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CHAPTER I 

INTRODUCTION 

Surface tension is an important parameter in many 

scientific and engineering areas, such as heat and mass 

transfer and reservoir engineering. Reliable experimental 

data or theoretical correlations are not common. 

This study was undertaken to measure experimentally 

surface tension for binary and ternary mixtures of light 

hydrocarbons and related gases with heavier hydrocarbons. 

Once the experimental values vvere determined, the general 

appl icabi 1 ity of the excess surface tension correlation 

was examined. 

The method used for determining surface tension was 

the pendant drop procedure. The experimental apparatus 

consi~ted of a high-pressure pendant drop apparatus, 

temperature control, and an optical system. 

Experimental measurements were made for methane-n

nonane, ethane-n-nonane, n-butane-n-decane, carbon 

dioxide-n-decane, and hydrogen sulfide-n-decane binary 

systems, and for ethane-n-butane-n-decane and methane

carbon dioxide-n-decane ternary systems. 



CHAPTER I I 

LITERATURE REVIEW 

Definitions and Experimental Methods 

Surface tens Ion is defined as the boundary 'tens ion 

between a liquid and a gas or vapor (2); it may also be 

defined as a measure of the specific free energy between 

two phases. Because it deals with equilibrium configur

ations, surface tension occupies a place in the general 

framework of thermodynamics - it deals with the macroscopic 

behavior of interfaces rather than with the details of 

their molecular structure (1). Surface tension may be ·re

ferred to as a free energy per unit area or, equally well, 

as a force per unit length. Customary units, then, may 

either be ergs/cm2 or dynes/cm; these are identical 

dimensionally. 

Specifically, surface tension may be measured between 

two immiscible phases; e.g., two liquids, or between a 

liquid and a gas or a liquid and its own vapor. This last 

category, surface tension of a liquid in equilibrium with 

its own vapor, is the concern of this work. 

There ·are several experimental methods for me.asuring 

surface tension. These include: capillary rise, drop 

2 



weight, bubble pressure, and pendant drop methods. 

Adamson (1) pre$ents a comprehensive analysis of the 

different methods. 

3 

Behavior of a liquid in a capillary tube is the basis 

for the capillary rise method. The height of rise of a 

liquid in the :capillary tube determines its surface 

tension. While the method is valuable for some liquids, 

it nevertheless has some drawbacks. Comparison of differ

ent capillary tubes is not e.asy; and determination of tube 

diameter is an ·indirect procedure. 

The drop weight method utilizes volumetric data from 

falling drops. The method is empirical and uses correction 

factors which is a disadvantage. The method is not ab

solute; it requires calibration of the apparatus with a 

liquid of known surface tension. 

The bubble pressure method measures the pressure 

required to liberate bubbles from a capillary tube im

mersed in a liquid vertically. New bubbles carry away 

any ·impurities attaching to the capillary. Also contact 

angle is not important. 

Pendant Drop Method. 

Surface tens ion is determined in the pendant drop 

method, used in this study, by measurements made on drops 

hanging from a tip. The method is absolute, requiring no 

calibration or correction factors, .and has been ·subjected 

to complete mathematical analysis. As elaborate optical 
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equipment has become available, the pendant drop technique 

has proven to be ,among the most reliable methods for 

determining surface tension, and, therefore, has been 

widely accepted. 

The method is inherently usable under extreme con

ditions. High temperatures and pressures are handled 

without extra difficulty. Reactive materials, viscous 

liquids, and toxic gases require no ,special arrangements 

in this method. 

The photograph of the drop serves as a permanent 

record, which is an important advantage over other methods. 

Also the results are independent of contact angle. 

A drop, hanging ,from a tip, elongates as it grows 

larger because the variation in hydrostatic pressure 

eventually becomes appreciable in comparison with that 

given by the curvature at the ,apex. This is described by 

the Laplace and Young equation 

l l p = y (- + - ) • 
Rl R2 

( l ) 

In other words the product of surface tens ion ,and the mean 

radius of curvature determines the pressure difference 

between two sides of a curved interface. 

In the case of a figure of revolution, the two radii 

of curvature must be equal at the ,apex; e.g., at the 

bottom of a pendant drop. If this radius of curvature is 

denotecl by b, and the ,elevation of a general point on the 

5urface is denoted by z, then Equation (1) may be 



written as (1) 

P= 
2 y 

b 
( 2 ) 

But Equation (2) contains b~ the measurement of which 

presents a difficulty. Andreas et al. (2) felt that the 

most conveniently measurable shape dependent quantity was 

ds 
s = er- (3) 

e 

As indicated by Figure 1 ~ d is e the equatorial diameter 

and ds i s the diameter measured a distanced up from 'the ,e 

bottom of the drop. Define a new paramete:r P as 

~ = (4) 
y 

5 

Again~ cannot be. measured precisely or quickly from a 

photograph of the drop. But the combination of Sand ~ 

resolves this difficulty. A new shape dependent parameter~ 

H , i s def i n ed a s 

~ 
d 

)2. H ( e ( 5) = - b 

Thus 
b2 - (dl - dv) g 

y = ~ 
2 - ( d . .,;; .. dv) g d 

L e = 
de/b) 2 p ( 

. ( d .. dv) g de 
2 - ( 6) L = 

H 

The relationship between the shape dependent factor Hand 

the experimentally measurable shape dependent quantity S 
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de ______ ...,. 

Figure 1. Experimentally Measured Parameters 
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is then determined and tabulated for ease of reference. 

Shape factors, H, for S values are obtained by solving 

profile equations by the Bashforth-Adams (4) integration 

formula. Niederhauser and Bartell (18) checked earlier 

tabulations by Forham (10) and found them rather accurate. 

Deam (7) used a method of successive approximations 

for shape factor evaluation, and his results agreed well 

with the previous results derived by the Bashforth-Adams 

technique. This work used the results of Deam for 

evaluation of shape factors. 

Theory and Correlations 

Since the second half of the nineteenth century 

several workers have attempted to theoretically correlate 

surface tension or to, at least, empirically estimate it. 

These ~ttempts, however, were only moderately successful. 

Katayama (12) modified some earlier equations and 

took into account vapor and liquid densities as well as 

temperature 

M 
y (--) 213 = k ( T - T) 

6d C 
( 7) 

This equation applied to unassociated and nonpolar liquids~ 

The constant k had a value of 2.12, but varied from 1.5 

to 2.6 for different liquids. 

Van der Waals (30) proposed to relate surface tension 

to reduced temperature as 



(8) 

Van der Waals reported n to be 1.5; Ferguson (9), later, 

gave the exponent as l. 2. 

Sugden (29) propbsed that surface tension may be 

estimated by use of the parachor 
1 

[P] M y7+ 
= 

!:Id 
(9) 

where the parachor would be an additive property. Th rough 

statistical considerations of a liquid in contact with its 

own vapor, Fowl er ( 11) deduced independently the parachor 

relationship. 

We,i naug and Katz (3 l) extended the parachor treatment 

to better apply at high pressures 

1 

y7+ = Y. 
I 

They found that Equation (10) gave good agreement with 

their ex per i mental values for the methane-propane system. 

Different workers have recently measured surface 

tension. Most of them tried to apply the Weinaug and 

Katz relationship; some of them varied the exponent or the 

parachor values. 

More recently, Deam (7) studied the methane~nonane 
0 and methane-butane-decane systems between -30 and 100 F. 

He reported that methane acted like a dissolved gas at 

8 

such temperatures, which are above the methane critical 

temperature. He defined an excess surface tension functiot1, 



to apply only above the critical temperature of the gas 

E 
y x. 

I 
y •• 

I 
( l l ) 

9 

Pure component surface tension values are calculated by 

Equation (8). Pseudo-reduced temperatures of the mixtures 

are ,calculated by the Rackett technique and apply only to 

the super-critical components. Excess surface tension 

values were all negative, indicating a dissolved methane 

effect of lowering the surface tension of the mixture. 

Deam, further presented a diagram relating excess surface 

tension to methane concentration and pseudo-reduced tem

perature. Below the critical temperature of the gas, 

Deam proposed that Equation (8) applies, without any 

corrections for dissolved gas effects. Deam tested the 

applicability of his diagram to non-methane light compon

ents. He used experimental nitrogen-heptane and ethylene

heptane data and found that deviations were reasonable -

considering that only methane data were used to construct 

his diagram. He also predicted that the same diagram 

could be used for other light components in heavier 

hydrocarbons. 

This work was undertaken to attempt to apply the 

excess surface tension theory to some other hydrocarbon 

and related systems. Ethane-nonane, carbon dioxide-decane, 

and hydrogen sulfide-decane binaries, and ethane-butane-

decane and methane-carbon dioxide-decane ternary systems 

were selected for this study. 



CHAPTER I I I 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Experimental Apparatus 

The experimental apparatus consists of a high pressure 

cell, a drop forming unit, a gas cylinder, a temperature 

control system, and an optical system. The ~pparatus is 

schematically shown in Figure 2. 

The cell is stainless steel with a rating of 1500 psi. 

'It has a holding volume of fourteen cubic centimeters. Two 

viewports, with quartz lenses, expose the drop forming tip 

and the drop. Each lens, one inch in diameter, is held 

tightly in place between a silicon rubber seal, on the 

inside, and a teflon ring in ·front of the annular threaded 

plug, on the outside; the cell components are shown In 

Figure 3. The viewports have a 0.625 inch diameter opening. 

The capillary line, with the tip, screw into the cell from 

the top side. Gas inlet is provided for at the bottom face 

of the cell. The cell, capillary line, and liquid reservoir 

are contained in a temperature bath. 

The capillary line, 0.087 inches in inside diameter 

and six inches long, connects the liquid reservoir to the 

cell. The tip is a Yale Number 15 stainless steel 

10 
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capillary tip with an outside diameter of 0.072 inches; it 

is fitted on the bottom of the base of the capillary line. 

The base of the capillary line screws into the cell with 

a Buna N seal on its bottom to make the connection leak 

proof. A Circle Seal, ball, capillary valve is mounted in 

the middle of the capillary line and thus separates ihe 

gas in the cell from the liquid in the reservoir. The 

liquid reservoir has an inside diameter of 0.5 Inches. 

A piston 9 with a Buna Nor Viton seal 9 forces the liquid 

through the capillary line and generates the drops on the 

tip. A ve~nier screw drives the piston. 

The gas cylinder is connected through a pressure 

regulator and a pressure gauge to the eel L This gas 

line also leads to a vacuum pump. 

The temperature control system consists of a heating 

system and a refrigeration unit. The heating element is a 

300-watt immersion heater, controlled by a Thermi stemp 

Model 63 temperature controller capabl~ of temperature 
0 control to 0.1 F. A compression-type refrigeration unit, 

charged with Freon 22 and capable of cooling to ~40°Fy is 

used for low temperatures. Liquid in the bath was 
0 methanol-water at temperatures below 32 F, water at tem-

peratures between 32°F and l00°F 9 and ethylene glycol-water 

at temperatures above l00°F. The temperature bath Is 

insulated with one inch of magnesia packing between the 

walls and one inch of fiberglass on the outside. 
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The optical system consists of a light source, .a 

camera, and an optical comparator. A Cenco 100-watt high-

pressure, mercury arc lamp provides light from one window 

of the temperature bath and through the eel 1. At the 

other window of the temperature bath, a lens is placed, 

followed by a Konica Model FS 35 mm ·single-lens reflex 

camera. A Kodak extreme resolution panchromatic film is 

used. Drops, recorded on film, are measured by projecting 

them on a Vangard Model C-llD motion analyzer of 30X 

magnification, 

Hydrocarbons and other materials used in the study, 

obtained from Phillips Petroleum Company, have the 

following specifications: 

research-grade n-nonane 

research-grade n-decane 

instrument-grade n-butane 

pure-grade ethane 

instrument-grade methane 

bone-dry carbon dioxide 

pure-grade hydrogn sulfide 

mole~ cent 

99.68 
0.3 2 iso-nonanes 

99.49 
O. 5 1 iso-decanes 

99.55 
0.45 iso-butane 
0. 05 propane 

99. min. 

99.29 
0.60 nitrogen 

20 ppm max. oxygen 
10 ppm max. water 

99. 8 min. 

99.6 min. 
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Experimental Procedure 

At a given temperature, an isotherm, an experiment 

consisted of surface tension measurements at several 

pressures. At each pressure abo~ sii photographs were 

taken, normally for more than one pendant drop as described 

later. 

Prior to an experiment, .the eel l and drop tip were 

given a detergent wash in warm distilled water followed by 

three distilled water washes. Three ~bsolute ethyl 

alcohol washes followed the water washes. All the washes 

were conducted in an ultrasonic cleaner and lasted 15 min

utes each. After washing, the apparatus was drained and 

dried by ·pass;ing filtered air through it. Thereafter, the 

apparatus was assembled, ready for a run. 

Binary Procedure 

Once the system was assembled, the temperature bath 

was filled with the appropriate liquid (depending on the 

temperature of the ·run) and the system was brought to 

thermal equilibrium. In the meanwhile it was ascertained 

that the system was leak proof by raising the system 

pressure to more than the highest pressure to be ~ttained 

in the ·experiment. 

When the system reached thermal equilibrium at the 

desired temperature and was leak free, the entire system 

was evacuated, to less than 29 inches of vacuum, then 



flushed with the gas'; to be used in the experiment, and 

evacuated again. After that the system pressure was in

creased to slightly above atmospheric pressure. The 

piston was withdrawn, and the desired liquid hydrocarbon 

Minimal liquid was added, 

16 

was charged via a syringe. 

normally about ten drops. With the valve in the capillary 

line in the open position, the gas was allowed to bubble 

through the liquid for a few minutes to let the system 

approach mass equilibrium. Before the piston was re

inserted, the valve was closed to prevent the liquid from 

going through the capillary line into the eel l while in

serting the piston .. Thece··lTpressure was increased to 

the desired first pressure. 

A few shots of th~ bare tip were taken at this point 

before any liquid had covered it in order to use these 

pictures for determining the true measurements of the 

drops later on. Th~ ,capillary valve was then opened. To 

enhance mass equilibrium, the vernier screw was used to 

force the liquid down the capillary line and onto the tip 

thws contacting the vapor in the cell, and then it was 

sucked back into the liquid reservoir to mix the liquid. 

This was repeated until mass equilibrium was achieved. 

This required, on the average, 45 minutes to one hour. 

Before mass equilibrium was reached, the drop was unstable 

when it formed on the tip; it would oscillate up and down. 

This oscillation phenomenon was also observed by Deam (7). 

When mass equilibrium was attained, the drop would form on 
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the tip and exhibit a great deal of stability to the extent 

of staying pendant on the tip for thirty minutes to one 

hour if not disturbed. It should be remarked, though, 

that a truly pendant drop is in a state of unstable 

mechanical equilibrium--like a ball seated on the top of 

another bal 1; the least disturbance--even building traffic

would set it loose. 

When mass equilibrium was achieved, the critical step 

of the pendant drop procedure was at hand, namely to ob

tain a truly pendant drop and record three to eight of 

its photographs on film, Oftentimes one drop would not 

stay that long and another drop is thus required. During 

the experiment it was, in general, difficult to ascertain, 

that a drop was pendant unf~ss a previous drop was lost 

from the same position when it was forced to go any 

farther. A distinguishing quiver was unmistakably ex

hibited, momentarily, by every new drop as soon as it 

reached the pendant stage. 

A non-pendant drop, if used, would lead to eroneous 

surface tension values, and that ls why it was so critical 

to have truly pendant drops. Figure 4 shows examples of 

both types of drops, the pendant and the non-pendant. 

Ternary Procedure 

The general procedure for a ternary resembles closely 

that of a binary. Liquid hydrocarbon was charged to the 

reservoi r--whi le the capillary valve was closed. The 



A 

B 

Figure 4. Drops Suspended From 
a Capillary Tip 

(A) Non - Pendant Drops 

(B) Pendant Drops 

18 
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cell was evacuated, as described before, and then n-butane 

pressure was adjusted to achieve the desired butane liquid 

composition. When mass equilibrium was reached by the 

binary, at the desired bubble point pressure, photographs 

were taken for drops of the binary. 

The second gas was then connected to the system and 

its pressure was brought up to the first desired ternary 

pressure. Mass equilibrium was again achieved, by the 

procedure described before, for the ternary. Photographs 

were taken, and surface tension at consecutive pressures 

was determined in the same manner. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

One isotherm for the methane-nonane system was 

experimentally determined at 70°F; a pressure range from 

50 psia to 1000 psia was investigated. Data for this 

system are presented in Table I and Figure 5. These data 

represent measurements on saturated liquid mixtures. Drop 

measurements and phase densities generate the surface 

tension values by use of Equation (6). 

Experimental data for the ethane-nonane binary system 

are presented in Table I I and Figure 6. The system was 

studied at 0°F, 32°F, 58°F, 130°F, and 170°F isotherms. 

The pressure range was 50 psi a to 500 psi a. Experimental 

measurements were taken after mass equilibrium was reached 

between the vapor and liquid phases for every temperature 

and pressure. Surface tension values were calculated from 

phase densities and experimental drop measurements combined 

with Equation (6). 

Surface tension values for the carbon dioxide-decane 

binary system are shown in Table I I I and Figure 7. 

Isotherms studied were 0°F, 32°F, 40°F, 76°F, and 160°F. 

Several pressures from about 50 psia to about 800 psia 

were studied. Measurements were made on liquids saturated 

20 
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TABLE I 

EXPERIMENTAL SURFACE TENSION OF METHANE-NONANE SYSTEM 

Surface 
Temp. Press. Tension Ave. Methane Mole· 

Op Esia dines/cm Value Fraction 

70 50 2L 86 22.05 0.0183 
2L92 
22.00 
2L94 
2L98 
22.24 
22.20 

100 2L 72 2L 70 0 0 0 36 3 
21. 7 3 
2L65 
2L68 
21. 72 

300 19.63 19.57 0.1042 
19.60 
19,38 
19,66 

500 17.23 17.14 0,1662 
17.03 
16.98 
17,28 
17.22 
17,31 
17.18 
17,02 
17.04 

750 14.53 14.51 0,2360 
14.45 
14,44 
14,57 
14.56 
14,58 
14.59 

1000 12.52 12 0 51 0,2979 
12.49 
12,54 
12,51 
12,49 
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TABLE II 

EXPERIMENTAL SURFACE TENSION OF ETHANE-NONANE SYSTEM 

T = o°F T = 32°F T = S8°F T = 130°F 
p Surface Ave. Ethane Mole p Surface Ave. Ethane Mole p Surface Ave. Ethane Mole p Surface Ave. Ethane Mole 

psi a Tension Value Fraction psia Tension Value Fraction psi a Tension Value Fraction psi a Tension Value Fraction 
dynes/crn dynes/crn dynes/crn drnes/crn 

so 21. 41 21. 34 0.2197 so 22.14 22.24 0.1501 320 8. 33 8.12 0. 7231 320 11. 4 5 11. 37 0.3887 
21. 57 22.18 8.02 11. 55 
21. 44 22.15 7.87 11. 37 
20.95 22.29 8.26 11.10 

22.19 8.23 11. 40 
100 16.83 16.47 0.4501 22.50 8.27 11. 26 

16.29 7.90 11.15 
16. 2 8 100 18.82 18.53 0.2998 8.33 11. 57 

18.59 8.01 11.60 
200 10.33 10.33 0.5000 18.57 8.36 

18.37 8.04 
18.42 7.95 
18.42 7.91 

8.01 
200 12.64 12.71 0,5000 8 .15 

12.54 8.20 
13.01 8.38 
12.59 8.16 
12.83 8.02 
12.60 
12.54 
13.03 
12.79 
12.52 

300 7.66 7.59 0.5000 
7.53 
7. 5 8 

p 
psia 

75 

150 

300 

500 

T = 170°F / 
Surface Ave. Ethane Mole 
Tension Value Fraction 

1 

dynes/crn 

16.12 15.86 0.0854 
15.80 
15.87 
15.75 
15.81 
16.03 
15.75 
15.73 

15.08 14.82 0.1425 
14.81 
14.65 
14.73 
14.83 
15.17 
14.76 
14. 54 
14.84 

12.22 12.28 0.2833 
12.29 
12.26 
12.21 
12. 41 

7.67 7.83 0.4669 
7.81 
7. 89 
7.95 

N 
w 
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Press. 
psi a 

so 

100 

300 

TABLE III 

EXPERIMENTAL SURFACE TENSION OF CARBON DIOXIDE-DECANE SYSTEM 

T=0° F T=40° F T=l6D° F 

Surface Ave. Carbon Dioxide Press. Surface Ave. Carbon Dioxide Press. Surface Ave. Carbon Dioxide 
Tension Value Mole Fraction psi a Tension Value Mole Fraction psi a Tension Value Mole Fraction 
dynes/cm dynes/cm dynes/cm 

2 7. 38 27.31 0.1376 75 22.41 22.43 0.0843 200 16.05 15. 77 0.1118 
27 .28 22.32 15.46 
2 7. 28 22.30 15.63 

22.73 15.44 
24.54 2-5.01 0.2709 22.41 16.06 
ZS.OS 15.61 
25.14 150 20.62 20.73 0.1627 16.12 
25.27 20.89 
25. 08 20.95 400 13.24 13.40 0.2127 
24.96 20.31 13.35 

20.46 13.24 
10.01 9.89 0.5000 20.96 13.55 
10.00 20.95 13.60 

9.64 
9.90 300 16.23 16.51 0.3355 600 11. 79 11. 82 0. 3077 

16.47 11.93 
16.44 11. 65 
16.63 11. 86 
16.78 11.88 

11. 81 
500 8.96 9.04 0.7117 

8.95 800 10.23 10.24 0.3988 
9.03 9.99 
9.06 10.55 
8.92 10.01 
9.15 10.40 
9.16 
9.10 
8.98 

N 
V, 
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and in contact with their vapors. Drop measurements and 

phase densities were used to calculate surface tension 

va lues via Equation (6). Data at 32 F and 76 Fare shown 

with the methane-carbon dioxide-decane ternary system 

later. 

For the hydrogen sulfide-decane system, temperatures 

studied were 40°F, 100°F, and 160°F . Pressures ranged 

fr om 3 0 p s i a to 11 5 p s i a . E qua t i on ( 6 ) w i t h exp er i men ta 1 

drop measurements and phase densities were used to ca lcu

late surface tension of the saturated mixtures. These 

data are shown in Table IV and Figure 8. 

Surface tension values for the ethane-butane-decane 

ternary system were determined at 170°F and for pressure 

values from 50 psi a to 500 psia. Data were taken for 

liqu id in equilibrium with its own vapor . Phase densities 

and drop measurements were used with Equation (6) to find 

surface tension values. These are shown in Table V and 

Figure 9. 

The ternary system of methane-carbon dioxide-decane 

and the carbon dioxide-decane binary system were studied 

at 32 F and 76°F. Table VI shows experi mental results 

for the binary system. Table VI I and Figures 10, 11, and 

12 present the data for the ternary system. At every 

temperature a series of pressures were investigated 

ranging from about 30 psia to 1000 psia. Liquid mixtures 

were saturated and in contact with their vapors. Phase 

densities and experimental drop measurements generated 



TABLE IV 

EXPERIMENTAL SURFACE TENSION OF HYDROGEN SULFIDE-DECANE SYSTEM 

Press. Surface Ave. Hydrogen Sulfide 
psia Tension Value Mole Fraction 

so 

100 

ll5 

21.45 21.60 
21. 44 
21. 95 
21. 55 

20.55 20.07 
19.59 

19.56 19.56 

0.195 

0.446 

0.546 

T = l00°F 

Press Surface Ave. Hydrogen Sulfide 
psia Tension Value Mole Fraction 

30 

so 

100 

ll5 

20.18 
20. 79 
20.48 
20.41 
20.13 

19.92 
20.05 
20.17 
19.96 
19 .52 
19.66 
19. 79 

18.77 
18.73 
18.89 
18.92 
18.89 
18.88 
18.76 
18. 75 

18.62 
18.37 
18.48 
18.33 
18 .53 
18.58 
18.36 
18.65 

20. 40 0. 0 70 7 

19.87 0. ll53 

18.82 0.2332 

18.49 0. 2 70 3 

T = 160°F 

Press Surfdce Ave. Hydrogen Sulfide 
psia Tension Value Mole Fraction 

50 

75 

100 

17.93 18.06 
18.05 
17. 91 
18.33 

17.59 17.61 
17.87 
17.65 
17.50 
17.46 

17.35 17.21 
17.06 
17.23 

0. 0 796 

0. ll92 

0.1585 
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Temp, 
Op. 

170 

TABLE V 

EXPERIMENTAL SURFACE TENSION OF 
ETHANE-.BUTANE-DECANE SYSTEM 

Surface 
Press, Tension Ave. 
Esia drnes/cm Value 

50 13.88 '14.10 
14.24 
14.00 
14.26 
14.14 

100 13.16 13.22 
13.24 
13.26 

200 12,18 11. 99 
11,93 
12.16 
11. 95 
11. 90 
11. 96 
11. 84 

300 10. 20 10.15 
10.04 
10.00 
10.39 

400 8.34 8.65 
8.34 
8.90 
8.63 
8.92 
8.54 
8.94 
8,57 

500 7.10 7.21 
7.36 
7.10 
7.28 
7,32 
7.12 
7,20 

30 

Mole Fraction 
Ethane Butane 

a.a 0.3873 

0.0619 0.3605 

0.1618 0.3221 

0.2578 0.2856 

0.3520 0.2493 

0.4448 0.2133 
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Composition 
Parameter 

0.40 

0.35 

0.52 

0.68 

TABLE VI 

EXPERIMENTAL SURFACE TENSION OF 
CARBON DIOXIDE.:.DECANE SYSTEM 

Temp. Press. Surface Ave. 
Op :esia Tension Value 

76 34 21. 64 21. 78 
21. 91 
21. 63 
21. 85 
21. 89 
21.74 
21. 65 
21. 85 
21. 86 

32 34 23.37 23.50 
23.57 
23.45 
23.61 

32 so 22.25 22.73 
22.97 
22.97 

32 100 21.13 21,34 
21.16 
21. 55 
21. 30 
21. 58 

32 

Carbon Dioxide 
Mole Fraction 

0.0384 

0,0625 

0.0917 

0.1817 



TABLE VII 

EXPERIMENTAL SURFACE TENSION OF METHANE-CARBON DIOXIDE-DECANE SYSTEM 

Composition T p Exp. Ave. Mole Fraction Composition T p Exp. Ave. Mole Fract1on 
Parameter ~F psia Value Value Methane Car6on Dioxide Parameter ~F Esia Value Value Methane Carbon Dj·oxi de 

0.40 76 100 21. 29 21.20 0.0216 0.0425 0.35 32 200 21. 41 21. 33 0.0676 0.0529 
21. 06 21. 25 
21. 33 21.10 
21.10 21. 63 
21. 40 21. 26 
21. 23 
21. 30 300 20.07 20.35 0.1047 0.0507 
21. 04 20.61 
20.96 20.26 
21.19 20.08 
21. 28 20.53 

20.56 
200 20.25 20.17 0.0554 0.0415 

20.22 500 17.34 17.52 0.1943 0.0462 
20.09 17.43 
20.03 17.51 
20.00 17. 43 
20.18 17.39 
20.43 17.50 

17.45 
300 19.06 18.83 0.1055 0.0406 17.63 

18.68 17.62 
19.09 17.79 
18.68 17.68 
18.74 
18.74 750 15.26 15.20 0.2688 0.0407 

15.20 
500 16.36 16.26 0.2012 0.0386 15.13 

16.23 15.35 
16.34 15.04 
16.10 15.01 

15.47 
750 14.30 14.26 0.2620 0.0356 15.11 

14.19 
14.29 1000 12.85 12. 74 0. 34 71 0.0349 

12.66 
1000 12.22 12.22 0.3442 0.0323 12. 71 

12.88 
0.35 32 100 22.61 22.59 0.0284 0.0551 12.76 

22.55 12.91 
22.66 12.69 
22.50 12.88 
22. 49 12.70 
22.72 12.54 

Ii. 79 
12.83 
12.82 w 
12.62 w 
12.51 



TABLE VII (Continued) 

Composition T p Exp. Ave. Mole Fraction Composition T p Exp. Ave. Mole Fraction 
Parameter Op --,psi a Value Value Methane CarEon Dioxide Parameter Op psi a Value Value Methane - Car6on ihoxide 

0.52 32 200 20.97 20.76 0.0625 0.0759 0.68 32 200 20.26 20.16 0.0454 0.1529 
20.67 19. 94 
20.64 20.31 

19.96 
500 17. 72 17.57 0.1690 0.0663 20.35 

17.50 
17.48 300 19.32 19.28 0.0840 0.1456 

19.10 
750 14.27 14.32 0.2551 0.0583 19.17 

14.38 19.28 
19.13 

1000 12.40 12.60 0.3459 0.0499 19. 38 
12.67 19.40 
12. 74 19.42 

19.33 
19.28 

500 17.49 17.26 0 .16 48 0.1321 
17.59 
17.36 
17.00 
17.04 
17.10 

750 14.56 14.52 0.2738 0.1157 
14.60 
14.41 
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surface tension values by use of Equation (6). Three 

composition parameters were studied at 32°F, -35, .52, and 

68; and one composition parameter was investigated at 

76°F, 0.40. 



CHAPTER V 

DISCUSSION OF EXPERIMENTAL RESULTS 

Rel iabi 11 ty of Results 

Initial experimental work, after the familiarization 

stage, was concerned with verifying the results of this 

work. Therefore, surface tension of the methane-nonane 

binary system at 76°F was determined in order to compare 

these results with values reported by Deam (7) for the 

same system. The experimental data of this work are 

compared to Deam's data in Table VI I I. The spread around 

the average value of this work ls approximately +1 percent. 

Agreement of the data of this work with Deam's is rather 

good. Deviation of the averages of this work from Deamus 

averages is. 1 ess than + l percent. 

A complete error analysis of experimental surface 

tension values is presented in Appendix A. The limiting 

accuracy of the experimental data seems to be about 2 

percent. This takes Jnto consideration the probable errors 

in measuring the two selected diameters, de and ds' which 

are the main contributors to experimental error. Using 

the Vanguard motion analyzer, the images of the drops were 

measured to 0.001 inches. However any measurement errors 

are magnified about five fold, mainly through the 

39 



Press. 
psi a 

75 

150 

TABLE VIII 

RELIABILITY OF EXPERIMENTAL DATA 

0 Methane-Nonane System at 76 F 

Surface Tension, dynes/cmo 
This Work AveoValue Deam 

21. 62 
21. 64 
21.82 
21.99 
2L88 

20.56 
20.55 
20052 
20 0 38 
20.41 
20081 
20.40 
20.75 
20.53 
20. 36 
20.49 

21. 79 

20.52 

21. 7 7 

20.58 

40 
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relationship of 1/H to S. 

Phase Rule Interpretation 

Surface tension is an intensive property of a system; 

i.e., it is independent of the mass of the system, but is 

fully dependent on the thermodynamic state of the system. 

Therefore, it is important to analyze and keep in perspec

tive the number of independent degrees of freedom, or var

iables, that must be specified for a system under consider

ation to be fixed. The phase rule states this as follows 

F + ~ = N + 2 (12) 

where F is the number of degrees of freedom, or independ

ent variables,~ is the number of phases, and N is the 

number of components. 

Thus for a bi nary system, in order for the state of 

equilibrium to be completely defined, two variables, 

normally temperature and pressure, must be fixed. This 

fixes all intensive properties of the system; e.g., 

equilibrium composition of the two phases and the surface 

tension. Therefore, interpolation between data points in 

the two-phase region is feasible. 

For a ternary system, on the other hand, the situ

ation is very different. The phase rule requires, for a 

ternary system in the two-phase region, that three vari

ables be specified in order for the system to be fixed. 

In other words, specifying the temperature and pressure 

alone is no longer sufficient; a third variable must be 



specified in order to define the state of equilibrium and 

to allow correlating the data. Reamer et al. (24) de-

fined a composition parameter expressed as 

42 

( 13 ) 

where n2 and n
3 

refer to the mole fraction of the inter

mediate and heavy components, respectively, in the mixture 

as a whole. This facilitates conside~ably the graphical 

presentation of ternary data. Direct interpolation of 

surface tension with respect to the light component con

centration is also possible. 

For a ternary system, a measured amount of liquid, 

n3 , was charged to the system; and with the capillary 

valve in the closed position, the cell was pressured with 

the intermediate component to a predetermined pressure. 

With thermal equilibrium established, this allowed 

calculation of n2• To charge the light component, the 

capillary valve was closed and the cell was pressured. 

This allowed calculation of n1 once thermal equilibrium 

was achieved. 

Methane-Nonane Experimental Results 

Vapor-liquid equilibrium data for the methane-nonane 

system were obtained from a combination of correlations. 

The NGPA Kand H computer program was used to obtain 

phase compositions. The program uses the Chao-Seader (6) 

technique for the calculation. The vapor density was 



43 

also obtained from the program; for this calculation the 

program uses the compressibility factor computed by the 

Redlich-Kwong equation of state. The liquid phase density 

was calculated by the Rackett technique. This method is 

discussed in detai 1 by Deam (7) and predicts saturated 

liquid phase densities to+ 2 per cent. 

Figure 5 shows that surface tension of the system 

decreases with increasing pressure, which is equivalent to 

increasing the methane concentration. Experimental data 

of Deam at 76°F are shown in Figure 5 for comparison 

purposes. 

Ethane-Nonane Experimental Results 

Literature data on phase compositions and densities 

of the ethane-nonane system were not available. Phase 

compositions and vapor phase densities were calculated 

by the NGPA program, Liquid phase densities were 

calculated by the Rackett procedure. 

Figure 6 shows that surface tension decreases as the 

pressure increases. Furthermore~ surface tension of the 

system decreases with increasing temperatures - below 

the critical temperature of ethane. However, the effect 

of pressure on surface tension diminishes above the 

critical temperature of ethane. 

Carbon Dioxide-Decane Experimental Results 

Vapor-liquid equilibrium data of Reamer et al. (22) 
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for the carbon dioxide-decane system was utilized at 40°F 

and 160°F. Some interpolation was necessary at 40°F and 

75 psia. No experimental data was reported at 0°F; the 

NGPA program was, therefore, used for phase compositions 

and vapor phase densities. Liquid densities were calculat

ed by the Rackett Method. 

As the pressure increases, surface tension is seen 

in Figure 7 to decrease. Crossovers are observed in the 

diagram; this is due in part to the pressure effect and 

in part to the fact that the solubility of carbon dioxide 

increases at lower temperatures, tending to lower the 

surface tension values. Like the ethane-nonane system, 

the carbon dioxide-decane system is less sensitive to 

pressure changes above the critical temperature of carbon 

dioxide than below it. 

Hydrogen Sulfide-Decane Experimental Data 

Equilibrium phase data of Sage and coworkers (26) 

was used. Interpolation was required in some cases. 

Vapor phase densities are not given in the range investig

ated in this work; these were determined, therefore, by 

the NGPA program~ The same program was used at 160°F and 

50 and 75 psia, which could not be interpolated for phase 

compositions. Liquid phase densities for these two points 

were determined by the Rackett technique. 

Surface tension is seen to decrease as the pressure 

increases. Al so, surface tension decreases as the 
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temperature increases. 

Ethane-Butane-Decane Experimental Results 

No exp er i men ta 1 phase composition data were ava i 1 ab 1 e 

for the ethane-butane-decane ternary system in the litera

ture. The NGPA program was used to determine phase com

positions and vapor phase densities. Liquid phase density 

was then determined by the Rackett equation. 

One isotherm was determined for this system. This 

was at 170°F, above the ·critical temperature of ethane. 

The effect of pressure on surface tension is pronounced; 

as pressure is increased, surface tension decreased -

1 i near 1 y. 

Methane-Carbon Dioxide-Decane Experimental Results 

Equilibrium vapor-liquid data for the methane-carbon 

dioxide-decane ternary system were not available. In order 

to determine phase compositions, the NGPA program was used. 

Liquid densities were determined by the Rackett procedure. 

Surface tension was measured along three composition 

parameters, 0.35, 0.52, and 0.68, at 32°F, and along one 

composition parameter, 0.40, at 76°F. Pressure range 

covered was from about 30 psia to approximately 1000 psia. 

As seen from Figures 10 and 11 surface tension de

creased as methane pressure was increased. Also~ surface 

tension decreased as the carbon dioxide fraction, com

position parameter, was increased. The four isothermal 



lines are seen to be linear and approximately parallel. 

Figure 12 may be used to estimate surface tension 

f o r t h i s t er n a r y i n t h e o u t l i n ed a r ea ~ 

46 



CHAPTER VI 

EXCESS SURFACE TENSION AND 

PARACHOR APPLICABILITY 

Correlation of experimental data was attempted by two 

independent techniques. The excess surface tension 

function p'.oposed by Deam (7) applies a correction to pure 

component surface tension, calculated by the Ferguson 

equation, when the mixture temperature is above the 

critical temperature of the gas; this is shown in Equation 
L 

(11). The Katz method, Equation (10), employs the parachor, 

a rather constant quantity for every component, to predict 

surface tension of a mixture. Both methods were applied 

to the different systems investigated in this study. 

Values of the constants used in the correlations are pre-

sented in Appendix 8. 

The Katz relationship was used to correlate the ex-

perimental methane-nonane surface tension data. Katz' 

predictions show a positive bias with a maximum error of 

12.87 percent and an average error of .8.44 percent. Deam's 

predictions show a maximum positive error of 7,27 percent, 

a maximum negative error of 3.20 percent, and an average 

absolute deviation of 3.08 percent, Table IX shows a 

comparison of the experimental data with values calculated 

47 



Temp. 
Op 

70 

TABLE IX 

COMPARISON OFIPARACHOR AND EXCESS SURFACE 
TENSION CORRELATIONS WITH EXPERIMENTAL 

METHANE-NONANE DATA A'.T 70°F · . 

Press. Surface Tension Per Cent 
psia Ave.Exp. Katz Deam Katz 

50 22.05 24089 : 22.05 12,87 

100 21. 70 24.11 21. 0 5 11.10 

300 19.57 21,19 18,94 8,29 

500 17.14 18054 17.14 8,15 

750 14.51 15.54 15.23 7011 

1000 12.51 12.90 13.42 3,13 

48 

Deviation 
Deam 

-0,01 

-3,01 

-3. 2 0 

-0 0 0 2 

4,96 

7. 2 7 
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by the parachor and excess surface tension methods. 

When applied to the ethane-nonane system, the Katz 

equation produced a positive bias, with a maximum deviation 

of 129.57 percent. The average deviation over the entire 

temperature and pressure range was 45. 18 percent; above 

the critical temperature of ethane, however, the average 

error was 14.27 percent. Deam's equation gave a maximum 

positive error 81.86 percent, a maximum negative error of 

4.64 percent. The overall, average absolute deviation for 

Deam 1 s correlation was 13.29 percent; but above the 

ethane critical temperature the average absolute deviation 

was only 2.70 percent. A comparison of experimental and 

calculated values is presented in Table X. 

The carbon dioxide-decane system is probably most 

nonideal, and this is reflected in higher average devia~ 

tions as ~hown in Table XI. The parachor correlation 

gave a maximum positive error of 113.67 percent, a maximum 

negative error of 10.25 percent, and an average absolute 

error of 28.10 percent - over the temperature and pressure 

range investigated. Above the critical temperature of 

carbon dioxide, th~ average error was 7.79 percent. 

Deam's correlation produced a maximum posltive error of 

76.84 percent, a maximum negative error of 12.71 percent 

and an average absolute error of 18.54 percent; but the 

average error was 19.21 percent above the critical tem

perature of carbon dioxide. Correlation of this system 

exhibits quite significant deviations from experimental 



Temp. 
Op 

0 

32 

58 

130 

170 

TABLE X 

COMPARISbN- OF PARACHOR AND EXCESS SURFACE 
TENSION CORRELATIONS WITH EXPERIMENTAL 

' ETHANE-NONANE DATA ' 

Press. Sµrface Tension Per Cent 
psi a Ave.Exp. Katz , Deam Katz 

50 21,34 25,80 2L60 20,89 

100 16,47 2L 57 16,95 30.97 

200 10.33 20,23 15,94 95,88 

50 22.24 24.90 21. 25 1L~7 

100 18,53 2.2 0 0 5 18,12 19.00 

200 12.71 18,00 13,94 4L 60 

300 7:. 5 9 17,42 13.94 129,57 

320 8. 12 11.13 7.68 37.09 

320 11. 39 13,59 11. 45 19.29 

75 15,86 18,08 16.17 14,02 

150 14.82 16a52 14.87 ll,45 

300 12.28 13,48 12.40 9,74 

500 7,83 9,54 8,78 21. 88 

50 

Deviation 
Deam 

0,78 

L 73 

52,23 

-4,64 

-2,64 

8,60 

8L86 

-6074 

-3a10 

L47 

-0,69 

-1037 

6.89 
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TABLE XI 

COMPARISON OF PARACHOR AND EXCESS SURFACE TENSION 
CORRELATIONS WITH EXPERIMENTAL 

CARBON DIOXIDE-DECANE DATA 

Temp. Press. Surface Tension Per Cent Deviation Op .. psia Ave .Exp. Katz Deam Katz Deam 

0 so 27.31 48.55 25.36 77.78 - 7 .15 

10.0 25.01 37. 26 23.07 48.98 - 7. 75 

300 9.89 21.13 18.10 113.67 82.99 

32 34 23.50 2 3. 76 24.07 1.11 2. 41 

so 22.73 22.56 2 3. 46 -0. 75 3.22· 

100 21.34 19.01 21.58 -10.93 1.12 

40 75 22.43·. 24.68 2 3. 49 10.02 4. 72 

150 20.73 22.24 22.50 7.31 8.55 

300 16.51 18.16 18.75 9.~6 13.57 

500 9.04 8.11 15~90 -10.25 75.91 

76 34 21.78 22.27 22.33 2. 2 7 2.54 

160 200 15.77 16.96 14.91 7.54 -5. 46 

400 13.40 14.99 11.01 11.85 -17.84 

.. 600 11. 8 2 12.83 7. 76 8.50 -3.4.31 

800 10.24 10.58 5.20 3. 2 8 -49.25 

170 so 14.10 15.04 13.92 6.65 -1. 30 



values. The untolerable errors are observed at higher 

pressures of every isotherm where carbon dioxide concen

tration in the liquid phase exceeds about 40 percent. 
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For the 0°F isotherm, critical conditions were exhibited 

as soon as the pressure was raised beyond 300 psi a; i.e., 

the liquid phase was lost. Critical conditions were ob

served around 550 psia for the 40°F isotherm. Therefore 

the large errors found at the three extreme pressures 

for this system have critical contributions as well as 

contributions due to the high concentration of carbon 

dioxide. 

Table XI I compares the predictions of the parachor 

correlation to experimental hydrogen sulfide-decane data. 

A positive bias is exhibited by the data. Maximum devi

ation is 17,66 percent; and average deviation is 6.70 

percent. Deam 1 s equation was not applied to this set of 

data. Ferguson equation constants for hydrogen sulfide 

are not available, and pure hydrogen sulfide surface 

tension data is not available to determine these constants. 

These data, however, are sub-critical; and therefore, pro

vide no test for the excess surface tension function pro

posed by Oeam. 

The comparison of results for the ethane-butane-decane 

ternary system is presented in Table XI I I. This is well 

above the critical temperature of ethane. The parachor 

equation again shows a positive bias with a maximum de

viation of 17.77 percent and an average deviation of 14.01 
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TABLE XII 

COMPARISON OF PARACHOR PREDICTIONS WITH 
HYDROGEN SULFIDE~DECANE DATA 

Temp. Press. Surface Tension Per Cent 
Op psi a . Ave. Exp. Katz Deviation 

40 so 21. 60 24.13 11. 71 
100 20.07 21. 5 3 7. 2 8 
115 19.56 20.66 5064 

100 30 20.40 20.85 2;18 
so 19.87 21. 39 7. 6 7 

100 18.82 20.22 7.44 
115 18.49 21. 76 17.66 

160 so 18006 18.34 1. 53 
75 17.61 17.81 Ll4 

100 17.21 18002 4o73 
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TABLE XIII 

COMPARISON :op PA'.RACHOR AND EXCESS 
· SURFACE TENSION CORRELATIONS WITH 

ETHANE~BUTANE-DECANE DATA, C=0.38 

Temp. Press. Surface Tehsion Per Cent Deviation 
OF psia Ave.Exp. Katz Deam Katz Deam 

170 50 14.10 15.04 13.92 6.65 -1.30 

100 13.22 14.96 14.19 13.13 6.82 

200 11. 99 13.48 12.96 12.46 6.63 

300 10.15 11.83 11. 29 16.51 8.67 

400 8.65 10.17 9.65 17.54 7.70 

500 7.21 8.49 8. 70 17.77 15.29 



percent. The excess surface tension function gave an 

average absolute deviation of 7.74 percent, a maximum 

positive deviation of 15.29 percent, and a maximum nega

tive deviation of 1.30 percent. 

For the methane-carbon dioxide-decane system, the 

two correlations are compared to experimental data in 

Table XIV. For the four composition parameters studied, 

the parachor equation yielded an average absolute error 
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of only 4.37 percent, which is quite good, a maximum posi

tive error of 3.08 percent, and a maximum negative error 

of 12.72 percent. The Deam equation averaged a mere 

2.93 percent deviation, with a maximum positive error of 

11.74 percent, and a maximum negative error of 4.03 percent 

Deam's predictions gave, on the average, positive bias. 



TABLE XIV 

COMPARISON OF PARACHOR AND EXCESS SURFACE 
TENSION CORRELATIONS WITH EXPERIMENTAL 

METHANE-CARBON DIOXIDE-DECANE DATA 

Composition Tamp. Press. Surface·Tension Per Cent 
Parameter F psia Ave .. Exp .•... Katz:.D.eam,. - Katz 

.40 76 100 21. 20 21. 2 7 21. 30 0.32 
200 20.17 19.99 20.49 -0.89 
300 18.86 18.75 19.29 -0.56 
500 16.24 16,46 17.49 1.32 
750 14.26 13.84 15.11 -2.93 

1000 12.22 11. 56 13.65 -5,43 

. 35 32 100 22.59 23.29 22.82 : 3 0 0 8 
200 21. 33 21. 4 7 21. 8 7 0.65 
300 20.35 20.05 19.53 -1. 49 
500 17.52 17.38 17.87 -0.82 
750 15.20 14.36 15.22 · ..: 5. 55 

1000 12.74 11. 67 13.02 .. -8.37 

. 52 32 200 20.76 20.80 21.20 0.18 
5 00 17.57 16.88 17.82 · -3.93 
750 14.32 13.69 15.11 -2 0 5 4 

1000 12.60 11. 36 13.03 - -9 0 82 

.68 32 200 20.16 18.51 20.46 -8,17 
300 19.25 17.38 19.76 -9.69 
500 17.11 15.21 17.37 -11.13 
750 14.52 12.67 14.76 -12.72 
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DeViatio:ri.: 
Deam 

0.45 
1.60 
2 0 28 
7. 70 
5.99 

11. 74 

1. 00 
2.52 

-4.03 
1. 99 
0.14 
2.16 

2.12. 
1.44 
5. 5 2 
3.44 

1.48 
2,65 
1.55 
1.63 



CHAPTER VI I 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This project set out to exper imenta 11 y measure ·surface 

tension, by the pendant drop method, of a variety of 

hydrocarbon and related systems. Surface tension was de

termined for methane-nonane, ethane-nonane, carbon dioxide

decane, and hydrogen sulfide-decane binary systems, and 

for ethane-butane-decane and methane-carbon dioxide-decane 

ternary systems. In general, a range of temperature and 

pressure was investigated for each system. 

Applicability of the Katz parachor technique was 

tested. Predictions of the parachor procedure were com

pared to,.·experimental results for all the systems in

vestigated. This method proved only moderately successful 

in correlating surface tension of the mixtures studied 

here. 

The excess surface tension ·concept proved to be 

efficient in correlating the experimental data. This 

function accounts for the behavior of the super-critial, 

volatile component in the mixture. The light component 

behaves like a dissolved gas in the liquid when used above 

its critical temperature. A diagram developed by Deam (7) 
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to estimate surface tension of methane containing mixtures, 

on the basis of the dissolved gas behavior of methane, was 

successful l in predicting surface tension of other mixtures 

stud i ed i n t h i s wo r k • 

Deam's diagram, discussed above, is reproduced in 

Figure 13. The data of this work are superimposed on the 

diagram. The agreement is quite good. This supports and 

reinforces the excess surface tension proposal as being 

generally applicable to a variety of systems over a wide 

range of conditions as long as they are reasonably re

moved from their critical region. Only the carbon dioxide

decane ·system diverges considerably on the diagram. 

Recommendations 

There is a range of temperature and pressure over 

which the unpredictable critical effects of the light com

ponent in a mixture are exhibited. At the present there 

is no method of estimating this range of conditions such 

that one feels assured he is operating outside this region. 

A systematic method of estimating this critical range 

should be a welcome contribution. 

A reliable method for obtaining experimental liquid 

densities is needed and deserves attention in future 

studies. While the Rackett technique is powerful, it 

nevertheless, requires accurate phase ~omposltlon infor

mation. 

So far the excess surface tension function has been 
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applied to ternary systems with only one component being 

super-critical. A more severe test would be a ternary 

mixture with two super-critical components; such systems 

could include, for example, methane-nitrogen-decane, 

methane-ethane-decane, and methane-carbon dioxide-decane 

mixtures. 
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English Letters 

b 

n 

p 

NOMENCLATURE 

= radius of curvature for a drop at its apex 

= composition parameter 

= density 

= equatorial diameter of a drop 

= magnified diameter of tip 

= selected diameter 

= acceleration of gravity 

= shape dependent parameter 

= molecular weight 

= exponent in van der Waals and Ferguson 
equations 

= pressure 

pressure difference across a curved 
interface 

p = parachor 

R1 and R2 = radii of curvature for a drop 

S = experimentally measureable shapte factor 

T = absolute temperature 

V = volume 

x = mole fraction in liquid phase 

Y = mole fraction in vapor phase 

z ~ vertical co-ordinate measured from 
bottom of drop 
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Greek Letters 

y 

E 
y 

Yo 

d 

C 

L 

m 

r 

V 

NOMENCLATURE (Continued) 

= compressibility factor 

= drop shape factor 

= surface tension 

= excess surface tension 

= van der Waals equation constant 

= density difference between liquid 
and vapor phases 

Subscripts 

= critical property 

= component number 

= liquid phase 

= mixture property 

= reduced property 

= vapor phase 
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ERROR ANALYSIS 

Deam (7) presented a detailed error analysis for 

surface tension values determined by the pendant drop 

method. Calculus is utilized to evaluate the error 

resulting rom the different, individual quantities used 

in the calculation. In the equation 

g (tid) de2 

y = H 

error in surface tension values can result from errors 

in the gravitational constant, density difference, 

equatorial diameter, and the selected plane diameter. 

The error generated by error in the gravitational 

constant is 

where cg is the error in the gravitational constant. 

Errors in the density values used affect the 

calculated surface tension in the following manner 

but 

The equatorial diameter, d, appears in two terms e 

yd = (k) c (d) = [ 9(tid) 2 d + 
e ?Ide e H e 

g( {l.d) d 2 i, l /HJ c (d ) 
0 d e e e 

1/H=f (S) = f (d /d ). s e 
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( 14) 

( 15 ) 

( 16) 

( 17) 

( 18) 



Therefore, 

ol/H 
oS 

Stegemeier (6) reported that 

ol/H 
oS 2.6444 (1/H)-}-

Thu s , fr om E qua t i on s ( l 7 ), ( l 9 ) , a n d ( 2 0 ) 

y = 4.6444 ( y/ d) 5d. 
de e e 

The effect of error i n the selected plane diameter 

i s 

= g ( t,d) d 2 ol/H 
yd e od s s 

Considering Equation (20), the error In surface tension 

as a result of error in ds is found to be 

6d s 

Th en , th e expect ed er r or i n s u r face t en s i on ma y b e 

written as 

+ 2 
ytid + + 

Typical data for the ethane-nonane system are as 

fo 11 ows 

d = e 0.218 cm. 

d = s O. 192 cm 

tid = 0.6526 gm/ml. 

y = 12.54 dynes/cm 
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( l 9) 

(20) 

( 2 l ) 

(22) 

( 23) 

(24) 



o g = o. 
aid= 0.005 gm/ml 

6 d e O • 0 0 1 cm • 

od = 0.001 cm. s 

From Equation (24) the probable error in the reported 

surface tension values is 0.33 dynes/cm., or 

y = 12.54 + 0.33 dynes/cm. 
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TABLE xv 
CRITICAL CONSTANTS (20) 

Component z T 0 R Vc,ml/g mole 
C c' 

Methane .289 344.0 99.0 

Ethane . 2 79 554.4 146.3 

propane .276 665.3 199.6 

i-Butane . 2 75 734.6 256.0 

n-Butane . 2 7 3 765.4 254.0 

i-Pentane . 2 70 829.6 310.0 

n-Pentane .268 846.5 311. 0 

n-Hexane .264 914.2 36 8. 0 

Cyclohexane . 2 72 995.8 309.0 

n-Jieptane . 261 972.4 428.0 

n-Octane .257 1024.9 488.0 

n-Nonane .254 10 71. 0 552.0 

n-Decane .251 1114.2 614.0 

Ethylene . 2.8 2 508.9 131. 0 

Propylene .278 654.7 182.2 

1-Butene . 2 74 755. 3 238.0 

2-Butene . 2 76 770.4 2 36. 0 

i-Butene .276 752.4 240.0 

1,3-Butadiene . 2 71 76 5. 0 2 21. 0 

Nit rd gen .289 2 2 7. 2 89. 5 

Carbon Dioxide .274 546.3 9 3. 2 

Hydrogen Sulfide .285 6 72. 5 89.3 
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TABLE XVI 

PARACHOR VALUES USED (17) 

Component Parachor 

Methane 71. 0 

Ethane 111. 0 

n-Butane 191. 0 

n-Nonane 391. 0 

n-Decane 431. 0 

G~rbon Dioxide 48.6 

Hydrogen Sulfide 80.1 
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TABLE; XVI I 

FERGUSON EQUATION CONSTANTS 

Component Yo n Source of Data 

Methane 39.05 1. 221 (7) 

Ethane 50.095 1. 26 * 
Propi3-ne 49.90 1. 20 (7) 

Butane 52.50 1. 22 (7) 

Pent an~ 52.90 L22 (3) 

Heptane 47.27 1. 099 ( 7) 

Nonane 51. 60 1. 22 (3) 

De cane 51. 60 1. 22 (3) 

Ethylene 51. 80 1. 2 5 (7) 

Nitrogen 28.42 1.232 (7) 

Carbon Dioxide 79.621 1. 248 ** 

* Pure ethane surface tension from API Data Book (3) were 
used to determine Ferguson equation constants for ethane, 

** Carbon dioxide surface tension data reported by Quinn(19) 
were used to evaluate Ferguson equation constants for 
carbon dioxide. 
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TABLE XVIII 

SURFACE TENSION, DENSITY, AND DROP MEASUREMENTS FOR METHANE-NONANE RUNS 

PRESS. 
PS!A 

GA~MA 
O_YNESLCM 

dn 49 de LIOUl-0 VAPO~ 

-·--- ------------- -·--------------------- OEN·S l TY---------- DE NS IT Y ----

___ 7~'-·-···-_12'J _____ 22.483 4.770 5.189 6.747 0.7305 0.0·'.)4!, 
10 100 72.65"1 4.770 5.787 6.757 0.7305 J.0_rl4b 
7' _l"}Q ________ ... 22.J.52 4.770 5,763 ____ 6.747 -- !).7305 _ . 0.0046 .. 
71:, 11.J 22.581 4. 770 5. 784 6. 750 O. 7305 O.'JC46 

_____ 10 _JD'1 22.653 4.770 5,777 t..750 o.7305 o.OG4b 
7~ !OJ 22.622 - - 4.770 5.777 (,.748 0.7305 0.0041> 

·--1Sl _ __ UQ v,_2_54 4.770 5.792 6,734 o.7305 O.OC46 
10 300 20.307 4. 770 5.638 6.545 o. 7183 0.0142 

______ ]'l ,QQ 2D.342 4.770 5.648 6.554 0.7183 0.0142 
10 300 - 20.302 4.770 5.631 1>.540 o.7183 o.0142 
10 ,;,o 17.643 ____ 4. 770 _ 5.509 _____ 6.309 ____ o. 7067 o.02'! .. L .. '. __ 
70 500 18.113 4.770 5,494 6.335 0.7067 0.0243 

·-· 70 ________ ... ~'J0 _____ . __ 17. 729 4. 77Q 5.505 6.H~ a. 7067 0.0243 
70 ',o,) 17.918 4. 770 5.515 b.334 c. 7067 0.0243 
70 ..... ___ 5CO ....... ____ l 7. 737. ________ 4, 770 ______ 5. 524 _____ 6.32(, 0, 7067 _ _Q_,_Q_l-"--3..__ 
10 500 17.601 4.770 5.494 6.296 0.7067 0.0243 

_____ ..70 _5')0 _________ ! 7,747 ----·- 4 .• 770 _______ 5.506 _ "'· 315 _ o. 7067 _0.0243 -· 
70 5J'.J 17 .440 4,770 5.507 6.2"12 o. 7%7 0.0243 
70 5QQ 17.45'1 4.770 5.514 6.296 0,7067 0.02 1,3 
70 7'>0 14,808 4.770 5.318 ;,.001 0.6928 0.0376 

____ 7Q _7~1 ___________ 14,798 ___ 4.77G ______ 5.349 ______ 6o02.6 __ 0,6928 ____ 0.03_76 ---
70 1so 14.979 4.110 5.309 0.016 u.o92B 0.0376 

____ v. . ... 750 ________ 15.ooo _____ 4.7_10 _________ 5.331 ,;,032 o.6929 ______ o_.031~ __ _ 
70 7'i0 14.931 4. 770 5.320 6.019 0.6923 J.0376 
70 750 14.943 4.770 5.337 6.031 0.6928 '.).'.)376 
70 750. 14.977 4,770 5.303 6.012 0.6928 0.037-~--

~_7_0 ....... .750 .... _. ________ 14.!)2.6 . __ 4,770. ____ . __ 5.344 6.034 _ 0.6928 0.0376 _ 
70 750 14,939 4.770 5.336 6.030 0.6929 0.037~ 
70 750 -------- 14.943 4. 770 ,. 320 6.02:l 0.6928 0.0376 
7G 750 14.918 4. 770 5.342 6.032 0.6ne 0.037~ 
10 75J 14,938 4. 110 5.344 ;,.035 o.6928 o.,B76 
10 1so 14.949 4. 110 5.313 6.016 o.6928 n.0376 

__ Jn_ ..7_50 _________ 14.'l72 ________ <o:_._no 5.327 6.021 o •. ~-~----Cl_·.Q}li_ 
70 1000 12.9•)2 4. 770 5.164 5. 787 0.6798 0.0517 
7C .... l·J1'1._ --·---· _1_;>_._'~/,Q ______ 4,770 ---~5.191___ 5.801 0,6798 ____ 0.0517 _ 
70 1000 13.041 4.770 5.151 5.792 0.6796 D.0517 

. 70, _____ J_(l~D 12.9908 4.770 5.174 5.793 0.6798 0.0517 
7J lOJ.1 12.974 4,770 5.186 5.808 0.6798 0.0517 
7& _J_5_.___ .. 21.620. _____ 4.88_6 5.862 6.850 0.7091 0.0035 
7b 75 21.640 4.886 5.890 6,870 0.7091 0,0035 
7b _75______ 21.821 4.886 5.837 b.847_ 0.7091 0.0035 
n 75 21.989 -----4.886 5.847 6.865 0.7091 O.Ql:35 
7 0 75 21.876 · 4.8A6 5.827 6.844 0.7091 0.00,5 

---76 . l5J . 20.562 4.886 5.703 6.683 0.7065 o.ocir,1--·· 
7_6 _ J sJ_____ _ _____ 20_. 548_ ____ . 4._aa6_ 5. 83 l 6.761 o. 7065 a.0061 
76 15'.l 20.524 4.836 5.725 6.695 0.7065 J~0067-
H.. 150 . ?0.383 4.886 ,.632 6.623 o.706_5 o.0067 
76 151 20.413 4.9s·o 5.747 6.757 0.7065 0.0067 

___ 7L. 150 20.Rll 4.930 5.714 b.763 0.7065 0.0067 



TABLE XVIII (Continued) 

TEt'1P. PRESS. G.4M~A---- - -- dn-
0.E_ _____ PS l A ______ DYNE_S/CM ________ _ 

- - -- - ----------- ------------------------------~----
ds e., LIQUID VAPOR 

--------------- DENSITY DENSITY __ 

__ !__£ ___ !_ ~1 2'.J.402 4.930 5. 718 ~~---~~~----~6~,777 0.7065 0.0067 
76 15J 20.750 4.930 5.710 6. 7So 0.7065 O.J067 

_ __]_6 ____ 15J ----- 20. 5J! 4.980 5.727 6075~------ Q.7065 -- 0.0067 _ 
76 15" 20.356 4.980 5.756 6,759 C.7065 0.0067 

---- 76 1_50 2Q_.492 4:. 98') 5. 88 l ---~6~.852 o. 7065 J.0067 



TABLE XIX 

SURFACE TENSION, DENSITY, AND DROP MEASUREMENTS FOR ETHANE-NONANE RUNS 

TEMP. PRES~.. GAMMA dn 
~F PS I A D_Y,~E5_/C'l ___ _ 

0 50 21.412 4.429 5.223 
O 50 21.570 4.429 5.ZJ7 

--~0 __ ~5~0--~--~Zl~±.40_~--~4~·~4-2~9 ____ ~5~·~2-4~0 
0 50 20.948 4.429 5.215 
0 100 16.828 4.429 4.952 
0 100 16.290 4.429 4.890 
:J 100 1',.251 4.429 4.865 
0 zoo 10.327 4.469 4.428 

_____ }=2 __ ~50 2_~_._14~5~--- 4.291 5.030 
32 50 22.179 4.291 5.045 
32 5:J 22.15-J 4.291 5.040 
3z 5a 22.292 4.291 s.010 
32 5Cl 22.190 4.291 5.044 
32 50 22.500 4.291 5.025 

6 .. U9C1 
6.0S-9 
6.l03 
6,851:> 
5,687 
5,6'.)7 
S.59D 

L [QUID 
OENS ITV 

V4PQ::>, 

----~[) E'NS ITV 

0.7358 0.0051 
0.735~8-----0~.~0~C~5~1~-

0. 73_58 0.0051 
C.7358 0.00,1 
0.69~2 0.0101 
0.6962 0.0107 
0.6%2 0.0107 
0~6860 0.01«7 

5.928 0.7324 0.0043 
5.940 o. 732-4----~o.·0043 
5.935 0.7324 0.0048 
5.923 C.7324 0.0040 
5.940 C. 7324 O.Cl048 
5.945 0.7324 0.0048 

32 l'.lO lP_.819 4.Z __ cq 4.899 5.687 0.7090 O.Q'l<!8 
32 100 15.595 4.291 4.941 ?.700 0.7090 0.0098 

_______ 32 ___ 100 18.565 4.291 __ 4=.9~4~7~---~5.702 0.1090 o.0098 
32 1')0 18.370 4.291 4.886 5.649 o. 7090 0.0098 
3 2 1-J O l 8 • 4 l 7 4. 2 9 l _____ 4~-~8"-4c'-'5':-------,5,-'.~6~2c;S~----=o~.-::7-::()-::9-::0 ____ ---,:-o~. -=-O-=-O-:c:9-::-8 __ 
32 10:J 18.,,19 4.291 4.869 5.641 0.1090 o."<l9B 

---- 32 ___ zco -- 12.643 4.291 4.632 5.132 0.6710 0.0184 
32 ZOO 12.543 4.291 4.638 5.127 0.6710 G.Cl~4 

___ 32 ____ 2-J_O 13.008 4.2_91 4.617 5.15~4~--- 0.6710 O._'ll34 
32 2·~0 12.592 4.291 4.620 5.120 0.6710 C.01R4 
32 ?,O 12.931 4.29_~1 _____ 4~·~6~1~1 ____ ~5~.1~3~5_· ______ 0~·~6~7~1~0-____ o_.~0~1~9_4 __ 
32 200 12.603 4:·291 4.491 5.039 0.6710 0.01S4 

__ __l;' ___ _z__po 12.541 _ 4.291 __ 4. 504 s.0~4~z~---~0=·~1,1_10 __ o.0184 _ 
32 200 13.031 4.291 4.492 5.076 0.67l0 0.01% 

____ 32 --~OQ 12. 788 4.291 4.510 5.067 O._l>_l_!_O 0.01_§_4_ 
32 300 1.z.520 4.291 4.467 5.oz,., o.6710 0.0229 
3z 300 7.662 4.291 3.858 4.158 o.1>110 o.0279 

---32 300 7.529 4.291 4.128 4.305 0.6710 0.0279 
32 300 7.584 4.291 4.038 4.25~8~---~o_.67=1~0 ____ 0.ozz9 

_____ 5_8__ 320 8.329 4.762 4.879 5.225 0.5945 Q.0355 
s& 3;,o e.011 4.71>2 4.839 s.158 o.5945 -1.035~ 

-~;;--·326 1.,12 4.762 4.856 5.145 0.594·5 
53 37'.J s.750 5.065 5.003 5.433 0.5945 0. 0355 
55 320 8.228 5.065 5.033 5.447 C.5945 0.0355 
58 320 8.267 5.065 '!~.6 5.330 C.5945 n.0355 

- 58 320 ---7~896 5.065 4.940 5.342 0.594~ 0.0355 
58 320 8.32b 5.065 4. 777 5.301 0.5945 0.0355 
58 370 - 8.015 5.065 4.872 5.317 0.-5945 0.0355 
58 320 8.362 5.065 4.858 S.357 0.5945 1.0;55 
58 32'.) 8~937 5.065 4. 731 5.232 o. 5945 0.0355 
58 32·0 7.951 5.065 4.832 5.283 o,_2_9~_5 ______ o_.n_,3_5_5_ 
5-s-- 320 7.905 5.065 4.788 5;249 
58 320 8.010 5.065 4.928 5.351 

____ 5_8 ___ 3~---8.146 5.065 4.772 5.273 

o.5945 
0.5945 
0.5945 

0.0355 
0.0355 
0. 0 3 55 



TABLE XIX (Continued) 

TEMP-;- PRESS. -- GAM'1A dn d 9 - de · LIQUID -- VAP~-
__ _"E ____ J'.SL!l _____ DYNESJC.11 O_EJiS_UY DENSl.IL_ 

---5_e ___ 3_z_p ~ s. o 6'-'5'-------'4"'-'-'. B.fl.L_ 5. 3 '+ o o • 5 94 s o • o 3 s 5 
58 320 8.382 5.065 4.876 5.371 0.5945 0.0355 

__ __s_s __ _____32JJ o .-15.6_ ~_o_o.5 ._a_o_a~----s~·· 2 92 o. s 9~4~5~----"'o_._.,,_03_<u_____ 
SH 32J 8.022 5.065 4.755 5.245 0.5945 0.0355 

__ LIJ] ___ 3?0 ·----- 11.!+49 ____ 4.840 5.229 5.736 0.6465 0.0285 
130 320 11.554 4.840 5.076 5.651 0.6465 0.0285 

____ 1_3_0 ___ 32·)~. _____ ll._374:__ ___ _:,4.840 5.065 5.625 0.6465 0.0285 
130 320 11.102 4.840 5.075 5.602 0.6465 0.0255 

·- 13D~20 11.404 4.840 5.060 5.625 O._Q...4_65 0.0285 
130 320 ll.257 4.S40 5.039 5.596 0.6465 0.0285 

___ uu ___ 3_2o ______ u_ • .1.s~------"-._s"-'.l----~5~·~?.ll_5 s.6B9 o.6465 o.ozs5 
13() 320 11.574 4. 840 5.057 5.641 0.6465 0.0285 

____l}.Q____;,_2_0 ll_,.!,.Q4 4 • ..B..'!_O 5.1_12 5.679 0.6465 0.023s 
170 75 16.124 5.279 5.906 6.741 0.6808 0.00S3 

___ uo ______ 1_s__ ___ ______1..5_.J..'i. -_._2_19 5. 8 3 6 6. 6 6 ~6 ____ ~0~·=6 s 03 o , o o 5 a 
170 75 15.868 5.279 5.811 6.656 0.6808 0.0058 

_u9 ____ 15 1s.152 s.219 5.801 6.,639 o.6809 -J.005s 
170 75 15.314 5.279 5.748 6 .. 610 0.6808 0.0058 
110 75 16.032 5.279 5.819 6,676 o.6808 o.~n5~ 
·110 75 15.748 5.279 5.754 6.608 0.6808 0.005S 

-- 170 ___ 75 J",_._731 5.279 5,_787 6,628 0.6808 -J.')058 
170 150 15.082 5.279 5.697 6.545 0.6700 0.0111 

__ JJ.Q ___ l5') _____ _)_'t_,809 5.279 S.715 6.531 0.6700 0.0117 
170 15J 14.648 5.279 5.717 6.517 0.6700 0.0117 

__ tlQ 150 14.732 5.279 5·.697 6,512 0.6700 ').0117 
170 150 14.831 5.279 5.724 6.539 0.6700 0.0117 

__ l_IQ __ 1_50 ____ ~5. l 67~---~5. 2_7_9 ______ 5_._694 6. 551 0. 6 700 0. 0 l J7 
170 150 l4.7f,3 5.279 5.737 6.541 0.6700 0.0117 

__ l]O ____ 1_5'.l __ l}+.53_5 . 5.279 5.726 ____ __,6,5_12 0.6700 0.0117 
170 
170 

150 14.843 5.279 5.730 6.544 0.6700 0.0117 
310'----~-~12:"-'--.~2~273 ____ -:5~-~2~7~9':------~5~-~574~7 ____ ___,6~·~2~3~7=-----~0~·~6~4~6~4'---~~-o~.0~2~4-'-=c5--

110 32) 12.288 5.279 5.614 6.287 0.6464 0.0245 
__ . __ 110 ___ ,01_ 12.2~5~8~ ____ 5~·~,2.79 5. 5_30 6.230 _____ o~,6464 _____ 0_.0245 

170 3"0 12.208 5.279 5.484 6.195 0.6464 0.0245 
-- 170 __ 300 12,410 5.2?...<9 ____ ~5'-'"'-'5"-'0"-9'-____ _,,6_._.,233 0.6464 0.0245 

170 5•)0 7.671 5.279 5.136 5.515 0.6083 0.0445 
·- 170 __ 5JO 7.809 5.27_9 5.214 5.584 0.6083 0.0445 

!70 500 7.B86 5.279 5.221 5.60G 0.6083. <J.0445 
____ 17JL _ __5J0 ---~7.947. 5,2_79 5.113 5.543 0.6083 0,0445 

--0 



TABLE XX 

SURFACE TENSION, DENSITY, AND DROP MEASUREMENTS FOR CARBON DIOXIDE-DECANE RUNS 

TEMP. PRESS. GAM'~A dn -ds 
_

0
_F ____ PS IA___ DYNES/C~M~, _____ ----------

de LIQUID VAPO~ 
------------- OEMS ITY DENS.l_TY ___ _ 

o 50 27.378,..._ ____ 4.,_,._650 5.597 6.53.!- o.qo10 c.0014 
0 50 27.277 4.650 5.632 6.549 0.9010 0.0074 

__ a..___50 _ 27._>81 4_.__2_50 5.671~--- 6.575 ___ 0.9010 __ 0_.0074 __ _ 
0 100 24.536 4.650 5.433 6.318 O. S786 0.0150 

__ Q__________lQ() 25._051 4.650~ ____ 5.'t_\_Q ____ ~6._331. _____ Q_.8_7_§~6 ____ 0.015_0_ 
0 100 25.143 4.650 5.434 6.352 0.8786 G.0150 

--~o __ l'lO Z_';,.272 4.650 5.452 6.371 0.8786 0.0150 
o 100 25.078 4.650 5.477 b.377 o.5786 0.0150 

___ 0 ___ 100 24.95(, 4.6S:9 5.478 6.371 _____ o_._§_7e_6 ----~0·~·~0~1~s~o~_ 
0 30(} 10.013 4.650 4.419 4.692 0.8478 0.0350 
0 300 9.996 4.6_50 4.520 4.751 0._84~7_5~----0~·~0~3~5_C_, __ 
o 300 9.641 4.650 4.491 4.69-r o.B47a o.0350 
0 300 9.89-3 4.650 4.510 4.735 0.8478 0.('35'} 

40 75 22.413 4.824 5.771 6.740 o.7478 0.0102 
___ 4lL ____ 72Z_.320 __ 4.82'> 5. 7_71 t,_J_'\.\ o. ?_4.1_~8 ____ ~0~·~0~1~0.z 

40 15 22.z99 4.824 5.716 6.696 o.7475 0.01oz 
___ 40 _ 7-2___ ____ 22.729 4.8Z4 5.757 6.7_51 o.~7~4~7~8 _____ 0~·-0~1~02 

40 75 ZZ.408 4.824 5.767 6.737 0.7478 0.0102 
____ 4_o ___ l_50 2Jl.6J9 4.ll_24 5.666 6.565 0.7518 0.021', 

40 150 20.892 4.824 5.662 6.561 o. 7518 0.0214 
___ 49 ___ 1 50 ______z o_~95_1 _____ 4. 82 4~---~5. 66 5 6_. s s 1 o. 151 ~~---~o. o 214 

40 150 Z0.307 4.824 5.644 6.529 0.7518 0.0214 
---~Q______L20 _2_Q..!,:2._B 4_._ll_24 5.695 6.573 0._7513 0.0214 

40 150 Z0.961 4.824 5.661 6.585 0.7518 0.0214 
____ 40 ___ 1'2Q_ ___ 2Q.947 4.824 5.676 6.594 0.7518 0.0214 

40 300 · 16.221 4._az,, 5. 373 1;.013 o. 7641 o.0469 
40 ___ 3JJ ______ )6.469 4.824 5.391 6.104 0.7_(,41 0.0469 
40 300 16.437 4.824 5.333 6.064 o. 7641 0.04_6_9 __ 

___ ltO 300 ____ 16.677 4.824 5.336 6.061 0.7641 O_.Q_lt2_9 __ 
40 300 16.776 4.824 5.2/,6 '6.047 0.7641 0.0469 
40 500 8.961 4.824 4.810 5.C09 0.8146 ').0914 
40 5M 8.951 4.824 4.804 5.004 o.8146 0.0914 
40 ':iOO 9.032 4.824 4.719 4.963 0.8146 0.0914 

--- 40 50Q ---9.058 - 4.824 4.729 4.972 0.8f46 0.0914 
--- 40 ____ 500 8.918 4.8?,4 4. 782 4.987 0.8\46 0,09_14 

40 500 9.153 4.824 4.742 ,4.991 0.8146 0.0914 
__ _.!,_0 ___ 5..Q.!l 9.-1.2_6 4.824 4.566 4.585 0.8146 0.0914 

40 500 9.103 4.824 4.632 4.919 o.8146 o.oq14 
40 ':iOO 8.979 4. 82-4~----4~-·-5~7-5 ____ ~4~·~8~7_Q__ ____ .0_!._~14_6___ •J.0914 

160 200 16.046 4.639 5.214 5.941 0.6957 o.0z4g 
__ 160 - zoo ___ ._ 15.462 4.639 5.157 5.857 o.6957,----____ o.oz4q 

160 2'10 15 •. 632 4.639 5.105 5.837 0.6957 0.0240 
1~6~0'------"?~J~0'--------"1~5~.~4~3~g _____ 4_;_:._•6~3~9~---~5~.~0~6~3'-----~5~.~7~9-4'-----------,'0~.~6.9~5~7-----!}~."~JZ=-'4~8=---
l60 200 16.055 4.639 5.156 5.904 0.6957 O.O?s-8 

__ 160 ?00 ____ 15.612 4.6_;39 5.10~9~---~5.838 0.6957 0.0248 
l6C ZOO 16.115 4.639 5.161 5.912 C.6957 0.0248 
160 400 13. 243,____ ___ ___,4_,,._,.,6._,,,3-'9 ____ ___._4~. ~9~z~a _____ ~5~·~5=-'5~3~ ____ 0. 10_2=3'-----~o~. _049& 

--1-60 ___ 4_00 13.-3-54 4.639 4.928 5.563 o. 7023 0.0496 



TABLE XX (Continued) 

--- --------------- ----- -----------

TEMP. P~FSS. GAMM1\ dn ds de LIQUID VAPOR 
___ • f_ _____ o SI A _______ DYNES /C fi___________________________________________ DEN S~l~T~Y ____ __,O~E'-'t-",S"--"--1 T_,_Y-'---

_l_?_Q_ 
160 

•_', •~)~~o ----~13_ • 2 39 
13.547 

4. aa5 5.525 0.7023 
4.937 5. 536 0.7023 

4.639 ____ _.:..;'-"-'"-=-----·-"-'-"~'------~~~-------'o~.~0~4~9~6'--
4.639 0.0496 

5.104 5.6g 8 c. 7 ()23 __ 16_0 ______ 40-J 13.605 4.639 0.04% 
4.923 5.450 0. 7065 160 6DJ 11.787 4.639 0.0745 
4;838 5.410 0.7065 160 ___ 60J__ 11. 92_1 _______ 4_._6_p9 0.0745 
4.870 5 ~ 4 03 C.7065 160 600 11.651 4.639 C.0745 
4. 807 5.334 0.7065 
4-. 803 5~383 0. 7065 

t6o 6J1 11.,63 _____ 4_,_.~6~,~9-;-------~-'cc'-c-------=--'-"'-"-=---------cc'--cccc''--=------c-o~.70~1~4-5 
160 l,j,J 11.379 4.639 0.0745 

4.795 5.371 0.7065 l6C 60) l l. BM 4. 639 ____ _._.__._ :___ ____ :co .0745 
4. 571 5.115 0.7116 160 .500 10.z2q 4.639 0.1064 
4.628 5.125 o.7116 -- 16-') 3J·) _________ 9.989___ 4. 6~3~9-----~=- 0.1064 

160 8JO 
lf-..(' P'J'; 
160 l', )·J 

10" 011 
10.405 

4.639 
lt.639 
4.639 

4.560 5 .142 
4. 550 5.078 
4. 4:!3 :::,.,04-5 

o. 7116 
0.7116 
0.1110 

o.1n64 
0 .10 64 
') .1064 

C( 

C 



TABLE XXI 

SURFACE TENSION, DENSITY, AND DROP MEASUREMENTS FOR HYDROGEN SULFIDE-DECANE RUNS 

TEMi,:----PRfSS-~--------GAMMA dn . d8 de l !QUID VAPOR 

_ °F ____ P_SlA DYNES/CM-------------------------------------------- DcNSITY _DEI\JSITY 

40 50 21.449 4.?86 5.386 6.277 o. 7449 0.0053 
40 s·o Zl.435 4 •. 5B6 5.419 &.298 o. 7449 0.0053 

___ 40 __ 50 ______ 21.953 _____ 4.586 ___ 5.468 ____ 6.363 _ 0.7449 ______ 0.0053 
40 50 21.549 4.586 5.3S4 o.262 0.7449 0.005~ 

____ 40 _ 100 _____ 20.549 ______ 4.586__ 5.352 6.204 0.746(, ,J.0109 
40 10') 19.593 4.586 5.226 6.058 o. 7466 0.0109 
40 115 19.558 4.586 5.226 6.050 0.7501 0.0112 

100 ,,') 20:-1-so 4.o-h 4. s11 5.513 o. 110:i 1.0021 
100 30 20. 792 4.073 4.802 5.603 O. 7103 O.OC27 
100 3cl 20.480 4.073 4.828 5.602 o. 110·3-------;f:ooz,--
100 ____ )Q 20.411 .4.073 4.816 ?.590 0.7103 O.J027 
lCO 30 '· 20.132 4.073 4.829 5.582 O. 7103 0.0027 
100 so 19.921 4.073 4.823 5.555 o.7184 o.or41, 

··------io;~ 50 20.054 4.673 4.817 5.559 c. 7194 Q.J(\46 
10_'.) _______ 5_0__ Z0.166 4.073 _______ 4.819 5.5o7 _____ 0.7184 0.0046 
100 50 19.957 4.073 4.835 5.565 0.718~ 0.0046 
100 _____ _'5J -- _____ 19.521 4.073 4.8_3_l,_____ 5.538 o. 7184 0.0046 
100 50 19.664 4.073 4.807 5.529 0.7154 0.0046 
100 50 19. 792 4.073· 4.812 5.540 o. 7184 0.0046 
100 ]')0 18. 766 ______ 4-:073 4. 735 5-.435 (l.-7184 0.00% 

__ 1_00 ____ 100 _________ 18. 727 ____ 4.073 ________ 4. 748 s,:4_t,_!._ _______ 0~1_:q_t, ______ Q_,__OO_'.J~-
l00 1,,0 18. 8?6 4.073 4. 745 5.449 o. 7184 0.00% 

___ 100 __ uo ________ 1s._:J_1_1 ________ 4.073 4. 762 s.462 o.11R4 o.oo9f, 
100 100 18.892 4.073. 4.772 5.467 C-.7184 0.0096 
100 !<)<} 18.880 4.073 4.764 5.461 0.7184 O.OG96 
100 100 JR. 756 4.0T3 4. 762 5.4,2 o. 7184 0.00% 
100 l 'lO __________ lR. 753 _________ <+. 073 4. 770 5. 45 7 0. 7184 J .0096 
JOO 115 1-9.619 4.073 ·4.770 5.424 o.7349 0.011n 

____ l_QCl ______ 1_ l';_ ________ 18. 368 _________ 4.073 ______ 4. 776 _______ 5.412 O. 7349 'l. 01 lC 
100 115 18.480 4.073 4. 782 5.423 . c. 7349 0.0110 
100 115 18.326 4.073 4. 791 5.419 o. 7349 0.0110 

·- 102 - 115 1s.5:'!o 4.073 4.788 5.430 o.7349 0.011c 
100 115 1e.581 4.073 4.766 5.419 o.7349 o.rllc 

-- 1-00 I 15 . 13.357 ... 4:073-- 4. 774 5.410 O. 7349 0.0110 
100 115 18.65.J 4.073 4.798 5.444 0.7349 0.0110 

--160 50 n.,34 · 4.134 4. 1a2 5.487 o-:6896 iJ.0043 
160 50 18.048 4.134 4.766 5.4% 0.6896 O.C043 

.... l~O 50 17.911 4.134 4. 769 ,.477 0.6<l96 O.O'l43 
_ _1_~0 _____ 5J___ 18.328 4.134 4. 752 5.493 _____ C.6896 ____ 0.0043 

160 75 - 17.591 4.134 4.752 5.451 0.6580 0.0064 
__ 160 ________ 75 17.874 4.134 4.72d _____ 5.4,4 _____ 0.6d80 0.0064 

160 75 ----- - 17.649 4;134- --4;-766 5.464 0.6>JBO O.OOM 
160 75 17.501 4.134 4.749 5.443 0.6~80 0.0064 

--160 -- 75------17 .4S6 4.134 4. 7S2 5.442 0.6880 G.O-~ 
160 100 17.346 4.13t, _________ 4.633 __ ~ ____ 5.351 ______ 0.6936~ _____ O.Cl0% 

- 160 100 ------17.056 4;134 ;;;·741 5.402 0.6936 O.QOBb 
_ 16_0 _____ l_JO ______ 17.2_3] ______ 4.114 ______ 4.699 _____ 5._396 _____ 0.6'136 ______ O. )JB6 __ 

co 



TABLE XXII 

SURFACE TENSION, DENSITY, AND DROP MEASUREMENTS FOR ETHANE-BUTANE-DECANE RUNS 

·------------------
TEMP. PRESS. GAMMA 
__ 'F ____ PS!A__ DYNES/CM 

LIOLJI D 
DENS !TY 

VAPOR 
DENSITY 

170 50 13.SB't 5.469 5.887 6.693 Q.6466 :J.OGP 
110 so 14.242 s.469 5.829 6.692 o.6466 n.0012 

. _170 50____ 13.996 ---- 5.469 5.843 6.676 0.6466 J.0072 
170 50 14.256 5.469 5.922 6. 754 0.6466 0.0012 

·- 170__ 50 --- 14.138 5_.469- 5.879 6.714 Q.6466 0.0072 
170 100 13.158 5.469 5.649 6.460 0.6509 0.0104 
170 100 13.239 5.469 5.759 6.540 0.6509 0.0104 
170 100 13.262 5.469 5.828 6.587 0.6509 n.n104 

______ 110 __ 200 12.119 5.469 5.s10 6.495 o.6410 --~o
0
~-.~g

1
1:_2

2 170 zoo 11.930 .5.469 5.620 6.345 0.6410 _ 
__ 110 ______ 200 _____ 12.162 ___ 5 •. 469 s.490 6.287 o •. 6410 ____ o~.0182 

170 200 11.950 5.469 5.817 6.473 0.6410 0.0182 
170 ZOJ 11.904 5.4o9 5.794 6.453 0.6410 0.0182 

·-110 200 n.-956 5.469 5.120 o.412 o.6410 o.01s2 
110 200 11.842 5.469 5.689 6.379 0.6410 o·.01s2 
170 3'.'0 10.197 5.469 5.562 6.146 0.6277 0.0272 

_170 ____ 3:)0 -- 10._042 . 5.<t69 5.620 6.162 0.62~7~7 ____ ~0.0272 
110 300 9.975 5.469 5.647 6.110 o.6277 0.021? 

_ 170 300 -- 10.390 5.469 5.452 6.10-1 0.6277- 0.0212 
170 400 8-.336 5.469 5.49-1 5.890 0.6122 0.0368 

-· l 70 ___ 400 _______ 8.339. _ 5.469 5.546 5.930 0.6122 0.0368 
170 L.O-.J 8.899 5.469 5.222·---------S:SLJ.____ G.6122 0.0368 

___ 170 ___ 400 ----~_,_s,}3 5.469 5.477 5.932 0.6122 0.0368 
170 400 8.916 5.469 5.264 5.84C 0.6122 0.0368 
170 4JO B.539 5.469 5.354 5.842 0.6122 ~.0368 

-~170 400 8.937 5.469 5.283 5.8S5 0.6122 0.0368 
_ 170 ____ 4,Jc _______ S.573 5.469 5.333 5.834 0.6_122 _O__,_Q1_6_8 _ 

170 500 7.356 5.469 5.174 5.610 0.5941 0.0475 
-·- ]_70 ______ 500 __________ 7.102 5.469___ 5.189 -- 5.577 ---- 0.5941_ 0.04~--

17() 500 7.104 5.469 5.133 5.543 0.5941 0.0475 
170 5JO 7.2% 5.469 5.08D 5.540 0.5941 0.0475 

--r=,-o---5 ~5b 7. 3 "i'-c6~----5~._,4.c6.-c:9-----5~. 71"°2""3------,5a-.~5:"'7=-cz=--------,o:-'.'-;5c-;9c4,...,1------,,o~."'0"'"4°'7"'5-· 

170 5}0 7.121 5.469 5.130 5.544 0.5941 0.0475 
170 500 7.189 ----5~~--469 5.05~2~----5,~.~5~0~7~--- 0.594.~l----~o~.~0~475 

ro 
N 



TABLE XXIII 

SURFACE TENSION,-DENSITY, AND DROP MEASUREMENTS FOR METHANE-CARBON DIOXIDE~DECANE RUNS 

-- --------··------·-------- ----------------
TEMP. PR!::SS. GA'll~A dn 

--- °F ___ PS_IA -·~---·DYNES/Ct_1 _________ _ 

ds de LI QUID -.. -VAPO_R __ 
_ ____ f)JNS I TY~----·~DENS I TY 

76 34 21.645 4.584 5.551 6.434 0.7243 0.0042 
76 34 21.906 4.584 5.538- 6.442 o. 7243 0.0042 

_ 76 ___ 34 ____ 21.634 _____ 4.584 _ 5.543___ 6.428 -- o. 7243 -- 0.0042 _ 
76 34 21.349 4.534 5.545 6.443 0.7243 0.004? 

__ 72_. 34 21_.592 4.584 S.%5 6.459 _______ 0._7243 ___ O.J042_._ 
76 34 Zl.744 4.584 5.549 6.439 C.7243 0.0042 
76 34 21.651 4.584 5.552 6.435 0.7243 O.OC·42 
76 34 if;-850 4.534 5.560 6.4~3 O. 7f43 O.OC",2 
76 34 21. 359 4.584 5.541 6.441 o. 7243 0.0042 
76 100 21.2s1 4.534 ~.490 .;;:-fas _____ o.1~---~c,Ts--

___ 16 ____ 10J ____ 21.057 4.534 5.502 6.378 o. 7202 0.0075 
7':, JOO 21.333 4.594 5.484 6;384 0.7202 0.0075 
76 l],) 21.102 4.534 5.496 6.377 0.7202 0.•0075 
76 l'lO 21.397 4.584 5.508 6.404 0.7202 D.0075 

--- 76____ 1_00 21.230 4.584 5.494 6.384 o. 7202 0.0075 
76 100 21.297 4.5~4 5.486 6.383 - 0;120·2 0.0075 

___ 76 ___ 100 _____ 21._040 _____ 4.554 5.490 6.369 0.7202 0.0075 
76 100 20.963 4.584 5.487 6.362 o. 7202 0.0075 . 
76 100 21.193 4_,,_.534 5.469 6.365 0.7202 0.0075 
76 100 21.276 4.584 5.488 6.383 0.1202 0.0075 
76 200 . ?0.251 4.534 5.417 . 6.288 . o. 7148 0.0122 
76 200 20.221 4.584 5_-420 6.268 C•.714B---~Ol22-

______ 76 __ 2J,) ______ 20.J94 ______ 4.58_',_ ____ 5.433 6.£1!.6 o. 7148 0.0_1j_2_._ 
76 200 20.0.30 4.584 5.438 6.287 0.7148 0.012? 
76 2'.JO l 9.991 4.584 5.445 6.289 O. 7148 0.0122 
76 -1(") 20.185 4.584 5.404 6.275 o. 7148 0.0122 

_ 7& ?OJ _______ 20.431 __ 4.5<l!!._ _____ 5.417 6.390 O. 7148 0.0122 
76 300 19.055 4.564 5.317 6.160 0.1094 0.017') 
76 _______ 300 __________ 18.077 _____ 4 •.. 5.84 __ 5.333 6.144 o.7094 0.0110 
76 300 19.189 4.5·a4 5.321 6.165 0.1094 0.0110 
76 3,n 1B.&B2 4.5S4 -5.258 6.095 0.1094 0.0110 

· 76 30,1 1s .• 737 4.554 s.2s1 &.116 o. 1094 0.01 n 
____ 76 ____ 30J 13.740 4.584 5.264 6.103 0.7094 0.0170 

76 -- 50·1 - 16:364 4.584 5.155 5.895 0.6991 0.0210 
76 5,J') 16.234 4.584 5.172 5.896 0.6991 ().')270 

__ 7_6_ '5·;0 l<'>.343 4.584 5.116 5.868 0.6991 J.027~ 
76 ~O·l 16.102 4.584 5.168 5.883 0.6991 0.027v 
76 75) 14.304· 4.584 4.'184 5.665 0.6866 '1.0402 

____ 76 ____ 7_5,:; _J_t,_.J_S_I_ 4.584_____ 4.998 5.664 0.0866 0.0402 
76 75J 14.290 4.584 5.006 5.678 0.'>~,,6 :,.,;·,,:n;.,-

_____ 7_6 _____ _l_~.:::g 12. 217 ____________ 4 •. 534 ----- 4,923 -- 5.48:> ------ 0. <'> 748 O .05 39 
32 34 23.374 4.414 5.400 6.307 o. 7400 0.0046 
32 34 23.570 4.414 5.401 6.319 0.7400 O.IJ04b 

---32 ____ 'i4 23.454 4.414 -----5.4'.)2 6.313 o. 7400 0 .00~6 
32 __ ,4 ________ . __ . __ 23.olQ_ _______ 4_..__41_4 5.384 6.310 o. 7400 1.00 1,0 
32 10'.) 22.610 4.414 . 5.350 . 6.236 0.7392 0.0077-
32 !OD 22.554 ____ 4.414 __ . ____ 5.349 6.232 0.7392 0.0077 
3i 1il0 - 22.6<>1 4.414 5.353 6.241 O. 7392 0.0077 

.. __ :g ___ 1_00 72.497 4.414 5.318 6.209· o. 7392 1.0011 



TABLE XXIII (Continued) 

TEMP. PRESS. G~i'lMA dn ds de LIQUID VAPm, 
~F ______ __ l'S L~ __________ DY "lE S /..CM_____________________________ · _________ DENS! TY ___ D El'IS ! TY 

__ 32 l.0'1 ____ 22,'L86 _4._,~)_4 __ ---2..J28 6.;>_14 C,7392 0.0077 
32 100 22.717 4.414 5.342 6.237 0.7392 0.0077 

.. ____ 32 ____ 2_00 _____ ...21.,407 ______ 4.414 ______ 5_,237 -- 1,.l_l.',____ 0.7303____ 0,01_28 .. 
32 200 21.24s 4.414 ,.2s2 &.l34 0,7303 0.012s 

_____ 32 ____ 20Q _____ 2L,L05 _______ 4._4_14___ 5,223 ______ 6.0_86 ···--· 0.7303 ___ ___Q_._g__1_2_q ___ _ 
32 zo~ 21,631 4.414 5.227 6.121 0.7303 O.OJ2P 

__ 32 _ 2_00 ;?,J_,_"-62 4.414 5.240 6.107 0.7303 ('.')12° 
32 300 20,073 4.414 5.186 6.017 0.7242 0.0131 

_____ 32 ___ '1_00 20.610 ___ 4.4_[_4. 5.16.3 6.036 _ 0.7242 0.0181 
32 3.)0 20,261 4.414 5.210 6.04S 0.7?42 o.01q1 

_____ 32 ____ 3QO ____ 20 • .076 __ 4,414 _____ 5.11>3 _______ 6.002 __ 0._7242 . 0.0181 __ 
32 300 20,530 4.414 5,121 6.003 0.7242 0.01~1 

__ :i_2 ,oo 2_9_._it;,_3 ___ _i_._:,:14 5. 187 6. 049 o. 724_2 c.o 1 s1 
32 500 17.342 4,414 5.013 5,760 0.7125 0.0294 
,2 ____ S()O _______ 17._43, __ 4_,414 ______ 5.026 5,77? 0.7125 0.0?94 
32 500 17.513 4.414 5.080 5.816 0.712S 0._0294 

__ 32 ____ soo _______ ._l_J • 1+2_L _____ 4_~.:t:t4 5 .054 5_. 793 QJl?_5 .C~. 02 94 
32 SOO 17.389 4.414 5.043 S.783 0._7125 G,0294 

__ .2_? ______ 200 _________ 17,4_99 4.414 S,OS4 5.798 0,7125 0.0294 
32 500 17.449 4.414 S.035 5.782 0,7!2S -0.029'< 

___ 32 __ SG-J ________ 17,626 ___ 4,414 _ S.031 · S._7_'J_2 ___ 0_._7_12S 0,02_')_4 __ 
32 SOO 17.625 4,414 S.077 5.822 O. 7125 0.0294 
~-2 _____ 5,l_P ______ JLL§..6___ 4.414 __ 5.05<l.__ ____ S.821 ____ o. 712S _ 0.0204 __ 
32 'DO 17.692 4,-414 S,028 5. 794 0, 712S 0.0294 

_3_? __ 750 __ 15_.263 ___ 4,414 4.'z..16 5.594 0,6986 0.0446 
32 750 15,197 4.414 4.938 5.603 0,6986 0,0446 
32 _____ 1so ______ 1s._127 _ 4.414 ____ 4.942 s.600 o_.6986____ '),0441; __ _ 
32 7.50 15.349 4.414 4.921 5,604 0,6986 0.0446 

_____ 32__ ___ 750 __________ 15_,0_4_5 _______ 4.414 4. 898 5. 56S o. 6_'./_8!, O. )446 __ _ 
32 7.50 15,013 4.414 4,922 S.578 0,6986 0,0446 
32 750 15,474 4.414 4,.886 S.591 0.6986 0.0446 
32 750 lS.107 4.414 4.912 S.579 0,6986 0,0446 

____ '.l._2 _____ 1000 _________ 12,_9Sl __ 4,414 4. 761 S.346 0.6856 /J,06U ___ _ 
3? 1000 12.662 4.414 4.7S8 S,327 0,6dS6 0,0611 

_ 32 ___ JJ)QO_____ 12. 715 _______ 4,414 ____ 4. 7S2 5. 32 8 0.1'_§~6 0. 0611 __ 
32 !OCJ 12.885 4.414 4.786 S.36S 0.68S6 'J,0611 
32 l,JC'O 12,758 4.4_14 4.782 5.351 O.bBS6 ·J.%11 
32 lOJD 12.90S 4.414 4. 791 5.370 C'.6SS6 0.0611 

__ 32 _____ .L':1]0 ______ _1.2,689 ____ 4.414 __ 4,740 ___ S.318 0,6Jl.26 _______ G.06_11 ___ 
32 1000 12.877 4.414 4.748 5 .. 340 0~635::' C .. 061~ 

_____ 32 _____ 1JC·) 12,703 4,414 4.749 5.32S. 0.6856 0.0611 
32 1000 . 12,S37 4,414 4. 73S S.301 0,685& . 0.0611 
32 1,,.,0 12.788 4.41_:, 4.762 5.341 0.6856 '),0611 

--32 1000 12.326 4.414 4,763 S.34S G.6856 0.0611 
__ 32 _____ 10JO ___________ J_2.918 ______ 4.414 _______ 4_.761 S.343 0.68S6 0,0611 

32 10-J) 12.616 4.414 4,766 S.328 0.68So 0.0611 
32 1000 · 12.513 4,414 4.740 · 5,302 0.68S6 0.0611 

.. 32 50 22.249- 4,364 S,27'+-·. 6,138 0.7361 0,0069 
___ _]]_ 50 22.966 4,364 5,247 6.162 o. 7361 0.0069 



TABLE XXIII (Continued) 

TE~P. PRESS. GAMMA 
-· "F ___ PSI~--·- DYNES/CM __ 

<in ds de LI QUID VAPOR 
_ __ . ___________________________ OEIIIS1TY . DE"lSITY 

32 50 22.966 4.364 5.253 6.11,6 0.7361 '.l.0069 
32 200 20.9·11 4. 364 5.121 5.966 o. 7283 0.0139 

__ 3_2 ___ 200 20.675 ____ 4.364 5.132 5.975 0.7283 0.0139 
32 200 20.637 4.364 5.122 5.966 ·-0.7283 0.0139 
32 500 11.121 4.364 4.923 5.104 o.nn 0.0,06 
32 soo 11.500 4.364 4.919 5.686 c:·1111 0.03·06 
·32 500 17.484 4.364 4.901 5.673 0.1111 0.0306 
32 750 14.269 4.364 4.746 5.382 0.69.74 0.0459 
32 750 14.}__8_0 4. 31>4 4. 777 5.41 l Q.6974 0.0459 
32 lOQ'J 12.396 4.3&4 4.679 5.2;T-----o-.i;547 o.'l626 
32 100() 12.663 4.364 4.647 5.235 0.6847 .0.0626 
32 1000 12.139 ,;.364 4.600 5.211 o.6847 0.0620 
32 100 21.128 4.322 5.200 6.031 0.7239 0.0139 
32 100 21.160 4.-32z-----s:-r§1 6.031 0.1239 0.0139 

-- 32 __ .100 --- 21.547 _____ 4 •. 322 _____ 5.136 6.014 0.7239 0.0139 
32 100 21.301 4.322 5.161 6.029 O. 7239 O.Ol3'l 

_32 ____ 100 _____ 21.580 4.322 --- 5.148 6._024 0.7239 0.0139 
32 200 20.257 4.322 5.080 5.910 0.1212 0.0181 
32 280 19.940 4.322 :,.121 5.917 0.7212 rJ.OlSl 

- 32 200 ·2ff.:314 4:Y;rz 5.a55 5.s91 0.1212 a.01s1 
___ 32 __ 200 19 •. 955 4.322 5.068 5.883 0.7212 0.0191 

32 200 20.34g · 4.322 5.091 5.923 0.1212 o.01~ 
·-··32 _ 300 -·-· 19.319 4.322 4.991 5.e10 o.7161 0.0234 

32 300 19.095 4.322 5.048 5.833 o. 7161 -----().0234 -
32 300 19.171 4.322 5.045 5.836 0.7161 0.0234 

- 32 310 19.285 4.322 s.oas 5.819 0.1161 0.023;, 
_32 ___ 300 _______ 19.132 -- 4.322 5.017 5 •. 815 0.7161 0.0_?~ 

32 3~3 19.364 4.32.2 5.033 5.842 0.7161 0.0234 
_}__? _____ 3'.l:)____ 19.401 ___ 4._322_~--- 5._045 -- 5.851 ____ 0.7161 .. 0.0;>34 

32 300 19.422 4.322 .5.055 5.859 0.7161 0.0234 
32 300 19.326 4.322 5.010 s.823 0.1161 0.0234 

-:fz ____ 3iio 19 .• 276 4.322 5.068 5.B58 o. 1101 0.0234 
32 500 17.499. 4.322 4.850 5.633 0.7059 0.0347 

32. 500 17.591 · 4.322 4.853 5.1>42 o.7059 o.cf:341-·· 
32 500 17.363 4.322 4.883 5.646 0.7059 0.0347 
32 so!:l · 16.999 4.322 4.933 5.653 0.1059 0.0347 . 
32 500 17.036 4.322 4.839 5.594 0;1059 O.Q347 

---"Tr---soo 1CT04 4.322 4.809 s.579 0.1059 0.0347 
32 750 . 14.564 4.322 4.721 5.382 0.6934 0.0502 

--52--·=,s·o------i,.:-;02----,;·.322 4.724 5.387 0.6934 o.oso·z· 

__ I2 750 __ ~-------14.410 .. _________ 4.322 4.726 5.373 ·- o.6934 __ o.o5o~ 

00 
V, 



APPENDIX D 

TERNARY SYSTEMS COMPOSITIONS 



* 

Temp. 
Op 

170 

TABLE XXIV 

SYSTEM COMPOSITION FOR ETHANE
BUTANE-DECANE RUNS 

Composition Press. No. of Moles in 
Parameter psia Ethane Butane 

0.38 50 0.0 1. 96 
100 1. 45 1. 96 
200 5.11 1. 96 
300 9.09 1. 96 
400 13.42 1. 96 
500 18.20 1. 96 

87 

srstem* 
De cane 

3.10 
3.10 
3.10 
3.10 
3.10 
3.10 

Number of moles in the experimental system were multi
plied by 1000 to arrive at the numbers presented here. 



TABLE XXV 

SYSTEM COMPOSITION FOR METHANE
CARBON DIOXIDE-DECANE RUNS 

88 

Temp. Composition Press. No. of Moles in S~stem * 
Op Metfian~ CarEon Dioxl-e Decane 

76 

32 

* 

Parameter psia 

0.40 34 0.0 1. 40 2.06 
100 2. 21 1. 40 2.06 
200 5.90 1. 40 2.06 
300 9.67 1. 40 2.06 
500 17.52 1. 40 2.06 
750 27.80 1.40 2.06 

1000 38.50 1. 40 2.06 

0.35 34 0.0 1. 40 2. 58 
1.00 2.95 1. 40 2.58 
200 7.37 1. 40 2.58 
300 11. 98 1. 40 2.58 
500 21. 70 1. 40 2.58 
750 34.70 1. 40 2.58 

1000 49.00 1. 40 2.58 

0.52 so 0.0 1. 96 1. 80 
200 6.81 1. 96 1. 80 
500 21.14 1. 96 1. 80 
750 34.14 1. 96 1. 80 

1000 48.44 1. 96 1. 80 

0.68 100 0.0 3.92 1. 85 
2bb 4.85 3.92 1. 85 
300 9.46 3.92 1. 85 
500 19.18 3.92 1. 85 
750 32.18 3.92 1. 85 

Number of moles in the experimental system were multi
plied by 1000 to arrive at the numbers presented here. 
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