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CHAPTER I 

INTRODUCTION 

Origin and Objective of this Study 

During recent studies at Oklahoma State University on regional 

geothermal gradients, the necessity became apparent of the need of fur­

ther study of temperature disturbances caused by drilling fluid circula­

tion. Undisturbed subsurface temperature data are not readily available 

in many areas; however, the maximum temperatures recorded while logging 

wells soon after they have been drilled to total depth are available for 

most areas, These temperatures usually differ from the true geothermal 

temperatures due to the heat transfer that has taken place while circu­

lating the drilling fluids. 

More accurate knowledge of subsurface temperatures is of interest 

to the oil industry 1 particularly in recent years because of higher tem­

peratures associated with deeper drilling and the drilling of geothermal 

wellso Subsurface temperature information is useful when considering 

potential oil and gas exploration areas, prediction and control of down­

hole mud properties, lost circulation, cementing material, casing design, 

log analysis, optimum location of geothermal wells and in reservoir 

engineering applications. Consequently, a better understanding of the 

factors that affect temperatures while the well is being drilled, and 

in the thermal stabilization period thereafter, would improve drilling 

operations, and aid in the search for energy sources within the earth. 

1 
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Mathamatical equations describing wellbore heat transfer were 

found· in the literature; however, a direct solution of these equations 

was not possible, and no approximate, practical solution for engineering 

analysis has ever been given. With the availability of larger, faster 

digital computers, a numerical solution of the problem is now feasible. 

The finite-difference method lends itself to a broad application in 

which differing boundary conditions and heterogeneous systems can be 

considered. This method has been successfully used in similar heat 

transfer problems and a great variety of othef prdblems involving phys­

ical phenomena. With a little ingenuity and proper application of 

numerical techniques a practical solutionj that is both accurate and 

efficient, can be obtained for a specific problem. 

The objective of this study is to develop a practical numerical 

method capable of modeling accurately and efficiently the non-steady 

temperature distributions created by fluid circulation in a drilling 

well. The method must be practical in the sense that computer ·simulation 

time is short enough to allow an economical engineering analysis of the 

problem. 

Previous Developments 

The following literature survey covers the major developments, 

pertinent to this study, that have been made in wellbore heat trans-

mission. 

The general theory describing heat transfer in physical situationsJ 

such as those found in the wellbore, has been long established and is 

largely accepted. Most of the work that has been done in the area of 

wellbore heat transmission, therefore, has been directed towards the 

solution of system( s) of equation( s) describing physical phenomena that 
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have been derived from the basic concepts of heat transfer. The earlier 

work in this area was directed towards the determination of temperature 

profiles caused by fluid injection into an existing well. In 1959, 

Moss and White (9) obtained solutions describing the temperature 

behavior of water injected into a well. A quasi-steady state was 

assumed, thus lessening the importance of time on the temperature 

behavior. In addition, Moss and White found it necessary to discretize 

the spatial coordinate, depth. 

A more rigorous approach to the problem of estimating temperature 

profiles as a result of hot-water injection was taken by Squier et al. 

(15), The solutions of Moss and White were slightly improved upon 

by solving analytical expressions that were continuous in the inde­

pendent variables time and depth. However, the solutions of Moss and 

White compared favorable with those of Squier et al., thus adding to 

the validity of the quasi-steady state assumption for the long term 

injection problem. 

Ramey (10) investigated the temperature disturbance caused by 

either hot or cold fluid injection into a well. He developed a more 

general approach to solving the wellbore heat transmission problem by 

considering total-energy and m.e.chanical-energy equations simultaneously 

in order to yield both temperature and pressure distributions. 

However, in order to solve these equations, he found it necessary to 

make many simplifying assumptions, thus reducing his solutions to those 

of approximate total energy equations. 

Edwardson et al. (4), in an effort towards better interpretation 

of electric logs, developed a method of calculating formation tempera­

ture disturbances caused by mud circulation. This method was based on 



solutions of the radial diffusivity equation in which all initial 

conditions were approximated using techniques of superposition. 

4 

In 1966 Schoeppel and Gilarranz (13) showed that maximum recorded 

temperatures taken while logging could be used to analyze regional 

geothermal gradient trends. Formation temperatures were known ,to have 

been disturbed during drilling prior to logging; and, due to this, they 

were previously assumed to be unrepresentative of the steady-state 

formation temperature. However, by calculating formation temperature 

build-up using the results of earlier workers and a solution to the 

radial diffusivity equation, Schoeppel and Gilarranz showed that the 

temperatures taken at the time of logging were sufficiently close to 

the true geothermal temperatures to merit their use. This was further 

demonstrated by correlating known geological data in Oklahoma with 

regional geothermal gradients, which were computed using log 

temperature data only. 

The most recent work in which heat transfer due to circulation of 

mud in the wellbore has been considered is that of Raymond (11) who, 

in 1969, presented a general technique for calculating the temperature 

distribution in a circulating drilling fluid. Three coupled partial 

differential equations were solved numerically for the drill pipe and 

annulus temperatures as functions of time and depth, and the surrounding 

formation temperatures as functions of depth, time and radial distance 

from the wellbore. The partial differential equations were well known 

heat-flow equations that have been presented by Bird, Stewart, and 

Lightfoot (1). 

Raymond's numerical solution technique is of interest to this 

study for comparative reasons. Therefore, an outline of his solution 
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method is presented here: 

1. Using the specified circulating conditions, physical dimensions 

of the system and fluid properties, heat transfer coefficients were 

calculated from the Seider-Tate correlation (14). 

2. Using the initial condition of geothermal temperature at the 

initial time, the drill pipe and annular temperature profiles were 

calculated for the first time step by solving the wellbore heat flow 

equations by explicit finite differences. The formation temperature 

used in the first step of the calculation was the geothermal temperature 

at that particular depth. 

J. From the calculated annular profile, the flux of heat into the 

annulus from the formation was calculated. 

4. Based on the flux found, the formation temperatures were 

calculated using a solution to the radial diffusivity equation presented 

by van Everdingen and Hurst (5), 

5. Using the values of formation temperatures calculated, the 

annular temperature profiles, the flux and the formation temperatures 

were recalculated. This iterative procedure was continued until the 

flux or formation temperature did not change significantly with 

iteration number. 

6. At the next time step, the previous values of heat flux between 

the annulus and formation were used to predict the new formation tempera­

tures by the principle of superposition. The drill~pipe and annular 

temperature profiles were calculated as before, and iterations were 

carried out until the calculations converged. 

7. The above process was continued until the calculations were 

completed for a total time of calculation specified by the particular 

problem. 
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Although Raymond completely described the temperature distribution 

in a circulating drilling fluid, the iterative explicit solution tech­

nique appeared to be undesirable for use in solving a larger class of 

problems. One such problem is the determination of the temperature 

distributions in the drilling fluid and surrounding formation throughout 

an entire drilling period. This problem arises from the need for more 

complete information concerning formation temperature parameter 

sensitivity. 

Statement of the Problem 

Given a well in which there is drilling fluid circulation, the 

basic problem is to determine the dynamic, thermal response of the 

fluids in the wellbore and the surrounding formation. A problem of 

heat flow may be posed in several ways; however, one of the principal 

considerations is to determine the type, or types, of heat transfer 

that will be considered in the problem. Differential equations dynam­

ically describing the particular type(s) of heat flow are then formu­

lated, along with initial and boundary conditions applicable to the 

particular problem being studied. In all facets of the,problem 

development, simplifying assumptions are made only if they are necessary 

in order to solve the problem. 

Physical System 

The physical situation studied is represented in Figure 1. Fluid 

enters the drill pipe at the surface and passes down the drill pipe. 

The fluid exits the drill pipe through the bit and enters the annulus 

at the bottom. The fluid then passes up the annulus and exits the 

annulus at the surface. There is heat exchange between the fluid in 
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Figure 1. Schema.tic of Circulating Fluid System 
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the drill pipe and that in the annulus, and between the annulus fluid 

and surrounding formation. 

Mathematical Statement of the Problem 

A. Differential Equations 

It was desired to solve the problem in general, with as few limit-

ing assumptions as possible. The differential equations, therefore, 

selected as most suitable are: 

- .!°A C 
D f' 

(1-1) 

(1-2) 

The Zand rare cylindrical coordinates, t represents time, TD' TA' and 

Tf. are the drillpipe, annulus, and formation temperatures, respeotively, 

U is the over-all heat transfer coefficient between the drill pipe and 

annulus, hf is the borehole wall transfer coefficient, kf is the 

formation thermal conductivity,.r>f is formation density, Cpf is 
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formation specific heat, C is the specific heat of the drilling fluid, 
p 

VD is the velocity of the fluid in the drill pipe, VA is the velocity 

of the fluid in the annulus, AD and AA are cross-sectional areas of the 

drill pipe and annulus, respectively, and rD and rB are the radii of the 

drill pipe and borehole wall, respectively. These equations assume that 

the temperature of the fluid as it passes down the drill pipe is deter-

mined by the rate of heat convection down the drill pipe, the rate of 

heat exchange between the drill pipe and the annulus, and time. As 

fluid flows up the annulus, its temperature is determined by the rate 

of heat convection up the annulus, the rate of heat exchange between the 

annulus and the drill pipe, the rate of heat exchange between the 

foirma.tion adjacent to the annulus and the fluid in the annulus, and time. 

These equations were used by Raymond (11). A simplified form of 

the equations was used by Squier et al. (15) to determine hot water 

injection profiles. Many investigators, of which Edwardson et al. (4), 

Ramey (10), and Schoeppel and Gilarranz (13) are some, have used the 

radial diffusivity equation (equation (1-3)) to describe heat conduction 

in the formation adjacent to the wellbore. Bird, Stewart, and Lightfoot 

(1) and Dusinberre (3) have presented derivations of similar equations. 

B. Assumptions 

The derivation of equations (1-1), (1-2), and (1-3) will not be 

presented here; however, the assumptions that have been made in their 

development are necessary for an understanding of the problem. 

The following assumptions have been made: 

1. The effect of heat generated by bit action is negligible. 

2. There is no fluid flow into or from the formation. 

3, There is no fluid flow in the annulus other than that of the 

circulating drilling fluid. 
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4. Heat transfer by radiant energy is negligible. 

5. Heat transfer by conduction in the circulating fluid is 

negligible. 

6. Heat transfer in the formation is by conduction in the 

horizontal direction only. 

Other assumptions will be given later when the fluid parameters, 

heat transfer coefficients•, and :rnitial and boundary conditions are 

considered. 

~oundary Conditions 

The dimensions and cylindrical coordinates of the system are shown 

by Figure 2. 

The appropriate boundary conditions for this problem are: 

~ (Z-::-l 1 f)= 1"·(z=L;t) 

f; (r001 2; I:)= ·T= (z) 

;)_ -r,-'s ti{ [7; { r&; 2) t)- 0, (l, t)J = 

~ ~'e kr l d ~~z,i) J 
r·=r8 

(1-4) 

(1-5) 

(1-6) 

(1-7) 

Here r~ is sufficiently far from the wellbore such that its temperature, 

T
00 

(Z), is undisturbed throughout the total time of drilling fluid 

circulation. At total depth, Z = L, fluid leaves the drill pipe and 

enters the annulus, therefore, the annulus and drill pipe temperatures 



/ /j 
/ 

/ 

z 

Figure 2.. Assumed Coordinate System for Numerical Model 

11 
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must be the same. The inlet temperature of the drilling fluid coming 

into the drill pipe from the mud pits must be specified. It is reason-

able to specify this temperature as a constant for circulation at a 

constant depth, and as an increasing function with depth as the well is 

drilled deeper. Equation (1-7) states that the flux of heat entering 

the annulus from the formation must equal the heat flux lost by the 

formation. 

Initial Conditions 

The initial conditions considered are: 

(1-8) 

While drilling, the conditions are modified somewhat in that 

(1-9) 

and, 

7= (t) 2 +-))2) t,) T (z) 
T o;;, ) 

(l-10) 

Here DZ is a discreet increment in depth in which drilling is assumed 

to take place starting at time, t 1 • 



CHAPTER II 

HEAT TRANSFER COEFFICIENTS 

To solve equations (1-1), (1-2), and (1-3) the heat transfer 

coefficients U and hf must first be determined. The overall heat 

transfer coefficient, U, considers the thermal resistances at both the 

inside tube walls of the drill pipe, and the resistance to heat flow 

through the drill pipe. This coefficient is defined in the following 

~quation (refer to Figure 3): 

(2-1) 

also, 

Of\= r2TTR h, (T-T) 
r ID L D I (2-2) 

(2-3) 

(2-4) 

since, 

T.--1 -T-T.+-T-T..+-T-T: D fl - t, I I -c... ;;__ ,-, 
(2-5) 

13 



Figure 3. Cross-sectional View of the Wellbore and 
Associated Heat Transfer Coefficients 

14 
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+ 

RD ,~c~~olR:ro) ~-~D 

k ir~ ll j)if e., ~D ho 

(2-7) 

The coefficients, h., h, and hf can be approximated using corre-
1 0 

lations presented in the literature (7, 14) o These correlations have 

been developed by using dimensional analysis to form parameter groupings. 

Emperical data was then used to relate these parameter groups. The 

parameter groups that were considered significant for this study were 

the Prandtl number, 

(2-8) 

the Reynolds number, 

(2-9) 

and the Stanton number, 

(2-10) 

wherej-<is the viscosity of the drilling fluid, G is the mass velocity 

of the fluid, k is the thermal conductivity of the drilling fluid, and 

Dis a characteristic diameter equal to 2rID for hi, and 2(rB-rOD) for 

h
0 

and hf (after McAdams(?), page 241). 
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For this study the fluid properties were considered to be invariant 

with temperature. This assumption has been made due to lack of suffi-

cient data on the temperature dependency of drilling fluid properties. 

If data were available it could easily be incorporated into the problem 

solution. 

McAdams (7) presented the following correlation of the parameter 

groups (2-8), (2-9), and (2-10): 

tor-(L/J-r/;)) to 'o..YHA.,, 

~1 a o < ( D G /;,1 ) < I DJ o o o 

for (DG//A) > Ill) CJ()O 

( L/J.r-8) > ,o 
O,o...t3 

(DG//4).,i 

0, 0.;ld 

(DG/ u)';;.. 
(2-11) 

(2-12) 

The viscosity ratio Cl1w~b) is a ratio of the fluid viscosity evaluated 

at the wall temperature divided by the fluid viscosity evaluated at the 

bulk stream temperature. Since the fluid parameters are considered 

temperature invariant in this study this term reduces to unity, and 

equation (2-11) becomes equation (2-12). Thus, equation (2-12) may be 

used to evaluate the heat transfer coefficients h., h , and hf. 
J. 0 



CHAPTER III 

NUMERICAL SOLUTION 

Finite-Difference Equ~tions 

An approximate solution of equations (l=l), (1-2), and (1-3) may 

be obtained by replacing each derivative by its finite-difference 

approximation and solving the resulting set of algebraic equations 

either explicitly or implicitly, The basic methods are explained 

adequately in most texts on numerical analysis (e.g., Collatz (2), 

McCracken and Dorn (8), and Richtmyer (12)); however, a derivation of 

a finite-difference approximation for the first and second derivative, 

when the step size is not c,onstant, is necessary here. 

If a function y(x) and all its derivatives exist at a point x, 
0 

then y(x) can be expanded in~ Tmylor 0 s series as: 

0-1) 
J 

+- {~~x,J ;1
11(Xe1)+- ••. hi'Jh e,r- orde-r ttern-,.s 

. 

With the notation y. ~ y(x + :iAx1 ), equation (3-1) can be written: 
J. 0 

0-2) 

17 
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.1 = (-4 - (1JX_1) ':Ji -f (Ltx_;):2. ';J," - (t!JX.;)J t../" + ... 
7 ./0 o -<-- o JI ./o 0-3) 

Subtracting equation (3-3) from (3-2) and, ignoring terms of order 2 and 

higher, a finite-difference form for the derivative~ at the point x
0 

is obtained, i.e.: 

I 

% 
0-4) 

Sindlarly, addition of (3-2) and (3-3) yields a finite-difference form 

for the second derivative, i.e.: 

J, - r:/1.. !Jo+ !:J_, + (LJ;,x_, - LlX I) J/ 
-1.. ( IJX 2. + LI x ~) 
)._ I -I 

0-5) 

WhenLlx1 =Llx_1 , equations 0-4) and (3-5) reduce to the well knwon 

centered-difference finite-difference forms. These are: 

t.J/ ':J, - ':}_, 
= .;t.'1)( 

0-6) 

I/ y - ;;_ :!,, + cy_ I 

10 .::: 
I c:, 

4X .2.. 
(3-7) 

An explicit method was used by Raymond (11) in his solution. 

However, in this study an implicit method was used. The implicit 

method usually requires more numerical calculations for a solution at 
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at each time step, but the time step size is not limited by convergence 

criteria common to explicit methods. In addition, when solving coupled 

equations, an implicit approach can eliminate the necessity of applying 

iterative techniques. The choice of the implicit method was made for 

these reasons. However, it was also realized that, if necessary, the 

method would have to be altered by some corrector technique if the 

round-off error became significant. 

The implicitly formulated finite-difference equations for equations 

(1-1) and (1-2) (b.Z = constant) are, respectively: 
N+ I 

0-8) 

0-9) 

The subscript i denotes the grid point along the Z-axis, and the sub-

script N denotes the time step, with N + 1 being the new time at each 

step. 
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Equation (1-3 ), formulated implicitly with a variable radia.l step 

size, becomes: 

(3-10) 

"r'he subscript j denotes the grid point along the r-axis (see Figure 4). 

These finite-difference equations are not the only difference 

equations that could be used. More accurate difference representations 

may be developed; however, the second order difference representations 

wex-e considered adequate for this study in view of the added 

computational work required by higher order methods. 

Equations (3-8), (3-9), and (3-10) completely define the tempera-

ture history of the physical system" The complete solution of these 

equations consists of knowledge of, 

0-11) 

for each position in time, N. 
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These equations are algebraic equations; however, assuming appro-

priate boundary and initial conditions are specified, these equations 

are implicit in the sense that none of the temperatures can be determined 

without simultaneously determining all the temperatures of the solution 

set, (3-11). 

Boundary Conditions 

To carry out the solution of equations (3-8), (3-9), and (3-10) a 

knowledge of either the temperatures or heat fluxes at some of the 

boundaries must be known. This knowledge comes from the boundary con-

ditions which were specified in Chapter I. These conditions are now 

applied to equations {3-8), (3-9), and 0-10), and the resulting 

fin.::tta-difference forms are considered. 

at i = 0 

:Equation (3-8) becomes: !Vt-/ 

[,;; {.:i)- ~. }· ;l 71"'~ U [r. (1 )- 'A{,>]} 

CJ-12) 

The annulus temperature at this boundary is not specified. In 

ord®r to maintain the same number or unknowns as equations, a forwards 

difference representation of the derivative at this point is written. 

Equation (3-9), therefore, becomes: 
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0-13) 

at i = M 

The drill pipe temperature at this boundary is not specified. 

Therefore, a backwards difference represent~tion of the derivative is 

Al+ J {!\:~Cl' ~ {lil)- ~ (m-1)]+.111"~ u f;tM)-7,; (ft!) g"' 

- j>:: [~ [~ N(M)- ~N(tli)] 0-14) 

Here, the annulus temperature is given in terms of the drill pipe 

temperature. Equation (3=9) is replaced by the following equation: 

0-15) 

j = l, all i 

At j = 1, r ~ rB and the heat flux leaving the formation must equal 

that going into the annuluso Therefore, a boundary condition for 

equation (3-10) may be obtained in terms of the annulus temperature at 

that particular depth, i. Replacing equation (1-7) by its central-

difference, finite difference form gives: 
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Equation (3-10) written at j = 1 is: 

0-17) 

The ficticious temperature, Tf (i,0), is determined from equation (J-16), 

J..t+-1 

{ T( (1,, okl; (.:,, ~)- .).~(,)J, f [7i (-l, ,) - T,;; {;t)]] (J-18) 

and equation (3-17) is written: 

w+-1 

.;i~~r (,) }s ( -C,;,.)] r{JJ1r{, [f [,;: (-l,.,,). ;i_ '+- (<'-, ~ J = 

(3-19) 
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j = k, all i 

At this boundary the temperature is a constant equal to the 

geothermal temperature at depth, i. Equation (3-10) becomes: 

0-20) 

Initial Conditions 

Values of TD(i), TA(i), and Tf(i,j) at time N mµst be known in 

order to obtain a solution at time N + 1. In order to begin the solu-

tion of equations (3-8) , 0=9). and (J-10) initial values of the 

variables :must be specified, These values are the initial conditions 

given in Chapter I. In terms of the grid system these conditions are: 

~,all i, N = O 

T; {~) ~ T~ (1) 

-r; r~> ::: 7: o) 

for all i, all k, N = 0 

(3-21) 

(3-22) 

0-23) 
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For simulation of a well that is being drilled, the initial condi-

tions that are appropriate for each new interval, DZ, of depth 

considered are: 

for the grid points, i~ contained in DZ 

-r (: ;) .., ( ) 
!) ,.,_ =-ID !YJ 0-24) 

{3-25) 

{3-26) 

Spati~l ~tep Size Change 

Equations (3-8) and (3-9) require that the spatial variable, Z, 

be discretized into equal increments of size, .6 Z • For reasons of 

accuracy and practicality it is often desirable to determine temperature 

distributions from data corresponding to depths that are unequally 

spaced along the Z axis. A step size may be multiplied by an integer, 
' 

t,,.nd the computational procedure continued, with little difficulty (the 

b01Lndaries of Z are assumed to stay the same). However, when the step 

size is multiplied by anything other than an integer, an approximation 

fol::" some of the dependent varia.bles must be made. 

Consider the portion of the Z axis shown in Figure 4. A step size 

change has been made, sta:!'."ting at point i. In order to calculate the 

derivative at point i the temperature at the ficticious step (see 

Figure 5) must be approximated from knowledge of nearby te~peratures. A 

second order approximation of Tf. t· . is justified since the deriva-
1c lClOUS 

tives of equations (J-8) and (3-9) are calculated considering second 
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------,t,,,,,,,-----.i.J+ z 

Figure 5, Grid Nomenclature for a Step Size Change 
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order effects. However, for simplicity, a first order approximation is 

used. This requires that the temperature at the ficticious grid point 

be: 

T. ~ 
FJ(.. TJt:., 1 DUS 

CT. -1- ( /-c) T: 
A;+J ' 

0-27) 

Therefore, the central difference approximation for the derivative 

at point i is: 

0 T;;, ~+ 1 - [c T;,,+, + ( l-c) 7J:] 
:' (3-28) 

az o< c.b.Z 

Simultaneous Solution of the Equations 

&iuations 0-8), 0-9), and {3-10) with their associated end condi­

tions ( equations 0-12), (3-13), 0-14), 0-15), 0-19), and 0-20) 

constitute a set of 2M(l+k) algebraic equations with 2M(l+k) unlaiowns. 

In order to accurately simulate the temperature distributions, caused by 

lTIUd circulation in a deep well, it was found necessary to use values 

of M = 48 and K = JO. This is a set of 2976 equations. Since these 

equations were formulated implicitely, they must be solved simultane-

ously in order to determine their solutions. In addition, the equations 

must be solved again at each time step (around 75 times for a deep well). 

This problem cannot be solved practically if the usual solution 

techniques are used. (i.e., matrix inversion, standard Gauss elimination, 

Gauss-Seidel iterative method, et.c.). Rather than simplify the problem 

by introducing further approximations, or use time consuming iterative 

techniques, an efficient method of solving this problem was developed by 

modifying some of the usual methods of matrix manipulation so as to take 
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advantage of the particular structure of the problem. This method is 

developed in the following pages. 

Equations (3-8), (3-9), and (3-10) can be written: 

(3-29) 

CJ-31) 
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The following parameter groups are defined to be constant in order 

that this development may be followed more clearly. The method of 

solution; however, does not require that these parameters be invariant. 

They may vary as a function of any one, or all of the independent 

variables. 

V /j-t 
D 

W- ;1..rrr Ub."t 
- ~.A,--~---

r° fj /If Cp 

V::: ~7rr13 hc_lJ ~ 

P flfr c'° 

The following parameter groups var-y as a fupction of r only. 

(3-32) 

(3-33) 

(3-34) 

(3-35) 

0-36) 
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Ei = :: c~{H;;)[ilr~;,Ll-;;f+I~ + M'{.;}~7(f;,) [ I 

-:{~j-+::~;:iJ r 0-J8) 

0-391 

Substituting equations {3-37), 0-38), and 0-39) into equations 

(J-31), (3-19), and (J-20) and writing in matrix form gives: 

tV+! Al+J N+J "' AL -ZA 7i ( .l) 9 Z1.~(_,_;) 7i(.,:,)1) 

0 7i. ((~) 0 7i: {,s ~) 

1j;(~ .. rv 0 ~({;f-1 

Ji{~)-j) + 0 == 1-F (~J 3) CJ-40) bj Gf· t' J J 
7i(~i1-iJ i7r-( _;,)i+DI 

~ 
0 

.. I 
7i:(-1,.) k-,) 0 Tj: (~ 1<-1) 

0 
7iµ)) 0 i E"x. J =(;.), 

Gk G:il:: I< J I 

+-Tr: ( .,,;, J<l.J 
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Substituting equations (3-32) through (3-36) into equations (3-29), 

(3-30), and end conditions (3-12) through (3-15) and writing in matrix 

form gives: 

0.-l R o -~ o 
mR Q+l R o -Q 0 
O R Q+1 0 0 -QR 
WO OW-tV·""J6 0 0 O 

0 
Q-W O S1

~:v+I ... ,$ Q O C) 

C)-W OS :W+V·H O O OS 

'\. \. '\. '\. ' " ' " '· -R .o o o ~+1 R. o-&o 

0 

D o o -R Q+I O 0-Q R 
QC) 0-·R.Q;-/ OCJ-Q~ 

S-w DO w1-1..v-.s 00 O 

0 - ~ 0 S W+V'"/-S00() 

O-Wo S W+V+tOOo-5 
'\. '\.. '\.. ' ' ',, ' . -J.o a o Q+I RO·QO 

O O o - P, Q+I R O-Q 0 
0 o 0-J~~, 0.0-Q 

D - W O O W-lil+-/-.SO 
0- W O $ WI-V+I· 

O .. / 0 0 I 

0-41) 
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Neither equation (3-40) or (3-41) can be solved as they are written, 

each contain too many unknowns. However, the two equations combined 

contain sufficient information to obtain a complete solution. An 

obvious, yet unique, approach to this problem is to determine Tf(i,l) as 

a function of TA(i), substitute this relation into equation (3-41), and 

solve the resulting set of 2M equations and 2M unknowns. 

Equation (3-40) can be solved most efficiently by applying a 

recursion relationship given by Richtmyer (12). Upon examination, it 

was found that this recursion relationship was nothing more than 

/(~tandard Gauss elimination applied to a tridiagonal matrix. Therefore, 
'·f) 

the method of Gauss elimination was used to restructure the coefficient 

matrix of equation (3-40) into an upper bi-diagonal matrix. New values 

of the constants in the right hand side vector were formed by multiply-

ing this vector by a working vector, DD(j), formed in the elimination 

process. Upon examination it was found that a new algorithm could be 

developed in which the temperature Tf(i,l) is written as a linear 

function of TA(i). To illustrate the development of the algorithm 

consider the following system of four equations that are to be solved 

simultaneously. 

A,1 'Ai-a_ 0 0 
f 

Ff; X 

'A A ,.,:L. IJJ-3 0 Ff CA. 0-42) ~ 

'21 

0 /J ]2. A 33 A 3t 
FF; Cg 

0 0 A~.3 I+ If'+ Ff:. y... cf 
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Where the A's and C's are specified constants, the FF's are unlmown 

temperatures, and Xis an unlmown. 

Applying Gauss elimination gives: 

B,, (J/2.. ('.) 0 F~ X 

0 8.2 ::i.. 8).3 0 FF2.. c" (3-43) .:>-

,:I 
CI 

0 0 8 t3 FF 
]3 3'/' J 3 

0 0 0 6if'f F~ C" 
'f 

The c'~s are formed by application of the working V(3ctor; they are: 

C,
1 

- -DD(;)X +-C 
J.. - :;l.. 

C = DD{3)C ,J+ D!D (;;,) DD (s) C 
~ ,;;J .2.. 

(3-44) 

.,,.fJOl1) DD(;;.) DD(3) X 

0-45) 



Performing back substitution, 

and, 

I 

F.F - C¥ Lf--
8'+'1-

F='F 
3 

c' s 
=- -

~J3 

~. a~ ~"'"c'c-
1

• 

t?11 6~,_ 1.3.? 3 13 '/-:I-

35 

(3-46) 

0-47) 

Substituting equations (3-44) into the above expression gives: 

(3-48) 
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The coefficient of X, as well as the other terms of equation (3-48) are 

all known constants. The relationship has the form, 

F~ == o... X + b (3-49) 

where a and bare constants. 

A new algorithm can be developed by generalizing equation (3-49) 

to a set of K equations. The constants a and b then have the following 

form: 

0-50) 

(3-51) 

This algorithm enables the solution for ~+l (i,l) (refer to equation 

(3-40)) to be written as a function of ~+l (i), i.e.: 

(3-52) 
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The constants a(i) and b(i) are determined using equations (3-50) and 

(3-51). This requires that Gauss elimination be applied to the coeffi-

cient matrix of equation (3-40), and the working vector, that is 

generated, be stored. 

_N+l 
When equation (3-52) is substituted for T"f (i,l) in equation 

(3-41), the unknown, ~+l(i,l), is eliminated, enabling a solution to 

be obtained at time step N + 1 for TA(i) and TD(i). 

equation (3-40) can then be solved for ~+l(i,j). 

Kn . TN+l(.) owing A· 1 , 

The coefficient matrix of equation (3-41) is structured in four 

upper and lower sidebands. This structure becomes more significant as 

M increases. That is, the number of non-zero elements in the coeffi-

cient matrix increases by a factor of 9, rather than by a factor of 2M, 

as Mis increased. Considering this, a form of "Gaussian elimination 

with back substitution" was selected as the most suitable method for 

solving this equation. 

The Gaussian elimination method is simple and easily applied; 

however, its use normally results in considerable error due to round-off 

when it is applied to large matrices. In this case the scope of the 

method can be extended by applying it to only the non-zero elements 

contained in the main diagonal, and upper and lower sidebands of the 

©©efficient matrix. By doing this the round-off error, and computer 

time used, is reduced to an acceptable limit. 

For convenience, consider equation 0-40) written in the form: 

0-53) 

Similarly, equation (3-41), modified by substitution of (3-52), can be 

written: 
[A) (,:] = { c j 0-54) 
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Using this notation the overall computational procedure is: 

1. Gauss elimination is applied to the AA matrix, and the working 

vector generated, DD(j), is stored. 

2. The constants a(i) and b(i) are computed. 

J. Gauss elimination is applied to the non-zero elements of the 

A matrix, and the working vector generated, DC(i), is stored. 

4. The working vector, DC(i), is applied to C(i). 

5. Values at time step N + 1 for TD (i) and TA (i) are obtained 

by back substitution. 

6. Knowing ~+l(i), ~+l(i,j) is obtained by back substitution. 

Computer Programming 

The method of solving equations (3-40) and (3-41) was programmed 

in Fortran-IV for an IBM 360 Model 50 computer. For a problem of this 

size efficient programming was important. A high speed main core of 

256 K was available for operation and storage. Considering this, the 

number of calculations made at each time step were kept to a minimum by 

storing appropriate information from previous time steps. An example of 

this is shown in Figure 6. Here, a flow chart of the solution of 

equations (3-40) and (3-41) is shown when their coefficient matrices do 

not vary with time. In this case Gaussian elimination was applied only 

once on the coefficient matrix of each equation. The working vectors, 

generated by the elimination scheme, contained sufficient information 

to update the equations at each time step. 

The temperatures generated by a solution similar to that shown in 

Figure 6 model the temperature distributions in and around a well of 

constant depth that is circulating a drilling fluid. With modifications, 



Set up AA matrix at time step N-1 

Perform Gauss elimination on the non,zero elements of 
the AA matrix, store the working vecto~ DD(j) 

Calculate the constants a(i) 

Set up A matrix at time step N-1 

Perform tauss elimination on the non-zero elements of 
the A matrix, store the working vector DC(i) 

Calculate CC(j); j=2,K at time step N'r-------.. 

Calculate the constants b(i) 

Calculate C(i) at time step N 

Apply the working vector DC(i) to C(i) 

Solve for F(i) by back substitutid~ ',. 

Apply the working vector DD(j) to CC(j) 

Solve for FF(j) by back substitution 

Record the temperature [TD(i), TA(i), Tf(i,j); j=l,K] i=l,M 

Is t>tfinal7 

>--n_o_ N = N + 1 r----
STOP 

Figure 6. Flow Chart for Repeated Solution of Equations 0- 40) and 
(3-41) 
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temperature distributions developed while drilling were modeled. A 

drilling schedule was discretized (see Figure 7), and the mud inlet 

temperature, TD, was approximated as a function of depth (equation 
0 

0-55)). 

T 
~O) () o ,1J + D e-P 'TH 

O< D~PTH < IG>I Cit' o = Do :,...~o 

41 

0-.55) 

1,;o :: 7 t)I o o tJ -1- I) E"I' TH lq pl) 0 ( D€/J T ~ (" ().~ Ob (j 

(pt 7 

The basic method shown in Figure 6 was applied within each discreet 

interval of the drilling schedule. The initial conditions specified by 

equations (3-24), (3-2.5), and. (3-26) were used at the start of drilling 

within each interval. Near total depth the coefficient matrix of 

equation (3-41) was modified (see equation (3-28)) by a reduction in 

the step size, ~z. This insured that the temperatures calculated as 

those of total depth would truly represent that depth. 



CHAPTER IV 

NUMERICAL RESULTS 

Error Analysis 

Equations (1-1), (1-2), and (1-3) with sufficient initial and 

boundary conditions define a unique solution. Any solution deviating 

from this solution is in error. The magnitude of this error is a major 

concern in using any finite-difference method. Unfortunately, there is 

no known exact solution of equations (1-1), (1-2), and (1-3). This 

necessitates an indirect analysis of the error. A rigorous, analytical, 

analysis was not attempted, but a sufficient study was made to show that 

the error associated with the numerical method is acceptable. 

There are at least two types of error associated with a finite 

difference method. The truncation error (inherent in the finite differ­

ence approximations), and the round-off error (due to using finite 

arithmetic in the calculations). In addition, the numerical method may 

have convergence criteria which must be met in order to obtain a valid 

solution. 

Truncation Error 

The truncation error was investigated by determining the sensi­

tivity of the solution to changes in a step size. Figures 8 through 17 

and Tables I, II, III, and IV show the results of this investigation. 
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Tables I and II show that the truncation error, due to time steep 

size, becomes less significant as the time since start of circulation 

increases. This is to be expected since the solutions converge to 

pseudo-steady state values. Although the error after one and two hours 

since start of circulation is as great as 3~, this would not have to be 

encountered in any practical application of the method. Any simulation 

of only 2 hours duration should require intermediate temperature infor­

mation, and thus use a smaller time step. As a rule of thumb, it was 

found that, if the total time of simulation was divided into at least 

5 time staps, the truncation error was always less than one-half of 

one per cent. 

The truncation error due to the spatial step size, ~z. is negli­

gible, as can be seen in Tables III and IV. The temperature solution 

is practically insensitive to changes in this step size; thus, allowing 

great freedom in. discretiz.ing .. de.pth ... 

The radial step size, ~r(j), contributes little to the truncation 

error when it is divided into very small increments near the wellbore. 

Figures 14, 15, 16, and 17 show the effect this step size has on the 

computed temperature distributionso 

Round-Off Error 

The local round-off error was approximated in all programs that 

were run by calculating the residuals R/ and RR 1 (defined in equations 

(4-1) and (4-2) at each time step. 

(4-1) 

(4-2) 



TABLE I 

SENSITIVITY OF DRILL PIPE, OR ANNULUS, TEMPERATURE AT 
TOTAL DEPTH.:TO CHANGES IN THE TIME STEP SIZE 

!'{. 

Time Since Start .6.t' Hr. 
of Circulation, ,5 1.0 2.0 5.0 

Hr. 

1 170.645 174.050 

2 159,311 161.184 164.964 

4 148.692 149.679 151.701 

5 145,494 146.285 152 .908 

10 136.495 136.867 137.631 140. 042 

20 129.081 129.230 129,538 130.525 

Radius of drill pipe= 2.3 in; Wellbore radius= 3,94 in; 
Mud density= 11 lbs/gal; Circulation rate= 256 gal/min; 
Formation thermal conductivity= 1,3 Btu/hr-ft-°F; Specific 
heat of drilling fluid= .94 Btu/lbm-°F; Specific heat ?f for­
mation rock= .21 Btu/lbm-°F: Geothermal gradient= 
1.6 F/100 3t; Mud inlet temperature= 80°F; Formation density= 
160 lbm/ft; Thermal conductivity of the drilling fluid= 
.37 Btu/hr-ft-°F; Viscosity of the drilling fluid= 19 cp; 
Total depth= 10,000 ft; Initial condition for all temperatures= 
Geothermal temperature; Initial depth at start of circulation= 
10,000 ft: Step size (fir) = ,3 ft; Step size (LiZ) = 500 ft. 
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TABLE II 

SENSITIVITY OF BOREHOLE WALL TEMPERATURE AT 
TOTAL DEPTH TO CHANGES IN° THE TIME STEP SIZE 

Time Since Start 6t, Hr. of Circulation, 

Hr. . .5 1.0 2.0 

1 17.5.0.50 179.166 

2 162.673 164.790 169.176' 

4 1.51.617 152.64.5 1.54.798 

.5 148.301 149.120 

10 138.942 139.328 140.118 

20 131.187 131,342 131.663 

Parameter values are the same as in Table I. 
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TABLE III 

SENSITIVITY OF BOREHOLE WALL TEMPERATURE AT TOTAL 
DEPTH TO CHANGES IN 7 THE SPATIAL STEP SIZE AZ 

Time Since Start AZ, Ft. of Circulation, 

Hr. 263 500 909 

1 175.377 175.050 173.691 

2 162.859 162 .673 161.770 

5 148.418 148.301 147.658 

10 139. 026 138.942 138.421 

20 131.245 131.187 130. 753 

Parameter values are the same as in Table I, except 
substitute "Time Step Size= 1800 sec" for "Step Size 
(AZ)= 500 ft." 
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TABLE IV 

SENSITIVITY OF DRILL PIPE, OR ANN:ULUS, TEMPERATURE AT TOTAL 
DEPTH TO CHANGES IN THE SPATIAL STEP SIZE AZ 

Time Since Start AZ, Ft. of Circulation, 

Hr. 263 500 909 

1 170.978 170.64-5 169 .240 

2 159,502 159.311 158.400 

5 145,616 145.494 144.838 

10 136.582 136.495 135,964 

20 129.143 129.081 128.641 

Parameter values are the same as in Table I, except 
substitute 0 Time Step Size= 1800 sec" for 11Step Size 
( c6 Z ) = 5 00 ft • " 
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, -14 6 8 -12 The absolute value of R ranged from ,3553 x 10 to ,3 3 x 10 , 

I -14 -12 and the absolute value of RR from ,7105 x 10 to .1137 x 10 : 

These values certainly indicate that the round-off error is 

insignificant. 

Convergence 

The implicit solution method insures the stability of the solution 

with time; however, there are convergence criteria for the spatial 

subdivisions. For this type of a problem the criterion for the step 

size increment, .1 Z, has been shown by Dusinberre (3) to be 1 

~z ~ ;;..~ 
- N.st 

where rh is the hydraulic radius, and Nst is the Stanton number. 

Evaluating this criteria using the fluid properties, and physical 

dimensions given in Table I results in the limits: 

6 2d '{/ . L . .;;;., 7.30 f-t, rt pt/ e.. 

Fortunately, due to the magnitude of these limits, no practical 

restrictions are imposed on the problem solution. 

(4-3) 

(4-4) 

(4-5) 

Similarly, in a manner suggested by Dusinberre (3), a criterion on 

the radial step size can be determined. This is: 

This inequality was purposely violated to investigate its validity; 

however, it proved to be valid since, in all cases, the temperatures 

generated were completely unrealistic or unbounded. This criterion 
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imposes no serious limit on the practical applications of the numerical 

method; however, it must be considered, especially when defining the 

radial step size increments near the wellbore. 

Example Problems 

Several example problems have been solved to illustrate to what 

extent the numerical model may be applied. In Figure 18 a comparison 

is made of the temperature distributions calculated by Raymond (11) 
., 

and those calculated by the method developed in this study. The two 

solutions deviate by less than one per cent. 

Figures 19, 20, 21, and 22 show the dynamic response of a circu-

lating fluid system in a 20,000 foot well. The initial condition for 

these curves was taken as the formation geothermal gradient. The depth 

was held constant throughout the circulation period. 

Figures 23 through 27 show temperature profiles generated while 

drilling a 14,000 foot well. The drilling schedule used in the simula-

tion of this data is shown in Figure 7. Figure 23 shows that the 

bottom-hole mud temperature is actually much lower than that used by 

Edwardson et al. (4) (320 °F) in his analysis of formation temperature 

build-up. 

The computer used for all calculations was an IBM 360 Model 50 with 

256 K main core and 2361 K large core storage under OSMFT Release 15/16. 

The high speed main core with a Fortran-G compiler was used for all 

calculations. Exact computer times were not available, but there were 

available rough approximations, normally intended for accounting 

purposes. Figure 28 shows the computer time as a function of M. The 
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longest computer time used to simulate a drilling well was 3 minutes 

20 seconds. Most simulations were completed within 2 minutes 

JO seconds. 

A complete parameter study is beyond the scope of this study and 

will not be presented here. However, the numerical model is struc­

tured so that a study :may be made of parameters distributed hetero­

geneously as well as homogeneously. With slight modifications, 

parameters could also be imputed as functions of time or temperature, 

or both. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A method was developed to numerically mod.el the unsteady temper­

atµre distributions in a circulating drilling fluid, and the surrounding 

formation. The model was based on a fourth order set of partial dif­

ferential equations describing heat flow by forced convection in the 

wellbore, and by conduction in the adjacent formation. These equations 

were formulated into implicit finite-difference approximations resulting 

in two sets of coupled, algebraic equations. An algorithm, based on 

Gaussian elimination of a tri-diagonal matrix, was developed in order to 

couple the two sets of equations. The equation sets were then solved 

individually by applying Gaussian elimination to only the non-zero ele­

ments of the coefficient matrices. In the computer programming, advan­

tage was taken of the problem structure in order to apply the numerical 

method most efficiently. 

A numerical error analysis showed that solution error due to trun­

cation and round-off was not significant. Solution convergence criteria 

were established, and shown to impose no practical limits on the appli­

cation of the method. Example problems were given, and a comparison was 

mad~ bet,ween a solution developed by a different numerical method 

(Raymond. (11) ), and the one developed in this study. 

The following conclusions are made from this study: 

1. Computer simulation time for solution of the numerical model 
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as proposed herein is relatively short; thus, the model provides the only 

published solution of this problem that is practical for engineering 

analysis. 

2. The nlln1erical method developed herein provides an accurate so­

lution to the problem of predicting the non-steady temperature distri­

butions associated with the drilling of a well. 

·3. The numerical model is capable of simulating real systems that 

have·heterogeneous, and/or time dependent properties. No other method 

has ever been published in which this could be done practicaly. 

4. For problems of this type, general methods of matrix manipula­

tion cannot be used to generate an efficient solution. In addition, a 

high degree of accuracy is usually associated with an efficient r\.umerical 

method due to the dependency of round-off error on the number of calcu­

lations made; therefore, a general method may not even be capable of 

obtaining a valid solution. Considering this one should understand the 

development and application of a numerical technique before it is blindly 

us.ed. 
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