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PREFACE 

This study is concerned with the analysis of the 

splaying operation, which moves a certain node in a tree all 

the way up the tree to become the new root. Splaying is an 

operation on a self-adjusting data structure called the 

Splay tree. New methods are suggested to perform top-down 

restructuring of splay trees when moving a given node to the 

root providing faster and simpler algorithms. The splaying 

operation is used in implementing the link/cut tree 

operations thus solving the linking and cutting trees 

problem in an amortized time bound of O<log2n> per tree 

operation. Finally, the use of the link/cut tree in 

solving the maximum flow problem giving an algorithm of 

O<n*m*log2n> is illustrated to give a precise idea of how 

this powerful data structure can be applied. 
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his thesis advisor, Dr. D. D. Fisher, for his precious 

help and guidance throughout the study. Appreciation is 

also expressed to the other committee members, Dr. G. H. 
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CHAPTER I 

INTRODUCTION 

Static data structures may be both time and space 

efficient for some applications but for 

applications a dynamically changing data 

needed. Self-adjusting data structures 

most practical 

structure is 

ref er to data 

structures that provide the advantage of changing 

dynamically with the changing patterns of access. 

Self-adjusting data structures provide ways to achieve 

amortized efficiency. Amortization is the average time per 

operation on a given data structure over a worst case 

sequence of operations. Amortized efficiency is the 

objective in applications where more than one operation is 

performed at one time. 

One type of self-adjusting data structure is the splay 

tree. A splay tree is a binary tree over which the 

splaying operation is defined. Splaying involves moving a 

node up the tree until it becomes at the root position. 

The splay tree, even when compared with balanced and 

optimum trees, achieves better amortized efficiency. The 

splay tree adjusts itself to suit the initial frequencies of 

access distribution of the items in the tree. It will 

readjust itself if the frequencies of access of some or all 

the items change dynamically with time. The idea of 

1 
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self-adjusting can be applied to data structures other than 

trees. 

heaps. 

For example, there exists self-adjusting lists and 

Splay trees, as is the case with all self-adjusting 

data structures, require too much restructuring. Methods to 

move a node to the root position were suggested. Among these 

were the move-to-root and splaying methods. Splaying can be 

done both bottom-up and top-down. The top-down version is 

harder to understand and thus more difficult to implement. 

The move-to-root operation is a bottom-up process. It 

is not possible to do this operation in a top-down fashion 

using simple rotations. Since top-down restructuring in 

this case is more time and space efficient it becomes 

convenient to be able to use it. 

In this research new methods to move a node to the root 

are suggested and tested. These new methods simplify the 

splaying operation but still provide the same efficiency 

enjoyed by the original methods, namely move-to-root and 

splaying. 

Splay trees have many applications, one application is 

in link/cut trees which are used in many network 

applications like the maximum and minimum flow problems. A 

link/cut tree is a data structure with a set of operations 

defined to operate upon it. Among these operations are the 

link and cut operations. These two operations dynamically 

modify the link/cut tree by adding and deleting edges to 

vertices in the tree, respectively. There are few different 

methods to implement the link/cut tree operations. One 



3 

method, is to divide each link/cut tree into a set of paths. 

A set of operations is defined over this set of paths. 

These path operations are used to implement the link/cut 

operations. This method provides an amortized efficiency of 

O<log2n> per operation and an amortized efficiency of 

O<m*log2n> for a sequence of m worst case operations over 

the link/cut tree. This time bound is significantly better 

than that obtained by the more basic methods used to solve 

the linking and cutting trees problem. 

The choice of the method to be used to implement the 

link/cut tree operations is 

the each method. In this 

relevant 

research, 

to the efficiency of 

the link/cut tree 

operations are implemented and a comparison is conducted 

between the different methods for implementing these 

operations. The major application of the link/cut tree is 

in the implementation of the maximum flow problem. An 

illustrated presentation of the use of link/cut tree to 

find a maximum flow is done in this research giving an idea 

of how this powerful data structure can be used in practice. 

Using the link/cut tree in the maximum flow problem 

implementation produces an algorithm with a time bound 

better than the fastest previously known algorithm. 



CHAPTER II 

LITERATURE REVIEW 

Intropuction 

The splay tree is a type of self-adjusting data 

structure which dynamically adjusts itself with accesses. 

Splaying is an operation that is used on the splay trees to 

move a node to the root position. The link/cut tree problem 

can be solved by finding a systematic method to implement 

the operations defined over the link/cut tree data 

structure. Splaying is used in the implementation of the 

link/cut tree operations. This improves the amortized 

efficiency of the link/cut tree. The link/cut tree has 

several applications, an important one is in the solution of 

maximum and minimum flow problems in networks. The work 

presented here was mainly done by R. E. Tarjan and D. D. 

Sleator Cl,14,15). 

Self-Adjusting Data Structures 

Self-adjusting data structures like any other type of 

data structures have both advantages and disadvantages 

<2,4,8). 

Advantages: 

1. They require less storage and provide a faster 
running time where amortization is of interest. 

4 
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involved. 

5 

to adjust dynamically according to the 
the access frequencies of the items 

3. Their maintenance is simple 
structure they usually have. 

due to the simple 

Disadvantages: 

1. They require more readjusting and restructuring 
than usual data structures like balanced trees 
because restructuring takes place not only after 
adding or deleting items but also after searching 
for an item. 

2. Operations in a 
expensive. 

sequence may be unusually 

3. There is always a sequence of operations that make 
them perform poorly. <such sequences are very rare 
to occur in practice> 

Lists as Self-Adjusting Data Structures 

Perhaps the simplest form of self-adjusting data 

structures is the list data structure. A restructuring 

method on lists suggested by Tarjan is the move-to-front 

rule. The move-to-front rule gives amortized efficiency by 

moving the accessed node to the front of the list on the 

basis that an accessed item will have a better chance to be 

accessed again in the near future. Thus frequently accessed 

items are kept closer to the front of the list dynamically. 

Move-to-front has many applications, one is in the 

implementation of the Least Recently Used <LRU> paging rule 

(11). 

Another rule that can be a variant to move-to-front is 

the move-to-tail rule. Simply, move-to-tail rule moves a 

node to the end to the list after it is accessed. 
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Move-to-tail rule performs at its best when the access 

frequency of an item decreases after being accessed. If 

there are n items in a list L, 
' then if 

a~ is accessed its probability of being accessed again 

decreases until most 

are accessed. 

The Splay Tree 

other items 
' 

The splay tree is another form of a self-adjusting data 

structure. Splay trees are binary search trees that provide 

amortized efficiency by using a restructuring technique 

called splaying; moving an accessed node to the root using 

Splay trees are defined restructuring techniques. 

competitive with balanced trees that guarantee a minimum 

average access time. Splay trees prove to be even superior 

when the usual case of having different frequencies of 

access applies. Balanced trees, while efficient, require 

extra storage space and extra effort to maintain their 

balance. A splay tree is simpler in both its operation and 

its structure. Furthermore, a splay tree has a practical 

advantage over the optimum tree in that it does not require 

a fixed frequency distribution of the items in the tree. 

Methods For Moving a Node 

to the Root Position 

Move-to-root Heuristics 

Move-to-root was first described by Allen and Munro 
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<1>. The idea is simple, move a node from any position in a 

tree to the root position. The move to the root is done in 

a systematic way called the simple exchange. Simple 

exchange is used on a node until it becomes the new root of 

the tree. 

Simple exchange is done using left and right rotations. 

See Figure 1. The simple exchange procedure is described as 

follows: 
case 1: Rotate left if node x is a right child of 

its parent. 

case 2: Rotate right if node x is a left child of 
its parent. 

The move-to-root heuristic provides an amortized time 

bound of O<log2n>, given a sufficiently long sequence. 

Splaying Operation 

Splaying is a restructuring technique that is similar 

to move-to-root in that it does rotations until the accessed 

node is at the root position. The difference is that 

rotations are done in pairs which helps halving the accessed 

path. 

Let p<x> and gCx> be the parent and grandparent of node 

x, respectively. The following is a description of splaying 

a node x: 

Zig If p<x> is the root, rotate the edge joining 

x and p<x>. Terminate. See Figure 2.a. 

Zig-zig: If p<x> is not the root and both x and p<x> 

are right or left children of g<x>, rotate 

the edge joining pCx> with g<x> and then 



y 

/ ~-~, 
\ x :-

tl /'>""' 
t2· t3 

Figure 1. 

rotate right 

~ 

/ ""t3 _y 

/ """ 
rotate left 
-----------> 

<------------ tl t2 

Single Rotations. Subtrees 
tl,t2,t3 may be null. 

a.> Zig : right rotation. 

z 

y/ '\4 )(/ "t3 
/ 

tl t2 

b.> Zig-zig : double right rotation. 

/x"" 
y z /"' /" tl t2 t3 t4 

c.> Zig-zag : left right rotation. 

8 

Figure 2. Splaying rotation cases. For each case there 
is a symmetric case not shown above. 
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rotate the edge joining x with p<x>. See 

Figure 2.b. 

Zig-zag: If pCx> is not the root and x is a left child 

of p<x> and p<x> is a right child of g<x>, 

<or vice versa>, rotate the edge joining x 

with p<x> and then rotate the edge joining x 

with the new p<x>. See Figure 2.c. 

Move-to-root provides better running time but it 

suffers some potential problems that do not occur in 

splaying. A comparison between splaying and move-to-root in 

' I 

one special case is shown in Figure 3. The effect of 

halving the access path effectively is what makes splaying 

avoid the problems caused by different special cases. 

Splaying can be used to implement many operations like 

insert, delete, join and split. One way to do these 

implementations is as follows: 

Access<i,t>: Search for item i in the tree t. If a 

node x containing i is found splay at x 

and return a pointer to the new root x. 

If the item -i is not found then splay at 

the last item accessed during the search 

and return a pointer to null. 

Join<t1,t2>: Access the largest item i in t1 and let 

t2 be the right subtree of the node 

containing i. See Figure 4.a. 

Split<i,t>: Access<i,t) and let the node x be the new 

root of t. If x contains an item less 



/ 
Xo 

, , , 
/ 

/ 
Xn-1 

Xn 

Move-to-root<xo> 
----------------> 

a.> Effect of move-to-rootCxo>. 

/ 
x ... 

/ 
Xn-1 

," 
/" splayCxo> 

X::z --------> 
/ 

X1 

b.) Effect of splay<xo>. 

10 

Xo 

"'-
/ 

x ... 

Figure 3. Illustration of the effect of the 
operations move-to-root and splaying 
in a special case. 
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6 6. 
--> --> 

t1 t2 t2 t1 t2 

a.> Join<t1,t2>. 

or 

i i 

6 --> 
c-i~ 

--> s:- 6. 6~ 
t t1 t2 t1 t2 tl t2 

b.> Split<i ,t> ,- returns two trees one with i at root. 

Figure 4. The effect of join and split. The split 
operation returns two trees. 

6. 
t 

1 
--> 6. 

t1 t2 

2 
--> 

t1 t2 

a.> Insert<i,t>: 1. Split 2. Let t1,t2 be 
the left and right subtrees of i. 

1 C-i'6 2 

6 
--> --> 

t t1 t2 
6 
t' 

b.) DeleteCi,t>: 1. Access<i,t> 2. Join <t1 ,t2>. 

Figure 5. Insertion and deletion using split 
and join, respectively. 
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than or equal to i then return <x,t1> and 

t2, otherwise return tl and <x,t2>. See 

Figure 4.b. 

There are different ways to implement insert and 

delete. Two methods are described below: 

Insert<i,t>: Split<i,t> and let the trees t1 and t2 

returned by split be the left and 

right subtrees of i, respectively. See 

Figure 5.a. 

DeleteCi,t): Access<i,t> and then join the left and 

right subtrees of the new root which 

contains the item i. See Figure 5.b. 

Another way to implement insert and delete is as 

follows: 

Insert<i,t>: Search for i in t and let the null 

pointer encountered at the end of the 

search be pointing to the new node x 

containing i. Finally, complete the 

procedure by splaying at x. 

Delete<i,t>: Search for i in t, replace node x 

containing i by the tree resulting from 

joining the left and right subtrees of x. 

Complete the deletion by splaying at the 

parent of x. 

Splaying can be done both bottom-up and top-down. 

Bottom up splaying requires two passes as it was described 

earlier. One pass to locate the position for splaying and 

the other is to do the actual splayi.ng process. Bottom-up 
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splaying requires the ability to reach the parent of any 

node along the access path, to be able to do that either a 

parent pointer is to be added to the node structure or the 

access path may be stacked during the first pass. If space 

is of great importance, only two pointers may be enough to 

access the children and the parent of a node, one pointer 

points to the leftmost child and the other to the right 

sibling, if there was no right sibling then the other 

pointer points to the parent of the node. This 

representation may save space but it causes a loss in time 

efficiency. 

The following is a procedure that does splaying 

bottom-up. Parent pointers are used explicitly. Pseudo 

code is used and detailed declarations are skipped. 

Splay_bottom_up<x>; 
{ 

wh i l e < p < x > ! = nul 1 > { 
if Cg Cx > == nul 1 > { 

if<x == right<p<x>> > { 
rotateleft<p<x>>; 

else 
rotateright<p<x>>; 

} 

else { /* grandparent exists */ 
if<p<x> == left<g<x>> > { 

ifCx == leftCp<x>> > { 
rotateright<g<x>>; 
rotateright<p<x>>; 

.... ,, 

} 

else { 
rotateleft<p<x>>; 
rotateright<p<x>>; 

} 

else { 
if<x == right<p<x>> > { 

rotateleftCgCx>>; 
rotateleftCp<x>>; 



} 

} 
else { 

rotaterightCpCx>>; 
rotateleftCpCx>>; 

} 

} /* while */ 
return<x>; 
} 

Top-down splaying may also 

14 

be used instead of 

bottom-up. Tarjan's method for top-down splaying is not as 

simple as bottom-up splaying but it has few advantages: 

1. There is no need for a method to access the parent 
since all accesses occur from parent to child. 

2. It is a one pass operation in the sense that the 
actual splaying action takes place while searching 
for the accessed item. 

In other words, top-down splaying is more efficient 

storage and time wise but it is more complex than bottom up 

splaying. In Chapter III, a simple method for top-down 

splaying will be described. 

Top-down splaying by Tarjan is done while searching the 

tree for the accessed item. At each accessed node along the 

search path the tree is split into three parts: 

Left tree CL> : Cdntains all items that are already 

known to be less than the accessed 

item i. 

Right tree CR>: Contains all items that are already 

known to be greater than the accessed 

item i. 

Middle tree : A subtree rooted by the current 

accessed node. 

Top-down splaying is conducted by repeatedly applying 
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the cases described in Figure 6 until the accessed item or a 

null pointer is reached. Complete the top-down splaying 

operation by assembling the subtrees as shown in Figure 7. 

Figure 8 shows an example of top-down splaying. A similar 

result should be obtained if bottom-up splaying is used. 

The following is the top-down splaying procedure as 

described by Tarjan. The variables t, I, and r are 

pointers to the current vertex of the middle tree, left 

tree, and right tree respectively. The procedures 

rotateleft and rotateright rotate the edge joining t to its 

left or right child respectively. The other procedures 

needed to do the top-down splaying are described as 

follows: 

Linkleft : Break the link joining t to its left child 

and attach the resulting tree to the right 

of the left tree. 

Linkright: Break the link joining t to its right child 

and attach the resulting tree to the left 

of the right tree. 

Assemble : Complete the top-down splaying by 

assembling the left middle and right tree 

into the final tree. See Figure 7. 

Splay_top_down<i,t>; 
{ 

I* Initialize left<null) and right<null) */ 
if <l=null && r==null ) { 

left<null>=null; right<null>=null; 
} 

whileCi != item<t>> /* item<t> ->key int*/ 
if <i < i tern <t > > { 

if i=item<left<t>> 
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x 6 y r 6 y/~ 6 
L L:l 

--> A 
L ~ B R x 

A '6 
B 

a.> Zig: Single rotation. Item i is in A. 

x I 6 y/~ 6. 6. z 
L z/6 c R --> L ~ y 

A '-.... 
~ B x 
A ~6 

B C 

b.> Zig-zig: Two similar single rotations. Item i 
is in A. 

6 
x 

6. \ I / ~ z 
L 

y 
R --> ~ 

6 ""-z 
c 6y B 

x 
A Cl 6 B A 

c 

c.> Zig-zag: Two different single rotations. Item 
i is in B. 

Figure 6. Top-down splaying cases. Item i is splayed. 
Symmetric cases exist but not shown. 



6 6 
L R --> 

A B 
A B 

Figure 7. Final assembling step of top-down splaying 
completed by putting the various subtrees 
together as shown. 

17 
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Middle Right 
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d/f~k 
/\ I\ 

b e j m 

/\ I I\ 
a c h 1 n 

I\. 
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\ 
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/\ 
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} 

} 

} 

linkright; 
else if <i< item<left<t>> { 

rotateright; 
linkright; 

} 

else { 
linkright; 
linkleft; 

} 

else { 

} 

if <i>item<t» { 
if<i=item(right<t>> 

l inkleft; 
else if <i>itemCrightCt>> { 

rotateleft; 
l inkleft; 

} 

else { 
linkleft; 
linkright; 

} 
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The following is the implementation of linkleft, 

rotateleft, and assemble: 

symmetric:> 

Procedure linkleft; 
{ 

} 

t=right<t>; 
l=t; 
right Cl >=t; 

Procedure rotateleft; 
{ 

CLinkright and rotateright are 

t=right<t>; 
right<t>=leftCrightCt>>; 
left(rightCt>>=t; 

} 

Procedure assemble; 
{ 

} 

left<r>=right<t>; right<l>=left<t>; 
left<t>=rightCnull>; right<t>=left<null>; 
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Splaying in general requires extensive restructuring. 

The semi-adjusting search tree is a variation to the splay 

tree. It attempts to decrease the number of times a tree 

needs to be adjusted. There are many ways to achieve fewer 

adjustments in the splaying operation, some are listed 

below: 

1. Move a node only part way towards the root instead 
of all the way to the root. 

2. Splay only if the access path to the item to splay 
at is relatively long. 

3. Splay only if the item is in the tree in case of 
access and insert, do not splay in case of delete. 

These suggestions require a lot of studying to 

determine how they would exactly effect the efficiency of 

splaying. 

The Link/Cut Tree 

The problem of linking and cutting trees is a problem 

of maintaining a collection of vertex-disjoint trees under a 

sequence of primarily two kinds of operations namely, link 

and cut. These two operations effect these vertex-disjoint 

rooted trees by adding and deleting edges over time. Link 

is an operation that combines two trees into one tree by 

adding a new edge and cut is an operation that deletes an 

edge to divide a tree into two. Link/cut trees have many I 

important applications: 

1. Network flow .problems like finding minimum, 
maximum, blocking and acyclic flow. 

2. Finding the nearest common ancestors. 

3. Implementing the network simplex algorithm for 
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minimum-cost flow. 

4. Computing some kinds of constrained minimum spanning 
trees. 

Tarjan used the link/cut tree to find a maximum flow 

in O<m*n*log2n> of a network with n vertices and m edges, 

beating by a factor of Clog2n> the fastest algorithm ever 

known for sparse graphs <12>. 

The operations on link/cut trees are defined as 

follows: 

Maketree<v> : Create a new tree with the vertex 

v. Let the cost of v be zero. 

FindrootCv> : Return the root of the tree containing 

the vertex v. 

Findcost<v> : Return the pair Cw,xJ were x is the 

minimum cost of a vertex w on the path 

from v to findroot<v>. The vertex w is 

chosen so that it is closest to the 

root. 

AddcostCv,x>: Add the real value x to the cost of 

LinkCv,w> 

CutCv> 

. . 

every vertex on the path from v to 

findroot<v>. 

Link the trees containing vertices v and 

w by adding the edge Cv,wl. The 

vertices v and w belong to two separate 

trees were v is the root of one tree. 

Divide the tree containing vertex v into 

two trees by deleting the edge coming 

out from v. The vertex v must not be a 
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tree root. 

One way to solve this problem is by storing parent 

pointers in each vertex. This method is the simplest and it 

is used to perform maketree, link, and cut operations in 

O<l> time each, and findroot, findcost, and addcost each in 

an order proportional to the depth of the input vertex, 

which is O<n> in the worst case. 

The other method suggested by Tarjan performs each 

operation in a time bound of 0 < 1 og:zn > • The method 

represents each 1 ink/cut tree by a set of ____ e_a_th~ which 

constitute what is called a virtual tree. In a virtual 

tree, each path is represented by a binary tree called a 

solid subtree, all solid subtrees are interconnected by 

dashed edges. An inorder traversal of each solid subtree 

produces its corresponding path in the actual tree. Edges 

belonging to a solid subtree are all called solid edges. In 

other words, the virtual tree consists of solid subtrees 

each representing a path in the actual tree. More than one 

virtual tree can be constructed for a given actual tree. See 

Figure 9. The information stored in each node consists of 

the following: 

1. A left child pointer. 

2. A right child pointer. 

3. A parent pointer. 

Other information is stored in the nodes like cost<x> 

and mincost<x>. Cost<x> is a real value assigned to the 

node of vertex x and mincost<x> is the minimum cost of a 

descendant of x. Storing the cost and mincost explicitly 
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makes addcost operation expensive so if x is the root of a 

solid tree in a virtual tree then store cost<x>, otherwise 

store cost<x> costCparent<x>> for the change in cost field 

Cdcost>. The other field that is stored is the change in 

min. Cdmin> which is equal to the cost<x>-mincost<x>. 

To make the link/cut tree operations efficient, 

splaying is used to move a 

tree. Another operation 

node to the root of its virtual 

called splicing is needed. 

Splicing makes any middle child v of a root of a solid 

subtree a left child and the old ·left child, if any, becomes 

a middle child. Figure 10 illustrates how splicing works. 

Both splaying and splicing will effect the values of cost 

and mincost and thus the stored values should be adjusted 

appropriately. The overall splaying operation at a node x 

is a three pass operation defined as follows: 

Pass 1: Move up the tree from x to the root while 

splaying within every solid tree. This pass 

should make the path from x to the root 

consist only of dashed edges. 

11. a. 

See Figure 

Pass 2: Move from x to the root while splicing at each 

node along the dashed path to the root. 

After this pass x and the root became members 

of the same solid tree. Node x can be 

reached from the root by following left 

pointers. See Figure 11.b. 

Pass 3: Splay at :< thus completing the overall 

process by moving the node x all the way to 
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Figure 10. Splicing operation. Node v becomes 
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Figure 11. Three pass splaying e>:ampl e. Spl ay3 Ck> 
at node k. (a) Pass 1: Splaying inside 
each solid tree. Cb> Pass 2: Splicing 
along the new dashed path from k to the 
root. Cc> Pass 3: zig-zig splaying step 
at k in the final solid tree. 
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the root. Notice that only the zig-zig 

splaying step is needed for this pass. The 

final virtual tree will have x at the root 

position. See Figure 11.c. 

All the link/cut operations can be 

three pass splaying. Each operation 

implemented using 

has an OClog2n> 

amortized time bound 

takes an Q(m*log2n> 

operation that is 

and a long sequence of m operations 

time. One important link/cut tree 

performed in O<log2n> time is the evert 

operation. The evert operation makes a node v the root of 

its tree by reversing the path from v to the original root. 

An extra bit of storage is needed to know if the meaning of 

the left and right pointer is reversed. A modification to 

the data structure would store the costs in the edges rather 

than the vertices. 



CHAPTER III 

SPLAYING TECHNIQUES 

Introduction 

In this chapter different methods for moving a node to 

the root position are presented. While these new methods 

may seem totally different, in fact they are basically 

similar in effect to those methods already discussed in 

Chapter II, namely move-to-root and splaying. 

Both move-to-root and splaying use single rotations to 

move a node to the root position in a tree. Move-to-root 

involves one node at a time to do the rotations but splaying 

differs by taking nodes in pairs. Splaying has a top-down 

version which was presented in Chapter II, but move-to-root 

does not have any top-down version since it is not possible 

to conduct single rotations at the root that involve one 

node at a time and still be able to pull a node all the way 

to the root position in a tree. 

Two new methods are presented in details in this 

chapter. The first works with one node at a time and the 

other takes nodes in pairs. Both methods work top-down and 

can not be done bottom-up with out loosing some of the time 

efficiency of the splay tree. Analysis is made on the 

original splaying technique and on the two new methods to 
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determine their efficiency under different situations. 

Two New Methods to Move a Node 

to the Root Position 

Single-Node Adjustment Method 

28 

Moving a node x from any position in a tree to the root 

involves restructuring the access path, the path from the 

root to node x. All nodes in the tree that do not lie along 

the access path are not involved in the restructuring and 

can be thought of as being subtrees of the nodes that are 

along the path. 

In any top-down restructuring method; a left tree and a 

right tree are required. The left and the right trees 

contain those nodes that are already known to be less than 

and greater than the node x, respectively. 

The procedure for moving a node x containing an item i 

to the root position using the single-node adjustment method 

is described as follows: 

If the current node is x, terminate and apply the 

assembling step. See Figure 7. 

If the item in the current accessed node is greater 

than i then let the current node and its right 

subtree be a left child of the leftmost node in the 

right tree. 

If the item in the current accessed node is less 

than i then let the current node and its left 

subtree be a right child of the rightmost node in 
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the left tree. 

An example of this method is shown in Figure 12.b. The 

final result is a tree with node x at the root and all the 

other nodes along the access path lie either along the 

leftmost path of the right subtree of x or along the 

rightmost path of the left subtree of x. If the number of 

nodes along the access path with items less than i is equal 

to those greater than i then the best result is obtained 

where the access path is halved. In a random environment 

this will be the approximate case. 

Move-to-root can be do~~ top-down by using this method. 

Each simple exchange in move-to-root requires three pointer 

changes and if parent pointers are used, since there must be 

a way to be able to access parents, then three additional 

pointer changes are needed. By using this top-down version 

of move-to-root the total number of pointer changes can be 

reduced to only one pointer change per node along the access 

path. To complete the restructuring, four additional 

pointer changes are needed for the final assembling step. 

Move-to-root is a bottom-up process and thus two passes are 

needed, one to find the search item and the other to do the 

restructuring. In this method, only one pass is necessary 

since the search is done during the restructuring process. 

Another advantage to this method over move-to-root is its 

simplicity, it is easier to understand and apply. 

Double-Nodes Adjustments Method 

The potential problems with move-to-root still exist in 
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a.> Original tree. 

c 

"d b.) Single-node method. 

c.> Double-node method. 

Figure 12. Moving the node e to the 
root positon. Items in 
search tree order. 
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the single-node adjustment method. A simple modification to 

the single-node method that helps avoiding these problems is 

to consider nodes in pairs instead of one at a time. This 

can be achieved by having a lookahead pointer during the 

restructuring process. The modified method is similar in 

effect to the top-down splaying method described in Chapter 

II. 

In this procedure, the left and right trees are also 

used as in the first method. Let the left and right trees 

be initially null and also initially let a and b be the 

top two nodes along the access path. Also let 1 be the 

last node on the rightmost path of the left tree and r be 

the last node on the leftmost path of the right tree. An 

add operation is used in this method. The operation addCz>, 

an add of a node z, is defined as follows: 

If the item j in node z is less than i Cthe item in 

node x>, then add the node z to the left tree; if j 

is greater than the item in 1 then let z be a 

right child of 1 and let 1 represent the node z, 

otherwise if the item j in node z is less than the 

item in 1 then let the left subtree of 1 be the 

right subtree of node z and let node z be a left 

child of node 1. 

If the item j in node z is greater than i, then add 

node z to the' right tree; if j is less than the item 

in r then let node z be a left·child of rand let r 

represent the node z, otherwise, if the item j in 

node z is greater than the item in r then let the 
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right subtree of r be the left subtree of node z 

and let node z be a right child of r. Notice that 

this is a symmetric case· to the above. 

To be able to follow the add operation correctly it is 

helpful to apply the complete algorithm to the tree in 

Figure 12.a. Excluding few checkings, the following is a 

description of the complete procedure of moving a node x 

containing an item i to the root position. Initially, let 

a and b be the first two nodes along the access path 

starting at the root: 

1. If a is the node x, terminate and apply the final 
assembling step. Figure 7 illustrates the final 
assembling step. 

2. If b is the node x, add<a> 
Apply final assembling step. 

and terminate. 

3. Otherwise, perform Add<b> then add<a> and let 
a and b be the next two nodes along the access 
path. Go to step 1. 

An example of this method is shown in Figure 12.c. 

The order of the vertices of the tree in Figure 12.a that 

are involved in the add operations are b,a,c,g,7,d. This 

method enjoys all the advantages of top-down splaying by 

Tarjan plus a few more. Each pair of nodes takes either two 

or three pointer changes which is an improvement to the four 

pointer changes in the top-down splaying. Moreover, this 

method is simpler than the top-down splaying since all the 

different restructuring cases in top-down splaying are 

implied in this method and that makes it more straight 

forward and easier to program. 

Other than the above two methods, there is a way to 
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restructure a path and that is by doing insertions at the 

root. This is a very simple method as far as programming is 

concerned. This method is very naive because it does not 

take advantage of the pattern that exists during the 

restructuring process just like the first two methods 

described above. 

Empirical Analysis 

In general, when using splaying, the case must be such 

that the access frequencies of few items in the tree are 

much higher than other items in the same tree. To be able 

to conduct an empirical analysis on the splay tree a way to 

generate items with different frequencies of access must be 

available. This method is presented in here to give a 

clearer idea of how the empirical analysis results were 

obtained. 

Let p percent of n numbers have a high:low Ch:l> 

frequency with respect to other items in the tree. The 

procedure used is: 

1. Generate n numbers using a random number generator 
in the range of 1-r. 

2. Use the same random number generator to generate 
p*n numbers in the range of 1-n. 

3. Let the numbers generated in step 2 have a high 
frequency of h and all other numbers to have a low 
frequency of 1. 

4. Accumulate the frequencies; 
for all i = 1 •• n-1 

freqCi+1>=freqCi+1)+freqCi>; 
and then normalize the frequencies 

freq<i>=freq(i)/freq<n>. 

5. Using the same random number generator, generate 
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numbers greater than zero and less than one. Use 
each generated number to search in the normalized 
frequencies for the the value that is just greater 
than or equal to this number and then the sequence 
number of the found value will be the finally 
generated number. 

The probability for a single item to be accessed at 

any time is: 

P<i> = f<i> I <total frequencies> 

were f is the initially assigned frequency to the item which 

is either h or 1 in this case. The probability to access 

an item with a high frequency is: 

Ph = 
and the probability to access an item with a low frequency 

1 is: 

The total probability to access any of the items with a 

high frequency is: 

TPh = Ph * <p*n> 

and the total probability to access any of the items with a 

low frequency is: 

TPl = Pl * <1-p>*n 

Then, 

TPh + TPl = 1.0 

The above number generator used in the analysis can be 

modified to generate characters instead of numbers. Also a 

modification can be made to let the high:low frequencies of 

access be chosen at random. These modifications are not 

essential for the analysis. The control variables used 

above are listed below for convenience: 
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Number of different values to be generated. 

na : Number of accesses to a tree. Items accessed are 

r . . 
already in the tree. 

The range of the n values generated 1-r. 

p'l. : The percent of values that have high frequency of 

access. 

h:l: Initial high:low frequency of access. 

Using the above control variables, a table is shown in 

Table I comparing bottom up splaying, top-down splaying, 

move-to-root, and the two methods presented in this chapter. 

The average path lengths shown in the table for the 

single-node and move-to-root methods are equivalent as is 

the case also with the double-nodes method and top-down 

splaying. 

In Table II , the simple binary tree which involves no 

restructuring is shown with the single-node 
' 

double-nodes 

and bottom-up splaying. Also the value of log2n is shown 

in the table to give an idea of how these methods compare 

with the balanced tree which has an order O<log2n>. 

Table III shows the effect of having different 

percentages of the total items with high frequency of 

access. To minimize the average path length, the total 

probabilities of the high frequency items should be a 

maximum and at the same time the value for p should be such 

as only a fraction of the n items have high frequencies of 

access. At p=0.01 in Table III, TPh=0.5 and at p=0.1, 

TPh=0.91. At the next value p=0.2, Ph=.97 but the average 

path length starts increasing because of the increase in the 
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TABLE I 

AVERAGE PATH LENGTH RESULTS FOR 
DIFFERENT NUMBER OF ITEMS 

IN THE SPLAY TREE 

n Single Move-to Double Top-down Bottom-up Log::zn 
-node -root -nodes splaying splaying 

1000 10.313 10.313 10.676 10.676 10.674 9.466 
2000 11.713 11.713 12.135 12.135 12.187 10.966 
4000 12.912 12.912 13.449 13.449 13.470 11.966 
8000 14.333 14.333 14.422 14.422 14.443 12.966 

16000 15.697 15.697 16.316 16.316 16.373 13.966 
20000 16.091 16.091 16.729 16.729 16.760 14.288 

The control variables; h:1=20:1, p=0.2, na=n. 

TABLE II 

EFFECT OF A MODERATE HIGH:LOW FREQUENCY 
RATIO ON THE AVERAGE 

PATH LENGTH 

N Single Double Bottom-up Binary Log::zn 
-node -nodes splaying 

1000 9.548 9.934 9.969 11.965 9.966 
2000 11. 019 11.364 11.476 13.346 10.966 
4000 12.236 12.711 12.698 14.348 11.966 
8000 13.629 14.153 14.188 15.959 12.966 

16000 14.998 15.590 15.623 17.280 13.966 
20000 15.427 16.071 16.071 17.797 14.288 

The control variables; h:1=100:1, p=0.2, 
na=n. 



TABLE III 

THE EFFECT OF THE PERCENT OF ITEMS WITH A 
MODERATE HIGH:LOW FREQUENCY ON 

THE AVERAGE PATH LENGTH 

p Single Double Bottom-up Binary 
-node -nodes splaying 

0.0005 14.935 15.527 14.802 14.934 
0.002 13.839 13.361 14.358 14.941 
0.01 11.650 12.085 12.128 14.861 
0.1 11.583 11.958 12.019 14.942 
0.2 12.692 13.159 13.180 14.832 
0.3 13.440 13.935 13.995 14.960 
0.5 14.32 14.885 14.889 15.064 
0.7 14.762 15.341 15.345 14.966 
0.9 15.049 15.613 15.690 14.946 
1.0 15.247 15.809 15.840 14.885 

The control variables; h:l = 100:1, 
n=5000, na=n, log:zn=12.288. 

TABLE IV 

THE EFFECT OF THE PERCENT OF ITEMS WITH A 
HIGH HIGH:LOW FREQUENCY RATIO ON 

THE AVERAGE PATH LENGTH 

p Single Double Bottom-up Binary 
-node -nodes splaying 

0.0005 1.545 2.042 1.921 12.910 
0.002 3.512 3.535 3.553 13.269 
0.01 6.254 6.417 6.441 14.828 
0.05 9.434 9.742 9.779 14.828 
0.10 10.894 11.280 11.300 15.108 
0.15 11.814 12.225 12.256 15.180 
0.20 12.460 12.900 12.975 15.123 
0.50 14.273 14.781 14.820 15.033 
0.90 15.009 15.590 15.590 14.964 

The control variables; n=5000, na=n, 
h:l=1000000:1, log:zn=12.288. 
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number of items with high frequency of access and which is 

computed by the equation p*n. 

If the high to low frequency ratio is very high then 

the average path length becomes an order of O<log2<p*n>> 

which means that all the accesses are only to a subset of 

the total items, which is the subset with the high 

frequency. This result is tabulated in Table IV. 

In Table V. the effect of changing the high:low 

frequency distribution is shown. Also shown in the table is 

the percent of the total probabilities for accessing a high 

frequency item <TPh %>. After 50:1 high:low frequency is 

reached, the value for TPh goes already above 0.9 and any 

more increase in h:l does not make 

improvement in the average path length. 

any significant 

Finally, it is important to note that there is a steady 

state that is reached after a number of accesses. The 

steady state is defined to be a state at which the average 

access time of consecutive subsets of the accesses remains 

fairly constant. Being in a steady state also means that 

the access frequencies of the items are not currently 

changing. The average path length starts at its peak for 

the initial accesses then if the access frequencies of the 

items do not change, the average access length starts 

decreasing with accesses till a steady state is reached. 

In a splay tree the access frequencies may change over 

time. If this happens then the splay tree adjusts itself to 

reach another steady state for the new frequencies. 

Table VI shows the average path length after an increasing 



h: 1 

1: 1 
10:1 
50: 1 

100:1 
500:1 

1000:1 
5000:1 

10000:1 
100000:1 

TABLE V 

THE EFFECT OF HIGH:LOW FREQUENCY RATIO 
ON THE AVERAGE PATH LENGTH 

single 
-node 

15.139 
13.947 
12.864 
12.692 
12.423 
12.386 
12.378 
12.379 
12.374 

Double 
-node 

15.696 
14.469 
13.277 
13.159 
12.888 
12.843 
12.820 
12.821 
12.812 

Bottom: up 
splaying 

15.722 
14.487 
13.353 
13. 180 
12.915 
12.854 
12.843 
12.881 
12.867 

Binary 

14.93 
14.913 
14.854 
14.832 
14.816 
14.811 
14.781 
14.783 
14.787 
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TPh (7.) 

20.00 
71.43 
92.26 
96.15 
99.21 
99.60 
99.92 
99.96 

100.00 

The control variables are; n=5000, na=n, p=0.2, 
log2n=12.288 

TABLE VI 

STEADY STATE REACHED AFTER A 
RELATIVELY HIGH NUMBER 

OF ACCESSES 

na Single Double Binary ' 
-node -node 

100 10.350 10.650 11.810 
400 9.150 9.388 11.560 
800 8.638 8.900 11.503 

1000 8.536 8.798 11.533 
2000 8.429 8.693 11.577 
4000 8.307 8.596 11.577 
8000 8.197 8.469 11. 580 

16000 8.126 8.394 11. 561 

The control variables are, n=1000, 
h:l=100:1, p=0.1, log2n=9.966. 
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number of accesses where a steady state is obtained. Notice 

also that a steady state is reached after at least 1/Ph 

accesses. In Table VI, after 100 access, TPh C7.> of the 

high frequency items are accessed. 

frequency items at least 

S = p*n * 100 /CTPh 7.>, 

= p*n/( Ph* p * n>, 

= 1/Ph 

To access all high 

accesses should be made. At a steady state all the items 

with high frequency of access should have been already 

accessed at least once and thus a steady state is reached 

after 5)1/Ph accesses assuming that items have same high 

frequencies Call high frequency items have equal probability 

to be accessed>. 

At the end of this chapter, the following can be 

concluded from the above results: 

Splaying is only time efficient if the access 

frequencies of fe~ items in the tree is high 

compared to other items in the same tree. 

Move-to-root has a better time efficiency than 

splaying in a random environment. The reason for 

this is that move-to-root does not disturb the 

·. structure of the tree by moving the nodes near the 

root too far down the tree as much as splaying and 

its variants do. 

The single-node adjustment method presented in this 

chapter is indeed as efficient as move-to-root and 

the double-nodes adjustments method is as efficient 
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as top-down splaying. 

The appropriate case where a splay tree can be used 

is when : 

1/n ~ p < 0.2 

50 < h/l < infinity 

0.5 < TPh < 1.0 

It is important to notice that TPh is dependent on p 

and h/l. A proper combination of p and h/l must 

be in the above range of TPh to get best results for 

the average path length. There is no one optimum 

value for p or hll but there are several 

combinations that will provide the optimum result, a 

minimum average path length. 

The efficiency of the splay tree does not depend on 

the value of n, the number of items in the splay 

tree. The independency from the number of items in 

the tree is important to establish in a general data 

structure as the splay tree. See Table I. 

A steady state is reached after a sufficiently long 

number of accesses. At. a steady state, the average 

path length is at its minimum. If the frequency of 

access of all or some of the items change after a 

steady state is reached then the splay tree will 

adjust itself and a new steady state is reached 

after another sufficiently long sequence of 

access2s. 

The splay tree has many applications and uses. One 

important use that is presented in Chapter IV is in the 
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implementation of the link/cut tree operations. Another 

use of the splay tree is in the 

multidimensional search tree CS,10). 

lexicographic or 

The idea of self-

adjusting data structures is not limited to the splay tree. 

It may be possible for example to have a self-adjusting 

B-tree where the access frequency of the items is given some 

consideration by keeping in a systematic way those items 

with the high frequency of access closer to the root. As is 

the case with most data structures, a modification to the 

standard B-tree may be needed to be able to have a 

self-adjusting B-tree <2,4,13>. 



CHAPTER IV 

THE LINK/CUT TREE 

Introduction 

In Chapter II, the problem of linking and cutting 

trees was introduced. In this chapter, different solutions 

for this problem are presented. The link/cut tree problem 

can be solved if the operations maketree, findroot, addcost, 

link, and cut are implemented. These operations have 

already been defined in Chapter II. A comparison is 

conducted between the different methods used to implement 

the link/cut tree operations to show the advantages and 

disadvantages of each method. 

Solving the Linking and 

Cutting Trees Problem 

Assigning Parent Pointers 

A data structure that will help solve the problem of 

linking and cutting trees is a tree with parent pointers 

added to each node. No left or right pointers are needed 

since all operations are bottom up; they start at the node 

and work up to the root level. Using this data structure, 

the link/cut tree operations can be implemented as follows: 
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Maketree<v> 

Findroot<v> 

Findcost<v> 

Addcost<v,x> 

Link<v,w> 

Cut<v> 
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Create a new tree with the node or 

vertex v of cost zero. 

Follow parent pointers starting at v 

until a vertex w with a null parent. is 

reached. Return w as the root of the 

tree that contains the vertex v. 

Start at the vertex v and walk up the 

path from v to findroot<v>. Let the 

minimum cost along the path be x. Let w 

be the vertex with cost x. If more than 

one vertex has the same minimum cost x, 

then let w be the vertex that is closest 

to findroot<v>. Return the pair [w,xl. 

Follow parent pointers from v to 

findroot<v> adding the real value x to 

every vertex cost along the path. 

Let v be a child of w by adding the edge 

[v,wl. Note that edges are directed 

from child to parent. This operation 

requires that v and w be vertices of 

different trees. 

Delete the edge coming out from v to its 

parent and return the two trees rooted 

at v and at the old findroot<v>. 

The effect of these operations is shown in Figure 

13.a,b. This is the simplest method among those presented 

in this chapter. The implementation is straight forward and 

only a parent pointer is needed in each vertex which makes 
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it storage efficient since there is no need for left and 

right pointers as is the case with the other two methods. 

The operations maketree, link, and cut take a constant time 

of 0(1) but each findroot, findcost, and addcost operation 

takes time proportional to the depth of the input vertex 

which is O<n>. Thus the amortized time of this method form 

worst case operations is O<m*n>. This time bound is not 

acceptable for most practical applications and thus a 

different data structure is needed with a better amortized 

time efficiency. 

Division into Sets of Paths 

Another approach to the solution of the link/cut tree 

problem is 

paths. Each 

by representing the link/cut trees as sets of 

tree is partitioned into a set of vertex 

disjoint paths. Edges are either solid or dashed. Solid 

edges connect the vertices of a path and dashed edges 

connect the paths in a tree. See Figure 13.c. A solid edge 

is represented by a parent pointer and a dashed edge is 

represented by a successor pointer. Only one pointer may 

be used if an extra bit is added to tell whether the pointer 

is to a parent or to a successor. In this presentation, 

both parent and successor pointers are used explicitly for 

simplicity and clarity. 

Beside the left, right, and parent pointers, other 

information is stored in the nodes, namely, costCx> and 

mincost<x>. The cost<x> is an assigned real value for every 

vertex and the mincostCx> is the minimum cost of the 
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descendants of x, including x, in the solid tree containing 

x. Instead of storing the cost and mincost explicitly, 

which makes the addcost operation expensive, these values 

are stored as follows: 

dcost<x> = cost<x> mincost<x> 

dmin<x> = mincost<x> if x is the root of its 
solid tree. 

or, 

The value 

= mincost<x> - mincost<parent<x>> 

dcost<x>>O 

if x is not a solid tree 
root. 

for any vertex x and 

dmin<x>>O for any nonroot vertex x. To find mincost<x>, 

move along the solid tree path from the root to x summing 

dmin along the path. The function cost<x> is found by 

adding mincost<x> to dcost<x>. 

Before starting the implementation of the link/cut tree 

operations, a data structure has to be chosen for the set of 

paths representing the link/cut tree. There is not a one 

and only one representation that should be used but the 

choice of the data structure to be used to represent the 

paths has a direct effect on the performance of the link/cut 

tree. One representation may be a list data structure. 

Using lists to represent paths makes it easy to understand 

the link/cut tree operations since the virtual tree (a 

virtual tree is a representation for the actual tree with 

connected paths that are represented with some kind of a 

data structure - see Chapter II> will not be different from 

the actual tree and also lists make the implementation 
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itself easier. Lists are simple but they have an O<n> time 

bound in the worst case. Another representation for the 

paths can be the binary tree. For example, if balanced 

trees are used, as a type of a binary tree, then the time 

per path operation is O<log2n>, and 

tree operations takes O<m<log2n) 2 ) 

thus 

time. 

a sequence of m 

This result 

was found by Galil and Naamad <7> and Shiloach (10>. This 

order can be improved to O<m*log2n> time bound if the 

splay tree is used. 

In the following implementation the link/cut tree is 

divided into a set of paths. A set of path operations is 

used to be able to complete the implementation. These path 

operations are defined as follows: 

Makepath(v) 

Findpath<v> 

Findtail<p> 

Findpathcost<p> 

Create a new path containing the 

vertex v. 

Return 

vertex 

the 

v. 

identifier. 

path 

Each 

containing the 

path has an 

Return the last vertex on the path 

p. 

Return the pair [w,xl, where x is the 

minimum cost of a vertex on the path 

p. The vertex w is the vertex with 

cost x that is closer to 

findtail<p>. 

Addpathcost Cp, ~-: > Add the real value x to the cost of 

every vertex on the path p. 

Join<p,v,q) Add an edge from the tail of p to v 



Split<v> 
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and another edge from v to the head 

of q. 

path. 

Return the resulting new 

Return the pair [p,ql where p is the 

part of the path containing v from 

the head to the vertex just before v, 

and q is the part from the vertex 

just after v to the tail of the path 

containing v. The paths p and q may 

be empty if v is the head or the tail 

in its path, respectively. 

Another operation that is needed to carry out the 

link/cut tree operations is the expose operation which is 

defined as follows: 

E:<pose <v> Make the tree path from v to 

findroot<v> solid by converting 

dashed edges along the path to 

and solid edges incident 

vertices along the path to 

Return the resulting 

Figure 14. 

path. 

solid 

to the 

dashed. 

See 

In an actual tree, no more than one solid edge can 

enter a verte~-: but there can be any number of dashed edges 

entering a vertex at the same time. In the following 

implementation, the paths are represented as binary trees. 

Any binary tree variant can be used but here a simple binary 

tree representation is used and the splaying technique is 

used on the solid trees to provide a better amortized 
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efficiency. The following is the implementation of the path 

operations: <The code is a C language notation and is fully 

tested.> 

The type definition used for the vertices in the 

implementation below is : 

typedef struct vertex type { 

float dcost,dmin; 
int vrtx; 
struct 
struct 
struct 
struct 

} vertex, *Vertexptr; 

vertexptr makepath<k> 
int k; 
{ 

char *malloc<>; 
vertexptr v; 

vertex type 
vertex type 
vertex type 
vertex type 

*lt; I* 
*rt; I* 
*pt; I* 
*sc; I* 

v=<vertexptr> malloc<sizeof<vertex>>; 
v->vrtx=k; 

} 

v->pt=NULL; 
v->lt=NULL; v->rt=NULL; 
v->dcost=O; v->dmin=O; 
return <v>; 

vertexptr findpath<v> 
vertexptr v; 
{ 

vertexptr splay<>; 
splay<v>; 
return <v>; 

} 

vertexptr findtail<p> 
vertexptr p; 
{ 

vertexptr splay<>; 

} 

while<p->rt!=NULL> p=p->rt; 
splay<p>; 
return Cp>; 

left *I 
right *I 
parent *I 
successor *I 



vertexptr findpathcost<p> 
vertexptr p; 
{ 

vertexptr splay<>; 

while (p->dcost!=O : : <p->rt!=NULL && p->rt->dmin<=O> > { 
if(p->rt!=NULL && p->rt->dmin==O> 

} 

} 

p=p->rt; 
else if <p->dcost>O> 

p=p->lt; 

splay<p>; 
return<p>; 

addpathcostCp,x> 
vertexptr p; 
float x; 
{ 

p->dmin=p->dmin + x; 
} 

vertexptr join(p,v,q> 
vertexptr p,v,q; 
{ 

} 

v->l t=p; v->rt=q; 

ifCp!=NULL> { 
p->pt=v; 
p->sc=NULL; 

} 

if(q!=NULL> { 
q->pt=v; 
q->sc=NULL; 

} 

return <v>; 

split(v,l,r> 
I* The pair returned by split is Cl,rl. 

These are put in the argument list */ 

vertexptr v,*l,*r; 
{ 

verte:" ptr sp 1 ay < > ; 
splay<v>; 

} 

*l= v->lt;*r=v->rt; 
if<v->lt!=NULL) v->lt->pt=NULL; 
if<v->rt!=NULL> v->rt->pt=NULL; 
v->lt=NULL;v->rt=NULL; 
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The following is the implementation of expose: 

vertexptr expose<v> 
vertexptr v; 
{ 

vertexptr p,q,r,w,s,join<>,findpath<>; 

} 

p=NULL; · 
whileCv!=NULL> { 

s=findpath<v>; 
w=s->sc; 
split<v,&q,&r>; 
if Cq!=NULL> { 

} 

} 

q->sc=v; 
q->pt=NULL 

p=joinCp,v,r>; 
v=w; 

p->sc=NULL; 
return Cp>; 
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There are a few things that should be noted about the 

above implementation. The first is that the link operation 

link<v,w> requires v to be a root of one tree and w to be 

any vertex in any other tree. When the binary tree 

representation is used, the vertex v is not the root of the 

solid tree in the virtual tree but it is the vertex at the 

rightmost position from the root of the solid tree 

containing v. Notice that w is the parent of v <see 

definition for link operation> only in the actual tree. 

The second thing is that splaying does not have to be 

used in the implementation. Wherever splaying is used there 

exists a piece of code that can replace the splaying 

operation and still be sufficient to carry out the 

operation. If splaying is used, it will provide a better 

amortized efficiency if there exist a few vertices that are 

more frequently involved in the link/cut tree operations 
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than other vertices. 

Finally, in an actual tree there can be no more than 

one solid edge incident to a vertex. This is represented in 

the virtual tree by the fact that each vertex has only one 

successor and one predecessor. In the virtual tree, a 

binary solid tree represents the solid path in the actual 

tree. 

The following is an implementation of the tree 

operations using the above path operations. The C language 

notation is used and the same structure definition for the 

path operations is also used in the following tree 

operations: 

vertexptr maketree<k> 
int k; 
{ 

vertexptr v,makepath<>; 
v=makepathCk>; 
v->sc=NULL; 
return <v>; 

} 

vertexptr findroot<v> 
verte:xptr v; 
{ 

vertexptr r; 
vertexptr findtail<>,expose<>; 

r=findtail<expose<v>>; 
return <r>; 

} 

vertexptr findcost<v> 
vertexptr v; 
{ 

vertexptr p,findpathcost<>,expose<>; 
p=findpathcost<expose<v>>; 
return <p>; 

} 

addcostCv,x> 
vertexptr v; 



float x; 
{ 

vertexptr expose<>; 
addpathcostCexpose<v>,x>; 

} 

link<v,w> 
vertexptr v,w; 
{ 

vertexptr j; 
vertexptr join<>,expose<>; 

j=joinCNULL,expose<v>,expose<w>>; 
j->pt=NULL; 
w->sc=j; 

} 

cut<v> 
vertexptr v; 
{ 

vertexptr expose<>,p,q; 
expose Cv>; 
split<v,&p,&q>; 

} 

if Cp!=NULL> p->sc=NULL; 
if Cq!=NULL> q->sc=NULL; 
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The above implementation has an amortized efficiency 

of O<log2n> per operation. An advantage of using this 

implementation is that it makes it possible to think about 

the link/cut tree as an abstract data type CADT> and the 

link/cut tree operations as a s~t of operations defined over 

this ADT. The set of paths structure is another ADT with a 

new set of path operations. ADTs, in general, provide a 

systematic and efficient way in solving large and complex 

problems. It makes the implementation of the link/cut 

operations easier to understand since the overall 

implementation can be done by using different combinations 

of the path operations. 

The expose operation acts like a backbone to this 

method. The purpose of expose, besides making the path from 
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the root to the vertex under operation solid, is to convert 

the solid edge, if any, entering the vertex in question to 

dashed edge. This is the splice operation. The number of 

splices executed determines the time efficiency of an 

operation. 

Using Three Pass Splaying 

as a Primary Operation 

Another implementation that will provide the same order 

of OClog2n> 

ADT> may be 

but using only the splaying technique <no path 

found easier to implement. What is special 

about this implementation is that it does not use the expose 

operation but it uses splicing as part of the splaying 

operation on the link/cut tree. 

The following is an implementation of the link/cut tree 

operations using the three pass splaying, splay3: <see 

Figure 15) 

Maketree<v> Create a new tree with the node or vertex 

v of cost zero. 

Findroot<v> Splay3<v>, follow right pointers until 

reaching the right most vertex w, 

splay3<w>. Return w. See Figure 15.a. 

Findmin<v> Splay3Cv>, use 

to walk down 

the dcost and dmin fields 

from v to the last 

minimum-cost node w after v in the same 

solid subtree, splay at w, and return w. 

See Figure 15.b. See equations for dcost 

and dmin in Page 60 and 63. 
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Figure 15. Implementation of link/cut tree operations 
findroot and findmin using three pass 
splaying. 
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Addcost<v> Splay3Cv>, add x to dcost<v>, and subtract 

x from dcost<left<v>> if left<v> !=null. 

See Figure 16.a. 

Link<v,w> Splay3Cv>, splay3Cw> and make v a middle 

child of w. See Figure 16.b. 

Cut<v> Splay3<v>, add dcost<v> to 

dcost<right<v>>, and break the link 

between v and right<v> by defining 

pCright<v>>=null and right<v>=null. See 

Figure 16.c. 

FindcostCv> Splay3<v> and return the value dcost of 

v. 

The following is a description of how to walk down the 

tree the find the minimum-cost when doing the findmin<v> 

operation. Let p be the root vertex: 

Repeat 

if right<p> !=NULL and 
CdcostCrightCp>>-dmin<right<p>>+dmin<p>>=O 

p=right<p>; 

if (rightCp>=NULL or 
CdcostCright<p>>~dminCrightCp>>+dmin<p>> >O> 

then 

and dmin<p> > 0 then 
p=left <p>; 

Until both of the above conditions are false; 
{The vertex at the new p has the minimum-cost} 

For a sequence of m operations, this technique takes 

an amortized time bound of 0 Cm*log2n>. The splaying 

operation used in the above implementation differs from the 

usual splaying operation in the sense that it may involve 

more than one solid tree. Another important difference also 

is that splaying here is a three pass operation moving a 
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vertex or node all the way to the root of the virtual tree 

instead of only moving it to the root of its own solid tree. 

This splaying process was described earlier in Chapter II. 

The cost and mincost functions are stored implicitly 

in the nodes. If cost<x> is the cost of a vertex x and 

mincost<x> is the minimum cost of any descendant of x in the 

same solid subtree then the values stored in the vertex or 

node x are as follows: 

dcost<x> = cost<x> 

or 

(see Figure 17> 

if x is the root of a 
solid tree. 

= cost<x> - cost<parent<x>> 
if x is not a root of a 
solid tree. 

dmin<x> = cost<x> - mincostCx>. 

Note: In the above definition dmin<x>>O for any node x. 

The values of dcost and dmin are effected by the 

rotation and splicing operations and thus they have to be 

readjusted after every rotate or splice operation. Let the 

vertex v have a parent w, and let a and b be the children of 

v before the rotation, and let b and c be the children of w 

after the rotation. A primed function denotes values after 

the rotation. Unprimed functions are the values before the 

rotation. The formulas that are needed to adjust these 

values are as follows: <See Figure 18> 

dcost'Cv>= dcost<v> + dcost<w>, 
dcost'<w>= -dcost<v>, 
dcost'Cb>= dcost<v> + dcost<b>, 
dmin'Cw> = 
Max{O,dmin<b>-dcost'<b>, dmin<c>-dcost(c)} 
dmin'(v) = 
Max{O, dmin(a)-dcost<a>, dmin'(w)-dcost'(w)}. 
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Figure 17. Link/cut tree representation. Actual 
tree on left with superscript 
representing vertex costs. Virtual 
tree on right with superscript 
representing (dcost,dmin>. 
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Figure 18. 

Figure 19. 

The effect of rotation on the values 
of dcost and dmin of the vertices. 
The above is a single right rotation 
in a solid tree. Values in brackets 
are Cdcost, dmin>. Subtrees and 
dashed edges are skiped for clarity. 

The effect of a splice on the values of 
dcost and dmin. The vertex d is the 
right<~>. Values in brackets are 
Cdcost,dmin). The vertices N, u and d 
are part of one solid tree before the 
splice operation. 
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The other restructuring operation that requires 

modifications to these values is the splicing operation. 

Splicing occurs in the expose operation when a solid edge 

entering a vertex is converted into a dashed edge and a 

dashed edge at the same time is converted into a solid edge. 

If w is the root of a solid subtree and v is any middle 

child of w, v becomes the left child of w, and the old left 

child, if any, becomes a middle child of w. Let u be the 

old left child of w, and let primed and unprimed functions 

be the values after and before the splice operation, 

respectively. The following are the formulas necessary to 

adjust these values effected by the splice operation: <See 

Figure 19) 

dcost' Cv>= dcostCv> dcost<w> 
dcost'Cu>= dcostCu> + dcost<w> 
dmin' Cw> = Max 
{0,dmin(v)-dcost'Cv>,dminCright<w>>-dcostCright<w>>}. 

To find the cost of a vertex v, either splay at v and 

return dcost<v> or walk along the path from the root of the 

solid tree containing v to v adding up dcost. Note that the 

value for dmin for a vertex v is : 

Max {0, 
dmin<left<v>>-dcost<left<v>>, 
dminCrightCv>- dcostCrightCv>> 

} 

This method also divides a link/cut tree into paths 

but it has no path operations. Instead, a three pass 

splaying operation is used to conduct all the link/cut tree 

operations. If the three pass splaying operation is 

implemented and understood, then this method for 

implementing the link/cut tree operations can be 
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particularly simple. The storage requirements of this 

method are just like the method with the paths ADT; it 

requires a left, right, parent and successor pointers. 

As may be the' case with the other methods, this method 

has some room for improvement. With little modification to 

the link/cut tree operations the third pass of the splaying 

operation can be eliminated providing faster but more 

complex algorithms for the link/cut tree operations. 

Another substantial improvement can be achieved if parallel 

processing or programming is used. Each of the three passes 

of the splaying operation can be done in parallel. For 

example, the findroot<v> operation can be done by following 

parent and successor pointers until the root is reached, 

return the root then do the splaying for each solid tree in 

a top-down fashion and in parallel. Then for the second 

pass, do the splicing in parallel for each vertex on the 

dashed path from v to the new root of the virtual tree. 

Finally splay at v to complete the operation. 

Applications 

Link/cut tree data structure was specifically designed 

·to provide an efficient way to solve a practical 

application, namely the problem of finding a maximum flow in 

a network. Using the link/cut tree, an algorithm for 

finding a maximum flow can be done providing a time bound of 

O<m*n*log2n>, better than the fastest previously known 

algorithm by a factor of log2n. The maximum flow problem 

is presented in Chapter V. 
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Many more applications exist for the link/cut tree data 

structure. Obviously, it is a powerful tool to solve simple 

as well as complex problems efficiently. 



CHAPTER V 

THE MAXIMUM FLOW PROBLEM 

Introduction 

Even though the link/cut tree has many applications, it 

was specifically designed for finding maximum flows in 

networks. In a network where the capacities of the branches 

are limited, an objective which is usually of interest is to 

maximize the total amount of flow from an origin to a 

destination and here is where maximum flow problems arise. 

Real life maximum flow problems include water, gas or oil 

through a network of pipelines; the flow of traffic through 

a road network; and the flow of products through a 

production line system. In these examples and others the 

branches may have different capacities, the road network is 

an example where a branch may have one lane while another 

branch may have four or more lanes leading to a higher 

capacity of vehicles. 

In this chapter the link/cut tree data structure is 

used to solve the practical problem of finding a maximum 

flow. A maximum flow algorithm is presented and an 

illustration of the solution is shown to make it easy to 

understand the use of a link/cut tree in the solution of a 

maximum flow and possibly other useful problems. 
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Maximum Flow Problem Definition 

The maximum flow problem is that of finding a flow of 

maximum value from a single source to a single sink or 

destination in a network. The following are the properties 

of a flow f on a graph G: 

1. The flow from a vertex v to a vertex w is equal to 
the negative value of the flow in the other 
direction; f<v,w> = -f<w,v>. A flow exists from v 
tow if fCv,w>>O. 

2. The flow from a vertex v to a vertex w can not at 
any time exceed the capacity of the branch from v 
tow; f<v,w>~cap<v,w>. An edge Ev,wl is said to 
be saturated if the flow is equal to the capacity 
of that edge. 

3. Every vertex other than the source and the 
destination has an in flow that is equal to the out 
flow from that same vertex. 

4. The total flow into the network through the 
source is equal to the total flow going out of the 
network through the destination vertex. 

For a graph G={V,E}, where V and E are the sets of 

vertices and edges respectively, a cut is defined to be a 

partitioning of the vertex set V into two parts X and x· 

where X'= V-X. The set X contains the source Cs> and the 

set x· contains the sink or destination <t>. The capacity 

cap<X,X'> of a cut is equal to the total capacities from the 

vertices in X to the vertices in x·. Among all possible 

cuts, a minimum cut is a cut with the minimum capacity. 

Assuming that the capacity and the flow are zero from v to w 

if there is no edge connecting the two vertices, then a cut 

has a flow that is equal to the total flow from all vertices 

in X to all vertices in x·. A theorem called min-cut 
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theorem states that the capacity of a minimum cut is equal 

to the maximum flow for a given network. 

The residual capacity for an edge Cv,wl of flow f is 

defined by res<v,w> = capCv,w> fCv,w>. The residual 

capacity is an indication of how much flow can be pushed in 

the direction Cv,wl by increasing the flow in the direction 

from v to w and decreasing the flow in the opposite 

direction w to v. Figure 20 shows the residual graph R for 

a given flow. The residual graph contains the same set of 

vertices in the flow with edges Cv,wl of capacities equal to 

res<v,w) in the direction v tow and capacities of f(v,w) in 

the direction w to v. 

augmenting path for f. 

A path P in R from s to t is an 

Finding a Maximum Flow 

Before introducing the O<m*n*<log:zn> > solution for 

the maximum flow problem, it is helpful to present the old 

methods to give a better feeling of how this may be 

approached. A method by Ford and Fulkerson <5,6) is 

considered to be the simplest and is described below. 

Another method by Dinic <3> resembles the solution using the 

link/cut tree data structure but does not have the same time 

bound. 

Augmenting Path Method 

Let G be a graph and G' be a subgraph of G such that 

f'Cv,w> > 0 in G'. Let P~ be the paths found from s to 

t ins·. The following is an outline of the algorithm for 



2,2 

a.> Original graph. Each edge has an 
assigned capacity and flow 
respectively. The edge [e,tJ is 
one out of five saturated edges 
in the above graph. 

2 

b.> Residual graph for the network in 
<a>. The path Cs,b,c,a,d,tl is 
an augmenting path with residual 
capacity of 1. 

Figure 20. Residual graph for a given 
flow. 
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this method: 

1. Let i=1. 

2. Find an augmenting path P~ Ca path 
of maximum residual capacity in 
exists from s to t then halt. 

from 
G,. 
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s to t> 
If no path 

3. Let n~ be the minimum flow f'Cv,w> of an edge 
[v,wl along P~. 

4. Decrease the flow f'<v,w> for every edge along 
P~ by n~. 

5. Delete all edges [v,wl along P~ if the flow 
f · <v,w>=O. 

6. Increment i by one. Go to step number 2. 

When choosing an augmenting path, that path must have 

the maximum residual capacity, otherwise this method may 

halt before finding a maximum flow. Table VII shows a trace 

of the above algorithm when applied to the graph of Figure 

20.a starting with the zero flow. When the algorithm halts, 

a maximum flow is obtained by summing up the units of flow 

n~ forced along its respective path P~. Each time step 

number 5 is executed and edge is deleted from G' and thus 

the algorithm halts after at most m loops where m is the 

number of edges in the original graph G. 

Dinic's Algorithm for Finding a Maximum Flow 

Dinic's algorithm uses two new concepts that need to be 

presented. The first concept is called a blocking flow. A 

blocking flow f is a flow in G with all paths from s to t 

containing at least one saturated edge. Having a blocking 

flow does not necessarily mean having a maximum flow since 

the flow may be increased by rerouting even when there is a 



TABLE VII 

A TRACE OF THE AUGMENTING PATH METHOD 
FOR FINDING A MAXIMUM FLOW 

Path n:1. Edge deleted 
p from G 

[s,a,d,tl 4 Ca,dl 
[s,b,c,e,tl 3 [c,eJ,[e,tl 
[s,b,f,tl 2 [b,f] 
[s,b,e,f ,tl 1 [b,el 

The value for the maximum flow is found by 
adding all n:1.. In this example, a maximum flow 
of ten is obtained. Notice that augmenting paths 
with maximum residual capacity are choosen first. 
This gurantees a maximum flow when the algorithm 
halts. The algorithm halts if no more augmenting 
paths can be found in G'. 
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blocking flow. For example, Figure 20.a shows a graph with 

a blocking flow but not with a maximum flow. The other 

concept is called the level graph. Let R be the residual 

graph for f. The level of a vertex v, level<v>, is equal to 

the shortest path from s to v in the residual graph R. The 

level graph L for f is the subgraph of R such that L 

contains only the edges [v,wl in R for which 

level<w>=level<v>+l. The level graph L contains every 

shortest augmenting path. This can be constructed using 

breadth-first search. 

At this point Dinic's algorith~ for finding a maximum 

flow can be presented. A way for finding a blocking flow 

is needed to complete the following algorithm. The 

algorithm starts with the zero flow CfCv,w> = 0 for all 

edges [v,wl> and is outlined below <See Figure 21>: 

1. Find a blocking flow f' on the level graph for the 
current flow f. 

2. Add the flow in f' to the original flow f such 
that the new flow f<v,w> = f<v,w> + f'(v,w>. 

3. If the destination vertex t is in the current level 
graph then go to step 1, otherwise halt. 

If n is the number of vertices in a graph then the 

above algorithm needs at most n-1 loops to find a maximum 

flow. The way the augmenting paths are chosen in this 

algorithm is such that shortest augmenting paths are chosen 

first. A path length is defined by the number of edges 

along the path. As suggested by Dinic (3), it is most 

efficient to augment along paths of same length 

simultaneously. 



a.> 

2 

Original graph. 
represent the 

Values on edges 
flow capacities. 

(1) 2,2 (2) 

~I~f~ 
s me e t (3) 

(0)~ ~~~i (2) v 
5,4~ ~4 

a. d 
(1) 4,4 (2) 

b. > First lev'el graph with a blocking flow. 
The two values on each edge are 
the reseidual capacity and the flow, 
respectively. Values in parentheses 
are the levels of the vertices. 

Figure 21. Dinic's algorithm for finding 
a maximum flow. There is 
no fourth level since there 
is no path from s to t in 
the residual graph R after 
the third level graph. 
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c.> Second level graph with a blocking 
flow. 
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d.> Third level graph with blocking flow. 

Figure 21. <Continued> 
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(1) 2,2 (!11) 

~I~f2~ 
s 121 c: e t (111) 

(0)~ --~,1j 3,3 (QI) 3,y 

5,~ ~4 
a. d 
(3) 4,4 (111) 

e.> Final flow. Maximum flow is 10 and 
[s,a,b,cl,[d,e,f ,tl is a Minimum. 
cut. 

Figure 21. <Continued> 
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Finding a Blocking Flow 

There are many known methods for finding a blocking 

flow for an acyclic network. In this section two methods 

are presented. The first is by Dinic and the second is 

suggested by Sleator and Tarjan using the link/cut tree data 

structure. 

Dinic's algorithm finds any path from s to t, then 

saturates at least one edge by pushing enough flow through 

that path. Afterwards, it deletes all saturated edges and 

repeats the process until t is not reachable from s. The 

following is a more detailed outline of this method: 

Initialize: 
Let path P contain the vertex s; P=[s]. 
Let v=s. 
Go to Advance. 

Advance: 
If there is no edge out of v then go to retreat. 
else 

let Cv,wl be an edge out of v. 
Add the vertex w to P. 
Let v=w. 

If w=t then go to Augment. else repeat advance. 

Augment: 
Let d be the minimum of cap<v,w>-f<v,w> for an 
edge Cv,w] along the path P. 
Add d to the flow of every edge on P. 
Delete from G all newly saturated edges. 
Go to Initialize. 

Retreat: 
If v=s then halt. 
else 

Let Cu,vl be the last edge on p. 
Delete v from P. 
Delete Cu,v] from G. 
Let v=u. 
Go to Advance. 
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Table VIII shows the trace of the above algorithm 

when applied to the graph in Figure 21.b. Each step of 

initialize, advance, or retreat takes a constant time and 

each augment step takes O<n> time. Each augment step 

deletes at least one edge and each retreat step deletes one 

edge at a time and thus there are at most m such steps. 

There are at most m+l initialize steps all but the first 

coming after advance steps. Since at most n-1 advance steps 

are executed before augmenting or retreating, thus there are 

at most Cn-l>m advance steps. Putting all results 

together, it follows that Dinic's algorithm finds a blocking 

flow in OCn*m> time. Since it takes n blocking steps to 

find a maximum flow then the overall process takes 0Cn2 m) 

time to find a maximum flow. 

The other method for finding a blocking flow resembles 

the one by Dinic in the sense that it saturates at least one 

edge along a path at a time. The method uses the link/cut 

tree data structure to reduce the time needed per edge 

saturation. The result is an algorithm with a time bound of 

for finding a blocking flow and thus an 

OCm*n*log2n> for finding a 

the number of vertices 

respectively. 

maximum flow 

and edges 

where n and m are 

in the network, 

Using the link/cut tree operations presented in 

chapter IV an algorithm for fin~ing a blocking flow can be 

done. The algorithm maintains for each vertex v a current 

edge Ev,parentCv)] on which it may be possible to increase 

the flow. The costs associated with the vertices are 



Path 
p 

Cs,b,e,tl 
[s,b,f,t] 
[s,a,d,tl 
Cs,b,c] 
Cs,b] 
Cs,a,c] 
[s,a] 
[s] 

TABLE VIII 

A TRACE OF THE FLOW OF THE ALGORITHM 
BY DINIC FOR FINDING A 

BLOCKING FLOW 

d Edge deleted Operation 
from G 

1 [b,e] Advance & 
2 [b,f] Advance & 
4 [a,d] Advance &: 

[b,c] Advance & 
[s,bl Retreat 
[a,c] Advance & 
[s,a] Retreat 

halt. 

Augment 
Augment 
Augment 
Retreat 

Retreat 

The minimum capacity d along a path P is added to 
the flow of every edge in P. For example, after the 
first step the flow of each edge [s~bl, [b~e], and 
[e~tl is increased by a value of 1. The path P is 
reset to [s] after every step. 
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defined as cap<v,parent<v>>-f<v,parent<v>> for all vertices 

other that solid tree roots. If v is a solid tree root then 

the cost is defined to be high, where high is a number 

that is higher than the total capacities of all edges in 

the graph. The following is the outline for the algorithm 

using link/cut tree data structure to find a blocking flow, 

it might be very helpful if this algorithm is compared step 

by step with Dinic's algorithm: 

Initialize: 
for all vertices do 

maketree<v> 
addcost<v,high>. 

Go to Advance. 

Advance: 
Let v=findroot<s>. 
If v=t then Go to Augment. 
If there is no edge out of v then go to retreat. 
else 

Augment: 

Let [v,wJ be an edge out of v. 
Addcost<v,cap<v,w)-high). 
Link <v,w>. 
Let p<v>=w. 
if w=t then go to augment. 
else repeat advance. 

Let [v,dJ=findcost<s>. 
Addcost<s,-d>. 
Go to Delete. 

Delete: 
Cut<v>. 
Addcost.Cv,high>. 

Let fCv,p<v>>=capCv,p<v>>. 
Delete the edge [v,p<v>J from the graph G. 
Let [v,dJ=findcost<s>. 

If d=O then repeat Delete. 
else go to Advance. 



Retreat: 
If v=s then Go to Terminate. 
else 

Terminate: 

For all edges [u,vJ do 
Delete [u,vJ from the graph G. 
If p<u> <> v then f<u,v>=O. 
else 

Cut<u>. 
Let [u,dJ=findcost<u>. 
Addcost<u,high-d). 
Let f(u,v>=cap<u,v> - d. 

Go to Advance. 

For every undeleted edge ru,vJ do 
If p<u> <> v then f<u,v>=O 
else 

Cut<u>. 
Let [u,dJ=findcost<u>. 
Addcost<u,high-d). 
Let fCu,v>=cap<u,v> - d. 
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Figure 22 illustrates the effect of the above 

algorithm when applied to the graph in Figure 21.b. Notice 

that the abstract version <without the ~ets of paths 

representation> of the link/cut tree is used in the figure 

instead of using paths to represent trees for simplicity. 

Each tree operation takes an O<log2n> and since there are 

O<m> tree operations in the algorithm thus the overall 

algorithm takes O<m*log2n>. Using this algorithm to find 

a maximum flow, a time bound of O<m*n*log2n> can be 

obtained. 

Finally, it is clear that the link/cut tree is a 

powerful technique that may be found useful in many network 

algorithms as it is in the maximum flow problem. The 

link/cut tree data structure was used simply to minimize 

the time needed to construct a saturated edge in the case 

of finding a blocking flow and was not meant to change the 
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c.> Advancing 
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Delete [b,e] from G 
and let its flow be 
f[b,el=cap[b,el=1. 
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t 
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d.> Augment and delete. 
Delete [b,fJ. Let 
f[b,fl=2. 

Advancing. 

Figure 22. A trace of the algorithm for finding a 
blocking flow using the link/cut tree 
data structure. Values on vertices 
are costs. Any implementation of the 
link/cut tree operations can be used. 
Terminating step deletes [d,tl, [f,tl 
and [e,t] and set the flows f[d,tl= 
7-3=4, f[f,tl=5-3=2 and f[e,tl=3-1=2. 
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b 

/ 
s6 

f.> Retreating since there is 
no edge out of c in G. 
[u~vl = [b~cJ, [a,cJ. 
f[b,cJ=cap[b,c] - 4 = 0. 
The flow f [a,c]= 0 since 
p<a> <> c. Delete all 
[u,v]. 

g.) Retreating. No Edge 
out of b in G. 
f[s,b] = 9-6 = 3. 
Delete rs,b]. 

/ s 

GI 
a 

i.) Augment. Delete 
the edge ra,d] 
Let f[a,dJ=4. 

Figure ..,.., ............ 

h.) Advance. 

j.) Retreat since there 
is no edge out of 
a. f[s,a]= 5-1= 4. 
Delete rs,a]. 

<Continued> 

82 



83 

overall process used by Dinic to find a blocking flow. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The main topic investigated and discussed in the 

previous chapters is the idea of using self-adjusting data 

structures. Self-adjusting data structures provide ways to 

achieve amortized efficiency which is the average time per 

operation on a given data structure over a worst case 

sequence of operations. Splaying, the main operation used 

in self-adjusting binary trees, was studied and new methods 

were presented to perform splaying in a top-down fashion. 

These new methods along with the original splaying operation 

by Tarjan were empirically evaluated. Also, the effects of 

having different frequency distributions of the items in the 

tree and the effect of having a certain percent of the total 

number of items in the tree with higher probability of being 

accessed are shown from the results of the empirical study 

on the splaying operation. 

Two new methods to move a node to the root position are 

presented in Chapter III. These methods are considered to 

be an improvement over the original methods, move-to-root 

and splaying. The first has the exact effect of 

move-to-root but in a top-down fashion and in a much simpler 

and more efficient method. The other is similar in effect 

to top-down splaying but also much simpler and always as 
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good as the top-down splaying described by Tarjan. 

Splaying provides most efficient results when few items 

in the tree have higher probability of being accessed than 

other items in the same tree. If this is the case then 

splaying will be more time efficient in an amortized sense 

than the balanced tree data structure which is known to 

provide a time bound of OClog2n> in the worst case. The 

splay tree data structure also allows the access frequencies 

of the items in the tree to change dynamically during the 

accesses which gives the splay tree an advantage over the 

optimum tree. 

In applications where the access frequency of an item 

decreases after being accessed, splaying is not effective. 

In such cases an attempt was made to move a node to the leaf 

level thus giving way to other items in the tree to go up 

the tree and shorten the access path. Many methods were 

applied to move a node to the leaf level. These methods 

include single rotations in all different orders, merging 

the left and right subtrees, 

of the left subtree,,and the 

and merging the rightmost path 

leftmost path of the right 

subtree. Unfortunately, these methods only works when the 

number of items in the tree is small but for large numbers 

the results are disastrous. The reason is that it is 

difficult if not impossible to move a node to the leaf level 

systematically without extending the total path length of 

the nodes in a tree. The same idea was discussed in a list 

form of a self-adjusting data structures and shown to be 

effective. 
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Perhaps one of the most important features of splaying 

is that it allows the use of parallel programming or 

processing. Parallelism can be applied in the top-down 

splaying method 'where restructuring takes place during the 

searching process. Also, the same idea applies to the new 

top-down version of move-to-root presented in Chapter III. 

The linking and cutting tree problem can be solved by 

applying 

addcost, 

the operations maketree, findroot, findcost, 

link, and cut. The tree over which these 

operations are defined is called the link/cut tree. 

Different ways are available to solve this:problem but not 

all are efficient if amortization is the objective. One 

method to solve this problem is by assigning parent 

pointers to each vertex. The implementation is simple but 

since the order of findroot, findcost, addcost is O<n> in 

the worst case this method is not time efficient. The other 

alternative is to divide the link/cut tree into sets of 

paths and a new set of path operations is defined over the 

sets of paths. These path operations are used to implement 

the link/cut tree operations. Splaying proves to be an 

efficient way to implement the path operations. The use of 

the path operations can be avoided if a special type of 

splaying is used directly to apply to link/cut tree 

operations. This type of splaying is a three pass splaying 

process that uses splicing as a part of the process. The 

amortized time bound in either case is O<log2n> per 

operation and the amortized time bound for a sequence of m 

operations is O<m*log2n>. An implementation of the 
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link/cut tree operations illustrating the use of splaying in 

these implementations is presented in Chapter IV. 

The link/cut tree data structure was specifically 

designed for the practical application of solving maximum 

and minimum flow problems. Using the link/cut tree data 

structure to solve the maximum flow problem provides an 

algorithm with a time bound of O<m*n*log2n>, where m is 

the number of tree operations used to find a maximum flow 

and n is the number of vertices in the network. This time 

bound is better than the fastest known algorithm by a factor 

of log2n. Beside the applications in network flow 

algorithms, link/cut tree data structure may be used to find 

nearest common ancestors and in computing constrained 

minimum spanning trees. 
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