MACHINE VISION FOR THE GRADING

OF PINE SEEDLINGS

by
MICHAEL PATRICK glGNEY
Bachelor of Science in Agricultural Engineering
Oklahoma State University
Stillwater, Oklahoma

19885

Submitted to the Faculty of the
Graduate College of the
Oklahoma State Uniliversity
in partial fulfillment of
the requirements for
the degree of
MASTER OF SCIENCE
December, 1986



“Thesis
986
RETaw

Qop. O-



MACHINE VISION FOR THE GRADING

OF PINE SEEDLINGS

Thesis Approved:

@M@KN

Dean of the Graduate College

ii
1264251 |



PREFACE

The author wishes to acknowledge the following
persons and organizations for the role they played in
facilitating this study:

The Department of Agricultural Engineering of
Oklahoma State University for providiﬁg a research
assistantship.

My graduate committee members, Dr. Marvin Stone and
Dr. Gerald ﬁruzewitz for their time and efforts.

My graduate adviser, Dr. Glenn Kranzler, for his
gracious support and guidance.

Mr. Douglas Devoe and Mr. Mark Appleman for their
significant contributions of time and energy.

My parents Sylvester and Denise Rigney and my
brotherss Mark, Steve, Philip, and Lloyd for their

infinite love and support.

1i}



Chapter

I.

II.

II1I.

TABLE OF CONTENTS

INTRODUCTION. . . & « o ¢« s o & =
Objectives . . + o« o « o« &
Assumptions. . « &« . « < o

REVIEW OF LITERATURE.

Introduction . . . « « - « .
Seedling Grading Criteria. .
Seedling Sorting and Grading
Mechanization. . . . . .
Machine Vision Applications.
Image Processing Techniques.

Lighting. . « « « « .+ .
Image Acquisition . . .
Sources of Error. . . .
Segmentation. . . . . .

Feature Extraction. . .

METHODS AND PROCEDURES. . . . . .
Introduction . . . . . .« . .
Description of Equipment . .

Selection of Grading Criteria.
Investigation of Caliper Measurement

Techniques . . . +« & &« & o« « & s o«
Method 1: Binary Thresholding . .
Method 2: Moments . . . « . .« . .
Method 3¢ Modified Laplacian Edge

Detector (3X3). . . . . . . . .
Method 4: Modified Laplacian Edge
Detector (BXH). . . &« « &« &« .+ &

Method B5: Gradient Edge Detector.
Method 6: Modified Gradient Edge

Detector. « .« « « +« « s 2 o o =
Performance Evaluation. . . . .
Description of Algorithm . . . . . . .
Seedling Detection. . . . . « .«
Seedling Orientation. . . . . . .
Location of Root Collar . . . . .

Measurement of Stem Caliper . . .
Meagsurement of Root Area Index. .
Measurement of Shoot Height . . .

iv

Page

11

13
16
16
18
19
21

25

29

29
29
33

36
37
38

38

39
40

41

41

43
45
47
a7
52
54
56



Chapter Page
Recording Seedling Statistics . . . . 57
Main Program. . « « « + « « « « =« » « 58
Algorithm Calibration . . . . « « « . 59
Additional Subroutines. . . . . . . . 61
Method of Performance Evaluation . . . . . &1
IV. RESULTS, CONCLUSIONS, AND RECOMENDATIONS. . . . 64
Introduction . ¢« ¢. 2 & « &« 2 o s 2 2 s & = 64
Performance Evaluation Results . . . . . . 64
ConclusionsS. « « « + & « « « o s« s s o 2 = 68
Recomendations . « ¢ « & « &+ « o 2« s s & &« 69
REFERENCES CITED . . &« &+ ¢ ¢ & 5 2 s « s o o s s o« u o« 71
APPENDIX A - SIX TECHNIQUES FOR THE MEASUREMENT

OF DOWEL CALIPER . . « ¢« &« « « « . 75

APPENDIX B - PINE SEEDLING GRADING ALGORITHM
PROGRAM LISTING. . « +« « « « « « « 90

APPENDIX C = STATISTICS FROM THE MEASUREMENT
OF 100 SEEDLINGS . . . «+ « « « « « 110
APPENDIX D - IRI/STROBOTAC INTERFACE. . . . . . 125



LIST OF TABLES

Table Page
I. Grading Criteria for Loblolly Pine

Seedling8. « « « ¢ ¢ = « = s = €« a s a = = = 10

II. Grading Scheme for Loblolly Pine Seedlings . . 36
III. Summary of Statistics from Six Caliper

: Measurement Methods. . . « ¢« &+ « + &« « = « .« 42

IV. Percent Misclassification of 100 Seedlings . . 66

V. Percent Misclassification of 17 Seedlings. . . 66

VI. Percent Misclassification of 83 Seedlings. . . 67

vi



LIST OF FIGURES

~Figure

1'

10.
11.
12.

13.

14.

15.

16.

Loblolly Pine Seedlings at the Weyerhaeuser
Nursery, Ft. Towson, Oklahoma . . . . . .« .

Variation Among Loblolly Seedlings. . . . .
Histogram of Seedling Image . . . . . . . . .

Pixel Brightness Slope in a Digital Image . .

Spatial Convolution . . « « « ¢ &« &« « o &« &
Response of Gradient and Laplacian

Edge Detectors. . . « « « o « o «a s s o »a =
Conveyor Belt, Cameras, and Strobe Lamps. . .

Field of View of Camera 2, FOV of Camera 1,
and Waitfor() Window. . . . « « &« &« =« « o« =

Orient() Subroutine Threshold at G.L. 170 . .
Algorithm Finds Rﬁot Collar. G.L. 90 . . . .
Algorithm Fails to Find Root Collar. G.L. 90
Algorithm Finds Root Collar. G.L. 140. . . .

Modified Laplacian Edge Detector
Applied in Hardware Window. . . . . + « .« .

Root Collar Zone Thresholded at G.L. 57
after Convolution . . « . &« ¢« &+ « &+ « ¢ = &

Root Zone Thresholded at G.L. 40 after
Convolution with Laplacian Edge Detector. .

Measurement of Shoot Height. G.L. 100. . . .

vii

Page

22
22

23

25

30

46
48
49
49

51
53
54

56

57



CHAPTER 1
INTRODUCTION

The commercial forest industry, along wifh state and
federal agencies, produces hundreds of millions of tree
seedlings annually. These seedlings are vital to the
reforestation effort which is necessary to ensure future
supplies of lumber, paper, and other forest products.

One of the early stages in reforestation is the
culture of tree seedlings (Fig. 1). Nursery managers
perform many cultural operations to improve the productive
potential of the stock grown in nursery beds. QGQuality
pine seedlings are currently valued at $35 per thousand,
representing a 2.5 million dollar crop annually for a
single Oklahoma nursery. Grading harvested seedlings to
remove inferior stock is an important management
procedure.

~Grading is currently performed manually in an
environment that is cold and humid. It is not feasible
tfor human graders to inspect every seedling or to grade
seedlings into more than two classes. Grading performance
varies widely among graders. Seedling throughput per
grader is low, with the average grader processing only

3000 - 3500 seedlings per hour. Research by Lawyer (1981)



indicates that grading and sorting account for 19% of
total labor cost for a typical nursery. These facts
indicate a need for automation of the seedling grading

operation.

Figure 1. Loblolly Pine Seedlings at the
Weyerhaeuser Nursery,
Ft. Towson, Oklahoma

Digital image processing has been successfully
implemented in many industrial and some agricultural
inspection processes. It appears to be an ideal tool for
addressing the seedling grading problem. Digital image
processing systems have demonstrated high accuracy and
throughput and have permitted 100X inspection of products

Wwhere it was previously not feasible. Beyond the



improvement of the grading process, this tool could
contribute to the knowledge base of silviculture and
increase the productivity of our forests. This result
could be realized if nursery managers had the ability to
provide seedlings of a prescribed grade for a specific

site.
Objectives

The purpose of this research is to demonstrate the
ability of machine vision to grade harvested pine
seedlings under commercial nursery production conditions.
To this end, three specific objectives are adopted:

1. Define a seedling grade classification scheme

based on appropriate seedling measurements.

2. Develop and implement a machine vision algorithm

for obtaining seedling measurements inAreal time
(here defined as at least one seedling per
second.) |

3. Evaluate the performance of the algorithm

implementation in terms of measurement precision,
speed and accuracy of classification, and causes

of misclassification.
Assumptions

The machine vision environment will be defined in
terms of required lighting, cameras, optics, machine

vision system, and seedling transport. Several



assumptions have been made about the environment in which
the grading algorithm Wwill be employed. Constraints were
necessary to reduce the scope of this study to a
reasonable breadth.

The first assumption is that only one seedling will
appear within the camera field-of-view (FOV)'at a glven
time. It would be possible to grade the seedlings if
several were present, however, occlusion would pose a
significant problem. The simplest case is to inspect one
seedling at a time. This requires that a mechanism for
singulating the seedlings be implemented in a commercial
application. Manual singulation is used in this study.

A second assumption is that the orientation of the
seedling and position of the root collar a}e constrained.
Since seedlings are lifted from the nursery bed with
uniform orientation, it is assumed that all seedlings will
have the same orientation when they are viewed by the
cameras. Another aspect of orientation is the angle of
the major axis with respect to the image axes. The
singulation technique will be assumed to constrain angular
variation. Additionally, rcoot collars are at ground level
when the seedlings are lifted. It is assumed that root
collars will be minimally displaced relative to eaéh other
when they pass beneath the cameras.

These assumptions are consistent with the operation
of mechanically lifting seedlings from the nursery bed.

For this reason, the automated grading process may best be



_implemented on the seedling lifter itself. If the
seedlings are to be graded in the grading shed (as
assumed), mechanical processes may be implemented, or more
cameras may-be required to meet these assumptions.

Aﬁother assumption is that a non-reflective black
conveyor belt is used to transport the seedlings under the
cameras. This measure is necessary to provide high
contrast between the seedling and background, which
simplifies image processing and improves measurement
accuracy.

Loblolly pine is one of the major tree species used
by the commercial forest industry in the southern United
States. Because of the morphological differences between
species of pine seedlings, this study was limited to the
grading of loblolly pine seedlings. It is anticipated
that the algorithm developed here.could be adapted to the

grading of other pine species.



CHAPTER I1
REVIEW OF LITERATURE
Introduction

The task of grading pine seedlings with machine
vision is a marriage of two major fields of study. The
first involves nursery management and seedling grading
criteria. In the first part of this chapter the c¢criteria
for grading pine seedlings are presented. A review of
previous work in the mechanization of sorting and grading
seedlings follows. Finally, previous applications of
machine vision in inspection and grading processes are
presented.

The second part of this chapter considers the field
ot digital image processing and machine vision. Castleman
(1979) defines digital image processing as, "subjecting
numerical representations of objects to a series of
operations in order to obtain a desired result.” The
numerical representation is further defined as, "a
sampled, quantitized function of two dimensions which has
been generated by optical means, sampled in an equally
spaced rectangular grid pattern, and quantitized in equal
intervals of grey level.” Machine vision hﬁs been

described as the, "implementafion of the pattern
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recognition process for the interpretation of visual data"
(Valenty and Kraska, 1984), and "the ability (of
computers) to monitor and control visual information®
(Preston and Molinari, 1986). In the second part of this
chapter, the general techniques of machine vision are
discussed, with particular emphasis on those relevant to

the task of grading pine seedlings.
Seedling Grading Criteria

Nursery managers perform many cultural operations to
increase the quality of stock grown in nurser§ beds.

These include control of seedbed density, irrigation,
fertilization, fumigation, undercutting, top pruning, and
wrenching (Duryea and Landis, 1984). The final operations
performed at most nurseries are lifting, grading, and
packaging the seedlings.

In current practice, seedlings are mechanically
lifted from the beds and transported to a grading shed in
iarge containers (Beckman, 1986). Timely processing is
importaht to reduce the stress of root exposure. Grading
sheds are maintained at low temperature and high humidity
to further reduce seedling stress, however, this 1s an
uncomfortable environment for grading personnel,;making
automation desirable. Graders grasp seedlings from a
conveyor: belt, remove culls by applying a number of visual
grading criteria, and place acceptable seedlings on

another conveyor for packaging.



Seedlings may be graded according to physiological
and morphological characteristics (Forward, i9823 Duryea
and Landis, 1984). Physiological characteristics include
root growth capacity, frost hardiness, stress resistance,
carbohydrate level, bud dormancy, degree of cold
hardening, and nutrient levels in the tissues. Root
growth capacity, frost hardiness and stress resistance are
performance attributes and may be assessed by evaluating
seedling response in an environmental control chamber.
Seedlings must be destroyed to assess the remaining
physiological characteristics which are material
attributes. Physiological characteristics are valuable
indicators of seedling quality, however, they are
difficult and time-consuming to determine. Seedlings may
already be planted before evaluation of physiological
characteristics is complete.

Because assessmeht of phyéiological characteristics
is difficult, morphological charaéteristics are used in
the gréding of most nursery stock (Forward, 1982}. These
characteristics include shoot height and weight, root
Wweight or volume, root fibrosity, stem caliper at the root
collar, foliage color, presence of terminal buds,
root/shoot volume ratio, and ratioc of top height.to étem
caliper (sturdiness ratio? (Fig. 2). Stem caliper, root
volume, shoot height, and root/shoot ratio, are considered
the most important morphological characteristics (Forward;,

1982). The importance of morphological grades has been



shown by Wakeley (1969). In a thirty=-year study, grade 1
loblolly seedlings produced twice as much wood volume as

grade 3 seedlings.

Figure 2. Variation among Loblolly Seedlings

Table 1 is an agglomeration of grading criteria from
several sources. There is no one set of criteria for all
loblolly seedlings. In fact, different criteria may be
specified for different geographical regions and planting
sites. Special criteria are sometimes specified by
nursery customers, but in general, manually grading
seedlings into more than two classes (good and cull) is
not practical. An automated grading system would have the

capability of grading into several classes, suitable for



TABLE 1

GRADING CRITERIA FOR LOBLOLLY PINE SEEDLINGS

SOURCE Beckman May Wakeley Weaver
(1986 (1982) (1969) (1981)

GRADE min. min. opt. 1 2 3 industry state

min. min.

CRITERION

Stem 4,.8- 3.2-

Caliper (mm) 3 3.2 5.5 7.9 4.8 <3.2 4.3 3.0

Shoot 23=- 15=- 8-

Height (cm) 11 13 25 30 25 30 17 18

Root

Laterals (#) & 30 30+ 20+ <15

Root

Length (cm) 12 15 ‘ 18 12

Root/Shoot )

Ratlioc (volume) . 0.33 0.40 1.0 0.66

ol
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different planting sites.
Seedling Sorting and Grading Mechanization

A digital system for measurement and recording of
tree seedling height, stem caliper, roof mass area lindex,
and sample number has been described by Buckley et al.
(1978). Seedling height and caliper were measured witﬁ
potentiometric transducers, while root mass area index
({root silhouette area’) was measured with a moving, 1024
element photoelectric linear array. Accuracy of the area
scanner was determined using opaque wWires and rectangles
of known dimensions. The system required an operator to
open the area sensor cover, plaqe the root collar of a
seedling in the caliper transducer, close the area sensor
cover, position the stem height transducer, and press a
button to initiate the area measurement. This apparatus
was an improvement over manual measurement techniques, but
1s not suitable for grading large quantities of seedlings.

Maw et al. (19380) developed a system which sorted
plant seedlings on the basis of height. This system
required that the seedlings be singulated prior to
introductlon to the sorting machine. Seedlings were
classified as good or cull on the basis of a length
measurement made by a row of phototransistors. Cull |
seedlings were destroyed by a guillotine knife. This
system was capable of sorting large numbers of seedlings,

but assessed only one of several grading criteria.
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A system was developéd and tested in the laboratory
which could automatically sort and feed pre-singulated and
taped seedlings to a planting machine (Ardalan aqd Hassan.,
1981). Two methods of sorting were studied, both of which
measureq the stem caiiper of seédlings secured between two
lengths of tape. One method used an opto-electronic
emitter-detector pair and determined caliper as a fﬁnction
of seedling velocity and time of emitter blockage. The
other system made use of a linear vertical potentiometer
attached to a roller which was displaced in the presence
of a seedling. Both systems provided satisfactory
performance in measuring stem caliper, however, the
required taping and transporting of cull seedlings to the
planting site added unnecessary cost.

A mechanical pine seedling singulator was developed
and tested, providing a 65% singulatioﬁ'success rate
({Graham and Rohrbach, 1983). The system made use of a
wedge shaped vacuum nozzle and a rotating triangular
"seedling hopper. The vacuum nozzle was designed to catch
only one seedling by sucking it into the wedge where it
would block the nozzle orifice. The seedling hopper
rotated 1/3 revolution for each seedling selection to
prevent bridging and root entanglement. The researchers
determined that with two singulators working
independently, a single seedling would be available for
planting 95% of the time. Such an apparatﬁs could also be

used to singulate seedlings prior to automated grading.
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Research has been conducted to assess various methods
for detecting seedlings (Maw et al., 1985). The goal of
the research was Po improve greenhouse efficiency by
automaﬁing seedling sorting. Leaf area, seedling
multiplicity, and leaf color were specific items of
interest. The use of fiber optics, pheto transistors, and
digital image processing were investigated. Fiber optics
and digital image processing were found to be the most
promising tools for acquisition of the needed information.

Other studies have applied opto-electronics fo
caliper measurement and counting of pine and other
seedling plants (Kranzler et al., 19843 Sutton and
Mclendon, 198535 MclLendon and Allison, 19863 Huang et al.!
1986). Most techniques measured stem caliper as a
function of sensor velocity and time of sensor blockasge,
though Huang achievéd high accuracy with mechanical
transport of opto-electronic sensors for detecting stem

edges.
Machine Vision Applications

In the last decade there has been a trend to automate
many agricultural and industrial inspection tasks through
the use of machine vision. The technology has achieved
both quality improvement and processing cost reduction.
This éection presents several inspection and grading
applications of machine vision.

'

Automated apple classificatidn with emphasis on
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bruise detection has been described by Taylor and
Rehkugler (1985). Detection was based on the difference
in infrared reflectance between normal and bruised tissue.
The -accuracy of the system was equivalent to human grading
accuracy, but the speed of classification was limited by
the image processing system used.

Sarkar and Wolfe (1985) describe algorithms for
‘classification of fresh market tomatoes based on size,
shape, color, and surface defects at the stem and blossom
ends. Processing techniques 1included boundary chain
coding and gradient transformations. An optical filter
was used to aid in color discrimination.

Hines et al. (1986) describes a system for grading
container grown horticultural plants. The system must be
trained with a set of plants from each variety to be
graded. Classification on a scale of 1 to 10 is based on
features such as shape, size, symmetry, foliage density,
and color.

Wolf and Sandler (1985) describe an algorithm for
detecting stems attached to harvested fruit. The boundary
chain code'of the fruit was transformed 1lnto syntactic
primitives which indicate the degree of cohcavityior
convexity éf small boundary segments. A stem is
recognized as concave-convex-concave sequence, preceded
and followed by uniform convex curvature of a lesser
magnitude.

Meyer and Davison (1985) describe a machine vision
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system for measuring plant growth in the field or
environmental chamber. Measurement of leaf axial
dimensions and area, stem and petiole length, canopy
closure, and stem diameter'were all investigated.
Diameter meagurements were obtained with the stem
magnified to at least 40X of the field of view.
Performance was accurate, however care had to be ekércised.
with lighting (shadows), plant positioning, and plant
movement due to wind.

High inspection rates attainable with vision systems
have beenldemonstrated in many applications. The
inspection of bottlecaps is an excellent example
{Schreiber, 1985). Zapata Industries’' vislion system can
inspect 2600 bottlecaps per minute and is responsible for
a 33Z increase in productivity. The seal, central area,
and circumferential flutes are inspected on the inside of
each cap. Plans are to add exterior inspection. The
system can be reconfigured in 30 seconds to inspect any of
& different bottlecaps produced.

Cambier and Pasiak (1986) describe an automatic
inspection system for packaged foods. Pulsed X-rays are
used to detect glass and metal contaminantes in jars and
cans. Throughput is up to 900 containers per minute with
a 95% probability of contaminant detection.

Several vision based inspection systems have been
surveyed by Kranzler (1984). A vision based sorter

classifles cucumbers into three grades and five sizes at a
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rate of up to 600 per minute. Up to 200 pizza crusts per
minute are inspected for holes, foreign objects, burns,
and shape defects. French fry strips are lnspected for
discoloration at rates of up to 151 kg (333 1lb) per
minute. Finally, up to 720 eggs per minute are inspected
for broken yolks on a processing line which automatically
separates the yolks from the albumen. These examples
demonstrate the ability of machine vision to perform
inspection at the high throughput rates required in food

processing plants.
Image Processing Techniques

This section describes the image processing
environment and processing techniques. Image processing
can generally be divided into four steps. These are: 1)
image acquisition, 2) segmentation of the object from the
background, 3) measurement of features, and 4) making a

decision based on these measurements.
Lighting

An important consideration in the image acquisition
task is the desgign of scene illumination. Different
lighting techniques are useful in the acquisition 6?
different object features. Diffuse front lighting reduces
specular reflection from the object and is preferred when
texture, surface edges, or lettering are of interesﬁ.

Backlighting provides a high-contrast image of the object
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silhouette, useful in recognition of object presence or
absence, and dimensional measurement (Novini, 1986).
Structured lighting, such as a laser line projector,
allows measurements in the third dimension to be obtained
‘through triangulation. Fiber optics can be used to direct
intense light to specific locations.

The type of light source is another consideration in
illumination specification. Incandescent sources have a
peak energy outpﬁt in the near—-infrared, corresponding to
the peak sensitivity'of solid-state image sensors.
Florescent lamps provide diffuse light with less heat
(infrared) than incandescent lamps. Xenon tubes provide
very intense strobed lighting that can "freeze"™ the motion
of moving objects. The spectral content of a xenon flash
is similar to that of daylight. Small 1light emitting
diodes can also be strobed and are useful in illuminating
amall objects. Diffusers may be added to all of these
light sources to achieve more uniform illumination and
reduce specular reflection. X-rays are unique in their
ability to differgntially penetrate various substances,
providing an image that conventional illumination cannot.

Optical filters can control the wavelengths of light
illuminating the scene and/or reaching the camera.
Paulsen and McClure (1985) suggests using an infrared
blocking filter on the camera so that the light reaching
the sensor is of the same wavelengths detected by the

human eye. The infrared image will otherwise have a
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"washout™ effect on the visible light image (Dunbar,
1986). Color filters can sometimes be used to increase
contrast between subject and background. Mersch (1984)
describes the use of polarizing filters for the
elimination of specular reflections, minimization of
diffuse reflection while preserving specular reflection,

and increasing the contrast of translucent objects.

Image Acquisition

A scene to be acquired for image processing is
focused with a lens onto a sensor. For a given image size
(FOV), a variety of lenses is avalilable to achieve a
desired standoff (camera-to-subject distance). Typically,
images are acquired with tube-type (vidicon? or solid-
state image sensors. Tube-type cameras have been used in
the televislion industry for years, but solid-state devices
have recently been preferred for image processing, because
their performance is not degraded by geometric distortion
and lag. Image lag appears as a ghost of a bright object
after it has moved, and results from electric charge
remaining on the sensor after an image scan.

Solid=-state sensors are available as linear or
rectangular arrays containing from 64 to over one million
picture elements (pixels). Photons absorbed by the sensor
are converted to an electrical charge which is transferréd
from the camera in the RS-170 television format at 30

frames per second. Some specialized vision systems
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perform image acquisition at higher speeds by bypassing
the RS-170 format.

The image must next be digitized before it can be
stored or processed in a digital computer. The analog
video signal entering the digitizer is converted into an
array of pixels with discrete grey levels. A typical
image Wwith 256 lines (rows) and 256 columns of pixels,
2ach having one of 256 grey levels, requires 64K bytes of

memory for storage.

Sources of Error

Many possible sources of error are attributed to the
image acquisition components of image processing systems

4(Tappan et al., 19863 Chu, 1986). Vision applications
designers may exercise control through lighting design and
choice of optics, however, a significant portion of system
errors may be attributes qf the sensor itself.

Lens optics may contribute several types of error
.(Doty, 1986)>. Optical aberrations cause fine detail to be
reproduced with low cgntrast. The effect can be reduced
by using a small aperture. Diffraction blurs a sharp thin
edge and is most pronounced at small apertures. A'low
quality lens may introdﬁce distortion or attenuatiéq of
the light hitting the edges of the sensor. Generally,
lenses introduce less error than the solid-state sensors
on which the image is focused.

Unless a very expensive, high quality solid=-state
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device is used in the camera, it will have many "dead”
pixels which are much less sensitive to light than the
average pixel (Novini, 1985). Camera manufacturers

assign defective pixels the intensity value of an adjacent
pixel or the average of several adjacent pixels.

Pixel geometry also has an influence on accuracy. In
some image sensors up to one-half of the imaging area is
not sensitive to light., but used to transfer image data
from the pixels. Often the pixels are rectangular, and
sometimes alternate rows are shifted one-half pixel. This
procedure enhances the image for tele?ision viewing; but
is not desirable for machine vision applications.

| After the image is acgquired by the sensor, other
errors may be introduced when it is digitized by the
processing system. If the image pixel density is greater
than the sensor pixel density, some adjacent image pixels
will have come from the same sensor pixel. I1f the sensor
has a higher pixel density, some of the resolution will be
‘lost.

Generally, measurements made with digital systems are
limited by the spatial resolution or sambling frequency.
The Nyquist criterion states that the high FrequengyA
detail retained in an image is limited to one-half of the
sampling frequency. Since edges are high frequen;y
phenomena, we can expect that an edge location can, at
best, be approximated to plus-or-minus one pixel and a

length or diameter to within two pixels. Measurement
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precision may be improved, however, through averaging.

Segmentation

Segmentation of the subject from the background is
the most difficult task in many image processing
applications. In the =simplest case, an object may be
adequately segmented from its background with proper
illumination. With the use of backlighting, an object
appears as a silhouette on a white background. A
histogrﬁm is a plot of the frequency distribution of the
grey levels in an image (Baxes, 1984) (Fig. 3). The
histogram of a backlit object would contain high numbers
of light pixels (background?) and dark pixels (object), but
re}atively low numbers of grey levels in betwéen. Such a
histogram is bimodal. A binary segmented image may be
obtained by thresholding the image at a grey level between
the two modes (the antimode). All pixels darker than the
threshold are mapped to black and all pixels equal to or
lighter than the threshold are mapped to white.

More frequently, the subject and the background
"in an image contain common grey levels, and edge detectors
must be applied to locate object boundaries (Ballard and
Brown, 1982). In such an image, edges appear as local
areas characterized by é rapid change in grey level
(Fig. 4). Edges are high frequency phenomena and may
segmented through high-pass filtering with Fourier

transforms. More commonly, edges are detected through
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Brigntness Slope
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Grey Levels
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Figure 4.

Pixel Brightness Slope
in a Digital Image
(Baxes, 1984)
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convolution of the image with edge masks or templates.
Levine (1985) discusses edge masks proposed by Roberts,
Sobel, Prewitt, and Kirsh. Convolution of an edge mask
with a pixel and it neighbors provides an index of the
maénitude and direction of the intensity gradient at that
pixel. Different templates must be applied to. detect
edges at different orientations. These templates
typically vary in size from 2 X 2 pixels to 7 X 7 pixels

(Fig. 5).

- (Pixel #1) x
" (Pixel #2) x
——————® {Pixel #3) x
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L\ 1 2 3 \\ Output Image
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Figure 5. Spatial Convolution
(Baxes, 1984)
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Pixels with an intensity that does not correspond to
the intensity in the real scene contribute noise. Small
gradient masks may interpret this noise as evidence of an
edge. The effect of averaging makes larger gradient masks
less sensitive to noise, but at a cost of longer
procgssing time. Low-pass filtering can reduce noise,
however it also blurs details in the image.

Convolution of an image with a gradient mask ylelds
an image which is an approximation of the first partial
derivative of the original .image ip the direction of the
mask gradient. Convolution of an image with the Laplacian
edge detector yields an approximation of the second
derivative of the image (Englander, 1986). The Laplacian
therefor detects changes in gradient and is not sensitive
to areas of constant gradient which correspond to areas of
uniformly changing grey level in the original image (Fig.
6>. The Laplacian is not dependent on edge orientation,
‘but is very sensitive to noise.

A different Laplacian lis requ;red for detection of
increasing changes in gradient as opposed to decreasing
changes in gradient. Depending-on the detector used, the
transformed image will contain either gradient magnitudes
or magnitudes of gradient changes. Larger magnitudes
correspond to moré pronocunced edges, while smaller
magnitudes correspond to noise and weak edges. The
gradient image may be thresholded to obtain a binary 1ma§e

of the strongest edges.
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After an image has been segmented into iject(s) and

background, various features of the object must be

extracted on which processing decisions can be based.

features selected are highly dependént on the specific

application. Length and width dimensions are readily

computed for simple objects.

These measurements may be

determined from the runlength code of the image. The

runlength code is a series of numbers representing the

The

locations of transitions between object and background on
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each pixel grid line. The first and last lines containing
the object may be used to calculate the length, while the
maximum object runlength from all lines would represent
the width.

This procedure is not adequate for objects in random
orientation. Another method makes use of the minimum
enclosing rectanglé (MER) (Castleman, 1979). As the
object is rotated in small increments thru an angle of 90
degrees, thé area of the MER is computed. When the area
is minimized, the length and width of the object are taken
as those of the rectangle. The orientation of the
principal axes of the object may be derived from the angle
at which the MER was minimized.

Moments of an object are useful features for size and
shape determination. The general equation for the moment
of a two-dimensional function is,

+oo oo K
M =J J WY OR(X,Y) dx dy .

—-00 -00

For the case of a discrete image function the general
moment equation is,
- J vk
Mjk-z Z Xy I(X,Y).
Xy

The parameter Jj+k is known as the order of the moment.

The zeroth order moment is,

Moo = 1 1 I(X,Y)
Xy

In a binary image with object pixels equal to one and
background pixels equal to zero, the zeroth moment is the

area of the object. If the .object pixels retain grey
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levels while the background pixels are equal to zero, the
zeroth moment is called the integrated optical density
CICD).

The centroid of the object can be found by dividing

the first moments by the zeroth moment:

3
=

7= Mo

T .
X 00 Moo

=

Moments calculated with the centroid as the origin are
called central moments:
j k
ujk = Z 2 (X‘ﬂJ (Y-Y) I(X,Y) .
Xy

a

The ﬁfincipal axes x' and y' can be found at an angle ¢

from the X and y axes by the equation,

tan 2¢ = -—Z-Ell——
Hao - Uo2

Moments which are_divided by the area (or I10D); and
calculated relative to the principle axes with the
centroid as origin, are invariant to size, orientation,
translation of the object. This property makes moments
useful in battern-recognition. There 1is an infinite set
-of moments which completely specify a function f(x,y). A
selected subset of these moments can be used to
discriminate between different shapes.

Tabataﬁai and Mitchell (1984) describe a method of
edge location to‘subpixel accuracy in which the first
three moments of a one-dimensional data set (containing an
edge) are matched to an ideal step edge having the same

moments. This method can also be applied to width
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measuremént where the moments of the object cross—-section
are matched to a square wave with a width assumed tq be
that of the object.

Many other features may be extracted from an image,
though their utility is highly dependent on the
application. Shape encoding islvery useful in object-
recognition and includes such techniques as’boundafy.chain
code, Fourier transforms and derivatives of chain code,
and medial axis transforms (Ballard and Brown, 1982).
Measurement of parameters such as perimeter, circularity,
rectangularity, or elongation may be useful in specific

applications.



CHAPTER 111
METHODS AND PROCEDURES
Introduction

The development of a machine vision pine seedling
grading algorithm required the assembly of proper
equipment, investigation of processing techniques, and
extensive programming. This chapter initially describes
the equipment used for the laboratory development and
testing of the grading algorithm. The next section
describes the selection of grading criteria and the
grading scheme employed in the algorithm. This
description is followed by a discussion of an
investigation of several caliper measurement techniques.
The algorithm developed for grading pine seedlings is then'

described. Finally, evaluation of algorithm performance

is discussed.

Description of Equipment

This section describes the equipment used for the
laboratory implementation of the'seedlihg grading
algorithm. The main components are a conveyor belt;
.machine vision comﬁuter, cameras, lenses, and lights.

To simulate grading shed operations, a conveyor belt'

29
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was constructed on which singulated seedlings could be
transported beneath a pair of cameras. The belt was 56 cm
(22 in) wide with a 91 cm (36 in) travel and powered by a
variable speed drive. A frame above the conveyor belt

supported lighting and two cameras (Fig. 7).

Figure 7. Conveyor Belt, Cameras,
and Strobe Lamps

The belt material as received from the supplier was
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highly reflective and was dulled with a disk sander. This
treatment allowed strong illumination of the seedlings
without specular reflection from the belt surface.
Specular reflection would otherwise reduce the contrast
between the seedling and the belt, making segmentation
difficult. Polarizing filters were investigated as a
means of removing specular reflection, but their use would
"have required more powerful light sources.

The image processing computer used for this
investigation was the International Robomation/
Intelligence (1IRI) D256 machine vision s&stem (IRI,
1985a>). This system digitizes images into an array of 256
(H) X 240 (V) pixels with 256 grey levels. Four frame
buffers are available for image processing. The D256
employs a Regulus operating system (Unix look-alike) and
includes vision softﬁare written‘in the C programming
language. The rgsident Iconic Kernel Systeﬁ is a library
of function calls which set parameters and perform image -
processing functions. A 40 Mbyte ﬁinchester hard disk is
used for program, data, and image storage. A 5-1/4 inch
floppy disk drive is available for archive creation and
retrieval. An external output wés interfaced to a strobe
illumination source to provide synchronous operation with
the RS-170 television format of the cameras (Appendix D).

The D256 has a coprocessor which performs
computationally intensive operations such as the addition;

subtraction, or multiplication of two images. The
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coprocessor also performs image convolution, runlength
encoding, and moments calculations. The D256 can convolve'
an ihage with a mask as large as 7 X 7 pixels. The time
required for convolving a 3 X 3 mask with an image is 38
millisecondas. A coprocessor window may be defined whigh
limits coprocessor operations to a selected set of lines,
thus reducing processing time.

Two Hitachi KP-120U cameras were used for image
acquisition. The KP-120U is a black-and-white solid-state
- television camera with a 320 (H) X 244 (V) pixel sensor.
One camera was used to obtain a close-up image of the root
collar, having a FOV approximately 12.8 cm (5 in) square
and a pixel resolution of approximately 0.5 mm (0.20 in»>.
A Tokina 12.5 - 75 mm zoom lens set at a focal length of
48 mm and an apertﬁre of f2.0 was used on camera 1. A
second camera, wWwith an Optronix 12.5 mm lens and an
aperture of f2.0, gave a FOV approximately 51 cm (20 in)
square, and acquired an image of the entire seedling.

Both cameras were mounted i06 ecm (42 in) above the
conveyor belt. The Wwide-angle camera’was centered and the
ciose—up camera was placed 10 ecm (4 in) off cénter over
the expected iocation of the root coilar.

Three types of illumination were used in this study.
Four 75 W incandescent flood lamps were used in an
investigation of the precision of edge detection
techniques. Illumination for the grading algorithm wuas

provided by fluorescent room lighting and strobed xenon
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flash. The relatively low-level room lighting was
sufficient for detection of the seedlings in the FOV of
camera 2. When a seedling was detected, strobe lamps were
used for the acquisition of an image with each camera.
Strobe illumination was provided by a General Radio
Strobotac and Stroboslave, which were triggered by the IRI
D256. A short flash duration of six microseconds a;lowed
a sharp image of the moving seedling to be obtained.
Strobe lamps wWere mounted on either side of the conveyor
belt, in line with the cameras. The Strobotac's lamp was
positioned 58 ecm (23 in) above the belt surface,
illuminating the seedling shoot and needles. The lamp of
the Stroboslave was positioned 31 cm (12 in) above the
belt and l1lluminated the roots and root collar. Higher
intensity illumination was found to be desirable in the
root zZone, because the roots have a lower reflectance than

the needles.
Selection of Grading Criteria

It was necessary to limit the number of seedling
grading criteria in order to achieve the goal of grading
seedlings in real time and to constrain the scope of this.
study to a reasonable breadth. Measurement of stem
caliper at the root collar is an obvious choice, because
it is the most important morphological quality indicator.
Shoot height and root volume are also important quglityl

indicators and were chosen as additional grading cfiteria
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for this study. To meet processing time constraints, a
decision was made to emphasize caliper measurement and
obtain only rough indices of shoot height and root volume.

A classification scheme based on values of these three

——

parameters is discussed below.

A classification scheme was formulated, based on
grading criteria cited in the literature (Table 1).
Seedlings are graded into three classes; acceptablé, cull,
and not gradable. It is assumed that seedlings which are
not gradable will be grouped with culls, but they are
classified separately as an indicator of the algorithm'’'s
ability to grade seedlings. In a commercial
implementation, the cutoff values between classes could be
easily altered from the values chosen for this study.

The orientation of the major axis of each seedling is
measured and is used to correct the measured caliper and
shoot height for angular variation. Although séédling
orientation is assumed to be constrained, this provision
igcreases the robustness and accuracy of the algorithm.
Investigation showed acceptable algorithm performance for
seedling orientations within thirty degrees of vertical.
When the orientation of the seedling is greater than
thirty degrees, the seedling is classified as not
gradable.

The‘stem caliper of a seedling is acceptable 1f it
measures from 3.0 to 8.0 mm. Seedlings with a méasured

caliper between 2.8 and 3.0 mm are acceptable if the
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measured root area index is signiflcantly larger than the
cutoff value. Under this condition, it is assumed that
the caliper measurement was erroneously small, and that a
larger root area indicates a larger stem caliper.

The root area index of a éeedling is acceptable if it
is greater than 200 pixels. This corresponds to an area
of approximately 9.7 sgq. cm (1.5 sq. in). This value was
chosen after consultation with experts in seedling
production. The purpose of this measurement is to enable
rejection of seedlings with significantly undersized or
missing root masses. Seedlings with calipers between 2.8
and 3.0 mm must have an area index greater than 250 pixels
to be classified as acceptabls.

The shoot height of a seedling is acceptable if its
measurement is grea£er than 16 cm. This value is larger
than some minimums found in the literature. A larger
cutoff is used because the algofithm measures the distance
from the root.collar to the end of the needles, which is
not always the true shoot height.

Seedlings which the algorithm fails to grade are
classified as not gradable. Acceptable seedlings are
classified as A1 or A2, depending on whether the measured
diameter is greater or less than 3.0 mm, respectively.
Cull seedlings are classified as C1, C2, or C3, depending
on measured.caliper. Table 2 presents this classification

scheme.
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TABLE I1

GRADING SCHEME FOR LOBLOLLY PINE SEEDLINGS

Caliper Root Area Index Shoot Height Grade
(mm ) (pixels) (cm)

3.0 - 8.0 > 200 > 16 A1

2.8 - 3.0 > 250 > 16 A2

< 2.8 or > 8.0 any any C1

3.0 - 8.0 < 200 or < 16 c2

2.8 - 3.0 < 250 or < 16 Cc3

Investigation of Caliper Measurement

Techniques

. The importance of accurately measuring stem caliper
and the difficulty of doing so with low pixel regolution
prompted an investigation of several calliper measurement
techniques. Six methods of measuring caliper were
investigated for precision and speed.

Eacﬁ method was applied to two sets of thirty images
of a wooden dowel having a nominal three millimeter
caliper. The caliper of the dowel varied between 2.95 and
3.05 millimeters when rotated about its axis. Dowel
orientation was vertical in one image set, while in the
other set the dowel was oriented fifteen degrees either’

side of vVertical. The dowel was rotated about its
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axls and displaced horizontally between images. Wood
stain was applied to the dowel to approximate the color of
a seedling stem.

Images of the dowel were acquired with camera 1,
having a FOV of 12.8 cm and a pixel resolution of 0.5
mm. Incandescent flood lamps were used to provide even
illumination. For each image and technique, the dowel
caliper was taken as the average of the calipers measured

on 35 consecutive pixel grid lines near the center of the

image.

Method 1% Binary Thresholding

The high contrast, grey-level image of the dowel was
thresholded to produce a binary image in which the dowel
was represented by white pixels, and the conveyor belt
(background) by black pixels. Choice of threshold value
had a strong influence on the measured caliper due to the
grey-level gradient at each edge. .A grey-level threshold
of 120 was used, resulting in a mean dowel measurement of
3.0 mm (fér vertical dowel images). The binary image was
next runlength encoded. On any image line, the caliper of
the dowel (in pixels) was taken as'the diéténce from the'
first transition to the second transition of the runlength
codé, corresponding to the left and right edges of the
dowel, respectively. Transitions in the runlength code
correspond to pixel locations of intensity changes (black-

to-white, and white-to-black) in the binary image.
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Method 2: Moments

The method developed by Tabatabai and Mitchell (1984)
for edge location with subpixel accuracy was applied to
tpe measurement of stem caliper. The grey level=-limage wWas
initially thresholded and runlength encoded as in method
one. The first and second transitions were used to |
determine the center of the dowel on each line. The
maximum seedling caliper encountered in a grading
situation is expected to be approximately eight
millimeters, which corresponds to about sixteen pixels. A
one-dimensional data set (grey levels) from each line,
centered about the dowel midpoint, was used to measure
dowel caliper with this technique. A data set of thirty
pPixels was chosen to insure inclusion of the entire stem

and a reasonable amount of background.

Method 3: Modified Laplacian Edge

Detector (3 X 3)

The 3 X 3 Laplacian edge mask resident in the Iconic

Kernel Package is given below.

o -
0 4 0
4 -16 4
0 4 0

A modified version of this mask with increased sensitivity
to vertical edges and decreased sensitivity to horizontal

edges is given below.
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- -
2.625 6.0 2.625
2.625 -16.0 2.625

2.625 0.0 2.625 )
ke -

The grey=-level image was convolved with this modified
mask, resulting in an image with grey levels which are an
index of the change in grey-level gradient. This mask
detects positive changes in gradients which have
horizontal components, corresponding to the edges of a
vertical dowel or seedling stem. The grey-level image was
next thresholded to show only the strongest gradient
changes. A threshold of 30 was chosen to clearly show the
edges. The image was runlength encoded, and the caliper
was taken as the distance between the first and third
transitions, on lines containing four transitions. Two
transitions mark each edge, with the first and third
transitions corresponding to the first transition at each
edge. Lines which contained either more or less than four
transitions were not considered. These correspond to
lines in the original image with noise or milder changes

in grey-level gradient at the dowel edges, respectively.

Method 4: Modified lLaplacian Edge
Detector (5 X 5)

A B X 5 edge mask which detects horizontal, quadratic

(Laplacian) changes in grey level is given below.
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i 1
0 2 -4 2 0
0 2 -4 2 0
0 2 -6 2 o
1] 2 -4 2 0
Q 2 -< 2 0

L -

This mask is more sensitive to vertical edges, but gave
inferior performance in detecting the edges of the dowel
oriented at fifteen degrees from vertical. Caliper was
measured in the same manor as in method 3, but with a

threshold of 25.

Method 5: Gradient Edge Detector

Two gradient edge masks were developed for the
detection of the positive and negative gradients at the
left and right edges of the dowel, respectively.
Performance is increased by minimizing the width of the
mask, since we have a priori knowledge that the edge width
is small with respect to pixel size. Both masks translate
the location of the edge to the right because they are not
symmetrical. The grey-level image is convolved with each
mask and the two resulting images are summed. This image
is then thresholded at grey level 120, followed by
runlength encoding. The caliper on any line is taken as
the distance between the first and third transitions in
the runlength code. Again, this operation is performed on

lines with exactly four transitions. The gradient masks
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are given below.

0 -3 3 0 3 -3
0 -3 3 0 3 -3
0 -3 3 0 3 -3

L g L ang

Method 6: Modified Gradient Edge

Detector

A minor modification of the masks used in method 5
reduced the sensitivity of this method to noise. The
threshold was reduced to 100 and caliper measurement

proceeded as in method 5. The gradient masks are given

below.

- - - T
0 -3 3 0 3 -3
0 -4 3 0 3 -4

i 0 -3 3 0 3 -3

Performance Evaluation

Performance of the six methods was evéluated for
precision and speed. Precision was determined from the
variance of measurements after scaling to a mean of 3.0 mm
(Table III). An F value of 1.99 was calculated for the
comparison of methods two and three. An F value of 1.85

is significant at the 90 percent confidence level,
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indicating that method two is statistically more precise.

TABLE III

SUMMARY OF STATISTICS FROM SIX CALIPER
MEASUREMENT METHODS

Average Stdev Stdev
Measured Measured Scaled
METHOD Caliper Caliper Caliper
(mm) {(mm ) {mm )
1 2.996 0.1193 0.1194
2 2.895 0.0643 0.0666
3 3.762 0.1178 0.0940
4 3.811 0.1396 0.1099
5 2.610 0.1174 0.1350
6 2.730 0.1442 0.1585

The speed of eaqh method was evaluated by measuring
the time required to perform 100 consecutive caliper
measurements on a dowel. The image of the dowel was
stored in a frame buffer, and the caliper measuring
subroutine was repeatedly called. Method 2 required 0.54
seconds per measurement, compared to the ramaining methods
which required approximétely 0.03 séconds. Calculations
in method 2 required a large number of time-consuming
floating point operations. Attempts to‘convert these

calculations to faster integer arithmetic were not

successful.



43

Method 3 was chosen as the preferred method Fér use
'ig the algorithm. The positive Laplacian operation
detects the outer gradient changes at the dowel edges
(Fig. 6)., This results in a larger pixel distance between
the thresholded edges (unscaled mean in Table II1I).
Although the pixel variance was approximately the same for
all methods (other than method 2), when the pixel caliper
from method 3 was scaled to a metric measurement, a lower
metric variance resulted. An F-test comparing methods
three and four yielded a value of 1.37, which was not
significant at the 90 percent confidence level. Although
method three was not statistically more precise than the
next best method (4), it was selected because it was fast
and had the best precision, next to method two. Appendix
A contains data, programs, and analysis documenting this

.investigation.
Dascription of Algorithm

The grading algorithm is composed of several sections:
which consist of grading subroutines and support
subroutines. Thg grading subroutines are: waitfor(>,
orient(;, col1(), col2(), diam(), root(), and grade().

The support subroutines are: main( ), calibraﬁe(),
statfile(), edge( ), setthr(), wish(), scales(), pixel(),
keysnap( ), and tinue(). Most of these subroutines call
standard C functions and/or Iconic Kernel functions.

Appendix B contains the program listing of the grading
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algorithm.

Whenever possible, all grading subroutines are
applied to every seedling. This is not done, however, if
a seedling fails to meet the orientation criterion or a
grading subroutine is unable to complete its task.

Barring such failures, all measurements are made on each
seedling even if, for example, the measured stem caliper
is found to be unacceptable. This procedure is followed .
because time must be allocated to measure all parameters,
and the statistics collected on cull seedlings could be of
value in a commercial implementation.

Measurement of stem caliper is normally performed at
the root collar. This location is desirable for visual
gauging, because edges of the stem are usually not
occluded by needles and/or branches at this location. Two
concerns influenced the FOV chosen for the root collar
image. The first was the accuracy of caliper measurement,
and the other was the probability that the root collar
would pass through the FOV as the seedling traveled down
the conveybr.

Very accurate measurements have been obtained with
machine vision gauging systems under controlled
conditions. In this application, however, the position'pf
the root collar cannot be tightly constrained, and a wide
FOV is necessary. A decision was made to make the FOV'as
large a=s possible, while maintaining a measurement

precision of at least 0.5 mm (0.20 in). If the pixel
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resolution is set equal to 0.5 mm, a measurement precision
better than 0.5 mm should be attained through image
processing. A pixel resolution of 0.5 mm ylelds a FOV of
12.8 cm square (5.0 in sq.>. It is assumed that since the
root collars are all at the same level when they are
mechanically lifted from the seedbed, they will not be
displaced more than a few centimeters when they pass

through the FQOV.

Seedling Detection

The waitfor() subroutine is called and initialized
with a threshold grey level, the address of window
coordinates, and a minimum detection area. With the
strobe-sync disabled, a loop is entered in which
successive images are acquired with camera 2 (wide FOV).
Each image is multiplied by a template, which defines a
Wwindow in which seedling detection will trigger subsequent
operations. The FOV of this "waitfor™ window overlaps and
is.smaller than the FOV of camera 1 (Fig. 8). All pixels
inside the window remain unchanged, while the exterior
pixels are set to zero. A coinciding hardwrare windqw is
also imﬁlemented’(44 lines out of 240), whichl
proportionately reduces coproceésor processing time.

After thresholding at grey level 25, the éoprqcessor
calculates tﬁe area in the windowed, binary image. A low
threshold is necessary for seedling detection under

conditions of low illumination intensity.. When the area
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in the thresholded image exceeds fifty pixels (default),
the strobe-sync is enabled, and an image is obtained from
each camera (with strobe illumination). The image from
camera 1 (close=-up) is placed in frame buffer 1, and the
image from camera 2 (wide-view) is placed in frame buffer
4. The horizontal position of the seedling in both images
is a function of conveyor velocity and location of the
template window. Control is then returned to the main

program.

<—— Seedling

Camera 2

FOV
Camera 1

FOV

Waitfor()
Window

Figure 8. Field of View of Camera 2,
FOV of Camera 1, and
Waitfor() window
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Seedling Orientation

The orient() routine is called and initialized with a
threshold value and the addresses of variables which hold
degree and radian measures. Image buffer 4 (wide=-view) is
copied to buffer 3 and thresholded at grey level 170 (Fig,
9). A high threshold used here segments the major.axis of
the seedling from the grey level image. The Iconic Kernel
procedure, Imoments(), calculates the first three moments
and derives the angle between the seedling major axis and
the vert;cal axis of the FOV. Imoments() returns this
angle in radians, which is converted to degrees, and both
angular measures are assigned to their respective
variables. Control is then returned to the main progranm.
The degree measure is recorded in the statistics file, and
the radian measure is used in subsequent calculations. If
the orientation angle is greater than thirty degrees, no
further measurements are made and the seedling is

‘classified as not gradable.

Location of Root Collar

Accurafe location of the root collar is crucial for
the subéequent measurement of stem caiiper, shoot height,
and root area index. This task is not trivial, because
ﬁhere is large variation in seedling silhouettes-(Fig. 2.
The best case is shown in Figure 10, where image-linés
with only two fransitions (left and right stem edges) are

good candidates for the root collar location. In some
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cases, however, there are no lines with only two
transitions (Fig. 11). Subroutines col1() and col2() wWork

together to locate the root collar.

Figure 9. Orient() Subroutine
Threshold at
Grey Level 170

Col1() is passed a threshold, the addresses of
variables which are assigned the collar line and midpoint
(column) location, and the address of the window size
variable (number of lines) for caliper measurement. Frame
buffer 1 (close-up’) is copied to buffer 2 and thresholded
at grey level 90. This yields a binary image showing the

stem, roots, branches, and needles (Fig. 11). This image
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: Root Collar

=

Location

Figure 10. Algorithm Finds Root Collar.
Threshold Grey Level: 90

Figure 11. Algorithm Fails to Find Root
Collar. Threshold Grey
Level: S0
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is next runlength encoded;

Col2() is then called, passed the same addresses
passed to col1(), and the variable, ntrans. If the number
of transitions on a line is less than or equal to ntrans,
that line is a candidate for the root collar location. If
col2() fails to find the root collar using ntrans, it
returns a 0 to colt(), and col2() is called again with a
larger value of ntrans. Ntrans takes values of two, four,
and finally six. When co0l2() is successful, it returns a
1 to col1(). Col1() returns a 1 to main() when col2() is
successful, or returns a 0 if co0l2() fails with ntrans
equal to six. If col1() returns a 0 to main(), coll1() is
called again with a threshold of {40. At this threshqld,
only the stem and major branches and roots are visible
(Fig. 12). If no collar can be located at this second
threshold, the seedling is classified as noé gradable.

Col2¢() inspects every line containing the ntrans
number of transitions, or less. The number of transitions
on a line is always an even numbe;. The transitions occur
in pairs; black-to-white, and white-to-black. On each
candidate line, the maximum distance between pairs of
transitions is determined. If this distance is between
five and eighteen pixels (2.5 and 9 mm),Jthe pi#él line
number and midhoint (column number) between the two

transitions are stored.
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Figure 12. Algorithm Finds Root Collar.
Threshold Grey Level: 140

After all lines have been inspected, the list of
stored line and column numbers is processed. For sets of
consecutive lines, the line numbers and column numbers are
summed and stored. The number of lines in each set of
consecutive lines is also stored. The set of consecutive
lines with the largest number of members, and having at
least six members, is assumed to contain the root collar.
Col2() will return a 0 to col1() if there are no sets of
consecutive lines, if there are more than thirty sets, or
if the largest set has fewer than six members. Otherwise,
the collar is located at the average of the line numbers
in the largest set. The midpoint of the root collar is

located at the average of the column numbers.
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Additionally, one-half of the number of members in the
set, or a maximum of ten, is assigned to a variable which
defines the size (number of lines) of the caliper
measurement window. If successful, a 1 is returned to

colt().

Measurement of Stem Caliper

Six parameters and two addresses are passed to the
- subroutine diam( ), which calculates the stem caliper. The
parameters arej the line number of the root collar, the
collar midpoint (column number), the size of the caliper
measurement window, a scale factor, the stem orientation
angle, and é threshold value. Additionally, the address
of the convolution coefficient matrix, and the variable
which holds the measured caliper, are passed.

Initially, a hardware window is implemented about the
-root collar. Window size is defined in the root collar
- subroutines. The image in buffer 1 is convolved with the
modified Laplacian edge detector, and the result is plaéed
" in buffer 2'(Fig. 13). Image buffer 2 is next thresholded
at grey léve; 57, resulting in a binary image of the
strongest edges. Runlength encoding is then performed.
The convolution and runlength encoding operations are
applied only to that portion of the image ingide the
hardware window.

For lines which are candidates for caliper

measurement, and contain four or more transitions, the
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consecutive odd transitions which bracket the midpoint of
the collar are found (Fig. 14). 0dd transitions
correspond to the left members of transition pairs. 1f
these transitions are within ten pixels (horizontally) of
the collar midpoint, the distance between the transitions
is summed with other such distances, and a counter 1is

incremented.

Coprocessor

Window

Figure 13. Modified Laplacian Edge Detector
Applied in Hardware Window

When the processing of candidate lines is complete,
and at least one line has provided a distance measure, the
stem caliper is calculated. The sum is multiplied by the

caliper scale factor, the cosine of the orientation angle,
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Caliper

Measurement
I Zone

Figure 14. Root Collar Zone Thresholded
at Grey Level 57 after
Convolution

and divided by the summation counter to yield the stem
caliper. If no lines provided a distance measure, a 0 is
returned to main(?>. Main() again calls diam( ), but passes
a threshold at grey level 40, and the process proceeds as
before. The lower threshold yields a binary image with

a greater number of edge pixels. If diam() is still
unable to obtain a measurement, a 0 is again returned to
main( ), and the seedling is classified as not gradable.

When diam( > is successful, a 1 is returned to main().

Measurement of Root Area Index

The subroutine root() calculates both root area index

and shoot height. Five parameters are passed; the line
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number of the root collar, a threshold for rdot area
processing, a threshold for height processing, a scale
factor for camera 2, and the orientation angle of the
seedling. Additionally, addresses for the area and height
méasurement"variables are passed. The root area index is
measured first, followed by shoot height measurement.

Before rqot() is called, an equation in main()
calculates the line number of the root collar in image
buffer 4 (wide view). This equation uses the line number
of the root collar found in image buffer 1 (close-up) and
transformation coordinates defined in the calibrate()
éubroutine.

When root{() is called, a hardmare window is
implemented from the root collar to the bottom of the
image (wide-view). The image in buffer 4 is then
convolved with a 5 X 5 Laplacian edge detector (predefined
in the Iconic Kernel Pacfage),>and the resulting image i=
rPlaced in buffer 3. Thresholding this image at . grey level
48, yields a binary image with maximum root area but |
minimum nﬁise. This is followed by a coprocessor
“calculation of the area inside the hardware window‘(Fig.
15). This area is assigned to the area measureément :

(pixel) variable and the hardware window is disabled. .
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|

Coprocessor

Window

Figure 15. Root Zone Thresholded at Grey
Level 40 after Convolution
with Laplacian Edge Detector

Measurement of S t Hei t

For shoot height measurement, the image in buffer 4
is copied to buffer 3, which is then thresholded at grey
level 100 (Fig. 16). The binary image is then runlength-
encoded. Starting at the top of the image, each line is
checked to determine if the maximum distance between
paired transitions exceeds five pixels. The seedling top
is assumed to be located when four consecutive lines meet
this criterion. If this condition is not met before the
root collar line is reached, a 0 is returned to main(),
and the seedling is classified as not gradable. The shoot

height is calculated (cm) as the pixel distance between
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the root collar and the seedling top (Fig. 16), multiplied
by a scale factor, and divided by the cosine of the
orientation angle. The calculated height is assigned to

the appropriate variable, and a 1 is returned to main().

Shoot Height

Figure 16. Measurement of
Shoot Height
Grey Level: 100

Recording Seedling Statistics

The grade( ) subroutine writes the measured seedling
parameters, classification, and count, to a file which has
been opened with the statfile() subroutine. A pointer

(address) to the file is passed to this routine along with
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atem caliper, root area index, shoot height, root collar
line number (from buffer 1), collar midpoint column, and
angle of orientation. Additionally, the address of the
appropriate classification counter is passed, and the
counter is incremented. Three counters hold the total

number of seedlings assigned to each classification.

Main Program

Main() is the name of the controlling program, which
is standard practice in the C programming language. All
threshold and parameter variables are declared at the
beginning of main(), along with a several loop and counter
variables. Subsequent statements open the video
interface, initialize the Iconic Kernel variables, and
enable the coprocessor. Before entering the main loop of
the program, the calibrate(s and statfile( ) subroutines
;re called. "

inside the méin{program-loop, values returned by
subroutines (0's and 1°'s) are tested to control program
flow. 1f all gradiﬁg subroutines are successful in their
respective tasks, a series of if-else statements is used
to céll the grade( ) subroutine with the appropriate
parameters. ‘Whenever a subroutine fa;ls (0 returned),
grade() is called with parameters successfully measured,

and the seedling is classified as not gradable.
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Algorithm Calibration

Proper calibration of threshold values, scale
factors, and image transformation coordinates is essentiall
to optimum algorithm performance. The calibrate()
subroutine initializes sixteen such parameters with
default values. The user is then provided an opportunity
to alter the default values interactively.

The user is first requested to place a seedling in
the field of view and snap frames as required, while
making camera and lighting adjustments until a
. satisfactory image is obtained. This procedure is
performed for both cameras. The user is next given the
opportunity to alter eight default thresholds. The |
appropriate binary image (after edge detection, if
necessary) is displayed, and the user is prompted to
change the threshold (up or down) while observing the
binary image. A message is displayed on the monitor to
»aid in the selection of an éppropriate threshold. The
threshold value 1is assigned to the appropriate variable
after keying a carriage return. The keysnap(i, wish(),
and sétthr():subroutines are used in fhis pProcedure.

The user is next given the opportunity to alter the
default image transformation coordinates and scale

factors. The user is instructed to place a calibration
dowel vertically in fhe field of view of camera 1 (close-
up). The user snaps as manymframes as required to

properly position the dowel. -When the user is satisfied
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and keys the carriage return, the system automatically
obtains an image from each camera.

The operator is next requested to enter the length
and caliper of the dowel in millimeters (120 and 3.0 mm).
Subsequently, an image from camera 2 (wide-view) is
displayed. The user is instructed to move a cursor to the
top of the dowel and key the carriage return. This step
is duplicated for the bottom of the dowel. The procedure
is then repeated for the image from camera 1 (close-up).
From these operations, two corresponding points have been
found in the two images. The four line numbers obtained
are assigned to the image transformation coordinate
variables. Pixel scale factors are also calculated for
each image using the pixel distance between the ends of
the dowel and the length of the dowel. These data are
also used to scale and position the FOV of camera 1 in the
image from camera 2 to aid in altering the position of the
waitfor() window (Fig. 8>. The subroutine pixel() is used
in ﬁhis procedure.

The caliper scale factor is determined by processing
the dowel image in a manner similar to that used in the
subroutine diam(). The image is convolved with the
modified Laplacian edge detector and thréshblded at grey
level 57 (or the altered caliper threshold). The binary
image is next runlength-encoded. On forty central lines,
which contain exactly four transitions, the average

distance between the odd transitions is calculated. The
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caliper scale factor is calculated as the actual dowel
caliper divided by the average pixel distance between the

<

edges;
Additional Subroutines

The statfile( ) subroutine, called at the beginning of
the program, requests a filename from the user for
recording seedling statistics. The file is opened, and a
header is printed at the beginning of the file identifying
the parameters listed.

The subroutine tinue() is used in the "slow”™ version
of the program, and halts program execution wherever
called. ‘A frame number is passed fo this routine and the
image in that frame 1ls displayed for user inspection. The
user is prompted to press any key to‘continue program
execution. Thils routine is inserted after each processing
step to allow observation of algoriﬁhm performance.

Additional Iconic Kernel functions are called in the
:ﬁslow version. These functions diéplay such features as

Wwindow borders or foot collar location in specific images.
Method of Performance Evaluation

The performance of the algorithm was evéluated using
a set of 100 loblolly pine seedlings obtained from the
Weyerhaeuser nursery at Ft. Towson, Oklahoma. The
seedling calipers ranged from 2.3 to 6;0 mm, with a subset

of twenty having calipers between 2.8 and 3.3 mm.
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Two tests were performed to evaluate algorithm
performance. One test was designed to evaluated ability
of the algorithm to correctly classify seedlings as
acceptable or cull. This test also provided statistics on
measurement precision and accuracy. The second test
measured the time required to grade a seedling.

Evaluation of classification performance is based on
the grading of 100 seedlings. A seedling was manually
pléced on the conveyor and passed beneath the cameras.

The seedling was repeatedly returned to the belt for
twenty repetitions. Conveyor belt speed was 0.46 m/s (1.5
ft/s). Assuming a seedling spacing of 46 cm (18 in) on
the belt, this speed would provide a seedling throughput
of one per secpnd.

An effort was made (not always successfully) to place
the root collar in the field of view of camera 1. No
attempt to rigidly constrain the position of the root
collar was méde, because collar position could probably
not be tightly constrained in a cémmercial implementation.
An effort was made to élace the seedlings vertically in
the FOQV, however, angular vafiation did occpr. A few
seedlings wWere presented to the cameras at orientations
between.15 and 30 degrees from veftical. No seedling
failed to be classified because of orientation. An effort
was made to rotate the seedlings about their 1ongitudinali
axes, in order to present different views ofzeach seedling

to the cameras.
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A separate flle was created for statistics on each
seedling. Actual seedling caliper, measured manually with
a micrometer, was also stored in the file for each
seedling. For most seedlings, the caliper at the root
collar varied along and about the longitudinal axis. This
variation was approximately 0.1 mm, and »actual” caliper
nas reported to the nearest 0.1 mm.

The second teét evaluating algorithm performance
measured the time required to grade a seedling. The
grading program was modified by eliminating calibration
steps and using default thresholds and scale factors. A
loop in the main() program was modified to grade a
seedlipg 100 times. A seedling was placed in the FOV so
that it was inside the waitfor() window. On every loop,
the waitfor() subroutine was satisfied on the first pass
and two images were obtained.' Subsequent processing
proceeded aé described in the previous section.

The Rugulus operating system~Function, Time, was used
to call the modified program.. After the modified program
had graded the seedling and filed statistics 100 times,
the Time function displayed the tbtal‘elapsed time, time
spent by the microprocessor in running the program, and
time spent by the microprocessor in suppor£ of running tﬁe
program. The sum.of the final two statistics was used for

calculating algorithm speed.



CHAPTER 1V
RESULTS, CONCLUSIONS, AND RECOMMENDATIONS
Introduction

This chapter begins with a discussion of the
performance of the grading algorithm. Performance wWill be
discussed in terms of speed of the algorithm, accuracy of
seedling classification, and seedling parameter
measurement precision. This discussion is followed by a
summary of the objectives and results of this study. The
final section of this chapter presents recommendétions for
improvements to the algorithm, improvements in the grading
environment, and aréas in which further study might be

beneficial.
Performance Evaluafion Results

The algorithm developed in this study performed well
in terms of both speed and accuracy. The time required to
grade a seedling was approximately 0.25 seconds. This
interval easiiy meets the goal of grading seedlings in
real time (at least one per second).

The detection performance of the waitfor() subroutine
was excellent. Seedlings were detected every time they

- passed through the field-of-view. A conveyor speed of

64
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0.46 m/s (1.5 ft/s) was used in the evaluation of grading-
performance, corresponding to a throughput of one seedling
per:second, An informal investigation revealed that image
~capture was reliable at a conveyor speed of 1.0 m/s (3.28
ft/s). This conveyor speed would allow a commercial
implementation to realize a throughput rate exceeding
three geedlings per second.

The classification error rate averaged 5.7 percent
for the set of 100 seedlings. A total of 2.3 percent of
the seedlings in this set were not gradable (Table 1V),
This ié acceptable performance, bettering manual grading
operations which have an average misclassification rate of
seven to ten percent (Beckman, 1986). As expected, a
large part of the classification error. was due to
seedlings which straddled the borderline between
acceptable ahd cull. Such seedlings comprised 17 percent .
‘oftthe grading test set.

Resu1£s from the grading of the 100 seedlings wWere
divided into two data sets and analyzed. A set of 17
marginal seedlinés (with respect to caliper and root mass?
showed . an average misclassification rate of 23;2 percent
(Table V). In this set, acceptable seedlings were
clagsified as culls 31.7 percent'of the time, while culls
were classified as accebtable.18.6 percent of the time.
There 1s no significant commercial penalty for

ﬁisclassification of borderline seedlings.
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TABLE IV

PERCENT MISCLASSIFICATION OF 100 SEEDLINGS

Acceptable Seedlings Cull Seedlings
1380 620
Classified Not Classified Not
Cull Gradable Acceptable Gradable
66 34 49 13
4.7% '2.5% 7.9% 2.1%
Total Misclassification 5.7%
Total Not Gradable 2.3%
TABLE V

PERCENT MISCLASSIFICATION OF 17 SEEDLINGS

Acceptable Seedlings Cull Seedlings
120 220
Classified Not ‘ Classified Not
Cull . Gradable Acceptable Gradable
38 0 41 9
31.7% 0% 18.6% 4.1%

Total Misclassification 23.27%
Total Not Gradable 2.6%

The remaining 83 seedlings showed an average
misclassification rate of 2.2 percent (Table VI). In this

set, acceptable séedlings were misclaséified as cull 2.2
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percent_of the time, while culls were misclassified as

aceeptable 2.0 percent of the time.

TABLE VI

PERCENT MISCLASSIFICATION OF 83 SEEDLINGS

Acceptable Seedlings Cu eedlings
1260 400
Classified Not Classified Not
Cull Gradable Acceptable Gradable
28 34 : 8 4
2.2% 2.7% 2.0% 1.02%

Total Misclassification 2.2%
Total Not Gradable 2.3%

Measurement precision was good, considering the‘pixeli
resolutions of cameras‘1 and 2, which were 0.5 mm and 2.2
mm , respectively. The coefficient of Qariatidn (CV)
(standard deviation divided by mean?) of‘caliper
measurements ranged from 1.3 to 35.3 percent for different
seedlings, averaging 7.6 percent. The CV of the root area
-index ranged from 3.6 to 61.3 percent and averaged 12.2
percent. Shoot height CV ranged from 0 to 15.3 percent
and averaged 4.1 percent for all seedlings.

The few seedlings whicp showed the largest deviations

in measured parameters wWwere characterized either by
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needles hanging aown past the root collar, or by roots
bent upward past the root collar, or both. The
subroutines which located the root collar performed
inconsistently on such seedlings. These seedlings were
also responsible for the largeét number of "not gradable™
classifications.

Appendix C contains déta supporting this evaluation.
The mean, standard deviation, and coefficient of variatioh
of the caliper, area index, and shoot height measurements
for each seedling are tabulated. A table summarizing the
manual and algorithm.grade classifications of each

" seedling followus.
Conclusions -

This study has shown that machine vision can provide
accurate real-time grading of pine seedlings. A seedling
grade claésification scheme was definéd;- Seedlings were
classified as acceptable or cull on the basis of minimum
-éqceptable1stem caliper, root area, and sﬁoot height.

A real-time machine vision algorithm which measures
seedling stem caliper, root silhouette area, and shoot
height was.deQeloped and implemented. Emphasis was placed
on accurate caliper measurement. Seedlings were assuméd
to be singulated and transported on.a non-reflective black
conveyor belt, with shoot orientation. and root collar
position loosely constréined.

Tests with loblolly pine seedlings revealed excellent
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performance. Seedlinés,were graded in approximately 0.25

seconds, with an average classification error rate of 5.7

percent. The coefficient of variation of measurements on

100 seedlings averaged 7.6, 12.2, and 4.1 percent for stem
caliéer, root area, and shoot height, respectively.

‘The machine vision algorithm developed in this study
could serve to improve commercial grading operations.
Seedlings could belinspected and graded with a lower
classification error rate than is achieved with current
manual operations. Measurement precision is adequate to
allow grading into multiple classes, taylored to specifié
planting sites. In addition, comprehensive measurement
statistics obtained in a commercial implementation would

provide a valuable data base and nursery management tool.
Recommendations

This section presents recommendationé for improvement
of the grading environment, the élgorithm, and
ﬁqssib;litieé for future research. One needed improvement
ﬁhich was apparent during the development.of the algorithm
is a higher level of illumination. Strobe illumination is
desirable to stop the motion of the moving seedlings}
however the strobe sourcés available for this study did
not provide thé intensity or the uniformity of
illumination which is desirable. As . stated in the
literature review, 1ightiﬁé is a véry important component

of a vision syétem. Lenses used in this study were
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operated at close to maximum aperture,.resulting in a
shallow depth of field. Higher illumination levels would
allow lens openings to be decreased, resulting in improved
lens performance.

Consultation with forest nursery experts revealed
that seedlings might be expected to carry considerable
moisture on needles and roots when graded. This condition
wouid significantly change the reflectance properties of
the seedlings. It might only require changing thresholds,
or it could necessitate the use of polarizing filters to
eliminate specular reflections.

Recbmmended chénges to the algorithm are primarily
related to grading criteria and are coincidental with
recommendations for further research. First, the shoot
area could easily be measured, allowing a calculation of
the root/shoot volume ratio (index). A calculation of the
sturdiness ratio (caliper/height) is also straightforward.
Second,.a data base collected with the algorithm would
enable statistical determiﬁation of optimal cutoff values,
énd hence improve classification performance. .A training
routine could be developed to assist in cutoff selection
after a set of training seedlings had been processed.
Finally, the accuracy of grading demonstrated by this
algorithm suggests use for classification of seedlings;
into several a¢ceptab1e grades. Additional grades might

be optimal for specific types of planting sites.
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APPENDIX A

SIX TECHNIQUES FOR THE MEASUREMENT

OF DOWEL CALIPER
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MEASUREMENT S

AaRS. Val. OF
DEV. (OF SCALED
CAL.. FROM 3.0

0

Gnlﬁhﬁoa
0. 014120
. 12O

0. QPP
0. G7018Y
0. 054269
O, OR4Es
G.015417
Ou)’Blgb

ﬂ llﬁébw

Q.

0.
(]
Oy,

mean
Var
stdev

.......



MEASUREMENTS ON 30 DOWEL IMAGES USING
MOMENTS TECHNIGUE ON 20 FIXELS, 35 LINES
METHOD 2

CaLIFER DEVIATION ORIENTATION COLLIMN
- MM FROM 5.0 RADTANS FOSTITION

Z.7181 -0, 2B 0. 017 103
2. 9LEY (10 (7 24 106
2. PB4 -0, 02 113
2.9671 ~(, (0% 0. O47 138
=0y 10 . 056 1437
=, 13 0. 048 154
e 0. 057 142
: -0, 24 0. O54 1%
2. 9207 {3, 8 O 054 124
2. 9007 -, 10 . 051 115
2.9199 =3, 08 0. 051 108
2.9271 =)y 7 G 56 11
2. 9281 -1, 07 0. D66 128

2a G442 -, ObA Q. 058 157

) o 05 0, 0835 146
-1, 07 U Q&7 151
-0, 0% 0. 0é& 1E7
{1, QF O, &7 136
~- 3, 05 O A0 114
-, 07 O OB 132&
27116 e OF . D54 142
2. 8870 =0, 11 O. OHS 145
B RUET v, GG L 0.085 14
2. 7758 0y, R O, QAR 108
w8119 iy, 19 0. 03 101
e BEGY -3. 14 0. OF3 117
e B4 3o 15 O U2 11%
B FOEG ~{, 10 O, 051 124
2. 045 - 1 0. 038 132
2.8408 —-{ia Lé O 04 - 1ES




STATIS

CALIFER
M

2.718100
B FLIF00
2. 984300
2. FEHT100
2. BYSEO0
. B"“;’rnn)

e FOUFO0
Lo FLRFO0
L F27T100
A 228100
Ha FA4200
2. FAF00
T GTRTHO0
FOHTO0
2. FL100
B e F4THEO0
2eR26100
e 7‘11-‘5”11

a7 FEHEO0
E.Bll?ﬁﬂ

0, O
(o D&

TICS ON CALIFER
FROM

METT HUD

SCALED
CAL IFER

2.816%41
H.019217
Ha0PZ16E

AL 074340
AL OO04673
2.9EIHTS
AHLOR0% 18
P XS
b
F. 005540
H. 0254734
2894
v DEERFEL
ﬁnU“Uol”
e L éql?

B

S 01028

. OETFORY
KL 084135
~5; 1 (..’-.‘." .I. HJB
F.016834
2. 99E4LT
H. 010721

2 B76124&

2. F1E5E
2. 262748
2.9ER4FT
e 00&BBY
2L QOSET
2a 4347 E

0, DO447E9
0. QGEdHE4

MEASUREMENTS

ABS,
DEY.
CAL.

(18

VAL .
OF SCa
FROM

unu4@.
cOLEHERE

0 'M‘;\rlf.fb

H4/9

79

GF

e i_;

e &N
Var
stdev



MEASUREMENTS ON

CALTFER
i

He 4628
EabBLY
T.hHB1Y
E.9741
2. F1EO
F.8E7E
F. 7249
DL 6813
F.81:
E. 7685
E.BE566
S TEIO

8414

e HEGL
. 7548
S TREE
. FA00

I 5626
B 6BLE
T 659
T, 6814
4. 0817
T, BE65

DEVIATION
FROM 2.0

U.dé
0. &8
0. 68
0,97
0. 21
0. 8é&
0. 72
0. 68
0.81
0,77
0. 86
0.78
0. 84
G 75
0. 74
0. B0
0.74

O. 7

0. 70
0. 68
RS

Q. 8%

TO DOWEL ITMAGES USING
MODIFIED LAPLACZIAN EDGE DETECTOR
METHOD X

ORIENTATION
HADIANS

0. G0d
G, DOR
O, 010

P R

G, O2E

0. 056
0. 046
O 047
0,015
Q.01
G017
0,015
0. 064
O, 0OR7

0. 0F0

0.018

O, 002

0. DOZ

FOSTITION

B0



STATISTICE ON

CALIFER
M

Fa 462800
HL 681900
H.681800
A F74L00
.”".‘ « FLEHOOO
e ST HRO0
._J o 70 d 200
e 6B 1LEA0G
F.B12600
E. 768500
e 856600
AL FEIEOON
2.841400
F2.754100

Ha TERAHOO

BL7E1 Jth)
e TEEZOO
. EH8&6100
AL FE4E00
e FTRABIOO
AL FAQGO0
Fe 6A5E
Fa BEZE00
A OHE1IION
EL HFFHI0O0
Fe 681400
4.0A1900

. 8865007

SCALED
CALIFER

2701615
« FELHEAB
? FIERZH9
He 169381
B L2EE49
R OT7HBER
2. FT0641
2. QPIETR0
AL OA40E8E
L0541
HLQ7ERTE
2a PLROGE
B 0&IE5]
2e FRERES
2. PBRE6E
Ha Q3094
2. 981089
2aFP1EES
= Qiqc””

L SBA4E7
29T
. 982684
2aGOT L6

BA1204
2. 935870
2, 947514

U.UUBHAQ
0. 09RFHE

oy

L DL 2

CALIFER MEASUREFENTS
FROM METHOD
ARS. VAL, OF

DEV. OF
CAL.

0. 2283584
De DGHE b"""‘
(). O&HR7TE
w1 F\‘?’”"hl
f 1228449
. O 7(‘:)" -]
"..J « D9 /
&40
QAOSEE
|_) PESTH LT )
C‘; SOTEATE
- D0ADLS
- DEEEE]
1_) < ODHOT]
0., Q1L 7AHES
. Q30674
O.01la711
3, 008454
0. Q20347
ﬁ@?ﬂﬁn
- OOEEL 3
Ui, 290 !-I- 0
Q.O1L7316
0. O72E40
0. 158794
G, O&41 30
0. 052486
Qo O&HL05E0
F402
..U;WEI?

L D&B126
L 04027
(l.,t)f;) it da’D

SCALED
FROM 3.0

M Aan
VE-1

stdev

s

t=h!



MEASUREMENTS ON 30 DOWEL IMAGES USING
MODIFIED LAFLACIAN EDBE DETECTOR
METHOD 4

CALIFPER DEVIATION ORIENTATION COLLMN
MM FROM 2.0 RADIANS FOSITION

EE943 0. 59 0. 004 104
. 6B1Y 0. 68 0. OO 107
Z. 6818 0. 68 D010 114
4.2079 Lo 0. OO 139
e 9968 1. Q0 0. 20 144
I.E719 0.87 0. 006 1564
H.7541 D 75 D023 147
E.T7L1O% 0.71 0. OZ0 1734
3.8711 0. 87 :
T 7831 0.78 1ié
A.8712 0.87 105
Z.8114 0.81 0. Q55 117
E. 8414 . 0.B4 G, 026 129
Rl FTEE 0.97 G QRE 1358
3. 7980 0. 80 0. 021 147
R.TTRE .77 0. OEH 1573
I, 7580 0. 74 0. 036 1358
. B8R4 0.82 0. 046 128
M 7800 G. 78 0. 047 115
% 0. 90 0,015 127
0.78 0D.011 143
0.77 O.OL7 147
T 7 8EE 0. 78 0. OLE 135
A GETL 0.6 0. 064 109
B 6210 0w i 0. 0Z7 101
E.&6815 0. 68 0. 020 1%
A.TEIT .74 0, R0 121
3. aE14 0. 68 0. 018 RS
4. 1349 1o13 O, O0F - S 1EE
Ha. Q74 0.97 0. 008 1Ay

4

ah s




CALIFER
M

20594300
F. 681700
H. 681800
4. 207900
HaF9e8BO0
He 871700
Ea TEL41L00
Ha F1OBO0
S.871100
S 7EI100
H.BT71200
3.811400
E.841400
D WTI2IT
Ha TEBOOO
Giw 7T2800
Ha FEBOOO
S 824100
AL 780000
ELFOOFT00
H. 7894100
Ha TEFLO0
2. 7BEBO0
She &HBY 100
HLHZ1I000
e SBLECO
B FEQTOG
S 681400
4. 134900
He G7TA200

2. 810765
0. 017489
e 1239604

FROM HL]HUD 4

BCALED
COLIFER

2. BEYEP0
2. 898553
2.898474
T E1264T
3. 146456
3. 048129
2. 955392
2. 921068

EnUUUqu
F.024118

B LETREE

2. 989952
2.970114
F.942718
3010499
2. 975782

2.HFT0O0Y
2. PETEOL
R WTRVTA
EaF04221
RLEI0L10
2. 898081
2 FL44056
2. 898159
H.2EH1LT4
A 128464

0., 01208%
0. 109622

ABS. Vil
DEV.

Q. 170410

- 101447
0. 101526
03124647
GO 146456
O, Q48129
0. 0444608
. Q789352
Q. Q47500
D.021778
0. 047578
Q. OODEO0]
D, 024118
Q. 127954
0. 10048
0. 0RIRB6
Q. OFB7I8E
ﬁ 010499

024218
O 0D70802
0. ()"()’-;”—)1

O, Q9E77e
0. 149EH0
0101919
0. O55F44
101841
REE 1T 4

= OB1ELE
O, OOH2RA
0O, O7 32564

OF QCQLFD
Cal. FROM
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MEASUREFENTS ON 20 DUOWEL IMAGES USING
GREY LEVEL GRADIENT EDGE DETECTOR
METHDD &5

CalIPER DEVIATION ODORIENTATION COLUMRN
M FROM 2.0 RADIANS FOSTITION

2. BT -, 47 0, Q004 104
2. 8345 -0e 17 Q. 008 107
2. P22 - O 0. 010 114
2. 6591 -1, B4 e QOIS 139
e S97E ~ () o 40 O 220 144
Y Y. 3 U l)l)__} 153&
-0, 3 0. 005 143
-0, &8 O O30 134
-0, 36 Q.02 125
~(ra 27 0. 025 116
—{) T O, D20 ' 105
2a6140 B A i 117
24851 ). 52 O 2é 129
SLE417 . 46 O, EE 1358
e b ~(eAb G, 21 147
2. 56288 -3, A7 Qa L 153
2a bl E7 -0, 59 0. QEE 128
2.56418 —a A 0,046 138
Sa 397 : - (b 4&) G047 115
EnéCQT . .01 127
.01 1473
O.017 147
0. 40 (W 155
e A0S -0, 58 OS0Oe4 109
2. 4968 -0 B0 0. OE7 101
.*;-': . RS 7 . ORO i19

« 4334 -1, 552 0,020 121
:;‘., SEeH (). 44 0,018 125
P.bl41 - 59 ‘ 0. 002 133
2. BA42E ~{. b (O, 202 137




STATIGTICS

CaLIFER
I

oy fo—

2 EHR2TTO00
La BI4E00
2. FEZ100
2a G100
2597800
2 HEF200
£ &HB7300
2a B22T700
22644000
La TI1A00
2a TELITOO
2. & 14000
22 AEE100
2 S5 1700
2o &EAA000
20 HZ2BEHO0
2 HLE7O0
2. 641800
2 SFTR00
B GRRTO0

2 496800
S &EPE0O0
e A4BE400
Ee BH6S00
2ab14100

o HAZ2EO0

tien o]

O

sCAaLED
CAL.IFER

2. 903578

t
i
&
.

TG Ob
056410
2. PEETRO
H. 05652
T OB9EYE
2. 6L TLE

S DEGOERE

2. 139512

CaALIFPER
FROM METHUJD

Py

)

T.l3ogs7

E.00457]
2.854113
2.9214468
039053
L 021E53
FL004324
Ha QSA5EE
2. YE&065
B OREH1LT
Ha 140317
2. 888135
2. FBPUE4H
B. 782159
2. 8&PBHG

Sy gy e

e QR2EET

2. 834457
o

. P358479
H. 0045686
2. 922158

2. 99T
0. 018217
0. 134570

ARG,
DEV.
CaL.

MEASUREMENT &

VAL .
OF S0
FROM

0.094624
0. 258017
0. 3EH7 06
0. 056410
0. 014280

O DEAE2S

O O
DEFOEE
0. 139512
0. 159857
0.004571
0. 145888

0w OFSH52E
0. 013955
Ou DEXGHLT
Da 1403217
D.111865
0.01044
D.217841]
8 D141
St
0. 1455435
0. 061521
0. 004684
O.Q77342

0. 095547
0. 008768
0. OPELTY

OF
ALED

3.0

mean
VR
stdev



MEASUREMENTS ONM 20 DOWEL IMAGES LS ING
GBREY LEVEL GRADIENT EDGE DETECTOR
FIETHOD &

CALIFER DEVIATION  DORIENTATION COLUMN
M FROM 2.0 RADIANS FOSTITION

D 300 -0 A7 0. 004 104
Ga 1267 O. 13 0. 008 1o7

i 0, 02 0.010 114
- B0 0. 008 1359
~0. 25 0. 0RO 144
-0, 24 0. 006 156
2.B630 ~0. 14 0. 0ZE 143
Lo BhbEE 0. 635 0. G20 134
EHRTR ~a 31 0.021 12
e B2 -0.14 0. 025 11é
B RO —(a 39 105
L. 6E78 ~0. 54 117
Fe H4ET 0. Eh 129
. 658 -0, 324 158

] 0, 23 147
2. BBF0 =031 153
2. TOLE =0 30 0. 036 15
L. 6856 L) 0. 046 128
Be7ReR i O.047 115
2. bEGTV ~0. 57 Q. 018 127
2. 8928 ~0.11 0.011 o143
2. buEas ~01 E4 0.017 147
2. 8156 -0.18 0.018 125
ST ~0. 4% 0. 064 10%
25698 - 47 Q. OR7 101
2o THOE ~0. 21 O OR0 119
HebTEE 0. 33 0. 020 121
Za 7010 -, 24 0. 018 125
2. &BE4 -0, 31 0, 002 , 1EE
e AEGO _ =00 37 O, OO ' 137

sy e
Soa f O f




STATIST

CALIFER
il

2a HINOOG

Ea 1 EETO0
VR AL00

e FOROO0

fa 7HRZ200

B TAHLB00
2. 88Z000
2e AEE6500
2. 687800
2. B&2TF00
2L FOTOO0
2. &STHO0
2. B4IZT00
2. 658600
2. 7T7EROO
FaaB7 000
L TOLEOD
2 HB5LH00

FaTEREGO

4'_.:.‘.‘_

RaA2FTO0
2L HFEB00
2o 65EE00
E.Hl':?n()()

E,¢&180H
e 7Y J_,”_ [19]

h384un
2 AEOOOD
2. FEOLSE
O, OR07D

Vo 144205

SCALED
CALIFER

2. 889948

I 4

G70LEE
DEEEEE

054445

2600403
2. FEELE0
B4 145867
Ha 194326
2. 920495
20 2
2.RR1ETE
S.0498289
EBQSEbBL
2. 2682

2L.9H1L043
2a PREYEE
2. B89518

1R o

= WS

0O9R2Es
B13952

2. PE41 20
. H589948

1485977

921594 -

87

ON CALIFPER MEABUREMENTS
FROM METHOD

ABS. VAL, OF
DEV. OF SCalLED
CAal. FROM 2.0

ﬁnjjﬁﬂ”*

c?‘?'“‘v’"
O “4(":)@4()
O. 143538467
O 15438
O, Q79505
0. 094998
0. 0786325
O. 049829
0. 047413
IELTOE

0. 048557

U41H80
u.llUUa

mean
var
"wmlidev




A% PROGRAM mdi .o

#include <ikp.hx
#Hdetine rllen 10

mairi)

g
i

int 1
vopen (" dev/
ikplnit{);
Ivotf g
lcoandry
Tor i i1
cdiamily

o

i amil
J
L9

1 6E

= (g

Jal

calculates ca

vadg'og

10 d+i )

8

liper using moments #/7

int codd,ceven.ontr,dist,line.ntrans,ng

int dthyr

+loat

float stemdi

char rnblkLr

Ifcopy {1, 3)

Ip_frame (5

Ilp _single(dt
Ibinarv()g

Ip_tframe(l);

n Irlen(i,

ifn == 0) p

for{ling = 1

ntrans =

it ¢ ntira

mi

codd

CRveE

crtr

o (

catemdl SCA

P

12X
Memlamdami,siql.sbar pl=0g

Dy

cscalel= 5263
llen ® 10247;

Fdos

rmblik.rllen);
rintf ("AnRunleng
&03line 1703
He{line)

P
LA

m.3

ns
m

Qs

= Jg_ryi{line, O
n = lg_ryi{line,
= { oodd + ceve

J o= ontr-1% 3 3

+Eow 0 A, Of
mz 4= o ® M S EO
+mow # N W M

1
= md - ml- % mlg
= (mA 4+ S#mlEml
= L8 - L Oéshar#s

A, O

lel s pl *

"
9

th failure'’
+rline)

p]
1
I

- o2

oy

Y
cntr+1lS

J

[

o . l

« g
ARG, Oy

v

#ml -~ Esmlwmad) (siga # sqrt

grt (/7 {d+rsbarssbhar) )y

S (Float) ig



RESULTS OF TIME TEST OF CALIPER
MEASUREMENT TECHNIQUES

Method Tested

Seconds

Method

Method

Method

Method

Method

Method

Grey Level Thresholding
Moments

Laplacian Edge Detector (3X3)
Laplacian Edge Detector (5X5)
Gradient Edge Detector

Modified Gradient Edge Detector

0.022

0.560

0.028

0.031

0.038

0.035

[

89



APPENDIX B

PINE SEEDLING GRADING ALGORITHM

PROGRAM LISTING

20



F1

FERKBERERFEERERRERFECRELELLEFRRAERERAEECLEERER LRI XA RERERERES
£ FROGRAM seedl.c .
£E wiritten by *®/
e Michael P. Rigney */
[EERRERRERRGRRREDTFEEEREFRRE RS RRER IR AR RFRERRERRRRERTRRELRREREEHR S

#Frnclude <ikp.ts /Eiconic kernel library #*/
#include <math.hx /Emath library */
#include <stdio.hs J¥standard 170 library ®/
#detine MIN 3 F¥min acceptable stem diameter #/
Hoetine MAX & FEmax acceptable stem diameter %/
#deting MINL 18 Z¥minimum stem length in om */
#fdedine MINA FO0 AEminimum roet area in pryels * 7

;

#odetine rllen 10 A% blocks for runlength data #*/

mair i}

char g

Lt 3=, ey sy J¥init accept/oull counters * /7
int wbr,was FHEwailttor binary and area thresh#/
int rtr ltrs oot area and length bin thrs #/
int chr,otris J¥caollar thresholds 1 oand 2 #/
int dtr,dtrd; F¥diameter thresholds 1 2 2 */
int otr,angs SEorientation  thr and angle %/
int al.bl,a?, bR Aegsrale & frame conversion coorsi/
int first,last,loop; /¥loop variables and counter #*/
int ng /Evariable tor retuwrned valuess %/
ashort wi43; FEFwad tfor window coordinates * 7
ahart rightLiol; Srconvolution coeftficient array #/7
int collar.collari; A¥root collar location in F1, 4%/
int center,liness Aeroot collar location in +1 /7
int rocta;lengbh; F¥root area and stem length */
tloat rady S¥orientation angle in radians  #/
float stemdisy Festem diameber */
float sl=.410,8% 18183 Fescale factors : */
FIILE #+pg A¥pointer to statistics file */

vopen (! Adev//vdg') JEopen video intertace #*/
Lhkplnit{ls A¥indtialize ikp variables ®/

loon g SELUEN cOoprocsssor on ®/

lwoff (g
adoge (right ) g dinitialize convolution matrix #7

SRR CalL CALIBRATION SUBROUTINE ¥ 3 I 3K K
BT ) ek R W

cals: '

calibrate ksl s, hal &bl ,%a2, 402, Swtr yw, dwa  hotr ot JGotrd,
Goatr ddbter 2, Brtr Bl be) g

P JElabel for repeating measuremants &/




statfile (dfp); FFopen & initialize statistics file #/
printf ("Enter the number of seedlings to be measwed:");
scant ("4d s, %lastig

F R MAIN FROGRAM L.OGF LA
ENEER¥ KRR S

fard loop = 1 &% loop <= last 3 ++loop)

£33 CALL. WaITFOR SUBHDUfINE Ho G et
KR KRR W WK S

wal Lfor (wtr wawa) g
tinue(l):

J CALL ORIENTATION SUBROUTINE P
o W e B R RS

orlent (otr . &ang , hrad) g

if{ ang < -30 11 ang > 30 ) {
printf {"Orientation greater than 30 degress!!!'\n"j;
grade (qfp,0,0,0,0,0,0,ang,%k, "NONE") 3
continue;

PR T CALL ROOT COLLAR SUBROUTINE ¥
T T2 HEERKE/

o= ool Likeol lar &center ,&1lines,chir) g

ifin == 09) n = collGcollar,Ycenter,%lines,ctra);
iF( o= )

printt ("Can not find root collar?!iPan')g

grade (4fp, 0. 0,0,0,0,0,ang,%&:, "NONME" 3
continues

SRR CALL STEM CALIFER SUBROUTINE 3 H R H
¥ ¥ ¥ 6/

o= diam(collar center,lines,right,sl  &stemdi ,dte ,rad) ;
i in==0) n= diam{collar,center,lines,;right,sl, %stemndi  dir
Seradlg
ifdon == 03 {
printf ("Can not measwre stem calliper!!f!'\n'")y
qrade (&+p,0,0,0,0, collar,center,ang, %k, "NONE") ;
continue;

Juwdxw Calculate collar location in image from camd #/7

collaryd = a8 + (collar—all)s(bZ—-al) (bl-all;
tinue(d)y



93

JRHH R CALL ROOT AREA INDEX / BN K
SR HH R SHOOT LENGTH SUBROUT IME AWK S

N = roaticollarf,rtr,ltr ,droota,&length,s8d,rad);
if ¢ n == 0 ) {
printf {("Can not measure root area or stem length!!!\n

-

T
grade (&fp,stemndi ,0,0,collar,centerang, &k, "NONE") 3
continue;

_}

T ES ASSIGEN BRADE LR S 2

X T WIS

it stemdi > MIN &% stemdi <« MAX )
if{ roota > MINA &% length > MINL )
grade (&tp,.stemdi yroota,length,collar.centerang.%
igllﬁl“};

else
grade (&fp,stemdi ,roota,length,collar.center,ang,%

g . Ty 5

@l se _
it O stemdil < MIN && stemdi > 2.8 )
ifi{ roota > MINA + 30 &% length > MINL )

gl o "TRETY g

el se
grade(ifp,stemdl roota, length,collar,center,an
Gyfed, "CE")

] s :
grade (q+fp,stemndi ;roota,length,collar,center ang, &3, "0
Ty
N
FE T2 TS END OF HMEIN PROGRAR R HHE R
X LR L.OOF EX T T
Yolose(fp)s FEclose statistics +ti1le #/
printf ("Enter o to recalibrate, else <cord sy

if{ o = getchar{) == "¢’ ) goto cal;j

printd (YEnter m to measuws more sesdlings, else <or> to e
#it o orantlg
10 o o= getchar{) == "'m’" ) goto rung



VRS 28 WATTFOR SURROUTINE Wk Nk A

FHe RN 3

waitfor (thr,w,wal
int thir,was
short #wg

MOMRES abes
short r = O3

Ip_tr{thrd;
Ip_frameii);
TEbwin(w) g
Tinside ()
Ip_frameiils
while ! r < wa )
ITanap ()
ITFmul ¢1,2,1) ¢
fTarea(&abe);
o= abo. Imiy

Laie

ITatbon ()
Ip_camerall)s.
lanap ()3
Ip_camerail);
Ip_frame(4);
Ismap ()
Isthoff i);
Twoatf ();

P =T

Feathreshold, area
Fwindow coordinates

SEatruct for moment data
/¥ area variable

A¥cam £ cuwrrent

S¥init moment threshaold
YEframe F current

FEw 18 hardware window

74

*/

*/

%/
* /7
# /
%/

AEO s put, d4°s inside window#®/s

JEframe 1 current

FEwhile frame | area < wa
JEgnap frame 1

FEmask FL with +2
JEcompute frame 1 area

FFenable strobe lamp sync
F¥cam | current

FHsnap into frame 1

FEcam F ocurrent

FEframe 4 current

FEsnap into frame 4
F¥disable strobe synco
Fehardware window off

¥/
*/
W/
3 /'.
¥/

*/
*/
*/
*/
®*/
*/
w7/
*/



)

;R RE ORIENTATION SURROUTINE F RN
o5 KN HR R W

orrent (otr,ang.rad)?

ik obe,®#angy | /¥threshold, degree adde */

float *rad; ¥radian address */

4
MOFIRES abesg F¥struture for moment data #/
Ip_frame(3): FEFframe E cuwrrent %/
Ifoopy (4,503 FEcopy +4 to F73 w7
Ip_triotri; F¥init moments threshold */
Ip_bdim{0,8); SEhardware win line 8 down %/
Ilmoments (kabciy AHcalc first three moments #*/
#-ad = abo.Imajorl1l; sorientation of major axis #/

¥amg = (int) (57.7 % %rad)i
printt ("Stem orientation = %d degrees, = 4f radians.sn',
Fang . *¥racdi g

Ip singletotriy /?threshald for display %/
Ibinary ()
Twof£ ()3 FEhardware window ot f #/

tinmue (3



VA 8 ROOT COLLLAR SUBRDUTINE @ wafesx
E L ENE T 3 HHNNR S

collicol ycent,num,cthr’
1t ¥ool g focent, #num, cthrg
int ng
zhar rnblkDrilen * 1024733

Twotfirs

Ifcopy(i.,2)y fHcopy 1 to +2 */
Ip_frame(3); /Eframe 2 current %/
Ip_singleicthr)g F¥init threshold /7
ihinary () /#threshold 2 *®/
n = IrientZ,rMblk,rllen)s /¥runlength encode #*/

ifF o o== O 3

printt ("Runlength failuwe! ! f\n");
return (o)

-

PR R R T E TR R R R B RO RS R T R SRR
f%  Try to +ind the root collar. First on lines with #
*  two transitions, then on lines with towr or less #*

¥  transitions, and finally on lines with six or *®
¥ less transitions. */

AR T T W KW B R R S K RN R R KRR R RN

(Z2,col yoent ,num) g
G ) n = col2id,col ;cent ,num’ 3
O dyono= coldldycol joent  num)d g
I I
printf ('root collar is on line %d @ center = Ldin ', #
col #cent)s

Thoriz (#col ,#cent - 15,30)

firmue (2) g
returnind g

i



colZinumtrans,col ,cent ,numi

int numtrans,*#col , #cent, #nuwm;
int i.kynytrans,dist,max,set,linelZ200],centr(200]1,1lnset 3
ILEOT; ’
IR TS TS Y I IR S EE E R S P L L S
f# For esach line with numbtrans or less, find the *
#  transition pair with the largest span, and if *
#  that span is bhetween 3 and 18 pixels, store the #
¥  line number and center pixel of the span. #
PRI I ILI T ETIISL L ELE AL EL L P S E I S TP RS S L)
int J = O3
forr( 9 = O

/

g1 240 3 i )
if O (n o= Ig_rxdi)) <= nuntirrans ) {
max = Oy
for{ trans = 0 3§ trans < n &3 trans += 2 )<{
dist = Ig_ryvli,trans+l) — Ig_ryli,trans):
ifidist > max)d
max = dist;
centrlil = Ig_rydl.trans) + dist /7 23

S
1+ { max 5 &% max < 18 ) linelj++] = ig
For (i o= O 5§ 1 2 F g i)
for{ k = O 3 k 4 30 3 ++k 3 Insetlidlkl = Oy

EEE LS LT FEEET T EELEEESEFEPTETLE LT T ERLLESL L F X TR PR SR
A% For sets of consecutive lines, in the arrav *
#  formed above, sum the line numbers, sum the *®
#  center columns, and keep a count of the number *
# of consecutive lines, *
#  Hail if more than 20 or less than 1 set of lings. #
PEET ST S I I LS S SIS TS
o= 0 H

For (1 o= O & 1 < 3 5§ ++i )4

it ¢ lineli+ll-linelild == 1 14
InsetlOllk] += linelils
Insetl1iIlk] += centerlil;

Insetl2I0K] += 1;
&l me

InsetlfOllkE] += linelil;

Ineetlli1lkEY += centrlily

logetlZI0RT += 13

ape e I_:: ;

i

it ¢k == 20 ) return(Ql;

1F 0 ko= 00) returni)g



i
iy

FEL LTI T LTI L LSS ELT L ELLELLLT LTI LT T ELTLELET LT ETEEET T L 3T 9

A% Find the largest set of consecutive lines. The #
¥ collar is the average of the lines and is centered®
# at the average of the centers. *
¥ Limit the diameter measwrement area to the number %
# of lines in that set or a maximum of 20 lines *®

IELTZLEFL LIS L LT ELL EZILIET LT EIL TS LT LT TETTSL LI L L LT L LT

max = 0
for( 1 = 0 3 1 % k g ++i J{
it{ InsetlEILLT > max ) {
max = lnsetlZI01 1y
s@t = 1y

i O InsetldIlsetd < & ) retuwn i)
#col = Insetiollsetl / InsetlZllisetl;
#eent = lnsetllillset] /7 lnsetlfilsetls
if i InsetlZilsetd > 19 ) %num = 103
@lae Fnum = lnsetl2]llset]l 7 I3
returnil;



S RRE R

KRR

DIAMETER SUBROUTINE

94

TR TE
DR

diam{collar,c,lines,filt,scalel..stemdi ,dthr,anq)
int collar,c.lines,dthrg
short *filtg

Ke
L

fipat scalel ,¥stemdi,ang;

int codd,ceven,dist,ntrans,line,n;

int sum = G, i = O3
char rnblklrllen % 1024714

Ip bdimi{O,collar-lines);
Ip_bdim(Z,collar+lines+l};
Ithcoets(filt):

loconvoal (1,2

timuwe (2) g

Ip_frame(2);
Ip_singlel{dthr);
Ibinary ()

rn o= [rlen{2,rnblk,rllen’;
ifin == 0){

FEhardware window on # 7
/% about root collar %/
FEconvol coets to buffers/
S¥convolution into 2 * 7
A¥frame 2 current ¥/
/Ethreshold at dthre */
SErunlength sncode +3% */

printt ("\nRunlength failure');

return (G
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IR T LT ELEEETT LR E LT LT ELEELETLLETEEL L LT TEE LS T T LT T L LT L9

2 For all candidate lines, get the number of *
% transiticons. I+ the number of transitions *
* is egual to or less than ntrans, find the #
* location of left members of transition pairs. %
#* I+ two consecutive lett members bracket the *
* center of the root collar, and are within 9 *
% pixels of the center, the stem diameter on *
* that line is the distance betwesn them. #*

IE LTS PR LT LTS LTI EE S I T LT LI LT EE LTSI LTSI ST IS T LT

for{line = collar-lines

g line < collar+lines 3 ++lined {
ntrans = Ig_rx{line); JHE of transitions — rowk/
if (O ntrans = 4 )

fori n = 0 3 n < ntrans—& 3 n += 2 )&
codd = Ig_ rv{line,n’g
ceven = lg_ry(line,n+2j;
it icodd o &
= 10 ) L

2

L c-codd + 10)E(ceven > o &k ceven

sum += { ceven — codd )
++i oy
breaks;

"
o

.

B

Twod+ iy

ifd 4 = 0

[ I

w#atemdil scalel ¥ (float) sum ¥ costangl) / (Float) i

H
printtd ("stem diameter = LZFfAn",%stemdi);
Thoriz (collar-lines—1,c-10, P
Thoriz (collar+lines+l ,c—10 H

] ; b K

K

Finuwe i d g
et (L) g
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R R L ROOT AREA IMDEX SURROUTINE R H AR
He e 3 LENGTH MEASUREMENT #HHEEH. S

root (callar,rthr,lthr,area,length,sd,ang?’

int callar,rthr,lthr,*area,®lengths

tloat sli

4
int nantrans,tnum,line,max,dist,codd,cevens
char rnblklrllen % 102473
FIOMRES abeg

Ip Frame (i) FRframe I current */
ITdark () Fframe X all O's */
Ip _bdim{O,collar); /#set top of win at collar %/
Itcoets (5 FEED w B Laplacian high pass %/
ITconvol (4,30 g A¥convolution into frame 3 #/
tinue{3);

Ip _singlel{rthr)y SEthreshold £33 at rthre */
Ibinary )y

Tarea (habe) g FEfind area inside window */7

*area = abc.Imdjg
printd (Yroot area = Zdwn"gabo. ImG)g

lrect{lg_winadr ()); FEdraw window #*/
ITwotf+ Qg FELurn window off =/

Tirmie (3 g

ifoopy4,3); Jecopy frame 4 to frame 3 */
Ip_singlellthr); Srthreshold at Lthe */

Ibinary (g
n o= Irlenti,nblk,rllen); /#runlength encode frame 3 %/
i G o=s= 0) 1

printt ("smRunlength failuwe")s

return{Ql;



102

IR TIITELE T FEELFTETTELEIZELT LT FTLETTIZ LS TE LR LEE TR T
¥ Starting at the top of the image, find {fouwr #*
¥ consecutive lines with a maximum span of at *
# least 9 pixels between a transition pair. W
#  Call the fowth line the shoot top. *
JET LTSI TR I I RS E I SRR R R

line = g

o= 0
whiled( n < 4 ) {
may = g
ntrans = W H+line) s
it { ntran O on o= O
for (tnum = O tnum < ntranss: tnum 4= 2D {
codd = lg ry{line, tnum)j
ceven = Ilg_ryi{line, tnum + 13
dist = ceven - coddsg
iF 0 dist » max ) max = distjg

5
¢

s

1+ 0 max > 5 1 H4+4ng
iftl line == callar ) break;

o

#langth = ({(collar — line) # s2 / costang)) /7 10G;
printf {("stem length = 4Ad centimeters.\n",%¥length)
tinue (3 g

returnind g
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IR TEEEEELELEELZELELLEEEEELEEETELLETELLELE LI EERTEL L LT TT LT T

A% This subroutine opens a +ile for the storage of #
* statistics on the graded seedlings. The user is #*
# asked for a filename and a header is written at the *
¥ . top of the +ile. *

IEEI T ELEIT T EEL L S LTI TEI LTI ST ETLE LT ELL ST L LT T L 5T

astattfilel{ptr:?
FILE ®#ptr:

char namefllSl, +nameld0l;

FILE #topen()s

printt {"Enter the filenameg for seedling statistics = Y
scant ("%s \n",name)j

stropy (fname, “"/lusr/usr/mi ke/images/ ") g

stircat (fname,name) 3

#ptr = fopeni{fname, "w");

fprintt (¥ptr, "  STEM ROOT 5TEHM ROOT COLLAR 8
TEMNn") 3 '

Fprintf (#ptr, "CALIFER AREA LENGTH COLLAR  CENTER A
NGILLE  GRADE COUNTAMNAN") 3

fprintf (¥ptr," min pivels om line column
deginin'ig

FEE T T ST FEREFE T EEELELELELLEL T EELEL LT L ELLTELETFLLL LT T LT LT 0 L0

A% This subroutine is passed a list of seedling *
#  measuremnaents, an assigned grade, and pointers to the #*
# wstatistics file and the grade counter. Various *
#  statistics are printed on the terminal with the grade *
# and count. All statistics are witten to the *
# statistics file. *

£ R 33 RN e R I KR R R RN R R R R F R R EEHFEHEREERERR R SRR/

oradeiptr,di area,len,col ;ctr,ang,count,class)
float dig

int area,len,col ctrang,¥counts

char class{201;

FILE ##ptrg

L
printf (MStem diameter = Z3E.2F mmy root area = Ad pixelsin
"odi yareals
printt ("length = Zid cmy angle = X2d deqg; “Whdes HAdANNY ,len
cANQ . Class,, Hrcount)

fprintd (#ptr, "26. LFEPdA700Fd48d %71 L, 7elildn” ,di ,area, le
n.col,ctrang.class, ¥count)
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SEREGRERRERRFREEREREEERRREERERTEREERRRRFEEREERFHEFEERRLARRRRRER S
P This subroutine halts execution of the algorithm #*
* whenever called, and displays the {frame number *
* passed to i1t. #
FRERRFERFEEERRERFE SRR ERRERAFRRREREERFEEFRFEFRRFREERFRRRF R/

tinue (num)

it mums
whar o3
Ipt (num) g
printf ("Fress any key to continue 2\n'Jg
YTeotf (r;
c o= getochar ()
Tecn ()3

PR S TR TR R FEEL TR O PR R R L XU FUE TR R R RO R
s This subroutine initializes the modified Laplacian %
# edge detector used in the diameter subroutine. *
SRABREERFEERERERFFRRERRREERREFERFERERENERERERREAREFRE R ERFEE

eclge (1)
short %

{
int ig
e == :‘.;;
=¥ i) = Qg
ford 4= 2 og 4 o0 9 g i k= F )
Flr+i—-1) = #{r+i+l) = Jofiwed(2.625);
¥ (r+5) o= Iofiged(~-16.003
s



calibrate{sl,sd,xal. . xbl,.xal,sbh2,whr,w,wa,otr,ctr,ctr,dtr dtr
Eartr,lte) :
it #ual b, ®xald, ¥ubd  ewbr , ¥wa, #ote , wotr  *otrd #Ffdtr  wodbr 2 %
rir¥ltrs;
short #w;
float *sl,%si)
int o= 7y imgy
int yval,vbl,vad,ybh&;
tloat +vratiog
short FiltL10d,fovid4l;
har oy
char ¥msgl "Set this threshold high to show's
char #msgd = Yvigible needles and make the root collar #he';
char #msgl = Yonly area with a small number of transitions.'j

i

char #msqgd4 = "Set this threshold low to show's
char #msgfS = Yonly the stem and largs branches. '
char #msgés = Yjust erough edges to allow caliper measwrement.

i
a

char #msg/f = “"mell detined esdges for caliper measurement.”s
coar #msqd = Ythe seedling top for lengbth measurement. ;
—nar #msg? = "as many roots as possible but minimize noise. '

char #msgd = "the stem and branches clearly.":
char #msgh = “the major axis of the stem.';

#Fwbr = 2y ¥wa = 503 *¥ctbr = ROy ¥cbrd = 1403
#clbyr = 57y #dtr? 4Oy #rbr = 4%y &lte = 1007 Fotr = 170;

i
=

#ubhl = ZEE5; ¥xad 5 ¥xbd = 1%l
#(w+1l) = 135g #{w+Z) = 1805 #{wt+I} = 1403
: 138 tratio = 241373,

gdge (+ilt);

Ipcoefs+ilt)

ITvond)y

printd ("Twrn strobe lamps on.\xn")y

printt{"Flace a seedling in the field of view.\n"i;
it (UAdjust camera TWO and strobe lamps.\n®)g
bevenap (.4, 1) 3

prints ("Adjust camera OME.Am"0g

kevsnap{(l,1i,1)3;



FRAT
prirtd ("Do vow wish to callibrate the scale factors? {(v/n

ifl o == "y’ " Y
scalesisl,sd Hal wblxal, sbh2 hval hvbl yhvald Sybd, ®xdlbr
wFilhdy

fratio = (#uxbhd — #xaZ) 7 (Float) (#Fxbl - #xallg

#f v = (iph) (#xald -~ #xal ¥ fratioly

*(tov+ly = (int) (vad — val % fratio)i

¥ (fov+Er = {int) (¥xal + (Z55 - #ual) % fratior;

#{Fov+I) tinty (va2 + (235 - vall * fratiodg

printt ("val2 = 4d, val = Zdin",vad,vall;

printt ("ral= Xd, xbl= Zd, wal=s Ad, xbZ= Wd\n",#xal,#xubl,*®
Al ¥ubhEy

re = wigsh (dn, "defanlt);
i+ m == L)
printtf("Flace a seedling in the +ield of view.\n"lj
keysnap (2,58.00 3
keysnapi{l,1,1})y
printd 'For next image; hold key down for several con
seCcutive snaps.sn')s:
kEeyvsnap (2,4, 1)y
re o= wishiwter,"waitfor'i;
it == 1 ) {
print+ ("Es denan' gmsgd, msgol g
setthr (2,35, wtr)
preintf (UYou may change the waibt+vor window:\m')g
printd {"comands: uwd l r st wn o3 scri owhen fini
shed. \n"is
Irect (foviy
Twmory (i g
o= wish{wa, "waltfor area’iy
ifion == 1 3 {
printt ("Enter new valus :
scant ("E4d \n",walg

0y
L

¥
o= Wi osh (b,
e == 1 ) i
printt ("4s Ks Lswnin' ,msgd.msgld,msgl) g
getthr(l,2,ctris

root o collar') g

n = wishlctr?,"second root collar');
= 1) d
antF (MAs Esanan',msgl amegs) g

metthr (1,2, cbtrEi;




if(

(98]

oo
it ¢

}

n o=

i+

l"] prd

it ¢

N

o
vot s ()

1oy

.

wish (ctr, "stemn diameter");
n == 1 ) {

printt ("Es Zsiniwn',msgl . omsgo)d s
Itbcosets(filt)y

Teonvol (1,303

setthr (3,2,dtr)y

wishldtrd, "second stem diameter")g
n == 1 ) {

printf{"%s Zssnin' .megd.msg7) s
Ilthcoefs (1115
leonveol (1,3

sebthr (5,28, dteri) s

wish (rtyr, "root area');

n == 1 )

printt ("4s Zsi\nan,msgd,msg?)
Ttooets (5 g

ITconvol (4,32) 3

gy

setthr (2,5, rtr);

e

wish(ltr,"stem length');

n o ow== 1 ) {

privbd (YYs Asanant.msgl amsab) g
setthr (4,3, 1tr) g

wish{otr,"orientation”);

n == 1 3 {

printt ("Zs Zs\nin’ . .msgl,msgR)
setthr (4,53, 0tr) 3



srales(one,two,xal kbl 2ad, 2bhi,yval
short %+1 Ly
float fsone, #twod

138

YR, vad,vbhE thr ,Filt)

ik wwal, #xald, ¥xbil, #¥xbI,dyal,.w#ybl  #yald,*¥vbhd, thrg

K
v

int imnum,line,nbrans,n,sum
char c.rnblielrilen % 102473;
F+loat length, diameter, scalejg
printf{"Flace calibration dowe
beyvanap (1 ,1,1) :

kevanap (Z,4,1)

[
a
q
"
L

Ipf {4y
printt ("Enter the

soant (YEFY s Rlengting g
peintt ("Enter the diameter
.
saant |

oF
"EFY s hdiameter) s
pixel (xald,val, "TOF");
pixel (#bhZ,vbhZ, "BOTTOM");

#¥two = length /7 (float) S Y
peintd ("N\nioFixel scale factor
Tptciry

pixel (xal,val,
pivel (bl ybl, "BOTTOM") g
scale = length / (float)
printf {"\nvnFixel scale

CTOF™) 3

{#Fxbl
factor

Ithroets (f11t)

loonvol (1,203

Ip+id)s

Ip singled{thr}

Ihinary ()

n Trlen(2,robli,rllendy

ford ling = 110 3 line
ntrans = Jg_| rri{line);
RN == 4 )

lg_ ry{line,2)

g

L1 2

sum +=
R

3

Tivor 1w (99, Tg_rv (99,0 20,50 3

Thoriz (151, Ig_rv (99,00 =20 ,50)
#one = i amaeter (+loat) i 7

printf ("sninliameter scale fac

E3

[

0y i

length of the dowel

0y

1 inm field of view.\xn"Jg

the dowel in millimeters

¥ruad)s

uz

= %t mmsplxel\n' ¥two) g
- #mal)ds
= Yt mm/paxelin",scalely

++line ¥4

Ig rv{line,0);

{(+loat)
tor = Wf

Lmy

i millimeters ')

mindpixel sn', Fone)d
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gsetthr (sro.dst, thr)
int sroc,dst,%thr;

Ifcopyiasrc,dst)y

Ip+ (dst)g

Ip_single (#thrl)g

printf ("Set threshold 3 w = up , d = down , <crs when fi
nishedi\n"i;

Immow (55

#thr = lg singled);

printd ("Threshold chosen at “d. \n".#®thr)

wish (b sname )
int #thr;
char namel 2071

kS
char oy
printt {"Do you wish to change the %s threshold: Zd ¢, mnam
e, ®thir)g
soant o sh g R g
iF 0 o o Ty rooo=m= Y return(llg
elase retwrni{Ol;
3

pixel { ex,wy, point )
il e, Wy
char pointliol;

-

.
printf ("Move the cross heivr to the 4s of the dowel syvn u=
up, d=down, l=left, r=right, <cr> when done.\n",point}}
Tpmow () g
*e o= Qg _pOia)y
*wy = I podl);

s

kevesnap (camearra, trame, sth)

int camera,trames,sthy
ohar oy
Ip_camsralcamera)ls
Ipt (framedy
i+ 0 st 1 3 dstbhon():
prants {("Fress any key to snap, <crs when finished.s\n");
Tet+ Oy .
wWwhilel{ o = getchar () !'= 10 ) Isnap();
Teorn ()
I'sthots (g




APPENDIX C

STATISTICS FROM THE MEASUREMENT

OF 100 SEEDLINGS



STATISTICS FOR GRADABLE SEEDLIRNGS
WITH CALIFERS BETWEEN 2.0 AND 8.0 M
AND ORIENTATIONS LESS THAN 30 DEGREES

CALIFER AREA LEMETH

pevidl BTATISTICS: actual caliper = 3.0
20 observations
E. 2 179 22 mean
Q.51 18 0.9 atdev
15.8 10,0 2.9 LV %

pevod  STATISTICS: actual caliper = 3.0
17 observations
He0d 196 28 mean
.17 26 (W) stdev
5.7 135,10 2.2 VA4

pevid  STATISTICS: actual caliper = 4,0
PO observations
4.6 22 235 mean
0,54 10 0.6 atiev
1l1.4 4.6 e AV A

pevidd STATISTICS

20 observations
4.2 289 A2 me

U 1& 17 1.2 stdev
3.7 &l 2.8 AV 4

actual caliper = 4.4

pevid  STATISTICS
15 observations
Siala 5E7 Lé Mmean
Oa 57 dé 1.7 stdav
10,3 .7 4.7 oV 7

actual caliper = 6.0

pevosd  STATISTICH

actual caliper = 3.7

4,0 243 1 mean
0.74 19 L., stdev
i8.4 a7 A cV %

pevild?  STATIBTICS: actual caliper = 3.3
20 observations
o) 220 21 Meran
. 15 2 0.5 stodev
&, 4 . 1.6 CV %4

peviold STATISTICS: actual caliper = 4.7
=0 observations ‘
4,0 274 28 Mean
0. 40 47 1.4 stdev
7o 17.0 5.0 CV %

L1l



STATISTICS:
observations
. E 17&
D.lé& 17
4.9 S b

pevos
20

-

BTATISTICS:
observations
- 115
7O

.

61.-::'

pevlio
1%

OTATILSTICS:
observations
BT 187
0,18 17
4.9 G

pevli

20

pevis STATISTICS:
20 observations
4,2 234
Q.13 2
Sl 7.9
pevld STATISTICG:
20 observations
) 28é
G.li i7
a3 5.9
pevld STATISBTICS:
20 observations
.0 159
O, 07 11
2.2 b. 7

el woal.

pevld STATISTICS:

7 observations
B9 185
82 s

-

2E. 9 28.8

8]

peviéd STaTIsSTICH:

16 observabtions
£H.58
195

MR D B

5.1

pevl? STATISTICSH:

20 o pbhservations
= - /
e at

. B 17

.4 I

actual

24
O.d

1.5

actual

ac

24
0.4
1!1':.?

ac

34
0.8

2

tual

tual

caliper

mean
stdev
IV

calilper
mear
atdev
oV %
caliper
meAn
stdewv

CY %
caliper
ME AT

stdev
VI

actual caliper

&

A1
4.3
.7

tual

mean
stdev
NSV

caliper
mean

stdev
IV 4

mean
stdev

IV 4
caliper
ME&AT

atdev
oY %

actual caliper

24
-
o

L

mean
shdew
AV 4

-

-
b @

[H

W)

7

i

112
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pevl8 STATISTICE: actual caliper = 2.9
20 observations
Hal 170 25 mean
; & 2.8 stdev
EELE 1l.0 CV %

~i

pevl? STATISTICS: actual calipsr = 2.
20 observations ’
P 118 21 mean
(.28 13 Ga? stdev
et 10.5 3.l oV %
pevii STATISTICS: actual caliper = F.1
20 observations
Had 173 =9 mean
0. 13 14 e & atdev
Ga 2 8.0 2.0 Vv %

od

pevisl STATISTICS: actual caliper =
20 observations
a2 208 28 mean
/ 29 l.6& stdev
11.5 14.0 3.6 CV %
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