, when used in conjunction with Heymann's
pole identification technique, appears to be a useful method
for system identification. The model is obtained in its
most useful form, the poles and the zeros, which one can
readily transform into a differential equation. The error
propagation analysis is a good measure of the reliability of
the identified zeros, but it should not be used as the ultimate
criterion for determining the best value.

For most real processes, the best values for the zeros
will be the arithmetic means of the identified values at the
points where the predicted error is relatively small. The use
of the mean minimizes the effect of noise.

In most cases errors in the data are not magnified by
the computation. Most errors do, however, delay the converg-
ence of the results to the correct value. The error propag-
ation analysis does not indicate this slow convergence;
therefore caution should be exercised in the interpretation of
the results when the time is less than one-half the longest

time constant.
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In the computer tests of the technique that were con-
ducted on the Osage High Speed Computer the final form of
the computation was the factored-zeros polynomial. For real
systems it was found that this polynomial should not be
factored until the results are interpreted and the mean values
determined. The factoring of this polynomial greatly magnifies

the errors in the zeros.

No great limitations of the time domain technique were
detected in the investigation. In applying the technique,
however, great care should be taken in the preparation of the
experimental tests, especially in regards to the steady state

and transport delay.

Recommendations for Future Work

The present investigation has focused primarily upon
the development and verification of the identification technigque.
Further work should be done in identification of actual processes.
There are several points that should be investigated in this
connection. These apply to both the pole and the zero identi-
fication.

(1) The linearization of nonlinear systems should be
analyzed in greater detail.

(2) A study of time-varying systems should be con-
conducted.

(3) The use of data-smoothing techniques to obtain

more stable identifications should be investigated.
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To facilitate the interpretation of the results, the
zero identification program should be modified to determine
the mean values of the identified results at the times when
the predicted error is small. These mean values would then
constitute a set of smoothed coefficients of the polynomial,

the solution of which determines the system zeros.
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APPENDIX A

NOMENCLATURE*
a; = ith coefficient of homogenous weighting function (2-16)
b, (t) = coefficient of the (n-i) th derivative of the

dependent variable in an nth order scalar
differential system (2-1)
dai = sum of the (n-1) terms of the form l/(pl—pi) (3-9)
£(t) = general time function (general forcing

function of a process) (2-3)

g = k element zero vector (3-22)
G = k x k matrix of Gn(i) (3-22)
Gn(i) = convolution integral of the ith term of the

(k-n)tn derivative of the weighting function (3-2)

gjk(t) = coefficient of the (n—k)th derivative of the jth
independent variable of a scalar differential
system (2-1)

H(s) = homogeneous transfer function (2-15)

Hn(i) = integral of the ith term of the (k-n)th

derivative of the homogeneous weighting function

times the input times the variable of integration (3-11)

*

The numbers at the end of the definitions are the
equation numbers in which the symbols are either defined or
first used.
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Mgkj)[ ]

Mékj)*[ ]

W(t, )
W, (t,A)
W(t-2)
. (t)
y(t)

Yi(t)
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order of differential operator (2-2)
number of system outputs (2-1)
linear differential operator of order n (2-2)

number of system inputs (2-1)

= linear differential operator of order kj of

the jth forcing function (2-2)
(k

= adjoint linear operator of My j)ﬁ 1]

order of the system (2-1)

Laplace operator

time

unit impulse response (general weighting function)
of linear system (2-4)

particular weighting function of a linear
system associated with input xj(t) (2=7)
weighting function for constant parameter
linear system (2-12)

ith input function to a chemical process (2-1)
k element response vector (3-22)

dependent {(output) variable of a scalar linear
process (2-4)

ith dependent variable of a linear process (2-1)

Greek Letters

parameter of W(t,A) (2-4)
1B pole of the system (2-15)
transport delay (4-3)

angular frequency of forcing sine functions (4-2)




APPENDIX B

NUMERICAL EXAMPLE OF ZERO CALCULATION

The calculation is performed in five basic steps.

These steps are:

1.

Calculation of the coefficients of the weighting
function and n-1 of its derivatives for the
equations shown below.

Calculation of the integrals.

Multiplication of the integrals of step 2 by their
coefficients and summation on i, and calculation
of the expected error in these results.

Inversion of the coefficient matrix and calculation
of the expected error in the inverse.
Multiplication of the inverse matrix times the
response vector to determine the systems zeros

and calculation of the expected error in the zeros.

The system chosen for this example is the same as was

used in determining the effect of the number of significant

figures in the data. This system is

Y(s)

0.00156 s + 0.000051324 X(s) (al-1)

(s + 0.0117) (s + 0.045) (s + 0.05833)
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The coefficients of the homogeneous weighting function

are:

a; = 644.006
a, =-2252.815 (Al-2)
ay = 1608.807.

The system contains one zero, therefore, k=1 and the coeffi-

cients of the first derivative are needed. These coefficients

are:

alpl = -7.535
asp, = 101.327 (a1-3)
azp,y = -93.842,

The inputs to be considered are:

x, (t) = 13.017

1
xz(t) =0.09914¢t. (Al-4)

If the time is assumed to be fifteen seconds, the

responses of the system (Al-1) to the inputs of (Al-4) are:

Yl(IS) = 1.54386
Y2(15) =0.064790. (A1-5)

The second step of the identification is the calcula-
tion of the integrals of Eguation (2-19). This calculation
is done in two parts. First, calculation of the function

epilx(k) at one second intervals of time (equal to the sampling
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time of the input and response data) up to the maximum desired
time. The integral of this function is then calculated at

each time point of interest. The program allows for selection
of the initial time point and for the spacing of all subsequent
ones. The integration technique used in the identification is
a fifth order quadrature which uses six data points in the
calculation of the integral at each point. This use of many
points provides a certain degree of smoothing.

The results of the integrations at t = 15 are:
15

Input Pole e12Pi x(15) 6/e"jfx(x)cn
i 1 15.5142 213.436
2 25.5658 278.862
3 31.1146 312.147 31 g
2 1 1.77239 12.5482
2 2.92071 17.7076
3 3.56719 20.3979

Multiplication of the integrals by the proper coeffi-
cients and summation oI the three products to yield the coeffi-
cients of the unknowns is the third step of the computational
scheme. From Egquation (2-19) an example of one of these cal-

culation is obtained by setting j = 0.
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The expansion of this summation is

15 15
yo(15) = gl(ale‘plt ./r Lrrxyan + aze‘Pzt' jr eP2 % (A) ar
0 0
5 (Al-8)
+ a3e—p3t Of L3tk (h)an.

Substitution of the values from (Al-1), (Al-2), and (Al-7)

into Equation (Al-8) yields

¥ 19 = 4817.00 g - (A1-9)

The other coefficients can be determined in a similar

manner. In matrix form the results are

4817.00  833.027 (A1-10)
149.684  36.6890

At the same time the error matrix for an assumed one-percent
error in the poles and input as calculated from Equation
(3-20) 1is

!
=¥ 166.977 50.5095 (Al-11)
| 3.02734 2.22371

AG

The inverse of the coefficient matrix is

G—l _| 0.000705012 700160074 (A1-12)
-0.00287631 0.0925630

and the expected error in the inverse is

-1 0.00000772113 -0.000175677
AG = (Al-13)

-0.0000123617 -0.00127542
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The final step of the computation is multiplication
of the inverse times the response vector to give the zeros

of the system.

g = ¢ x

0.0000513219
g = (Al-14)
0.00155654

The expected errors in these zeros are calculated from Equation

1 1

(3-23) Ag = AGT X + G~ 4X

When the expected error in the response is assumed to be one-

percent, this computation yields

Ag = 0.00000105144 (A1-15)

-0.0000861536
A more readily understandable form of these errors

is an absolute percentage error. These errors are:

2.04871
Ag = percent (A1-16)

5.53496
This step completes the identification calculation. (al-14)
are the final results and (Al-16) are the expected percentage

errors in the respective terms of (Al-14).




APPENDIX C
LISTINGS OF IDENTIFICATION PROGRAMS

In this appendix the listings of the programs developed
for the identification of the system zeros are given. These
programs are written in g-level Fortran IV. Comments are
inserted throughout the programs to identify the inputs and
to explain the computational steps. Figure B-1 is a block
diagram of the computational scheme.

The programs used in the pole identification studies
were developed by Heymann and are listed in his dissertation.

These programs are written in a modified Algol language called

Osage Algol (Wl).
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READ IN POLES

CALCULATE COEFFICTENTS
OF THE WETGHTING FUNC-
TION AND k-1 OF ITS
DERIVATIVES

[READ 1IN CHANNEL AND DATA
SET DATA IN ET DATA IN
INPUT ARRAY [RESPONSE
ARRAY
INTERPOLATE INTERPOLATE
CALCULATE
INTEGRAL —
FOMPLETED?
187
¥ES
¥ES
CALCULATE
COEFFICIENT

TESTS
COMPLETED?

SET SET
COEFFICIENT] RESPONSE
mﬂf VECTOR
INVERT

COEFFICIENT]

MATRIX

|

MULTIPLY

NUMBER
OF SERIES

C-1. Block Diagram of Identification Technigue




INTEGER NyCNySERIESsOTCTOyCTL12CT24CT34CT44(T5,CT64CT7,L78, ZERDO100

IWelValod ol eMpPoeQsCALBO) »CKy Ky, SLON(6)COMB,SET,AA(310), ZERQOOIL1O
2CT4@1 NP1 ,NM1,DATA,CAM,CAQ,QML,SINGUL, ZEROO120

3 DELAY(80)+UQsDELPAGE,COUNT ZERGO130

REAbL TeEPS)EPSILyCALES) ¢CBLU5),CEALIS),CEBLIS5),CZ{5) ZERDO140

coMB = 0 ZERDOL50

Crr oty ke oA A S e R R Uk xRk AT R AT R ARG R R ARGk o ExEkZERO0160
c THES PROGRAM IS TO CALCULATE THE ZEROS OF A SYSTEM FROM THE ZEROOL70
C POLES OF THAT SYSTEM AND THE FORCING AND RESPONSE FUNCTIONS ZERCO180
c SAMPLED AT EQUAL BUT ANTERNATE INTERVALS OF TIME ZERO0190
c CN NUMBER OF SYSTEM POLES ZERD0200
C N NUMBER OF DATA RUINTS TO BE USED ZERD0210
C SERIES  IDENTIFICATION NUMBER FOR THE TESTS ZER00220
C cF NUMBER OF TESTS IN THE SERIES ZERD0230
C CT0 NUMBER OF COMBINATLIONS OF TESTS TO BE USED ZERG0240
c FOR THE IDENTIFICATION OF CN-1 ZEROS ZER00250
c cTo NUMBER OF COMBS FOR CN-2 ZEROS ZERO0260
C CI7 NUMBER OF COMBS FOR CN—3 ZEROS ZEROQ270
C CE8 NUMBER OF SERIES TO BE COMPUTED ZLEROQOZ280
C U INITIAL TEME POINT OF IDENTIFICATION ZERO0290
C cw STEPPING ENTERVAL OF TIME 2ERD0300
C SLON 1-2 INTERMEDLIATE PRINTQUTS 1 PRINT, O NO PRINT ZERDO310
C SLON3 =1 FIND ROOTS OF THIRD ORDER SYSTEM ZEROO315
C SLON4 =1 READIN VYHEORETICAL ZEROS AND CALC THEQ ERROR ZERG0320
C SLONS =1 IDBNTI6Y FOR CN-2 Z5RQS ZERDO330
C SLON6 =1, IDENTEFY FUR CN-3 ZEROS ZERO0340
C T SAMPLING FIME INTERVAL ZERD0350
Crob e beEPpYoeo b0 e e TR b oo SRR Fo RS a bk koo xRk ke ek Z ERO0360
52 CONF INUE ZERGO370
READ( 15 124)N4CNySERIES jCTGTO,CT62CTToCTByU LV, (SLON(I)I=1,6) ZERG0380

1, DATA ZERO0390
READ(1,126) T ZERQ0400

U= U+l ZERQ0410

COMB = COMB + 1 ZERD0420
NPLlaN+1 ZER00430

CT4 = NPL/CV ZERQOO440
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CALL INTEG(NPL+CNsSY3SCOSsTsJyU,CV) ZERO1190

CALL INTEGINP1¢CN¢SSeSSINsTyJsULCV) ZERQ1200

10 CONTLNUE ZERQ1210

CT4R1L = CT4+1 —-U/CN ZERQ1220

IF(SLUN(1).EQ.0) GOTO 12 ZERO1230

DA 37 JsleCN ZERO1240

WRIFE(3,11118)4I,SCOSLJ2E)ySSIN{Js14d+1=1,CT4P1) ZERO1250

47 CANIINUE ZERO1260

12 CONJ INUE LERD1270

M=0 LERO1280

DO 13 CK=U4NPL4LV ZERO1290

M=M+1 ZERO1300

ERREN=CI(CK)}*CER(L) /100 ZERO1310

DO 48 I=1,CN ZERO1320

CALL CALC(CNsCKyNP1l yMsI1,CA1,CBL+CREX,CIMX,SSIN,SCOS,CP, ZERQ1330

1 PERERRyCDPSERRIN,U,LLV) ZERO1340

CG Lo MI=CP ZERO1350

LE{&oLoM)=CDP ZERQ1360

18 CONJINUE ZERO1370

13 CONJINUE ZERO1380

IF(L.EQ.CT) GOTO 19 ZERO1390

L = L+l ZERO1400

60TGQ 20 ZERO1410

18 P=0 ZLERO1420

PAGE=1] ZERQO1430

IF{BLON{(1).EQ.0) GOTB 22 ZERO1440

D3 23 J=1,CN ZERO1450

DO 23 L=1,CT ZERQO1460

WRIGE(3511118)(1sCGlHolal)sCE(JaL,yl)y I=14M) ZERO1470

23 CUNJLNUE ZERO1480

22 CONTLNUE ZERO1490

CRIEIF U R AR SETT SRR Sk Sk bk kb kbbb rrhbdxatksxZ EROL1500

C THE CALCULATIONS JO THIS POINT BAVE DETERMINED A SET OF ZERQLS510

C SIMULTANEOUS EQUAFIONS. THE FOLLOWING SOLVE THESE EQUATIONS ZERO1520

C 8Y INVERTING THE GOEEFFRICIENT MAYRIX AND MULTIPLYING ZERQ1530
C

JHE RESPONSE VECTOR BY dT. ZERO1540

PeT



Cobbbb e bbbk dib ok kbbb ek bbbk ek rkkkikxZERQLSS0

51

53

35

25

LRE(SLON{S).EQ.L) GATO 51
IF(BLONC6).EQ.1) GOTD 53
READ(L,12134dCAL]1) DEUMAY(L)I=1,CT5)
GATo 35

CONY INUE

CN=CN-1

LYT03CT6

LT6 = CT6*CN
READ(Ly1213{CALI),DELAY (1) 41I=1,CTH6)
GOTO 35

CONTINUE

CN=GN-2

LT05CT7

CT7 = LTI%CN
READ(L1o121){CA{1),DELAY{L)I=1,CT7)
CAONIINUE

P = P+l

Q = CN¥¢(P-1) + 1

CAQ = CN%P

WRIFE(3,1116)

WRITE(3,11114) CNy SERIES, Py {(CAC(]), [=Q,CAQ)
WRITE{3,11124) SERIES.PAGE

CAUNT=5

PAGE=PAGE+1

WRIFE(3,11122) {(DELAY{(I), I=Q,CAQ)
WRIFE(3,1118)

CK=0

DEL=0

DO 25 1I=Q,CAQ

IF{DEL.GE.DELAY(1)) 6O TO 25
DELaDELAY(I)

LONTINUE

I1F(V.GT.DEL) GO TO 26
CK={DEL-Ud/CV

IF{BELAE.(U#CKECVY) ) GU TO 26

ZERO1560
ZERQ1S70
ZERO1580
ZERG1590
ZERG1600
ZERO1610
ZEROL1620
ZERO1630
ZERO1640
ZERO1650
LERC 1660
ZERO1670
ZERD1680
ZERD1690
ZEROLT00
ZERO1710
ZERO1720
ZERO1730
ZERO1740
ZERO1750
ZEROL1760
ZERO1770
ZERO1780
ZERQG1790
ZERO1800
ZERQ1810
ZERO1820
ZERG1830
ZERO1840
ZERO1850
ZERO1860
ZERO1870
ZER0O1880
ZERO1890
ZERO1900

GET



26

27

30

31

32

98

LK=LKxl

CANT INUE
CK=CK+1

DG 27 I=1,CN
DQ 27 J=1,+CN
Q =CNx{P-1)+]

CREX{I+4) = CGULJ4CALRQ},CK)
CIMXGLled) = CELJLCALQ),CK)
CONTF LNUE

IF(RERERR.EQ.0) GO TO 30

CALL MADDI(CNALIMX2CREX, 1)

CALE INVERTACREXsCN2EPS,SINGUL)
IF{BINGULL.EQ.1) GOTO 32

CONJT INUE

IF{QERERR.EQ.0) GO TO0 33

CALL INVERTLEIMX9CNLEPS,SINGUL)
IF{SINGUL.EQ.0O) GOTO 33

Q = U+ (CK-1)*%CV — 1
WRIFE(3,11110) Q

COUNT=COUNT+1

IF(COUNT.LE.60) GO TB 33
WRIFE(3,11123) SERIES,PAGE
PAGE=PAGE®]

LAOUNT=0

GO TO 33

Q =W +# (CK-1)*CV — 1
WRIFE(3,1119) Q

COUNT=COUNT +1

IF{COUNT.LE.60) GO TO 98
WRIJE(3,11123) SERIGB~PAGE
PAGE=PAGE+1

LCQUNT=0

CONJ INUE
IF(CKaEQeCT4P1l.AND.PLEQ.CTO) GOTO 50
IF{GQKEQ.CT4P1.ANDPALT .LCTO0) GOTO 35
GOTE 26

ZERO1910
ZERO1920
ZERQO1930
LERO1940
ZERO1950
ZERQO1960
ZERO1970
ZERO1980
ZERO1990
LERO1992
ZERO1995
ZERD2000
ZERQ2010
ZERO2020
ZERO2025
ZERD2030
ZERQOZ2040
ZERDO2050
ZERQ2060
ZERQ2070
ZERO2080
LER(Q2090
ZERO2100
ZEROZ2110
ZERO2120
ZERO2130
ZERQO2140
ZERD2150
ZERO2160
ZERD2170
ZERDZ2180
ZERO2190
ZERG2200
ZERQ2210
ZERG2220
ZERD2230

9¢1



33

96

31

39
38

97

433

CONT INUE

CALL MADDI(CN.CIMX,CREX,~1)
Q=U#{LK—-1)%CV
IR(SLON{(2).EQ.0)GOTO 37
IF{QOUNT.LE.55) GO 1O 96
MWRIFE(3+11123) SERIBS,PAGE
PAGE=PAGE®+]

LOUnT=0

LUNTINUE

COUAT=COUNT+CN+3
WRIJE(3,1117) Q
HWRIFE(3,11111)

CONTJINUE

DA 38 I=1,CN

M = CN&(R-1)¢]
QA=Q—-DELAY{M)
CS{d)=GRULCA(M),QQ)
CALCI)=CS{1)*CER(CALIN})I/100
IF (SLON(2).EQ.0) GOUTO 39

WRITEL(3,11118) CA(MIsCSEId+CALLI)

CONTINUE

LCANT INVE

IRGCOUNT.LT.57) GO TQ 97
WRIFE(3,11123) SERIES,PAGE
PAGE=PAGE+]

COUNT=0

CONT LNUE .
COUNT=COUNT +CN#1

CAvbi MULTIPICN,CY 4CREX,CS)
7iALEs MULTIP(CNoCES14G1IMX,CS)
AL PULTIP (CNoCEALSLREX,CAL)

DO 453 I=1,CN

AS{H)=CEAL(L)+CEBL(I)

CONS1.NUE
Q8L = Q-1
WEIZE(3,1117) QML

LERD2240
ZER02245
ZERQ2250
ZERQ2260
ZERO2270
ZER02280
ZERO02290
ZERQO2300
ZERQO2310
ZER02320
ZERQ2330
ZER0Q2340
ZER02350
ZER02360
ZER0O2370
ZEROZ2380
ZERO2390
LER02400
ZERO2410
LERD2420
ZER02430
ZERD2440
ZERO2450
ZLERO2460
ZERQO2470
ZER02480
ZER02490
ZER0O2500
ZER0O2510
LERD2520
ZER02530
ZERD2540
LERO2550
ZER02560
ZERO2570
ZER02580

LET



43

44
45

48

46

47

IF{SLAON{4) .EQ.0)GOTO 43

CBLACN) =(CYI(CNJ} — CEZLCNI)I*100/CZ4LCN)
CONJINUE

NM1 = CN-1

IF( S10N(4).EQ.0) GOJO 45

DO 44 I=1,.NM1

CBlAI) = (CYLII-CZ(Id) *100/CZLl 1)
CONJ INUE

LONFINUE

IFLCN.NEL3) GOTO 46

IF(SLON(3).EQ.0) GO O 46

DAA = (GY(2)%42—-4%CYL1))/4

IE ADAALGE.Q) GO TO 48

DAA = ABS(DAA)

DAA = SQRT(DAA)

DBBxCY{2)3CS(2) /DAA+LS(1)}/DAA
DBB=08B*100/DAA
LCS(ON)=CSICNI®*100/CYALCND
CS€A)=CS(2)%100/7CY(2)
WRIFEL3,11116) CYICNI»CS(LNI
WRLFE(3,11120) CY{2)+9CS(2)
WRIFE(3,11121) DAA,.,D8B

GG J0 49

LCAONTJINUE

DAA = SQRTUCY{2)*CYL2)-4%¥CY(1})}/2
cyda) {CY{2)/2)-DAA

Cyia) (CYL2)/2) + DAA
CSEL)={.5-CY{2)/DAAY#ECS{2)#2%CSL 1)/DAA
CSE2)=1.5+CY(2)/DAAIXLSL2)-2%CS{1)/DAA
CONTINUE

0Q 47 I=1,CN

CS{L)=CS(I1)*100/CY(I

LONT INUE

LCSIEN) = ABS(CS(CN))

WRIFE(3,11116) CYU(CNJ,CS(CN),CBLLCN)
NM1l = CN-1

LERO2590
ZERD2600
ZERD2610
ZERD2620
LERD2660
ZERQO2630
ZERD2670
ZER02690
ZERD2680
ZERO2700
ZERD2705
ZERD2710
ZERD2720
LERO2730
LERD2740
ZERD2750
ZERDO2760
LERQZ2770
LERDZ2780
ZERQZ2790
ZER0O 2800
ZERDZ2810
ZER02820
ZER02830
ZERO2840
ZERO2850
ZERO2860
ZERDB2870
ZERO 2880
ZER02890
ZERG02900
LERDZ2910
ZERQO2920
ZER0O2930
LERO2940
ZERD2950

8t1
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11111 FORNATL® ®,*TEST® ,12X,*RESPONSE*,/) ZER(O3320

L1113 FORNAT{* ¢,* IDENTIFICATION OF ZEROS ReA. SIMS?®) ZERO3330
11114 FORMAT(® *,°SYSTEM GRDER' ¢124* SERIES*,I5,% SET?, ZERD3340

LI3e? TESTS 212,062,025 %,%,1246X9*PAGE *,14) ZERO3350
11115 FORNATL® *,*COEFFICIENTS OF ' 1X,12,1X, ZERO3360

1 *DERIVATIVE OF WEIGHTING FUNCTION®) ZERQO3370
L1116 FORNATL® ?,6X¢*'GAIN®s6X93(EL13.644X)) ZERQ3380
11117 FORMATL® * 44X 13 ¢6XeF9e396XsF9.3,6XsF9.3,6X,F9.3) ZERO3390
11118 FORNATL® *,34X31346X+£13.6,6X4EL3.6) ZERO3400
11120 FORNATU® ?,6Xe*ZERQ*3* REAL '22(E1l3.6494X3) ZERO3410
11121 FORMATL® *,10X,* IMAG ' 32(EL13.6494X)) ZERO3420
L1122 FORNAT{' *,28X,*TIME DELAYS g12,%,%,12,%,',12,* SECONDS*} ZERO3430
L1123 FORNAT{'1°* 415X ,*SERIES "914¢28X+*'PAGE *,14) ZERO3440
11124 FORNAT(*#9% 15X, *SERLES 2,14 428Xs*PAGE *,14) ZER03450

S¥oQ ZLERO3460

END ZERQO3470

071



SUBROUTINE INTEG(NsNNsAsC Y eJeUCV)
DIMENSION A(S5),B(3053,C15,305)
INTEGER U,CV
B(ld=0.
Bl2)=(95%AL 104285 .4%AL24-159.6%¥A1 31 +96.4%¥A(4)—34.6%A(5)
1 +5.4%A06)) /288
B(33d=({2.8% AL 1)#12.9%A(2)+1.4%A(3)el.4%A(4)
1 —6%A(5)¢.12%AL6))/9
BlAad=1{1.275%A(1)+5.4975%¥A(2)42.85¥A(3)+2.85%Ad4)
1 —825%A(5)+.075%A(6)D/4
B(S5d=(2.8%A1{1)+12.8%A12)+4.8%A13)+12.8%A(4)#2.8% A(5})/9
DO 4 I=64N
BULIA=BLI-5)+(95%A(I-5)+375FAL1 I-431+250%A(1-3)
1 +260%AL1I-20+375%A11—-1)+95%A(1))/288
1 CONJINUE
M=0
DO 2 I=UgeN,CV
M=M#+1
CltdeM) = BLI1)
2 CONJ INUE
RETWRN
END

INTEGL100
INTEO110
INTEOL120
INTEOL130
INTEQL40
INTEOQ150
INTEQLl60
INTEOL170
INTEO180
INTEO190
INTEQ200
INTEO210
INTEQ220
INTEO230
INTEQ240
INTED250
INTEQ0260
INTEO270
INTEOQ280
INTEOD290
INTEO300
INTEO310

%1
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SUBROUTINE COEF(CN,CREX+CIMX,CALl,CB1)
INTEGHR CN

DIMENSION CREXI54504CIMX{555)¢CAL15)4CBLLS)
D@ 8 J=1,CN

CREXU1ledd=1

CIMX(1.,J)=0

DO 3 1=1.CN

IF{£.68Q.J) GOTO 3

A = CALLJ)Y — CALlL1)

B CB1{(J) - CB1LI)

E A*A + B#%B

C = 1/¢E

D = ABLFLCREX{1,J) — B#*C*CIMX(1l,J)
CIMX{led) = (—BI¥CXLCREX(L,J) + C*AXCINX{1l,4d)
CREX(1lsJ) =D

EPSiL=.000000001
IFIABSL(CIMX(1,J)).GELEPSIL) GOTO 5

CIMX(1led) = 0
CGNT INUE

CAUNJ LNUE

DO &6 J=2,CN
DO & I=1,CN
A=CREX(:J-1,4 1)

B=CEMX(J-1.1)

C=Cu1(1)

D=LB11(1)

CREX(JoI)=C*A -~ D¥*B
CIMK(J, 12 = {-D)*A & L*8

6 CONJINUE

RETURN
END

COEFO0100
COEFO1l10
CUOEFO120
CGEFO130
COEF 0140
COEFO0150
COEF 0160
COEFO170
COEFO0180
COEFOL190
COEF 0200
COEFO210Q
COEF0Q220
COEF0230
COEF 0240
COEFO0250
COEF 0260
COEF0270
COEFO0280
COEF0290
COEF0300
COEFO0310
COEFQ320
COEFO0330
COEF 0340
COEFO0350
COEF 0360
COEF0370
COEFO380
COEF0390
COEF 0400

vl
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SUBROUTINE INVERT (Al ¢N+EPS,SINGUL) INVOO0O10

INV00020
SUBROUT INE INVERT INVMERTS A MATRIC IN ITaS OWN SPACE USING THE INV0OGCO030
GAUBS—JORDAN METHOD WITH COMPLETE MATRIX PIVOTING. I.E. AT EACH INV00040
STAGE THE PIVOT HAS THE LARGEST ABSOLUTE VALUE OF ANY ELEMENT IN [INV0OO0OOSO

THE REMAINING MATRIX~ THE COORIINATES OF THE SUCCRSSIVE MATRIX INV0O0O060
PINOTS USED AT EACH BTAGE OF THE RECUCTION ARE RECORDED IN THE INVO0O70
SUCLESSIVE ELEMENTS LASITIBNS Of THE ROW CIKYMN UBDEX VECTIRS INV0O0OBO

R ABD € . THESE ARE MATER CALLED UPON BY THE PROCEDURE PERMUTE WHIINVOO0O090
REARRANGES THE ROWS AND COLUMSS OF THE MATRIX. IFf THE MATRIX IS INVOO100
SINGULAR THE PROCEBURE EXITS TO AN APPROPRIATE LABEL IN THE MAIN INV0OO1l10

OWwWN

10

PROGRAM. SINGLE = 1. INVOO120
INTEGER SINGUL2 I 9y JeKel s PIVIsPIVIIPR{5),C(5) INV0O0130
SINGUL = 0 INV0O0140
REAL*8 PIVOTsA(545) 5H INVOO143
DIMENSION Al1(5,5) INVOO146
DO 10 I=1,N INV0O0149
DO 10 J=1,N INVOO152
AlloJ)=DBLELALL]I,J)? INVOO0155
CONJINUE INVOO158
SEV ROW AND COLUMN VELTORS INVOO160
00 1 I=1¢N INVOO170
RiL) =1 INV0O0180
Cl{L1d =1 INVOOL190
CONT INUE INV00200
FIND INITIAL PIVOT INV0O0210
PIvi=1 INV00220
PIv=1 INV00230
D@ 3 I=1,N INV00240
DQ 3 .J=1,N INV00250
IF{DABSUALIPIVIPIVJII.GE.DABS(A(I,J))) GO TO 2 INV00260
PINd=1 INV00270
Plvy=J INVO0280
CONT INUE INV0O0290
CONTINUE INV0O0300

INVOO310

144"



START REDUCTION

DO 8 I=1oN

L=R4 1)

RILI=R(PIVI)

R{PAVI)I=L

L=C{A1}

CeL)=CLPIVUII)

C(PiEVJII=L

INTEGER ICNT,ICNT1,I0NTJ
ICNT=R(1)

ICNT1=C (1)

IF ADABSIACICNT,ICNT1)).GE.EPS) GO TO 4
SINGUL=1

RETURN

CONTINUE

DO &6 J=1,N

SJEK=b—Jd+1

IF(dK.EQ.I) GO TO 5
LCNJJ=C(JK)

AUILNT ¢ ICNTU)=ALICNT4ICNTJ)/ACICNT , ICNT1)
LONT LNUE

A{LIONT, ICNT1)=1./A{IONT,ICNT1)
PIVOT=0

DO 7 K=1,N

IF AK.EQ.12 GO TO 7

DO & J=1,N

JK=EN—J+]

IR AJK.EQ.I) GG TO 6

ICNTFJ=C {JK)

ICNIKR=R(K)
H=AAICNT o ICNTUI*ALIENTK,LCNT1)
A(ICNTKy ICNTJ)I=ALICNTKy ICNTJI—H

IF Al eGEeKelURe1<GEJKsOR.DABS{PIVOT).GE.DABSIALICNTK,ICNTJ)))

160 J0 6
PIVi=K
CPIw=JK

INV00320
INV00340
INV00350
INV0O0360
INV0OO0370
INV00380
INV0O0390
INV00400
INV0O0410
INV00420
INV0O0430
INV00440
INV00460
INV00480
INV00490
INVO0500
INVOO510
INV0OO0520
INV0Q0530
INV0O540
INV0O0550
INVO0560
INV00570
INV0O0580
INV0O0590
INV00600
INV0OO0610
INV00620
INV0O0630
INV00640
INV0O0650
INV00660
INVO0O0670
INV00680
INVOO0690
INV0OO0700

SPT
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PIVBYT=ALICNTK,ICNTJ) INVOO710
CONF INUE INVO0O730
A(CLCNTK g ICNTLI=—A(IENT o ICNTLIXA(ICNTKL ICNTL) INVCOT740
LCONT INUE INVOO750
CONT LNUE INVO0O760
DO 8 1I=1,N INVOO0762
DO @ Jd=1e.N INVOO 764
Al J)=SNGLLALI,J)) INVOQ766
CONT INUE INVOO768

INV0OO770
‘REARRANGE ROMS INV0O0780

INVQOQT790
CALL RERMUT(AL1,RLyNs0) INV0OG800

INVOG0810
REARRANGE COLUMNS INV00820

INV0O0830
CALL PERMUTAEAL,CReNgl) INV00840
RE TURN INV00850

INV00860

END INV0Q880

9%t
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SUBROGUT INE PERMUT (A¢5+DeNydJd PERQOO10
PERNUTE IS A PROCEDURE USING JENSENGS DEVICE WHICH EXCHANGES ROWS PER00020
OR GOLUMN SQF A MATREX I0 ACHIEVE A REARRANGEMENT SPECIFIED BY THEPEROQQ30
PERNUTATICN VECTORS $¢D. ELEMENTS OF S SPECIFY THE URIGINAL SOURCEPERO00040

LOCATIONS WHILE ELEMENTS OF D SPECIFY THE DESIREO SESTINATION PEROOOS50
LOCAT-IONS« NORMALLY A AND B WILL BE CALLED AS SUBSCRIPTED VARIABLEPERDOQOS6O
OF THE SAME ARRAY. THE PARAMETERS JsK NOMINATE THE SUBSCRIPTS PER0OOO70
OF THE DIMENSION AFFECTED 8Y THE PERMUTATION, P IS THE JENSEN PERQOO8BO

PARAMETER. AS AN EXAMPLE OF THE USE OF THIS PROCEDURE SUPPQOSE R,C PERODQO90
TG LONTAIN THE ROW AND COLUMN SUBSCFIPTS FO THE SUCCESSIVE MATRIXPERO010O
PIVOTS USED IN A MATRIX INVERSION OF AN ARRAY A. I.E. R{1l)} ,C(Z)< PEROO110
ARE THE RRLATIVE SUBSCRIPTS OF THE FISST PIVOT, R%2<,C%2< OF THE PER0OO120
SECEBND PIVvOT AND SO ON. THE TWO CALLS , CALL PERMUTEZAZJP<s AZK,PPEROO130
CoJaKoRsCoyNoP< AND CALL PERMUTEZRZAZP 3 J< )ABP ¢ K< 9 JsKyCoReN,P< WILL PERO0O140
PERBORM THE REQUIRED REARRANGEMENT OGF TOWS AND COLUNNS RESPECTIVELPEROO150

REAL A{5¢5) +W PERO0O160
INTEGER JoeKeNePeS(5)eD(50sTAGLS5) L 0CI{S5) 319 TeAAGITAGK PERQOLI70

PER0OO180
SETUP INIT1AL VECTOR TAG NUMBER AND ADDRESS ARRAYS PEROO190

PERQO200
DO 4 I=1,4N PEROO210
TAGA L )=d PEROD220
LOCA1)=1 PERQO230
CONTINUE PER00240

PERQ0O250
START PERMUTATION PER00260

PERO0270
DO 4 I=1,N PER0OQO280
T=S41) PERO0290
J=LEGCAT) PER0OO300
K=D4¢1I) PEROO310
IF AJ<.EQ.K) GO TO 3 PER00320
IF{dJ.EQ.1) GO TO 5 PER0OO0325

DO 2 P=1,N PER0OO330

LP1



WN=Ad J,P)
AlJePI=A{K,P)
A(KyP.)=W
COANT INUE

GO ¥0 6
CONTINUE

DO @ P=1,N
W=AUPJ)
A{PJd=A{P,K)
A‘P'K’z‘w
CONFINUE
CONT INUE
TAGLJ)=TAG(K)
TAGAK }=T
TAGU=TAG(J)
TAGK=TAG(K)
LOCATI=LGCLTAGY)
LOCITAGU)=J
CONJ INUE
CONTINUE
RETURN

END

PERO0335
PER00340
PER0O0345
PERGO350
PER00355
PER0OD0360
PERQ0O0363
PER0O0366
PEROO370
PER00372
PEROO375
PERO00377
PERO0380
PER00390
PER0Q400
PERQO410
PERO00420
PERO00430
PER0O0440
PER00450
PEROO460
PER0O0O470

8%l
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SUBROUTINE MULTIPUICN,CALCB,LCC)
INTEGER CNyl14J

REAL CALS52yCBUS5:5),LL(5)

00 4 I=1,4,CN

CA L) = ¢

DO 2 J=1,CN

CA{d) = CAL]I) + CBAILJ)%CCHLY)
CONJ LNUE

CONS INUE

RE TURN

END

SUBROUTINE MADD(Ns+sA,8,HM)
DIMENSIGN Al5+5)+B(5%5)
0@ 4 I=1,N

DO 1 u=1l.N

AlLl9Jd)=ALlsJ) ¢MEBL1yd)
CONT INUE

RETURN

END

MULTO100
MULTO1l10
MULTO120
MULTO130
MULTOL140
MULTO150
MULTO160
MULTO170
MULTO180
MULTO0190
MULTO0200

MADDO100
MADDOL110
MADDO120
MADDO130
MADDO140
MADDO150
MADDO160
MADDOL1I70

671
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