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CHAPTER I 

INTRODUCTION 

Flow in open channels has been nature's way of conveying water on 

the surface of the earth through rivers and streams since the beginning 

of time. The need for an efficient and practical environment for con­

veying water resulting from diversions, tailwater, surface run-off, 

floods, and similar sources within channels has excited the hydrau• 

licians' interest to investigate the natural laws governing water 

movement in open channel. Irrigation engineers are concerned with 

transporting water for use on the farm. Traditionally, and in local­

ities where topography permits, the transportation is accomplished by 

open channels such as main canals, laterals, and farm ditches. The 

hydrologist is primarily concerned with volume of water and its depth 

with respect to time and place. Open channel study offers a good guide 

in the solution of problems such as water movement on farmlands, spill­

way design for small flood control ponds and reservoirs, highway 

culvert, vegetated waterway, drainage structures for highways and 

airport runways. 

The amount of water that a channel can convey is governed by the 

cross-sectional area, the slope, and the resistance coefficient which 

is dependent on both the material of which the channel is constructed 

and the maintenance. It cannot be ove~emphasized that smooth materials 

will transport water with less resistance than rough surface. The 
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major problem in channel design has been the determination of the 

degree of retardance for different boundary conditions. In order to 

be able to predict or aid the solution of many of the run-off erosion 

problems, the hydraulic characteristics and performance of the con­

veyance system must be carefully understood. Information on flow of 

water through upright stems of real or simulated vegetation is meager. 

Although water movement in open channel is one of the earliest 

of engineering feats, yet no formulas for determining discharges have 

been developed that are without important limitations. However, 

formulas have been developed to explain some phenomenom taking place 

in flow of water in the channel. In the discharge formulas in present 

use, the resistance coefficient is considered to be constant for a 

particular type of material in a particular state of upkeep without 

regard to the other variables. Therefore, there is a great need for 

more experimental data to better describe the process involved. 

In open channel flow, the selection of the hydraulic resistance 

to flow by both the channel and other roughness elements present poses 

a problem. This is an important phase of hydraulic research asso­

ciated with natural streams, floodways and similar channels . Previous 

investigators in related fields have described the grain-type rough­

ness in wide, open channel. However, it has been found inadequate for 

describing certain other types of roughness in which the relative size 

of the roughness elements is an important boundary characteristic. 

A review of current literature revealed that most research works 

on artificial roughness in open channel are restricted to either flows 

with completely submerged ro~ghness el~ments with increasing density 

on variable slope or incre~sing density at constant slope. It is the 



purpose of this experiment to present the results of tests conducted 

indoors on a smooth rectangular channel fitted with different sizes 

of artificial roughness element with increasing density, variable 

pattern and slopes with the hope of making a contribution to better 

understanding of the degree of retardance in a waterway. 

Limitations of the Study 

The study was limited to steady state gradually-varied flow. 

The experimental data were obtained using a 44-foot variable slope 

rectangular flume located indoors. The flume test width was lo32 

3 

feet. The bottom of channel was lined with 5/16-inch thick aluminum 

sheet metal. The channel slope was varied from approximately one­

fourth to one per cent. The maximum flow ever tested on smooth channel 

condition without roughness elements was 0.90 c.f.s. 

Two sizes of 3/32-inch and 9/32-inch diameter aluminum pegs 

3 1/2-inches long were used as roughness elements under two patterns 

known as diagonal-grid and square-grid system. Mixed size testing was 

not considered in the experiment. The depth of flow in the channel 

was limited to unsubmerged condition of the roughness elements. 

In the analysis of results, surface velocity and wave-motion 

effects were not considered. Like most other artificial roughness 

studies, the upright roughness elements were considered mechanically 

rigid during the experiment. 

Objective 

The main objective of this study was to determine the relation­

ship of Manning's resistance coefficient to s.ize of roughness elements, 



pattern of arrangement, density of spacing, slope, and discharge in a 

smooth artificial channel using dimensional analysis and gradually­

varied flowg 
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CHAPTER II 

REVIEW OF LITERATURE 

Gradually-Varied Flow 

Gradually-varied flow is considered a steady state condition in 

open channels in which the water surface is not parallel to the bottom 

of the channel. Under this hypothesis, the depth varies gradually 

along the length of the channel. Among the conditions for gradually 

varied flow are: 

(a) The flow must be steady; i.e., the same flow passes through 

each cross-section per unit time. 

(b) The streamlines are approximately parallel such that hydro-

static pressure exists over the channel section. 

According to Chow (3), page 217, the theory of gradually varied 

flow which dates back to the eighteenth century practically rests on 

the assumption of: 

The head loss at a section is the same as for a 
uniform flow having the velocity and hydraulic radius of 
the section~ According to this assumption, the uniform­
flow formula may be used to evaluate the energy slope of 
gradually varied flow at a given channe~ section, and t~e 
corresponding coefficient of roughness developed primarily 
for uniform flow is applicable to the varied flow. 

Chow remarked that the assumption above is more correct for 

varied flow where the velocity increases than where .the velocity 

decreases, because in a flow of increasing velocity the head loss is 

caused almost entirely by friction effects whereas in a flow of 

5 
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decreasing velocity there might be a large scale eddy loss. 

Theoretical Analysis 

Gradually-varied flow can be approached from two methods: The law 

of conservation of energy and the law of momentum. Both methods are 

based on Newton's Second law of motion. Chow noted that irrespective 

of the method of approach the basic assumptions governing Newton's law 

hold. The two approaches produce practically identical results except 

that energy conservation is a scalar quantity while momentum conserva-

tion is a vector quantity. 

Equation of Gradually-Varied Flow 

From the profile shown in Figure 1, the total head above the 

datum at the upstream Section 1 is 

H Z + D cos &+ o( 

where H = Total head in feet 

v2 

2g 

Z = Vertical distance of the channel above the datum in feet 

D = Depth of flow section in feet 

c:7= Bottom slope angle 

o(= The energy coefficient 

(2-1) 

V = Mean velocity of flow through the section in feet per second 

It must be noted that o{ and & are assumed constant throughout 

the channel reach in question. 

Differentiation of Equation (2-1) with respect to reach distance 

x yields: 
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Figure 1. Derivation of the Gradually-Varied Flow Equation 
[After Chow] 
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~ = ~ + cos 9- d(D) + 
dx dx dx 

Q(. d 
dx ( ~:) (2-2) 

n. = -dz. The channel slope is given by S
0 

= sin c,- dx However, 9' 

is assumed a small angle therefore sin 9' = tan 9- = S-, radians. 

Energy slope Sf=-~:. Substituting for: and~; in Equation (2-2) 

gives 

d (D) = _s_o _-_s_f _____ _ 

dx d ( v2g2) cos S,.+o{d(D) 

(2-3) 

Equation (2-3) represents gradually-varied flow. For small angles 

A_ ,_,.. l d d (D) .v.:,,. ~. cos ~- , D ~y an dx """"'dx 

Hence, (2-4) 

The term o( ~Y ( ~:) can be recognized as change in velocity head. 

From the assumption for gradually-varied flow according to Chow(3), 

page 220, the slope at the channel section of the gradually-varied 

flow is equal to the energy ,slope Sf of the uniform flow that has the 

velocity and hydraulic radius of the section. When the Manning's 

formula is used, the energy slope is 
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(2-5) 

where n = Manning's roughness coefficient, R = hydraulic radius, V = 

average velocity of flow. 

Method of.Computation 

The computation of gradually-varied flow profile involves 

basically the solution of the dynamic equation of gradually-varied 

flow. The main objective of the computation is to determine the shape 

of the profile. There are three methods of computation. 

i. The Graphical Integration 

2. The Direct Integration 

3. The Step Method 

The latter, for convenience, was used in the analysis of data. 

The Direct Step Method 

In general a step method is characterized by dividing the channel 

into short reaches and carrying the computation step by step from one 

end of the reach to the other. There are several step methods. Some 

methods are said to be superior.to others in certain respects, but no 

one method has been found to be best in all applicationso The direct 

step method was said to have been suggested by the Polish engineer, 

Charnomskii, in 1914 and then by Husted in 1924. This is a simple 

step method applicable to prismatic channels. 

With reference to Figure 2 and applying Bernoullis' principle, 
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J--i--- Datum ____ ,i-f 

Figure 2~ A Channel Reach for the Derivation of Step Method Formula, 
[After Chow] 
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(2-6) 

Solving for ~x, = 

where E = Sp,acific Energy at respective stations 

It is assumed o( 1 =o< =o<=l. 2 

Similarly, Sf= 
20208 

R413 . 

2 
=y+o<.Le 

2g 

(2-7) 

Hendersen (6) also suggested a step method of solution for the 

energy equation for which he assumed water surface linear so that the 

average of the friction slopes at the ends of the section under con-

sideration is the average friction slope; i.e., E2 · - E1 = 

if the two stations are separated by a 

Assumptions for calculating Sf are: 
I 

1. The energy loss varies linearly over the reach ~·x under 

consideration. 

2. The energy or Bernoulli equation without velocity distribution 

coefficient is applicable. 

It is to be noted that the error in these assumptions is included 

in the resistance coefficient. However, regardless of the equation 

used in calculating Sf' the error due to the assumptions in the 

momentum equation or the energy equation would finally be absorbed 
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by the resistance coefficient. 

Steady Flow in Open Channel 

Hydraulics of steady flow in open channel i~ an important part of 

rapidly developing science of hydraulics. Most flows in open channel 

are turbulent. Turbulence exists when the direction and magnitude of 

the velocity at any point within a fluid varies irregularly with time. 

Considerable energy as confirmed by the Soil Conservation Service (24) 

may be expended in this action. Eddying and "boiiing" are visible 

forms of energy losse These disturbances in the fluid are produced 

and maintained largely by roughness and irregularities of the bed and 

the retardance elements in the system. If the .cross-section of the 

channel does not change along its length, and the channel is straight 

in alignment and on constant grade, it is said to be uniform channel. 

According to Woodward (26) natural water channels are never 

uniform, but if exceptionally regular, they may be considered to be 

uniform for some purposes. If the water surface elevation at every 

section remains the same with respect to time, flow is steady. He 

emphasized that in using either established Manning's or Kutter's 

formula for open channel the effect of channel irregularities may be 

taken into account to a certain extent in estimating the roughness. 

Lack of parallelism of the water surface and the general grade line 

of the bottom channel may cause direct application of friction 

formula to give grossly inaccurate resultse 

Rouse (20) in open channel resistance studies, suggested that in 

a basic physical and dimensional consideration of flow characteristics, 

the following independent variables should be seriously examined: 



lo Reynold's Number 

2. Relative roughness of the boundary surface 

3, Shape of the channel cross-section 

4o Degree of non-uniformity of Lhe channel in the profile and 

in plan. 

5. Froude Number 

6. Degree of unsteadiness of flow 

In fact, he stressed that unsteady open channel flow is broadly 

regarded as a combination of boundary resistance and wave motion. 

13 

The wave limit is very complicated and any problem involving both to 

comparable degree is still essentially~too complex for more than rough 

analysis, Rouse concluded. 

Sayre (22) in his analysis pointed out the role of Reynolds 

number. In fact, if the magnitude of the roughness is large compared 

to the thickness of the lamina sublayer, the viscous effect would be 

negligible, and consequently, the Reynolds number would be of less 

importance. In such a case a boundary hydrodynamical roughness 

condition is said to exist. 

Manning's Equation 

Accurate determination of discharge in open channels requires, 

within reasonable limit, an estimate of the degree of retardance, 

usually known as coefficient of roughness. Early research in this 

area though not a systematic study, was prompted by the hydraulics of 

open channel trying to keep pace with roughness studies in closed 

conduit which was at an advanced stage of development. There are two 

major formulas for computing discharge 1n open channel. The first 
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was developed by Chezy in 1775. He was acknowledged as the first 

engineer to observe the effect of channel roughness through his 

equation 

V = C /\(Rs (2-8) 

where ·R = Hydraulic radius of the channel 

S = Slope of the channel 

V = Velocity of flow 

C = Coefficient of roughness 

The second which is widely used in the United States is Manning's 

formula first introduced in 1891, as a classic foundation stone of 

modern open channel hydraulics. In an attempt to correlate and 

systematize existing data from natural and artificial channels, 

Manning proposed an equation which was later developed into 

V = 1.486 R2/38 1/2 (2-9) 
n 

where V = Velocity of flow 

R = Hydraulic radius 

S = Frictional slope 

n = Coefficient of resistance 

Rouse (21) pointed out that these empirical formulas including 

Ganguillet and Kutter formula known as: 

C = 1.486 R 1/6 (2-10) 
n 
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are not without limitations, though they give fair results when applied 

over fairly narrow range of conditions on which they were based, but 

they frequently lead to serious errors with applications outside their 

range. 

The resistance coefficient as observed by (lO)i {11), and (13); 

however, is not a constant for a given channel but varies with velocity 

and depth. 

As a result of these inconsistencies several investigators have 

made studies using artificial roughness elements, each using a 

different type of roughness for the purpose of determining the 

retardance of flow for the particular type of roughness chosen. Most 

of these investigators made partial attempts to understand and 

establish the phenomena taking place when a degree of roughness is 

present. 

Sayre and Albertson (23) gave a discussion on the results of 

early experiments by G. H. Keulegan, Nikuradse and Einstein in an 

effort to establish roughness standard for wide, open channels. 

Their approaches have been reported to be quite successful in des­

cribing the grain-type roughness in wide, open channels. However, 

the approaches have been found inadequate for describing certain other 

types of roughness in which the relative spacing in addition to 

relative size of the roughness elements is an important boundary 

characteristic. 

In the above category is Powell's (10) method in which he used 

square strips extending across the bed of the test channel as rough­

ness in studying the effect of the longitudinal spacing of the strips. 

Robinson and Albertson (18) in an attempt to establish a 
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reproducible artificial roughness standards that would be applicable 

to open channels claimed a huge success from their study. In their 

experiment, the sizes of geometrically similar roughness baffles were 

varied in spacing while the ratios of longitudinal and transverse 

spacing to baffle heights were held constant. Placement was such 

that each baffle was centered on the openings between baffles in the 

rows immediately upstream and downstream. Tests were conducted with 

roughness baffles of two sizeso These baffle. sizes were 1-inch high 

by 4-inches wide and \-inch by 2-inches long. Traverse spacings were 

twice the baffle height, and longitudinal spacings were ten times the 

baffle height~ so that fot both baffle sizes, identical patterns of 

roughness were formed. For a particular roughness pattern they 

demonstrated that the Chezy resistance function depends only on 

relative roughness (ratio of flow depth to baffle height) assuming 

rough boundary conditions. As a result of this investigation a 

resistance formula was established in the form 

c = 26.65 log10 (1.891 d/a) 

where c = Resistance coefficient 

d = Mean depth of flow 

a= Height of artificial roughness 

(2-11) 

In this experimen,tal result it was also claimed that a staggered 

pattern of individual roughness baffles proved extremely effective in 

~intaining large sediment concentrations in suspension without 

appreciable deposit, whereas extensive deposits occurred at com­

parable concentrations when the roughness consisted of baffles 
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extending continuously across the width of the flume. 

In natural open channels, a situation of composite roughness 

exists whereby one or more than one type of resistance element is 

encountered. This situation occurs frequently when a flooding river 

overflows its banks. It is not unlikely for dead bodies of animals, 

detritus, rocks, and sewage to create a high degree of retardance. 

This subject in its entirity could become a complicated problem. This 

aspect though was not covered in this particular study; it might be 

implied. Einstein and Bank (4), however, studied the effect of com­

posite roughness in a channel having: 

1. Concrete blocks laid parallel to the floor of channel. 

2. Concrete blocks combined with \-inch diameter by 1\-inch high 

pegs with various peg densities and pattern. 

3. Blocks with alternative blocks offset \-inch. 

4. Blocks with alternate blocks offset, and combined with 

various peg densities and pattern. 

They finally established equations for resistance exerted by the 

bed of the channel in terms of the density of roughness elements and 

the square of the velocity of flow. For example, the resistance 

equation for the block and peg experiment was found to be 

Tbp = (0.00505 + 0.00175 N) v
2 

where Tbp = Resistance of blocks and pegs in lbs/ft
2 

V = Velocity of flow 

N = Density of pegs 

(2-12) 
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Of course the equations developed were assumed to be valid as 

long as different roughness elements do not exert mutual interference 

on the flow. 

Fang (5),. on -.the hydraulic effect of grasses that have upright 

stems on the retardance of flow in open channels, sodded eight flat 

bottomed earth channels descriqed as unit channels with Sudan grass 

vegetation. Each channel was 3-feet wide and 96-feet long with con-

siderable steep slope of five per cent. The channel material was silt 

loam soil of 82.0 lbs/ft3 average density. Plant population was 

estimated and discharges through the channel were measured at dif-

ferent stages of growth. Using dimensional analysis approach as well 

as Manning's formula, he developed the following relationship 

Rl/6 - B 
-n-=A+~ (2-13) 

where A and Bare some numerical constants to be determined by 

experiment for particular conditions. 

N = population of plants in the flow per square foot of the 

channel bottom. 

n = Coefficient of retardance of the channel. 

D = Mean diameter of plant stems in the flow. 

R = Hydraulic radius of the channel. 

~=Standard deviations of the bottom variation computed from 

the bottom readings of the point gage. 

It was stated that the equation is only applicable to 



unsubmerged vegetation that has considerably clean, upright stems in 

the flow of moderate velocity. 
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Johnson (9), on a study of artificial roughness in open channels, 

used rectangular wooden bloc.k nailed to the bottom of a redwood flume 

to determine the coefficient of resistance to flow. In this study 

he plotted the Manning's roughness factor against the ratio between 

the spacing and the height of the rough elements and found that at a 

minimum ratio of spacing to depth of element, the roughness factor 

reached a maximum and beyond this point, the factor decreases. 

Ree (12) (13), along with his other experiments performed both 

at Spartanburg, South Carolina, and Stillwater, Oklahoma, has con­

tributed practical and useful information to the solution of grassed 

channels. He emphasized how Manning's n for one kind of vege-

tation varied over a wide range depending on the depth of flow and the 

slope of the channel. In his experiment he reported results of flow 

retardance coefficients for several row-planted crops. He related 

the Manning's n for a growth to the product of velocity and 

hydraulic radius when the velocities were great enough to displace 

the vegetation. 

Boyer (1), using height of roughness as a means of estimating 

the roughness coefficient for natural channels, obtained results which 

were considered to be within acceptable limit of accuracy. It was 

observed that not only does the roughness height, but the sinuosity 

as well have a bearing on the magnitude of the coefficient of retar­

dance. 



CHAPTER III 

EXPERIMENTAL EQUIPMENT 

The system consists of the test channel, the pumps, the pipelines, 

storage sump, settling tank, water meters, common stilling well, point 

gages and a thermometer. The artificial roughness elements were made 

of circular aluminum rods. The whole experi.mental equipment was 

located indoors at the Oklahoma State University, Agricultural 

Engineering Research Laboratory. 

The Channel 

The channel consists of a 44-foot long, 18-by 7\-inch steel WF 

beam which was supported on its side as shown in Figure 3·a to form a 

variable slope rectangular flume. The bottom , was lined with 

with 5/16-inch thick aluminum sheet metal which was built to fit 

snugly at the bottom. This was facilitated by a cutting at a 45-

degree angle on the side edges of the lining. These bottom linings 

were in 6-foot sections. Tight joints between the sections were 

secured with epoxy. The channel effective width inside the side 

panneling was 1.32 feet. The channel slope was adjusted by variable 

height supports. These were pipe stands with holes at calculated 

intervals for adjusting the slope within the range desired. Shims 

were used to get the desired elevation. 

20 
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The Water Supply System 

The source of water was a large 9-foot long by 5-foot wide by 

5-foot deep storage sump sunk at the lower end of the channel. A 

9-foot long by 18-inch wide by 6-inch deep sheet metal flume was 

connected between the lower end of the channel and the sump. Cir-

culated water dropped into a tailbox connected between the flume and 

the channel before it was conveyed to the sump. Two water supply 

pipeline systems were used. A 2-inch pipeline was used for discharges 

up to 100 gallons per minute while a 6-inch pipe was used for flows 

above 100 gallons per minute. The two pipes were respectively con-

nected to discharge into a connnon stilling tank of 2-feet by 2-feet 

by 3-feet located at the upstream end of the channel before water was 

emptied into the channel through a spout as shown in Figure jb, 

Turbulence of the entering flow was reduced by forcing water to flow 

through a contraction thereby creating a backwater upstream before 

flowing over a 2-inch by 2-inch wooden block and finally through 8 

and 16 mesh aluminum screens. The screen device also served as 

catchment device for rust coming out of supply pipelines. 

Pumping System 

The pumping system consists of a ~-horse power motor driven Bell 

and Cossett 1531 Type B pump connecte.d to 2-inch pipe and a 7~-
'•·1 

horsepower m6tor driven Berkeley pump connected to the 6-inch line. 

Both pumps were centrifugal pumps. 
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Flow Measurement 

Small inflow into the experimental channel was measured with a 

2-inch nutating totalizing disc water meter incorporated in the 2-inch 

pipeline. Large discharge over 100 gallons per minute was measured 

with the Sparling meter shown in Figure 4. The Sparling meter was 

calibrated with a sharp edge orifice and U-tube manometer at the 

outdoor hydraulic laboratory near Stillwater, Oklahoma. The meter 

was installed in the 6-inch line. With a stop watch, calibration of 

the water meter on the 2-inch line was made by collecting the outflow 

in a bucket for a certain time period. Laboratory scale was used to 

obtain the weight of the water and bucket. A correlation between 

actual and o.bserved discharges was established at low flows. 

Depth Measuring Equipment 

A common stilling well and point gage system as shown in Figure 

5 was located at a station about O + 21-feet down the channel from the 

upstream endo By having water surface elevations at desired stations 

referenced to a common stilling well, errors in point gage, bench 

mark readings, and oscillatory water elevation could be reduced to a 

bare minimum. Five depth measuring stations for water surface 

elevations were located ~t distances O + 11, 0 + 16, 0 + 21, 0 + 26, 

and O + 31-feet along the channel from the upstream end. At each 

station, three brass plugs with holes of about 0.07 inch bore were 

used as piezometer taps to measure the flow depth. The bras.s plugs 

were set lev~l with the inside bottom of the channel and they pro­

truded from the lower side of the steel beam. Each of the three plugs 

placed in line at each station connnarided an equal,field area across 
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the channel. Initially the bottom ends of these piezometers had been 

counterbored to cut down surface tension and capillary effect. Rubber 

and brass tubings connected the piezometers in an assembly from each 

station as a connnon unit before eventually making connection to the 

stilling well. 

Gage Zero Equipment 

An engineer's level was used to find the elevation of the central 

brass plugs at each station for bottom profile readings along the 

channel. A point gage with a blunt end was utilized as a rod gage. 

Shims were used in adjusting the channel slopie. 

Artificial Roughness Elements 

There were two sets of sizes of artificial roughness elements for 

this experiment. The elements consisted of round and smooth aluminum 

' 
rods of sizes 3/32-inch and 9 /32-inch diameter ·cut into small pegs 

3 1/2 inches long. Holes of the same diameter as the pegs under test 

were drilled 1/4-inch deep into the channel bottom lining. The pegs 

were driven into holes drilled sequencially at definite longitudinal 

and transverse spacings to form patterns kn11:r1,m as Diagonal grid and 

Square grid systems .. In this experiment two different patterns and 

six types of spacings excluding bare channel lining condition were 

studied. Schematics of the six types of spacings are shown in 

Figures 6 through 16. 
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The Common Gage Well 

The common gage well unit consists of a 9-inch long 2-inch inside 

diameter plexi-glass tube sealed at one end to form a well. Tyg~n 

plastic tubings from the peizometer stations were attached in an 

assembly with T-joint glass tubi.ng and a common connection was made 

to the well. The well was centrally located from the test ends of 

the channel. A common point gage was supported at this central 

' location for water surface elevation measurement in the gage well as 

shown in Figure 5. 
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CHAPTER IV 

METHOD AND PROCEDURE 

Preliminary Investigation 

A preliminary investigation of the use of a 5/8-inch thick ply-

wood as a testing base for the channel was conducted. Interior-grade 

plywood was cut into .sizes to fit tightly into the WF-beam in 4-fobt 

sections. The surface was waxed and coated with three layers of 

varnish to provide a smooth and water-proof bottom. The plywood 

sections were carefully secured in place inside the channel with 

contact cement and the joints between the sections were sealed off to 

make water-tight joints. The sides of the WF-steel beam channel was 

coated with gray latex painto Piezometers were sunk inside the ply-

wood and steel beam at regular station intervals. The bottom profile 

of the new bottom lining was taken while there was water running and 

also when water has been run throughs Repeated examination of the 

bottom profile plot of elevation versus distance downstream showed 
! 

irregularities in the profile of about f~ur-tho~sandth of a foot as a 

result of variable moisture absorption and swelling of the interior-

grade plywood. It was decided to discontinue using the plywood 

bottom for the tests because larger errors might result from swelling 

and shrinkage of the plywood after a long time. 

Alternatively, and as a matter of convenience, it was decided to 

u~e ALCOA 313-thousandth inch thickness aluminum sheet metal fo~ the 

40 



bottom lining and 140-thousandth inch thick aluminum sheet.for the 

side paneling of the channel. 

Slope Determination 

The slope of the experimental channel was established by using 

shims in conjunction with the variable channel support adjustment. 
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In this operation screw jacks were used to prop the channel. The 

elevation of the central brass piezometers at each station was ref­

erenced to a permanent bench mark located in the experimental labora­

tory. These relative elevations were determined using an engineer's 

level and a blunt-end point gage as a rod gage. The approximate 

desired slope was rechecked by taking the bottom profile of the 

channel. Adequate care was taken to see that each time the slope 

was changed, the central point gage at the cormnon stilling well was 

plumbed with a carpenter's level. Corresponding adjustment of the 

height of the tailbox at the discharge outlet into the sump was made 

with each change of slope. 

Gage Zeros 

Two point gages A and Bas shown in Figure 17 were used in 

~stablishing the gage zeros. A gage zero was the elevation of the 

point gage tip when the zero mark on the point gage shaft coincided 

with the zero mark on the vernier scale. In the experiment point gage 

A was used for measuring water surface elevation while point gage B 

was used for taking channel bottom profile. A separate gage zero was 

established for each point gage. The engineer's level was used for 

establishing the gage zeros by adhering to the following procedures: 
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1. Level readings of point gages A and B were1taken on a non-

yielding support known as the bench mark. Earlier, arbitrary eleva-

tion of the bench mark was assumed as 10.000 feet. 

2. Point gage A was placed in its bracket at the connnon gage 

well and a convenient foresight Z was established. At the same time 

corresponding vernier readings A
2 

were registered. 

3. Rod zeros (the elevations of the point gage tip that would 

occur if the horizontal instrument crosshair were reading 0.000 feet 

on the point gage shafts) were calculated for each point gage. 

Rod Zero for gage A= (Elevation of Bench Mark)-(Level Reading at 

Bench Mark) 

= 10.000 - Al 

Rod Zero for gage B = (Elevation of Bench Mark)-(Level Reading at 

Bench Mark) 

= 10.000 - Bl 

4. Gage Zeros were calculated as: 

Gage Zero for gage A= Rod Zero - (Vernier Reading - Foresight) 

= (10.00 

Gage Zero for gage B = Rod zero for B = 10.00 - B1 

5. Level Readings B3 of the central piezometers at each station 

were taken with point gage Band vernier reading A3 was read when the 

point gage A just touched the water surface in the stilling well. 

6. Calculation of depth of flow: 

Flow depth = (Gage Zero A + A3) - (Gage Zero B + B2) 

= (Z +Bl+ A3) - (Al+ A2 + B2) 
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Testing Procedure 

Essentially the procedure consisted of passing five measured 

flows down the test channel.and making all observations needed to com-

pute the hydraulic elements of the channelo The five successive dis-

charges at every slope condition were made in order of increasing 

magnitude. 

At a particular slope, water was pumped into the upstream end 

of the channele Five to ten minutes was allowed for the flow to 

attain equilibrium condition. The initial stream was controlled in 

such a way to give a minimum depth of flow of above \-inch to reduce 

surface tension effect each time the flow rate was changed. After 

equilibrium'condition, discharge was measured for two minutes on the 

2-inch meter and for five minutes on the sparling meter. The dis-

charge reading was repeated at the end of each experimental run and 

the average value was calculated. The water surface elevation at 

each station was measured at the connnon stilling well with a connnon 

point gage. The poi~t gage reading of the water surface at each 

station was taken in sequence starting from the downstream station to 

the upstream end. Care was taken to see that all water lines but one 

under test was closed with a Mohr pinch clamp during each point gage 

vernier reading. An interval of three to.· five minutes was allowed 

for water in the stilling well to reach a steady state after changing 

station. All point gage measurements were read to OoOOl foot. 

During the test, the regime and flow conditions were carefully ob-

served and the temperature of water during the test was recorded in 

degrees Pahi:~ttt .. From measurements taken, the cross-sectional 
I 

area, the wetted perimeter, and the hydraulic radius for each run was 
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determined. Values of roughness coefficient was calculated for each 

5-foot test reach between stations. The average value of the roughness 

coefficient for the channel was determined. 



CHAPTER V 

PRESENTATION AND ANALYSIS OF DATA 

Uniform steady state gradually-varied flow tests were conducted 

to determine the hydraulic effect of the size, spacing and pattern of 

the roughness element on·resistapce to flow of water in the test 

channel. The University IBM 360 Computer and Olivetti Underwood 

Programµia 101 Computer were used for calculations necessary in the 

analysis. The Manning's equation as in Equation (5-1) was used to 

calculate the hydraulic roughness coefficienta 

(5-1) 

where (R413)m = Arithmetic average of hydraulic radius between two 

adjacent piezometric stations raised to 4/3 power 

V = Average velocity of flow between two adjacent piezo-m 

metric stations 

~E = Difference in the total energy head due to depth and 

velocity of flow between adjacent reaches. 

~L = Channel reach between two stations 

S = Average channel slope between the reach 
0 
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n(r~r+l) = Hydraulic roughness coefficient between adjacent 

reaches 

Bernoulli Energy Equation 

The energy equation results from the application of the principle 

of conservation of energy to fluid flow. The energy possessed by a 

flowing fluid consists of internal energy and e~ergies due tQ pressure, 

velocity and position. In the direction of flow, the energy principle· 

is summarized by a general equation as follows: 
I 

Energy at Energy Energy Energy Energy at 
+ = 

Station 1 Added Lost Extracted '· Section 2 

This equation, for steady flow of incompressible fluids in which the 

change in internal energy is negligible, simplified to Equation (5-2) 

according to Figure 18. 

v2 v2 

+ 1+ +2+h_ y 1 2g Z 1 = y 2 2g --i, (5-2) 
.~ 

But z = S
0

.6,x and similarly h
1 

= Sf AL. 

v2 v2 
1 A 2 A Therefore, y1 + 2g + S

0
£..;ox = y2 + 2g + Sf L. 

v2 
Recognozing y + - as the sum of pressure and velocity energies, the 2g 

change in energy ~E between stations 1 and 2 is 
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. . (g) 1 
(D ----------+-h 1
1 ---------=:.---Ene'91_grode..1!!!t__ll. 

1 
L -t--=-- - Slope = Sf 1'. . ~ 

29 2g 
Water Surface I 

-----~L 

~ Equation Figure 18, · lli Energy f Bernou . n o Derivat1.o 
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AE -
Th f AL - Sf - So ere ore, lo.\ 

H S = l).E + S ence, · f ~L 
0 

Substituting for Sf in the Manning's Formula 

By rearrangement 

n= 

Dimensional Analysis 

Dimensional analysis is a very powerful tool in experimental 

design. It has two major advantages. 

1. It saves time by allowing the experimenter to obtain useful 

data with a minimum of experimental and computational effort. 

2. The possibility of describing all the contributing factors 

of a physical system by a single equation. 

In this analysis, dimensions of Force - Length - Time approach 

called F-L-T was employed. Variables known as pertinent quantities 

thought to be contributors to the hydraulic phenomenon of the problem 

were selected with designations listed. 



No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Symbol 

n 

V 

D 

s 

b 

L 

g 

N 

B 

d 

K 

Pertinent Quantities 

Quantity 

Roughness coefficient 

Mean velocity 

Depth of flow 

Slope of channel 

Channel width 

Channel test length 

Acceleration due to gravity 

Shape factor defining typ~ of stem 

Factor denoting roughness pattern 

Average number of stems/row 

Density of stem per square foot 

Stem diameter 

Stem length 

Stiffness modulus of stem 

Stem density per unit. length.of stem 

Fluid density 

Fluid viscosity 
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Dimensions 

L 

L 

-2 
L 

L 

L 

FL2 

FL- 2T2 

FL-4T2 

FL-2T 

The general functional relationship between the quantitie,s can 

be written: 

f (n, V, D, S, b, L, g, f...., $, N, B, d, i , K, es'~')'- ) = 0 

(5-3) 
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From Buckingham Pi-theorem (7) there are seventeen pertinent 

quantities. Therefore, fourteen dimensionless groups could be formed. 

Choosing V, D and~ as repeating variables, the possible dimension-

less groups are expressed as the function in Equation (5-4) 

n d L D 
f(-m; 'b' b 'b 

D 

Nd 
b 

v2 
--,-

gD 

g r "'\e.£ K 
' b ' S, c:J 'I\ '11 ' 7/2 1/2 ' dBD, 'S /'-ct g 

Simplification and Limitation of Functions for Study 

(5-4) 

A complete solution of this function was impossible because of 

the large number of variables involved and the amount of time req·uiredo 

In this analysis some of the primary quantities or combinations were. 

held constant, and the remaining ones varied to study their effects 

on the secondary quantitieso Th~ criteria for elim:i.nation were by 

their expected importance and influence on the experiment. 

From physical limitations of the design some assumptions were 

made: 

L The roughness elements will not be completely submerged at 

any time; thus, R can be eliminated from considerationo 

2o 'I,'he elements are assumed to be stiff and unyielding when put 

in place; therefore, the value of Kand es would remain const.anto 

3. The term £ has only three values for smooth channel con-

dition, Square grid and Diagonal grid conditionso 
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4o The termA defining shape has only one condition which is 

circular; therefore, the effect would be constant throughout the 

experiment. 

5. 
L 

For a steady state condition the term b remains constanto 

6. The effect of roughness remains almost constant at high 

Reynolds number for turbulent flow condition. 

The terms containing 1 , K, e , $ , and ,\ may be con­
::; 

sidered to be of secondary importance. 

Thus, Equation (5-4) becomes 

n dDB, D !'i<!. v2 
) f( 1/6 ' b ' ' s, = 0 'b gD 

D 

or 

n dDB, D Nd v2 
) 0 f (.,. 1/6 

.i;a,:p .. s, = ' b ' b ' gR 
R 

(5~5) 

After replacing the terms n v2 

1/6' gD 
D 

evo b,'r n v
2 

and fa , Rl/ 6 , gR , and 

VR 
'V' respectively where 

T = Temperature degrees Fahrenheit, and R = Hydraulic radius of the 

·c,hannel o 

The function in Equation (5-5) can be arranged in pi-terms for 

conv~ience as follows: 



53 

i'f" 1 
n =-

Rl/6 
Dimensionless Roughness 1 Coefficient 

'ii 2 = dDB 

't('3 = .Q. 
b 

Tf .lid 
4 = ·~ 

ifs = s 

iT6 
v2 

=-
gR Froude Number 

Channel Roughness without Roughness Elements 

A series of gradually-varied flow experiments was designed to 

measure the hydraulic resistance of the bottom lining. Five different 

discharges were tested at each average channel slope of 0.0023, 0.0044, 

0.0050 and 0.0091. The Manning's Equationi,(5-·'1) · was used- t.o~ 

calculate Manning's roughness coefficient for every reach of the 

channel. An average channel v~lue of the roughness coefficient was 

determined for each discharge. The values of the roughness coeffi ....... 

cient 'n' are listed in Table I .. In general, the values of Manning's 

'n' decreased with an increase in discharge. The observed me11n 

channel roughne$S coefficient was 0.0086. The deviation fromlthe 
I 

mean of the observed values was generally in· the order of· 3.5 per 

cent though scanty cases gave 11.5 per cent deviation. 

Channel Roughness with Roughness Elements 

Gradually-varied flow studies were conducted on six different 

types of spacings and patterns of roughness elements shown in 
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TABLE I 

ROUGHNESS COEFFICIENTS OF CHANNEL LINING 
MATERIAL AT VARYING SLOPE AND DISCHARG~ 

Discharge Roughness 

Slope (CFS) Coefficient 

0.0023 0.0638 0.0094 

0.1208 0.0088 

0.1597 0.0083 

0.2200 0.0086 

0.3496 0.0084 

0.0044 0.1013 0.0094 

0.1419 0.0091 

0.1998 0.0088 

0.2305 0.0088 

0.4164 0.0086 

0.0050 0.3385. 0.0086 

0.4565 0.0083 

0.6570 0.0082 

0.7639 0.0083 

0.8841 0.0081 

0,0091 0.0821 0.0094 

0.1351 0.0087 

0.2231 0.0086 

0.3763 0.0076 

o.4031 0.0078 
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Figures 6 through 11. The afore-mentioned six dimensionless groups 

as well as Reynolds number were calculated for every discharge as 

reported in Tables II and III. 

Prediction of Roughness Coefficient for Gradually-Varied Flow 

As a result of several parameters varying at the same time during 

each test, three computer programs were designed to fit a multivariable 

response surface equation with no interaction for the six variables in 

Equation (51,,,5). These equations were in linear, quadratic and cubic 

forms. In all programs, provision was made for a least square linear 

regression analysis of observed and calculated values of dimensional 

' roughness coefficient '1T 1, in terms of 1T 2, lf 3 , 'lT 4 , 'lT 5 and';,' 6 

for every discharge condition. Coefficient of correlation and standard 

deviation between observed and calculated values of 'rf1 were also 

determined. 

Equations of General Multivariable Response Surface 

The polynomial equations are of the form: 

(5-6) 

(5-7) 



Spacing 

!dent. 

D-4 

D-4 

D-4 

D-2 

D-2 

D-2 

D-1 

D-1 

D-1 

TABLE II 

MANNING'S COEFFICIENT, DISCHARGE, AND RELATED PI-TERMS FOR EXPERIMENT 
ON DIAGONAL GRID SPACING OF ROUGHNESS ELEMENTS 

Discharge v2 
n 

D Nd 
(CFS) dDB b b s gR Rl/6 

0.1230 0,0193 0.0750 0,0296 0.0022 0.3208 0,0230 
0.1857 0.0211 0.1055 0.0296 0,0022 0,2770 0,0258 
0,2325 0.0317 0.1230 0.0296 0.0022 0,2820 0.0265 
0.2962 0,0374 0.1453 0.0296 0.0022 0.2890 0.0278 
0.3229 0.0392 0.1524 0.0296 0,0022 0.3019 0,0281 

0.0291 0,006 0.0235 0.0296 0.0051 0.559 0,0247 
0.1297 0.0159 0.0618 0.0296 0.0051 0,624 0.0236 
0.2320 0.0259 0.1005 0,0296 0.0051 0.4956 0.0265 
0,3051 0.032 0.1245 0.0296 0.0051 0.4682 0,0275 
0.4142 0.0410 0,1585 0,0296 0.0051 0.4410 0.0280 

0.0993 0.0180 0.0704 0.0296 0,0107 0.5493 0,0366 
0.1997 0.0244 0.0949 0.0296 0.0107 0,5493 0,0363 
0.2853 0,0318 0.1234 0,0296 0.0107 0.4226 0,0406 
0.4387 0.0395 0, 1533 0,0296 0.0107 0,4359 0.0401 
0.5844 0.0484 0,1880 0,0296 0,0107 0,2533 0.0525 

0.0400 0.0375 0.0429 0,0532 0.0025 0.1804 0.0357 
0,0913 0,0692 0.0791 0,0532 0,0025 0.1662 0,0427 
0.1575 0.1044 0.1192 0,0532 0,0025 0.1586 0.0500 
0,1997 0.1236 0.1412 0,0532 0.0025 0,1601 0.0527 
0.2266 0, 1355 0,1548 0.0532 0.0025 0.0161 0.0546 

0,0507 0.0393 0,0449 0.0532 0.0047 0,2443 0,0378 
0.0801 0.0568 0,0649 0,0532 0,0047 0.2110 0,0426 
0,0998 0,0802 0,0917 0.0532 0.0047 0.1271 0.0412 
0,1374 0,0869 0.0992 0.0532 0.0047 0, 1883 o.0486 
0.1752 0.1046 0,1196 0.0532 0.0047 0.1824 0.0513 

0.0964 0.0503 0.0574 0.0532 0,0091 0,4293 0,0395 
0.1709 0.0833 0.0952 0,0532 0,0091 0.3207 0.0470 
0.2310 0.1074 0.1227 0.0532 0.0091 0.2897 0.0510 
0.3296 0.1429 0.1633 0.0532 0.0091 o. 2716 0.0553 

0.0246 0.1575 0.0489 0.1005 0.0026 0.0511 0.0771 
0.0422 0.2368 0.0735 0 .1005 0.0026 0.0476 0.0895 
0.0559 0.2896 0.0899 0.1005 0.0026 0.0477 0,0953 
0.0122 0.3496 0.1085 0,1005 0.0026 0.0474 0.1017 
0.1080 0.4673 0, 1450 0.1005 0.0026 0.0481 0.1132 

0.0337 0,1548 0,0480 0.1005 0.0044 0.1371 0.0721 
0.0522 0.2253 0.0699 0.1005 0,0044 0.1011 0,0832 
o.0693 0.2859 0.0887 0.1005 0.0044 0.0870 0.0916 
0.0973 0.3799 0.1179 0,1005 0.0044 0.0112 0.1011 
0.1328 0,4793 0.1487 0,1005 0,0044 0,0734 0.1103 

0,0423 0.1509 0,0468 0.1005 0,0095 0,1535 0.0698 
0,0613 0,2124 0.0659 0,1005 0,0095 0,1216 0,0807 
0,0828 0.2788 0.0865 0.1005 0.0095 0,1031 0,0900 
0,0958 0,3193 0,0991 0.1005 0.0095 0,0955 0,0960 
0,1514 0.4697 0, 1458 0.1005 0,0095 0,0843 0.1105 

56 

'n' 

0.0152 
0.0178 
0.0187 
0,0201 
0.0205 

0,0136 
0.0151 
0,0182 
0,0195 
0.0205 

0.0273 
0.0264 
0,0287 
0.0273 
0.0342 

0.0216 
0,0284 

· 0,0352 
0,0380 
0.0398 

0.0231 
0.0275 
0,0280 
0.0334 
0.0362 

0,0250 
0.0322 
0.0362 
0.0407 

0.0477 
0.0589 
0.0646 
0.0708 
0.0819 

0.0446 
0,0544 
0.0620 
0,0712 
0,0801 

0,0428 
0,0522 
0,0607 
0,0660 
0,0800 
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TABLE II (Continued) 

Spacing Discharge D Nd v2 n 

!dent, (CFS) dDB ii b s gR Rl/6 'n' 

D-4 0,0356 0,0315 0,0408 0,0886 0.0022 0,1622 0,0343 0,0207 
0,0650 0,0483 0,0625 0.0886 0.0022 0.1630 0.0385 0.0247 
0,0890 0,0607 0,0786 0,0886 0.0022 0,1599 0,0412 0,0274 
0,1219 0,0761 0,0985 0,0886 0.0022 0,1588 0,0440 0,0302 
0,1748 0,0979 0,1267 0.0886 0.0022 0,1639 0,0477 0,0339 

D-4 0,0317 0.0221 0,0286 0,0886 0,0045 0,3630 0,0306 0,0174 
0,0665 0,0393 0,0509 0,0886 0,0045 0,2974 0,0348 0,0216 
0,1302 0,0683 0,0884 0,0886 0.0045 0,2398 0,0421 0,0285 
0,1653 0,0820 0,1062 0,0886 0,0045 0,2313 0.0443 0,0308 
0,2278 0,1055 0,1367 0.0886 0,0045 0,2206 0,0486 0,0349 

D-4 0,0863 0,0376 0,0487 0,0886 0,0095 0,5504 0,0353 0,0218 
0,1556 0,0624 0,.0808 0,0886 0,0095 0,4179 0,0412 0,0275 
0,2310 0.0876 0.1135 0.0886 0,0095 0,3551 0,0460 0,0322 
0,3140 0, 1137 0,1472 0,0886 0,0095 0,3216 0,0500 0,0363 
0,3964 0, 1372 0,1777 0,0886 0.0095 0.3077 0,0527 0,0391 

D-2 0,0205 0,1219 0,0464 0,1596 0,0023 0,0395 0,0812 0,0499 
0.0377 0.1904 0,0725 0.1596 0,0023 0,0398 0,0958 0,0630 
0,0541 0,2417 0,0921 0,1596 0,0023 0.0425 0,1015 0,0690 
0,0726 0,2950 0.1124 0,1596 0.0023 0,0420 0, 1053 0,0736 
0,1005 0,3616 0,1377 0.1596 0.0023 0.0470 0, 1081 0,0777 

D-2 0,0205 0,0867 0,0330 0,1596 0,0045 0,1035 0,0601 0,0351 
0,0670 0,2295 0,0874 0.1596 0,0045 0,0697 0.0849 0,0574 
0,0801 0,2681 0.1021 0.1596 0,0045 0,0661 0.0949 0,0655 
0,0934 0,2938 0.1119 0.1596 0.0045 0,0675 0,0904 0.0632 
0,1282 0,3740 0, 1424 0, 1596 0.0045 0.0658 0,0995 0,0719 

D-2 0,0279 0,0839 0,0320 0.1596 0.0096 0,1996 0,0597 0,0346 
0,0572 0,1609 0.0613 0, 1596 0.0096 0,1279 0,0772 0,0494 
0,0897 0,2385 0.0908 0, 1596 0,0096 0.1036 0,0889 0,0603 
0,1161 0,3015 0,1149 0,1596 0.0096 0,0911 0,0983 0,0690 
0.1438 0,3640 0,1386 0.1596 0,0096 0.0844 0,1064 0,0762 

D-1 0,0134 0,4863 0,0503 0,3014 0,0044 0.0151 0,1901 0, 1181 
0,0250 o. 7837 0,0811 0,3014 0,0044 0,0134 0,2176 0, 1453 
0,0304 0,9170 0.0949 0,3014 0.0044 0.0128 0,2325 0,1587 
0,0370 1,0700 0.1107 0,3014 0,0044 0,0126 0,2485 0, 1734 
0,0476 1,2898 0.1334 0,3014 0.0044 0.0124 0.2601 0,1862 

D-1 0,0218 0.5405 0,0559 0,3014 0,0097 0.0250 Q,1763 0,1113 
0.0339 0.8189 0,0847 0,3014 0.0097 0.0190 0,2178 0,1464 
0,0412 0.9653 0.0999 0.3014 0.0097 0.0179 0.2308 0,1588 
0,0482 1.0825 0.1120 0,3014 0.0097 0.0178 0,2349 0, 1642 
0,0593 1.3022 0, 134 7 0.3014 0.0097 0,0162 0,2530 0.1814 



Spacing 

!dent. 

S-2 

S-2 

S-2 

: 

I 

S-1 

S-1 

S-1 

S-1/2 

S-1/2 

;, ;5-1/2 

j 

TABLE III 
MANNING'S COEFFICIENT, DISCHARGE, AND RELATED PI-TERMS FOR EXPERIMENT 

ON SQUARE GRID SPACING OF ROUGHNESS ELEMENTS 
-

Discharge 
D Nd v2 n 

(CFS) dDB b b s gR R 1/6 

0.0572 0,0273 0,0541 0,0532 0.0025 0,1819 0,0288 
0.1388 0,0507 0,1005 0,0532 0.0025 0.1772 0.0339 
0,1932 0,0630 0,1241 0,0532 0,0025 0,1915 0,0357 
0.2332 0,0707 0,1402 0,0532 0.0025 0.2001 0,0370 
0,2850 0.0805 0,1596 0.0532 0.0025 0,2104 0,0380 

0,0583 0,0175 0,0347 0.0532 0.0050 0,6850 0,0225 
0,1951 0,0529 0.1048 0,0532 0,0050 0,3113 0,0330 
0,2321 0.0544 0,1077 0,0532 0.0050 0,4332 0,0262 
0,2850 0.0669 0.1325 0,0532 0,0050 0,3487 0.0323 
0,2939 0.0755 0,1496 0,0532 0,0050 0,2620 0,0389 

0,0610 0,0187 0,0370 0,0532 0,0107 0,8679 0,0342 
0,1531 0,0349 0,0692 0,0532 0,0107 0,7117 0,0339 
0,2321 0.0490 0,0971 0,0532 0,0107 0.5907 0.0364 
0.328 0.0637 0.1262 0,0532 0.0101 0,4944 0,0386 
0,4587 0.0865 0, 1714 0,0532 0.0107 0.4409 0,0417 

0.0093 0,3256 0.0187 0,1005 0,0027 0, 1111 0,0433 
0,0289 o. 7158 0,0412 0,1005 0,0027 0.1065 0,0473 
0,0528 1.1231 0,0646 0, 1005 0,0027 0.0986 0.0538 
0.1057 1.8798 0,1080 0.1005 0,0027 0.0943 0,0647 
0.1258 2.2726 0.1306 0.1005 0.0027 0.0798 0,0758 

0,0375 0.5787 0.0333 0.1005 0.0049 0,3276 0,0343 
0.0973 1.4237 0,0818 0,1005 0,0049 0.1714 0,0535 
0.1387 1.9378 0.1114 0,1005 0.0049 0.1503 0.0618 
0.1692 2.2818 0.1311 0.1005 0,0049 0.1432 0.0663 
0.1926 2.5138 0.1445 0, 1005 0,0049 0,1427 0.0684 

0.0190 0,3414 0,0196 0,1005 0.0102 0,3972 0,0433 
0.0472 o.9293 0,0534 0.1005 0,0102 0,1276 0,0758 
0.1013 1,3063 0.0751 0, 1005 0,0102 0.2188 0,0581 
0,1670 2,0000 0, 1149 0, 1005 0,0102 0,1819 0.0673 
0,2177 2,4901 0,1431 0,1005 0.0102 0,1700 0,0720 

0.0150 0,2628 0,0408 0,1950 0,0029 0,0325 0.0997 
· 0,0256 0,3939 0,0612 0,1950 0.0029 0,0305 0, 1140 
0,0403 0.5514 0,0857 0.1950 0.0029 0,0295 0,1269 
0.0481 0,6260 0,0973 0.1950 0,0029 0,0297 0.1324 
0,0668 0.8044 0,1250 0,1950 0.0029 0.0287 0.1471 

0,0198 0,2974 0,0462 0,1950 0,0039 0.0424 0, 1072 
0,0340 0.4524 0.0703 0,1950 0,0039 0,0369 0,1207 
0.0438 0,5509 0,0856 0,1950 0,0039 0,0354 0,1292 
0,0592 0,6962 0,1082 0, 1950 0,0039 0,0337 0, 1407 
0,0842 0.9107 0.1415 0,1950 0,0039 0,0330 0.1558 

0,0129 0, 1326 0,0206 0,1950 0,0096 0,1668 0,0680 
0~0391 0,3764 0.0585 0,1950 0,0096 0,0694 0, 1066 
0.0623 0,5733 0.0891 0,1950 0,0096 0,0547 0,1267 
0,0760 0,6835 0,1062 0,1950 0.0096 0.0504 0,1359 
0,0994 0,8658 0, 1346 0,1950 0,0096 0,0458 0,1504 
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'n' 

0,0181 
0.0233 
0.0253 
0,0267 
0,0274 

0.0132 
0,0228 
0.0182 
0.0231 
0,0283 

0.0202 
0,0221 
0,0250 
0.0274 
0.0309 

0.0231 
0.0285 
0.0348 
0.0450 
0.0541 

0.0200 
0.0358 
0.0432 
0.0473 
0,0495 

0.0232 
0.0475 
0.0384 
0.0472 
0,0521 

0,0600 
0,0731 
0.0854 
0,0908 
0, 1044 

0,0658 
0.0790 
0.0871 
0,0980 
0, 1124 

0,0367 
0,0678 
0,0858 
0.0944 
0,1079 
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T.ABLE III (Continued) 

·--· --I; 
Spacing Discharge I v2 n D Nd 

Rl/6 !dent. (CfS) dDB b b s gR 'n' 
,. - - - -

S-2 0.0298 0.075 0.0496 0.1596 0.0018 0.0629 0.0415 0.0257 
0.0516 0.0980 0.0648 0,1596 0,0018 0.0917 0.0491 0.0317 
0.0734 0.1226 0.0810 0.1596 0.0018 O. llOO 0.0546 0,0365 
0.0902 0, 1431 0.0946 0.1596 0.0018 0.1051 0.0580 0.0396 
0.1296 0.184 7 0.1221 0, 1596 0.0018 0.1069 0.0630 0.0445 

S-2 0.0282 0.0445 0.0294 0.1596 0.0042 0.2691 0.0347 0.0197 
0.0890 0,1002 0,0662 0.1596 0.0042 

j 
0.28ll 0.0408 0.0264 

0.1080 O.ll95 0.0789 0.1596 0.0042 0.25ll 0,0444 0.0295 
0.1467 0.1571 0.1038 0.1596 0.0042 I 0.2126 0,0509 0.0352 
0.2198 0.2234 0.1476 0.1596 0.0042 I 0.1781 0.0602 0.0437 

I 
S-2 0.0394 0.0445 0.0294 0.1596 0.0104 1i 0.5075 0,0378 0.0216 

0.0775 0,0788 0.0521 0.1596 0.0104 ! 0.3661 0.0447 0.0279 
O. ll54 O. ll23 0.0742 0.1596 0.0104 I, 0.2916 0.0505 0.0333 
0.1792 0.1671 O. ll04 0.1596 0.0104 0.2295 0.0589 0.04ll 
0.2037 0.1879 0.1242 0.1596 0.0104 0,2144 0.0620 0.0439 

'1 ' 
S-1 0.0154 0.2602 0.0499 0.3014 0.0021 0.0198 0.1236 0.0768 

0.0286 0.4168 0.0799 0.3014 0.0021 0.0202 0.1602 0.1067 
0.0393 0.5204 0.0997 0,3014 0.0021 0.0191 0.1604 O. ll04 
0~0467 0.5703 0.1092 0.3014 0.0021 0.0221 0.1647 O.ll48 
0.0564 0.6581 0.1261 0.3014 I 0.0021 0.0181 0.1605 0.1139 

I \ 

s-1 0.0155 0.1780 0.0341 0.3014 0.0045 0.0587 0.0860 0,0502 
0.0386 0.4200 0.0805 0.3014 0.0045 0.0328 0.1389 0.0927 
0.0468 0.4864 0,0932 0,3014 0.0045 0.0324 0.1464 0.0998 
0.0623 0.5916 0.1133 0.3014 0.0045 0.0335 0,1526 0.1068 
0.0714 0.6739 0.1291 0,3014 \).0045 0.0258 0,1525 0.1086 

I 

S-1 0.0336 0.2930 0.0561 0.3014 0.0104 
I 

0.0571 0,1204 0.0762 
0.0484 

I 

0.4002 0.0767 0,3014 0,0104 0,0495 0.1339 0.0889 
0,0604 I o.4793 0.0918 0,3014 0,0104 \ 0.0461 0.1402 0,0954 
0,0783 0.5869 0, ll24 0,3014 0.0104 0.0442 0.1466 0.1027 

I 0.1075 0.7577 0.1452 0,3014 0.0104 0,0419 0.1583 O.ll47 

S-1/2 I 0.0065 0.9375 0,0486 0,5850 0.0020 0.0070 0.3098 0.1920 

! 0.0114 0.4157 0.0733 0,5850 0.0020 0.0066 0.3578 0,2359 
0.0167 0.8720 0.0970 0.5850 0,0020 0,0064 0,4023 0.2759 

I 
0,0020 0.0066 0.4556 0.3239 I 0.0236 2.4336 0.1261 0.5850 

! 0.0269 2.6354 ! 0,1365 0.5850 0.0020 0.0010 0.4636 0.3330 

S-1/2 0.0075 1.0983 0.0569 0.5850 0.0047 0.0028 0.3357 0.2128 
I 0.0202 1.9320 0,1001 0.5850 0.0047 0.0072 0.4020 0.2771 

0.0146 1.4698 0.0761 0.5850 0.0047 0.0078 0.3534 0.2343 
0.0299 2.6427 0.1369 0.5850 0,0047 0,0071 0.4619 0,3322 
0.0350 2,9967 0.1552 0.5850 0.0047 0,0067 0.4872 0,3560 

S-1/2 O.OL71 1.2855 0.0666 o.5850 0.0101 O.Oll9 0.3162 0,2056 
0.0247 1.8179 0.0942 0.5850 0,0101 0.0104 0.3744 0.2560 
0.0385 2. 7261 0.1412 0.5850 

I 
0.0101 0.0089 0.4537 0.3278 

0.0417 2.8884 0,1496 0.5850 0.0101 0.0089 0.4582 0,3335 
0.0321 2.2850 0.1184 0.5850 0.0101 0,0098 0.4127 0.2912 

·-· --·-· 
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Cubic: 

3 
cl6x5 (5-8) 

where Y = 'tf1 

xl = rr2 
x2 = rr3 
x3 = Tr4 

C = Experimental Coefficient 

From another perspective, an exponential model relating the six 

pi-terms under study was built with the equation 

B C D E F 
Tr 1 = Alf 2 if 3 'TT' 4 Tr 5 1T' 6 

where A, B, C, D, E, Fare experimental coefficients. 

(5..;9) 

Regression analysis using iogarithmic transformations uncovered 

the relationship between the terms as shown in Table IV. 

Order of Experimental Analysis 

One hundred seventy four experiments were analized. Six pi-terms 

were calculated for further analysis in each experiment. Some criteria 

were used in breaking the analyses down into four major groups. The 

fi~st criteria was the pattern of spacing; i.e., Diagonal or Square 

grid system. The second criteria was the size of peg diameter. Thus, 



-
Size and Pattern 
of Roughness 
Element 

3 
D - -32 

9 
D - -32 

s 3 
- 32 

s - 9 
32 

1 9 
D-3'2 & D-32 

3 9 
S-32 & S-32 

Diagonal and 
Square all 
Combined 

* Equation (5-9) 

TABLE IV 

MULTIVARIATE EXPONENTIAL RELATIONSHIP FOR ~/ 6 * 
R 

Correlation Standard 
Coefficient Deviation Exponential Model Equations 

(R) (S) 

0.947 0.0092 1T =lo- 23x 1 . 1 05 rrs. 96rf-s.sorr -11 .s6,ro.21s7r-o.192 
• 2 3 4 5 6 

0.999 0.0037 ;r = 30 8 rr-o. 1s1rr1.os1rr 2.44srro.o97;r-o.221 
1 • 2 3 4 5 6 

0.990 0.0057 '7i =0 562 rr-o.00005rro.11orr2.461rro.261rr-o.346 
1 • 2 3 4 5. 6 

0.999 0.0079 if =l 35 ,r0.00917" 0.351rr 1.3531T -0.00021f-Oo064 
1 • 2 3 · 4 5 6 

0.991 I ;r =0 172 rro.2s2rr-o.os4rro.033Tfo.2os~-o.216 
' 0.0082 

I 

1 • 2 3 4 5 6 

0.970 ii =o 26 7To.041,r o.15s1To.266-,ro.24srr-o.~439 0.032 1 ° 2 3 4 5 6 

-_., 

0.968 0.027 1r =O 25rro.o35tr0.14ltr0.198,r0.273tr-0 0 454 
1 • 2 3 · 4 5 6 
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.for each size of peg, all the diagonal grids were grouped together and 

all the square grid systems were in another group. In each group all 

the pi-terms were arranged in increasing order of discharge, test slope, 

and density of spacing as identified below. 

Identification Technique for Peg Size, 

Pattern of 
Element 
Placement 

Diagonal 

Diagonal 

Diagonal 

Square 

Square 

Square 

Arrangement and Spacing 

Longitudinal 
Peg Size Spacing 
Symbol (inches) 

D -
3 4 
32 

D -
9 

2 32 

1 

s 3 
2 - 32 

s 9 
- 32 1 

k 2 

Transverse 
Spacing 
(inches) 

4 

2 

1 

2 

1 

~ 

Spacing 
Symbol 

D - 4 

D - 2 

D - 1 

s - 2 

s - 1 

s - ~ 

Multivariable polynomial programs in linear, quadratic and cubic 

forms were used to analyze each group experiment. Further combinations 

of all diagonal-grid and all square-grid experiments irrespective of 

sizes were respectively classified into two groups. Finally all the 

174 experimental results were combined into a single group. Pre-

I 
diction equations were established for the dimensionless roughness 

coefficient. The results including·c~rtelation coefficients and 

standard deviations are shown in Tables V, VI and.VII. A summary of 



Exp .. 

Coeff. 

C 1 

c2 

c3 

c4 

cs 

c6 
·-

TABLE V 

EXPERIMENTAL COEFFICIENTS, COR~LATION COEFFICIENT: (R), AND STANDARD DEVIATIO~, (S) OF 
MULTIVARIABLE LINEAR, EQUATIONS FOR COMPUTING-:'DHIBNSIONLESS RESISTANCE COEFFICIENTS ·k 

Size and Pattern of Spacing of Roughness Elements 
J 

,· Diagonal and 

D 
3 D 9 s 3 s 9 3 9 3 9 Square all 

- 32 - 32 - 32 - 32 D-- & D-- S32 & S-32 Combined· 32 32 -~-
R=0.989 R=0.~98 R=0.970 R=0.991 R=0.991 R=0.981 R=Oa967 

- . -•---.------- ·--~-------- -~---.. ,_. ____ ~ . 
S=0.0043 S=0.0049 S=0.0101 S=0.0124 S=0.0081 S=0.025 S=0.027 

0.0221 -0.0295 -0.0415 -0.0883 0.0269 -0.0730 -0 .. 0358 

0.1279 0.08!8 0.0013 0.0567 0.1392 0.0301 0.0260 

-0.0109 0.1422 0.2881 0~3483 -0.0278 0.3500 0.3100 

0.2815 0.5836 0.7218 0.6087 0.2185 0.6529 0.5866 

1.1176 -1.4695 -0.2112 -2.4500 o.5781 -1~6628 -0.2807 

-0.0228 0.0309 0.0183 0.0835 -0.0261 0.0706 0.0065 

-J: Equation (5-6) 



Exp. 

Co~ff. 

cl 

G'2~ -

c3 

c4 

cs 
c6 
C 
~-

8 
C -

9 

C.10 

ci1 
...... -= 

TABLE VI 

EXPERIMENTAL COEFFICIENTS, CORRELATION COEFFICIENT (R), AND STANDARD DEVIATION~ (S) 
OF MULTIVARIABLE QUADRATIC EQUATIONS FOR COMPUTING 

DIMENSIONLESS RESISTANCE COEFFICIENTS* 

Size and Pattern of Spacing of Roughness Elements 
-

3 9 s 3 s 9 3 9 3 9 
D - - D - - - 32 - 32 D-- & D-- S-- & S--32 32 32 32 32 32 

R=0.992 R=0.999 R=0.987 R=0.999 R=0.997 R=0.987 

S=0.0036 S=0.0039 S=0.0068 S=0.0082 s=o.oos1 S=0.01207 

0.0460 -0.0327 -0..-0213 -0.1307 0.0506 0.0351 

0.2061 0.1166 0.0202 -0.0200 0.1845 -0.0149 

-0.1208 -0.0202 -0.0095 0.0218 -0.0492 0.0126 

-0 ... 0135 0.3448 0.4976 1.5070 0.0099 0.2014 

-0.1804 -1.1988 -0.9727 -5. 7272 -0.3294 0.4948 

-0.1680 0.5870 0.5702 0.7339 -0.0968 0.1060 

2.1129 -0.0328 -0.1732 -0.0472 0.9096 o.6973 

-1.4654 -7.3500 1.2294 -8.0537 -1.0595 5.0530 

210.7 443.22 -36.1448 464.6 142.06 -322.54 

-0.0596 0.0807 -0.1450 0.0051 -0.0888 -0.2985 

0.0532 -0.0484 0.1760 0.1884 0.0935 0.3337 
V 

* Equation (5-7) 

. 

D'iagonal an 
Square al 

Combined 

R=0.979 

S=0.021 

0.0219 

-0.0051 

0.0085 

0.4465 

-0.9892 

0.0819 

0.6986 

12.7423 

-834.8 

-0.3520 

0.3892 

d 
1 



TABLE VII 

EXPERIMENTAL COEFFICIENTS (C), CORRELATION COEFFICIENT (R), AND STANDARD DEV!4TION (S) OF 
MULTIVAR!ABLE CUBIC EQUATIONS FOR COMPUTING DIMEN~:{:ONLESS RESISTANCE COEFFICIENTS * 

Size and '-Pattern of Spacing of Roughness Elements 
' Diagonal and 

3 9 3 9 3 9 3 9 Square all 
D - - D - - s - - s - l2 D-- & D-- S-32 & S32 32 32 32 32 32 Combined 

Exp. R=0.
1
996 R=0.998 R=0.996 R=0.996 R=0.998 R=0.992 R=0.983 

Coe ff. S=0.0024 S=0.0045 S=0.0039 S=0.014 s=o.0042 S=0.016 s=o.019 

cl 0.0120 -0.3370 0.0993 0.0696 0.0162 0.0640 0.1022 
c2 0.4858 0.0471 0.1603 -0.0765 0.2409 0.0662 o.os44 
c3 -0.9209 0.0610 -0.,1038 0.0591 -0.1562 -0.0711 -0.0503 
c4 0.8068 -0.0318 0.0208 -0.0085 0.0543 0.0207 0.0149 
cs -0 .1101 1.1063 '-l,6998 2.0752 0.3565 -1.0449 -0.3225 
c6 -0.4878 -8.,.7474 18.8610 -12.591 -4.4449 18.2425 7. 7208 
c7 1.9014 24.9180 -61.3042 33.615 13.4663 -70.5781 -31.8799 
c8 -0.0737 1.4635 -0.5407 1.5641 -0.0350 o.so41 -0.1872 
C9 -3.8508 -4.8632 -12.0362 -0.6543 0.4180 -1.6460 1.5112 
ClO 32.00 8.0944 69.6445 -0.4876 1.0551 2.8352 -0.8028 
ell 18.608 182.20 40.2839 -314.5 13.336 -3.609 -9.982 
c12 -3857.0 -40684.0 -7037.0 66896.0 -2827. 1218.0 3415.6 
c13 230972. -2507281.0 379089.0 -3921188 171624. -80153. 231193.0 
c14 -0.0393 -0.0474 -0.3339 0.3230 -0.12493 -0.6013 -0.5964 
c1s 0.1747 0.5072 0.5834 0.4438 0.3827 1.4065 1.2957 
c16 -0.2234 -0.5960 ... 0.3302 -1.1000 -0.3854 -0.8995 -0.8226 

-· -· 

,": Equation (5-8) 

-

0\ 
u, 
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correlation coefficient (R), and standard deviation (S) of multivariate 

eqqations for predicting dimensionless resistance coefficient is given 

in Table VIII. 

General Discussion on Prediction Equations 

In general, it can be seen from Table VIII that correlation co­

efficient between the observed and calculated values of ~/ 6 is very 
R 

high. This evidence may strongly prove the dependence of roughness 

' coefficient on the size, spacing, and pattern of roughness elements in 

a water conveyance channelo The values of correlation coefficient 

also increases with the degree of polynomial used. It is sometimes 

questionable whether a polynomial of the degree greater than two should 

be considered as a criteria since the.coefficient R hardly increases. 

In fact, in some cases, there is a decrease in R in polynomial of the 

. ' 
third degree. However, the use of the second degree polynomial is 

probably justified by a considerable improvement in the standard 

deviations. In this particular experiment, standard deviation was a 

better criteria rather than coefficient of correlation R. Generally, 

the percentage difference between calculated and observed values of 

Y in Equations (5-6), (5-7) and (5-8) was below 6 per cent, though a 

few extreme cases of 11 per cent have been recorded. 

Comparing the two patterns studied, the extremely high correlation 

coefficient,s associated with both independent systems of diagonal-grid 

and ~quare-grid degenerated as both patterns were combined either with 

respect to size or exclusive ofsize and pattern. It is worthy of note 

that the exponential multivariable model gave smaller values of standard 

deviation only for the square grid systemo There was no strong evidence 



Pattern 
of 

3 " Rough- 32 ness 
Elements R 

Diagonal 0.947 1 

Square I 
. j0.990 

Diagonal 
~·t,T 

Combined 
Sizes 

Square 
for 

Combined 
Sizes 

Combined 
Diagonal 

and 
Square 

TABLE VIII 

SUMMARY OF CORRELATION COEFFICIENT (R) AND STANDARD DEVIATION (S) OF MULTIVARIABLE 
EQUATIONS FOR PREDICTING DIMENSIONLESS RESISTANCE COEFFICIENTS 

Exponential Linear Quadratic 

I 9 ti ! 3 " . 9 " I 3 " I 9 " 3 ti 
diam. diam~ diam. i 

32 32 diam. 32 I 32 diam. 
32 

diam. ! 32 ! i ! 

S R -~ S 
i l 

I ! l I I R s R ' s R s R s R l ' I 1 ' l +----- I 

i i 
-- ' 

0.0092 ' o.9991 0.0031 i 0.992 I I 

0.0039 : 0.996: , o.989 0.0043 0.998 j 0.0049 ; 0.0036 0.9991 
! ! I I I ; 

i 
o.9971 0.0124 \ 0.9991 0.0057 0.999 0.0079 ! o. 970 0.0101 0.987 0.0068 0.0082 j 0.996 

! ; 
···-- -------·t-~-

' 

R = 0.991 R = 0.991 R = 0.997 

S = 0.0082 S = 0.0081 S = 0.0051 

I R = 0.970 R = 0.981 I R = 0.987 

S = 0.032 S = 0.025 j_ S = 0.0207 

R = 0.968 R = 0.967 R = 0.979 

S = 0.026 S = 0.027 S = 0.021 

Cubic 

diam. 
9.!t 
32 diam. 

s I R r s 

0.0024 o.998 I 0.0045 
l 

0.0039 0.99610.014 

R = 0.998 

S = 0.0042 

R = 0.992 

S = 0.016 

R = 0,983 

S = 0.019 

0 
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to believe that the, exponential model was better than the linear rela-

tionship model. 

Further examination of the results of coefficients in Tables IV 

through VII revealed the following relationships between the dependent 

and independent pi-terms: 

1. The positive effect of the coefficient of the term dDB in 

every degree of polynomial confirmed that size increase as well as 
. ! 

\ 
increased density of spacing caused the retardance to flow of water in 

open channels to increasee 

2o The resistance to flow increased as the depth of flow in-
. . .... ff. 

creased in the term b • It is important to recognize that the validity 

of this holds provided the whole length of the roughness elements re-

mained unsubmerged a.s. indicated in the previous assumption. 

3. For all practical purposes, with the same size of element, 

slope of the channel, and discharge, the resistance to flow increased 

~ Nd 
commensurably with the increase of ""1;"" 

4. 
n . 

The term 
116 

generally decreased slightly with increase in 
.·R 

slope. 

5. The resistance coefficient increased with a decrease in 

Froude number. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Sununary 

Gradually~varied flow experiments were conducted in a lo32~foot 

wide and 24-foot long test section of a WF steel beam channelo The 

bottom of the channel was lined with aluminum sheet material which was 

fitted with round aluminum pegs of sizes 3/32-inch and 9/32-inch 

diameters. The pegs which served as roughness elements were plac~d in 

the channel bed a.t d·efinite longitudinal and transverse patterns and 

spacings .. Under the bare-channel lining condition a maximum flow of 

00885 c.f.so was allowed into the channel .. Test slopes for the 

adjustable slope _channel were restricted to approximate:values of 

000025, 000050, and OoOlO .. Density of roughness elements was pro= 

gressively increased transversely from four inches to one-half inicho 

The objective of this study was to determine the relationship of 
J, •. 

Manning's resistance coefficient to size of roughness elements, 

pattern of arrangement, density of spa.ting, slope, and discharge in a 

smooth artificial channel· using dimensional analysis and gradually.-

varied flowo Multivariable polynomial equations of first, seicond, and 

third degree, and an exponential model were used to analyze the data 

for a selected group of d:im~!i.s16nless terms.. Correlation coefficient 

(R') an.d standat;'d deviation (S) were established from a least square 

linear regression equation,. The effect of variable parameters was 

69 
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critically discussedo 

Conclusions 

The following conclusions are based on the analysis and inter-

pretation of the experimental results. 

1. An increase in size or density of roughness elements increased 

the resistance to flow in open channel. 

2. A Diagonal-grid pattern of roughness elements offered less 

resistance to.flow in the open channel than a Square-grid pattern. 

3. Resistance to flow in the open channel slightly decreased 

with ihcrea§e in slope. 

4. Resistance to flow decreased with increase in dischafge under 

smooth channel condition but it increased with discharge when channel 

was fitted with roughness elements. 

but tt·wa·s mere ~
1
(!)mpl~ to calculate. A cubic model Y = c1 + c2x1 + 

sometim~s gave slightly 
I 

improved estimates but it. was not reconnnended because of its complexity. 
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Suggestions for Future Study 

Based on the results of this study, the following research is 

suggested to improve the methods for predicting the degree of resis-

tance to flow in open channelse 

1. In most of the experiments, surface waves and standing waves 

were major problems at high discharges and density of roughness 

elements. An extension of the hydraulic phenomena encountered in this 

study might include the effect of surface wave velocities in future 

study. 

2. A study of steady state spatially-varied flow profiles of 

these tests and other tests with different roughness elements is 

needed. 

3. There is probably a marked relationship between the effect of 
. 

the roughness of the channel and that of different roughness elements. 

A contribution of each to the total resistance to flow should be 

further examinede 

A study of the effect of different roughness elements and com-

binations of these elements at high slopes up to 5 per cent should be 

studied to completely understand the phenomena under gradually-varied 

flow. 
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APPENDIX A 

EXPERIMENTAL DATA FOR THE ; 2-INCH DIAMETER ROUGHNESS ELEMENTS 

s pacing Slope Temperature Discharge Station Depths of Flow (Ft) 

Ident; 0 
(cfs) 0 + 00 0 + OS 

' 
0 + 10 0 + 15 0 + 20 F 

~ 

D-4 000022 80o0 001230 0.1000 0.1020 i 0.0970 000970 0.0990 ' 
80o5 o. 1857 0.1420 0.1430 ~ 

0.1380 001370 0.1360 
8LO 0.2325 0.1670 0.1680 0.1620 0.1590 0.1560 
8LO o. 2962 0.2010 0.2000 0.1900 0.1870 0.1810 
81.0 0.3229 0.2130 0.2100 0.2010 0.1950 0.1870 

D-4 0.0051 78.0 000295 0.0310 000315 0.0290 0.0290 000345 
78.0 0.1297 0.0810 

' 000830 000780 0.0810 0.0850 
78.0 0.2320 001320 0.1340 0.1290 o. 1330 0.1350_ 
80o0 0.3051 0.1645 0.1660 001615 0.1645 0.1650 
81.0 0.4142 0.2045 0.2120 0.2095 0 •. 2110 0 .. 2090 

D-4 0 •. 0101 78.5 0 •. 0993 0.0930 0.0955 0.0900 Oo.0870 . 0.0990 
79.0 0.1997 0.1280 0.1270 .. 0.1220 0.1170 001320 
80.0 0.2853 o.16ss 0.1660 0.1590 0.1530 Oo-1710 
81.0 004387 0.2040 0.2030 0~1970 0 .. 2010 002070 
81.5 0.5844 Oa2540 0.248_0 002430 0.2480 0.2480 

S=2 o •. 002s -81.0 0.-0572 0.0645 000705 0.0700 0.-0745 o.on s 
81.5 0.1388 0.1345 001365 0.1325 Oo 1315 0.-1285 
81.5 0.1932 O.i1705 0 .1725 0.1640 0.1605 0.1515 
81.5 0.2332 0.1965 001955 0.1860 0.1795 0.1675 
82.-0 0.2850 0.2255 0.2245 0.2130 002035 0.1865 

S=2 0.0050 82o0 0.0583 0.0430 0.0460 0.0450 0.0450 0(/0500 
82.5. 0"'1-951 0.1350 0.1385 0.1360 0.1400 0.1420 
82.0 0.2321 0.1170 0.1370 0.1490 0.1510 0.1570 
82.5 002850 0.1890 0.1590 0.1725 001770 Oo 1770 
82.0 0.2939 0.2010 002020 0.1950 0.2030 0.1860 

--0 



AP!'ENDIX A (Continued) 

Spacing Slope Temperature Discharge Station Depths of Flow (Ft) 

Idento OF (efs) 0 + 00 0 + 05 0 + 10 0 + 15 0 + 20 
- -

.l-"' 

S-2 0.0107 83.0 0.0610 0.0320 0.0420 0.0500 0.0560 0.0640 
-83.0 0.1531 0.0705 0.0840 0.,0940 0.1010 0.1070 
83o5 0.2321 0.1030 0.1240 0.1330 0.1405 0.1400 
84.0 0.3140 0.1430 0.1640 0.1720 0.1770 0 .1770 
84.5 0.4587 0.2090 0 .2.300 0.2350 0.2370 0.2200 

D-2 0.0025 82.0 0.0400 0.0605 0,.0595 0.0575 0.0585 0.0470 
82.0 0.0913 0.1165 001125 0.1075 0.1035 0.0820 
82.0 o. l.'i75 0.1805 0.1725 0.1625 0.,1515 0 .. 1200 
82.0 0.19-97 0.2155 0.2055 0.1925 0.1775 0.1410 
82·.0 0.2266 002375 0.2255 0.2110 0 .. 1945 0.1530 

D=2 0.0047 81.5 0.0507 o ... 05so 0.0615 0.0600 0 .. 062.5 0.0570 
82.0 -0.0801 0.0850 0.0905 0.9880 0.0885 0.0760 
82.0 0.0998 0.1030 0.1165 0. 1130 0.1315 0.1410 
82.0 0.1374 0 .1380 0.1415 0.1350 o. 1305 0 .1100 
82.0 0 ~17 52 0,,1700 0.1705 0.1620 0.1555 0.1310 

D=2 0.0091 79.5 0.0964 0.0730 0.0770 0.0790 0.0790 0.0710 
80.0 0.1709 0.1250 0.1310 0.1320 0.1290 0.1110 
80.0 0.2310 0.1660 0.1710 001710 0.1640 0.1380 
8lo5 0.3296 0"2280 0"2310 0 .. 2210 0.2150 0.1770 

' S-1 0.0021 78.0 0.0093 0.0225 0.02.55 0.0275 0 .. 0260 0.0220 
78.0 0.0289 0.0555 0.0575 0.0580 0.0555 0.0450 
78.0 0.0528 0 0 0915 0.0925 0.0905 0.0835 0.0680 
78.0 0.1057 0.1615 0.1575 0.1495 0.1355 0.1090 
78.0 0.1258 0.1975 0 .1915 0.1815 0.1625 0.1290 



APPENDIX A (Continued) 
\ 

Spacing Slope Temperature Discharge Station Depths of Flow (Ft) 

!dent. OF (cfs) 0 + 00 0 + 05 0 + 10 0 + 15 0 + 20 
• 

S-1 0.0049 77 .5 0.0375 0.0450 o.0475 0.0450 0.0440 000380 
77.0 0.0973 0 .1190 0.1185 0.1125 0.1050 0.0850 
77.0 o. 1387 0.1660 0.1635 0.1540 0.1405 0.1110 
77 o5 0.1692 0.1980 0.1935 0.1810 0.1640 0.1290 
78.0 0.1926 0.2200 o. 2135 0.1990 0.1800 9.1410 

S-1 0.0102 77 .o 0.0190 0 ·'°24-5 0.0245 . 0.0265 o_.0295 0.0245 
77 .o 0.0472 0.0665 0.071-5 0.0715 .0.0765 0.,0665 
77 .o 0.1013 0.0985 0.1015 0.1005 0.1035 0.0915 
77 .o 0.1670 0.1595 0.1595 0.,1555 0.1545 0.1295 
77 .5 0.2177 0.2015 0.2015 0.1955 0.1895 0.1565 

D=l 0.002.6 78.0 0.0246 0.0750 0 .. 0735 0.0680 0.0555 0.0505 
78.0 0.0422 0.1140 0.1095- 0.1010 0.0895 0.0710 
79.0 0.0559 0.1410 0.1345 0.1230 0.1090 0.0855 
79.0 0.0722 0.1710 0.1635 0.1490 o. u10 0.1015 
80.0 0.1080 0 .. 2320 o. 2195 0.1990 0.1740 0.1325 

D=l 0.0044 80 •. 0 0.-0337 0 .. 0790 o.-0765 0.0675 0.0560 0.0380 
80.0 0.0522 o. 1120 -0.1095 0.0990 0.0830 0.0580 
8LO 0.0693 0.1425 0.1375 0.1240 0.1060 0.0755 
81.5 0.0973 · o. 1800 0.1815 0.1640 0.1405 0.1060 
82.0 0.1328 0.2390 0.2300 0.2080 0.1775 001270 

D=l 0.0095 79.5 0.0423 0.0665 0 •. 0660 0.0635 000590 0.0540 
80.0 0.0613 0.0945 0.0940 0.0885 0 .. 0850 0.0730 
80.0 0.0828 0.1235 0.1240 0.1185 0.1120 0.0930 
79.0 0.0958 0.1445 0.1420 0.1365 0.1270 0.1040 
79.0 0.1514 0.2185 0.2130 0.2015 0.1840 0.1450 -0: 



APPENDIX A (Continued) 

Spacing 
I 

Slope Temperature Discharge Station Depths of Flow (Ft) 

Ident. OF (cfs) 0 + 00 0 + 05 0 + 10 0 + 15 0 + 20 

s-\ 0.0029 77.0 0.0150 0 .. 0605 0.0605 0.0555 0.0535 0.0395 
77.0 0 .. 0256 0.0940 0,09'2_0 0 .. 0835 0.0775 0.0570 
77.0 0.0403 0 .J.335 0.1295 o. 1175 0.1070 0.0180 
77 .. o 0.0481 o. 1530 0 .. 1475 0.1335 0.120s 0.0875 
78.0 0.0668 0.1995 0.1895 0 .1715 . o .. 1535 0.1110 

s-\ 0.0039 77 .. 0 0.0198 0.0690 o.ono 0.0640 0.0590 0.0420 
77.0 0.0340 .Q •. 1-060 0 .. 1080 Oo'0970 0.0890 0.0640 
77 .o 0.0438 0.1310 0.1310 001190 0.1070 0.0770 
77 .5 0.;0592 0.1680 0.1660 0.1500 0.1340 0~0960 
77.5 0.0842 0.2240 0.2180 o. 1960 0.1730 0.1230 

s~\ 0.0096 78.5 0.0129 0.0220 0.0310 0.0290 0.0270 0 .. 0270 
78.5 0.0391 0.0800 0.0.BJ.Q 0.0810 0.0770 0.0650 
79.0 0.0623 0.1260 0.1290 0.1240 0.1160 0.0930 
79.0 0.0760 0.1520 0.1550 0.1490 0.1370 0.1080 
79.0 0.0994 0.1990 Ool970 0.1890 0.1110 0.1320 



Spacing sf~pe 

'~i-d'~~ .. 

D=4 0.0022 

D=4 0.0045 

D=4 0.0095 

S=2 0.0018 

S-2 0.0042 

APP£ND1X B 

EXPERIMENTAL DATA FOR THE ~2=INCH DIAMETER ROUGHNESS ELEMENTS 

Temperature Discharge Station Depths of Flow (Ft) 
0 F (cfs) 0 + 00 0 + 05 0 + 10 0 + 15 

75.0 0.0356 0.0535 0.0575 0.0575 0.0545 
75.0 0.0650 0.0885 0.0895 0.0875 0.0805 
75.0 0.0890 o. 1135 0 .1135 0.1085 o. 1005 
75.0 0.1219 0.1445 0.1425 0.1360 001245 
75.0 0.1748 0.1895 0.1855 0.1745 0.1585 

75.0 0.03_17 090405 0.0400 o.0385 0.0370 
75.0 o.,.0665 0.0730 o.01o_o 0.0685 0.0665 
75.0 0.1302 0.1290 0.1240 0.1205 o .. uso 
75.0 0.1653 0.1560 0.1500 0.1450 0.1370 
75.0 0.;2278 0.2040 o. 1960 0.1865 0.1735 

74.0 0.0863 0.0640 0.0660 0.0655 0.0640 
74o0 0.1556 0.1070 0.1100 0.1090 0.1080 
74.0 0.2310 0.1550 0.1570 0.1590 0.1500 
75.0 o __ .3140 0.2060 0.2060 0.2005 0.1920 
76.0 0.3964 0.2520 0 .. 2510 0.2420 002300 

74.5 0.0298 0 •. 0610 0.0645 0.0660 0 ,,_066.0 
74.5 0.0516 0.0930 0.0945 0.0900 0.0775 
74.5 0.0734 0.1220 001215 0.1150 0.0990 
74.5 0 .. 0902 0.1440 O.l?i-15 0.1320 o. 1150 
74.5 0.1296 0.1880 0.1835 0.1700 0.1475 

74.0 0.0282 0.0425 0.042-0 0.0385 0.0335 
74.0 0.0890 0.10CY4 0.0980 0.0915 000825 
74.0 0.1080 0 .1195 0 .1180 0.1095 0.0975 
74.0 0.1467 0.1595 0.1540 0.1435 0.1275 
74.0 ' 0.2198 0.2285 0.2200 0.2025 0.1805 

0 + 20 

000465 
0.0665 
0.0825 
o. 1025 
o.12as 

0.0330 
o.osso 
0.0950 
o. 1130 
0.1420 

0.0620 
0.0990 
0.1330 
0.1670 
0.1980 

0.0695 
0.0725 
0.0770 
0.0915 
0.1165 

0.0375 
0.0645 
0.0765 
0.1005 
0.1425 

C 
C 



Spacing Slope Temperature Discharge 

Ident. OF (cfs) 

S-2 0.0104 74.0 0.0394 
74.0 0. 077 5 
74,.0 o. 1154 
74.0 0.1792 
75.0 0.2037 

... 

D-2 0.0023 76.0 0.0205 
76.0 o.,0377 
76.5 0.0541 
76.5 0.0726 
76.5 0.1005 

D=2 0.0045 75.0 0.0205 
75.0 0.0670 
75.0 0.0801 
75.0 0.0934 
75.0 0.1282 

D=2 0.0096 75.0 0.0279 
75QO 0.0572 
75.0 0.0897 

,, 76.0 0 .• ,1161 
76.0 0.1438 

S=l 0.0021 65.0 0.0154 
65 .o 0.0286 
65.0 0.0393 
65.0 0.0467 
65.0 0.0564 

APPENDIX B (Continued) 

Station Depths of 

0 + 00 o+ 05 0 + 10 

0.0370 0.0375 0.04-05 
0.,0660 0.06-90 6.0705 
0.0970 0.0990 0.1005 
0.1480 0.1500 0.1515 
0.1700 0.1710 0.1705 

0.0655 0.0675 000655 
0.1095 0.1075 0.1015 
0.1425 0 .1385 0.1280 
0.1755 0.1675 0.1545 
0.2155 0.2065 0.1905 

0.0380 0.0490 0.0470 
0.1250 0.1310 0.1220 
0.1560 0.1510 0.1410 
0.1630 0.1640 0.1580 
002170 0.2115 0.1910 

0.0410 Oa0445 0.0450 
0.0840 0 .. 0860 o .. osso 
0.1280 0.1290 0.1250 
0.1650 0.1650 0.1580 
Oa2030 0 .2010 0.1920 

0.0750 0 .. 0740 0.0710 
0.1330 0.12.00 0 .1120 
0.1580 0.1500 0.1370 
o. 1780 0.1680 0.1530 
0.2000 0.1900 0 .1720 

Flow (Ft) 

0 + 15 

0.0380 
0.0690 
0.0980 
O. 14TO 
0.1620 

0.0605 
0.0915 
0.1130 
0.1355 
0.1690 

0.0460 
o. 1120 
0.1270 
0.1430 
0.1810 

0.0405 
0.0790 
001170 
0.1470 
0.1150 

0.0620 
0.,0940 
0.1260 
O .• 1300 
0.1420 

0 + 20 

0.0410 
0.0690 
0.0950 
0.1320 
0.1460 

0.0475 
0.0685 
0.0855 
0.1085 
0.1275 

0.0380 
0.0870 
0.0990 
001105 
0.1390 

0.0400 
0.0705 
0.1005 
0.1230 
0.1440 

0.0470 
0.0680 
0.0870 
0.0920 
0.1280 ex 

I-



APPENDIX B (Continued) 

Spacing Slope Temperature Discharge Station Depths of Flow (Ft) 

Idento OF (cfs) 0 + 00 0 + OS 0 + 10 0 + 15 0 + 20 

S-1 0.0045 67.0 0.0155 0.0490 o •. os20 0.0510 0.0360. 0.0370 
67.0 0.0386 0.1240 0.1220 0.1150 0.0970 0.0730 
67.0 0.0468 0.1460 0~1420 0.1320 0.1120 0.0830 
67.5 0.0623 0.1810 0.1740 0.1590_ o. 1340 0.1000 
67.5 0.0714 0.19-90 0.1910 0.1740 0.1510 0.1370 

S-1 0.0104 63.5 0.0336 0.0710 0.0780 0.0790 0.0780 0.0645 
64.0 0.-0484 O.HHO 0.1080 o. 1100 0.1040 0.0830 
64.0 0 •. 0604 0.1230 0.1310 0.1310 0.1220 0.0990 
64.0 0.0783 0.1540 0.1620 0.1600 0.1470 0.1190 
64.5 0.1075 0.206.0 0.2120 0.2050 0.1870 0 .. 1480 

-

D=l 0.0044 67.0 0.0134 0,;0810 0.0720 0,;0680 0 0 0650 0.0460 
67.0 0.0250 0.1290 0.1190 0.1110 0.1030 0.0730 
67.0 0.0304 0.1530 0.1410 0.1280 0 .1190 0.0850 
67.0 0.0370 0.1800 0.1670 0.1530 0.1330 0.0975 
67.0 o.;0476 0.2160 0.1990 0.1830 0.1665 0.1160 

D=l 0.0097 68.0 0.0218 O_:gQ800 0.0670 o .• 0830 0.,0760 0.0630 
68.0 0.0339 0.1240 0.1150 0 ... 122Q Oo-1110 0.0870 
68.0 0.0412 0.1470 0.1380 0.1440 0.,1300 0 .•. 1000 
68.0 0.0482 0.1690 0.1530 0.1630 0.1420 0.1120 
68.0 0.0593 0.2030 0 .. 1860 o. 1930 0.1740 0.1330 

S=~ 0.0020 67.0 0.0065 0.0800 0.,0790 Ooc0715 0,.0590 0.0310 
67.0 090114 0.1230 o. 1190 0.1070 0.0880 0.0470 
67.0 0.0167 0.1660 o .. 1s10 0.1400 o .1 i'so 0.06.20 
67.0 0.0236 0.2190 0.2050 0.1820 0.1490 000770 
67.0 : 0.0269 0.2390 0.2230 0.1970 0.1600 0.0820 



Spacing Slope Temperature Discharge 

!dent. OF (cfs) 

S-\ 000047 67.5 - .. 0.9Q075 
67.0 0.0202 
67.0 0.0146 
66.5 0.0299 
66.5 0.0350 

S-\ 0.0101 67.0 0.0170 
67.0 0.0247 
66.0 0.0385 
65.0 0.0417 
63.0 0.0321 

APPENDIX B (Continued) 

Station Depth of Flow 

0 + 00 0 + 05 0 + 10 

0.0640 000690 0.0840 
0.1630 001580 0.1460 
0.1210 o. 1190 0.1120 
0.2290 0 .. 2190 0.1990 
0.2610 0.2480 0.2250 

p 

0.0990 0.0995 0.0960 
0.1450 0.1435 001370 
0.2260 0.2195 0.2050 
0.2400 0.2325 002170 
0.1870 0.1825 o-;1720 

---·-

(Ft) 

0 + 15' 

0.0820 
0.1240 
0.0960 
0.1660 ; 
0.1870 

o.os9o 
001230 
0 .1790 
0.1890 
0.1520 

0 + 20 
-

0.0165 
0.0695 
0.0545 
0.0905 
0.1035 

000560 
0.0730 
0.1025 
0 .. 1090 
0.0880 

0 
<., 



APPENDIX C 

NOMENCLATURE 

Symbol Quantity 

b Channel width 

d Diameter of r(Clughness element 

y Depth of flow 

E Specific energy 

g Acceleration due to gravity 

H Friction head 

Velocity head 

K Stiffness modulus of element 

1 Length of roughness element 

L Length of test channel 

n Manning's n, roughness coefficient 

R Hydraulic radius 

Reynolds number 

Energy slope 

Channel bottom slope 

V Velocity of flow 

X Distance from some reference point 

z Bottom elevation above datum 

o( Coriolis velocity coefficient 

84 

Dimensions 

ft 

ft 

ft 

ft 

. 2 ft/sec 

ft 

ft 

2 
lb-ft 

ft 

ft 

nonhomogeneous 

ft 

dimensionless 

dimensionless 

dimensionless 

ft/ s;ec ' 

ft 

ft 

dimensionless 



Shape factor defining type of 
roughness element 

Factor denoting roughness pattern 

Fluid density 

Fluid viscosity 

85 

dimensionless 

dimensionless 

lb=sec
2
/ft

2 

2 
lb-sec/ft 
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