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PREFACE 

In thi$ study, an equivalent harmonic oscillator using relativistic 

wave functi~ns was used as a single-particle.nuclear model, The energy 

levels, radial densities, and elastic scattering cross-sections have 

been calculated and compared with the non-relativistic harmonic oscilla

tor model and with experiment. The results obtained did not correlate 

well with experimental data, and this has been interpreted as further 

proof that the nucleons do not move with relativistic motions. 

I would like to thank Dr, N. V. V, J, Swamy for his suggestion of 

the problem and his patient guidance during the course of this work. I 

would also like to acknowledge the financial support of the OSU Research 

Foundation. 
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CHAPTER I 

INTRODUCTION 

While there is certainly no dearth of nuclear models, we feel that 

the relativistic equivalent harmonic oscillator (EHO) is a valuable and 

interesting addition. The lack of any relativistic single-particle 

model till now prompted us to investigate some of the properties of the 

EHO. 

Nearly.all of the relativistic models of the nucleus before the EHO 

were studied about 20 or 30 years ago~ Use of relativity in explaining 

nuclear phenomena fell into disfavor after this initial interest sub

sided, and we have found that all the work done in this area was per

formed between 1935 and 1950. 

One of the earliest uses of relativity was made by Blochinzew (1) 

and later amplified by Margenau (2). In these papers, the Klein-Gordon. 

equation was applied to a study of the deuteron binding energy. Using 

two different potentials (a rectangular potential hole and an error 

function potential) the zero-point energy of.the neutron-proton system 

w~s calculated. If the range of the force is assumed to be 1 fermi, the 

~ero-point energy is then five times. the binding energy, while if the 

rl:jlnge of the force is assumed to 3 fermis, the zero-point energy is then 

only 13% of the binding energy, In 1936, Feenberg (3) again studied the 

deuteron, looking at relativistic corrections to the kinetic energy 

operator.in the Schroedinger equation. For deuter6n, the correction 

1 
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led to a change of 25% of the energy predicted by the non-relativistic 

single-particle theory. Studying also triton and helium, he found the 

corrections to be tE - 2 ~2 me and tE 9 2 . 1 • me, respective y. Ap-

plying a more rigorous treatment involving Dirac operators, Share and 

Breit (4) utilized two Di:rac Hamiltonians for the two particles in the 

deuteron and an interaction represented by Dirac.operators as well. 

Utilizing the relativistic formalism of the Dirac operators, they con~ 

sidered terms in the deuteron Hamiltonian which represented interactions 

between the orbits of the two particles, and the relativistic corrections 

to the particles' kinetic energies (such as those considered in refer-

ences (1) - (3)) are seen to be small as compared to the changes re-

quired by a completely relativistic Dirac Hamiltonian. Primakoff (5) 

considered the Pauli magnetic moment as well as the Dirac moment in his 

studtes of the relativistic.effect on the neutron and proton magnetic 

moments in the deuteron. Breit (6, 7) s.tudied a phenomenological spin-, 

spin interaction, relating this interaction with the well~known 

Majorana and Heisenberg exchange interactions. Armand Siegel (8) 

adapted Breit's phenomenological approach to Dirac operators to obtain 

an equivalent Pauli operator which allowed him to.estimate the size of 

relativistic corrections to n~p scattering at 90 MeV. Breit (9) again. 

used an approximately relativistic many particle Hamiltonian and studied 

the resulting relativistic corrections to nuclear.energy levels and 

magnetic moments. Blatt and Weisskopf (10) have noticed that the triton 

and alpha particle, because of tight binding and correspondingly high 

kinetic energies, require relativisitic corrections to their binding 

energies and magnetic moments; All of this work, as can·be.seen, was 

applied to extremely light nuclei,and these early attempts to apply 
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relativity to the nucleus were, for the most part, ignored in ensuing 

work. The reason for this is simply the agreement provided by non-rela

tivistic.theories with experimental data and the fact that relativistic 

theories are inherently more complicated than a corresponding non~rela

tivistic theory. 

Until the ERO was formulated; there existed no soluble single

particle model of the nucleus. In this work, we shall study the energy 

levels and proton density of the ERO and calculate, in the first Born 

approximation, elastic scattering of high energy electrons from a nu

cleus described by ERO wave functions. 



CHAPTER II 

THE ERO HAMILTONIAN AND SOLUTIONS 

The "Equivalent Hannonic Oscillator" (ERO), the application of 

which fonns the basis of this work, was introduced by N. V. V. J. Swamy 

(!!)and arises from the exact solutions of the Dirac equation when an 

interaction of the 'fonn -.-o•L + 1 

V= A
2 f 1 (6-r)\6·L-ri (1) 

is added to the free particle Hamiltonian 

(2) 

The solutions of·the resulting equation 

E (3) 

µ 
are four-,comporient spinors, fonlled. from the Pauli .spinors X which are 

K 

the basis functions of the irreducible representation .of the·spin.,..angle 

group 0(3) © SU(2) and the radial part of the solutions of the 

Schroedinger equation for the three-dimensional isotropic hannonic os-

cillator. 

The Non-Relativistic Harmonic Oscillator 

The non-relativistic isotropic harmonic oscillator (NRHO) is a 

4 
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well-known quantum mechanical model, and the unnormalized solutions of 

the Schroedinger equation with a harmonic oscillator potential are given, 

for example, in Rechenmethoden der Quantentheorie (12): 

11 ( L1 \/"1e-~(O.r)
2 

F (-v A ... {,.1\/2.,.2) 
lA-vlrn Y',o-,cp)=' 1 1 ,.x. • .,., ""'' 

1'n Y cei'f) 
1, 

where: 1F1 (a, c; x) is the confluent hypergeometric function (3); 

ill Y1, (6,c/i) is the normalized spherical harmonic, defined in the Condon-

Shortley phase convention (13); and a. is the "oscillator parameter" 

The numbers v, t, mare integers, and they can take on the following 

values:· 

V = 0, 1, 2, 3, 

.Q. = 0, 1, 2, 3, 

m = -.Q., -Q, + 1, .. ~ , 0, '.,,, .Q. - 1, .Q. , 

(4) 

(5) 

As is true in ~ny spherically symmetric field, the number vis.related 

to the number of nodes in the radial eigenfunction, and the number .Q. is 

related.to the orbital angular momentum of the .state, 

Since the spherical harmonics are normalized to un.ity, the normali-

zation of .these solutions is. carried out ·over the radial part only. 

That is, identifying 

_1.rlr 2 
3 ) 

F N '( 1 e z F (-t>, J,tz . (Y..,2r2 
v-1(r) = vi ' ' J 

(6) 

we require that 

i (7) 
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To evalu~te this integral; we first express the confluent hypergeometric 

function 1F1 (a, c; x) in terms of the Whitaker function M (Z) (14) 
K ,_11. 

where: 

F ( 0, C ' x) = e k X x-i -~ M ('X) 
I I J J K,, fl 

K = ~c - a 

µ = ~c ~ 

(8) 

We can now ma~e use of the results derived by Melvin and Swamy (15) for 

integrals of the form 

00 i Z PM"', ,f, (z) M K,,f, (z) dz 

When this integration is done, the normalized radial eigenfunctions of 

the isotropic harmonic oscillator are given by 

Z~ 3 f( v-ddJ 

v! [r(l+i)]z 
(0l Y') j, (9) 

2 2 
For a non-negative parameter .v, the 

I 
F

1 
becomes a polynomial in ( a r ) , 

consisting of v + 1.terms. Explicit expressions for FvJl for v = 0,1,2 

and Jl = 0,1,2,3;4 are given in Appendix A. 

The Spin-Angle Functions X~· 

Before discussing the properties of the Xµ·functions, a brief ex
K 

planation of the Dirac quantum number (K) is in order. By using this 

one number, we simu],,taneously determine both Jl and j for that particubr 

state. The number K, a non-zero integer, has two definitions: one.for 

the case where j = Jl - ~.(spin and orbital angular momentum are anti-
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parallel), K =£;and another for the case where j =£+~(spin.and 

orbital angular momentum are parallel), K = - £ - 1. If we take£, now 

a function of K, as £(K), we then define £(-K), denoted by the symbol£, 

according to: 

for j = £ - ~. £ = £ 1 

- (10) 
for j = £ + ~' £ = £ + 1 

We also note that, in each case, IKI = j +~'so K is an algebraic quan-

ti ty. For each K, there will be 2 ) K I values of µ which can take on the 

half-integral values: 

µ =+l+l+~ 
- 2' - 2' - 2~ II GI e ' (11) 

The basis functions of the irreducible representation of the three

dimensi6n rotation group 0(3) are the familiar spherical harmonics 

(Zl+t)U-wi)! 

Lj 7C (l+m) ! 

Notice that we are using the Condon-,Shortley phase convention, where 

= 

These functions form an orthonorm~l set: 

(13) 

The basis functions of.the unitary unimodular group in two dimen-

-+ ~ -~ 
sions [SU(2)] are the two-component eigenfunctions of cr • n, X/ and X1 

2
: 

72 72 



x: = 
2., 

e 
(05 z 

SI~ l 

e 
- sin z: 

cos i 

. q:, 
- i -e z 

e 

e 

cp 
l 

. cp 
- l J., 

8 

(14) 

(15) 

Since the elements of the two groups 0(3) and SU(2) commute, we can 

form the direct product group 0(3) ® SU(2). Using the Clebsch-Gordan 

theorem, we can construct the basis functions of the irreducible repre-

sentation of the irreducible compounds of this direct product group:(18) 

(16) 

Using a coordinate system where~ is chosen to lie along the Z axis, 

m 
the X s functions take on the usual ''up-spin" and ''down7spin" form: 

~ 

x~ + a=(~) 

In this case, the Xµ can be represented by 
K 

(17a) 

(17b) 
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l ~ j 1/'-t C ~ l rz .. r x: = 
I • y;+i (18) C 1 2 J 

r-1 ·! f' 

and we can similarly define 

l I ' .L 
i J fh. 

X~~ = 

cf.f if Yi 
l l I 

(19) 

cfd. -i 
J x_}Hz 
f" 

For the case j = 9, - ~ (K > O), K = 9. and I=I.,..1. In this instance, 

Af! 
µ-! 

Y~ -
(20a) 

x~ - ,l+flt ,t Y;'t -
2.,1,+f 

-I J..-JA,-± y~-i 
Z.L -I .t-, 

a.nd x: (20b) 
-- I 

/¥R Y. ))-+ 'i 
I 1.-1 

For the . opposite case, where j = Q, + ~ (K < 0), K = -9. -1 and Q, = Q, + 1. 

Then 

I 

l-t-f+Y3:. y;·x 
x: .Z.l -1-1 (21a} 

- I 

1-µ+~ y;+r 
.Z.l+I 
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v i.+JJ-i ~ µ.-u 
Y1+1 2 

).L .Z.l-t-3 

and X-~ (21b) t-µ+ %. ~)A+Y.2. 
2,l;,S l+I 

µ -K In Appendix B, we present explicit values of X and X for K = ± 1, 
K µ 

± 2, :!; 3, ± 4. 

Since multiplication of these spin-angle functions by any function 

of r does not alter.any of the group properties, we can introduce the 

spinors. 

I X~ F VKfJ-> ~ r\.l v.l (22a) 

(22b) 

which lead to the (unnormalized) eigenvectors of the EHO Hamiltonian 

[Equation (3)] 

IV If, f> 
(23) 

The SK appearing in the small component is a phase factor SK =·K/jKj, 

and ). = 'fie a • 

The normalization of these functions is a straightforward matter, 

owing to the orthonormali ty of j v K µ > and I v - K µ > • Requiring 

that 

= i ' 
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we find that the nonnalized eigenvectors·of the ERO are given by 

(24) 

Non-Relativistic.Limit of REHO 

Foldy and Wonthuysen (19) have developed an extremely useful method 

of determining the non-relativistic limit ,.of a H:amiltonian · 

(25) 

where C.is any operator which conunutes with p
3 

(called an "even" opera

tor) and{} is any operator which anticonunutes with p
3 

(called an "odd" 

'operator.) The non-relativistic limit of this Hamiltonian is, correct 

to order l/m
0

2 , given by 

(26) 

Our EHO Hamiltonian 

HEHO = 
(27) 

can then be written in the fonn of Equation (25), with 

[=o 
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_,_ 
er, L +- I 

i "2 ( ~.r) I (Y-L ~, 1 (28) 

Upon substitution of these expressions into Equation.(26)·we find, as 

the non-relativistic.limit 9f t~e EHO Hamiltonian 

4 
ex, r.2 

- + 
.Zmo (

(J.,2 )_, ... 

mo S 1G cr. L (29) 

This is the non~relativistic Hamiltonian with a Thomas-Frenkel type of. 

spin-orbit coupling~ 

Free-Particle Lim~t of ~HO 

In· the Dirac description of ffee electrons, a "helicity operator" . 

+ 
(o:•p) is used a great deal (20). , Roughly spealdng, this describes the 

relation 1;>etween an electron's .spin.and its direction of motion. (Is it 

spinning "right-handed" or is it spinning ''left-hande,d?") The free-

particle.Dirac Hamiltonian (Equation (2)) commutes with this helicity 

operator, and hence ·the free-particle solutions .1/lkKµ are also eigen-

+ vectors of o:•p. The free particle solutions can be written as (16) 

(30) 

and, the spherical Besse], functions jR.(r) obey the relations• 

( cl !)· . ) dx - X J J, (X) = - J ,l+1 ( X (31a) 
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(31b) 

We now sho~ that, by defining an "oscillator helicity operator" 

-+ -+ 
cr • b, a similar behavior is obeyed by the EHO eigenvectors. We define 

the operator 

_,_ ...... 
cr·b = cr· p 

2 (5-t +1) 
+ i A ( cr. r) I "'~ I 6·L + I 

(32) 

Recall that the spin-angle functions obey the following relations: 

.......... ) xµ X 4 
(e5·L+I K.. == -K. te, (33) 

(<i~r) X: ).L - X_~ (34) 

and the radial eigenfucntions.follow the ladder operators, 

-+ -+ 
Using the fact that cr • p has a representation 

, -+ A 
(36) 

= - L <J· r 
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along with Equations (33 - 35b), it is a straightforward matter to show 

that 

(37a) 

(37b) 

Using these two results, we can now write <l> in a simple, elegant form: 
VK]J 

_,, ..., 
(Y. b (38) 

E+tno 

and the formal .resemblance to the ;free-particle eigenvectors. [Equation 

(30)] is obvious, since we recall that 

(22a) 

The spin-angle part of both vectors are identical (Xµ). If we identify 
K 

a kHO and drop any term in ·/ or higher, Equations (37a) and (37b) re-

duce to 

[ (t + ~ ) t ~] fu1 Lr J (39a) 

(39b) 

while the spherical Bessel fens (the radial part of the free-particle 
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solution)'satisfy 

(40a) 

(40b) 

The·correspondence between the ERO and free-particle radial wave func-

tions is now easily seen. 

Thus, in the free-particle limit of the.ERO (11-+ O), the ERO Hamil-

tonian [Equation (27)] reduces directly to the free-particle Hamiltonian 

[Equation (2)], the angular part of the eigenvectors are identical to 

the·. free-particle case, and the radial part of the vectors. obey a similar 

set of ladder operators as the spherical Bessel functions. 

Relation of the ERO to the Nilsson Hamiltonian 

S. G. Nilsson (21) proposed a non-relativistic.model of the nucleus, 

based on the isotropic harmonic oscillator. Beginning with the Schroed-

inger Hamiltonian H
0 

of,the spherically symmetric harmonic oscialltor, 

he added angular momentum-dependent terms c!,; and n!2
, obtaining 

H 
0 

0 -+-+ -+2 
= H + Ct•s + Dt 

0 

Finally, adding a deformation term H
0 

which is related to the nucleus' 

quadrupole· moment,., the Nilsson Hamd:ltonian is found to be 

H = 
0 :a -+ .-+ 

+ Ct•s + 
0 

where 
= 
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The correspondence between this term and the quadrupole moment can 

be seen by Equation VIII.1 of reference (22), where the quadrupole mo-

ment is defined by 

Q 

Since 

1 
e f r 2 

( 3 cos'& -1) 

we find that the deformatic;m of the nucleus as represented by. Nilsson's 

H0 is directly related to the quadrupole moment. We now wish to examine 

the ERO Hamiltonian 

HE.Ho 
+ 

...., -, 
cJ·L+ 1 
...., ... I cr,L+i 

and see if a possible correspondence can be made with the Nilsson 

(27) 

Hamiltonian, perhaps through the non-relativistic approximaiion. If we 

want to add any terms to the ERO Hamiltonian, we will require that the 

new Hamiltonian have the same set of eigenvectors. Since 

-- 0 

such a term is a possible addition, 
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It is interesting to note that if we add a term 

-+ -+ 
e: p

3 
(cr•L + 1) 

to the EHO Hamiltonian (Equation (27)), the same set of eigenvectors are 

obtained, and the only effect of this term is to displace the energy 

levels by -e:K, Since this is an even operator in the Dirac sense, we 

can obtain an approximate non-relativistic limit of 

H' = + 
-+ -+ 

e: p 
3 

(cr • L + 1) 

by iterating the Hamiltonian H', When this is done, we can make a one-

to-one correspondence with the terms in the non-relativistic limit,of 

REHO with those in the Nilsson Hamiltonian: 

2 
k REL 

-+ 2 
k NR 

·/+r2 2 2 2 -+ m (JJ r 
0 

2 -+2 -+2 
e: L -+ 2m D Q, 

0 

2 2 -+ -+ 
(2A S + e: + 2e: m )cr•L -+ 

K 0 

-+-+ -+-+] 
ie: [(cr•L + 1),(cr•b) -+ 

-+ -+ 
2m C £ • s 

0 

and we have scaled the ERO energy levels to remove.a constant term. 



CHAPTER III 

THE ERO AS A NUCLEAR SHELL MODEL 

In this chapter, we discuss how the ERO Hamiltoni~n can be used as 

a model of the nucleus. To begin with, ours will be an extreme single

particle model. That is, each nucleon is as.sumed to move in an average 

potential (described by the ERO interaction) independent of the motion 

of the other nucleons .. Also, since our Hamiltonian is charge independ

ent~ no difference will be seen between the. proton states and the neu

tron states. 

The energy of the.single particle state described by the quantum 

numbers (v, K, µ) was seen to be 

(38) 

As we have seen, the ERO is intimately connected with the NRHO, and it 

is interesting to compare the energy levels of the ERO with those of the 

NRHO, Flugge (12), among others, has given, the NRHO energy levels as 

t:NRHo = (zv-+ l+ I) t w (39) 

As shown in Table I, the degeneracy of the ERO is exactly four times 

that: of the NRHO. Note, however, that when the NRHO is applied to a 

system of Fermions, two particles (protons) are allowed per state, so 

that the degeneracy then becomes twice that shown.in Table I. The ERO 

states, being solutions of the Dirac equation, already contain spin and 

18 



19 

the Pauli exclusion principle allows only one particle per ERO state. 

TABLE I 

DEGENERACY OF THE EHQ AND THE NRHO 

ERO NRHO 

~2 ,... m 2c4 
V + IKI Degeneracy E 2v + 9, Degeneracy 

0 

6 ..,._2 1 4 3 0 1 -nw 
2 

10 ..,._2 2 12 5 1 3 -fiw 2 

14 )..2 . 3 24 7 2 6 -nw 
2 

18 )..2 
4 40 9 3 10 -fiw 

2 

22 )..2 5 60 11 nw 
2. . 4 15 

26 ,._2 6 84 13 
2-tiw 5 21 

Since we have this degeneracy between a great number of states, we 

are at liberty to fill the states within any energy level in any order 

we choose. One of the criteria should be, of course, to. use as consist-

ent and logical a scheme as possible, consistent with experimental data. 

We also do not want to split any of the 21 KI µ-degenerate states for any 

given K unless we add a perturbation to our Hamiltonian. Consequently, 

we feel free to rearrange the order in which the K states are filled. 

Ultimately, one must make a compromise between a.systematic scheme which 

may not agree with experimental data and a phenomenological ordering 

which fits the .data but provides little insight .into the problem. 

As in atomic physics, the primary clue to the order in which sue-

ceeding states are filled is provided by the binding energy of the last 
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particle added~ In both atomic.and nuclear physics, certain numbers of 

particles are particularly stable, resulting in the so-,cal,led "magic" 

and "semi-magic" numbers. For nuclei, the following numbers of protons 

have been found to be especially stable (22) 

Z = 2, 8, 20, 28, 50, 82, 126 

In addition to these, nuclei with Z = 14 and Z = 40 are relatively 

stable, though not as pronounced as the others. We would then like a 

scheme .. which allows these numbers to be identified with the least amount. 

of splitting. In,Table II, we present four possible schemes for filling 

the states. 

The first scheme presented (column I) follows the general ordering 

used in the. Mayer-Jensen, shell model (22) with no spin-orbit coupling, 

and this ordering allows only three magic numbers (Z = 2, 8, 28) and the 

two semi-magic numbers (Z = 14, 40) without splitting a K state into its 

2IKI substates, 

The second scheme (column If) is based on the shell model also, but 

here we have added the effect of a.hypothetical spin-orbit interaction 

which depresses the energy of the K = -1 state for each v, such that it 

is the first K value filled in each energy level, This decrease in the 

energy of the positive K state relative to the negative .K is a known 

+ + 
consequence of ant• s interaction, but.our assumption that it affects 

only the IKI = 1 states is completely.arbitrary~ as is our estimate of 

the magnitude of the splittin~. Accepting this as our model~ though, 

we find that we still have three magic ~umbers (Z = 2, 50, 82) and the 

two semimagic numbers available with no splitting of a K into its sub-

states. 

The third scheme presented (column,III) is a completely arbitrary 
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ordering, chosen solely because all the magic numbers (Z = 2, 8, 20, 28, 

50, 82, 126) and the semimagic num,bers (Z = 14, 40) are allowed. How

ever, it does show that all these numbers can be accommodated without 

hypothesizing any perturbation which will split the 2IKI degenerate 

µ-states. That is, all the magic and semimagic numbers can be found 

without splitting any of the!. states. 

The las.t one· shown (column IV) is the order we chose for most of 

our work. (The exception is 2He4 , and this is discussed later.) In 

this scheme, we simply fill the.states with lowest angular momentum 

first, working up to the highest£ (!Kl) values. Using this simple 

scheme, we find all but two of the magic numbers: Z = 2, 8, 20, 28, 82. 

In addition, the semimagic n~ber Z = 40 appears. 

In each of these four methods, we have followed the practice of 

filling the j =£+~state (negc1tive K) before.the j = £ - ~ (positive 

K) state, as predicted by the NRHO with spin-orbit coupling (22). Since 

this is precisely the non-relativistic limit·of .the ERO, it seems rea

sonable that we should use,this ordering. 



TABLE II 

, 

Column I. Column II Column III Column IV 
' b 

2 2 4 z z z z. E - m C V K V K 
< V K V K 

0 

4 1 140 4 1 140 3 2 140 0 5 140 

4 -1 138 3 2 138 3 -2 136 0 -5 130 

3 2 136 3 -2 134 2 3 132 1 4 120 

3 -2 132 2 3 130 2 -3 126 (126) 1 -4 112 

22 ")..2 2 3 128 2 -3 124 1 4 120 2 3 124 
,. 2 .,..3 12i 1 4 118 1 -4 112 2 -3 98 

1 4 116 1 -4 110 0 5 104 3 2 92 

1 -4 108 0 5 102 0 -5 94 3 -2 88 

0 ··5 100 0 -5 92 4 1 84 4 1 84 

0 -5 90 4 -1 82 (82) 4 -1 82 (82) 4 .,..1 82 (82) 

3 1 80 3 1 80 0 4 80 0 4 80 

3 -1 78 2 2 78 0 -4 72 0 -4 72 

2 2 76 2 -2 74 1 3 64 1 3 64 

18 "-2 
2 -2 72 1 3 70 1 -3 58 1 -3 58 

1 3 68 1 -3 64 3 1 52 2 2 52 

1 -3 62 0 4 58 3 -1 50 (50) 2 -2 48 

0 4 56 0 -4 50 (50) 2 2 48 3 1 44 

0 -4 48 3 -1 42 2 -2 44 3 -1 42 



TABLE II (Continued) 

Column I Column II Column III Column IV 
2 2.4 z z z E - m C V K V K V K V K z 

0 

2 1 40 (40) 2 1 40 (40) 0 3 40 (40) 0 3 40 (40) 

2 -1 38 1 2 38 0 -3 34 0 -3 34 

14 i 1 2 36 1 -2 34 1 2 28 (28) 1 2 28 (28) 
,. 

1 -2 32 0 3 30 1 -2 24 1 -2 24 

0 3 28 (28) 0 -3 24 2 1 20 (20) 2 1 20 (20) 

0 -3 22 2 -1 18 2 -1 18 2 -1 18 
-- --

1 1 16 1 1 16 1 1 16 0 2 16 

10 A.
2 1 -1 14 (14) 0 2 14 (14) 1 -1 14 (14) 0 -2 12 

0 2 12 0 -2 10 0 2 12 1 1 8 (8) 

0 -2 8 (8) 1 -1 6 0 -2 8 (8) 1 -1 6 
.. 

6 >..2 
0 1 4 0 1 4 0 1 4 0 1 4 

0 -1 2 (2) 0 -1 2 (2) 0 -1 2 (2) 0 -1 2 (2) 
·. 



CHAPTER IV 

COMPARISON OF THE·EHO WITH EXPERIMENT 

An important aspect of any nuclear model is the distribution of 

particles in.the nucleus. From a knowledge of the spatial distribution 

of the nucleons, it is possible to derive many properties of nuclear 

structure such as the total angular momentum, the multipole moments, and 

the differential cross-sections for electron scattering. In our work, 

we are concerned entirely with the predictions of the EHO for the elec-

tron scattering cross-sections. 

Radial Density of .the EHO 

Since we will later,use the Born approximation with a spherically 

symmetric charge distribution, we will need the radial density p(r), 

defined by 

or, equivalently, 

f 
.an 

dcp 
0 

f 
D

~n. J I'll f 01[ 
CA -r Sht 9 ct& 

24 

(40) 

(41) 
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Notice that, since~ is normalized to unity, 

411 ('" ptrJ r' d.r = 1 (42) 

For the NRHO, 

(43) 

Since the Y~'s are orthonormal, we obtain the simple '(and useful) result: 

f l~) 
l) .l f'TT: / F vl ( r J / 2 

(44) 

The ERO densities are not as simple, since the ERO vectors are 

four-component functions. In evaluating p(r) for the ERO, we first 

perform a matrix multiplication between the four~row column vector 

I 'Y.· > and the four-column row vector < '¥ I • Having taken this sea-
~µ v~ 

lar product, the integration over the angles is performed, and we find 

that the radial density of the ERO state'¥ is given by 
. . VKU 

(45) 

where pv1 (r) and pvi(r) are the corresponding NRHO densities. Thus, the 

ERO density can be expressed as the sum of·two NRHO densities, involving 

£and£± 1. We might note here that both p 
0
(r) and p (r) are in 

VTv VK 

closed form, expressed as·. the sum of a series of Gaussian terms, 

Since ours is an extreme independent particle model, the total 

nuclear density will simply be the sum of the single~particle densities 

over the first Z states. (To keep the nuclear density normalized to 
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unity, we di~ide by Z). 

Pz c r) = IG· (Y') 
' 

(46) 

and 

4Tr c p. (rJ 1 (47) 

Although p can, in principle, be evaluated without recourse to numeriz . 

cal computation, the algebra involved in calculating p for, say, lead 
z 

or indium becomes, very laborious~ It was therefore decided to utilize 

the digital computer in this work. A program was written in the Fortran 

IV language of the IBM 360/50 which begins with Kummer' s Series for the 

confluent hypergeometric function (14): .. 

F ( a c · x) = 1 + Q · ~ + 

3 
Ct(U-tl) X 2 

Ot(C\.-tl)(CJ.,-t-2) £+ (48) 
C (C+1J'_z ! + C. (C+l)(C·t2) jJ ... I 1 ' 1 C 1 ! 

and calculates the coefficients an in the expressions for the .normalized 

radial densitie~ of both the single particle states of the NRHO and the 

total nuclear densities of, the EHO and NRHO. This program is des.cribed 

in Appendix C, and provide:; the a. in the following expression: 
n 

(49) 

In Table III, we list the coefficients in the total nuclear density for 

the NRHO and the EHO for five selected nuclei. In the case of EHO 

helium, two densities are presented: one for the case where the two 

K = -1 states are filled, the other for the,case where the two K = 1 

states are filled. As mentio~ed earlier, there.seems to be some ambigu-
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TABLE III 

COEFFICIENTS IN THE DENSITIE.S OF SELECTED NUCLEI 

.. 4 
NRHO: .17960 2He: al = 

EHO: al = .024329 

a2 = .10351 

c12. NRHO: al = .05986 6 . 

a2 = .07981 

EHO: al = .074595 

a2 = .103665 

a3 = -.06017 

a4 = .013344 

40 NRHO: .044897 20Ca : al = 

?2 = 0 

a3 = .0359174 

EHO: al = • 0785 7 

a2 = -.007483 

a3 = .02634 

a4 = -.0071835 

as = .00068414 

115 
NRHO: .018325 49In : al = 

a2 = .03665 

a3 = -.01466 

a4 = .009773 

a· = .0005585 
5 

EHO: . al. = .048104 

a2 = .03207 

a3 = -.031888 

a4 = .02036 
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TABLE III (Continued) 

as = -.002452 

a6 = .0002125 

a7 = .0000429 

a = .000006449 
8 

Pb 208. NRHO: al = .01916 82 • 

a2 = 0 

a3 = .03066 

a4. = -.01168 

as = .00292 

a6 = .0000809 

EHO: al = .030183 

a2 = .03433 

a.3 = -.06284 

a4 = .09033 

as = -.05448 

a6 = .01848 

a7 = -.0035111 

a8 -. .0003778 

a9 = -.00002101 

alO = .0000004868 
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ity in filling the states in helium, so we have presented both config-

urations in Table III. This ques.tion will be considered more carefully 

when we look. at the plot of p (r) vs. r (Figure 1). 

Determination of the Oscillator Parameter 

As indicated, the densities involve one adjustable parameter, the 

oscil],.ator constant a (= V m
0

w/fi.) ~ To determine this parameter, there 

are several possibilities •. One which was considered was to calculate 

the theoretical expressions for the quadrupole mome~t Q and to equate 

this to the experimentally observed values of Q. This approach was re..,. 

jected, however, because a second parameter occurs in the expression for 

Q--the depth of the potential well. Since this is another arbitrary 

feature of a harmonic oscillator ,model, we chose instead a comparison 

between root.;.mean-square (r.m~s.) radii. 

2 The r.m.s. radius (squared) is simply the expectation value of .r 

in the state 'I' 
VKµ 

The r.m.s. radius of the total nucleus (consisting of Z protons) is 

simply the.average of t:he.individual single-particle radii: 

f 

l 

(50) 

(51) 

For the EHO, the.expectation value of r 2 is a complicated function of. 

a, so that when we sum up Z of these expressions and take the average, 

it becomes necessary to solve an implicit.integral equation to extract 
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ct. A simpler, if somewhat less precise, method is to compare the NRRO 

expression for ct with experiment and use this value of ct in the corre,-

spending ERO densities, and this is the method chosen to find ct. As an 

estimate of the error involved in this procedure, we c9nsider the case 

40 
of 20ca , a closed-shell nucleus in the .ERO model. For closed-shell 

nuclei, we can.extract a simple expression for ct from the ERO as well. 

Equating this expression with experimental data (12), we find ct= .539 

-1 -1 
F , while the.NRRO comparison yields ct= .492 F • Thus, using the 

simpler NRRO expression, our value of ct is approximately 10% smaller 

than the proper ERO value. Our primary concern in this study is the 

comparison.of predicted:cross-sections with observed cross-sections, so 

the significan~e of this 10% difference lies in its effect on dcr/dO. 

The cross-sections for ct= .539 and ct= .492 in the case of 757.5-MeV 

· f C 4o 1 1 d d d . h h . 1 scattering ram a was ca cu ate an compare wit t e experimenta 

results reported by Bellicard (24). The 10% decrease in ct resulted in 

a shift of .the diffraction minimu~ toward smaller angles by an amount 

6° •· Although this is not 'negligible, the .basic agreement (or more pre..-

cisely, disagreement) between theory and experiment was not materially 

affected, For this reason, we feel justified in using the more accessi-

ble values. of ct predicted by the NRHO. 

The expectation value of r 2 for the NRRO is easily calculated by 

use of Equation ( 8 ) , and is given by the expression 

a 2 IV - z ( 2 'l)' t £ t }'~ ) vl = \.,N 
(52) 

The average r.m.s. radius for the nucleus is then 

(53) 
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and we can equate this expression to experimentally determined values of 

a, thereby fixing the value o~ the oscillator parameter a. 

Review of Experimental Work in Elastic 

Scattering of Electrons, 

Nearly every experimental group studying nuclear structure has cal-

culated a r.m.s. radius appropriate to an assumed theoretical model. Of 

the many techniques used, we shall confine ourselves to a review of work 

done in high energy elastic scattering of electrons, since it is through 

these experiments·that the most·direct information regarding nuclear 

densities can be obtained. For electrons of 150 MeV, the deBroglie 

W'avelength is approximately 8 F. Since the nuclear radius is roughly 

5 F, we can·expect high energy electrons to reflect the shape and den-

sity of the.nucleus to the.extent that the scattering is dependent on 

the distribution of protons in the nucleus. 

Robert Hofstadter has presented a definitive review of the experi-

mental.work done.in this field prior to 1957 in his two review articles 

(25, 26). In reference (26), he has given a table listing the important 

parameters (including the r.m~s. radius) for the accepted nuclear models 

for 22 different nu.clei, and references ,are made to the previous work 

done.for th~se.nuclei. In this introduction we shall conf:j_rie our at-

tention to work that has been done since 1957 in the field of high 

energy elastic scattering of electrons~ The following references are 

listed chronologically, according t;o the date of publication. 

Ravenhall (27). summarizes work done by his group for four nuclei. 

4 For scattering of 400 MeV electrons from He, the r.m.s. radius (a) was 

calculated to be, 1. 61 F for a Gauss.ian shape. For 187 MeV scattering 
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12 
from C · , a = 2. 40 F for a harmonic oscillator mo.del. For 420 MeV 

· f A 197 h d scattering rom u , t e r.m.s. ra .ii are the ·same as those reported 

by Hofstadter (25). Ehrenberg (28) disagreed with the radii reported in 

(27), stating that they were generally too small. Ehrenberg has given 

16 12 th~ cross-sections for scattering from O and C · for the following iµ~ 

cident ene;rgies: E = 240 MeV, 360 MeV, and 420 MeV. For a parabolic , 
0, 

we;l.1, the r,m.s. radius of c12 :is a = 2.50 F, and for 016 , a = 2. 70 F. 

Vlrich Meyer-Berkhout and others (29) studied nuclei of the lp 

Shell (Be9, BlO~ ·Bll, N14, 016) . h . b 160 M V d 420 wit energies etween e an 

MeV, In their.Table IV (16, p. 146), the parameters for several of the 

conunonmodels of these nuclei are reported. Burleson and Kendall (30) 

used a Gaussian model of the.He4 nucleus with a= 1.68 Fin their analy-

sis of 302 MeV electro~ scattering, Crannell et al. (31) studied 183 

MeV scattering from ca40 , v51 , co59 , In115 , Sb121 ' 123 , and Bi209 , using 

a Fermi distribution with "C" parameters C = 3.64, 3,92, 4.10, 5.25, 

~.37, 6~49 F respectively. (For the Fermi dist~ibution, C represents 

the distance from the center ,of the nucleus to the point where the radi-

al density reaches one-half its. central value.) 

In their study of radiat~ve transition widths in excited.states of 

carbon, Crannell and Griffy (32)measured the cross-sections for elastic 

12 scattering of 250 MeV electrons· from the C nucleus, , In their analysis, 

they used a harmonic oscillator density with r.m.s~ radius a= 2.43 F. 

In a different approach, Goldemberg (33) varied the incident energy and 

measured the cross-section for elastic scattering at 180° only. For BlO 

11 and B , Goldemberg calculated the oscil+ator parameter to be a= .646 

-1 
F ' 

Repellin, et al.· (34) disagreed with Hofstadter's (25) choice of 
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4 the Gaussian distribution for He , and proposed that the form.factor be 

given instead by the expression 

F(q) = 
2 2 

(1 - 0.101 q ) exp (- o.,29 q ) • 

About a year after this paper was published, Frosch et. al. (35) defended 

Hofstadter's originalchoice; claiming that a= 1.643 F for He4 • Frank 

and co~workers (36) also measured the charge radius of the helium nucle-

us, reporting that a= 1.63 F for the a-particle, 

Applying a Fermi three parameter (also called a parabolic Fermi) 

40 density to their results for 250 MeV scattering from Ca , Croissaux (37) 

determined a to be 3.52 F. Also, for the first time, two diffraction 

minima were observed. The effect of the neutrons on the charge distri-

bution was studied by Van Oostrum (38) in his investigation of the iso.,

tope effect in ca 40 , ca44 and ca48 through elastic scat:tering of 250 MeV 

electrons. Although the addition of the extra neutrons increased the 

size of nucleus according tq the.familiar A113 law, the charge density 

40 48 at the edge ( r - 4F) was found to be greater for Ca than for Ca , 

Crannell ( 39) gave the cross-sections for scattering of .600 MeV and 

12 16 12 16 800 MeV electrons from C and O , For C , a= 2.40 F, while for O , 

a= 2.65 F. By observing scattering at 175 MeV and 250 MeV, Bellicard 

and van Oostrum ( 40) determined the "half-density parameter'' C [see 

reference, (31)] to be C = 6.47 F. By adding a small undulation to the 

parabolic .Fermi shape, Bellicard et al. (24) were able t:o obtqin excel~ 

lent agreement with the cross-sections observed for scattering of.757.5 

40 48 MeV electrons from Ca and Ca , Here, a second and third diffraction 

minimum was observed. The C parameter used had the value C = 3.7369 F. 

Frosc}:l et al. ( 41) studied electron scattering from He 4 nuclei at several 
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energies with the most complete data, reported for 800 MeV. For a Fermi. 

three-parameter shape, a r.m. s. radius of a = 1. 71 F was used. In a 

later paper (42), Frosch et al. studied scattering of 250 MeV electrons 

f . C 40,42,44,48 d Ti48 d 50·0 M V . . f C 40,48 The rom a. an· · , an ·. e scattering ram a , 

r.m.s. ,radius for the three-parameter Fermi shape :i,s reported for all 

40 of these isotopes, and for Ca , a= 3.48.7 F. Again, a second diffrac.-

tion minimum was observed. 

In a theoretical paper, Donnelly and Walker (43) used the unpub

lished results of McCarthy and Sick f9r electron scattering from c12 and 

0
16

. For each of these, a harmonic oscillator shape was used, and for 

c12 the oscillator parameter .used is given by a = , 610 F-l. 16 For O , 

-1 
a= , 565 F • In their analysis of 250 MeV and 400 MeV scattering, 

Dally et al. (44) report a r. m. s. racl,ius for N15 of a = 2. 7 F for the 

Fermi shape and 2.6 F for the shell.model. Using the same sort of a 

shape as that of Bellica,rd (38) (parabolic Fermi with a small undula-

tion), Heisenberg (45) was able to.fit the observed cross-sections for 

248 MeV and 502 Me\T scattering from Pb20S using a r.m.s. radius of 

5 501 F S d . 1 . f Pb208 d B.209 a= , , tu y1ng ewer energy scattering ram an 1 

(incident energies between 40 MeV and 60 MeV), Van Niftrik (46) deter-. 

208 . 209 mined the r. m, s. radi;i. for Pb and Bi to. be a = 5. 46 F and 5. 48, 

respectively. Finally, Singha! et .al. (47) q.ete~ined the .r.m.s. radius 

16 of o· to be a= 2.70 Fin their studies of.the isotope effect in 

016,17,18. 

Giving a more general discussion, two ,monographs can be mentioned 

here. Robert Hofstadter (48), in his 1963 collection of reprints 

Nuclear and Nucleon Structure, has compiled approximately 50 articles, 
' . --:--, . . . . . 

many of which have been listed above.· These articles deal with both 
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experimental data and theoretical interpretation of the results, and, 

like E+ton 1 s 1961 monograph Nuclear Sizes (49), considers other experi-

mental approaches (e.$•, a..-partic+e scattering, scattering of muonic. 

atoms, etc.). 

Radial Densities 

For the main body, of this present Wbrk, we have chosen five nuclei 

t t d . d t ·1 He4 , c12 , ca40 , In115 , and·Pb208 • o s u yin some e ai: These par-

ticular isotope1? were chosen to cover the range of light nuclei, medium 

nuclei and heavy nuclei, and because a fair amount.of experimental data 

is available for each. . 16 59 Some preliminary work was also done.on O , Co 

and Bi209 , but this work is not discussed here. Since there is obvious-

ly a variance.in the reported r.m.s. radii.for each nucleus~ the best 

we can do is to choos.e the value that seems to be. the most reliable. 

Once a value for a is chosen, we can substitute this a into Equation 

(53) and solve for the oscillator parameter a, Our choic~s for a and 

the corresponding oscillat<n parameter are given .. in Table IV. 

TABLE IV 

OSCILLATOR PARAMETERS FOR THE NUCLEI UNDER STUDY 

Nucleus a(F) Reference Oscillator Parameter (F-1) 

He 4 
1. 71 (29) o. 716 

c12 2.41 (26) 0.611 
Ca40 3.52 · (12) 0.492 
In115 4.50 (12) 0.448 
b208\ P. 5.501 (33) 0.371 
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By substituting these values. of a. in Equation (53), along with the 

coefficients given in Table III, we can.plot p(r) as a function of rand 

compare the radial densities predicted by the EHO and NRNO with the 

phenomer;iological shapes reported in the.literature. The phenomenologi-

cal shapes chosen are given below in Table IV. 

In Figures (1), (2), (3), (4), ~nd (5) are presented the radial 

density according to.the ERO, the NRHO, and these phenomenological 

shapes. 

In Figure 1, we have given the ERO density for two configurations: 

Curve I is ,for the two K = -1 s,tates being occupied, and curve IV is for 

the two K =.+1 states being occupied. The scheme we have generally used 

[column IV of Table II] fills the K ~ -1 states. However, as we noted 

in the introduction to this paper, evidence exists (10) that, for He4 at 

least, it is th.e K = +1 states that are occupied. Hence; we include 

the density of both configurations for helium, and we can.see that the 

ERO for the K = + 1 states (curve IV) is very similar to the phenomena-

logical shape (curve III). 

In Figure 2, the ERO predicts a more sharply peaked density than 

either of the other two cl:ioices. The close.similarity between curves I 

and III is to be. expected, sinc.e eac;:h is drawn for the harmonic oscilla-

tor density. The difference is due to the fact that our oscillator 

....,1 
parameter (a= .• 611 F ·) was chosen by matching the r.m.s. radii, wh~le 

-1 
E~renberg's oscillator parameter (a. =.606 F ) was chosen to match the 

location of.the diffraction minimum in the electron cross.,-sections. 

Figures 3 and 4 show c+early the higher central density of the ERO 

40 115 as compared with either the Fermi or NRHO densities for Ca and In ~ 

Figure 5 shows.the same sort of behavior, but here we notice that 



Nucleus Reference 

(41) 

(}12 (28) 

Ca40 (42) 

Inl15 (25) 

(45) 

TABLE V · 

PHENOMENOLOGICAL DENSITIES 

Name of Model, 

Fermi Three-Parameter 

Harmoni~ Oscillator 

Fermi Three~Parameter 

Fermi Uniform. 

Fermi Three-Parameter 
(ignoring a small un
dulation) 

Density 

(1 + . 43799 r
2

) 
P = 1 + ex~ (3.0581 r - 3.08256) 

p (1 + .489745 r2) exp C---r2/2.7225) 

(1 - 2 
p = .007556 r} 

1 + exp (r/.5839 - 6.28275) 

1 
P = 1 + exp (r/.5227 - 10;02487) 

p 
(1 + ;.0085048) 

- .. 2 . . .. . .. 
1 + exp (r /8.3417 - 4.76286) 

Normalization 
Constant 

N = 1/16.8 

N = 1/75.0 

N = 1/233.5 

N = 1/661. 8 

N = 1/1378.5 
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the phenomenological shape actually shows a central depression rather 

than the usual peak. 

In every case but helium, we notice that the EHO predicts a more 

sharply peaked density than any of the non-relativistic models used. 

This could perhaps be caused by a tighter binding due to large kinetic 

energies involved in relativistic motion, 

Theory of Electron Scattering 

The most direct information regarding the distribution of protons 

in the nucleus comes from elastic scattering of electrons and measure-

ment of the angular distribution of the scattered electrons. 

The differential cross-section is the ratio of the intensity of the 

beam scattered into a solid angle dO [I(O)] to the intensity of the in-

cident beam I : 
0 

dcr 
cU2 

r en) 
Io (54) 

The connection between this quantity and the structure was first pointed 

out by Rose (50), and a development of the related equations is given in 

Schweber (51), Schiff (52, 53) and Smith (54). 

+ 
Let us define a coordinate system where r is the position of the 

+ ~ 

electron and R is the coordinate of a volume element dR in the nucleus. 

Then~ at large distances, we can write the (plane wave) wavefunctions of 

the electron as: 

• (~-7-Eit) - l 

~. c r, t> = it(pJ e (55) 
l 

tfcr)t)= 'l,l(Pf) e 
i ( 0 :y! - Ef t ) (56) 



where ~- represents the incoming particle, ~f represents the outgoing 
],. 

-+ 
particle (i-+ initial, f-+ final); u(p) is the Dirac spinor for the 
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electron. Also, units of c = ~ = 1 are used throughout this derivation, 

and the center of mass coordinate system is used. 

The probability of a transition from state Ii~= ~. to state 
1. 

If > = ~ is given by the "Second Golden Rule of Quantum Mechanics:" 
f 

W= 
clvi 
dE 

(57) 

where dn 
dE 

is the density of accessible final states, and Vis the ·in-

te:raction causing the transition. In elasticCoulomb (non.-radiative) 

2 - E ~ and V = Ze /r, so 
0 

'ht z ez 
Y" 

z 

(\8) 

represents the probability per unit time that a transition will occur 

from the initial state Ii> to the final state If>. Since we are inter-

ested in scattering of an unpolarized beam of electrons, we average over 

the (two) initial states, Also, since we only look at the total number 

of particles scattered into solid angle drl without regard to spin states, 

we sum over all possible final states, This can be expressed as the 

trace of a product matrix, as shown: 

(QTC) 
3 

.Ll Z t .!. T r~ y0 fi+ m yo} fkL 
I 
- -14 'z e . Z I Y' Yr'l 'Y'r1 olE 
P+ - pi 

(59) 

The trace can be shown to be 



} 
and, in an elastic scattering procef;)s, IPil = IPfl = p: 

-+ 

cicY -
cifl 

PL 

olr1 - mp 
olE - (.Z 'lrf cU1 

w 
p/YI'\, 

) 
In the high-energy region (E

0 
> 100 MeV), 1 - v 2 sin2 i -+ 
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(60) 

(61) 

2 e cos 2, we 

therefore find that the differential crof;)s.;..section for the scattering of 

high-;-energy Dirac particles (sp~n ~) from a point nucleus is given by 

the Mott \formula: (55, 56) 

ol o 
c:Hl 

(62) 

To allow for t~e finite size of the nucleus, we e~press the differ-. 

ential cros.s-section as 

dcr 
cHl 

(63) · 
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If the nucleus is not a point mass, 

z 
V= -~ (64) 

t~1 
where Rj is the position vector of the jth proton. Substitution of 

Equation (64) into Equation (63) gives 

where (+R) . h f . f h .th . h 1 . is t e wave unction o t e J~ proton int e nuc eus, 
J 

We 

can now exp~nd the two terms in the integrand: 

(66) 

(67) 

Substitution of Equations (66) and (67) into Equation (65) enables us 

to integrate over the electron coordinates only, leaving 

~ _ (Ze3) 2 

oUl - 2E (68) 

+ + 

Keeping only the i = 0 term in the expansion for eiq•R (~onopole transi-

tions only), we find 



dcr 
cU2 (¥-E

2

) 

2 (co~/~) 
"- sin 1 i 

where we have identified the "nuclear form factor:'·' 

R clR 
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(69) 

(70) 

Recall that these quantities are all derived in the center-of-mass co-

ordinate system. The transformation to the lab frame gives· us the re-

sults 

(71) 

(72) 

(73) 

The calculation of these quantities, especially !~, now hecomes the 

central probl~m in our work, since we now have a direct comparison 

between theory [p(r)] and experiment [1(8)/I ]. In general, evaluation 
0 

of the integral in Equation (72) must be done numerically, because of 

the complicated structure of p(r). However, for radial densities like 

those of.the ERO and the NRHO, it is possible to evaluate this integral 

in closed form. Recall that our radial densities (Equation 49) can be 
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expressed as a series of Gaussian terms. The Laplace transform 

V ~, 1. I ~ I I ) 

(-1) z-v-z TC~ p-lH e- p He (2 2 Ai t 2 (74) 
.ZVt-1 /'"' 

has been evaluated in the literature (reference (23), Equation 4.7 

(33),) so we can express the form factor of the NRHO and ERO densities 

as a series. of terms involving the Hermite polynomials. Expressing 

He (x) in terms of the more conunon Hermite polynomials by use of (57) 
n 

(75) 

we can express the Hermite polynomial itself in closed form by use of 

(-I )vn (ZX) n-2m 

H ex;= rd I; 
n m ml tn-zm)) 

(76) 

Successively using Equations (74), (75), and (76) in the expression for 

F(q), we find that, for a radial density given by 

_ a-2·r' 10 

per)== e L a11 (X .Zrt+I r A.-n-z 

Vl= I 

(77) 

the form factor can be written exactly as 

- ~//LJOl2. 
10 

( ~/ ()'.,) 2m-2 Fe%> I: Cm e 
vn=, 

(78) 

where 

3 (:.I ) 1'11-1 10 -2n+2 
'T(Z: 

I: 2 an (ZY1-1)! 

Cm= (2m-1) .1 (11- m) I VI =m 
(79) 
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TABLE VI 

COEFFICIENTS IN THE FORM FACTOR OF SELECTED NUCLEI 

4 
1. 0 2

He : NRHO: cl = 

EHO: cl LO 

c2 = - .1441 

c12. 
6 . NRHO: cl LO 

c2 = - .111111 

EHO: cl 1.0 

c2 .2131 

c3 = 002782 

c.4 "" - ,001161 

40 NRHO: 1.0 20Ca : cl 

c2 ,25 

c3 = .125 

EHO: cl 1.0 

C· = - • 35 
2 

c3 .063333 

c4 - • 005 7738 

cs = 000025297 

c6 - .0000037202 

115 NRHO: 1.0 49In : cl = 

c2 - .42857 

c3 .04898 

c4 - • 001725 

cs .000012147 

EHO: cl = 1.0 

c2 - .50842 

c3 = 011966 
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TABLE VI (Continued) 

C4 = - .0141933 

cs .000889795 
-5 

c6 = -2,7959 X 10 
-7 

c7 = 4.0195 X 10 

cs -2,19177 X 10-9 

Pb 208, 
82 ' NRHO: cl = 1.0 

c2 = - .54878 

c3 = .0884145 

c4 = - .0052991 

cs .00011191 
-7 

c6 = -4.3994 X ·lQ 

ERO: cl 1.0 

c2 = - .6Q519 

c3 = .157077 

c4 = - .022375 

cs .00200836 

c6 = - .00012092 
-6 

r:7 4,8763 X 10 

cs -1.23852 X 10.,..7 

c9 L 7518 x 10.,...9 

clO = -L 0342 x 10-11 



51 

In Table VI, we give the values of C for the a coefficients given in · m n 

Table III, given by the computer program of Appendix C. 

The most striking feature of the Born approximation is the exist.,.. 

ence of sharp diffraction minima in the cross~sections. This is under.,.. 

standable because the first Born.approximation (which we have used) 

treats the electrons as plane waves being diffracted by a roughly spheri-

cal center giving rise to diffraction minima. The success or failure of 

any model ultimately depends on how accurately these minima are pre-

dieted. As we can see from Equation (73), these minima correspond to 

the zeros of the form factor F(q) 9 and in our case, to the zeros of the 

polynomial in Equation (78). By constructing a.Sturm series (58) for 

these polynomials (see Appendix D), we can easily find the number of 

zeros in any given interval. In Table VII, we give the number of zeros 

of the form factor F(q) in the entire possible range of q (O .:_ q < 00 ). 

TABLE VII 

ZEROS OF THE FORM FACTOR 

Nucleus Number of Zeros in F(q) 

NRHO EHO 

He
4 

0 1 

c12 1 1 

Ca40 2 1 

In115 4 1 

Pb208 5 1 

As we see, the EHO predicts one minimum for each of the five 

nuclei under study. (This is not always true, however; Co 59 , for ex-
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ample, has·three zeros in the ERO model.) The ERO predicts from zero 

to five minima, however, with the number of,minima increasing as z in-

creases. 

In Figures (6) through (10), we present a plot of /F(q) I as a func-

2 2 tion of its arguement (q /a): 

VY/ 

FCiJ ~ FCx) =- L 
rn"' o 

(80) 

(81) 

We are now in a position to discuss the cross-sections predicted by 

our model. By putting in the physical constants (z, e, M, etc,) and 

evaluating Equation (73) as a function of the scattering angle e, we 

can compare the predicted cross-sections with the experimental data re-

ported in the literature (25, 28, 41, 42, 45), To aid in evaluating 

these cross-sections, a computer program was written and is presented in 

Appendix E, In Figures (11) through (18), we show the differential 

cross-section do/dS"& as a function of the scattering angle 8 (measured 

in, the lab frame) for the five nuclei mentionec;l. earlier (Re4 , c12 , Ca 40 , 

In 115' Pb 208). 

In Figure 11, 800 MeV electrons are scattered by Re4 nuclei. As 

shown~ we have presented cross-sections for both K =+land K = -1 con,-

figurations. The ERO predicts a diffraction minimum in each case, but 

for the K = +1 configuration, the minimum occurs at a momentum transfer 
I 

0 . 
(scattering angle) that is greater than q for 80 , As we can see, none 

of the three provides a very good fit to the data. Figure 12 shows what 

is generally known--that the harmonic oscillator provides an excellent 

model of the charge distribution in c12 (39). Figures 13, 14, and 15 
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investigate the effect an increase in the incident energy E
0 

has on the 

agreement. As shown, the fit does not-seem to·depend on the energy of 

the incident particles. Figure 16 shows that the agreement between the 

EHO and experiment improves somewhat as we go to heavier nuclei. Al

though the shape is not very accurate, the magnitude of the predicted 

cross-sectio~s is rather close to the experimental points. Finally, 

Figures 17 and 18 show a fair agreement in the case of lead. Although 

each predicted curve is too small, the shape of the curves follows very 

closely the behavior of the experimental cross-sections. Again, as in 

the case of calcium, no significant change was observed for different 

incident energies. 
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Figure 17. Differential Cross-Sections for Elastic Scatt~ring of 248 
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reference (45). 
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CHAPTER V 

CONCLUSIONS 

In view of the absence of a discussion of relativistic nuclear 

motions, and motivated by the availability of a single-particle Hamil

tonian, we felt it worthwhile to investigate the regions of nuclei where 

relativistic effects could possibly be significant, The Dirac equation 

with a Coulomb potential can only describe the Coulomb effects in the 

nucleus" which are much weaker th&n the nuclear forces, On the other 

hand~ the harmonic oscillator has long been in use as a single-particle 

nuclear model in non-relativistic descriptions, The EHO then happens 

to be a good example of a relativistic model. The most interesting case 

of the triton (10) has been investigated by more exact two-body methods, 

even taking into account relativistic interactions, but the case of in

termediate and heavy nuclei cannot be treated as easily, except through 

an (approximate) single-particle model. 

The energy spectrum of the EHO suggested the possibility of a 

relativistic shell structure and hence, this was investigated. However, 

the many level degeneracy, especially the independence of the energy on 

the sign of K~ introduced an arbitrariness in the level sequence. When, 

guided by the non~relativistic limit of the EHO, obtained throµgh a 

Foldy-Wouthuysen transformation, the states are filled in accordance 

with the Mayer-Jensen (22) scheme, that is, assuming j = 2 +~to be 

lower in energy than j = 2 ~~'it turns out that the magic numbers 
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50, 82, 126 are not observed. In the other extreme, a purely arbitrary 

arrangement of K substates happens to give all the magic numbers as well 

as the semimagic numbers 14 and 40. In any case, it is important to 

note that no splitting of K substates is necessary to identify the magic 

numbers. What is of interest is the essential point that shall structure 

can be obtained, even with relativistic nuclear motions, and this fact 

is brought out in Table (II). 

Since this is a one body model, and since simple, analytical wave 

functions are available, it is important to ask how well the experimental 

electron-nucleus scattering experiments of Hofstadter and his co-workers 

agree with the predictions of this model •. It is well known that these 

high-energy elastic scattering experiments are about the best possible 

evidence of nuclear structure, since the deBroglie wavelength of these 

electrons becomes comparable to the linear extension of the nucleus and 

the electrons can then probe the interior of the nucleus. The analysis 

of these experiments is done most easily in the first Born approximation, 

where the nuclear structure effects appear in the form factor, which is 

essentially the Fourier transform with respect to th~ momentum transfer 

of the charge distribution in the nucleus. The normalized wave functions 

of the EHO help in expressing the charge density in closed form, and 

this leads to a simple expression for the form factor. One of the 

merits of the harmonic oscillator potential happens to be the fact that 

only one arbitrary parameter exists--the oscillator constant, a. Since 

the size of the nucleus depends on a, we can evaluate the oscillator 

constant by a comparison of the nuclear densities. 

This numerical parameter (a) has been used to calculate the cross

sections for five nuclei: He4 , c12 , ca40 , In
115

, and Pb
208

• From the 
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viewpoint of wave mechanics, the potential sphere of the nucleus dif

fracts the short wavelengths of the (high energy) electron waves 1 and 

thus the location and number of diffraction minima are a matter of in

terest. In our analysis, these can be obtained from the polynomial 

multiplying the Gaussian exponential in the form factor. The momentum 

transfer (~q) is a good kinematical variable, and the scattering cross

sections are functions of this variable. The results of this comparison 

are shown.in Figures (11) - (18), together with the predictions of the 

NRHO. Our choice of these five nuclei was made to provide a representa

tive collection from different values of Zand with the requirement that 

experimental data be available for comparison. 

There are two essential points that emerge from our investigation. 

In almost every case, the EHO shows a much greater central density, 

indicating that a tighter binding energy and larger kinetic energy is 

indicated. The EHO shows a pronounced central peak, followed by a rapid 

fall-off at the surface, implying that relativistic effects prevent a 

clustering of the protons at the surface and draw them in toward the 

center~ As far as the actual cross-sections are concerned, the rela

tivistic fits are unsatisfactory, except perhaps for heavy nuclei such 

as lead. Lead is known to be a very tightly packed nucleus, resulting 

in relatively high kinetic energies, so it is not surprising that the 

EHO is most appropriate for large, dense, nuclei. The result of our 

study has.been to show that, except for exceptional cases (extremely 

light and extremely heavy nuclei) the nuclear motions do not seem to be 

relativistic, and an estimate of the average nucleon velocity on the 

basis of the EHO shows that the speeds of.the nucleons rarely exceeds 

20% of the speed of light, 
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Ever since the discovery of rotational energy levels, it has been 

an accepted op:i,nion that the nuclei are deformed, and the Nilsson model 

is considered to be an adequate description. We have.shown that Hamil

tonian possessing exact eigenvectors can be simply constructed from the 

EHO Hamiltonian, and the terms in its non-relativistic limit can be put 

into a one-to-one correspondence with the terms in the Nilsson Hamilton~ 

ian. We can.interpret this to mean that a contributory cause for defor

mations may be of relativistic,origin--say the relativistic ·variation 

of mass with velocity of the particles in unfilled shells may contribute 

to polarization of the core, 

As i~ well known, the most realistic nuclear model has to be based 

on the many-body approach, (See reference 59), From what we have seen, 

it does not seem that the basic two-particle interaction is described 

very closely by the EHO Hamiltonian •. 
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APPENDIX A 

The normalized radial eigenfunctions of the NRHO ~re given by the 

expression 

We list here the explicit values of Fvt for v = O, 1, 2 and l = O, 1, 2, 

3, 4. 
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APPENDIX B 

The Pauli spinors 

1 l . l 
~ d µ-2 

c,-i ~ l. 
f z 

x: .t l . J. 
2. J yµ+, 

C?+i 
_ .L 

)'-~ 1 

and 

I .l. j I 
z. ;-z 

c,-l 1. 

f Y1 µ ;i, 

X-~ _{ I 

j 
I 

=. i. y;+i 
C1+1 _l 

f ,. 

form the spin-angle part of the EHO wave functions. Below, we list 

valu.es ~f X µ and Xµ f I I 1 2 3 4 or K = , ·, , ~ 
K -K 

For each value of K, µ can 

take on 2JKI values. 

K.= -I : 
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Ps y:·i r-3? µ-i 
\ --

x~ = 
µ 

\'{.::+2! 
> X-1<:, - {¥ 

I 

0 XJ.Ht - Y/'"i-z 

19 
.1 ff y;-i 

X~= 
'I µ-2 

µ 
K.=-2\ 

~ Y,µ+i X-~ = 
{¥ 

l 'Yz µ+ ~ 

x: = 
-fl¥~µ-~ 

M. 
-1-µ~'/2 y ;-i 

!{,= + 3: 

{Ef Y,µ.+~ X-ic = {)A;~ YzJ.J.+Y2. 

fl l. {9- µ-i µ- 2. y3 
M 

y:;, 
X~= K==~:xi< = ,-~+~ 19 X µ+i yµ+i 

2 .3 

IEf3 f·i -1-µ;%. l 

\ Y/(-2 
x:: - µ 

K,: +4: n .1 X -n; = vµ;~ f y;+2 \)A+Yz 

1¥ y#-t I (-(o/ M..-z 

X; ~ - 3 µ 7 Y., 
1,.g~Y: n I I X-~" ~ yµ+{ yM+~ i 
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APPENDIX C 

This program, written in the Fortran IV language, will print out 

the coefficients of the NRHO and ERO radial densities for the single

particle states up through (v,£) = (5,5). It ,then adds the first z of 

these states together, giving the coefficients of the nuclear density 

for as many nuclei are needed. (In its present form, the densities are 

given.for z 2, 6, 20, 52, 49, 82.) Having done this, the program 

evaluates the normalization integ~al 

CHECK= 41l (<O ftrJ r 2 dr 

and prints this value for each nuclear density. (Our .densities were to 

be normalized to unity.) Making use of equation ( 78 ), the coefficients 

in the form factor F(q) are then calculated and printed similarly. Exe

cution time of this program for the six nuclei and 36 single-particle 

states is less than 30 seconds on the IBM 360/50. 
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190/80 UST 

OOOOOOOOOilU!lllR!lls22222222223333333l33~444444444~5~55555~56~66666~6617717777778 
ll2]~~~7®~012]4~~18901234~6739012345678901234567®90!2345~71!1~0A2~~56709012~4567890 

tARO 
0001 
oooz 
000) 
0004 
0005 
0006 
0001 
0008 
0009 
OOltl 
0011 
0012 
0()13 C 
0014 C 
0015 C 
0(116 
0017 
01)18 
0019 
0020 
0021 
0022 
0023 
002.r,, 
0025 
0026 
0027 
002B 
0029 
003·0· 
001'1 
003·2 
001:r 
003'~ 
ooH 
Q(i'j6 
00}7 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
004B 
0049 
0050 
0051 
0052 
0053 
0054 
0055 

C 

C 

C 

fMiS PROGRA~ EVALUATES THE COEF~ICIENTS Oli,KZ,KI IM iM~ ~~Oi~l D[~SITIES 
DIHENS!ON 11ERllOI.Cl251,Xl6,6,601,D12,8,2!1•~12•8,U2i 
DOUBLE PRECISION x, D 

no FORMAT 11Hl,5X, •RADIAL DENSITY: RHO IV,Ll'i 
20 FORMAT llH0,5X,'RH01'•11,',',11,'I= EXPI-A*A*R*R! ••& 
30 FORMAT 11H0,20X,Fl7.14, 1 A••',12,' R**",121 
<(,0 FORMAT 16141 
50 FORMAT llHl,lOX, 'NON-RELATIVISilC RADIAL DENSITIES RHOIZD'I 
M) FORMAT llH0,5X,•Z=•,fz,5l<,'RHO= EXPI-A•A•R•RI "'I 
10 FORMAT llHl,lOX,'RElATIVISTIC RADIAL DENSITIES RHOIZl'D 

READ 15,401 IITERIJKl,JK=l,61 
fHIS PART Of THE PROGRAM EVALUATES THE COEFFICIENTS IN THE SllNGLE-PARTICLE 

DENSITIES OF THE IHO MODEL, XIN,KL,IEXAI. HERE, N IS lHE PRINCIPAL QU4NTUM 
NUMBER IN=l,2, ••• », KL IS THE ORB. ANG. MOH.+ 1, IEX£=PD~ER OF ALPHA. 

!IRITE 16,101 
J=O 
00 12 N:1,6 
KV=N-1 
KT=2•KV+l 
DO 12 KL=l,6 
L=KL-1 
J=J+l 
WRITE 16,201 KV, L 
DO l LAMBDA =l,XO 
XB=LAMBDA 
XL=L 
V=KV 
Clll=l.O 
Cl LAHBDA+l I =I I XB-V-1.01/ 11 XB+XL+O. 5 l•XBI 1 •C i'I.AMBOAI 
Fl=GAMMAIV+L+3/21 
Fl=V+XL+0.5 
V=Fl 

2 v:v-1.0 
If 1V.LT.0.51 GO TO 3 
Fl=fl*V 
GD TO 2 

3 Fl=l. 77245385*fl 
F2=GAMMAI V+ll 
FZ=V 
If IV.GE.2.01 GO TO 4 
F2=1.0 
GD TD 6 

4 V=V 
5 V=V-1.0 

F2=F2*V 
IF IV.LE. 2.01 GD TO 6 
GD TD5 

6 CONTINUE 
F3=GAMMAI L+3/2 I 
F3=XL+0.5 
V=F3 

7 V=V-1.0 
IF IV.LT. 0.51 GO TO 8 
F3=f3*V 

PAGE 001 



!CAR!) 
0056 
00511 
0053 
005'11 
0060 
0061 
0062 
0063 
OOM, 
006~ 
0066 
0061 
0068 
@069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0017 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
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OOOOOOOOOllRRliRiRR!2222222l22l33333l3l]44444444~~~$55555~~5~6@~66~6&~77177777778 
i2]45@1®~0ll]4561i'390l234561$901234567B901234561ij~OR234561i'090al]456?890i234567890 

Gl:J VO 7 
0 li'3~1. ¥1':1!453il54<F3 

DO H f<llJ=l• lO 
5UM=Oo0 
DO 9 LAMBDA=l.MU 
LDA=MU-L<lMBDA•l 
YERM=CILAMBDAl*IC!LDAI 

9 SUM=SU'1•rERM 
iEXA=2*MU+2*L+l 
!EXR=IEXA-3 
XiN,Kl,IEXAl=SUM*Fl/16.2831853$F2$F3**2i 

11 MRITEl~,301 XIN,KL.IEXAl,IEXA.iEXR 
XIN,2.l!=O.O 
~IN,3,31=0.0 
XIN,3,51=0.0 
x1111,4,31~0.o 
Xllll,4,51=0.0 
XIN,4o71=0.0 
UIN.5,3l~o.o 
xrn.s.~1=0.0 
X( 111,5, 71=0.0 
Xllll,5.91=0.0 
X(lll.6,3)zi).O 
XI 111,6,5l=Oe0 
XI 111,6• 71=0.0 
Xllll,6,9lc0.0 
Xllll•6•1ll=O.O 

12 COIIITIIIIUE 
C THIS PART OF THE PROGRAM SUMS UP THE APPROPRIATE COEFIFltiE~TS 1111 iHE l 
C SINGLE PROTON STATES to GIVE THE VECTOR OF t!lEIFIFICIENiS fOII HIE VOUl 
C NUCLEAR DENSITY Oil, JK. Kl, WHERE: fzl-lHO ~OOEL, Jz2-~~l MODEL; JK LABfLS 
C THE NUCLEUS; K IS THE POWER OF ALPHA. 

DO 133 K=3,21,2 
C THIS IS THE CONFIGURATION OF THE NRHO MODEL 11=11 

011.1.K1=2.o•x11,1,KI 
Dll.2.Kl=Dll,1.Kl+4.0$X(l.2.KI 
D( 1.3 .Kl=DI 1. 2, KI •2.0•l(( 1. 2,K I+ 10. o•xl 1. 3 ,Ki •2.o•x u. R ·" I 
011,4,Kl=Dll•3•Kl+l4.0*Xll,4,Kl+6.0•X12,2.Kl•l2.0*XIA,S,~I 
011.5,Kl=Dll.4,Kl-3.0*Xll,5,KI 
Dll,6•Kl=Dll,4•Kl+6.0*Xll,5•Kl+l0.0*Xl2•3•Kl•2.0•X13,loKI 

1+12.o•x< 1.6,KI 
C THIS IS THE COIIIFIGURATIOIII OF THE EHO MODEL 11=21 

D(2,l.Kl=.27094*1Xll,2•Kl+6.3819*Xll,l•KII 
0(2,2.Kl=2.0*IXl1•1,Kl+Xll,2.Kll+.32814•1X(2,2•Kl•5.0949•X12,l•KII 
D(2•3•Kl=2.0*IX11,l•Kl+Xll,2,Kl+Xl2•l•Kl+X12,2•Kl+2.0•Xll.2,KI+ 

1 2.o•x11,3.Kl+X(3,1,Kl+X(3,2.KII 
D12,4.Kl=D12,3,Kl+4.0*IXl2,2,Kl+X!2•3•Kll+6.0*IX(l•~•Kl•Xll,4•Kll 

1 +2.0*(X(4•l•Kl+X14,2•Kll+4.0*(X(3,2,Kl+X13,3,KII 
D12,5,Kl=D(2•4•Kl-.47652*1Xl3•4•K1+5.29564*Xl3•3•KII 

133 D12,6,Kl=D12,4•Kl+6.0*IX(2•3,Kl+Xl2,4,Kll+8.0*IX11,4,Kl+Xl!,5,Kli 
1 +.26678$(X(5,2,KJ•6.4967*X15,1.KII 

00 79 1=1.2 
C 1=1:1110111-RELATIVISTIC; 1=2: RELATIVISTIC 

IF 11.EQ.21 GO TO 13 
WRITE 16.501 

i'!\GE 002 



CARD 
Oll l 
01!2 
OlU 
0114 
Oil5 
Ollib 
0117 
0118 
OH9 
0120 
0121 
0122 
0123 
0124 
Oll25 
0126 
0!27 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 

80/80 LIST 

00000()000[ H ll 1RllH22222U22!2H3333333344444444,.,,55555555!i56<1><><!>1»66<!>!>67771'7777778 
1z345~1~90!234567890l23456lB90l23456789012345610901z34561aqo12]~56789Dl214567890 

Gil TO 14 
B WRHE H,,70! 
A4 00 719 JK= l, 6 

KZ=ITER( JKI 
WRITEl&,601 KZ 
Z=KZ 
00 15 K=3,21,2 
KR=K-3 
011,JK,Kl=Oll,JK,KI/Z 

15 ~RlTE 16,301 011,JK,Kl,K,KR 
C THIS EVALUATES THE INTEGRAL: 4Pl$INTIRHO*R*RIOR, SUMMED fROH ZERO TO INF. 

75 FORHAT ilH0,50X,'N0RHALIZAT!ON INTEGRAL= ',Fl4.61 

C 

CHECK=5.5b8328*1011,JK,31+1.5*011,JK,51+3.75*011,JK,7!~RJ.125• 
101I,JK,91+59.0625*DlloJK,ll1+324.84375*011,JK,131+21ll.484375• 
2 D11,JK,l51+15836.l33*011,JK,171+134607.l288*Dll,JK,l9D+ 
3 l278767.725S•Oll,JK,Zlll 

!9 !,/RITE 16, 75! CHECK 

C THIS PROGRAl'I EVALUATES THE COEFFICIENTS FIR,KZ,MI IN HiE O'ORM HCHDR FIQ_I 
80 FORMAT llHl,'****$••••• FORM FACTORS flQI •••••••••~'! 
90 FORMAT llH0,30X,'HARMON!C OSCILLATOR FORM fACTOR'I 

100 FORMAT 11Hl,30X,'RELATIVISTIC FORM FACTORS'! . 
lllO FORMAT llHO,lOX, 1 Z•',I2,5X,'FIQI= EXPI-Q•Qll4•A•Ali •'I 
120 FORMAT 11H0,25X,El7.l0 1

1 IQ/Al**',121 
WRITE 16,801 
DO 25 1=1,2 
IF 11.EQ.21 GO TO 16 
WRITE 16,901 
GO TO 17 

16 WRITE 16,1001 
17 DO 25 JK=l,6 

KZ=I TERIJKI 
WRITE16,ll01 Kl 
DO 25 M=l, 10 
MQ=2•M-2 

C G4=GAHMAl2MI 
KW=MQ+l 
G4=1.0 
DO 18 IW=l,KW 
G=IW 

18 G4=G4*G 
SUM=O.O 
DO 24 N=M,10 

C G5=GAMHAl2NI 
KW=Z•N-1 
G5=1. 0 
DO 19 IW=l,KW 
G=IW 

19 G5=G5*G 
C G6=GAMMAIN-M+ll 

KW=N-M 
G6=1.0 
IFIKWI 23,23,21 

21 00 22 IW=l,KW 
G=IW 

PAGE 003 
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000000000llllllllll2222222222333333333344444444445555555555666666666677777777778 
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CARD 
016& 22 G6=G6•G 
0167 23 KM=2•N+l 
0168 TERM=(2.0l*•l-2•N+21*G5*011,JK,KMI/G6 
0169 24 SUM=SUM+TERM 
0170 Fll,JK,Ml=ll-l.Ol••IM-lll•5.56832B*SUM/G4 
0171 25 WRITE 16,120) Fll,JK,Ml,MQ 
0172 STOP 
0173 END 
0174 SENTRY 
0175 2 6 20 52 49 82 
Ol 76 SI BSYS 

PAGE 004 
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APPENDIX D 

One of the many theorems concerning the roots of a polynomial is 

the Sturm theorems which gives an easy method of finding the number of 

roots of a polynomial in any given interval. This theorem is discussed 

in most any book on higher algebra, and the following discussion is 

adapted from Mishina (46). 

Suppose we are looking for the number of roots of the equation 

f o 'VI 'V2 a ?(3 (X) = Qo X + a, I\, t- CL2.- /\., -1- 3 

in an interval a .::_X ..::_ b . The procedure is to construct a "Sturm series" 

and then apply the Sturm theorem at the two end points. 

Construction of a Sturm series is done as follows: We take the 

polynomial f(x) = f
0

(x), its derivative f'(x) = f
1 

(x), then the remainder 

r 1 (x) obtained.when f
0

(x) is divided by f
1 

(x), with the opposite sign 

[- r 1 (x) = f 2 (x)]; then the remainder r
2

(x), obtained when f
1 

(x) is 

divided by f
2

(x), with the opposite sign [- r
2

(x) = f
3

(x)]; then the re-

mainder after the division of f
2

(x) by f
3

(x), with the opposite sign 

Having done this, we have constructed a series of 

polynomials f
0

(x)~ f 1 (x), f
2

(x), ..• , each of degree one less than the 

preceding. 

We can now apply Sturm's theorem and find the number of roots: 

The number.of distinct real roots of f(x) lying in the interval 

[a,b] is equal to difference between the number of changes of sign in 

83 
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the series of f
0

(a), f 1 (a), f 2 (a), ••• and the number of changes of sign 

in the series f
0

(b), f
1

(b), f
2

(b), ••• 

If we are looking for the number of positive roots of a function 

f(x), this is very simple to apply, since the sign off (0) is deter
n 

mined solely by the zeroth degree term and the sign off (00 ) is deter
n 

mined solely by the highest degree term, so the number of changes of 

sign can be determined by inspection, once the Sturm series has been 

constructed. To construct these series is not a simple matter. The 

calculations are direct, but very laborious, particularly for a tenth-, 

degree polynomial, as in the case of EHO lead. Fortunately, however, 

division of one polynomial by another is amenable to computer work, and 

such a program has already been written and published (60). The work 

done by the author was to adapt the program PDIV to the Sturm series 

approach, where the remainder becomes the divisor for the next division. 

A crude, though workable, program that accomplishes this is presented in 

this appendix. 

The input necessary for each polynomial to be studied consists of 

two separate entries: the first entry must contain.the degree of the 

polynomial (IDIMX), and the second entry contains the coefficients of 

the polynomial, ordered from lowest degree to highest degree (a
0

, a
1

, 

The printed output will list the coefficients in the Sturm poly-

nomials, beginning with f (x) [the original polynomial] and proceeding 
0 

to f (x) [a polynomial of degree zero]. Each set of coefficients will 
n 

be ordered from lowest degree to highest degree. In its present state, 

the program will print out f (x) once, f (x) once, but all intervening · o n 



polynomials will be repeated: 

[f (x)] 
0 

[f
1 

(x)] 

[f
1 

(x)] 

[f
2

(x)] 

[ f
2 

(x)] 

[fn-l(x)] 

[fh-1 (x) J 

[ f (x)] 
n 

85 

For construction of ten series, execution time is less than 6 sec-

onds on the IBM 360/50. 



URO 
0001 
0002 
0003\ 
OOO'i> 
000'> 
0006 
0001 
0008 
0009 
0010 
0011 
0012 
oou 
0014 
0015 
OOH, 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
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$JOB 
C THI~ ~ROGR£M tONSTRUCTS ~ STURM SERRES FOR fME ?OlVNO~i£l ~azo. ~KE~~ 
C Fill~ Xil,li•l~•O + X!!,2l•Z•*l + Xll,3i•Ze~l ~ ••• & ~ilRofiO!~ll•l~•IDIMX-l 

DIMENSION Xl20,201,Y(20,201,Pl20,201 
20 fORMAT ilHO,lOX,'KZ=•,121 

DO 9 KZ=l, 10 
READ, IDIMX 
READ, lXll,11,1~1,IDIMXD 
IIRIVE <6,20 l KZ 
DO 1 1~1.IOIMX 
PRiNT, XI l, 11 
iDIMY=IDIMX-1 
IF IIDIMY.LE.01 GO TO 9 
DO 2 l=l. ID IMY 
Vll,llgl$Xll,l+ll 

2 li'RINT, Yll,11 
KL=IDIMY 
DO 8 L~l ,Kl 
IOIMP=!OIMX-IDIMY~l 
IDIMX=lDIMY-1 
IF IIDiMXI 9,9,10 

10 l=IDIMP 
3 ll=l<>IDll4X 

PIL,ll=XIL,lll/YIL,IDIMYI 
DO 4 K=l.UDIMX 
J=K-1+1 
X(L,Jl=XIL,Jl-PIL,ll•YIL,Kl 

4 CONTINUE 
1=1-1 
IF Ill 5,5,3 

5 CONTINUE 
IDIMX=IDIMY 
DO 6 M=l, ID IMX 
Xll+l,Ml=YIL,MI 

6 PRINT, Xll+l,Ml 
IDIMY=IDIMX-1 
DO 7 M=l , ID I MY 
YIL+l,Ml=-Xll,Ml 

7 PRINT, YIL+l,Ml 
8 CONTINUE 
9 CONTINUE 

STOP 
END 

SENTRY 
l 
O. lEO l 
2 
0.1000025E 01 -0.144092EOO 
2 

O.lE 01 -0.lllllllE 00 
4 
0.9999969E 00 -.2131056E 00 .2782075E-Ol -O.ll61E-02 
3 

O.lE 01 -0.25E 00 0.1249999E-Ol 
6 

Pl\G~ 001 

ex 
cr 



80/IJO UST PliGE 002 

0000001iOORl~!llllR12222222222333333333344444444~55'>555555566~~66666677177777778 
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CARD 
005il> 11. rnoooozE 1n -.3499999E 00 .6333333E-Ol -e 517!!80ll!:-O:I: .z5291sn-03 
0057 -. H20231E-05 
0056 5 
0059 @.9999996E 00 -0.428571:llE 00 0.48975BE-Ol -O.i.1Z4914ic-OO/ o. U14771E-04 
ooi.o l'l 
0061 o !OE 01 -.5084226E 00 .U96635E 00 - • 1.U ~3:ll~E-0~ • 811979 5 lE-0 3 
001!,2 -o219S927E-04 .401'1545E-06 -.2191776E-08 
001!,3 6 
0064 !Ii. 99999'16 E 00 -o. 5487802!: 00 0.8841449E-Ol -Oo'>2990Mic-!li:i! 0.1U9095E-03 
0065 -0.43'1'13'14E-06 
0066 R!IJ 
0067 • &ill: 01 -.6051865E 00 .1570771E 00 -.i!2375'tU-O~ .2008361E-02 
00&8 -o R20'1193E-03 .4876324E-05 -.1238519E-06 .ns1194rc-011 -.1034201E-10 
0069 (llll'l,SYS 

oc ..... 



APPENDIX E 

Evaluation of F(q), * as a function of e • This program is a 

simple evaluation of two functions, each having the scattering angle e 

as its dependent variable. 
0 0 

In this program, 8 is runs from 2 to 178, 

incrementing by steps of 2°. At each value of ei the momentum transfer 

q~ the form factor F(q), and the cross-section (do/dn) are evaluated 

and printedo The input requi~ed for this program consists of two 

entries~ the vector .of coefficients C(K~M) in the form factor~ ordered 

from zeroth degree to tenth degree; and numerical values for the four 

constants B(K~l), B(K,2)~ B(K~3)~ and a(K) [all expressed in CGS units.] 

The constants are defined as follows: 

2Eo 
B(i-<, I) == M c2 

B 0.:,2) = 
c~2)z 

ZEo 

B (K,3) = 
ZEo 
C h 

cx(K)= / m,-l=cWK 

When CGS units are used for these .parameters, dcr/dn will have units of 

[crn
2
/steradian]. 

The execution time is approximately 5 seconds per nucleus. 
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CARD 
iJOOl -
0002 
0003 
0006> 
0005 
0006 
0007 
OOOB 
0009 
0010 
OOll 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
oozo 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
ooze 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 

90/80 UST 

lil!llOOOO@tJ(J ll ll l [i U l l. 122222 222223333333:ll:l\31l,4444~4t,45!ii!li555!li5!l\5f,t1'4\><!>611,611,M 1'11/11111118 
[1]'>~6?9~0•234~&7S~012~4~67®~0123456789012345678~@1234567~901234561/®90llID4567090 

VHlS PROGRAM EVALUATE$ THE FORM FACTOR ANO Di~FER~NV!Ai t~~S:IP
SECTION FOR ELASTIC SCATTERING 
DIMENSION Cl20,ZOl 0 B!?Oo5!,.LPH~!201 

10 FORMAT 15El6.7/5El6.7ffA~.1,El6.5,El6.7,EllOo4D 
20 FORMAT 11Hl,50U,'K~',YZI 
30 !FORMAT llHO, 'LAB I\NGlE IOEGRU:IESI' ,43~,°FOL'll'I fAC1i'!llR 0 .ll©~. 

l'Eli:CTRON SCATTERING CROSS-SECTiON'I 
~O fORMAT I 5X,•THETA='•il.17X,'Q~•,El4.7,17X•'FQ$•,El4.7,ti~, 

l'DS1GMA=1 ,El4.7.5X,1ll 
RfAD 15,101 l!CIK,Ml,Hsl,101,IBiK,11,Isl,31,ALPHAIKi•K~A.@21 
DO Z K=l,Z 
WRHE 16,201 K 
l:4RITE 16,301 
00 Z l=Z, 178,Z 
iHETAzl 
PH(sTHETA/ll~.591559 
COSPIH~OS( l'Hi I 
·sIMPHI:SINIPH() 
ZETA=SQRTll.O+BIK,ll*SIN~Hi*SINPHII 
Q•B1K~3!*SlNPHI/ZETA 
Y=Q*Q/IALl'HAIKl*ALPHA(Kli 
SUM=O.D 
00 1 M=l,10 
TERMsCIK,Ml*Y**IM--11 
SU~SUM+TERM 
FQ=SUM*EXPI-Y/4.DI 
OSIGMA=BIK,Zl*COSPHl*COSPHl*FQ•FQ/ISINPHl*SlMPHl*SINPK~•SUNPHI* 

1 ZETA*ZETAI 
Z WRITE 16,401 J,Q,FQ,OSIGMA,1 

STOP 
END 

SENTRY 
0.9999996E 00 

-o. U99394E-06 
o. 002_56033 
• lOE 01 
-.1Z09193E-03 
0.00256033 
SIBSYS 

-0.548780ZE 00 
o.o 

5. 66666 7E-Z 8 
-.6051865E 00 
• 4876324E-05 

5. 666667E-Z8 

0.88H449E-Ol 
o.o 

z. 51366E 13 
.1570771E 00 
-.1Z38519E-06 

Z.51366E 13 

-0.529906!i!E-l"!e! 
o.o 

3.7lU2 
-.ZZ37544E-CR 
.1 75 l 794E-OS 

3. 71El2 

o. iu~095IE-03 
o.o 

oZ«lOUf>lE-02 
-.1034Z01E-10 
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