
AN EXTENSION TO THE UNIX MAKE COMMAND TO

SUPPORT CREATING AND CHECKING

MAKEFILES

By

SOU-YEN YEH
'~

Bachelor of Science

National Central University

Taiwan, Republic of China

1977

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1986

AN EXTENSION TO THE UNIX MAKE COMMAND TO

SUPPORT CREATING AND CHECKING

MAKEFILES

Thesis Approved:

<JJ.a .. ~

1251296

ii

PREFACE

This study investigates the UNIXf make~command and its

related systems. An extended system built upon the make

command and named "makec" is designed and implemented.

Makec supports the functions of creating makefiles and

checking makefiles. The makefiles created by makec can be

used for project maintenance without any modification. Some

version 7 UNIX system makefiles were checked by makec and

were found to be in error. These results indicate the

potential importance of makec.

I wish to express my sincere appreciation to my major

adviser, Dr. G.E. Hedirck, for his guidance, patience, and

encouragement throughout my graduate study. Thanks are also

extended to my committee members Dr. D. D. Fisher and Dr. S.

A. Thoreson for their contributions and advice. A special

thank goes to my parents Mr. Lai-Shing Yeh and Mrs. Bi-Yen

Chen Yeh for their understanding and financial support.

UNIX is a trademark of AT&T Information System.

iii

Chapter

I.

TABLE OF CONTENTS

Page

INTRODUCTION 1

Makec - An Extension to the Make System • 2
Review of the Literature • • • • • • • • • • 3

II. MAKE AND MAKEDEP OVERVIEW 6

Introduction to Make .••••• • • 6
Make Source Program Overview • • • • 11
Makedep System Overview • • • • • • • • 15

III. DESIGN AND IMPLEMENTATION OF MAKEC • 19

IV.

Introduction of Makec • • • •
Automatic Makefile Creation •
Makefiles Checker •.••••

APPLICATION AND EVALUATION OF MAKEC

19
• 22
• 27

• • • 3 3

Creating Makefiles for Projects • • • . • 33
Checking Indigenous Makefiles in UNIX

System • . • • • • • • • • • • • • • • 36
Execution Time of Makec ••••••••••• 39

V. SUMMARY AND SUGGESTIONS FOR FURTHER WORK • • 41

REFERENCES

APPENDIXES

Summary • . • . • • . .
Suggested Further Work

APPENDIX A - MAKEDEP USER'S MANUAL

APPENDIX B - MAKEC USER'S MANUAL .

• • 41
• • 41

• 45

. 47

• • • • 4 8

• • • • 51

APPENDIX C - MAKEFILES OF PROJECTS MAKEC, B, C,
AND D . • • • • . • • • • • • • • 55

iv

Chapter Page

APPENDIX D - OUTPUT AND ANALYSES OF APPLYING
MAKEC TO CHECK SOME UNIX
INDIGENOUS MAKEFILES • • • • 60

APPENDIX E - MAKEC ROUTINES DESCRIPTION • 77

v

LiST OF TABLES

Table Page

I. File Name Extension Convention on UNIX Operating
System • • • • • • • •. • • • • • • • • • • • • 7

I I • Limiting Constants Used in Make System 16

I I I. Limiting Constants Used in Makec System . 21

IV. Execution Time Comparison Among Some UNIX
Commands, Makedep, and Makec 39

vi

LIST OF FIGURES

Figure Page

1. A Makefile for Project "proj" 6

2. The File Dependency Diagram of Project "proj" . . . 8

3. The Implicit Rule for the Make File Dependency
Relation . 9

4. A Simpler Version of Makefile for Project "proj" .• 10

5. The Input-Process-Output Diagram of the Make System 11

6. The Routine Hierarchy Diagram of the Make System .. 12

7.

8.

9.

The Linked List Data Structure as Used
System

The Data Structure Used in the Makedep

The Data Structure of Makec System . .

in the.Make 14

System . . . 18'

. 20

10. The Input-Process-Output Diagram of the Makec System 23

11.

12.

13.

14.

15.

16.

The Makec File Name Extension Convention •.

A Makefile Which Applies Dummy Targets •

The Routine Hierarchy Diagram of Makec ·system

The Makefile Created by Makec for Project Makec

The Makefile Created by Makec for Project B .
The Makefile with Macros Created by Makec for

Project Makec

vii

. 24

• • • 2 9

. 32

34

. . . 35

. . . 36

CHAPTER I

INTRODUCTION

In a typical computer project, maintenance costs can be

as high as half of the total expenditures [7]. Spending so

much money for maintenance is wasteful and research has been

conducted to cut the expenditure [7][14]. Automation is one

of the most promising ways to ease the maintenance and to

reduce its costs.

An example of automation is make, a software tool which

is used to automate some part of the UNIX's software project

maintenance. Make requires the project inter-file ~

dependency information as its action basis. This

information usually is kept in a file named either

"makefile" or "Makefile". Whenever updates are made, based

upon the information in makefile, make determines which

files are outdated, then issues the necessary commands to

generate the up-to-date files. Thus, make s~ves mu~h

routine maintenance work.

Make, however, has some limitations. Two major ones

are that users must create their own makefiles, and make

does not check to see if these makefiles are correct. A

medium-sized project usually contains hundreds of files, and

has complicated inter-file dependency relationships, so the

1

makefile may have hundreds of file names and hundreds of

description lines.

Makec - An Extension to the Make System

2

Designing a makefile is similar to designing a piece of

software. Users must spend a large amount of time creating

it, but cannot be sure of the correctness of its dependency·

description. Any slight mistake in a makefile may cause an

error which permeates the project, resulting in bugs which

are difficult to trace. In order to save manpower and to

decrease the number of possible errors in makefiles, the

availability of a makefile automatic generating and checking

tool would be very helpful. The object of this thesis is to

design a system, named makec, to do this job.

A project must have all of its programs kept in one

directory including its subdirectories to use makec. Thus,

given the project directory name, makec can go through the

statements of each source file, find the file inclusion

statements which constitute inter-file dependency

relationships, then cr~ate or ch~ck this project's makefile.

The user's manual for makec is in Appendix B. An on-line

manual and the source programs of makec are kept in the

~ese~rch computer in the Computing and Information Sciences

Department at Oklahoma State University.

Chapter II contains a general guide for the make

system, an overview of the make source programs, and its

data structure. The system, makedep, created at Stanford

University, is introduced in chapter II also [12]. The

design and implementation of the makec system are discussed

in Chapter III. In Chapter IV, the makec system is

evaluated by creating some projects' makefiles and by

checking some UNIX system indigenous makefiles. Makec's

overhead is measured in this chapter as w~ll. The final

chapter is a summary of the thesis and suggestions for

further work.

Appendices include makedep user's manual, makec user's

manual, some sample makefiles, and the output and analyses

of appl~ing makec to chedk makefiles.

Review of the Literature

3

Make, classified as a version control tool in software

maintenance [5], is implemented on the UNIX operating

system. It has been used heavily since 1975 and has

attracted much attention especially as a tool for software

project maintenance [1][4][6]. Some people have tried to

improve the make system. Erickson and Pellegrin generalized

make to a new system named build [2]. At Stanford

University, Theimer created a buildmake system which is a

preprocessor for make [11]. Also, Theimer and Mann created

the makedep system which can construct dependency lines for

makefiles [12].

Build is an extension of the make system that applies a

concept which is named "software view". A project may have

several software views, such as the developer's view, the

system user's view, and the testing team's view. This

software view is specified in a makef il~ statement such as

"VPATH = dirl:dir2". Using the concept of software view,

build permits several software developers to make

independently a collection of software while sharing the

same set of directories.

4

Buildmake is a preprocessor for make. It provides an

extended syntax for makefiles. Buildmake works on

buildfiles. A buildfile has the same syntax and the same

semantic meaning as a makefile, with the addition of two

features. The first feature is a statement of the form

"#include filename" which requests the named file to be

copied into the position occupied by the inclusion

statement. And the second feature is a construct of

"#ifdef/#else/#endif" which causes conditional inclusion and

exclusion of statements between "#ifdef" and "#else", and

statements between "#else" and "#endif".

Makedep is a system to construct file dependency lines

for makefiles. It was programmed at Stanford University in

1984. Makedep provides a function similar to that provided

by makec in creating the makefile function. Makec, however,

provides another function : checking makefile's dependency

correctness which makedep system does not offer. Since

makedep is related to this thesis closely, it is discussed

further in Chapter II.

Feldman did not implement the two functions for

creating and checking makefiles in his make project due to

5

the large overhead and potentially poor portability [3].

The increased confidence of makefile dependency correctness

that can be obtained with makec appears to justify-the

overhead. In addition, computer hardware costs less and

runs faster each year, so this overhead problem has become

relatively minor. Th~ portability problem can be reduced to

a minimum with careful design. It is worthwhile to have

these two extended functions of make.

CHAPTER II

MAKE AND MAKEDEP OVERVIEW

Introduction to Make

The make system supports many· activities of program

development and maintenance. Make uses the .contents of a

file which is named either "makefile" or "Makefile" for its

directions. This file contains the information relating to
'

a project's inter-file dependencies and command sequences

for updating files. Figure i· shows the makefile of a

project named "proj" which has three C source files and one

data file.

proj x.o y.o z.o
cc x.o y.o z.o -1s -o proj

x.o defs.h x.c
cc -c x.c

y.o defs.h y.c
cc -c y.c

z.o z.c
cc -c z.c

Figure 1. A Makefile for Project "proj"

6

7

In Figure 1, those statements which have a colon are

dependency lines. Each colon separates a target which is at

the left hand side of it from the dependents which are at

the right hand side of it. Those lines begin with a tab

character are shell commands which are used to update their

associated target.

Table I show~ the file name extension convention used

on the UNIX operating system.

TABLE I

· FILE NAME EXTENSION CONVENTION ON UNIX OPERATING SYSTEM

f 1le name
extension

.c

.s

.p

.f

.1

.y

.• 0

.h

file type

C language source file

Assembly language source file

Pascal language source file

Fortran 77 language source file

Lex regular expression file

Yacc grammar rule file

Object file

File to be included

Figure 2 is the file dependency diagram of project

"proj". Object file "x.o" depends on files "x.c" and

"defs.h"~ Object file "y.o" depends on files "y.c" and

"defs.h". Object file "z.o" depends on "z.c", but does not

8

depend on file "defs.h". Whenever file "defs.h" is updated,

the object file "z.o" is still up-to-date, but object files

"x.o" and "y.o" become outdated. The command sequences :

"cc -c x.c" and "cc -c y.c"

must be executed in order to get the new versions of "x.o"

and "y.o", respectively. For the same reason, the target

file "proj" becomes outdated when its dependents "x.o" and

"y.o" are updated. So, the command sequence :

"cc x.o y.o z.o -ls -o proj"

must be executed in order to create the new version of

"proj". A simple command "make" takes care of this part of

routin~ maintenance.

x.o y.o z.o

/\
x.c defs.h

I\
defs.h y.c z.c

Figure 2. The File Dependency Diagram of Project "proj"

Without the make .system, maintenance analysts must

perform these tasks which include checking f lle status to

find outdated files manually, reading the documentation to

determine the set of commands for each outdated file, and

typing in these commands. Make relieves this work from the

maintenance analysts.

The make system has some built-in knowledge. For

example, if a file named "x.c" is found, make assumes the

object file named "x.o" depends on it and· the command

sequence corresponding to this dependency is :

"cc -c x.c"

These implicit rules are shown in Figure 3 •

• o

?7~ .r .f .s .1

/\
• y .1

Figure 3. The Implicit Rule for the Make File Dependency
Relation

In Figure 3, there is more than one route for files

with the name extension ".y" or ".1". The implicit

dependency route chosen is the shorter one unless an

9

10

intermediate file in the longer route exists or is mentioned

in the description of the ma~ef ile.

Files with extensions not mentioned in Figure 3 are not

included in the implicit dependency relation in the make.

By taking advantage of these implicit rules, the

simpler makefile, shown in Figure 4, for the project "proj"

can work well. This makefile has exactly the same function

as the longer version of makefile shown in Figure 1.

proj x.o y.o z.o

cc x.o y.o z~o -ls -o proj

x-. o y. o : def s. h

Figure 4. ·A Simpler Version of Makefile for Project "proj"

The make s~stem depends upon both the UNIX file name

convention and the UNIX shell. command. Make is used both

with the UNIX and with the GCOS operating systems. This

thesis is ~oncerned with the UNIX system only. Feldman

gives a detailed description for the make system for both

UNIX and GCOS[3].

11

Make,Source Program Overview

The make system has fifty-one source programs which are

kept in seven files main.c, dosys.c, doname.c, gram.y,

files.c, misc.c and defs.h. The input-process-output

diagram and the routine hierarchy diagram of the make system

are shown in Figures 5 and 6, respectively.

Input

makefile

output
from
rddescf

output
from
rddescf

Process

rddescf : read
description file

if (p flag) then
printdesc () :
print out the dep­
endency information
and shell commands

if (METER set) then
meter () :
collect statistics
for the utilization
of make system

doname () :
check time status
for target files and
issue shell commands
if it is necessary

Output and Result

data structure
for dependency
and command
sequence

printout
of file
dependency
information

collection
of the make
utilization
statistics

execution of
shell commands
and result of
execution

Figure 5. The Input-Process-Output Diagram of the Make
System

meter rddescf
set var I
srchname
makename rddl

I
yyparse

I
yylex

I I
srchname retsh
makename I

copys

srchdir
I

srchname
makename
copys
cone at
amatch

main

printdesc

. I
(unique)
appendq
mkqlist
expand
prestime
suffix

I .
nextl1n

I
eqsign
retsh
sub st

amatch (r)
I

umatch
amatch

12

doname(r) intrupt

I
enbint

I
I isprecious

(non-u) doc om exists
setvar. I varptr
concat
exists docoml
srchdir I
srchname
copys do sys

I I I
met as doexec doshell

I
intrupt

I
enbint enbint
await await
doc lose doc lose

umatch
I

amatch

Figure 6. The Routine Hierarchy Diagram of the Make System

13

The make system's routines "yyparse", "yylex", and

"nextlin" are modified and incorporated into makec system.

Routine "doname" and its calling routines check the creation

time of each file, find out outdated files which are older

than some of its dependent files, and issue shell commands.

They are not related to the makec system. Makec looks for

inclusion statements in files, creates file dependency

relation~hips based on these statements, and compares the

found inter-file dependency relationship with the other

source of dependency information whicih is kept in a

makefile.

The _data structures used most of ten in the make system

are linked lists~ A diagram to illustrate these data

structures is shown in Figure 7. Structure variables

"varblock" are used to keep macro definitions of a makefile.

Variables "varblock" are dynamically allocated, then kept in

a linked list with variable "f irstvar" which points to the

list head.

-A hashing table is used to improve the file· name

searching efficiency. Thi& hashing table keeps pointers

pointing to variables named "nameblock". Each structure

variable "nameblock" keeps relevant information of a file.

Each target file's nameblock has a pointer pointing to a

linked list of elements "lineblock."

A structure variable "lineblock" represents a

dependency line which has a target, several dependent files,

and a set of shell commands. If there is more than one

Macro definition :

1--->
t
I __ f irstvar

Dependency and Command Information :

hashing name name name
table block block block

ptr ptr ptr

I I I
v v v

name
I 1--> I

name
I 1--> block block

t

·--->I ~~~ck I .· I--+
--~I

I l
v v

-->I block. name I

.v
NULL

1---+
I
v

14

,_. f irstname NULL

v

-->I
line I

1---+ block.
I

rline
I 1-->

I line
I 1--> block block . . .

v
v NULL

. ldep
I 1--+ -->.block

I
~~f:Tl--> lb~~~k I· 1--> •••

v
NULL

lshv--"JT 1•h
I block I 1--> block I 1--> ••• -->I ~~ock I 1--+

I
v

NULL

Figure 7. The.Linked List Data Structure as Used in the
Make System

target in a dependency line, this dependency line is

expanded to several dependency lines. Each new dependency

line has exactly one target, the same dependent files, and

the same shell commands. Structure variable "depblock"

keeps the dependent files of a target. Structure variable

"shblock" keeps the shell commands of a dependency line.

15

Because the make system utilizes some fixed size

arrays, it has some limitations on the project size and the

number of dependency relationships. Table II describes all

these limitations. These limitations· are set for small to

medium sized projects. By changing some constants defined

in the data file "defs.h," make system can work for large­

sized projects too.

Makedep System Overview

The makedep system was developed by Theimer and Mann in

1984. This system determines the dependencies for on~ or

several files. This function is almost the same as the.

first function offered by makec system. Users can execute

the makedep command on the OSU research computer by entering

the command

"makedep -o~tion file "

from the keyboard. The complete on-line manual entry for

makedep system is listed in Appendix A. -

Makedep utilizes.linked list data structures. Figure 8

shows the most important data structure used in makedep

system. Linked list "SrcFiles" keeps all the source file

constant
name

HASHSIZE

NLEFTS

NCHARS

NINTS

INMAX

OUTMAX

QBUFMAX

16

TABLE II

LIMITING CONSTANTS USED IN MAKE SYSTEM

defined
value

509

256

500

250

2000

2500

1500

description

hashing table size for the
file names (including names
expanded from meta characters)

maximum number of LHS files
in one specification line

(not used)

(not used)

maximum number of characters
in a dependency line

maximum number of characters
in a set of command lines

buffer size for S? (file names
which are younger than the
target file)

names mentioned in the makedep command line. These files

are processed one by one to find out their dependents.

Linked list "IncDirs" keeps all the directory paths to

be searched. Linked list "IList" keeps all the included

files. Each file has a linked list "DepList" to keep its

immediate dependents. Each element of "DepList" points to a

file in the list "IList". The file, which is the object of

17

the pointer, is an imm~diate dependent of the file which

owns the linked list "DepList". In this way, the dependency

relaiionships are represented. A linked list "iList" is not

shown in Figure 9. It is a working list which keeps the

immediate.dependencies of a file. ·The information, kept in

"iList," is eventually transferred to "!List".

I ~I~~ng I 1-->
t-

InclDirs __ I
SrcFiles

v

S~ringl I List -->

S~rin·g' I List -->

18

-->I ~I~~ng I 1---+
I
v

NULL

I S~ringl I --> List ---+
I
v

NULL

l1iCTT--> I ~i~t I 1-->. • . -->I ~i~t I 1--+
----- ----- I

v
I List

v
TSt"rln9TI
I List I I-->

v

S~ringl I
List -->

t

I
l1iCTT--> ..•

v

v
NULL

-->I ~I~~ng I 1---+
I

-t
I .

-->m~~--+ I
v

NULL

v
NULL

Figure 8. The Data Structure Used in the Makedep System

CHAPTER III

DESIGN AND IMPLEMENTATION OF MAKEC

This chapter discusses makec's data structure and

outlines the makec system. The details of routines and some

features of makec are also provided.

Introduction of Makec

The data structure of the makec system is shown in

Figure 9. The variable "fl_inf[]" is a hashing array which

ke~ps the information of a project's source files and data

files. Since object file names can be deduced easily from

source file names, they are not kept in this hashing array.

Each element of array "fl inf[]" has six fields to

describe a file. The first field "fl nm" keeps a pointer

which points to the file name. Together, the second field

"dep_indx" and the third field "num_dep" keep the immediate

dependents of the described file. For example, as shown in

Figure 9~ the array element "fl inf [k]" describes a file

named "any.c". This file's name is stored in a dynamically

allocated storage area which is pointed to by the first

field "fl_nm[k]". The contents of the second and third

fields, "dep_indx[k]" and "num_dep[k]", are j and n,

respectively. These two values show that the immediate

19

20

dependents of file "any.c" are those files with indices

kept in array elements from tdep_inf[j] to tdep_inf [j+n-1].

The fourth field "mark" is used for checking dependency

information. The fifth field "d~r_inf" keeps the directory

path of files. The sixth field "type" is used to keep file

type information.

dep indx[k] dir indx[k]

fl_nm[k] - -1 num_dep[k] -1 fl_nm[k+l]
v v

_II ptr
-1

j n
I Ii l_ll ptr

I_

I I I -
v

Ec=r

t r t
mark[O] type[O]

dynamic
allocated

_I storage
dir -

tdep inf [j-1] - I -
v v

v
ptr

I
inf [i] air -

ptr I -_ ptr
I_

inf[i+l

v
-,-d_i_r_e_c_t_o_r Y-__ p_a..,..t h--.-1

-....--_1-=- I ---- dynamic allocated
storage

t t t

l I I tdep_inf[j-2] tdep_inf[j] tdep_inf[j+n-1]

Figure 9. The Data Structure of Makec System

Since makec uses fixed length arrays to store file

information, directory paths, and dependency information,

there are some limitations on the project size, the number

of directories in a project, and the number of file

dependency relationships. Table III lists these

limitations. If a project has parameters exceeding the

limits shown in Table III, the constants MEDIUM or LARGE

21

have to be defined and the command "make" must be executed.

These actions generate a new executable module of makec

which has larger limiting constants than that shown in Table

III and can handle medium-sized or large-sized projects.

constant
name

MAX FILE

MAX TDEP

MAX SDEP

MAX DIR

TABLE III

LIMITING CONSTANTS USED IN MAKEC SYSTEM

defined
value

301

600

60

20

description

hashing table size for file
information (total source files
and data files of a project)

maximum number of dependencies
in a project

maximum number of dependencies
related to a single file

maximum number of directory
paths referenced in a project

22

The input-process-output diagram of the makec system is

shown in Figure 10. The straight-line characteristic of the

routines makes the routine structure and the control path of

the makec project very clear. To utilize this property

fully, the debugging messages embedded in the makec system

are arranged to show the execution result of each major

routine in the control flow. The debugging messages can be

triggered for any step or any combination of steps. With

this arrangement, many unwanted debugging messages can be

filtered out, which helps in the maintenance of the makec

system. The details of controlling debugging messages for

the makec system are shown in Appendix B, the makec user's

manual.

Automatic Makefile Creation

The routines in the makec system are discussed

following their execution sequence. Routine "proc_cmd" is

makec's first routine to process the input. "proc_cmd" is

an acronym for "process command". This routine processes

the makec command line which includes flags, file names, and

directory names.

Routine "proc_fl" is the second major routine in makec.

Routine name "proc fl" is an acronym for "process files".

It and its supporting routines take the outputs from the

"proc cmd" as their inputs. These inputs are the command

parameters which include file names, directory names, and

flags. The status of every named file is checked. Each

INPUT

command line
parameters

f r om i n i t () :
fl inf, dir inf
from proc ciiid ()
flag, dir7file

from proc fl() :
fl inf -
dir inf

from proc dep()
fl in.f -
dir inf
tdep inf

from proc dep()
fl inf -
air inf
tdep inf and

an existing
makefile

fl inf
dir inf
tdep_inf

ROUTINE and PROCESS

init() :
initialize arrays
fl_inf, dir_inf

proc cmd() :
process the
command line,

proc, f 1 () :
put all source
files into fl inf
and dir inf

proc dep() :
set up dependency
among files, add data
files into fl inf

proc put () :
print out dependency
information following
the makefile format

proc chk () : .
compare the dependency
information kept in
arrays fl inf, dir inf,
and tdep Inf with the
dependency information
kept in a makefile

dump() :
dump the content of
important variables

OUTPUT

fl inf
dir inf

flag
dir/file

fl inf
dir inf

fl inf
dir inf
tdep_inf

printout

23

of file
dependency
information

printout
of file
dependency
checking
result
for th~
makefile

dump
output

Figure 10. The Input-Process-Output Diagram of
the Makec System

named directory is searched, as is the status of each file

in each directory.

24

Makec follows the UNIX file name extension convention.

The makec file name extension convention is shown in Figure

11. Only th6se source files with name extension as ".~",

".y", or ".l" are accepted. These accepted files are C

source files, yacc grammar rule files, and lex regular

expression files. The assembly language files and Fortran

language files are ignored to keep this pr~ject smail. To

extend makec to handle both of them is straightforward. The

unqualified files could be object files, makefiles, assembly

source files, Fortran source files, documentation files, and

other special files. These files are ignored without

warning messages.

f i1e name
extension

.c

.y

.1

others

file type

C source file

Yacc grammar rule file

Lex regular expression file

ignored unless is included

Figure 11. The Makec File Name Extension Convention

25

The data files are ignored in "proc~fl", but are

checked by the following routines. Information pbout these

accepted files is put into the file information array

"fl inf". If a file fits this qualification, but cannot be

opened, a warning message is issued. All the directory

paths encountered are put into the directory information

array "dir inf".

Usually, a small project needs only one directory which

makec can accommodate well. If a project has too many files

to be well organized in one directory, subdirectories are

needed to group its files. Makec can handle the project

with subdirectories too. Routine "proc fl" may go through

several levels of subdirectories recursively and check all

the files belonging to this project. By default, the

checking level of subdirectories is one (no recursion) which

may be changed by applying "-1" option.

The number of directory paths allowed in a project is

limited to 20, which is large enough to support small

projects. If this directory path limit is too small for a

large project, then changing the first line from "#define

. SMALL" to "#define MEDIUM" or "#define LARGE" in the data

file "data.h", and running the command "make" in the makec

directory can produce a new executable module of the makec

system. This new module allows more directory paths.

After finishing its processing, "proc_fl" passes

variables "fl_inf", "dir inf" and "mkfl dir" to the third
I -

routine group which includes routine "proc_dep" and its

26

supporting routines. Routine name "proc_dep" is an acronym

for "processing dependency". In this routine group, makec

f irtds and records dependency relationships among files.

Routine "proc dep" opens each source file which is kept

in the file information array "fl_inf", and checks its

statements line by line. If a file inclusion statement is

found, "proc dep" checks to see whether the included file

name has been encountered before. If not, its entry is

created in "fl inf". If this included file has a new

directori path, an entry is created for it in "dir inf".

The dependency relationship between these two files is

recorded in the dependency information array "tdep_inf".

Multiple level inclusion is allowed in the make system,

meaning an included file might include some additional

files. Since this multi-level dependency information is

embedded in "tdep_inf", the routine "proc_dep" does not

worry about them. These multi-level dependency

relationships are found out through a recursive trace in

routines "proc_put" and "proc chk".

After finishing the process of .J.'proc_dep", all the file

information, directory information, and dependency

information of a project are fully gathered in arrays

"fl_inf", "dir_inf", and "tdep inf". Makec can progress

either to the fourth or the fifth routine group. By

default, makec goes to the fourth routine group "proc_put"

which prints out the file dependency information.

The fourth major routine "proc_put" means "process

output"~ It and its supporting routines print out a well

formatted file dependency description. This printout is

designed to be close to the format of manually written

makefiles.

27

If only simple forms of the commands "cc", "yacc", and

"lex" are needed to get the executable module of a project,

the file dependency description output of ma~ec can be a

complete makefile for this pr6ject. If a project needs some

special option of "cc", "yacc", and "lex" commands, or other

_commands to get the executable module,.the makec's file

dependency description output needs some modification to be

a complete makefile.

Makec's dependency description output has two different

formats. By d~tault, makec supports the simple format which

applies make built-in rules. This format is short and very

readable. It fits the project which applies simple· commands

to get its executable module. In the second format which is

obtained by specifying "-m" option, the output is a makefile

which applies macros. This makefile can be more feasibly

modified.

Makefiles Checker

The fifth step in makec's logic pipeline is the routine

group "proc_chk". This routine group has two parts. The

first part is a subset of make system. It includes make

system's routines in file "gram.y" and supporting routines

in file "misc.c". Routines in file "gram.y" are modified,

28

enabling makec to reference line numbers within a makefile,

and to exclude shell commands which do not concern makec.

The second part of the routine group "proc_chk" compares the

information kept in a makefile and the information kept in

arrays "fl_inf", "dir_inf", and "tdep_inf".

In .each execution session of make command, a main

target is made •. This main target may be specified in the

command parameter, or may be the first target in the

makefile. For projects of more than one source file, main

target dependents are eithe_r object file names, dummy

targets, or executable module names.

A dummy target is a target which is not a file name~

Dummy targets are used for special dependency relationships

which are not specified by file· inclusion statements. They

could be used to propagate dependency. It is possible to

propagate the dependen~y through dummy targets so that the

main target depends on object files only. Makec utiliz~s

this characteristic to check the main target dependency

relationship.

A UNIX project makefile is presented in Figure 12. In

this makefile;. "all", "cp", "cmp" are dummy files. Their

dependency is propagated through target "proj" to file

"x·.o", "y.o", and "z.o". Through propagating dumm·y targets,

the main target which could be either "all", "cp", or "cmp"

eventually depends on all object' files. By the propagation

of dummy targets, the checking result is the same regardless

of whether the main target is "all", "cp", "cmp~, or "proj".

29

Makec checks a makefile in two steps. The first step

is to check the minimal dependency desc~iption of the main

target. The second step is to check the minimal dependency

description of each object file target. A target file's

dependency description is complete if all of the files in

which it depends are present as its dependents in the

makefile description line. A dependent file in a makefile

dependency description line is necessary if its removal from

the description line prohibits the necessary updating of a

target file. A target file's dependency description is

minimal if its dependency description is complete and all of

its dependents are necessary.

all proj

cp

cmp

proj
cp
rm

proj
cmp
rm

proj
*.o

proj
*.o

/u/someone/proj

/u/someone/proj

proj x.o y.o z.o
cc * .o -o proj

x.o defs.h x.c

y.o defs.h y.c

z.o z.c

Figure 12. A Makefile Which Applies Dummy Targets

30

If the main target dependency desc~iption misses any

object file dependent, the dependency description is said to

be incomplete. If the main target description line has some

dependent which is not an object file of the project, this

dependency is marked as an unnecessary dependency. The main

target dependency checking result is printed for any missing

dependency, any unnecessary dependency, or a confirmation

message if it is minimal.

In the first step of "proc chk", it checks the main

target dependency line and the dependency lines which can be

reached through propagating the dummy targets from the main.

target. In the second step, "proc chk" checks other

dependency lines. If the target of a dependency line is not

.an object file, makec simply prints a message and ignores

that line. These non-object file targets could be dummy

targets which cannot be r~ached by propagation from the main

target. For example, assuming the makefile shown in Figure

12 has the main target "all", targets "cp" and "cmp" are

ignoted by makec because they c~nnot be reached through

propagation from main target.

These non-object file targets could be source files or

data files which are generated in special ways. They are

ignored because makec can handle only the dependency caused

by inclusion statements and the dependency between source

and object files. In this sense, makec's checking makefile

is incomplete. It needs the programmers' help to complete

the checking. If a project meets the following conditions,

makec can check the makefile dependency description fully

for completeness and necessity :

31

1. It generates files only using C compiler, lex, and yacc
con:imands.

2. All the files in the project follow the file name
convention.

3. The makefile applies only the dummy targets which can be
reached from the main target's propagation.

The routine hierarchy diagram of makec is shown in

Figure 13. The description of routines is in Appendix E. ·

All the routines accessed by "yyparse" are from the make

system. These routines are used without modification except

the three routines, "yyparse", "yylex", and "nextlin".

I . l
in1t proc_cmd

(add dir) (R)
T

(add dir)
(add-fl)
push
pop

I
(proc fl)

1-
ini t stk
source

(add dir)
(add-fl)·
dump

(reseq)

(add fl) ,-
srch fl in
chg type
source

(main)

I
(proc dep) ,-

dump
(add dep)

(add dep)
T

(add fl)
(reseq)
get_incl

I
(proc put)

1-
put cnti

(put-full)
put-obj
put-cmd

(shorten)
dump
dump s
gather dep

32

I
(proc chk) r-
(yyparse)
(srchname)
srch src

(chk mdep)
(chk-ldep)
gather dep

(yyparse)
I

(yylex)

. I
(nextlin)

I . I
(srchname)(makename)

(reseq) (shorten) , I I I
I

shorten

(chk mdep)(R)
T

(srch src)
(chk mdep)
source
put obj
main unnec

I
cut

I
(eqsign)

cut 2 I
(setvar)

I
varptr

(chk ldep)
T

same src
(srch:=fl)
p name
put_f u11

I
(subst) I .
(subst)
varptr

hashloc copys
hashloc
hasslash

Figure 13. The Routine Hierarchy Diagram of Makec System

CHAPTER IV

APPLICATION AND EVALUATION OF MAKEC

In this chapter, the makec command is applied both t6

create makefiles and to check makefiles. ·The feasibility of

these created makefiles is evaluated and the checked results

are analyzed. Also, makec's overhead is measured then

compared to the overhead of some other UNIX commands.

Creating Makefiles for Projects

Command "makec" is invoked for two projects "makec" and

"B". Two makefiles shown in Figures 14 and 15 are created

by the makec for these two projects.·

Figure 14 shows the makefile created by makec for the

makec project. A comparison of this makefile with the one

actually used in makec project, found in Appendix C, reveals

that they are similar. One difference, however, is that the

makefile created by makec uses exactly one dependency line

to describe the dependency of one object file, but project

makec's makefile often describes the dependency of sever~l

object file targets on one dependency line. So, the

makefile crea~ed by makec is longer than the makefile used

in this makec projeci. However, both files have exactly the·

same function.

33

a.out proc put.o
proc-dep.o
proc-fl.o
support.o

main.o proc chk.o sup put.o\
sup fl.o gram.o pr-oc cmd.o\

sup_chk.o dump.o s~p-'chk2.o\

cc *.o

proc put.o
main:-o
proc chk.o
proc-dep.o
sup_Il.o
gram.o
proc cmd.o
proC::)l .o
sup chk.o
dump.o
sup 'chk2.o
support.o

data ._h
data.h
defs.h
data.h
data.h
defs.h
flag.h
data.h
defs.h
data.h
defs.h
flag.h

flag. h
mdata.h flag.h
data.h flag.h data rihk.h
flag.h
flag.h
data chk.h

flag.h

data chk.h

34

Figure 14. The Makefile Created by Makec for Project Makec

Figure 15 shows the makefile created by makec for a

sample project "B". This makefile is much different than

the makefile actually us~d in project "B", shown in Appendix

B. The makefile created by makec can only support the

simple functi~n of checking the current executable module's

status and updating the executable module if it is outdated.

The makefile used in project ''B", however, uses many dummy

targets. As well as generating the up-to-date module, this

makefile offers many functions. These functions are

comparing the newly generated executable module to an old

35

executable module in the directory "/u/yeh", copying the new

module to the directory "/u/yeh", cleanin~ all the object

files, and others.

a.out main.a a.o b.o c.o gram.a
cc * .o

main.a data.h
a.o data.h
b.o data.h
c.o data.h
gram.a data.h

Figure 15. The Makefile Created by Makec for Project B

Because makec can generate makefiles which offer only a

simple function, if more functions are needed for makefiles,

users must tailor their own makefiles or modify the

makefiles which are created by makec. For more feasible

modifications, makec offers a second form of makefiles. By

applying the parameter "-m" in the command "makec", the

output is a makefile with macros. Since the modifications

can be made by using macros instead of a long list of file

names, this form of makefile is easier to modify. Figure 16

shows makec's created makefile using the macro option for

the makec project.

.cc =cc
CFLAG = -O
OBJECTS = proc put.o

proc-dep.o
proc-fl.o
support.o

main.o proc chk.o sup put.o\
sup fl.o gram.o proc cmd.o\

sup_chk.o dump.o sup chk2.o\

a.out : $(OBJECTS)
$(CC) $(CFLAG) *.o

proc put.o
main:-o
proc_chk.o
proc dep.o
sup_Il.o
gram.o
proc cmd.o
proc-fl.o
sup chk.o
dump.o
sup chk2.o
support.o

data.h
data.h
defs.h
data.h
data.h
defs.h
f lag.h
data.h
defs.h
data.h
defs.h
f lag.h

flag.h
mdata.h' flag.h
data.h flag.h data chk.h
flag.h
flag.h
data chk.h

flag.h

data chk.h

Figure 16. The Makefile with Macros Created by Makec for
Project Makec

Checking Indigenous Makefiles in UNIX

Besides creating makefiles, makec checks makefiles.

36

For the purpose of evaluation, some makefiles indigenous to

the UNIX system are checked by makec. Appendix D contains

the checking output and analyses. Reviewing these analyses

shows that many situations cause makec issuing main target

dependency error messages. Such situations could be a

project directory containing some source files which are not

37

used in the project, the main target having some dependents

which are source files or data files, and a project

directory containing more than one executable module.

The output shown in Appendix D verifies that makec

correctly issues messages for all the erroneous object file

target dependency lines.

Situations in which makec issues error messages are

described below

1. Any file which is included by some files but is not
present causes the error message "a missing file".
Sometimes, this message is incorrectly issued. For
example, the data file created by yacc is usually
removed after completing a project because it can be
generated again simply by issuing the command "yacc
-d". In this case, the error m~ssage "a missing file"
is still issued.

2. A directory containing some source files which are not
used by the project causes the error message "main
target dependency is incomplete". Makec assumes all
the directory source files are members of the project
and their object files are dependents of the main
target. If some source files are not used by the
project, their obj~ct files are not dependents of the
main target in the makefile description. Thus,
inconsistency occurs, and makec indicates that the
makefile's main target dependency description is

. incomplete.

3. Source files which are not C source files, yacc grammar
files, lex regular expression files, or data files are
ignored. This could cause an error message of "main
target has unnecessary dependencies" in case a project
has some assembly source files, or Fortran source
files.

4. A project directory containing more than one executable
module might cause an error message. Applying a dummy
main target which depends on all the executable modules
can bypass the error message. Makec's checking
criterion for the main target depen~ency completeness
is that the main target must depend on all object
files. Appendix C shows a makefile of the sample
project "C" which has three executable modules. The
dummy main target "all" is applied to depend on these
three executable modules, and eventually depends on all

38

object files via propagation. This makefile is
positive for makec's checking. A makefile of a sample
project "D" is also shown in Appendix c. This makefile
also has more than one executable module and is flagged
by makec for "main target dependency is incomplete",
because the main target does not depend on all object
files.

5. File names which do not follow the UNIX file name
extension convention may cause error messages, and may
cause errors to be concealed. For example, a project

.has three C source files •eo.c", "el.c", "e2.c", ·and an
included data file which should have file name
extensiqn ".h". This data file may be named "e3 .. c", a
violation of the UNIX file name extension convention.
Makec treats all the files with name extension ".c" as
C source files, and requests their object files be
dependents of the main target. In this case, if the
main target dependency description is correctly
described as "Proj : eO.o el.o e2.o", makec issuea an
error message "main target dependency is incomplete"
for this dependency line. If the main target
dependency description is wrongly described as "Proj :
eO.o el.o e2.o e3.o", makec passes this dependency
line.

6. Makec catches all the dependency incompleteness and
unnecessary dependents on object file target dependency
lines. As shown in Appendix D, the error messages
issued by makec in these cases are completely matched
with the err6rs. ·

More detailed analyses of the output from makec when it

checks makefiles are shown in Appendix D. From the

summaries shown above. and the analyses in Appendix D, three

conclusions can be drawn.

1. · The error messages related to the main target do not
necessarily mean an error in the makefile.

2. Some dependency lines are ignored by makec. Its
dependency completeness and dependency necessity cannot
be checked by makec. Makec checks only those
dependency lines whose targets are dependents of the
main target.

3. The. error messages related to the dependency line whose
target is an object file most likely means errors of
the checked makefile.

39

Execution time of Makec

The UNIX command "time" is applied to measure makecis

execution time. It is compared with the commands make and

makedep in Table IV. This comparison shows that the makec's

execution time is close to th~ execution time of makedep

which has fewer functions than makec. Makec's execution

time is about three times of execution time of make, but

make does not scan source files for the project. Thus, it

appears that makec.~s execution time is consistent with the

related commands and could be used by UNIX programmers as a

program development tool.

TABLE IV

EXECUTION TIME COMPARISON AMONG SOME UNIX COMMANDS,
MAKEDEP AND MAKEC

COMMAND

make

makec

makec -c

makedep

STANDARD
MEAN MINIMUM MAXIMUM VARIANCE DEVIATION

1.33

3.83

4.38

4.12

1.20

3.70

4.00

3.90

1.50

4.50

5.20

5.10

0.17

1.03

2.25

2.05

0.41

1.01

1.50

1.43

Notes

1. These execution time measurements are conducted by
· applying the UNIX command "time" on the PE 3230

when the system is not busy.

2. Each command execution time is measured 50 times.

3. Command "make" is applied to project "makec" which has
an up-to-date executable module. ·Project "makec" has
18 source files, totals 70,930 characters.

4. Command "makec" is applied to project "makec.".

5. Command "makec -c" is applied to project "makec" •

. 6. Command "makedep" is applied to project "makec".

40

CHAPTER V

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

Summary

This thesis describes an investigation of the UNIX make

system and some of its related systems. A new makec system

has been implemented which can create makefiles and can

check makefile dependency descriptions for dependency

completeness and dependency necessity.

Makefiles created by makec are show~ useful for some

applications. Some makefiles which have been used for a

long time in UNIX system were checked by makec, and it was

found that these makefiles' dependency descriptions had

errors, including superfluous dependencies. The importance

of the functions offered by makec thus are confirmed.

Suggested Further Work

The makec system can be improved in many ways. These

suggested improvements are listed in next paragraphs one by

one.

Consideration for efficiency has not been made in

coding the makec programs. Should makec system become

popular, efficiency improving techniques should be applied

to recode the makec's most time-consuming programs to reduce

41

42

its overhead.

Makec accepts C source files, yacc grammar files, lex

regular expression files, and data files, but ignores

FORTRAN sourc~ files and assembly language files. Handling

these two source language files is suggested as further

work.

In order to improve the efficiency of makec, it is

helpful to assume a makefile has correct file dependency

description by its last modification time. This assumption

can largely reduce the overhead of makec in some cases. It

can be set as an option of makec's makefile dependency

checking function. In this option, since the makefile is

assumed to have correct dependency description by it~ last

modification time, only those files whose modification time

is newer than makefile's have to be checked through. Thus,

if a makefile is believed to be correct by its last·

modification time, adopting this option can save much file

checking time and get the same checking result. Should

makec become popular, this option is suggested as an

enhancement.

Makec tries to open every source file and issues error

messages for any file which cannot be opened. A yacc

generated data file which is named as "y.tab.h" by default

could cause trouble [8]. This data file is usually removed

after completing a project because it can be generated again

by issuing command "yacc -d". Makec does not have

information to recognize this file. So, makec wrongly

43

issues error messages whenever a yacc generated data file is

included in some files but is not present. Although yacc

data files are not used very often and this defect of makec

is not a large problem, special handling of this data file

is a suggested improvement of makec.

Makec system utilizes some routines and most of the

data structures of the make system. There is data

redundancy on makec's checking option. In this checking

option, makec keeps two sets of data dependency information

separately. One set of information represents the project's

makefile, the other set of information 1s gathered by

checking. all source files of this project. Thus, every

source file name which appears in the makefile is stored

twice, once in data "fl inf" and stored in data "nameblock"

again. Another example is that there are two hash arrays.

Removing this data redundancy is an improvement of makec.

This improvement can save siorage and can reduce a little

overhead for makec system. The overhead would not be

reduced much by this improvement becatise only a little

overhead of makec is caused by the routines which execute

the checking function.

In some cases, users need to add some directory paths

in the included file search list. This option is offered in

makedep system but neither the make nor the makec system.

Makec applies only default searching directory paths.

Havin~ this additional option can be an improvement to mak~c

also.

Makedep cannot recognize that different names may be

associated with one file. For example, in the UNIX system

44

" .. /proj/a.c", "/u/someone/proj/a.c", "a.c", and "./a.c"

could mean the same file. Makec can recognize some

different names of a file, but not all of them. Recognizing

all different names.of a file is another improvement which

could be made to makec.

SCCS and RCS are used to keep more than one version of

source text. They can save space and can keep track of

revisi.ons of source text. Each of them can be used together

with make system under some restrictions. Accepting SCCS

files and RCS files is another further improvement for the

makec system.

REFERENCES

[l] Becker, R. A., J.M. Chambers, "Design of the S System
for Data Analysis." Communications of the ACM,
27, 5 (1984), 486-495.

{2] Erickson, v. B., J. F. Pellegrin, "Build - A software
Construction Tool." AT&T Bell Laboratories
Technical Journal, 63-;---6°(1984), 1049-1059.

[3] Feldman, S. I., "Make - A Program for Maintaining
Computer Programs." Software - Practice and
Experience, 9, 4 (1979), 255-2~5.

[4] Gehani, N. H., "An Electronic Form System - An
Experience in Prototyping." Software - Practice
and Experience, 13, 6 (1983), 479-486.-

[5] Glass, R. L., R. A. Noiseux, Software Maintenance
Guidebook. Englewood Cliffs, N.J. : Prentice-.
Hall, 1981.

[6] Griswold, R. E., "A Tool to Aid in the Installation 6f
Complex Software System." Software - Practice and
Experience, 12, 3 (1~82), 251-267.

[7] Guimaraes, T., "Managing Application Program
Maintenance Expenditures." Communications of the
ACM, 26, 10 (1983), 739-746.

[8] Johnson, S. C.,
Compiler."
1979.

"YACC : Yet Another Compiler-
Unix Programmer's Manual, 7th Edition,

[9] Kernighan, B. w., D. M. Ritchie, The C Programming
Language. Englewood Cliffs,?:r:°J: : Prentice­
Hall, 1978.

[10] Rochkind, M. J., "The Source Code Control System."
IEEE Transactions on Software Engineering, SE-1,
'471975), 364-370.~

[11] Theimer, M., "Buildmake - Preprocessor to provide
Extended Syntax for Makefiles." (Unpublished
programs presented in CSNET network., 1984)
Stanford University, 1983.

[12] Theimer, M., and T. Mann, "Makedep - Construct

.45

Dependency Lines for Makefiles." (Unpublished
programs presented in CSNET network, 1984)
Stanford University, 1984.

46

[13] Tichy, w. F., "Design, Implementation, and Evaluation
of a Revision Control System." Sixth
International Conference on Software Engineering.
Proceedings, Tokyo, Japan. September, 1982.

[14] Vessey,' I. , and R. Weber, "Some Factors Affecting
Program Repair Maintenance : An Empirical Study."
Communications of the ACM, 26, 2 (1983),
1287134. - -- --

APPENDIXES

47

APPENDIX A

MAKEDEP USER'S MANUAL
(Provided by Stanford University)

48

49

NAME
makedep - construct dependency lines for makefiles

SYNOPSIS
makedep [options] [source files]

DESCRIPTION
Makedep constructs a makefile-style dependency list
showing which header files the object files constructed
from the given source files depend upon. The
dependency of the object file upon the source file is
not indicated in the output; this dependency can
nor~ally be inferred by the make program.

Makedep handles nested includes properly, propagating
dependencies of one header file upon another back to
each object file whose source file includes the
dependent header file.

The following options are accepted. In options that
take an argument, the space between the option letter

.and the argument i~ optional.

-o file

-I dir

-u

-v

-xv

Output file name. The default is
"dependencies". The name "-" indicates
standard output.

Add dir to the include file se~~ch li~t.
Multiple.-! options accumulate, building the
search list from left to right, with the
system include directories added at the end.
Directory names are interpreted relative to
the directory from which makedep is invoked.

Use the standard Unix header directories as
the system search list. Equivalent to
specifying -I/usr/include after all other -I
options.

Use th~ standatd V~System he~der directories
as the system search list. Equivalent to
specifying the options -I/usr/sun/include
-I/usr/local/include -I/usr/include after all
other -I options.

Use the experimental v~syst~m header
directories as the system search list.
Equivalent to specifying the options

-N

·-e ext

-d

50

-I/usr/sun/xinclude -I/usr/sun/include
-I/usr/local/include -I/usr/include after all
other -I options.·

Use no system search list. Suppresses the
warning message ordinarily printed when a
header file cannot be found. This option is
useful when you are not interested in
dependencies on system include files.

Object files have extension ".ext". Defaults
to .b if -v or -xv is specified, •O
otherwise.

Turn on debug output. Useful only to the
maintainers.

If the source files depend on any header files in
standard system include directories, one of the options
-U, -v, -xv, or -N should normally be specified. These
four options are mutually exclusive. If none of these
options is given, only the directories specified in -I
options are included in the search list (as with the -N
flag), but warning messages are still printed for any
header files that cannot be found.

SEE ALSO
make(l)

DIAGNOSTICS

BUGS

A warning is printed for each included file that cannot
be found. Other errors are fatal: the messages should
be self-explanatory.

Pathnames that are excessively long may be silently
truncated or cause crashes.

Makedep does not know that the same file can have two
dif(erent names, for example· "bar.h" and
"foo/ •. /bar.h". This means it will fail to detect
loops in the dependency graph if the pathnames grow in
this way while it is following the loop. The loop will
eventually terminate due to the previous bug, and
garbage output will result.

AUTHORS
Marvin Theimer and Tim Mann, Stanford.

APPENDIX B

MAKEC USER'S MANUAL

51

52

NAME
makec - create and check makefiles

SYSOPSIS
makec [option] .•. fileldirectory ..•

DESCRIPTION
Makec takes the argument files/directories as
components of a project, finds the dependency
relationships among them, creates or checks a makefile
for the project.

In option "-c", Makec checks an existing makefile for
minimal dependency. If "-c" option is not present,
creating a makefile is the assumed option. If the
file/directory argument is not present, the working
directory is taken as the project's directory.
Dependency relationships concerned by makec correspond
to the file inclusion statements.

Makec takes all the files and directories in the
argument list as components of a project, and finds
file dependency relationships among them: In the
checking option, makec checks dependency completeness
and dependency necessity for the project, and then
checks the same conditions for each file. A project is
assumed to depend on all of the files and all of the
directories in the argument list, and is assumed to
depend on nothing else. A directory name in the
argument list requests all the source files in this
directory or in this directory's subdirectories as
components of the project. Subdirectories of the
argument directory are searched, and all the source
files found in these subdirectories are taken as
components of the project. The default searching level
of subdirectories is one.

An object file depends on its source file, and all the
data files included by its source file. In the case of
multi-level inclusion, all the included data files are
dependents of the object file regardless of the number
of inclusion level.

Other options:

-s System files included by < > are counted fo~
dependency. By default, their-dependency is
ignored.

53

-l[number]
Number of searching levels of subdirectories is

·specified. By default, only one level of
subdirectories is searched.

-c Checking an existing makefile based on the
dependency information gathered by makec. Without
this option, a makefile is created on standard
output.

-m Macros are used in the created makefile. By
default, the output is a makefile of simple
format.

-q Quick checking is applied. This option is ignored
if -c option is not present. The makefile is
assumed to have. correct dependency descripti6n by
its last modification time.

-£[name]
Name the makefile. This option is ignored if -c
option is not present. By default, the makefile
name is "makefile", or "Makefile". If the
compared makefile has another name, it must be
specified in this option •

..:.t [name]
Name the main target. This option is ignored if
-c option is not present. By default, the main
target is the first target of a makef iler This
option offers a second choice.

-I[directory]

-d[x]

'#include' files whose names do not begin with '/'
are always sought first in the directory of the ·
file argument, then in the directories named in -I
options, then in directories on a standard list.

Debug and dump.
Many debugging options can be chosen
depending on the value of 'x' : ·

null, data dump option is set.
i, debugging option for the procedures "init"

and "proc cmd" is set. ·
f, debugging-option for the procedure "proc fl"

and its supporting routines is set. . -
d, debugging option for the procedure "proc~dep"

and its supporting routines is set.
p, debugging option for the procedure "proc_put"

and its supporting routines is set.
c, debugging option for the procedure "proc_chk"

and its supporting routines is set.
s, debugging option for common supporting

54

routines is set.
a, debugging .option for all routines is set.

More than one option may be chosen.

EXAMPLES .
Creat~ a makefile for the project which contains all
the source files in the working ·directory :

makec

Check a project'~ makefile for minimal deperidency.
This project is assumed containing all the source files
in the working directory :

makec -c

Create a makefile with macros for the project whose
source files are kept in the directory "dir" :

makec -m dir

FILES.
makefile, Makefile

SEE ALSO
make(l)

BUGS.

S. I. Feldman, Make - A Program for Maintaining
Computer Programs--

If the data file "y.tab.h" which is created by yacc is
not pre~ent, a "missing file" error message is issued.

Fortran source files and assembly source files are not
accepted. Only C source files, yacc grammar files, lex
regular expression files, and data files are accepted
as project components.

Makec recbgnizes some.multiple names of ~ file, but not
· all of them.

AUTHOR
Sou-Yen Yeh, Oklahoma State University.

APPENDIX C

MAKEFILES OF PROJECTS MAKEC, B, C, AND D

55

A. Makefile for Project Makec

a . out : ma i n . o
proc chk.o
sup chk.o
sup-chk2.o

- cc *.o

main.o

proc_cmd.o
proc put.o
sup_put.o

proc_f l.o
support.o
gram.o

proc dep.o \
sup::)1.o \
dump.o \

mdata.h data.h flag.h

flag.h

data.h flag.h

data.h flag.h

56

support.o proc_cmd.o

proc_fl.o proc_dep.o

proc_put.o sup_fl.o

proc_chk.o

gram.o sup_chk2.o

dump.o

data.h defs.h data chk.h flag.h

defs.h data chk.h

data.h

sup chk.o defs.h

FILES

B. Makefile for Project B

= ma1n~c a.c b.c c.c gram.y data.h\
makefile

OBJECTS = main.o a.o b.o c.o gram.o

all: a.out

cmp: a.out
cmp a.out /u/yeh/projb
rm *.o gram.c a.out

cp: a.out
cp a.out /u/yeh/projb

. rm *.o gram.c a.out

a.out: $(OBJECTS)
$(CC) $(OBJECTS) -o a.out

$(OBJECTS): data.h

clean:

install:

lint :

-rm *.o gram.c

cp a.out /u/yeh/projb

main.c a.c
lint main.c
rm gram.c

b.c c.c gram.c
a.c b.c c.c gram.c

57

58

C. · Makefile for Project C

OBJO = anyOO.o anyOl.o any02.o any03.o any04.o\
any05.o

OBJl = anylO.o anyll.o anyl2.o anyl3.o anyl4.o\
-anyl5.o anyl6.o

OBJ2 = any20.o any21.o any22.o any23.o

all anyO anyl any2

anyO $(0BJ0)
cc -o anyO $(0BJO)

anyl $(OBJ1)
cc -o anyl $(0BJ1)

any2 $(0BJ2)
cc -o any2 $(0BJ2)

$ (OBJO) anyO.h

$(0BJ1) anyl.h

$(0BJ2) any2.h

clear . .
rm *.o

59

b. Makefile for Project D

all da

da dal.o da2.o ·aa3~o
cc da?.o -o da

db dbl.o db2.o db3.o
cc db?.o -o db

APPENDIX D

OUTPUT AND ANALYSES OF APPLYING MAKEC TO CHECK

SOME UNIX INDIGENOUS MAKEFILES

60

The output of the makec's checking option has four parts.

Part I.
Part I prints message for missing included files.
If there is not any missing file, no message is printed
at all.

Part II.
Part II is printed under the heading 'MAIN TARGET
dependency necessity checking ::::::::::'. This part
prints messages for any unnecessary dependent of the
main target. Message 'OK' means no unnecessary
dependent.

Part III.
Part III is printed under the heading 'MAIN TARGET
dependency completeness checking :::::::'. This part
prints messages for any missing dependent of the main
target. M~ssage 'OK' means no missing dependent.

Part IV.
Part IV is printed under the heading 'OBJECT FILE
TARGET'S dependency checking :::::::::'. This part
prints messages for any missing dependent and any
unnecessary dependent of the dependency lines which
have object file targets, and messages for ignored
dependency lines.

61

Output of Applying Makec to Check "adb/makef ile"

MAIN TARGET dependency necessity checking::::::::::
OK

MAIN TARGET dependency completeness checking:::::::
OK

OBJECT FILE TARGETS' dependency checking ::::::::::
(cmp # 13) ignored, dummy or non-object target
(cp # 17) ignored, dummy or non-object target
(objects # 24) ignored, dummy or non-object target

(access.o # 26) missing dep on
adb/machine.h

(command.o # 28) missing dep on
adb/machine.h

(expr.o # 32) missing dep on . .
adb/machine.h

(findfn.o # 34 missing dep on
adb/machine.h

(format.6 # 36) missing dep on
adb/machine.h

(input.o # 38) missing dep on
adb/machine.h

(main.o # 40 missing dep on . .
adb/machine.h

(message.o # 42) missing dep on

(opset.o # 44) missing dep on
adb/machine.h

(output.o # 46) missing dep on
adb/machine.h

(pcs.o #

(print.o #

48) missing dep on :
adb/machine.h

50) missing dep on
adb/machine.h

(runpcs.o # 52) missing dep on
adb/machine.h

. .

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/machine.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

adb/mac.h adb/mode.h

62

(setup.o # 54 missing dep on
adb/machine.h

adb/mac.h adb/mode.h

(sym.o #

EVENT

CAUSE

56) missing dep on : adb/mac.h adb/mode.h
adb/machine.h

Analysis and Conclusions of the Proceeding
Makec Checking Output

Fifteen messages show that there are missing
dependencies for fifteen object file targets.

Makefile "adb/makef ile" has incomplete file
dependency des6ription.

DESCRIPTION : Most source files in the directory "adb"
include data files "mac.h", "mode.h", and
"machine.h", but the makefile "adb/makefile" .
does not specify these dependency relationships.

63

Output of Applying Makec to Check "as/makefile"

MAIN TARGET dependency necessity checking ::::::::::
OK

MAIN TARGET dependency completeness checking ·:::::::

OBJECT
(
(

OK

FILE TARGETS' dependency checking ::::::::::
cmp # 10) ignored, dummy or non-object target

cp # 14) ignored, dummy or non-object target
No ~rror on object file targets dependency

Analysis and Conclusions of the Proceeding
· Makec Checking Output

Makefile "as/makefile" has correct file dependency
description.·.·

64

Output of Applying Makec to Check "awk/makef ile"

ERROR(add_dep)-awk.h included in file(token.c) is missing

· ERROR(add _dep)-awk.h included in file(awk.lx.l) is missing

ERROR(add dep)-awk.h included in file(proc.c) is missing

ERROR(add_dep)-awk.h included in file(parse.c) is missing

ERROR(add _dep)-awk.h included in f ile(main.c) is missing

ERROR(add_dep)-awk.h included in file(lib.c) is missing

ERROR(add_dep)-awk.h included in file(tran.c) is missing

ERROR(add dep)-awk.h included in file(b.c) is missing

ERROR(add dep)-awk.h included in file(run.c) is missing

MAIN TARGET dependency necessity checking ::::::::::
TARGET (awk # 21) has unnecessary dependent

proctab.o

MAIN TARGET dependency completeness checking
TARGET(
TARGET(
miss dependent

all # 6
awk # 21
proc.o

OBJECT FILE TARGETS' dependency checking .
(cp # 8) ignored, dummy or non-object target
(cmp # 12) ignored, dummy or non-object target
(y.tab.h # 24) ignored, dummy or non-object target
(awk.h # 26) ignored, dummy or non-object target
(proctab.o # 29) ignored, dummy or non-object target

(token.o) has unnecessary dep on . (# 29 awk.def) .
(token.c # 31) ignored, dummy or non-object target
(src # 35) ignored, dummy or non-object target
(profile # 39) ignored, dummy or non-object target
(find # 42) ignored, dummy or non-object target
(list # 45) ignored, dummy or non-object target·
(lint # 48) ignored, dummy or non-object target
(proctab.c # 52) ignored, dummy or non-object target
(proc # 54) ignored, dummy or non-object target

65

(1)

(2)

Analysis and Conclusions of the Proceeding
Makec Checking Output

EVENT Messages show that "awk.h" is missing.

CAUSE This is a deficiency of makec.

DESCRIPTION : Makec issues an error message for
any file which is included by some
files and is not present.
File "awk.h" is a data file which is
included in some source files, and is
not present. This file is created by
applying the command "yacc -d", and is
removed after the project "awk" is
completed because it can be created again
easily.

IMPROVEMENT : Setting up a file name rule can
resol.ve this deficiency.

EVENT

This rule requires a data file named
"xxx.h" to be the data file generated
by applying the command "yacc -d" to
a yacc grammar file "xxx.y" which bears
the same file name and with file name
extension ".y".

Some messages show that the main target
has an unnecessary dependent "proctab.o"
and has a missing dependent "proc.o".

CAUSE : This is a deficiency of makec.

DESCRIPTION : File "proc.c" is used to generate
the executable module "proc", and the
executable module "proc" is used to
generate "proctab.c". Makec does not
check command statements in makefiles
and cannot handle this situation.

IMPROVEMENT : It cannot be improved.

66

(3) EVENT : A message shows that the file "token.o"

CAUSE

has an unnecessary dependent "awk.def".

This is an error of the makefile
"awk/makefile".

DESCRIPTION : The source file "token.c" does
not include the data file "awk.def",
so the file "token.o" should not
depend on file "awk.def".

67 .

Output of Applying Makec to check "c/makef ile"

MAIN TARGET dependency necessity checking ::::::::::
TARGET (cl # 40) has unriecessary dependent

table.a

MAIN TARGET dependency completeness checking

OBJECT
(
(
(

TARGET(
TARGET(
TARGET(
miss dependent

all # 9
co # 29
cl # 40

cvopt.o

FILE TARGETS'
cmp # 11)

cp # 17)
clean # 25)

dependency checking ::::::::::
ignored, dummy or non-object target
ignored, dummy or non-object target
ignored, dummy or non-object target

(clt.o) has unnecessary dep on : (# 43 cl.h)
(table.o # 50 ignored, dummy or non-object target
(cvopt # 55) ignored, dummy or non-object target
(print # 58) ignored, dummy or non-object target

(1)

Analysis and Conclusions of the Proceeding
Makec Checking Output

EVENT A message shows that the target "cl"
has an unnecessary dependent "table.a".

CAUSE : A deficiency of makec.

DESCRIPTION : Project "c" has an assembly source
file "table.s".
Makec ignores all the assembly files
which have the name extension ".s",
and wrongly issues this message.

IMPROVEMENT : Let makec handles assembly source
files can correct this deficiency.

68

(2)

(3)

EVENT

CAUSE

A message shows that the main target has
a missing dependent "cvopt.o".

There are more than one executable module
in the project directory "c".

DESCRIPTION : File "cvopt.c" is used to generate
an executable file named "cvopt".

69

Makec does not check command statements in
makefiles and cannot handle this situation.

IMPROVEMENT : It cannot be improved.

EVENT A message shows that the file "clt.o" has
an unnecessary dependent "cl.h".

CAUSE : An error of the makefile "c/makef ile"

DESCRIPTION : The source file "clt.c" does not
in~lude the data file "cl.h", so the object
file "clt.o" should not depend on "cl.h".

Output of Applying Makec to Check "cpp/makef ile"

MAIN TARGET dependency necessity checking
OK

.
MAIN TARGET dependency completeness checking

OBJECT
(
(

EVENT

CAUSE

TARGET(
TARGET(
miss dependent

all # 5
cpp # 15
yylex.o

FILE TARGETS' dependency
cp # 7) ignored, dummy

cmp # 11) ignored, dummy
No error on object file

checking ::::::::::
or non-object target
or non-object target
targets dependency

Analysis and Conclusions of the Proceeding
· Makec Checking Output

A message shows that the main target misses
a dependent named "yylex.o".

A_ deficiency of makec. The project directory
"cpp" contains a source file "yylex.c" which
is used as an included file.

DESCRIPTION : File "yylex.c" is a source file which is
· included in file "cpy.y".

Makec requires that object files of all the
source files are dependents of the main target.
So, makec issues this missing dependency message.

IMPROVEMENT : Let makec accepts source files be included
in other files can resolve this problem.

70

Output of Applying Makec to Check "dc/makef ile"

MAIN TARGET dependency necessity checking:::::·:::::
TARGET(dc #13) has unnecessary dependent : dc.c
TARGET(dc #13) has unnecessary dependent : dc.h

MAIN TARGET dependency completeness checking
TARGET(
TARGET(
miss dependent

all # 3
de # 13

dc.o

OBJECT FILE TARGETS' dependency checking ::::::::::
cmp # 5) ignored, dummy or non-object target
cp # 9 } ignored, dummy or non-object target

No error on object file targets dependency

EVENT

Analysis and Conclusibns of the Proceeding
Makec Checking Output

A message shows that the main target misses
a dependent "dc.o".

CAUSE : A deficiency of makec.

DESCRIPTION : Makec requires that a project should
depend on object files, but not depend on
source files or data files.
Since project "de" h~s only one source file,
it is reasonable that its makefile's main
target depends on the source file and the
included data file.

IMPROVEMENT(l) : If this makefile be changed to the
following statements, makec would accept it.

all dc.o
cc -n -s -o dc.c -o de

dc.o : dc.c dc.h

IMPROVEMENT(2) :Makec can be modified to handle this
kind of special project which has only one
.source file.

71

Output of Applying Makec to Check "eqn/makef ile"

ERROR - e.def included in file(lex.c) is missing

ERROR - e.def included in f i 1 e' (text • c) is missing

ERROR - e.def included in file(shift.c) is missing

ERROR e.def included in f ile(move.c) is missing

ERROR - e.def included in f ile(diacrit.c) is missing

ERROR - e.def ·included in file(integral.c) is missing

ERROR - e.def included in file(lookup~c) is missing

ERROR - e.def included in file(funny.c) is missing

MAIN TARGET dependency necessity checking ::::::::::
OK

MAIN TARGET dependency completeness checking :::::::
OK

OBJECT FILE TARGETS' deperidency checking .
(cp # 8) ignored, dummy or non-object target

"
cmp # 12 ') ignored,-dummy or non-object target

(e.c # 27) ignored, dummy or non-object target
(e.def # 29) ignored; dummy or non-object target
(
(
(
(

list # 36) ignored, dummy or non-object target
gcos # 39) ign'ored, dummy or non-object target

src # 42) ignored, dummy or non-object target
lint # 46) ignored, dummy or non-object target

No error on object file targets dependency

Analysis and Conclusions of the Proceeding
Makec Checking Output

EVENT : Some messages show that the file named. "e.def"
is missing.

CAUSE(a) : A deficiency of makec. (same as event (1)
in the output analysis of applying makec to
check "awk/makefile")

72

CAUSE(b) : File name "e.def" does not follow the .file
name convention of make/makec systems.

IMPROVEMENT : A modification of makec (same as event(l)
in the output analysis of applying makec to
check "awk/makefile") and renaming file "e.def"
as "e.d" can resolve this problem.

73

Output of Applying Makec to Check "f77/makef ile"

ERROR - tokdefs included in file(lex.c) is missing

MAIN TARGET dependency necessity checking ::::::::::­
TARGET (fO # 41) has unnecessary dependent

: gram.o

MAIN TARGET dependency completeness checking

TARGET(all # 8)
TARGET(f77 # 37) .
TARGET(f O # 41 }
TARGET(fixasf77 # 46)
miss dependent ~ malloc.o

.

OBJECT FILE TARGETS' dependency checking ::::::::::
(cp # 10) ignored, dummy or non-obj_ect target
(cmp # 16) ignored, dummy or non-object target
(compiler # 31 #34) ignored, dummy or non~object target
(gram.c # 49) ignored, dummy or non-object target
(tokdef s # 56) ignored, dummy or non-object target

(lex.o # 59 # 60) missing dep on : f77/732.h

(732x.o) has unnecessary dep on : (# 60 defs.h)
(# 60 ftypes.h)

(732x.o # 60) missing dep on : f77/732.h

(732.o # 60 # 63 } missing dep on
f77/732.h

f77/scj.h

(putdmr.o # 60 # 63) missing dep on f77/732.h

(put.o # 60 # 63) missing dep on f77/scj.h f77/732.h

(error.c t 60 } missing dep on : f77/732.h

(misc.o # 60) missing dep on : f77/732.h

(io.o # 60 # 64) missing dep on : f77/732.h

(intr.o # 60

(exec .o # · 60

(expr.o# 60

missing dep on

missing dep on

missing dep on

(data.o # 60) missing dep on

f77/732.h

f77/732.h

f77/732.h

f77/732.h

74

(equiv.o # 60) mis!;>ing dep on . f77/732.h .
(proc.o # 60) missing dep on f77/732.h
(gram.o # 60) ignored, dummy or non-object target

(init.o # 60 missing dep on f77/732.h

(driver.o) has unnecessary dep on (# 61 defs.h)

(driver.o # 61) missing dep on . f77/732.h .
(lint # 66) ignored, dummy or non-object target
(cleanup # 74) ignored, dummy or non-object target

(1)

Analysis· and Conclusions on the Proceeding·
Makec Checking Output

EVENT A message shows that the file "tokdef"
is misssing.

CAUSE : File "tokdef" is generated by special
method.

DESCRIPTION : File "tokdef" is created from
file "tokens" by applying commands
"grep" and "sed". Since makec ignores
command statements in the makefile,
this situation cannot be handled.

IMPROVEMENT : It cannot be improved.

(2) EVENT : A message shows that the main target
has an unnecessary dependent "gram.o".

CAUSE : File "gram.c" is generated by special
method.

DESCRIPTION : File "gram.c" is created from
five grammar files by applying commands
"sed" and "cat". Makec ignores shell
commands in the makefile, ~nd cannot
handle this situation.

IMPROVEMENT : It cannot be improved.

75

(3) EVENT

CAUSE

A message shows that the main target
misses a dependent "malloc.o".

File "malloc.c" does not belong to
~reject "f77" but is kept in the project
directory "f77".

DESCRIPTION : File "malloc.c" is not used by
project "f77". Makec requires that every
source file in the project directory must
be a member of the project. So, makec
issues the missing dependency message.

(4) EVENT Several messages say that there are
.missing dependencies and unnecessary
dependencies on some·object files.

CAUSE : Etrors of makefile "f77/makefile".

DESCRIPTION : File "f77/makef ile" describes
several unnecessary file dependency
relationships, and misses some file
dependencies too.
For example, files "732.o" and "put.a"
should depend on files "scj~h" and
"732.h", but the makefile "f77/makefile"
does not mark these dependencies.
The makefile misses other 12 files'
dependency on file "732.h".
Besides, the file "732x.o" should not·
depend on files "defs.h" and "ftypes.h",
and should depend on file "732.h".
File "driver.a" should not depend on file
"defs.h" and should depend on "732.h".

76

APPENDIX E

MAKEC ROUTINES DESCRIPTION

77

add dir

add fl
chg=: type

chk ldep
chk-mdep
copys

cut

cut 2
dump
dump s
eqsign
gather dep -
get incl
hashloc
has slash
init
init stk

main unnec -

makename

nextlin
p name

pop
proc chk

proc cmd
proc-dep

proc_fl
proc_put

push
put cmd

put_cnti

put full
put=:obj

re seq
setvar
shorten
source

srch fl in -
srch-src

Add all the source file names of a directory
into fl inf.
Add a file into fl inf.
Change a file name-from type '.y' or ' •. l' to
I

0
CI

0
•

Check the dependents of one file.
Check the dependents of the main target.
Copy the input parameter to an allocated
space.
Cut specified lengthed characters from a
directory path.
Cut two levels in a directory path.
Dump the data structures.
Dump the dependents of a single file.
If the input parameter has an equal sign.
Gather all the dependents of a file.
Get inclusion statement from a file~
A hashing function.
If the input parameter has slash.
Initialize variables.
Initialize the stack which is used to keep
directory names.·

78

Print some message for main target unnecessary
dependents.
Make a nameblock, and creat a pointer from
hashing table to it •. ·
Get in a complete line.
Print out a name and keep it indented in
fields.
Pop a directory name from the stack.
Check the f il~ dependency description of a
makefile.
Process the command line.
Proces~ dependencies. Find out dependencies
among files.
Process source files. Put them into fl inf.
Print out file dependencies following the
makefile format.
Push a directory name into the stack.
Print out the required command to compile the
input parameter.
Print out the continuation character, and
indent on the next line.
Print out the full path name.
Print out the object file name of the input
parameter. .
Resequence the input parameters.
Set up varblock for a macro definition.
Shorten the directory path to make it neat.
Check if the input parameter is a source file
name.
Search fl inf for a file using index.
Search fl-inf for a file whose object file
name is the parameter.

srchname
sub st

varptr

yyparse

Se~rch the parameter in make hashing table.
Substitute macros in the first parameter and
keep the result in the second parameter.
If the input parameter has not been kept in
varblock link list, add it in.
Parse a makefile.

79 .

-·)
. (,

VITA

Sou-Yen Yeh

Candidate for the Degree of

Master of Science

Thesis: AN EXTENSION TO THE .UNIX MAKE COMMAND TO
SUPPORT CREATING AND CHECKING MAKEFILES

Major Field: Computing and Infomation Science

Biographical:

Personal Data: Born in Taiwan, R.O.C., March 26, 1954,
The son of Lai-Shing and Bi-Yen Yeh

Education: Graduated from National Normal University
High School, Taiwan, R.O.C., in May, 1972;
received the Bachelor of Science degree in Physics
from National Central University, Taiwan, R.O.C.,
in May, 1977; completed requirements for the
Master of Science degree at Oklahoma State
University in May, 1986.

Professional Experience~ Tea~hing assistant at Chinese
Maritime College, Taiwan, R.O.C., September 1979-
July 1980; patent engineer at Tai-E Patent and Law
Office, Taiwan, R.O.C., August 1980-April 1981;
graduate assistant at Oklahoma State University,
Computing and Information Sciences Department,
August 1983-June 1985.

