DESIGN AND PROGRAMMING OF A

LOBSTER ARM ROBOT

By
VAHID LABAN
Bachelor of Science
Okltahoma State University
Stillwater, Oklahoma

1982

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfiliment of
the requirements
for the degree of
MASTER OF SCIENCE
May, 1986

DESIGN AND PROGRAMMING OF A

LOBSTER ARM ROBOT

Thesis Approved:

Brshaie It Lo

;%) Tzesis Adviser

f@bﬂ, (») / ‘54«1”3?&_7‘/

Vo,

e W Seer s

Dean of the Graduate Col lege

1251225

ii

PREFACE

The objective of this project is to design and
fabricate a four degrees of freedom Lobster arm robot.
Furthermore, it is intended to develop proper software for
a powerful and efficient operating system. The model is to
serve as a test-bed for future research concerning
kinematics, dynamics, and control of closed-loop robots.
Task-programming technigues of open-loop vs. closed-loop
robots is to be studied to evaluate the difficulties that
may be encountered. Methods to achieve speed and
efficiency of actuator control will be studied in detail.
Once the robot design is complete and detailed research has
been carried out, it is expected to have many industrial
applications.

I would like to express my sincere appreciation to my
thesis advisor Dr. A. H. Soni for his continuous guidance
and encouragement: throughout this project. Also [would
like to extend thanks to my major advisor Dr. B. L. Basore
for his kind assistance and generous contributions which
made this project possible. Thanks are also due to Dr. R.
L. Lowery and Dr. J. Nazmetz for their active support on
this project.

A special thanks to my parents for their enduring love

and moral support.

i

Chapter

I.

IT.

ITI.

Iv.

VI.

VII.

VIII.

TABLE OF CONTENTS

INTRODUCTION. ..

DESIGN AND CONSTRUCTION

A.
B.
C.
D.
E.

STEPPER

Bases .
Links .
Elbow .
Z-Axis.
Sensors

MOTORS.

SERVO MOTORS. .

A. Gripper Servo
B. Z-Axis Servo.

ROBOT OPERATION

A. Teach Mode.
B. Teach Pendent

SOFTWARE. . . .

A.
B.
C.
D.

CIRCUIT

A.
B.
C.
D.
E.

SUMMARY

Servo Ihterrupt
Stepper Motors.

Drive .
Teach .

DESCRIPTION

Stepper Motor
Servo Motor Controller.
Force Sensors
Computer Interface. .
Miscel laneous

Controlier

AND CONCLUSIONS

SELECTED BIBLIOGRAPHY .

iv

Routine

Page

@ (o)W NS, IS N H

10

I
12

13

13
14

16

i6
17
18
19

21
21
25
27
27
33
35

40

Chapter ' Page

APPENDIXES. o +v ¢ v v ¢ ¢ o ¢ o o o o o o o o o o « o« - 41
APPENDIX A - PASCAL MAIN PROGRAM LISTING 42
APPENDIX B - ASSEMBLY PROCEDURES LISTING 49
APPENDIX C - MECHANICAL DRAWINGS 62

5.

6.

7'

9.
10.
11.

12,

LIST OF FIGURES

Lobster Mechanism.

Crawdad Robot.

Power Supply and Motor Controllers

Position Controtl System. .
Teach Pendent.
Motor Power Supplies . . .

Stepper Motor Controller .

Servo Motor Power Amplifier.

Force Sensor Interface Diagram

Computer Interface Board Schematic

Input / Output Memory Map.

Teach Pendent Interface Schematic.

vi

Page

10
15
22
24
26
28
29
32

34

CHAPTER I
INTRODUCTION

Closed-loop robots often have the advantage of higher
speed capability and higher precision in comparison to
open-loop robots. Also the closed-loop robots tend to
handle high inertia Iload conditions more satisfactorily
than open-loop robots. However, a closed-loop robdt does
suffer from some important drawbacks. Most closed-loop
robots have a more Ilimited and somewhat smaller workspace
and their highly nonlinear equations of motion are time
consuming to solve demanding powerful computers to control
the robot. Applications where the speed of operation is
critical, make closed-l1oop robots a more attractive
alternative.

The Oklahoma Crawdad which is often called a Lobster
arm robot has,Fouf degrees of freedom. As shown in Figure
1, it consists of a three degrees of freedom planar
mechanism and a prismatic elbow with a gripper mounted at
one end. The mechanism was previously mode 1 ed
mathematically and computer programs were developed to
simulate the mechanism graphically {1]. The mechanism has
two ternary links (including the ternary ground 1ink) and

six binary 1links. The elbow 1is installed on the ternary

output 1ink of the mechanism such that it can slide up and
down along the vertical axis. As shown in Figure 2, the
entire assembly is mounted on a rigid and sufficiently
large work surface. A small teach panel is mounted on one
corner of the work surface within easy access of the user.
Shown in Figure 3 1is the separate box containing power
supply and the drive circuits necessary to control the
various motors. The computer interface board, which also
contains tHe A/D, D/A, and decoding circuits for
shaft-encoder, 1is mounted inside the computer. Connecting
cables are used to attach the power supply box to the
computer and the robot. Three stepper motors are used to
drive the input links of the mechanism whereas DC servo
motors are used for the elbow and gripper. Menu driven
software is developed for easy interaction with the user.
In control modules of the software where speed of execution
is critical, assembly language 1is used. However, Pascal is

used for the remaining software modules.

Figure 1. Lobster Mechanism

Figure 2. Crawdad Robot

Figure 3. Power Supply and Motor Controllers

CHAPTER 11
DESIGN AND CONSTRUCTION

Three stepper motors are used to drive the base inputs
of the lobster mechanism. The movements of the Z-axis and
the gripper are controlled by employing DC servo motors.
For detailed description of drive electronics and software

refer to appropriate sections.
A. Bases

Aluminum sheets of 3/16" thickness are used to
construct the bases. Each motor is mounted on é horizontal
piece which itself 1is supported by two 1long vertical
plates. A 54" by 36" by 3/4" high strength phenolic fiber
board is used as a mounting table for the three bases.

In order to gear down the motors, two identical pairs
of chain and sprockets, each with a gear ratio of 3:1 are
used to obtain a total gear ratio of 9 for each base.
Precision sprockets and specially constructed chains
(combination of steel belt and plastic jacket) produced a
zero backlash gear drive which is critical when using open
loop (no feedback from the actual output) devices such as
stepper motors. The output bearing block is mounted on one
of the vertical plates. The idler bearing block is mounted

on the horizontal plate such that 1{ts position can be

adjusted to allow for tightening of the chains.
B. Links

Three pairs of binary 1links connect the center
equilateral triangle 1ink and the three bases or inputs of
the mechanism. Input links are slightly shorter than the
coupler links, but they all have "I" beam type cross
section of the same size. Double ball bearings are used at

each end to ensure rigidity of the mechanism.
C. Elbow

The elbow consists of a 1.5" by 1.25" by 8.5" piece
and a gripper mounted at the bottom end. The elbow is
constructed from four pieces of 1/8" sheet aluminum to make
a box shape housing for the gripper motor and the drive
components. Welight is reduced wherever possible.

The gripper is constructed from two sets of
parallelograms to form two fingers such thatvthe gripping
surfaces remain parallel independent of the position of the
fingers. Pulleys are used to amplify the gripper force. A
worm is mounted on the motor shaft, which turns a worm gear
at 1/25 of motor speed. A special high strength cable is
wrapped around the worm-gear’s 1/4" shaft. The cable
passes through an idler pulley amplifying the force twice.
The other end of the cable is fixed to the hand. The
pulley is connected to another cable which in turn wraps

around the feed back potentiometer and finally goes to the

gripper. The two gripper fingers are spring loaded to

provide a return action.
D. Z-Axis

This part of the robot is responsible for up and down
movement of the elbow. Three 1/4" steel rods are mounted
on fhe ternary link. The other end of fhe shafts are fixed
to another plate about 8" above the ternary link so that
the rods remain parallel rigidly. The top plate is also
used to mount the servo motér and the shaft encoder. A
gear head with gear ratio of 5 is mounted on the motor.

The vertical output shaft of the gear head is engaged
to a horizontal shaft by means of a pair of bevel gears
reducing the gear ratio four more times. The shaft encoder
is connected to this shaft by a small steel coupler. A
small sprocket is mounted on thjs shaft to drive a loop
chain up and down. The other end of thevchain passes over
an fdentical idler sprocket which is mounted just below the
‘ternary link. The elbow itself is mQQnted on another plate
which translates along the three vertical shafts using
three linear ball bearings. This plate 1is fixed to the

chain such that the motor can drive the elbow up and down.
E. Sensors

A number of different sensors are necessary to achieve
proper operation of the robot. The obvious sensors are the
feedback potentiometer for gripper and the shaft encoder

for the Z-axis servo system. The gripper employs a single

turn wire wound 5 K Ohm potentiometer and the Z-axis has a
4800 pulse per revolution shaft encoder. A limit switch is
used to sense the gripper force. This design prevents over-
tightening of the gripper.

Three pairs of semiconductor strain gages are mounted
on each of three binary input 1links, so that when in the
teach mode the user can apply a small force in the desired
direction, causing & small stress in the binary links. The
computer can read the strain gages and drive the particular
motors in the direction which the force is being applied.
This will enable the user to move the robot from one place
to another without having to solve the complex sets of

equations for the Crawdad arm in real time.

CHAPTER 111
STEPPER MOTORS

A stepper motor provides precisely controllable speed
or position. Since the motor increments a precise amount
with each control pulse, it easily converts digital
information to exact incremental rotation without the need
for any feedback device such as a shaft encoder or
potentiometer. Any stepper system requires initial
calibration when power is first applied; therefore, a home
or a reference position is necessary. Each motor has four
phases which must be turned on and off in a determined
pattern in order to rotate . the motor shaft 1n a
clockwise or counter clockwise direction.

There are many different approaches to drive a stepper
motor each with some advantages or disadvantages. Unipolar
phase energizing with half step phase pattern generation is
used here because of superior speed capabilities [2].

A series resistor R is used to limit the steady state
current to the stepper motor windings to the rated value
(4.7 amps) and also to provide means to decrease the time
for bringing the current up to full wvalue. The time
constant (time for current to rise to 63% of max) is equal
to L divided by Rtotal. Rtotal is equal to series

resistance plus the transistor on-resistance (.18 Ohm) plus

the motor winding resistance (0.34 Ohm), where L is the
motor winding inductance (0.81 mH). 10 ohm 250W resistors
are wused for series resistor R. Power MOSFETs (Metal
Oxide Semiconductor Field Effect Transistor) are used to
switch the power. A special power down feature is employed

to reduce the power when in steady state.

CHAPTER IV
IV- SERVO MOTORS

The.purpose of a closed~loop bosition control system
is fast and accurate control of the rotational position of
the motor shaft. Rotational position is given the notation
of ¢ , which signifies the angle deviation from a set
reference angle [3]. e is equal to integral of the angular
velocity. The block diagram of a position control system

is shown in figure 4.

MOTOR AND

AMPLIFIER LOAD .
w=§

A 1 (rad/sac) [

Trsr, Ke (T+srmi

LY

—1i

Ke -—

Kp - — ‘

Figure 4. Position Control System

And the transfer function is as follows:

s (75%) [emesa)
] S \1+S71p KeE(1+STm)

Vin 1+Kth(A >[1]
S 1+S7a/IKE(1+S Try)

10

11

Where:

Kp = Integrator constant
(position feedback gain)

Kt = Velocity feedback gain

Ke = Voltage constant of motor

Tm= Motor time constant

TA; amp&iFiér time constant

A = D.C. gain of amplifier

Velocity feedback increases system damping and allows
FoF faster response while preventing overshoot which is
highly undesirable in robot applications of servo systems
[4] (electrical, hydraulic or otherwise).

To employ velocity feedback in a servo system a
.tachometer is necessary. In addition to cost, a tachometer
will increase the weight and size of the elbow. Anothér
approach is to differentiate the signal from position
feedback device, but practical differentiation of a signal
eltectronically is not an eésy task. This discussion is

pursued in more detail in the next sections.
A. Gripper Servo

Since the gripper employs a relatively high gear ratio
and low inertia, velocity feedback is not used and position
feedback is considered to be sufficient. This makes the

hardware necessary to control the motor simptle.

12

B. Z-Axis Servo

The Z-axis Jjoint has considerable inertia since it
must support the elbow inertia including the bearings, the
plate housing them, and the 1load carried by the gripper.
This could cause an overshoot. ngrshoot can cause serious
damage to the arm or to the object being handled.
Theréfore some means of velocity feedback must be employed
to obtain sufficient damping and fast response. A
tachometer however is not used for this purpose. Instead,
the position is read by computer at equal time intervals,
then the previous position is subtracted from present
position. This time interval can be very short (about 5
ms) since the shaft encoder for position feedback is a very
high resolution device.

The velocity feedback gives good dynamic
characteristics, 'but the steady state errors must be
reduced. The steady state errors can be considerably high
when heavy objects are béing handled. Therefore a simple
integrator is employed in the controller to minimize these

errors.

CHAPTER V
ROBOT OPERATION
A. Teach Mode

Probably the most c¢ritical part of operating a robot
is teaching it to do a series of operations sequentially.
To do this a wuser must have total control over each
function of the robot arm while in teach mode including
moving the arm varound, bringing the elbow up and down,
opening and closing the gripper and finally being able to
tell the computer to remember a particular state of the
robot (position of the three bases, position of the Z-axis,
and position of the gripper). A typical teach session
would produce a set of numbers stored in a large array in
the following format. Three 16-bit binary numbers to store
the position of the three bases, one 8-bit number to store
the position of the gripper and one 16~bit number to store
the position of the elbow.

The 1length of the array determines the number of
different points (robot states) that can be stored. When
the teach mode is completed, this array can be stored on
disk as a file to be called by the main program later, in

order to execute the previously taught sequence. Full

13

14

editing capability is available to delete or insert one or
more points in an existing file.

Three global 16-bit counters are incremented or
decremented accordingly to be stored in current position of

the array.
B. Teach Pendent

A Teach pendent shown in Figure 5 is used to control
the rest of the robot functions. DPST (Dual Position
Single Terminal) rocker switches with temporary action
control the two servos in either direction. A decimal
thumbwheel selector switch is mounted on the bottom side of
the teach pendent. This selector determines the velocity
factor (0-9). There 1is a ’push button to remember the
current state of the robot.

User can move the servo in any direction by pressing
the rocker switches, simultaneously if desired. The speed
of the motors depend on the setting of the thumbwheel
switch (0-9) and varies from very slow to maximum speed.
This speed factor can be varied in different stages of
teach session. [t controls not only the speéd of the servo
motors, but also the stepper motors. For instance, when
moving from one side of the workspace to the other side a
fast speed may be used, but for positioning a rivet in a
small hole very slow speed settings should give better

results.

Figure 5. Teach Pendent

15

CHAPTER VI
SOF TWARE

Software is structured using Pascal language. Disk
file handling and most of the wuser interactions are also
done by Pascal. However all control functions, such as
scénning the servo motors, stepper motor control, and
various data acquisition routines were written in 8086~-88

assembly language.
A. Servo Interrupt Service Routine (ISR)

This interrupt service routine reads the current
position of each motor, subtracts this value from the
desired position of the motor to calculate the position
error and outputs the value of the error to corresponding
D/A, which in turn connects to the motor’s power amplifier.
A timer chip on the interface board is used to interrupt
the computer at 5ms intervals so that the above sequence is
repeated exactly 200 times per second. The elbow
incorporates an additional velocity feedback although it
does not have a tachometer. Velocity is calculated by
subtracting the current position of the motor from that of
ﬂthe previous scah. Since the time interval between each

scan is fixed, the average velocity of the motor in 5ms

16

17

intervals can.be calcujated. This is possible only because
a relatively high resolution position feedback device is
used (about 20,000 counts for a full stroke of the elbow).
This gives a sizable difference between thevtwo scans even
at slow speeds. The velocity is then multiplied by some
gain Kv and then subtracted from positioh error. Higher
damping is achieved by this technique without any
additional cost, and the software overhead is minimal.

Additionally, to minimize the steady state errors an
integrator is implemented on elbow servo system [4]. This
is done by storing a few of the previous position errors
and adding them together before sending the total error to
the D/A. The number of these previous errors determines
the time constant of the integratqr.

This interrupt service routine is activated when the
power is first turned on and repeated 200 times per second

until the power is turned oFF;
B. Stepper Motors

Software necessary to drive a stepper motor is
relatively simple. Since half stepping is used, the four
phases of each motor must be turned off and on sequentially
according to a table of length eight upward or downward
depending on the direction desired. This is done by
decrementing or incrementing a pointer variable for each
motor in module 8. This variable is then used té look up

the four bit phase values from the phase table mentioned

18

above.

However, the timing between the steps is critical. A
Pascal module is developed to calculate the time interval
necessary between each step according to a symmetrical
Trapezoidal acceleration motion program. This module
prompts the user to enter the slope of acceleration (jerk),
the maximum acceleration and, the maximum velocity in kilo

steps per unit of time. The program calcutates the time
‘between the stéps to accelerate from zero velocity to the
maximum velocity 1in micro seconds and stores that in a
table called ACC/DEC table (écceleration/deceleration).
" These values are later used to load the external hardware
timer with the correct number needed to generate desired
delays between each step. Depending on the next or
previous number loaded into the timer, acceleration or
deceleration is obtained. Furthermore, loading the same
value in the timer yields a constant velocity. This method
produces smooth and jerk free start/stop characteristics
which allows high speed operation (as fast as 8000
steps/sec.), also the user has total software control on

motion characteristics of the stepper motors.
C.v Drive

This procedure accepts one unsigned 16 bit number for
desired position of the elbow servo motor, one unsigned 8

bit number for desired position of the gripper servo motor,

19

and three signed 16 bit numbers for the direction and
number of steps each stepper motor must take. Servo motors
are handled by their own interrupt service routine. For
stepper motors the directions are set depending on the sign
of the arguments. The procedure Drive steps the stepper
motors and decrements the absolute value of the three
arguments until they all become zeros. A special algorithm
[5] is wused to coordinate the motions of all motors such
that they all reach their destination at the same time
regardless of the difference in the number of steps
necessary for each motor. This ensures smoother overall
operation. | fhe ACC/DEC table 1is used to accelerate or

decelerate the motor with the highest number of steps only.
The rest of the motors are moved éccordingly. The drive
procedure performs a number of checks to decide whether to
accelerate, go constant velocity or to decelerate the

motors.
D. Teach

Acceleration or deceleration is not used in teach mode
of operation, since it makes the software complex, and
slower speeds are sufficient 1in teach mode. The speed
selector on teach panel decides the constant velocity of
all three motors.. A polling technique is used to scan the
signals from the force sensors on each input link of the

mechanism. Depending on existence of an external force

20

(user) the corresponding motor is stepped in the proper
direction and a software counter is incremented or
decremented to keep track of each motor. The poliing
routine s repeéted from 50 to 250 times per second
depending on the speed selector. This gives complete
control over the stepper motors. The servo motors are
controlled by two rocker switches on the teach panel ‘as
mentioned previously. If fhese switches are pressed, the
corresponding servo moves in the proper direction with the
speed selected. When the store'push button is pressed, the
necessary arguments are passed to the main program in the
same format as the Drive procedure. These arguments are
stored in an array to be recalled by the Drive procedure

later.

CHAPTER VI
CIRCUIT DESCRIPTION

This section contains hardware description for each

particular circuit board used in the Crawdad robot.
A. Stepper Motor Controller

Stepper motors are powered by three separate power
supplies. One of the three identical power supplies is
presented in Figure 6. Each power supply consists of a
transformer, a bridge rectifier, and two 10,000 uF
capacitors connected in parallel, which yield a 48 Volt
unregulated power at 10 Amperes. Motor windings are rated
at 4.7 Amps each. Since half stepping is used, either one
or two of the motor windings are energized at all times.
With the circuit parameters used, the current through each
phase is approximately 4.0 Amps when the two phases are
energized, but when only one phase is energized, the drop
in load current results in a voltage rise in the
unregulated power supply. This voltage rise 1in turn
increases the winding current to approximately 15% above
the rated value. This is due to the nature of unregulated
power supplies, however, the motor specifications supplied
by the manufacturer, allow an overdrive of up to 20% when

only one phase is energized [2]. This yields a cooler

21

10V

4\0-—¢

(One of Three)

10000 UF x4

18v

il

Figure 6. Motor Power Supplies

22

23

operation of the motor for a longer period of time while
torque fluctuation of the motor shaft is minimized.

Figure 7 Shows the circuit diagram for one of the
three identical stepper motor controtllers. Power MOSFETs
are used to switch the power to the motor windings for
their superior speed and ease of implementation [6]. A
zener diode is used across the gate and drain terminals of
each MOSFET device along with a 1 kilo-ohm resistor to
ensure safe operation. Four data flip/flops are used to
latch the desired phase pattern. Open collector inverters
are used to drive the gates of the power transistors. A
one-shot timer is triggered each time a new - phase pattern
is latched (motor is stepped). The output of this timer is
connected via a voltage divider to an op-amp’s input which
has a gain of 3. The time constaht of the one-shot is
slightly less than a second. This set-up produces about 10
volts on the gate of the MOSFETs for as long as the motors
are being stepped more than once every second. But when a
motor is not stepped for longer than one second the gate
voltage of the power transistor drops to a value adjustable
by a potentiometer. This allows for power reduction when
the motor is in steady state conditions and the maximum
torque is not required. Care must be taken when adjusting
the low current of the motor windings because the power
transistors may gef too hot if the steady state current is
reduced too much. Of course, the MOSFETs reduce their

output current when they get overheated reaching a stable

24

(@344l jo sup)

43| {043U0) dojoi Jdaddsig *L 924nbBl 4

Fal

[4]

FIGIG
N\

N\

AAAA
M

ﬁ > 3 >
cz—w onL M S:w oL w
£

= ¥xievez -
ASY

AS

L A4) I 44 AS

¥x

1zine
DINZININ AAA-

Ao
L,

Uiz

rzewn

T

Unot
UNt'e Unes

AzZL

AS AS

25

power dissipation due to their. inherent characteristics

which makes them almost foolproof [6].
B. Servo Motor Driver

Power supply for the servo motors is also shown in
Figure 6. Plus and minus 18 volt unregulated power at 10
Amps is obtained from the circuit which is enough for three
additional motors (the two motors used draw 2 Amps each).
One of the two identical servo motor power amplifiers is
presented in Figure 8. Power op-amps were used to simplify
amplifier design for servo motors [7]. Tantalum capacitors
are used near power supply pins of the op-amps to prevent
oscillations., The gain of the devices are fixed to 12 for
both of the motors. A special divider network is used at
the input stage of each amplifier to obtain a full swing of
the output voltage from -15V to +15V for an input voltage
of -5V to Ov which is supplied by the digital to analog
converters. Short circuit resistors of .47 ohms each are
used to 1imit the current to a maximum of approximately 2.2

Amps.

Figure 8.

Servo

0K e =

—> MOTOR

Motor Power Amplifier

26

27

C. FORCE SENSORS

Semiconductor strain-gages are utilized to achieve
high sensitivity. These strain-gages have a gage factor of
approximately 100. This is roughly 50 times the
sensitivity of resistive type strain-gages which have gage
factors of 2 to 2.10 ([8]. Nonlinear behavior of
semiconductor gages is of no importance here, because only
a preset level of force must be sensed not the magnitude
of force at different times.

Wheatstone bridge and voltage comparators are used to
amplify the signals from the force sensors so they can be
monitored by the computer. The circuit diagram is shown in
Figure 9. The bridge is temperature compensated and one
potentiometer is used to balance each bridge and two more
to adjust the sensitivity of each force direction

individually.

D. Computer Interface

The complete circuit diagram for the interface board
which 1is installed inside the computer is presented in
Figure 10. It contains the components necessary to decode
the address bus, components necessary to read the shaft
encoder, the hardware timer, A/D and D/A’s, and data bus

buffer. Each section is discussed in detail here.

10K02

6V

6.0K0Q)

o

10KQ

1tMO

Figure 9.

10KO +

imM324
MO

Force Sensor Interface Diagram

(One of Three)

ccw

2.2x0)

82

Hiifiii

AARAREN

- 29

Board Schematic

10. Computer Interface

Figure

30

i. Address Decoder

Two 3 to 8 bit decéders and a few logic gates are used
to decode the address bus to obtain 8 input ports and 8
output ports ‘For various devices necessary. Texas
Instruments Professional Computer uses only 10 of the
address bus pins for input / »output purposes which allow
for a total of 1000 [/0 devices [9] . Therefore address
lines A0 to A9 are used along with IORC and AIOWCléins to
decode the necessary locations for /0 devices. A list of
the location assignménts in the [/0 map is given in Figure:

11.
ii. Shaft-Encoder

A two channel relative type shaft-encoder is used for
the Z—axié position feedback. It produces 1200 pulses on
each channel for a complete revolution. The pulses are 90
degrees out of phase which with proper decoding vyield a
resolution of 1/4800 of revolution. Refer to Figure 10 for
shaft encoder circuit diagrams. Decoding is accomplished by
comparing the present and previous logic states of channels
A and B. The previous states of the channels are latched
using four data type flip/flops which are clocked with a 1
MHz square wave. These four bits of digital inFormatidn
are decoded with proper logic to achieve a count-up and a

count—-down outputs. A 16 bit up/down counter is made by

31

cascading four 4‘bit counters. It is used ko keep track of
the position of the shaft-encoder to more than 13
revolutions. The counter can be cleared whenever desired
to allow a home position for the elbow. To clear the
counters, an input command must be executed for number 6
input port. For proper address of this port refer to

Figure 11.

iii. A/D, D/A, and Timer

An 8 bit A/D (ADC 804) is wused in cont inuous
conversion mode to read the position of the gripper servo.
This chip must be initialized when power is first applied
so that the continuous conversion process is started. This
is done at the séme time that the counters for the
shaft-encoders are cleared.

A 10 bit (DAC 1000) and an 8 bit (LM 1408) D/A are:
used to drive the power amplifiers for the elbow and the
gripper servo motors respectively. Design 1is straight
forward and simple. A programmable timer chip (8253) is
used with a clock speed of 1 MHz to allow precise timing
functions necessary to control the motors [10]. Interrupt
lines [RO and IRl are connected to output pins of channel O
and 1 of the timer chip. Channel 2 of the timer is not
used but the circuit board can be easily modified to use

this channel for future applications.

200H
201H
202H
203H
204H
205H
206H
207H

208H
209H
20AH
20BH
20CH
20DH
20EH
20FH

210H
211H
212H
213H

S.E.
S.E.
Panel

Force
8 Bit

Reset

Motor
Motor
Motor
8 Bit
10 Bit
10 Bit

Timer
Timer
Timer
Contr

|Bit 7 Bit 6

Bit 3 Bit 2 Bit 1

Bit 0 |

Bit 5 _Bit 4
N T

[RN NNN] P U P O R T S ##EEEENNENNEN]

High | F_ | E | D | c_ 1 B__| A | v | 8 |
Low | 7 1 6 1| 5 | 4 | 3 1 2 | 1 | o |
| Open | Closel Down | Up |l Speed Selectorj
Sen.] F3CW | F3CCW] F2CW | F2CCW| F1CW | F1CCW| Limit| Storei
A/D | 7 1 6 | 5 1 4 | 3 1 2__1 1] g0 1
1 N o t U s e d 1

IX X X X X X X X X X X X X X X X X XXX XXXX XXX XI

] N o t U s e d]
NN %¥* O U T P U T P O R T S #HE#E®%iuH]

1 1X X X X X X X X X X X X X X| Phi 41 Phi 3| Phi 2| Phi 1]
2 1 X X X X X X X X X XX X X XI| Phi 41 Phi 3] Phi 2{ Phi 1}
3 IX X X X X X X X X X X X X X! Phi 4] Phi 3| Phi 21 Phi 11
D/A | 71 6 | 5 1 4 | 3__1 2 | 1] 0_- 1|
D/7A JX X X X X X X X X X X X X X X XX XXX XI| 9 | 8_ |
D/7A | 7 1 6 | 5 1 4 | 3 1 2 1 1 | g |
| N o t U s e d i

| N o t U s e d |
[N RRNNRNN T 1 M E R 33 % |

0 i 7 1 6 1| 5 | 4 | 3 | 2 1 1 i Q9 1
1 | 7 1 6 | 5 | 4 | 3 1 2 1 1] o |
2] 7 1 6 | 5 1 4 | 3 1 2 | 1 i 0 i
ol | 7 1 6 1 5 | 4 | 3 | 2 1 1] 0}

Figure 11, Input / Output Memory Map

43

33

E. Miscellaneous

Figure 12 shows circuit

decimal thumbwheel selector.

diagrams for interfacing the

ports are used to interface

components housed

in the teach

diagrams used to decode the
Also Shown in Figure 12 are
rocker switches. Two 8 bit
the force sensors and other

pendent bbx.

boyo (>

IN2)—-—-—-—-1:—-:L
18 1
Bbit
D0-D7 €—F-
15244
IN3)’---'-j;--:L
19 1
Bbit J
15244

lY4bh
4bit
L
/
B bit Force
/
7 . Sensors
2hit
) .
[4
5V -l-\/vhv~4r4égfz;>..
2.2KQ2
LS
5V dl-\/\f\/“<>-<;::2;>-4b
2.2KQ

Store

L

5V

2.2KQ

RS1 =

2.2KQ

34

Teach Pendent Interface Schematic

Figure 12,

CHAPTER VIII
SUMMARY AND CONCLUSIONS

To understand the dynamics, kinematics, and control of
closed loop robots, building a test-bed for the Oklahoma
State Crawdad was taken as the main part of the thesis
objective. Development of a powerful and efficient
operating system <completed the primary goals of this
project. Such a test-bed was built to provide grounds for
future research and study of this class of robots.

The Crawdad robot arm is basically a three degree of
freedom planar mechanism with sliding joint added to the
output 1ink to allow manipulation of a small object in
space. The output 1ink of the planar mechanism is capable
of two translational motion components and a rotational
motion about an axis, vertical to the plane of the
mechanism. However, the rotational component 1is highly
constrained by the position of the output 1ink such that at
extreme positions in the workspace, no independent rotation
may be achieved due to the nature of the mechanism. Thus,
the dexterity of the robot arm may be appreciably improved
by integration of a "roll"™ in the wrist. Furthermore,
"pitch" and "yaw" components may be considered for higher

flexibility.

35

36

Control of the stepper motors to drive the three input
links of the Crawdad was the next item to be considered,
once the mechanical configuration of the arm was decided
ubon. Speed and efficiency were the primary criteria for
the stepper motor controllers. High speeds of operation
were achieved using high current, low voltage stepper
motors and appropriate circuitry. Linear tracking power
control was implemented to avoid excessive power
dissipatioh in stepper motor windings and the series
resistors. However, some undesirable overheating occurred
in the power MOSFETs which was the side-effect of this
method. Incorporation of chopper amplifiers is recommended
to overcome this problem.

The actuators to drive the Z-axis prismatic Jjoint and
the gripper had to be mounted on the moving output link of
the mechanism. Therefore, weight of these actuators was the
primary criterion to be considered. Servo motors were
selected for this purpose due to their superior power to
weighf ratio.

Conventiénal PID (Proportional/Integral/Differential)
cbntrol strategy was applied to the Z-axis servo motor,
while proportional control alone was decided to be adequate
for the gripper servo. The servo actuators operated
properly without producing any major complexities.

Software development strategies proved to be one of
the more challenging problems in this project. Development
of control modules of software in high level languages such

as C was found impossible due to inadequate execution speed

37

of a microcomputer. Therefore, Assembly language was used
where high speeds of execution were necessary. Pascal
language was selected to structure the software and handle
disk access and user interface.

Due to the segmented structure of the TI-Professional
microcomputer, complexities arose when trying to 1ink the
servo interrupt service routine to other software modules.
However, advanced software development tools would
considerably simplify this task.

One of the most important features of a robot
manipulator is the task~programming technique. Typical
point-path robots are taught a task by moving each joint
independently to a desired position and saving the vector
of joint positions to describe a particular point in the
path. Basically, this method has been used to program the
Crawdad arm. All joint velocities are brought to rest at
each point programmed by the operator. The teach process is
different from the general point path robots in one aspect.
Complex equations of motion must be carried out to compute
the joint anglés, given an end effector position of a
closed 1loop robot. Thus, the conventional open loop robot
programming technigues are tedious and impractical to be
implemented on a closed loop manipulator. The teach mode of
operation of the Crawdad arm is similar to that of some
continuous-path robots available in market (painting
robots). The wuser grabs the end effector and maneuvers it
to a desired position. Strain gages are mounted on the

input links to sense the direction of the force applied by

38

the operator. The base motors are then driven such that the
arm responds by moving the output 1ink in the direction of
the applied force. The Z-axis and the gripper are
contro}led conventionally with various speed selections for
coarse or fine positioning of the end effector.

Once a desired position and orientation of the end
effector has been achieved, all joint positions are stored.
When the same task is played back in automatic mode the
joint motions are linearized with respect to each other
using a special algorithm. Thus, the path from any point to
the next is generated by this technique, independent of the
intermediate arm positions manipulated by the operator.
This ensures smooth motion of the arm between points. The
operator may set the speed of the robot and acceleration of
the finput Jjoints in automatic mode, corresponding to
different load conditions.

The only problems encountered in the teach mode were
related to the wuse of commercial grade electronic
components in force sensor interface. Temperature
instability of the resistors and the potentiometers used in
the Wheatstone bridge required adjustments repeatedly. The
use of quality products with low coefficient of temperatﬁre
is highly recommended.

Possibilities for future research in development areas
are integration of a vision system or incorporation of
tactile sensors on the gripping surfaces. Problems such as
obstacle avoidance may be studied in detail using a vision

system. Also, integration of pattern recognition with the

39

robot arm is another challenging field for further

research.

6.

7.

10.

A SELECTED BIBLIOGRAPHY

Sumpter, B., "Simulation Algorithm of Oklahoma Crawdad

Robot," Applied Mechanisms Conference, Kansas City,
1985.

"Stepper Motors and Controls," Bodine Electric Company,
Catalog ST-1, 1981,

McAllistef, K.y "D.C. Servo Motor Control Using the
ICH8510," Intersil Application Bulletin AQ26.

Paul, R. P., "Robot Manipulators,"” The MIT Press,
1981.

M"Robotics Reference and Applications Manual," Microbot '

Inc., 1981.

"Motorola Power Data Book," Motorola Inc., 1982.

"Power Op Amps Data Book," Apex Microtechnology Corp..,
1985.

DALLY, J. W. and RILEY, W. F., "Experimental Stress

Analysis," McGraw-Hill Book Company, 1978.

"Professional Computer Technical Reference Manual,"
Texas Instruments, 1983.

"Compdnent Data Catalog," Intel Corporation, 1982.

40

APPENDIXES

41

APPENDIX A

PASCAL MAIN PROGRAM LISTING

42

APPENDIX A

PASCAL MAIN PROGRAM LISTING

PROGRAM . ARM(INPUT,OUTPUT) ;

TYPE

LIST= ARRAY[1..5] OF INTEGER;
CONST

SIZE=100;
VAR

FILENAME:LSTRING(30);
INCDEC: INTEGER;
F: FILE OF CHAR;
TABLE: ARRAY [1..5,0..SIZE] OF INTEGER;
DEL:LIST;
TEMP: LIST;®
ENDTAB:WORD; v
OPTION:INTEGER;C,C1,KEY,CHC:CHAR;
CURRENT ,NEWPOINT,MAX, [,J: INTEGER;
SLOPE, AMAX,VMAX :REAL ;
ATABLE :WORD;
POINT: INTEGER;

VALUE
AMAX:=50.0;SLOPE:=150.0;VMAX:=5.0;
ATABLE :=#3000;

(*eooeeen ceecnen .. PROCEDURE DECLARATIONS HERE .ceccceveccces.™

PROCEDURE RSET1(A:WORD) ; EXTERNAL;

PROCEDURE RSET2;EXTERNAL;

PROCEDURE DRIVE(D1,D2,D3,M1,M2:INTEGER) ; EXTERNAL ;

PROCEDURE TEACH(VAR MT1,MT2,MT3,SRV1,SRV2: INTEGER) ;s EXTERNAL ;

PROCEDURE MANUAL ;

BEGIN
TEACH(DEL[1],DEL[2],DEL[3],DEL[4]1,DEL[51);
FOR I:=1 TO 5 DO

[TEMP[1]J:=TEMP[I]+DEL[I1];
CURRENT : =CURRENT+1;
FOR J:=CURRENT TO MAX DO
FOR I:=1 TO 5 DO
TABLE[I,J+11:=TABLE[I,J];
FOR 1:=1 TO 5 DO
TABLE[I,CURRENT]:=TEMP[11];
MAX :=MAX+1;
END;

43

)

PROCEDURE DRV;

BEGIN
DRIVE(DEL[1],DEL[2],DEL[3],DEL[4],DEL[5]);

END;

FUNCTION GET_CHR: CHAR;
BEGIN
REPEAT
GET(F)
UNTIL F~ <> CHR(0);
GET_CHR:=F*
END;

PROCEDURE GO_SEQ;
BEGIN
INCDEC:=13
IF CURRENT = NEWPOINT THEN RETURN;
IF CURRENT > NEWPOINT THEN INCDEC:=-1;
FOR J:=CURRENT TO NEWPOINT DO ’
BEGIN
FOR I:=1 TO 5 DO
DEL[I]:=TABLE[I,J+INCDEC]-TABLE[I,J];
DRV
END;
CURRENT :=NEWPOINT;
FOR I:=1 TO 5 DO
[DEL[I]:=0; TEMP[I]:=TABLE[I,CURRENT]]
END;

PROCEDURE GO_LIN;

BEGIN

FOR I:=1 TO 5 DO
DEL[I]:=TABLE[],NEWPOINT]-TABLE[I,CURRENT];

DRV;

POINT :=CURRENT;

CURRENT : =NEWPOINT;

FOR I:=1 TO 5 DO
[DEL[I]:=0; TEMP[I]:=TABLE[I,CURRENT]]

END; '

PROCEDURE REP_SEQ;
BEGIN
REPEAT
WHILE CURRENT < MAX DO
BEGIN
FOR I:=1 TO 5 DO
DEL[1]:=TABLE[I,CURRENT+1]-TABLE[I,CURRENT];
DRV;
CURRENT : =CURRENT+1 ;
GET(F);
KEY:=F~;
IF KEY=" * THEN

WRITE(’E TO EXIT, ANY OTHER KEY TO CONTINUE’);
READLN(KEY) ;
IF KEY="E“ THEN BREAK
END;
FOR I:=1 TO 5 DO
DEL[I]:=TABLE[I,1]-TABLE[I,MAX];
DRV;
CURRENT:=13;
UNTIL FALSE;
FOR I:=1 TO 5 DO
[DEL[I]:=0; TEMP[I]:=TABLE[I,CURRENT]]
END;

PROCEDURE DEL_PT;
BEGIN
WRITE(ENTER THE POINT TO BE DELETED: “);
READLN(POINT) ;
IF (POINT > MAX) OR (POINT<= 0) THEN
[WRITELN(” THE POINT DOES NOT EXIST’):;RETURN;];
MAX :=MAX~-13
IF POINT=CURRENT THEN
[WRITELN("CANNOT DELETE CURRENT POINT! “); RETURN 1;
FOR J:=POINT TO MAX DO
FOR I:=1 TO 5 DO
TABLEL I ,JY:=TABLE[I,J+1];
IF POINT < CURRENT THEN
[CURRENT :=CURRENT-1;
FOR I:=1 TO 5 DO
TEMP[I]:=TABLE[I,CURRENT]

END;

PROCEDURE LOAD;
VAR
IN_FILE: FILE OF INTEGER;
BEGIN
MAX:= 0;
READLN;
WRITE(ENTER THE FILENAME: 7);
READLN(FILENAME) ;
ASSIGN(IN. FILE,FILENAME);
RESET(IN_FILE);
WHILE (MAX <SIZE) AND NOT EOF(IN_FILE) DO
BEGIN
MAX:=MAX +1;
FOR I:=1 TO 5 DO
[TABLE[I,MAX]}:= IN_FILE";
GET(IN_FILE)]
END
END;

PROCEDURE SAVE;
VAR

45

OUT_FILE: FILE OF INTEGER;
C: CHAR;
BEGIN
WRITELN(’CURRENT FILE NAME 1S: ’,FILENAME);
READLN;
WRITE(ENTER NEW FILE NAME: ‘)3
IF NOT EOLN THEN
READLN(FILENAME) ;
ASSIGN(OUT_FILE,FILENAME)
REWRITE(OUT_FILE);
FOR J:=1 TO MAX DO
BEGIN
FOR I:=1 TO 5 DO
[OUT_FILE":= TABLE[I,J];
PUT(OUT_FILE)]
‘ END
END;

PROCEDURE MENU;

BEGIN
WRITELN;WRITELN;
WRITELN(.o eenennn ees MAIN MENUccceeceeen ")
WRITELN;
WRITELN(” 0. GENERATE NEW ACC./DECC. TABLE *)3
WRITELN(” 1. MANUAL / TEACH)3
WRITELN(” 2. GO TO A POINT / SEQUENTIALY “);
WRITELN(’ 3. GO TO A POINT / LINEARLY *)3
WRITELN(” 4. REPEAT A SEQUENCE ’);
WRITELN(” 5. DELETE A POINT 7);
WRITELN(” 6. LOAD A FILE FROM DISK “);
WRITELN(” 7. SAVE CURRENT FILE 7);
WRITELN(” 8. EXIT 7);s
WRITELN;
WRITE(’ ENTER OPTION NUMBER :)3
READLN(OPTION) ;

END;

PROCEDURE CALCULATE;FORWARD;

PROCEDURE USER;
BEGIN
RSET1(0);
WRITE(’DO YOU WANT TO MODIFY MOTOR PARAMETERS? Y/N : “);
READLN (CHC) 3
IF CHC<>’Y’” THEN [CALCULATE;RETURN];
WRITELN;
WRITELN(“MAXIMUM VELOCITY IS: “,VMAX:-4:1,"KSTEPS/SEC’);
WRITE(ENTER THE NEW VALUE: ’);
READLN(VMAX) ;
WRITELN("MAXIMUM ACCEL. IS: ’,AMAX:-4:1, KSTEPS/SEC"2");
WRITE(ENTER THE NEW VALUE: 7);
READLN (AMAX) ;
WRITELN(’SLOPE IS: *,SLOPE:-4:1, " KSTEPS/SEC*3");

46

WRITE(ENTER THE NEW VALUE: 7);
READLN(SLOPE) ;
CALCULATE

END;

PROCEDURE CALCULATE;
VAR
V,A:REAL;;5S:INTEGER;
DEL:ADS OF INTEGER;
R,S,0FFSET:WORD;
BEGIN
WRITELN;
WRITELN(’PLEASE WAIT ...");
SS:=1;
OFFSET:=0;
DEL.R:=OFFSET;
DEL.S:=ATABLE;
DEL " :=MAXINT;
WHILE ((A<AMAX) AND (V<VMAX)) DO
BEGIN
Vi=EXP(1/3*LN(4E-6*SLOPE*SQR(SS)))
A:=SQRT(SLLOPE*V) ;
OFFSET:=0OFFSET+2;
DEL .R:=0OFFSET;
DEL " :=ROUND(625/V) ;
SS:=5S+1;
END;
WHILE V<VMAX DO
BEGIN
V:=SQRT (2E-3*SS*AMAX) ;
OFFSET:=0OFFSET+2;
DEL.R:=0FFSET;
DEL" :=ROUND (625/V) ;
SS:=5S5+1
END; :
ENDTAB:=WRD(55%*2);
RSET1 (ENDTAB)
END;

(®eeeeeocreencnccasnnsccnne 1

BEGIN -
RSET1(0);
WRITELN(’TURN ON THE ROBOT POWER AND PRESS RETURN’);
WHILE NOT EOLN DO

RETURN;
READLN;
RSET2;

USER;
MAX:=03;
CURRENT :=0;

ASSIGN(F, " USER");
RESET(F);

47

END.

48

C:=’N";
REPEAT
MENU;
CASE OPTION OF
0: USER;
1: MANUAL;
2: [WRITELN(’ENTER THE POINT: “);READ(NEWPOINT);
GO_SEQ]; .
3: [WRITELN(’ENTER THE POINT: ’);READ(NEWPOINT);
GO_LIN];
4: REP_SEQ;
5: DEL_PT;
6: LOAD;
7: SAVE;
8: [WRITE('QUIT PROGRAM 7 7);READLN(C);]
OTHERWISE
WRITELN("TRY AGAIN ’);
END;
UNTIL C="Y"’

APPENDIX B

ASSEMBLY LANGUAGE PROCEDURES LISTING

49

PORT1
PORTZ2
PORT3
FORCE

PANEL

DAC!
DAC2
NCODER
ADC
. ZERO
IVECT!
LVECT1
HVECT1
IVECTZ2
LVECTZ2
HVECT2
TIMERO
TIMERI
TCNTRL
SCAN

TABLE
TABLE

DATAI

APPENDIX B

ASSEMBLY LANGUAGE PROGRAM LISTING

EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

SEGMENT
DW 8000
ENDS

SEGMENT
TAB

DIR
PNTR
SUM
MAX
ACD
TEMP
HAFMAX
GSWICH
SSWICH
DELAY

DELTA

0208H
0209H
020AH
0203H

0202H

020CH
020BH
0200H
0204H
0206H
40H
IVECT!1*4
LVECT1+2
41H
IVECT2%*4
LVECT2+2
210H
211H
213H
5000D

AT 3000H
H DUP(?)

DB 9,3,1,2,
DB 6,4,0CH,8
DW 3 DUP(I)
DW 3 DUP(2)
DW 3 DUP(?)
DW
DW
DW
DW
DB
DB
DW 40000, 20000,
DW 13333,10000

I P) 0a)))

sMOTOR!
sMOTORZ
s MOTOR3 ‘
;FORCE SENSORS /STORE SWITCH

sSPEED AND ROCKER SWITCHES

10 BIT D/A
38 BIT D/A
s SHAF T-ENCODER
8 BIT A/D

;CLEAR SHAFT ENCODER /RESET A/D

s VECTOR FOR INTERRUPT O

sVECTOR FOR INTERRUPT 1

sSCAN SERVOS EVERY 5 ms

3ACC / DEC TABLE
sWILL BE STORED HERE

sHALF STEPPING PHASE TABLE

sCW 1S THE DEFAULT DIRECTION
s PHASE TABLE POINTER 1S 2

;s DUMMY VARIABLE
sMAXIMUM # OF STEPS

32 MEANS ACC. /-2 MEANS DEC.
s DUMMY VARIABLE

sMAX STEPS DIVIDED BY TWO
sGRIPPER FORCE SWITCH FLAG

3 SERVO PANEL SWITCHES
;DELAYS BETWEEN EACH STEP
;FOR TEACH MODE

DW 8000,6667,5714
DW 5000,4444,4000

DW 5,8,11,13,16

50

; DUMMY TABLE FOR SERVO

DATA1

CoD!

TEACH

LOOP:

51

Dw 19,22,25,31,35 ;SPEED

DSIRD1 DW ?

DSIRD2 DB ?

POSTN1 DW ?

POSTN2 DB ?

ENDTAB DW ?

MOT DW 3 DUP(?)
INTG DW 8 DUP(0)
CNTR DW 4

OLDE DB O

ENDS

PUBLIC TEACH

PUBLIC DRIVE

PUBLIC RSET!

PUBLIC RSET2
SEGMENT

ASSUME CS:COD1,DS:DATAL
PROC FAR

PUSH BP

PUSH DS

MOV BP, SP

MOV AX,DATA1

MOV DS,AX

CLI

MOV DX, TCNTRL
MOV AL,30H

ouT DX,AL

SuUB AX,AX

MOV ES,AX

MOV AX,OF FSET ISRTNI
MOV ES:[LVECT11,AX
MOV AX,COD1

MOV ES:[HVECT11,AX
MOV DX, TIMERO
MOV AL,OFFH

ouT DX,AL

ouT DX,AL

MOV DX, PANEL

IN AL, DX

MOV CL,AL

AND AX,OFH

MOV SI,AX

SHL SI,!1

MOV BX,[DELTA+SI]
MOV DX,ADC

IN AL,DX

SAL CL,1

sDESIRED POSITION FOR Z-AXIS
sDESIRED POSITION FOR GRIPPER
sPRESENT POSITION OF Z-AXIS
sPRESENT POSITION OF GRIPPER

sPOSITION OF STEPPER MOTORS
3ARRAY USED FOR INTEGRATION
sPOINTER USED FOR INTEGRATOR
sPREVIOUS ERROR OF GRIPPER

s SAVE PASCAL BP
;PASCAL DS IS ON TOP OF STACK
sPOINT TO PASCAL FRAME

sDISABLE INTERRUPTS
+MODE 0 FOR TIMER O

$AX <-—-= 0
$ES <--—- 0
sPATCH IN NEW INTERRUPT VECTOR

$SET UP FOR INTERRUPT 1

s TIMERO <--- OFFFFH

s READ PANEL

sSAVE IN CL

sSPEED IN AX (MASK OFF REST)

sSPEED*2 IN SI
;LOOK UP PROPER PARAMETER

sREAD POSITION OF GRIPPER
s CHECK GRIPER OPEN SWITCH

LL1:

FF2:
LLZ:

LL3:

LL4:

JC

suB
MOV
SAL
JC

ADD
SuB
CMP
JLE
MOV

SuB
MOV
SHL
SHL
SHL
MOV
IN

SAL
JC

suB
MOV
SAL
JC

ADD
MOV
MOV
IN

SHR

MOV
MOV
ouTt
POP
PUSH
MOV
MOV
MOV
suB
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
STI

LL1

AL,BL
[DSIRD21,AL
CL,1

LL2

AL,BL

AH,AH

AX, 0A6H

FF2

AL, 0A6H

AH,AH
[DSIRD2],AL
BX, 1

BX, 1

BX,1
DX,NCODER
AX,DX

CL,!1

LL3

AX,BX
[DSIRDI1],AX
CL,1

LL4

AX,BX
[DSIRD1],AX
DX, FORCE
AL,DX

AL, 1

DOWNA

DX, TCNTRL
AL,30H

DX, AL

AX

AX

ES,AX

BX, [BP+8]
AL, [DSIRDZ]
AH,AH
ES:[BX],AX
BX,[BP+10]
AX,[DSIRD1]
ES:[BX],AX
BX,[BP+12]
AX,[MOT+4]
ES:[BX],AX
BX,[BP+14]
AX,[MOT+2]
ES:[BX],AX
BX,[BP+16]
AX, [MOT]
ES:[BX],AX

52 .

s START OPENING THE GRIPPER
;CHECK GRIPPER CLOSE SWITCH
;START CLOSING THE GRIPPER
sDON’T LET THE GRIPPER
:OPEN TOO MUCH

sMAXIMUM ALLOWABLE POSITION
3OF GRIPPER

sMULTIPY THE PARAMETER BY 8

;sREAD THE POSITION OF Z-AXIS
;CHECK Z-AXIS DOWN SWITCH
sREDUCE THE DESIRED POSITION

sCHECK Z-AXIS UP SWITCH

s INCREASE THE DESIRED POSITION

sREAD FORCE

sCHECK THE STORE PUSH BUTTON
;RETURN TO PASCAL IF PRESSED
sMODE O FOR TIMER O

s (DISABLE TIMERO)

s PASCAL DS IN AX

sPASCAL DS IN ES

;s ADDRESS OF DSIREDZ IN BX
sAL <--- DSIREDZ2

sAH <(--- 0
sDEL[5]=DSIRDZ2

sDEL[41=DSIRD1
sDEL[3]1=MOT3
;DEL[21=MOT2

sDEL[11=MOT!

DOWNA :

OFF:

ON:

ISRTN1

FI1CW:

DOWN1 2

F1CCW:

POP
POP
RET
SHR
JC

MOV
JMP
MOV
STI
STI
CLI
JMP

PROC

PUSH

PUSH
PUSH
PUSH
MOV
MOV
ouT
MOV
ouT
MOV
IN
SHR
SHR
MOV
SHR
JC
MOV
CMP
JNE
INC
MOV
INC
AND
MOV
MOV
MOV
ouT
JMP
MOV
JMP
SHR
JC
MOV
CMP
JNE
DEC
MOV
DEC

DS

BP

10

AL, 1

OFF
GSWICH, 0

ON

GSWICH, OFFH

LOOP

NEAR

AX

CX

DX

DI

AX, [DELAY+SI]
DX, TIMERO
DX,AL

AL, AH

DX, AL
DX,FORCE
AL,DX
AL,1

AL,
CL,AL
CL,!1
F1CCW
DI,[DIR]
DI,!
DOWN 1
[MOT]
DI,[PNTR]
DI

DI,07
[PNTR],DI
AL, [TAB+DI]
DX,PORT!
DX,AL
F2CW
[DIR],!
F2CwW

CL,!1

F2CW
DI,[DIR]
DI,-1
DOWNZ2
[MOT]

DI, [PNTR]
DI

53

sRETURN TO PASCAL

sGSWITCH IN CARRY (CONTINUE)
sGSWICH=0 MEANS ON
sGSWICH=FF MEANS OFF

$ALLOW INTERRUPTS HERE

s CONTINUE

iTHIS ISR SCANS FORCE SENSORS
sAND STEPS THE MOTORS

+AS NECESSARY

3sLOOK UP APROPRIATE DELAY

sLOAD THE TIMER WITH DELAY

sREAD THE FORCE SENSORS
3STORE BIT IS SHIFTED OUT
sGRIPPER BIT IS SHIFTED OUT

;CL <--- FORCE SENSORS
sFORCE-1-CW IN CARRY

sDIR=CW ?

sUSE DI FOR PHASE POINTER
s INCREMENT DI IN MODULE 8
;LOOK UP THE PHASE VALUE

;FROM TABLE
+STEP THE MOTOR

sF1CCW IN CARRY

N

sDIR=CCW ?

DOWNZ :
F2CW:

DOWN3 :

F2CCW:

DOWN4 :
F3CW:

AND
MOV
MOV
MOV
ouT
JMP
MOV
SHR
JC

MOV
CMP
JNE
INC
MOV
INC
AND
MOV
MOV

MOV

ouT
JMP
MOV
JMP
SHR
JC

MOV
CMP
JNE
DEC
MOV
DEC
AND
MOV
MOV
MOV
ouT
JMP
MOV
SHR
JC

MOV
CMP
JNE
INC
MOV
INC
AND
MOV
MOV
MOV
ouT
JMP

DI,O07
[PNTR],DI
AL,[TAB+DI]
DX, PORT!1
DX, AL

F2CW
[DIR],-1
CL,!

F2CCW
DI,[DIR+2]
DI,!1

DOWN3
[MOT+2]
DI,[PNTR+2]
DI

DI,07
[PNTR+2],DI
AL, [TAB+DI]
DX,PORT2
DX,AL

F3CW
[DIR+2],1
F3CW

CL,]

F3CW
DI,[DIR+2]
DI,-1

DOWN4
[MOT+2]
DI,[PNTR+2]
DI

DI,07
[PNTR+2],DI
AL,[TAB+DI]
DX,PORT2
DX, AL

F3CW
[DIR+2],-1
CL,1

F3CCW
DI,[DIR+4]
DI,1

DOWNS
[MOT+4]
DI,[PNTR+4]
DI

DI,07
[PNTR+4],DI
AL,[TAB+DI]
DX,PORT3
DX,AL

OuTC

54

;F2CW IN CARRY

sDIR=CW ?

sF2CCW IN CARRY

sDIR=CW ?

;F3CW IN CARRY

sDIR=CW ?

DOWNS :

F3CCW:

DOWNGE :
OuUTC:

ISRTN1
TEACH

DRIVE

MOV
JMP
SHR
JC
MOV
CMP
JNE
DEC
MOV
DEC
AND
MOV
MOV
MOV
ouT
JMP
MOV
POP
POP
POP
MOV
ouT
POP
IRET
ENDP
ENDP

PROC
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CLI
MOV
MOV
ouT
sSuB
MOV
MOV
MOV

55

[DIR+4],1

ouTC

CL,1 sF3CCW IN CARRY
ouTC

DI,[DIR+4]

DI,-1 sDIR=CCW ?
DOWNé

[MOT+4]

DI,[PNTR+4]

DI

DI,07

[PNTR+4],DI

AL, [TAB+DI]

DX, PORT3

DX, AL

ouTC

[DIR+4],-1

DI sRESTORE THE REGISTERS
DX

CX

AL,60H sEND OF INTERRUPT COMMAND
18H, AL

AX

FAR
DS
BP
AX,DATAI
DS,AX
BP,SP
AX,[BP+16] sGET THE ARGUMENTS FROM PASCAL
[MOT],AX
AX,[BP+14]
[MOT+2],AX
AX,[BP+12]
[MOT+4],AX
AX,[BP+10]
[DSIRD11],AX
AX, [BP+8]
[DSIRD2],AL
sNO INTERRUPTS
AL, 30H +MODE O FOR TIMER O
DX, TCNTRL
DX, AL
AX,AX
ES,AX
AX,OF FSET ISRTN2 ;NEW INTERUPT VECTOR
ES:[LVECT1],AX

ONE ¢

POS1:

TWO:

POS2:

THREE :

POS3:

ouT:

LOOP1 ¢

MOV
MOV
suB
MOV
INC
MOV
MOV
MOV
MOV
MOV
OR

JGE

NEG

NEG
MOV
CMP
JLE
MOV
MOV
OR

JGE
NEG
NEG
MOV
CMP
JLE
MOV
MOV
OR

JGE
NEG
NEG
MOV
CMP
JLE
MOV
MOV
MOV
MOV
SHR
MOV
MOV
MOV
MOV
MOV
MOV
MOV
ouT
ouT
STI
CMP
JGE

AX,COD1

ES:[HVECT!],AX

AX,AX

MAX, AX

AX
[DIR],AX
[DIR+2],AX
[DIR+4],AX
ACD, 2
AX,[MOT]
AX,AX

POS1

AX

[DIR]
[MOT],AX
AX,MAX

TWO

MAX, AX
AX,[MOT+2]
AX,AX

POS2

AX

[DIR+2]
{MOT+2],AX
AX,MAX
THREE

MAX, AX
AX,[MOT+4]
AX,AX

POS3

AX

[DIR+4]
[MOT+4], AX
AX,MAX

ouT

.MAX, AX

CX,MAX
BX,CX
AX,BX

AX, 1
HAFMAX, AX
[SUM], AX
[SUM+2],AX
[SUM+4], AX
SI,o0

AL ,OFFH
DX, TIMERO
DX, AL

DX, AL

SI,ENDTAB
OUTA

s MAX <--- 0

sDIR(I) (===

s ACD=2

sSET FLAGS

56

$sGET THE ABS OF THE ARGUMENT

+DIR <--- CCW

sFIND THE MAX

$SET UP FOR THE ALGORITHM

s COUNTER (CX) =MAX
sKEEP MAX IN BX

s AX=MAX/2

s SUML I 1=MAX/2

$SET UP FOR ACC.
sSET UP FOR FIRST INT.

s ENABLE INTERRUPT
s MAXIMUM VELOCITY YET

?

OUTA:

s TEMP KEEPS THE

LOOP2:

ouTB:
LOOP3:

ISRTN2

NEXT1:

CMP
JG

JMP
MOV
MOV
suB

STI
CMP
JG

MOV
STI
CMP
JG

MOV
ouT
MOV
MOV
ouT
POP
POP
RET

PROC
PUSH
PUSH
PUSH
ADD
MOV
MOV
MOV
MOV
ouT
MOV
ouT
MOV
SuB
JGE
ADD
MOV
ADD
AND
MOV
MOV
MOV
ouT
MOV
suB
JGE
ADD
MOV
ADD

CX,HAFMAX
LOOP1
ouTB
ACD, 0
TEMP, BX
TEMP, CX

sHALF DISTANCE YET ?

sACD=0 (CONST. VEL.)

s TEMP=MAX~COUNTER

NUMBER OF STEPS NECCESSARY TO DECC. TO O !!

CX, TEMP
LOOP2
ACD ,_2

CX,0
LOOP3
AL,34H
19H, AL
DX, TCNTRL
AL, 30H
DX, AL

BP

DS

10

NEAR

AX

DI

DX

SI,ACD
AX,TABLE
ES,AX
AX,ES:[SI]
DX, TIMERO
DX, AL

AL, AH

DX, AL
AX,[MOT]
[SUM],AX
DELAY1
[SUM],BX
DI,[PNTR]
DI,[DIR]
DI,O7H
[PNTR],DI
AL,[TAB+DI]
DX,PORTI1
DX, AL
AX,[MOT+2]
[SUM+2],AX
DELAY2
[SUM+2],BX
DI,[PNTR+2]
DI,[DIR+2]

sTIME TO DECC. YET ?
s START DECC.
sDONE ?

sENABLE IRO,IRI1&IR3

sMODE O (DISABLE TIMERO)

sRETURN TO PASCAL

; LOOK UP DELAY VALUE
sAND LOAD TIMERI]

s START THE ALGORITHM
s SUM=SUM-MOT

3 SUM=SUM+MAX
sSTEP THE MOTOR

s SUM=SUM-MOT

s SUM=SUM+MAX

57

NEXTZ2:

NEXT3:

ISRTNZ2

DELAY1:
UPI1:

DELAY2:
uP2:

DELAY3:
UP3:

DRIVE

AND
MOV
MOV
MOV
ouT
MOV
suB
JGE
ADD
MOV
ADD
AND
MOV
MOV
MOV
ouT
DEC
POP
POP
MOV
ouT
POP
IRET
ENDP

MOV
DEC
JNZ
NOP
NOP
NOP
NOP
JMP
MOV
DEC
JNZ
NOP
NOP
NOP
NOP
JMP
MOV
DEC
JNZ
NOP
NOP
NOP
NOP
JMP
ENDP

DI,O07H
[PNTR+2],DI
AL,[TAB+DI]
DX,PORT2

DX, AL

AX,[MOT+4]
[SUM+4],AX
DELAY3
[SUM+4],8X
DI, [PNTR+4]
DI,[DIR+4]
DI,O07H
[PNTR+4],DI
AL,[TAB+DI]
DX,PORT3
DX, AL

CX

DX

DI

AL ,60H

18H, AL

AX

DI,04

UP1

NEXT1
DI,04
DI
up2

NEXT2
DI,04
DI
UpP3

NEXT3

s SUM=SUM-MOT

s SUM=SUM+MAX

sEND OF INTERRUPT

s DELAY=18X+2Y+19
s WHERE :

s X=CONTENTS OF DI
;Y= # OF NOPS
31X=4 & Y=4 ~=->

s DELAY=99 CLOCK
sCYCLES

sDELAY1 & DELAYZ2
s AND DELAY3 ARE
s IDENTICAL

58

RSET1

RSET1

SERVO

PROC
PUSH
PUSH

CLI
SuB
MOV
MOV
MOV
MOV
MOV

MOV
MOV
ouT
MOV
ouT

MOV
ouT

MOV
MOV
MOV
MOV
MOV
MOV
MOV
ouT
MOV
MOV
ouT
POP
POP
RET
ENDP

PROC
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
MOV
ouT
MOV
ouT

59

FAR s THIS PROCEDURE CLEARS D/A’s
DS s STARTS THE SERVO SCANNING AND
BP sRESETS THE TIMERS

3 IT ALSO ACCEPTS THE LENGTH OF
3sACC /DEC TABLE FROM PASCAL
AX,AX ;PATCH THE ISR VECTOR
ES,AX
AX,SEG SERVO
ES:[HVECT1],AX
AX,OFFSET SERVO

ES:[LVECT1],AX

DX, TCNTRL
AL, 30H
DX, AL

AL, 70H
DX, AL

AL, 34H
19H, AL

AX,DATA1
DS,AX
BP,SP

AX, [BP+8]
ENDTAB, AX
AX, 1E6H
DX,DACI
DX, AX

AL, 80H
DX,DAC2
DX, AL

BP

DS

2

FAR

AX

BX

CX

DX

DS

DI
AX,DATA1
DS, AX
AX,SCAN
DX, TIMERI1
DX, AL

AL ,AH
DX, AL

s MODEO FOR TIMERO

sMODEO FOR TIMERI

sENABLE IRO & IRI1

$sGET THE ARGUEMENT FROM PASCAL
sSTORE THE ARGUEMENT
$SEND 0 VOLTS TO AMPLIFIERS

s THIS ISR SCANS POSITION OF

s THE SERVO MOTORS AND COMPARES
31T TO DESIRED POSITION OF THE
sMOTORS TO BRING EACH MOTOR TO
; THE TARGET POSITON

sLOAD TIMER1 WITH PROPER DELAY

MOV
IN

MOV
suB
MOV

sSuB
ADD

;s INTEGRATOR FOR
MOV
DEC
DEC

JGE
MOV
SUMER: MOV
MOV
SuUB
ADD

ADD
ADD

ADD
JGE
SuB
JMP
AAA: CMP
JLE
MOV
MOV
ouT

BBB:

MOV
IN

MOV
SuB
MOV

3+ INTEGRATOR FOR

ADD
MOV
ADD
MOV
ouT

POP
POP
POP
POP
POP
MOV
ouT

DX, NCODER
AX,DX

BX,AX
AX,[POSTNI]
[POSTN1],BX

BX,[DSIRDI1]
AX,BX

MOTOR1
DI,CNTR
DI

DI

SUMER
Dl,4

CNTR,DI
[INTG+DI],AX
AX,AX
AX,[INTG]
AX,[INTG+2]
AX,[INTG+4]

AX,500
AAA
AX,AX
BBB

AX,3FFH
BBB
AX,3FFH
DX,DAC1
DX,AX

DX, ADC
AL,DX
[POSTNZ2], AL
AL,[DSIRD2]
AH, AL
MOTORZ2
AL,[OLDE]
[OLDE], AH
AL, 127
DX,DAC2

DX, AL

DI
DS
DX
CX
BX
AL,61H
18H, AL

60

s PRESENT POSITIONI
;s PRESENT POSITIONI
s VELOCITY IN AX
;PRESENT - PREVIOUS

IN AX
IN BX

sPOSITION ERROR IN BX
sERROR1 IN- AX

s IN THIS PART THE ERRORS OF

s THE FOUR SCANS ARE ADDED

s TOGETHER TO IMPLEMENT AN

s INTEGRATOR WITH TIME CONSTANT

;s APPROXIMATELY 20 mS

s ADJUST FOR BIPOLAR

s CHECK THAT ERROR IS WITHIN
sRANGE OF THE D/A

3 (1000 COUNTS FOR 10 BIT)

sREAD THE PRESENT POSITION
sERRORZ2 IN AL

sKEEP ERROR IN AH

; JUST ADD PREVIOUS ERROR FOR

;s THE GRIPPER INTEGRATOR
sCHECK FOR 8 BIT RANGE

;END OF INTERRUPT COMMAND

SERVO

RSET2

RSETZ2
CoD1

POP
IRET
ENDP

PROC

PUSH
MOV
MOV
CLI

MOV
IN
MOV

MOV
IN
MOV

MOV
ouT
ouT

POP
STI
RET
ENDP
ENDS
END

AX

FAR

DS
AX,DATAI
DS, AX

DX,NCODER
AX,DX
[DSIRD1],AX

DX, ADC
AL, DX
[DSIRD2],AL

DX, TIMERI
DX,AL
DX, AL

DS

6l

s THIS PROCEDURE STARTS SERVO

s MOTOR SCANNING

$sDESIRED 1 <~--- PRESENTI

sDESIRED 2 <--- PRESENTZ2

sSTART SCANING THE SERVOS

APPENDIX C

MECHANICAL DRAWINGS

62

63

LOBSTER TOP VIEW

64

s

Ay

50

IL

e

8

1

&0 R T T 50

65

| SR 3

B gl

——
[y
~
o=
Y T
=1 i -
[
3 L

hr

mh I)IT F“} CHBHH LJ AR A AR HHANEH A EEE
L—-—-- .
i (i || =l gl
g I o X
. [osfe] o
O TR P » e ') Tas >—1
— i z
']
0
W
-
S
;Z
+
N
et e e T
— e L
R e R 71 bR

o

L
i gy
=
e

t
M
i

o/

t

VITA
Vahid Taban
Candidate for the Degree of

Master of Science

Thesis: DESIGN AND PROGRAMMING OF A LOBSTER ROBOT
Major Field: General Engineering

Biographical:

Personal Data: Born in Tehran, Iran, September 14,
1958, the son of Mr. and Mrs. N. Taban.

Education: Graduated from Hadaf High School, Tehran,
Iran, in June, 19753 received the Bachelor of
Science degree in Mechanical Engineering from
Ok lahoma State University in December, 1982;
completed requirements for the Master of Science

Degree at Oklahoma State University in May,
1986.

