RATES AND DATES OF 2,4-D APPLICATION FOR

RANGE WEED CONTROL IN CENTRAL

AND EASTERN OKLAHOMA

By

DON KENDALL HUBBARD Bachelor of Science Oklahoma State University

Stillwater, Oklahoma

1964

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1970 RATES AND DATES OF 2,4-D APPLICATION FOR

0A

OCT 12 1970

ARY

RANGE WEED CONTROL IN CENTRAL

AND EASTERN OKLAHOMA

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ACKNOWLEDGMENTS

The author is deeply indebted to his major advisor, Dr. Wilfred E. McMurphy, and the members of his advisory committee, Drs. Lavoy I. Croy and James K. McPherson for their assistance throughout the course of this study.

Grateful appreciation is extended to Dr. Lavoy I. Croy and Albert and Richard Borum for providing the land on which these studies were conducted. Also I wish to thank Dr. Howard A. L. Greer for providing the herbicide and the spraying equipment used in this study.

Appreciation is expressed to Mr. William Fuller, his staff, and to the Oklahoma State University Department of Agronomy for providing the assistance and funds necessary for this study to be conducted.

Gratitude is extended to David Langston for his undivided hospitality and service while establishing these studies.

In addition, I would like to thank Mrs. Johnette Howard for the typing of this manuscript.

Finally, I would like to express appreciation to my wife, Linda, for her patience and encouragement during the course of this study.

iii

TABLE OF CONTENTS

Chapte	r						F	age
I.	INTRODUCTION	•	•	•	•	•	•	1
11.	LITERATURE REVIEW	•	•	¢	•	•	•	- 3
III.	METHODS AND MATERIALS	•	•	•	•	•	٠	7
• •	Treatments	•	• •	• •	•	•	•	8 10 11
IV.	RESULTS AND DISCUSSION	•	•	• • •	0 0 0	•	• • •	12 15 15 19 19
V. LITERA	SUMMARY AND CONCLUSIONS							
APPEND	IX	•	•	•	•	•	•	34

LIST OF TABLES

Table

I.	Dates of 2,4-D Application for Range Weed Control Plus Environmental Data for Stillwater and Muskogee, 1969 9
II.	Weed Production in Pounds Per Acre as Influenced by Rates and Dates of 2,4-D, Stillwater, First Harvest14
III.	Weed Production in Pounds Per Acre as Influenced by Rates and Dates of 2,4-D, Stillwater, Second Harvest17
IV.	Weed Production in Pounds Per Acre as Influenced by Rates and Dates of 2,4-D, Muskogee, First Harvest20
v.	Weed Production in Pounds Per Acre as Influenced by Rates and Dates of 2,4-D, Muskogee, Second Harvest22
VI.	Average Number of Blackeyedsusan Plants Per Transect for each Rate and Date of 2,4-D at Stillwater, June 4, 1969
VII.	Average Number of Blackeyedsusan Plants Per Transect for each Rate and Date of 2,4-D at Muskogee, June 9, 1969
VIII.	Average Number of Western Ragweed Plants Per Transect for each Rate and Date of 2,4-D at Stillwater, August 1, 1969
IX.	Average Number of Western Ragweed Plants Per Transect for each Rate and Date of 2,4-D at Muskogee, August 7, 1969
х.	Average Number of Lanceleaf Ragweed Plants Per Transect for each Rate and Date of 2,4-D at Muskogee, August 7, 1969
XI.	Daily Minimum and Maximum Temperatures from March 1, 1969, Through June 30, 1969, at Stillwater
XII.	Daily Minimum and Maximum Temperatures from March 1, 1969, Through June 30, 1969, at Muskogee
XIII.	Plant Species Found at Stillwater and Muskogee by Scientific and Common Names

Page

T <	۰ħ	1	0
	10	т	c

XIV.	Species Composition of the Stillwater Study Area on August 29, 1969, Determined with a Point Frame
XV.	Species Composition of the Muskogee Study Area on September 8, 1969, Determined with a Point Frame
XVI.	Monthly Precipitation in Inches at Stillwater for the Year 1969
XVII.	Monthly Precipitation in Inches at the Eastern Oklahoma Pasture Station, Muskogee, for the Year 196941
XVIII.	Analysis of Variance of Weed Production in Grams Per Plot for Stillwater, First Harvest
XIX.	Analysis of Variance of Weed Production in Grams Per Plot for Stillwater, Second Harvest
xx.	Analysis of Variance of Weed Production in Grams Per Plot for Muskogee, First Harvest
XXI.	Analysis of Variance of Weed Production in Grams Per Plot for Muskogee, Second Harvest
XXII.	Grass Production in Pounds Per Acre from 2,4-D Treated Plots from Two Harvests and Two Locations

LIST OF FIGURES

Figu	re		Page
1.		at Stillwater, June 12, 1969, as Dates of 2,4-D Application	• 13
2.		at Stillwater, August 7, 1969, as Dates of 2,4-D Application	. 16
3.		at Muskogee, June 18, 1969, as Dates of 2,4-D Application	. 18
4.		at Muskogee, August 19, 1969, as Dates of 2,4-D Application	. 21

CHAPTER I

INTRODUCTION

Approximately half of the total land area of the United States is used for pastures and grazing purposes, and weeds are a problem on nearly all these forage lands (24). The rangelands have declined in productivity during the past century, as a result of poor management and lack of scientific knowledge (24). One of the real challenges in agriculture today is to bring these rangelands back to high productivity.

Trends toward dominance by weeds can be halted or changed by judicious use of chemical control methods, introduction of new forage-plant species, and control of the kinds and numbers of grazing animals and their seasons of use. Because of factors such as climate and soil depletion or erosion, some ranges do not respond readily to improvement measures. Nevertheless, many rangelands in Oklahoma can be made more productive by existing techniques of which almost all will include some form of chemical weed control.

One of the problems with using a phenoxy herbicide such as 2,4-D (2,4-dichlorophenoxy acetic acid), has been susceptible crops such as soybeans and cotton. If good results could be obtained from early application before susceptible crops are planted, this would reduce the difficulties in many areas.

The purpose of this study was to evaluate rates and dates of 2,4-D application for range weed control. If earlier dates and lighter application rates could be used, this will greatly enhance the opportunity of obtaining satisfactory weed control without harming susceptible crops.

334 - 10

CHAPTER II

LITERATURE REVIEW

The effectiveness of herbicides as a weed control measure has been substantiated by research and widespread use in field crops. Chemical weed control on native ranges has also been used as a means of range improvement. Reduction of weed populations releases the grasses from competition for water, nutrients, light, and other factors of the environment.

Audus (1), Fletcher (8), Sheets and Danielsen (25), and Thiegs (29) in exhaustive reviews show that herbicides exert a marked effect on the ecology of soil microorganisms. Processes such as soil respiration, ammonification and nitrification may serve as indices of the persistence or decomposition of these chemicals.

In Nebraska, Klingman and McCarty (19) reported that one pound of 2,4-D ester per acre, applied for three years, decreased perennial broadleaf weeds 70 per cent and increased forage production 47 per cent. Other studies including those by Cornelius and Graham (4) and Mitich (23) have reported an increase in grass with a reduction of broadleaf plants by spraying with herbicides. Hurd (12) found in Wyoming, total forb cover, as well as herbage production, showed a greater reduction with the two and four pound rates of 2,4-D than with the one pound rate.

Smika et al. (26), reported highly significant increases in native grass yields by spraying high infestations of fringed sage (Artemisia frigida) with 2.5 pounds of 2,4-D per acre.

Major advantages of herbicides are: high selectivity, quick kill, low cost, use on steep and rocky areas, and protection of the soil from erosion. Herbicides, however, do damage the desirable plants when used at certain times and concentrations. Since many plants are susceptible to injury only at certain growth stages, injury to desirable species may be reduced by controlling herbicidal concentrations and by proper timing.

Klingman (20) pointed out that susceptibility coincides with periods of active growth. For example, small grains may be very susceptible to 2,4-D in the germinating and seeding stages, tolerant in the fully tillered stage, and again susceptible in the jointing and heading stage. Though most plants become more tolerant with age, others remain susceptible. However, Klingman (14) reported no lasting herbicidal damage to seedlings of warm or cool season grasses.

On grazed ranges, the ground cover and air-dry herbage production of forbs are often two to three times that of the combined grasses and sedges, Hurd and Kissinger (13).

Sperry (28) found that broadcast applications with formulations of 2,4-D applied at the rate of one pound per acre have obtained the best control of rayless goldenrod, (<u>Iscoma wrightii</u>). Good kills of perennial broomweed, (<u>Gutierrezia sarothrae</u>) resulted from 2,4-D applied by both ground and air equipment at the rate of one pound per acre in the spring, under optimum growing conditions (27). In California, Cornelius and Graham (6) obtained an 85 per cent kill of

GREWITS DURINGS

big sagebrush (<u>Artemisia tridentata</u>) and a large increase in native perennial grasses through applications of one pound of 2,4-D butyl ester per acre in late June. Studies in Wyoming by Hull et al. (11) indicate that at least 75 per cent of a big sagebrush stand can be killed by applications of two pounds of 2,4-D isopropyl ester per acre, thus allowing native grass production to double or triple. Blaisdell and Mueggler (2) found that various esters of 2,4-D when applied in sufficient quantity at the proper season can effectively thin a stand of big sagebrush and allow a substantial increase in native grasses.

Klingman (18) stated that herbicides are more efficient for the control of most broad-leaved weeds and brush than mowing or hand clearing. Effective control is not dependent upon very critical timing, as is mowing; nevertheless, for many perennial plants, there is a definite relationship between optimum time for mowing and optimum time for spraying (16, 17). Klingman and McCarty (15, 16, 17) found that the total production of dry matter in pasture treatments, where most of the broad-leaved weeds were controlled, averaged 92 per cent more than that of the weedy check.

Corns and Schraa (6) found that repeated treatments with rates of 2,4-D of from one to four pounds per acre applied to intact plants of silverberry (<u>Elaeagnus commutata</u>) in June and to the limited re-growth in August were no more effective than single early summer treatments.

McIlvain et al. (22) conducted extensive control experiments on sand sagebrush, (<u>Artemisia filifolia</u>) in Oklahoma, showing that one proper application of 2,4-D at one to two pounds per acre could kill

three-fourths of the sagebrush on infested lands.

In a study conducted in Canada, Hay and Quellettee (10) found that the best results from the standpoint of both yield of grass and reduction of weeds in pastures were obtained when fertilizer treatments were supplemented by 2,4-D applications.

Hauser et al. (9) found in a study in North Carolina that ester or amine salt formulations of 2,4-D at rates sufficiently high to control most annual broad-leaved weeds and many perennial weeds could be used safely in ladino clover-orchard grass pasture if applied during tolerant stages of growth. There was no marked difference in yield of total forage due to formulation or rate of 2,4-D applied in April, June, or August.

Elder (7) reported that some pastures in Oklahoma produced 1000 pounds per acre dry weight of western ragweed (<u>Ambrosia psilostachya</u>) and that it was considered the most harmful pasture weed on most of the 18 million acres of grassland in the state. He further stated that mowing to control ragweed was not effective but that 2,4-D at one-half to three-fourths pound per acre would eradicate it.

Control studies by Bovey et al. (3) on western ragweed in Nebraska showed that as little as one-half pound of 2,4-D per acre gave effective control for at least three years when applied in late May.

CHAPTER III

METHODS AND MATERIALS

In April, 1969, a study was initiated at two locations to study the effects of rates and dates of 2,4-D application for range weed control. One site was located northwest of Stillwater, Oklahoma¹, and the other at the Eastern Oklahoma Pasture Station near Muskogee². The same experimental design, treatments, methods and techniques were used at each location.

Treatments

A factorial design with five application dates and four rates of 2,4-D plus an unsprayed check in four replications was used.

The analysis of variance was calculated first with the untreated check, then the check was dropped out to have a balanced factorial to detect interaction effects.

The four rates of 2,4-D were: 1/4, 1/2, 1, and 2 pounds of active ingredient per acre plus the unsprayed check. The five treatments were applied, beginning in early April, at approximately two

¹In the Southeast quarter (SE^4) , of the (SE^4) , of section thirty-two (32), township twenty (20), north (N), range two (2), east (E) of the Indian Meridian.

 $^{^{2}}$ In the Southeast quarter (SE⁴), of the (NE⁴), of the (NE⁴) of section thirty-two (32), township fourteen (14), north (N), range seventeen (17), east (E) of the Indian Meridian.

week intervals (Table I). The treatment intervals varied due to climatic conditions. Soil moisture was excellent during all treatments. All treatments were applied with a wind reading below 10 miles per hour. The minimum and maximum temperatures for both locations from March 1 through June 30, 1969, are listed in Appendix Tables XI and XII.

Most weed species were in the rosette stage at both study areas on the first application date. All were less than one inch in height. By the second application date all plants were actively growing. Many of the early maturing species such as daisy fleabane (<u>Erigeron</u> <u>strigosus</u> Muhl)³, and blackeyedsusan (<u>Rudbeckia hirta</u> L.) were in the third leaf stage. On the third spray date all plants were in the early elongation stage. Western yarrow (<u>Achillea lanulosa Nutt.</u>) and bighop clover (<u>Trifolium procumbens</u> L.) were starting to bloom. By the fourth date all dominant cool season weedy species were blooming. Some of these species were daisy fleabane, western yarrow, blackeyedsusan, bighop clover, and wavyleaf thistle (<u>Cirsium undulatum</u> Nutt. Spreng.). By the fifth application date the dominant cool season species had matured and were producing seed.

The plots were 14 feet by 40 feet. A low volatile ester of 2,4-D was applied from a ground sprayer with 30 gallons per acre volume applied at 30 pounds per square inch and 3 miles per hour.

Forage and Forb Production

Total plant production was determined by clipping a 3 by 10 foot area in each plot. The samples were clipped approximately 1

³Nomenclature of plants in this study follows Waterfall (30).

TABLE I

DATES OF 2,4-D APPLICATION FOR RANGE WEED CONTROL PLUS ENVIRONMENTAL DATA FOR STILLWATER AND MUSKOGEE, 1969

LOCATION1		DATE	TEMPERATU SOIL	<u>JRE (F)</u> AIR	PER CENT RELATIVE HUMIDITY	TIME
S	lst	April 2	63 ⁰	62 ⁰	92	7:00 p.m.
M	lst	April 3	68 ⁰	70 ⁰	72	5:15 p.m.
S	2nd	April 21	74 ⁰	66 ⁰	80	5:15 p.m.
M	2nd	April 22	81	82 ⁰	30	2:55 p.m.
S	3rd	May 5	76 ⁰	68 ⁰	76	5:15 p.m.
M	3rd	May 6	88 ⁰	83 ⁰	76	1:30 p.m.
S	4th	May 26	79 ⁰	80 ⁰	79	9:30 a.m.
M	4th	May 23	78 ⁰	75 ⁰	96	5:30 p.m.
S	5th	June 16	72 ⁰	74 ⁰	65	8:45 a.m.
M	5th	June 9	77 ⁰	71 ⁰	72	3:00 p.m.

¹S indicates Stillwater; M denotes Muskogee.

²Time when field application commenced. Total application took approximately two hours.

÷ся,

inch above ground level. Two harvests were made at each site, one in June and the other in August. Each harvest was taken from a different site within the plot. Grasses and forbs were divided by hand separation. Only green, growing plants were harvested. Field samples were oven dried, weighed, and yields converted to total dry weight per acre.

The first harvest was to obtain data on cool season forbs, most of which were nearing maturity at the first harvest date. Some of the plant species which were noted in the first harvest were daisy fleabane, blackeyedsusan, and western yarrow.

The second harvest provided information on warm season forbs, primarily western ragweed (<u>Ambrosia psilostachya</u> DC, var. <u>corono-</u> <u>pifolia</u> T. & G), and included at Muskogee, lanceleaf ragweed (<u>Ambrosia</u> <u>bidentata</u> Michx.). None of the cool forbs were included in this harvest because all were matured and dried if not partially disintegrated.

Common and scientific names of all plants observed in the study are listed in Appendix Table XIII.

Species Composition

Forb counts were taken with a 6-inch by 20-foot belt transect. The transect was read at ground level, with all plant species under the transect being recorded. The belt transect readings were taken in June and August.

Species composition of the study area was determined by the point frame method, described by Levy and Madden (21), using a total of 400 points at each location to characterize the flora of the site (Appendix Tables XIV and XV). These samples were taken in unsprayed control plots in late August.

Stillwater Site

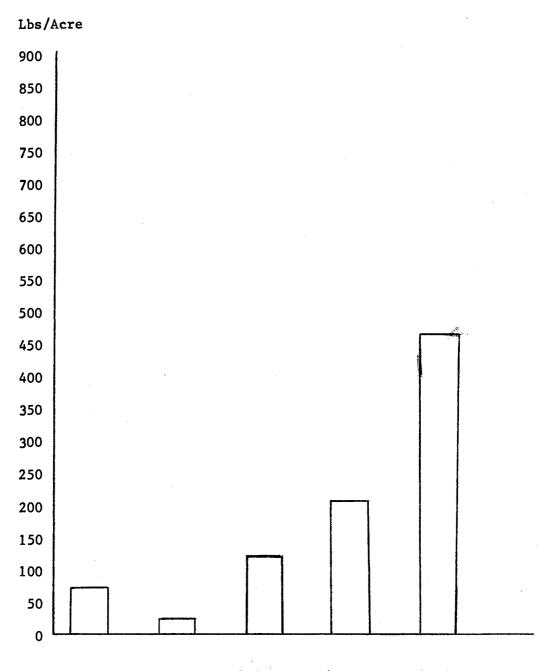
The Stillwater study was conducted on a poor condition, loamy prairie range site. The soil of this area is Zaneis loam with 1-3% slope. The climate of the area is relatively temperate, but with hot, often dry summers, mild autumns, mild to cold winter, and cool springs. Average annual precipitation is 32 inches. Rainfall for the study area was 10 per cent below normal for 1969 (Appendix Table XVI).

Muskogee Site

The study at Muskogee was conducted on a poor condition, loamy prairie range site. The soil at this site is Taloka silt loam with 1-3% slope. The climate of the area is of warm, humid continental type. Average annual precipitation is 42 inches. Rainfall for the study area was 11 per cent below normal for 1969 (Appendix Table XVII).

CHAPTER IV

RESULTS AND DISCUSSION


Soil moisture conditions were excellent through June 15, 1969, but severe midsummer drought developed as the season progressed. This undoubtedly affected the production at the second harvest.

Forb Production, 1st Harvest, Stillwater

The Stillwater first harvest was June 12, 1969, which was before the fifth date of application. Therefore, data from only the first four application dates are presented.

All four dates of application produced significant reductions in forb production from that of the unsprayed check plots (Figure 1). The greatest reduction in forbs was obtained at the second date which was not significantly different from that of the first date, but the second date of application was significantly superior to the third date in forb control. At this time, the unsprayed plots had already produced 467 pounds per acre of primarily cool season forbs. The fifth spray date was too late to have any effect on these annual forbs because many were already producing seed.

Although the total forb production was significantly reduced by all rates of 2,4-D there was no difference between application rates (Table II).

1st Date 2nd Date 3rd Date 4th Date Check

Figure 1. Weed Production at Stillwater, June 12, 1969, as Influenced by Dates of 2,4-D Application. (LSD = 65 pounds per acre).

TABLE II

WEED PRODUCTION¹ IN POUNDS PER ACRE AS INFLUENCED BY RATES AND DATES OF 2,4-D, STILLWATER, FIRST HARVEST²

		RATES I	N LBS/A		Data
Dates	1/4	1/2	1	2	Date Means
lst	107	105	5	49	68bc
2nd	53	29	14	18	29c
3rd	200	109	156	44	129Ъ
4th	286	200	177	195	216a
Rate Means	161a	113a	87a	77a	

Means within a column or within a row followed by the same letter are not significantly different. (P=.05)

²Fifth date is not included because it had not been applied by the time of this clipping.

³Production was significantly greater than that of any sprayed plots.

Forb Production, 2nd Harvest, Stillwater

The second harvest at Stillwater was August 7, 1969. This harvest included all five application dates. However, only green actively growing plants, primarily ragweeds, were harvested. All early maturing annual forbs were gone by the second harvest.

All application dates produced significant reductions in forb production from that of the untreated check plots (Figure 2). The greatest forb reduction occurred on the second date which was not significantly different from that of the third or fourth date but was significantly superior to either the first or fifth date of application. The untreated check produced 544 pounds of broadleaf forbs per acre.

All rates of application produced significant reductions in forb yields from that of the unsprayed check plots, but the 1/2, 1, and 2 pound rates produced the greatest forb reduction (Table III).

Forb Production, 1st Harvest, Muskogee

The first harvest was June 18, 1969, at Muskogee, which was only nine days after the fifth date of application. Therefore, only data from the first four application dates are presented.

These four application dates produced significant reductions in forb yield as compared to the untreated check plots (Figure 3). The greatest reduction in forbs was obtained on the second date which was not significantly different from that of the third date, but the second date of application was significantly superior to both the first and fourth dates in forb control. The unsprayed plots at this

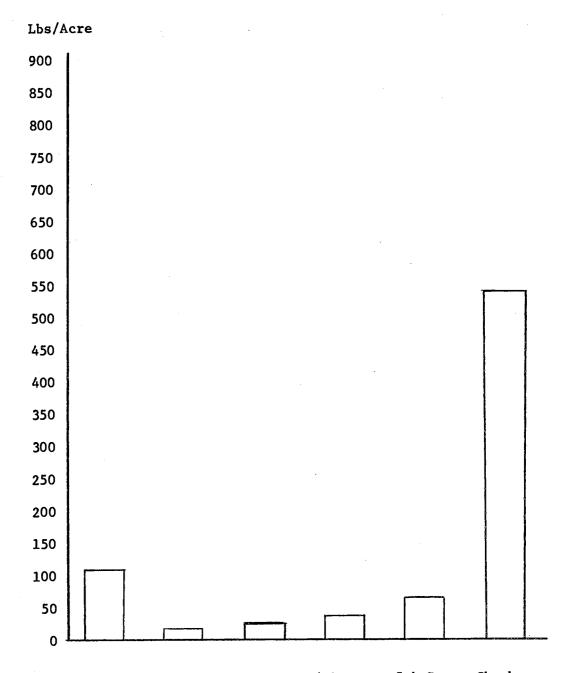


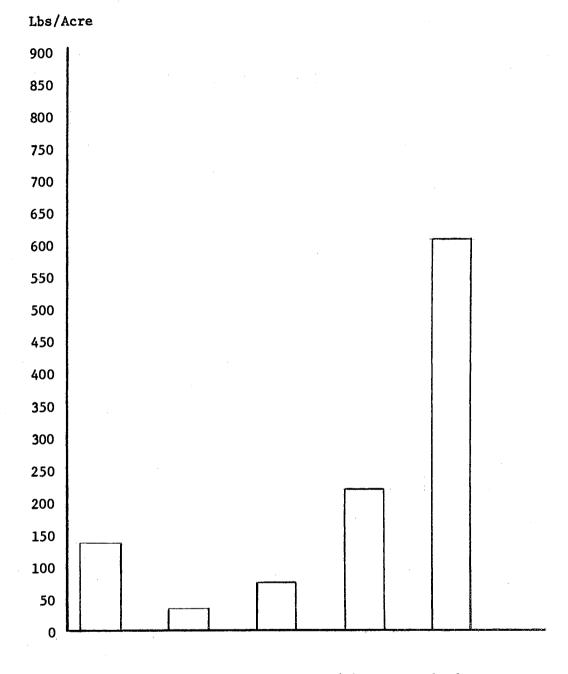
Figure 2. Weed Production at Stillwater, August 7, 1969, as Influenced by Dates of 2,4-D Application. (LSD = 22 pounds per acre).

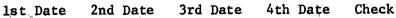
133

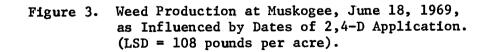
TABLE III

		RATES I	N LBS/A		
Dates	1/4	1/2	1	2	Date Means
lst	225	77	93	42	110a
2nd	52	1	0	5	13c
3rd	46	32	7	5	23c
4th	135	25	0	2	42c
5th	162	60	10	56	71b
late Means	126a	39Ъ	23Ъ	23Ъ	

WEED PRODUCTION¹ IN POUNDS PER ACRE AS INFLUENCED BY RATES AND DATES OF 2,4-D, STILLWATER, SECOND HARVEST


Unsprayed Check--544


¹Means within a column or within a row followed by the same letter are not significantly different. (P=.05)


²Production was significantly greater than that of any sprayed plots.

dian bearing

.

time had already produced 605 pounds per acre of mainly cool season forbs.

Forb production was significantly reduced by all application rates and the 2 pound rate was superior to the 1/4 and 1/2 pound rate (Table IV).

Forb Production, 2nd Harvest, Muskogee

The second Muskogee harvest was on August 19, 1969, which included all five application dates.

Total forb production in the untreated check plots was 845 pounds per acre which was the highest of all harvests at either location.

All application dates produced significant decreases in forb production from that of the untreated checks (Figure 4). The least effective date was the first, but no differences existed between the last four dates of application.

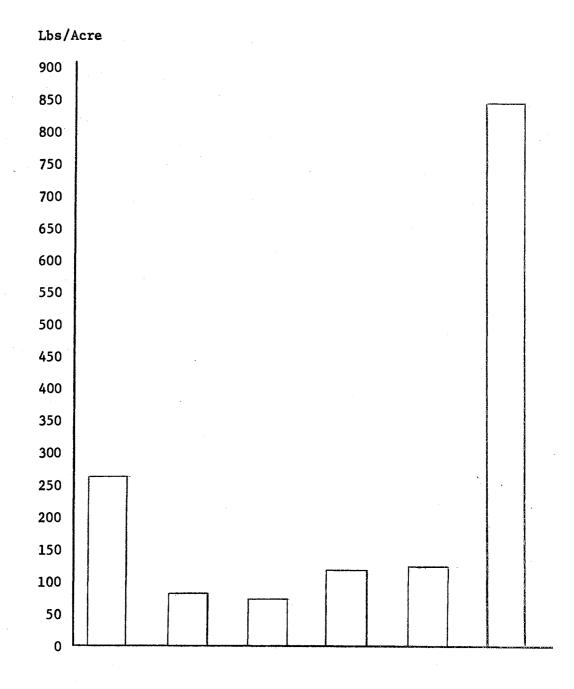
Every rate of application produced significant forb reduction when compared to the unsprayed check plots. However, the 1/2, 1, and 2 pound application rates were significantly superior to the 1/4 pound rate (Table V).

Grass Production

There was no significant difference between the treated plots and the untreated plots at either location in grass production (Appendix Table XXII). Perhaps one reason for lack of improvement in grass production could be attributed to the fact that the grass yield was dominated by early maturing cool season grasses plus the midsummer droughty conditions which affected the last harvest.

TABLE IV

WEED PRODUCTION¹ IN POUNDS PER ACRE AS INFLUENCED BY RATES AND DATES OF 2,4-D, MUSKOGEE, FIRST HARVEST²


	RATES II	N LBS/A	····	D
1/4	1/2	1	2	Date Means
178	206	135	60	145ab
94	29	13	24	39Ъ
45	97	69	55	68b
3 99	360	95	48	225a
180a	174a	77 a b	48ъ	ومعادمة والم
	178 94 45 399	1/4 1/2 178 206 94 29 45 97 399 360	178 206 135 94 29 13 45 97 69 399 360 95	1/4 1/2 1 2 178 206 135 60 94 29 13 24 45 97 69 55 399 360 95 48

Unsprayed Check--605³

¹Means within a column or within a row followed by the same letter are not significantly different. (P=.05)

²Fifth date was not included because application was just previous to the clipping.

³Production was significantly greater than that of any sprayed plots.

1st Date 2nd Date 3rd Date 4th Date 5th Date Check

Figure 4. Weed Production at Muskogee, August 19, 1969, as Influenced by Dates of 2,4-D Application. (LSD = 88 pounds per acre).

TABLE V

WEED PRODUCTION IN POUNDS PER ACRE AS INFLUENCED BY RATES AND DATES OF 2,4-D, MUSKOGEE, SECOND HARVEST¹

~		RATES I	N LBS/A		Deto
Dates	1/4	1/2	γ 1	2	Date Means
1 - 4	316	364	212	169	264a
lst 2nd	255	364 30	213 10	169	204a 77b
3rd	221	52	9	0	71b
4th	265	99	106	9	119b
5th	341	82	56	11	122b
ate Means	280a	126b	77Ъ	39ъ	

1 Means within a column or within a row followed by the same letter are not significantly different, (P=.05)

²Production was significantly greater than that of any sprayed plots.

Forb Numbers

Plant counts were made before each harvest at both locations. The majority of the weeds in the June harvest were western yarrow and blackeyedsusan. The August harvests were primarily ragweeds. Only the data for the major weedy plants were presented because of the high variation in these data.

Blackeyedsusan is a common invader on the native ranges of earlier successional stages. It produces mature seeds by early June and the plant counts at Stillwater, indicated that one and two pound rates on the first two dates gave some control (Table VI). As the season progressed, it was apparent that even at the higher rates the plant was much more difficult to control.

The plant count study at Muskogee gave quite similar results on blackeyedsusan (Table VII). The higher rates at the second and third dates gave satisfactory results but the fourth date, May 23, was too late for any reasonable suppression of this species.

Another weed dominant in this study was western ragweed, a native, warm-season perennial forb. Western ragweed at Stillwater was controlled quite satisfactorily with higher rates at the first four dates (Table VIII). Even the 1/4 pound rate, gave good results at the third and fourth dates.

The results on western ragweed at Muskogee were unsatisfactory at the lower rates (Table IX). Apparently 1 to 2 pounds of 2,4-D per acre will be required to achieve some control over this species.

Lanceleaf ragweed, which is a dominant weedy forb in eastern Oklahoma was not found at Stillwater. The plant counts on this

TABLE	VI

AVERAGE NUMBER OF BLACKEYEDSUSAN PLANTS PER TRANSECT FOR EACH RATE AND DATE OF 2,4-D AT STILLWATER, JUNE 4, 1969

·····	LBS/A	RATES IN I		
2	1	1/2	1/4	Dates
0	3	11	10	lst
2	7	14	25	2nd
6	10	13	22	3rd
28	25	21	15	4th
*	*	a <mark></mark> ≜ar	*	5th
	· · ·			Check 15

*Plant count readings were made before the last application; therefore, no information was available for the fifth date.

ي مربع وريد

TABLE VII

AVERAGE NUMBER OF BLACKEYEDSUSAN PLANTS PER TRANSECT FOR EACH RATE AND DATE OF 2,4-D AT MUSKOGEE, JUNE 9, 1969

	RATES IN LBS/A			
Dates	1/4	1/2	1	2
lst	7	3	5.	3
2nd	4	3	3	4
3rd	2	4	1	2
4th	7	7	5	9
5th	*	*	*	*
Check 7	,			

*Plant count readings were made before the last application; therefore, no information was available for the fifth date.

TABLE VIII

Dates	RATES IN LBS/A			
	1/4	1/2	1	2
lst	35	9	12	2
2nd	28	4	2	0
3rd	19	9	1	0
4th	20	9	12	7
5th	36	26	20	20
Check 48	3			

AVERAGE NUMBER OF WESTERN RAGWEED PLANTS PER TRANSECT FOR EACH RATE AND DATE OF 2,4-D AT STILLWATER AUGUST 1, 1969

TABLE IX

AVERAGE NUMBER OF WESTERN RAGWEED PLANTS PER TRANSECT FOR EACH RATE AND DATE OF 2,4-D AT MUSKOGEE, AUGUST 7, 1969

	RATES IN LBS/A			
Dates	1/4	1/2	1	2
lst	20	10	5	2
2nd	20	5	1	0
3rd	18	1	0	14
4th	25	3	1	1
5th	15	2	0	0
Check 14	4			

species at Muskogee revealed some degree of control on all treated plots (Table X). The best suppression on this species came from earlier dates and higher rates of 2,4-D.

TABLE X

AVERAGE NUMBER OF LANCELEAF RAGWEED PLANTS PER TRANSECT FOR EACH RATE AND DATE OF 2,4-D AT MUSKOGEE, AUGUST 7, 1969

Dates	RATES IN LBS/A				
	1/4	1/2	1	2	
lst	12	8	5	6	
2nd	15	9	5	0	
3rd	16	10	- 1	1	
4th	20	14	1	2	
5th	35	4	1	1	

Check 50

CHAPTER V

SUMMARY AND CONCLUSIONS

In April of 1969, a detailed study on the effects of 2,4-D for range weed control at two locations was initiated. Primarily the plants studied were forb species such as daisy fleabane, western yarrow, wavyleaf thistle, blackeyedsusan, western ragweed, and lanceleaf ragweed. A wide range of rates and dates of 2,4-D for range weed control gave good results.

Generally, the early April treatment was too early for the lighter application rates (1/4 and 1/2 pound), but good control was obtained at Stillwater from these on the late April and early May applications. At Muskogee the 1/2-1 pound rates gave good control in late April and early May. As the growing season advanced, a higher rate was needed to obtain satisfactory results.

By early June the unsprayed plots had produced 467 pounds per acre of weedy forbs at Stillwater, and 544 pounds per acre at Muskogee. Early dates were more effective for cool season forbs but less effective for warm season forbs.

The data and the statistical analyses from both studies, indicate satisfactory control of weedy species in this first year; however, grass yield was only improved slightly. The grass composition was composed mainly of cool season grasses which were gone after the first harvest. The limited increase in grass yield probably was the

result of a summer drought which affected the late harvest yields.

From these data, it can be concluded that it is possible to achieve good weed control on native range, by spraying ahead of the planting of susceptible crops such as cotton and soybeans.

LITERATURE CITED

- Audus, L. J., 1960. Microbiological breakdown of Herbicides in Soil. <u>In</u> Herbicides and the Soil, 1:19. Blackwell Scientific Publications, Oxford.
- Blaisdell, James P. and Walter F. Mueggler, 1956. Effects of 2,4-D on Forbs and Shrubs Associated with Big Sagebrush. J. Range Manage. 9:38-40.
- Bovey, R. W., M. K. McCarty, and F. S. Davis, 1966. Control of Western Ragweed on Western Nebraska Rangelands. J. Range Manage. 19:220-222.
- Cornelius, D. R., and C. A. Graham, 1951. Selective Herbicides for Improving California Forest Ranges. J. Forest. 51:63-64.
- 5. _____, and _____, 1953. Chemical Control of Buttercup on Mountain Meadows. J. Forest. 53:163-164.
- Corns, Wm. G. and R. J. Schraa, 1965. Mechanical and Chemical Control of Silverberry (<u>Elaeagnus commutata</u>) on Native Grassland. J. Range Manage. 18:15-19.
- 7. Elder, W. C., 1951. Controlling Perennial Ragweeds to Make Better Pastures. Oklahoma Agr. Exp. Sta. Bull. 369.
- Fletcher, W. W., 1960. The Effects of Herbicides on Soil Microorganisms. <u>In Herbicides and the Soil, 20:52</u>. Blackwell Scientific Publications, Oxford.
- 9. Hauser, E. W., W. D. Shaw, D. S. Chamblee, and W. W. Woodhouse, Jr., 1953. The Effects of 2,4-D on the Yield and Botanical Composition of Ladino Clover-Orchard Grass Pasture. Weeds 2:105-112.
- 10. Hay, R. Jr., and G. J. Quellette, 1959. The Role of Fertilizer and 2,4-D in the Control of Pasture Weeds. Can. J. Plant Sci. 39:278-283.
- 11. Hull, A. C., Jr., N. A. Kissinger, and W. T. Waughn, 1952. Chemical Control of Big Sagebrush in Wyoming. J. Range Manage. 5:398-402.

- Hurd, Richard M., 1955. Effects of 2,4-D on Some Herbaceous Range Plants. J. Range Manage. 8:126-128.
- 13. ______ and N. A. Kissinger, Jr., 1952. Range Investigations, Bighorn National Forest, Wyoming. Rocky Mountains Forest and Range Exp. Sta. Paper 10:24 (proc.).
- 14. Klingman, D. B., 1959. Second Year Response of Six Cool Season Grasses Sprayed as Seedlings with 2,4-D for Weed Control. Abstr. Research Report, 6th Ann., N. Cent. Weed Cont. Conf., p. 65.
- 15. Klingman, Dayton L., 1953. A Comparison of Pasture Weed Control Methods Under Three Levels of Management. Down to Earth 9:4-7.
- 16. ______ and Melvin K. McCarty, 1953. Control of Weeds in Pastures. Proc. N. Cent. Weed Cont. Conf., p. 56.
- 17. _____, 1954. Interrelations of Methods of Weed Control and Pasture Management. A Thesis for the degree of Doctor of Philosophy, University of Nebraska, (Unpublish.).
- 18. _____, 1956. Weed Control in Pastures in the North Central Region. Weeds. 4:369-375.
- 19. _______ and Melvin K. McCarty, 1958. Interrelations of Methods of Weed Control and Pasture Management at Lincoln, Nebraska, 1949-55. U. S. Dept. Agr. Tech. Bull. 1180.
- 20. Klingman, G. C., 1961. Weed Control; as a science. John Wiley and Sons, New York, 421 pp.
- 21. Levy, E. B., and E. A. Madden, 1933. The Point Method of Pasture Analysis. New Zeal. J. Agr. 46:267-279.
- 22. McIlvain, E. H., A. K. Baker, W. R. Kneebone, and D. H. Gates, 1955. Nineteen Year Summary of Range Improvement Studies at the U. S. Southern Great Plains Field Station. USDA, 33 pp.
- 23. Mitich, Larry W., 1965. Pasture Renovation with 2,4-D in North Dakota. Down to Earth 20:26-28.
- 24. National Academy of Sciences, 1968. Principles of Plant and Animal Pest Control, Vol. 2, Weed Control. Publication 1597.
- 25. Sheets, T. J. and L. L. Danielsen, 1960. Herbicides in Soil. <u>In The Nature and Fate of Chemicals Applied to Soil, Plants,</u> and Animals. USDA Agr. Res. Ser. 20-9. Beltsville, pp. 170-181.

- 26. Smika, D. E., H. J. Haas and G. A. Rogler, 1963. Native Grass and Crested Wheatgrass Production as Influenced by Fertilizer Placement and Weed Control. J. Range Manage. 16:5-8.
- 27. Sperry, O. E. and E. D. Robinson, 1963. Chemical Control of Perennial Broomweed. Texas Agri. Exp. Sta. Prog. Rep. 2456. 7 p. (mimeo).
- 28. _____, 1967. Experimental Studies on the Control of Rayless Goldenrod. Texas Agri. Exp. Sta. Prog. Rep. 2456. 6 p. (mimeo).
- 29. Thiegs, B. J., 1962. Microbial Decomposition of Herbicides. Down to Earth 18:7-10.
- 30. Waterfall, U. T., 1966. Keys to the Flora of Oklahoma. Published Privately, 3rd ed., Oklahoma State University.

APPENDIX

TABLE XI

DAILY MINIMUM AND MAXIMUM TEMPERATURE¹ FROM MARCH 1, 1969, THROUGH JUNE 30, 1969, AT STILLWATER (DEGREES FAHRENHEIT)

	MONTHS					
Day	March	April	May	June		
	Min. Max.	Min. Max.	Min. Max.	Min, Max,		
1	26 49	43 54 2	57 79	58 91		
2	33 50	53 77 (1st) ²	57 80	54 73		
3	31 44	54 72	59 81	54 75		
4	22 47	56 82	61 79	55 77		
5	25 50	42 84	62 74 (3rd)	54 76		
6	34 40	3 9 56	59 77	58 88		
7	29 42	44 65	58 80	64 92		
8	23 49	59 80	57 74	64 90		
9	16 3 0	57 87	47 60	60 88		
10	18 37	48 75	51 75	60 69		
11	21 34	39 71	43 68	64 84		
12	18 39	48 74	54 78	61 90		
13	21 41	53 71	56 81	60 77		
14	26 51	42 62	63 82	62 80		
15	31 3 6	53 72	56 81	52 69		
16	27 42	57 82	58 8 0	55 73 (5th)		
17	29 57	54 80	55 78	59 79		
18	32 68	48 69	53 57	60 78		
19	3 5 76	40 58	51 68	60 84		
20	36 85	39 65	55 83	67 91		
21	27 64	41 71 (2nd)	65 85	70 85		
22	39 70	55 78	59 87	75 95		
23	48 72	51 79	54 65	67 97		
24	37 51	42 67	54 73	67 90		
25	32 45	51 72	61 82	67 91		
26	26 50	60 73	61 84 (4th)	77 91		
27	31 55	48 69	64 87	74 93		
28	42 64	40 64	66 87	75 94		
29	30 68	35 58	66 89	76 95		
30	31 47	40 72	66 91	75 95		
31	29 50		6 9 90			

 1 Official Weather Bureau Station was approximately 2 miles south of the plots. Refers to dates of herbicide applications.

TABLE XII

	MONTHS					
Day	March	April	May	June		
	Min.Max.	Min.Max.	Min.Max.	Min.Max.		
1	32 50	44 76	52 79	58 84		
2	32 49	58 76	50 82	51 74		
3	36 49	58 82 (1st) ²	52 81	49 74		
4	26 52	62 80	57 76	53 78		
5	33 51	46 68	62 77	55 84		
6	33 44	47 64	55 83 (3 r d)	59 88		
7	25 55	48 79	60 78	63 86		
8	25 45	59 76 and the	53 72	62 87		
9	17 39	65 80	44 76	62 80 (5th)		
10	19 37	48 72	53 72	59 62		
11	20 39	44 76	41 77	67 89		
12	28 46	53 75	54 78	70 85		
13	26 51	51 66	60 81	63 88		
14	33 45	50 71	57 83	63 81		
15	37 51	51 82	58 78	52 74		
16	36 62	55 85	63 81	52 78		
17	32 69	55 76	60 73	57 80		
18	36 76	51 63	55 69	64 83		
19	43 84	41 67	59 80	59 89		
20	41 71	42 75	60 87	70 88		
21	30 70	50 81	62 87	68 93		
22	42 72	55 80 (2nd)	62 83	77 93		
23	47 64	51 71	54 76 (4th)	67 86		
24	40 49	45 72	60 82	63 89		
25	31 52	48 77	60 84	78 89		
26	29 54	63 73	61 87	77 91		
27	37 62	52 73 0 00 00	64 87	78 91 e de ane		
28	44 75	42 65	62 88	74 94		
29	35 53	39 70	62 89	75 94		
30	32 56	49 76	65 86	72 95		
31	45 54		68 86			

DAILY MINIMUM AND MAXIMUM TEMPERATURE¹ FROM MARCH 1, 1969, THROUGH JUNE 30, 1969, AT MUSKOGEE (DEGREES FAHRENHEIT)

¹Official Weather Bureau Station was approximately 15 miles northeast of the plots.

²Refers to dates of herbicide applications.

TABLE XIII

PLANT	SPECIES	FOUND A	T ST	LLWATER	AND MUSKOGEE
	BY SC	IENTIFIC	AND	COMMON	NAMES

Scientific Name	Common Name
Achillea lanulosa	western yarrow
Andropogon gerardi	big bluestem
Andropogon scoparius	little bluestem
Andropogon virginicus	broomsedge bluestem
Ambrosia psilostachya	western ragweed
Ambrosia bidentata	lanceleaf ragweed
Aristida oligantha	prairie threeawn
Asclepias latifolia	broadleaf milkweed
Aster ericoides	heath aster
Bouteloua curtipendula	sideoats grama
Bouteloua gracilis	blue grama
Bouteloua hirsuta	hairy grama
Bromus japonicus	japanese brome
Buchloe dactyloides	buffalograss
Carex spp.	sedge
Chloris verticillata	windmillgrass
Cirsium undulatum	wavyleaf thistle
Croton capitatus	wooly croton
Cynodon dactylon	bermudagrass
Erigeron strigosus	daisy fleabane
Gutierrezia dracunculoides	annual broomweed
Juncus spp.	rush
Leptoloma cognatum	fall witchgrass
Mentha arvensis	field mint
Panicum scribnerianum	scribner panicum
Panicum virgatum	switchgrass
Plantago purshii	wooly plantain
Psoralea tenuiflora	scurfpea
Rudbeckia hirta	blackeyedsusan
Rudbeckia grandiflora	plantainleaf coneflower
Setaria lutescens	yellow bristlegrass
Solidago missouriensis	missouri goldenrod
Sorghastrum nutans	indiangrass
Tridens flavus	purpletop
Trifolium procumbens	bighop clover
Vernonia baldwini	baldwin ironweed

a la se asses de se se

TABLE XIV

SPECIES COMPOSITION OF THE STILLWATER STUDY AREA ON AUGUST 29, 1969, DETERMINED WITH A POINT FRAME

PLANT SPECIES	TOTAL EACH SPECIES	PER CENT OF EACH SPECIES
Japanese Brome	81	42.6%
Blue Grama	28	14.7
Hairy Grama	23	12.1
Little Bluestem	19	10.0
Windmillgrass	13	6.8
Big Bluestem	and the second second second second	2.1
Buffalograss	4	2.1
Fall Witchgrass	, 3	1.6
Sideoats Grama	3	1.6
Western Ragweed		1.6
Heath Aster	2	1.1
Annual Broomweed	1	0.5
Bristlegrass		0.5
Broomsedge	1 1	0.5 0.5
Carex Prairie Threeawn	1	0.5
Rudbeckia	—	0.5
Western Yarrow	1 1	0.5
Wedleth at I um	Ĩ	0.0
······································		
	i, i	
	and a single state of the single	
•		

TABLE XV

SPECIES COMPOSITION OF THE MUSKOGEE STUDY AREA ON SEPTEMBER 8, 1969, DETERMINED WITH A POINT FRAME

PLANT SPECIES	TOTAL EACH SPECIES	PER CENT OF EACH SPECIES
Bermudagrass	67	33.2%
Japanese Brome	59	29.2
Lanceleaf Ragweed	26	12.9
Bighop Clover	11	5.5
Carex	10	5.0
Panicum	9	4.5
Little Bluestem	4	1.9
Western Ragweed	4	1.9
Indiangrass	3	1.5
Heath Aster	1	0.5
Big Bluestem	1	0.5
Heath Aster	1	0.5
Mint	1	0.5
Prairie Threeawn	1	0.5
Switchgrass	1	0.5
Purpletop	1	0.5

f. 65 ft. (C

TABLE XVI

MONTHLY PRECIPITATION IN INCHES AT STILLWATER¹ FOR THE YEAR 1969

MONTH	AMOUNT (INCHES)
January	0.75
February	2.27
March	2.60
April	1.93
May	3.60
June	4.38
July	1.43
August	3.11
September	3.77
October	3.63
November	0.08
December	1.24
Total	28.79
30-Year Average	32.18

 1 Plots were 2 miles north of the weather station.

TABLE XVII

MONTHLY PRECIPITATION IN INCHES AT THE EASTERN OKLAHOMA PASTURE STATION¹ FOR THE YEAR 1969

MONTH	AMOUNT (INCHES)
 January	3.75
February	3.03
March	4.03
 April	3.94
May	4.90
June	1.25
July	2.05
August	2.36
September	0.85
October	8.08
November	0.54
December	2.57
Total	37.35
30-Year Average	42.27
· .	

¹Plots were 1 mile north of the weather station.

car as d

ingen i i

فنبا والانتباط

TABLE XVIII

ANALYSIS OF VARIANCE OF WEED PRODUCTION IN GRAMS PER PLOT FOR STILLWATER, FIRST HARVEST¹

	<u>Without T</u>	he Unsprayed Ch	ecks	
Source	df	MS	F	
Total	63			
Replications	3	1,398.55	1.728	ns
Dates	3	10,192.89	12.600	**
Rates	3	2,192.22	2.709	ns
Dates x Rates	9	483.12	0.597	ns
Error	45	808.94		
· · · · · · · · · · · · · · · · · · ·	With The	Unsprayed Chec	ks_	
Source	df	MS	F	
		i e ¹		
· · · · · · · · · · · · · · · · · · ·				
Total	67	140 400 400 tor		
Total Replications	67 3	 1,368.76	1.6467	 ns
-		 1,368.76 5,475.71	1.6467 6.5872	 ns **

¹Includes data from only the first four application dates.

TABLE XIX

ANALYSIS OF VARIANCE OF WEED PRODUCTION IN GRAMS PER PLOT FOR STILLWATER, SECOND HARVEST

Source	df	MS	F	
Total	79	بند، میں		
Replications	.3	246	0.64	ns
Dates	4	2,359	6.10	**
Rates	3	4,592	11.86	**
Dates x Rates	12	363	0.94	ns
Error	57	387		
			In the second state of the second	4
		Unsprayed Che	<u>cks</u>	q
Source		Mangganga akan yaka yaka yaka yaka na Yupakan dasha kata ya dash	<u>cks</u> F	-
	With The	Unsprayed Che		
Source Total	<u>With The</u> df	Unsprayed Che		 ns
Source	<u>With The</u> df 83	Unsprayed Che MS	F 	 ns **

ŧ

TABLE XX

ANALYSIS OF VARIANCE OF WEED PRODUCTION IN GRAMS PER PLOT FOR MUSKOGEE, FIRST HARVEST¹

		he Unsprayed Ch	ecks	
Source	df	• MS	F	2 ⁴⁴ 54
Total	63			· · · · ·
Replications	3	2,993	1.35	Later.
Dates	3	10,837	4.88	**
Rates	3	6,915	3.12	*
Dates x Rates	9	2,593	1.17	ns
Error	45	2,220		منية من الملكة المراجعة المراجعة
		e La service se		
	····	······································		
متركب فيالت مرتو	With The	Unsprayed Chec	ks	×.
Source	df	MS	F	-
		્રે તે જે છે. તે		·š
Total	67			
Replications	3	2,100	0.48	ns
Treatments	16	10,154	2.31	*
Error	48	4,400		

¹Includes data from only the first four application dates.

t daren barri bila 1920 - Kalandar A

TABLE XXI

ANALYSIS OF VARIANCE OF WEED PRODUCTION IN GRAMS PER PLOT FOR MUSKOGEE, SECOND HARVEST

	Without Th	ne Unsprayed Cl	necks	
Source	df	MS	F	
Total	79			
Replications	3	944	0.64	ns
Dates	4	9,612	6.53	**
Rates	3	21,320	14.47	**
Dates x Rates	12	1,080	0.73	ns
Error	57			
	With The	Unsprayed Chec	<u>eks</u>	
Source	df	MS	F	
Total	83			
Replications	3	3,042	1.23	ns
Treatments	20	15,126	6.11	**
Error	60	2,475		
		·····		

in a com

TABLE XXII

GRASS	S PRODUCTION ¹		IN	POUNDS	PER	ACRE	FROM	2,4-D	TREATED
	PLOTS	FROM	TWO	HARVES	STS A	AND TI	NO LOC	CATIONS	5

		STILL	WATER	MUSKOGEE		
	Rate	lst	2nd	lst	2nd	
Date	(Lb/A)	Harvest	Harvest	Harvest	Harvest	
Unsprayed	Check	1153	814	1744	2171	
lst	1/4	1645	1031	1208	1971	
lst	1/2	1230	1288	1452	2085	
lst	1	1906	1519	1695	1904	
1st	2	2045	1634	1445	2095	
2nd	1/4	1272	940	1567	2158	
2nd	1/2	689	1465	1338	2198	
2nd	1	1468	1216	1364	2182	
2nd	2	1018	1288	1481	2442	
3rd	1/4	1198	885	1766	2099	
3rd	1/2	1156	1171	1580	2221	
3rd	1	950	795	1965	2674	
3rd	2	879	927	2032	2001	
4th	1/4	1140	1214	1607	2488	
4th	1/2	1182	1085	2265	2469	
4th	1	1716	1043	1605	1797	
4th	2	1085	1155	1814	24 3 2	
5th	1/4	1214	697	2018	2356	
5th	1/2	1005	971	1638	2411	
5th	1	1269	914	1197	1461	
5th	2	1481	1476	1836	2291	
Mean	-	1272	1121	1649	2186	

¹Means within a harvest were not significantly different.

VITA

Don Kendall Hubbard

Candidate for the Degree of

Master of Science

Thesis: RATES AND DATES OF 2,4-D APPLICATION FOR RANGE WEED CONTROL IN CENTRAL AND EASTERN OKLAHOMA

Major Field: Agronomy

Biographical:

Personal Data: Born in Chickasha, Oklahoma, on April 27, 1942, the son of John K. and Ester Jo Hubbard.

- Education: Graduated from Noble High School, Noble, Oklahoma, in May, 1960; received the degree of Bachelor of Science from Oklahoma State University in May, 1964; completed requirements for the degree of Master of Science in May, 1970.
- Experience: Worked as a farm hand during summers from 1960-1964; worked in the Engineering Department, Central Rural Electric Cooperative, Norman, Oklahoma, from June, 1964, to August, 1965; worked for the Consumer and Marketing Service, U. S. D. A. from August, 1965, to September, 1966; worked for the Soil Conservation Service, U. S. D. A. from September, 1966, to September, 1968; employed as a Graduate Research Assistant from September, 1968, to January, 1970.