
SPLAYING IN THE IMPLEMENTATION OF

THE LINK/CUT TREE OPERATIONS

USED IN SOLVING THE

MAXIMUM FLOW

PROBLEM

By

ZIAD ISHAQ RIDA
(/

Bachelor of Science

in Electrical Engineering

Oklahoma State University

Stillwater, Oklahoma

1984

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1986

~S.lS
\98~

1<.S4dS
C~-=>. :t..

......

"/../!) // t' -;,., ;
R41,>v ·1

SPLAYING IN THE IMPLEMENTATION OF ~· ,_/
,_ _ ___.-.::;

THE LINK/CUT TREE OPERATIONS

USED IN SOLVING THE

MAXIMUM FLOW

PROBLEM

Thesis Approved:

Dean of Graduate College

ii

PREFACE

This study is concerned with the analysis of the

splaying operation, which moves a certain node in a tree all

the way up the tree to become the new root. Splaying is an

operation on a self-adjusting data structure called the

Splay tree. New methods are suggested to perform top-down

restructuring of splay trees when moving a given node to the

root providing faster and simpler algorithms. The splaying

operation is used in implementing the link/cut tree

operations thus solving the linking and cutting trees

problem in an amortized time bound of O<log2n> per tree

operation. Finally, the use of the link/cut tree in

solving the maximum flow problem giving an algorithm of

O<n*m*log2n> is illustrated to give a precise idea of how

this powerful data structure can be applied.

The author would like to express his appreciation to

his thesis advisor, Dr. D. D. Fisher, for his precious

help and guidance throughout the study. Appreciation is

also expressed to the other committee members, Dr. G. H.

Hedrick and Dr. Grace for their suggestions and advice in

completing this study.

Finally, special gratitude is expressed to my family

and friends for their understanding, support, and

encouragement at all times.

iii

Chapter

I.

II.

III.

IV.

v.

TABLE OF CONTENTS

page

I NTRODUCT I ON. • 1

LITERATURE REVIEW ••••••••••••••••••••••••••••••. 4

I ntroduct i an. 4
Self-Adjusting Data Structures............. 4

List as Self-Adjusting Data
Structures.......................... 5

The Splay Tree........................ 6
Methods For Moving a Node to the Root

Position 6
Move-To-Root Heuristics.............. 6
Splaying Operation.................... 7

The Link/Cut Tree ..•••.....••.••...••.••.•• 20

SPLAYING TECHNIQUES ••••••••••••••••••••••••••••• 27

Introduction. 27
Two New Methods to Move a Node to the Root

Position 27
Single Node Adjustments Method ••••••••• 28
Double Nodes Adjustments Method •••••••• 30

Empirical Analysis .•.................•...... 33

THE LINK/CUT TREE •••.••••••••••••••••••••••••••• 43

Introduction ••••••••••••••••••••••••••••••• 43
Solving the Linking and Cutting Trees

Prob! em. . . • • . 43
Assigning Parent Pointers ••••••••••••• 43
Division into Sets of Paths ••••••••••• 46
Using the Three Pass Splaying

as a Primary Operation •••••••••••••• 56
Applications............................... 64

THE MAXIMUM FLOW PROBLEM ••••••••••••••••••.••••• 66

Introduction. 66
Maximum Flow Problem Definition ••••••••••• 67
Finding a Maximum Flow •••••••••••••••••••• 68

Augmenting Path Method •••••..•••.•••• 68
Dinic's Algorithm for Finding a

Maximum Flow •••..•••••••••.•••••••• 70
Finding a Blocking Flow •••••••••••.•• 76

iv

Chapter page

VI. SUMMARY AND CONCLUSIONS 84

B I BL I 06RAPHY • • • .• 88

v

LISTS OF TABLES

Table Page

I. Average Path Length Results for Different
Number of Items in the Splay Tree •••••••••••••• 36

II. Effect of a Moderate High:Low Frequency
Ratio on the Average Path Length ••••••••••••••• 36

III. The Effect of the Percent of Items with a
Moderate High:Low Frequency on the Average
Path Length ••.•••••.•.•••••••..•.•.•••••...•... 37

IV. The Effect of the Percent of Items with a High
High:Low Frequency Ratio on the Average Path
Length ••• 37

V. The Effect of High:Low Frequency Ratio on the
Average Path Length •••••••••••••••••••••••••••• 39

VI. Steady State Reached After a Relatively High
Number of Accesses ••..•••••••••.••••••.•••••.•. 39

VII. A Trace of the Augmenting Path Method for
Finding a Maximum Flow ••••••••••••••••••••••••• 71

VIII. A Trace of the Flow of the Algorithm by Dinic
for Finding a Blocking Flow •••••••••••••••••••• 78

vi

LIST OF FIGURES

Figure Page

1. Single rotations ••••••••••••••••••••••••••••••••••• 8

2. Splaying rotation cases •••••••••••••••••••••••••••• 8

3. Illustration of the effect of the operations
move-to-root and splaying in a special case •••••• 10

4. The effect of join and split ••••••••••••••••••••••• 11

5. Insertion and deletion using split and join,
respectively ••••••••••••••••••••••••••••••••••••• 11

6. Top-down splaying cases •••••••••••••••••••••••••••• 16

7. Final assembling step of top-down splaying ••••••••• 17

a. Top-down splaying example •••••••••••••••••••••••••• 18

9. Both actual and virtual tree representation ••••••• 23

10. Splicing operation ..•...••....••.........•......•.• 23

11. Three pass splaying example •••••••••••••••••••••••• 25

12. Moving a node e to the root position •••••••••••••• 30

13. Link/cut.tree examples ••••• ~ ••••••••••••••••••••••• 45

14. Expose operation on vertex x demonstrated on both
the virtual and actual tree •••••••••••••••••••••• 50

15. Implementation of the link/cut tree operations
findroot and findmin using three pass splaying ••• 57

16. Implementation of the link/cut tree operations
addcost, link, and cut using the three pass
splaying operation•......•..............•. 59

17. Link/cut tree representation ••••••••••••••••••••••• 61

18. The effect of rotation on the values of dcost
and dmin of the vertices ••••••••••••••••••••••••• 62

vii

Figure page

19. The effect of a splice on the values of dcost
and dmin ••• 62

20. Residual graph for a given flow •••••••••••••••••••• 69

21. Dinic's algorithm for finding a maximum flow ••••••• 73

22. A trace of the algorithm for finding a blocking
flow using the link/cut tree data structure •••••• 81

viii

LIST OF SYMBOLS

E Set of edges in a graph G

f Flow in a graph G

G A graph with V vertices and E edges defined by
G=CV,E>

h:l high:low frequency of access assigned initially to
the items in a tree. <See tables I-VI>

i A reference to an item in a node

L Level graph

n Number of different values generated by a random
number generator <See Tables I-VI>

na Number of accesses to a tree <See tables I-VI>

p7. The percent of values that Mave high frequency of
access <See table I-VI>

Ph Probability to access an item with a high frequency
of access CSee table V>

P~ A set of vertices representing a path <See table
VII>

Pl Probability to access an item with a low frequency
of access

R Residual graph

r The range of the n values generated is 1-r. (See
tables I-VI>

TPh Total probability to access any of the high
frequency items

V Set of vertices in a Graph G

v A reference to a vertex

~ A reference to a node

ix

CHAPTER I

INTRODUCTION

Static data structures may be both time and space

efficient for some applications but for

applications a dynamically changing data

needed. Self-adjusting data structures

most practical

structure is

ref er to data

structures that provide the advantage of changing

dynamically with the changing patterns of access.

Self-adjusting data structures provide ways to achieve

amortized efficiency. Amortization is the average time per

operation on a given data structure over a worst case

sequence of operations. Amortized efficiency is the

objective in applications where more than one operation is

performed at one time.

One type of self-adjusting data structure is the splay

tree. A splay tree is a binary tree over which the

splaying operation is defined. Splaying involves moving a

node up the tree until it becomes at the root position.

The splay tree, even when compared with balanced and

optimum trees, achieves better amortized efficiency. The

splay tree adjusts itself to suit the initial frequencies of

access distribution of the items in the tree. It will

readjust itself if the frequencies of access of some or all

the items change dynamically with time. The idea of

1

2

self-adjusting can be applied to data structures other than

trees.

heaps.

For example, there exists self-adjusting lists and

Splay trees, as is the case with all self-adjusting

data structures, require too much restructuring. Methods to

move a node to the root position were suggested. Among these

were the move-to-root and splaying methods. Splaying can be

done both bottom-up and top-down. The top-down version is

harder to understand and thus more difficult to implement.

The move-to-root operation is a bottom-up process. It

is not possible to do this operation in a top-down fashion

using simple rotations. Since top-down restructuring in

this case is more time and space efficient it becomes

convenient to be able to use it.

In this research new methods to move a node to the root

are suggested and tested. These new methods simplify the

splaying operation but still provide the same efficiency

enjoyed by the original methods, namely move-to-root and

splaying.

Splay trees have many applications, one application is

in link/cut trees which are used in many network

applications like the maximum and minimum flow problems. A

link/cut tree is a data structure with a set of operations

defined to operate upon it. Among these operations are the

link and cut operations. These two operations dynamically

modify the link/cut tree by adding and deleting edges to

vertices in the tree, respectively. There are few different

methods to implement the link/cut tree operations. One

3

method, is to divide each link/cut tree into a set of paths.

A set of operations is defined over this set of paths.

These path operations are used to implement the link/cut

operations. This method provides an amortized efficiency of

O<log2n> per operation and an amortized efficiency of

O<m*log2n> for a sequence of m worst case operations over

the link/cut tree. This time bound is significantly better

than that obtained by the more basic methods used to solve

the linking and cutting trees problem.

The choice of the method to be used to implement the

link/cut tree operations is

the each method. In this

relevant

research,

to the efficiency of

the link/cut tree

operations are implemented and a comparison is conducted

between the different methods for implementing these

operations. The major application of the link/cut tree is

in the implementation of the maximum flow problem. An

illustrated presentation of the use of link/cut tree to

find a maximum flow is done in this research giving an idea

of how this powerful data structure can be used in practice.

Using the link/cut tree in the maximum flow problem

implementation produces an algorithm with a time bound

better than the fastest previously known algorithm.

CHAPTER II

LITERATURE REVIEW

Intropuction

The splay tree is a type of self-adjusting data

structure which dynamically adjusts itself with accesses.

Splaying is an operation that is used on the splay trees to

move a node to the root position. The link/cut tree problem

can be solved by finding a systematic method to implement

the operations defined over the link/cut tree data

structure. Splaying is used in the implementation of the

link/cut tree operations. This improves the amortized

efficiency of the link/cut tree. The link/cut tree has

several applications, an important one is in the solution of

maximum and minimum flow problems in networks. The work

presented here was mainly done by R. E. Tarjan and D. D.

Sleator Cl,14,15).

Self-Adjusting Data Structures

Self-adjusting data structures like any other type of

data structures have both advantages and disadvantages

<2,4,8).

Advantages:

1. They require less storage and provide a faster
running time where amortization is of interest.

4

..., They tend
changes in
involved.

5

to adjust dynamically according to the
the access frequencies of the items

3. Their maintenance is simple
structure they usually have.

due to the simple

Disadvantages:

1. They require more readjusting and restructuring
than usual data structures like balanced trees
because restructuring takes place not only after
adding or deleting items but also after searching
for an item.

2. Operations in a
expensive.

sequence may be unusually

3. There is always a sequence of operations that make
them perform poorly. <such sequences are very rare
to occur in practice>

Lists as Self-Adjusting Data Structures

Perhaps the simplest form of self-adjusting data

structures is the list data structure. A restructuring

method on lists suggested by Tarjan is the move-to-front

rule. The move-to-front rule gives amortized efficiency by

moving the accessed node to the front of the list on the

basis that an accessed item will have a better chance to be

accessed again in the near future. Thus frequently accessed

items are kept closer to the front of the list dynamically.

Move-to-front has many applications, one is in the

implementation of the Least Recently Used <LRU> paging rule

(11).

Another rule that can be a variant to move-to-front is

the move-to-tail rule. Simply, move-to-tail rule moves a

node to the end to the list after it is accessed.

6

Move-to-tail rule performs at its best when the access

frequency of an item decreases after being accessed. If

there are n items in a list L,
' then if

a~ is accessed its probability of being accessed again

decreases until most

are accessed.

The Splay Tree

other items
'

The splay tree is another form of a self-adjusting data

structure. Splay trees are binary search trees that provide

amortized efficiency by using a restructuring technique

called splaying; moving an accessed node to the root using

Splay trees are defined restructuring techniques.

competitive with balanced trees that guarantee a minimum

average access time. Splay trees prove to be even superior

when the usual case of having different frequencies of

access applies. Balanced trees, while efficient, require

extra storage space and extra effort to maintain their

balance. A splay tree is simpler in both its operation and

its structure. Furthermore, a splay tree has a practical

advantage over the optimum tree in that it does not require

a fixed frequency distribution of the items in the tree.

Methods For Moving a Node

to the Root Position

Move-to-root Heuristics

Move-to-root was first described by Allen and Munro

7

<1>. The idea is simple, move a node from any position in a

tree to the root position. The move to the root is done in

a systematic way called the simple exchange. Simple

exchange is used on a node until it becomes the new root of

the tree.

Simple exchange is done using left and right rotations.

See Figure 1. The simple exchange procedure is described as

follows:
case 1: Rotate left if node x is a right child of

its parent.

case 2: Rotate right if node x is a left child of
its parent.

The move-to-root heuristic provides an amortized time

bound of O<log2n>, given a sufficiently long sequence.

Splaying Operation

Splaying is a restructuring technique that is similar

to move-to-root in that it does rotations until the accessed

node is at the root position. The difference is that

rotations are done in pairs which helps halving the accessed

path.

Let p<x> and gCx> be the parent and grandparent of node

x, respectively. The following is a description of splaying

a node x:

Zig If p<x> is the root, rotate the edge joining

x and p<x>. Terminate. See Figure 2.a.

Zig-zig: If p<x> is not the root and both x and p<x>

are right or left children of g<x>, rotate

the edge joining pCx> with g<x> and then

y

/ ~-~,
\ x :-

tl /'>""'
t2· t3

Figure 1.

rotate right

~

/ ""t3 _y

/ """
rotate left
----------->

<------------ tl t2

Single Rotations. Subtrees
tl,t2,t3 may be null.

a.> Zig : right rotation.

z

y/ '\4)(/ "t3
/

tl t2

b.> Zig-zig : double right rotation.

/x""
y z /"' /" tl t2 t3 t4

c.> Zig-zag : left right rotation.

8

Figure 2. Splaying rotation cases. For each case there
is a symmetric case not shown above.

9

rotate the edge joining x with p<x>. See

Figure 2.b.

Zig-zag: If pCx> is not the root and x is a left child

of p<x> and p<x> is a right child of g<x>,

<or vice versa>, rotate the edge joining x

with p<x> and then rotate the edge joining x

with the new p<x>. See Figure 2.c.

Move-to-root provides better running time but it

suffers some potential problems that do not occur in

splaying. A comparison between splaying and move-to-root in

' I

one special case is shown in Figure 3. The effect of

halving the access path effectively is what makes splaying

avoid the problems caused by different special cases.

Splaying can be used to implement many operations like

insert, delete, join and split. One way to do these

implementations is as follows:

Access<i,t>: Search for item i in the tree t. If a

node x containing i is found splay at x

and return a pointer to the new root x.

If the item -i is not found then splay at

the last item accessed during the search

and return a pointer to null.

Join<t1,t2>: Access the largest item i in t1 and let

t2 be the right subtree of the node

containing i. See Figure 4.a.

Split<i,t>: Access<i,t) and let the node x be the new

root of t. If x contains an item less

/
Xo

, , ,
/

/
Xn-1

Xn

Move-to-root<xo>
---------------->

a.> Effect of move-to-rootCxo>.

/
x ...

/
Xn-1

,"
/" splayCxo>

X::z -------->
/

X1

b.) Effect of splay<xo>.

10

Xo

"'-
/

x ...

Figure 3. Illustration of the effect of the
operations move-to-root and splaying
in a special case.

11

6 6.
--> -->

t1 t2 t2 t1 t2

a.> Join<t1,t2>.

or

i i

6 -->
c-i~

--> s:- 6. 6~
t t1 t2 t1 t2 tl t2

b.> Split<i ,t> ,- returns two trees one with i at root.

Figure 4. The effect of join and split. The split
operation returns two trees.

6.
t

1
--> 6.

t1 t2

2
-->

t1 t2

a.> Insert<i,t>: 1. Split 2. Let t1,t2 be
the left and right subtrees of i.

1 C-i'6 2

6
--> -->

t t1 t2
6
t'

b.) DeleteCi,t>: 1. Access<i,t> 2. Join <t1 ,t2>.

Figure 5. Insertion and deletion using split
and join, respectively.

12

than or equal to i then return <x,t1> and

t2, otherwise return tl and <x,t2>. See

Figure 4.b.

There are different ways to implement insert and

delete. Two methods are described below:

Insert<i,t>: Split<i,t> and let the trees t1 and t2

returned by split be the left and

right subtrees of i, respectively. See

Figure 5.a.

DeleteCi,t): Access<i,t> and then join the left and

right subtrees of the new root which

contains the item i. See Figure 5.b.

Another way to implement insert and delete is as

follows:

Insert<i,t>: Search for i in t and let the null

pointer encountered at the end of the

search be pointing to the new node x

containing i. Finally, complete the

procedure by splaying at x.

Delete<i,t>: Search for i in t, replace node x

containing i by the tree resulting from

joining the left and right subtrees of x.

Complete the deletion by splaying at the

parent of x.

Splaying can be done both bottom-up and top-down.

Bottom up splaying requires two passes as it was described

earlier. One pass to locate the position for splaying and

the other is to do the actual splayi.ng process. Bottom-up

13

splaying requires the ability to reach the parent of any

node along the access path, to be able to do that either a

parent pointer is to be added to the node structure or the

access path may be stacked during the first pass. If space

is of great importance, only two pointers may be enough to

access the children and the parent of a node, one pointer

points to the leftmost child and the other to the right

sibling, if there was no right sibling then the other

pointer points to the parent of the node. This

representation may save space but it causes a loss in time

efficiency.

The following is a procedure that does splaying

bottom-up. Parent pointers are used explicitly. Pseudo

code is used and detailed declarations are skipped.

Splay_bottom_up<x>;
{

wh i l e < p < x > ! = nul 1 > {
if Cg Cx > == nul 1 > {

if<x == right<p<x>> > {
rotateleft<p<x>>;

else
rotateright<p<x>>;

}

else { /* grandparent exists */
if<p<x> == left<g<x>> > {

ifCx == leftCp<x>> > {
rotateright<g<x>>;
rotateright<p<x>>;

.... ,,

}

else {
rotateleft<p<x>>;
rotateright<p<x>>;

}

else {
if<x == right<p<x>> > {

rotateleftCgCx>>;
rotateleftCp<x>>;

}

}
else {

rotaterightCpCx>>;
rotateleftCpCx>>;

}

} /* while */
return<x>;
}

Top-down splaying may also

14

be used instead of

bottom-up. Tarjan's method for top-down splaying is not as

simple as bottom-up splaying but it has few advantages:

1. There is no need for a method to access the parent
since all accesses occur from parent to child.

2. It is a one pass operation in the sense that the
actual splaying action takes place while searching
for the accessed item.

In other words, top-down splaying is more efficient

storage and time wise but it is more complex than bottom up

splaying. In Chapter III, a simple method for top-down

splaying will be described.

Top-down splaying by Tarjan is done while searching the

tree for the accessed item. At each accessed node along the

search path the tree is split into three parts:

Left tree CL> : Cdntains all items that are already

known to be less than the accessed

item i.

Right tree CR>: Contains all items that are already

known to be greater than the accessed

item i.

Middle tree : A subtree rooted by the current

accessed node.

Top-down splaying is conducted by repeatedly applying

15

the cases described in Figure 6 until the accessed item or a

null pointer is reached. Complete the top-down splaying

operation by assembling the subtrees as shown in Figure 7.

Figure 8 shows an example of top-down splaying. A similar

result should be obtained if bottom-up splaying is used.

The following is the top-down splaying procedure as

described by Tarjan. The variables t, I, and r are

pointers to the current vertex of the middle tree, left

tree, and right tree respectively. The procedures

rotateleft and rotateright rotate the edge joining t to its

left or right child respectively. The other procedures

needed to do the top-down splaying are described as

follows:

Linkleft : Break the link joining t to its left child

and attach the resulting tree to the right

of the left tree.

Linkright: Break the link joining t to its right child

and attach the resulting tree to the left

of the right tree.

Assemble : Complete the top-down splaying by

assembling the left middle and right tree

into the final tree. See Figure 7.

Splay_top_down<i,t>;
{

I* Initialize left<null) and right<null) */
if <l=null && r==null) {

left<null>=null; right<null>=null;
}

whileCi != item<t>> /* item<t> ->key int*/
if <i < i tern <t > > {

if i=item<left<t>>

16

x 6 y r 6 y/~ 6
L L:l

--> A
L ~ B R x

A '6
B

a.> Zig: Single rotation. Item i is in A.

x I 6 y/~ 6. 6. z
L z/6 c R --> L ~ y

A '-....
~ B x
A ~6

B C

b.> Zig-zig: Two similar single rotations. Item i
is in A.

6
x

6. \ I / ~ z
L

y
R --> ~

6 ""-z
c 6y B

x
A Cl 6 B A

c

c.> Zig-zag: Two different single rotations. Item
i is in B.

Figure 6. Top-down splaying cases. Item i is splayed.
Symmetric cases exist but not shown.

6 6
L R -->

A B
A B

Figure 7. Final assembling step of top-down splaying
completed by putting the various subtrees
together as shown.

17

18

Middle Right

Null Null

d/f~k
/\ I\

b e j m

/\ I I\
a c h 1 n

I\.
g 1

f

I
j

I
k

\
d h m

/\
b e

/\
g i

/\
1 n

/\
a c

f h k

I /\ /\
d

I\
b e

g i j m

/\
1 n

/\
a c

Final assembling step

Figure 8. Top-down splaying example. Splay at h.

}

}

}

linkright;
else if <i< item<left<t>> {

rotateright;
linkright;

}

else {
linkright;
linkleft;

}

else {

}

if <i>item<t» {
if<i=item(right<t>>

l inkleft;
else if <i>itemCrightCt>> {

rotateleft;
l inkleft;

}

else {
linkleft;
linkright;

}

19

The following is the implementation of linkleft,

rotateleft, and assemble:

symmetric:>

Procedure linkleft;
{

}

t=right<t>;
l=t;
right Cl >=t;

Procedure rotateleft;
{

CLinkright and rotateright are

t=right<t>;
right<t>=leftCrightCt>>;
left(rightCt>>=t;

}

Procedure assemble;
{

}

left<r>=right<t>; right<l>=left<t>;
left<t>=rightCnull>; right<t>=left<null>;

20

Splaying in general requires extensive restructuring.

The semi-adjusting search tree is a variation to the splay

tree. It attempts to decrease the number of times a tree

needs to be adjusted. There are many ways to achieve fewer

adjustments in the splaying operation, some are listed

below:

1. Move a node only part way towards the root instead
of all the way to the root.

2. Splay only if the access path to the item to splay
at is relatively long.

3. Splay only if the item is in the tree in case of
access and insert, do not splay in case of delete.

These suggestions require a lot of studying to

determine how they would exactly effect the efficiency of

splaying.

The Link/Cut Tree

The problem of linking and cutting trees is a problem

of maintaining a collection of vertex-disjoint trees under a

sequence of primarily two kinds of operations namely, link

and cut. These two operations effect these vertex-disjoint

rooted trees by adding and deleting edges over time. Link

is an operation that combines two trees into one tree by

adding a new edge and cut is an operation that deletes an

edge to divide a tree into two. Link/cut trees have many I

important applications:

1. Network flow .problems like finding minimum,
maximum, blocking and acyclic flow.

2. Finding the nearest common ancestors.

3. Implementing the network simplex algorithm for

21

minimum-cost flow.

4. Computing some kinds of constrained minimum spanning
trees.

Tarjan used the link/cut tree to find a maximum flow

in O<m*n*log2n> of a network with n vertices and m edges,

beating by a factor of Clog2n> the fastest algorithm ever

known for sparse graphs <12>.

The operations on link/cut trees are defined as

follows:

Maketree<v> : Create a new tree with the vertex

v. Let the cost of v be zero.

FindrootCv> : Return the root of the tree containing

the vertex v.

Findcost<v> : Return the pair Cw,xJ were x is the

minimum cost of a vertex w on the path

from v to findroot<v>. The vertex w is

chosen so that it is closest to the

root.

AddcostCv,x>: Add the real value x to the cost of

LinkCv,w>

CutCv>

. .

every vertex on the path from v to

findroot<v>.

Link the trees containing vertices v and

w by adding the edge Cv,wl. The

vertices v and w belong to two separate

trees were v is the root of one tree.

Divide the tree containing vertex v into

two trees by deleting the edge coming

out from v. The vertex v must not be a

22

tree root.

One way to solve this problem is by storing parent

pointers in each vertex. This method is the simplest and it

is used to perform maketree, link, and cut operations in

O<l> time each, and findroot, findcost, and addcost each in

an order proportional to the depth of the input vertex,

which is O<n> in the worst case.

The other method suggested by Tarjan performs each

operation in a time bound of 0 < 1 og:zn > • The method

represents each 1 ink/cut tree by a set of ____ e_a_th~ which

constitute what is called a virtual tree. In a virtual

tree, each path is represented by a binary tree called a

solid subtree, all solid subtrees are interconnected by

dashed edges. An inorder traversal of each solid subtree

produces its corresponding path in the actual tree. Edges

belonging to a solid subtree are all called solid edges. In

other words, the virtual tree consists of solid subtrees

each representing a path in the actual tree. More than one

virtual tree can be constructed for a given actual tree. See

Figure 9. The information stored in each node consists of

the following:

1. A left child pointer.

2. A right child pointer.

3. A parent pointer.

Other information is stored in the nodes like cost<x>

and mincost<x>. Cost<x> is a real value assigned to the

node of vertex x and mincost<x> is the minimum cost of a

descendant of x. Storing the cost and mincost explicitly

a.> Actual tree. _Path [n~k~j~i] has
head n and tail i.

c

/"-a e

\ I ""
: d :"
g k h

/ " n i

c

b/ "-e
/: /\

a g d f

/\
n h

\.
J

/ /I' k m '\.i j
I
I
1

/"' m o
" 0

1/
b.} Two possible virtual trees of the tree

in Ca>.

Figure 9. Both actual and virtual tree
representations. Items not
in search tree order.

23

24

makes addcost operation expensive so if x is the root of a

solid tree in a virtual tree then store cost<x>, otherwise

store cost<x> costCparent<x>> for the change in cost field

Cdcost>. The other field that is stored is the change in

min. Cdmin> which is equal to the cost<x>-mincost<x>.

To make the link/cut tree operations efficient,

splaying is used to move a

tree. Another operation

node to the root of its virtual

called splicing is needed.

Splicing makes any middle child v of a root of a solid

subtree a left child and the old ·left child, if any, becomes

a middle child. Figure 10 illustrates how splicing works.

Both splaying and splicing will effect the values of cost

and mincost and thus the stored values should be adjusted

appropriately. The overall splaying operation at a node x

is a three pass operation defined as follows:

Pass 1: Move up the tree from x to the root while

splaying within every solid tree. This pass

should make the path from x to the root

consist only of dashed edges.

11. a.

See Figure

Pass 2: Move from x to the root while splicing at each

node along the dashed path to the root.

After this pass x and the root became members

of the same solid tree. Node x can be

reached from the root by following left

pointers. See Figure 11.b.

Pass 3: Splay at :< thus completing the overall

process by moving the node x all the way to

25

//'~ --> /!'~ 6 ~ ~ ~~6
A B c D B A c D

Figure 10. Splicing operation. Node v becomes

a
\

b

\
c

' ' d

I
e

\
f

\

/
j'\

g

' h
/

i

k

a left child of w.

Ca> Cb>
---> --->

i

<c>
--->

Figure 11. Three pass splaying e>:ampl e. Spl ay3 Ck>
at node k. (a) Pass 1: Splaying inside
each solid tree. Cb> Pass 2: Splicing
along the new dashed path from k to the
root. Cc> Pass 3: zig-zig splaying step
at k in the final solid tree.

26

the root. Notice that only the zig-zig

splaying step is needed for this pass. The

final virtual tree will have x at the root

position. See Figure 11.c.

All the link/cut operations can be

three pass splaying. Each operation

implemented using

has an OClog2n>

amortized time bound

takes an Q(m*log2n>

operation that is

and a long sequence of m operations

time. One important link/cut tree

performed in O<log2n> time is the evert

operation. The evert operation makes a node v the root of

its tree by reversing the path from v to the original root.

An extra bit of storage is needed to know if the meaning of

the left and right pointer is reversed. A modification to

the data structure would store the costs in the edges rather

than the vertices.

CHAPTER III

SPLAYING TECHNIQUES

Introduction

In this chapter different methods for moving a node to

the root position are presented. While these new methods

may seem totally different, in fact they are basically

similar in effect to those methods already discussed in

Chapter II, namely move-to-root and splaying.

Both move-to-root and splaying use single rotations to

move a node to the root position in a tree. Move-to-root

involves one node at a time to do the rotations but splaying

differs by taking nodes in pairs. Splaying has a top-down

version which was presented in Chapter II, but move-to-root

does not have any top-down version since it is not possible

to conduct single rotations at the root that involve one

node at a time and still be able to pull a node all the way

to the root position in a tree.

Two new methods are presented in details in this

chapter. The first works with one node at a time and the

other takes nodes in pairs. Both methods work top-down and

can not be done bottom-up with out loosing some of the time

efficiency of the splay tree. Analysis is made on the

original splaying technique and on the two new methods to

27

determine their efficiency under different situations.

Two New Methods to Move a Node

to the Root Position

Single-Node Adjustment Method

28

Moving a node x from any position in a tree to the root

involves restructuring the access path, the path from the

root to node x. All nodes in the tree that do not lie along

the access path are not involved in the restructuring and

can be thought of as being subtrees of the nodes that are

along the path.

In any top-down restructuring method; a left tree and a

right tree are required. The left and the right trees

contain those nodes that are already known to be less than

and greater than the node x, respectively.

The procedure for moving a node x containing an item i

to the root position using the single-node adjustment method

is described as follows:

If the current node is x, terminate and apply the

assembling step. See Figure 7.

If the item in the current accessed node is greater

than i then let the current node and its right

subtree be a left child of the leftmost node in the

right tree.

If the item in the current accessed node is less

than i then let the current node and its left

subtree be a right child of the rightmost node in

29

the left tree.

An example of this method is shown in Figure 12.b. The

final result is a tree with node x at the root and all the

other nodes along the access path lie either along the

leftmost path of the right subtree of x or along the

rightmost path of the left subtree of x. If the number of

nodes along the access path with items less than i is equal

to those greater than i then the best result is obtained

where the access path is halved. In a random environment

this will be the approximate case.

Move-to-root can be do~~ top-down by using this method.

Each simple exchange in move-to-root requires three pointer

changes and if parent pointers are used, since there must be

a way to be able to access parents, then three additional

pointer changes are needed. By using this top-down version

of move-to-root the total number of pointer changes can be

reduced to only one pointer change per node along the access

path. To complete the restructuring, four additional

pointer changes are needed for the final assembling step.

Move-to-root is a bottom-up process and thus two passes are

needed, one to find the search item and the other to do the

restructuring. In this method, only one pass is necessary

since the search is done during the restructuring process.

Another advantage to this method over move-to-root is its

simplicity, it is easier to understand and apply.

Double-Nodes Adjustments Method

The potential problems with move-to-root still exist in

e

a.> Original tree.

c

"d b.) Single-node method.

c.> Double-node method.

Figure 12. Moving the node e to the
root positon. Items in
search tree order.

30

31

the single-node adjustment method. A simple modification to

the single-node method that helps avoiding these problems is

to consider nodes in pairs instead of one at a time. This

can be achieved by having a lookahead pointer during the

restructuring process. The modified method is similar in

effect to the top-down splaying method described in Chapter

II.

In this procedure, the left and right trees are also

used as in the first method. Let the left and right trees

be initially null and also initially let a and b be the

top two nodes along the access path. Also let 1 be the

last node on the rightmost path of the left tree and r be

the last node on the leftmost path of the right tree. An

add operation is used in this method. The operation addCz>,

an add of a node z, is defined as follows:

If the item j in node z is less than i Cthe item in

node x>, then add the node z to the left tree; if j

is greater than the item in 1 then let z be a

right child of 1 and let 1 represent the node z,

otherwise if the item j in node z is less than the

item in 1 then let the left subtree of 1 be the

right subtree of node z and let node z be a left

child of node 1.

If the item j in node z is greater than i, then add

node z to the' right tree; if j is less than the item

in r then let node z be a left·child of rand let r

represent the node z, otherwise, if the item j in

node z is greater than the item in r then let the

32

right subtree of r be the left subtree of node z

and let node z be a right child of r. Notice that

this is a symmetric case· to the above.

To be able to follow the add operation correctly it is

helpful to apply the complete algorithm to the tree in

Figure 12.a. Excluding few checkings, the following is a

description of the complete procedure of moving a node x

containing an item i to the root position. Initially, let

a and b be the first two nodes along the access path

starting at the root:

1. If a is the node x, terminate and apply the final
assembling step. Figure 7 illustrates the final
assembling step.

2. If b is the node x, add<a>
Apply final assembling step.

and terminate.

3. Otherwise, perform Add then add<a> and let
a and b be the next two nodes along the access
path. Go to step 1.

An example of this method is shown in Figure 12.c.

The order of the vertices of the tree in Figure 12.a that

are involved in the add operations are b,a,c,g,7,d. This

method enjoys all the advantages of top-down splaying by

Tarjan plus a few more. Each pair of nodes takes either two

or three pointer changes which is an improvement to the four

pointer changes in the top-down splaying. Moreover, this

method is simpler than the top-down splaying since all the

different restructuring cases in top-down splaying are

implied in this method and that makes it more straight

forward and easier to program.

Other than the above two methods, there is a way to

33

restructure a path and that is by doing insertions at the

root. This is a very simple method as far as programming is

concerned. This method is very naive because it does not

take advantage of the pattern that exists during the

restructuring process just like the first two methods

described above.

Empirical Analysis

In general, when using splaying, the case must be such

that the access frequencies of few items in the tree are

much higher than other items in the same tree. To be able

to conduct an empirical analysis on the splay tree a way to

generate items with different frequencies of access must be

available. This method is presented in here to give a

clearer idea of how the empirical analysis results were

obtained.

Let p percent of n numbers have a high:low Ch:l>

frequency with respect to other items in the tree. The

procedure used is:

1. Generate n numbers using a random number generator
in the range of 1-r.

2. Use the same random number generator to generate
p*n numbers in the range of 1-n.

3. Let the numbers generated in step 2 have a high
frequency of h and all other numbers to have a low
frequency of 1.

4. Accumulate the frequencies;
for all i = 1 •• n-1

freqCi+1>=freqCi+1)+freqCi>;
and then normalize the frequencies

freq<i>=freq(i)/freq<n>.

5. Using the same random number generator, generate

34

numbers greater than zero and less than one. Use
each generated number to search in the normalized
frequencies for the the value that is just greater
than or equal to this number and then the sequence
number of the found value will be the finally
generated number.

The probability for a single item to be accessed at

any time is:

P<i> = f<i> I <total frequencies>

were f is the initially assigned frequency to the item which

is either h or 1 in this case. The probability to access

an item with a high frequency is:

Ph =
and the probability to access an item with a low frequency

1 is:

The total probability to access any of the items with a

high frequency is:

TPh = Ph * <p*n>

and the total probability to access any of the items with a

low frequency is:

TPl = Pl * <1-p>*n

Then,

TPh + TPl = 1.0

The above number generator used in the analysis can be

modified to generate characters instead of numbers. Also a

modification can be made to let the high:low frequencies of

access be chosen at random. These modifications are not

essential for the analysis. The control variables used

above are listed below for convenience:

n . .

35

Number of different values to be generated.

na : Number of accesses to a tree. Items accessed are

r . .
already in the tree.

The range of the n values generated 1-r.

p'l. : The percent of values that have high frequency of

access.

h:l: Initial high:low frequency of access.

Using the above control variables, a table is shown in

Table I comparing bottom up splaying, top-down splaying,

move-to-root, and the two methods presented in this chapter.

The average path lengths shown in the table for the

single-node and move-to-root methods are equivalent as is

the case also with the double-nodes method and top-down

splaying.

In Table II , the simple binary tree which involves no

restructuring is shown with the single-node
'

double-nodes

and bottom-up splaying. Also the value of log2n is shown

in the table to give an idea of how these methods compare

with the balanced tree which has an order O<log2n>.

Table III shows the effect of having different

percentages of the total items with high frequency of

access. To minimize the average path length, the total

probabilities of the high frequency items should be a

maximum and at the same time the value for p should be such

as only a fraction of the n items have high frequencies of

access. At p=0.01 in Table III, TPh=0.5 and at p=0.1,

TPh=0.91. At the next value p=0.2, Ph=.97 but the average

path length starts increasing because of the increase in the

36

TABLE I

AVERAGE PATH LENGTH RESULTS FOR
DIFFERENT NUMBER OF ITEMS

IN THE SPLAY TREE

n Single Move-to Double Top-down Bottom-up Log::zn
-node -root -nodes splaying splaying

1000 10.313 10.313 10.676 10.676 10.674 9.466
2000 11.713 11.713 12.135 12.135 12.187 10.966
4000 12.912 12.912 13.449 13.449 13.470 11.966
8000 14.333 14.333 14.422 14.422 14.443 12.966

16000 15.697 15.697 16.316 16.316 16.373 13.966
20000 16.091 16.091 16.729 16.729 16.760 14.288

The control variables; h:1=20:1, p=0.2, na=n.

TABLE II

EFFECT OF A MODERATE HIGH:LOW FREQUENCY
RATIO ON THE AVERAGE

PATH LENGTH

N Single Double Bottom-up Binary Log::zn
-node -nodes splaying

1000 9.548 9.934 9.969 11.965 9.966
2000 11. 019 11.364 11.476 13.346 10.966
4000 12.236 12.711 12.698 14.348 11.966
8000 13.629 14.153 14.188 15.959 12.966

16000 14.998 15.590 15.623 17.280 13.966
20000 15.427 16.071 16.071 17.797 14.288

The control variables; h:1=100:1, p=0.2,
na=n.

TABLE III

THE EFFECT OF THE PERCENT OF ITEMS WITH A
MODERATE HIGH:LOW FREQUENCY ON

THE AVERAGE PATH LENGTH

p Single Double Bottom-up Binary
-node -nodes splaying

0.0005 14.935 15.527 14.802 14.934
0.002 13.839 13.361 14.358 14.941
0.01 11.650 12.085 12.128 14.861
0.1 11.583 11.958 12.019 14.942
0.2 12.692 13.159 13.180 14.832
0.3 13.440 13.935 13.995 14.960
0.5 14.32 14.885 14.889 15.064
0.7 14.762 15.341 15.345 14.966
0.9 15.049 15.613 15.690 14.946
1.0 15.247 15.809 15.840 14.885

The control variables; h:l = 100:1,
n=5000, na=n, log:zn=12.288.

TABLE IV

THE EFFECT OF THE PERCENT OF ITEMS WITH A
HIGH HIGH:LOW FREQUENCY RATIO ON

THE AVERAGE PATH LENGTH

p Single Double Bottom-up Binary
-node -nodes splaying

0.0005 1.545 2.042 1.921 12.910
0.002 3.512 3.535 3.553 13.269
0.01 6.254 6.417 6.441 14.828
0.05 9.434 9.742 9.779 14.828
0.10 10.894 11.280 11.300 15.108
0.15 11.814 12.225 12.256 15.180
0.20 12.460 12.900 12.975 15.123
0.50 14.273 14.781 14.820 15.033
0.90 15.009 15.590 15.590 14.964

The control variables; n=5000, na=n,
h:l=1000000:1, log:zn=12.288.

37

38

number of items with high frequency of access and which is

computed by the equation p*n.

If the high to low frequency ratio is very high then

the average path length becomes an order of O<log2<p*n>>

which means that all the accesses are only to a subset of

the total items, which is the subset with the high

frequency. This result is tabulated in Table IV.

In Table V. the effect of changing the high:low

frequency distribution is shown. Also shown in the table is

the percent of the total probabilities for accessing a high

frequency item <TPh %>. After 50:1 high:low frequency is

reached, the value for TPh goes already above 0.9 and any

more increase in h:l does not make

improvement in the average path length.

any significant

Finally, it is important to note that there is a steady

state that is reached after a number of accesses. The

steady state is defined to be a state at which the average

access time of consecutive subsets of the accesses remains

fairly constant. Being in a steady state also means that

the access frequencies of the items are not currently

changing. The average path length starts at its peak for

the initial accesses then if the access frequencies of the

items do not change, the average access length starts

decreasing with accesses till a steady state is reached.

In a splay tree the access frequencies may change over

time. If this happens then the splay tree adjusts itself to

reach another steady state for the new frequencies.

Table VI shows the average path length after an increasing

h: 1

1: 1
10:1
50: 1

100:1
500:1

1000:1
5000:1

10000:1
100000:1

TABLE V

THE EFFECT OF HIGH:LOW FREQUENCY RATIO
ON THE AVERAGE PATH LENGTH

single
-node

15.139
13.947
12.864
12.692
12.423
12.386
12.378
12.379
12.374

Double
-node

15.696
14.469
13.277
13.159
12.888
12.843
12.820
12.821
12.812

Bottom: up
splaying

15.722
14.487
13.353
13. 180
12.915
12.854
12.843
12.881
12.867

Binary

14.93
14.913
14.854
14.832
14.816
14.811
14.781
14.783
14.787

39

TPh (7.)

20.00
71.43
92.26
96.15
99.21
99.60
99.92
99.96

100.00

The control variables are; n=5000, na=n, p=0.2,
log2n=12.288

TABLE VI

STEADY STATE REACHED AFTER A
RELATIVELY HIGH NUMBER

OF ACCESSES

na Single Double Binary '
-node -node

100 10.350 10.650 11.810
400 9.150 9.388 11.560
800 8.638 8.900 11.503

1000 8.536 8.798 11.533
2000 8.429 8.693 11.577
4000 8.307 8.596 11.577
8000 8.197 8.469 11. 580

16000 8.126 8.394 11. 561

The control variables are, n=1000,
h:l=100:1, p=0.1, log2n=9.966.

40

number of accesses where a steady state is obtained. Notice

also that a steady state is reached after at least 1/Ph

accesses. In Table VI, after 100 access, TPh C7.> of the

high frequency items are accessed.

frequency items at least

S = p*n * 100 /CTPh 7.>,

= p*n/(Ph* p * n>,

= 1/Ph

To access all high

accesses should be made. At a steady state all the items

with high frequency of access should have been already

accessed at least once and thus a steady state is reached

after 5)1/Ph accesses assuming that items have same high

frequencies Call high frequency items have equal probability

to be accessed>.

At the end of this chapter, the following can be

concluded from the above results:

Splaying is only time efficient if the access

frequencies of fe~ items in the tree is high

compared to other items in the same tree.

Move-to-root has a better time efficiency than

splaying in a random environment. The reason for

this is that move-to-root does not disturb the

·. structure of the tree by moving the nodes near the

root too far down the tree as much as splaying and

its variants do.

The single-node adjustment method presented in this

chapter is indeed as efficient as move-to-root and

the double-nodes adjustments method is as efficient

41

as top-down splaying.

The appropriate case where a splay tree can be used

is when :

1/n ~ p < 0.2

50 < h/l < infinity

0.5 < TPh < 1.0

It is important to notice that TPh is dependent on p

and h/l. A proper combination of p and h/l must

be in the above range of TPh to get best results for

the average path length. There is no one optimum

value for p or hll but there are several

combinations that will provide the optimum result, a

minimum average path length.

The efficiency of the splay tree does not depend on

the value of n, the number of items in the splay

tree. The independency from the number of items in

the tree is important to establish in a general data

structure as the splay tree. See Table I.

A steady state is reached after a sufficiently long

number of accesses. At. a steady state, the average

path length is at its minimum. If the frequency of

access of all or some of the items change after a

steady state is reached then the splay tree will

adjust itself and a new steady state is reached

after another sufficiently long sequence of

access2s.

The splay tree has many applications and uses. One

important use that is presented in Chapter IV is in the

42

implementation of the link/cut tree operations. Another

use of the splay tree is in the

multidimensional search tree CS,10).

lexicographic or

The idea of self-

adjusting data structures is not limited to the splay tree.

It may be possible for example to have a self-adjusting

B-tree where the access frequency of the items is given some

consideration by keeping in a systematic way those items

with the high frequency of access closer to the root. As is

the case with most data structures, a modification to the

standard B-tree may be needed to be able to have a

self-adjusting B-tree <2,4,13>.

CHAPTER IV

THE LINK/CUT TREE

Introduction

In Chapter II, the problem of linking and cutting

trees was introduced. In this chapter, different solutions

for this problem are presented. The link/cut tree problem

can be solved if the operations maketree, findroot, addcost,

link, and cut are implemented. These operations have

already been defined in Chapter II. A comparison is

conducted between the different methods used to implement

the link/cut tree operations to show the advantages and

disadvantages of each method.

Solving the Linking and

Cutting Trees Problem

Assigning Parent Pointers

A data structure that will help solve the problem of

linking and cutting trees is a tree with parent pointers

added to each node. No left or right pointers are needed

since all operations are bottom up; they start at the node

and work up to the root level. Using this data structure,

the link/cut tree operations can be implemented as follows:

43

Maketree<v>

Findroot<v>

Findcost<v>

Addcost<v,x>

Link<v,w>

Cut<v>

44

Create a new tree with the node or

vertex v of cost zero.

Follow parent pointers starting at v

until a vertex w with a null parent. is

reached. Return w as the root of the

tree that contains the vertex v.

Start at the vertex v and walk up the

path from v to findroot<v>. Let the

minimum cost along the path be x. Let w

be the vertex with cost x. If more than

one vertex has the same minimum cost x,

then let w be the vertex that is closest

to findroot<v>. Return the pair [w,xl.

Follow parent pointers from v to

findroot<v> adding the real value x to

every vertex cost along the path.

Let v be a child of w by adding the edge

[v,wl. Note that edges are directed

from child to parent. This operation

requires that v and w be vertices of

different trees.

Delete the edge coming out from v to its

parent and return the two trees rooted

at v and at the old findroot<v>.

The effect of these operations is shown in Figure

13.a,b. This is the simplest method among those presented

in this chapter. The implementation is straight forward and

only a parent pointer is needed in each vertex which makes

a:z

/I~
b4 cs d1

/I I \
e 4 g:s f 7 k 1

/I">-.

a.>

is m3 n 2

Two trees.
returns
[d' 1].

The operations findroot<g>
a and findcost<n> returns

b.> Result after executing the three operations
link<p,e>, addcost(f,1>, and cut<k>.

~7--
~ I --. b c d

~I I
e g f

I
/p',,

q r

c.> Link/cut tree divided into
solid paths separated with
dashed edges. The path
[q,p,e,b,a] has head q and
tail a.

Figure 13. Link/cut tree examples. Superscripts
are vertex costs.

45·

46

it storage efficient since there is no need for left and

right pointers as is the case with the other two methods.

The operations maketree, link, and cut take a constant time

of 0(1) but each findroot, findcost, and addcost operation

takes time proportional to the depth of the input vertex

which is O<n>. Thus the amortized time of this method form

worst case operations is O<m*n>. This time bound is not

acceptable for most practical applications and thus a

different data structure is needed with a better amortized

time efficiency.

Division into Sets of Paths

Another approach to the solution of the link/cut tree

problem is

paths. Each

by representing the link/cut trees as sets of

tree is partitioned into a set of vertex

disjoint paths. Edges are either solid or dashed. Solid

edges connect the vertices of a path and dashed edges

connect the paths in a tree. See Figure 13.c. A solid edge

is represented by a parent pointer and a dashed edge is

represented by a successor pointer. Only one pointer may

be used if an extra bit is added to tell whether the pointer

is to a parent or to a successor. In this presentation,

both parent and successor pointers are used explicitly for

simplicity and clarity.

Beside the left, right, and parent pointers, other

information is stored in the nodes, namely, costCx> and

mincost<x>. The cost<x> is an assigned real value for every

vertex and the mincostCx> is the minimum cost of the

47

descendants of x, including x, in the solid tree containing

x. Instead of storing the cost and mincost explicitly,

which makes the addcost operation expensive, these values

are stored as follows:

dcost<x> = cost<x> mincost<x>

dmin<x> = mincost<x> if x is the root of its
solid tree.

or,

The value

= mincost<x> - mincost<parent<x>>

dcost<x>>O

if x is not a solid tree
root.

for any vertex x and

dmin<x>>O for any nonroot vertex x. To find mincost<x>,

move along the solid tree path from the root to x summing

dmin along the path. The function cost<x> is found by

adding mincost<x> to dcost<x>.

Before starting the implementation of the link/cut tree

operations, a data structure has to be chosen for the set of

paths representing the link/cut tree. There is not a one

and only one representation that should be used but the

choice of the data structure to be used to represent the

paths has a direct effect on the performance of the link/cut

tree. One representation may be a list data structure.

Using lists to represent paths makes it easy to understand

the link/cut tree operations since the virtual tree (a

virtual tree is a representation for the actual tree with

connected paths that are represented with some kind of a

data structure - see Chapter II> will not be different from

the actual tree and also lists make the implementation

48

itself easier. Lists are simple but they have an O<n> time

bound in the worst case. Another representation for the

paths can be the binary tree. For example, if balanced

trees are used, as a type of a binary tree, then the time

per path operation is O<log2n>, and

tree operations takes O<m<log2n) 2)

thus

time.

a sequence of m

This result

was found by Galil and Naamad <7> and Shiloach (10>. This

order can be improved to O<m*log2n> time bound if the

splay tree is used.

In the following implementation the link/cut tree is

divided into a set of paths. A set of path operations is

used to be able to complete the implementation. These path

operations are defined as follows:

Makepath(v)

Findpath<v>

Findtail<p>

Findpathcost<p>

Create a new path containing the

vertex v.

Return

vertex

the

v.

identifier.

path

Each

containing the

path has an

Return the last vertex on the path

p.

Return the pair [w,xl, where x is the

minimum cost of a vertex on the path

p. The vertex w is the vertex with

cost x that is closer to

findtail<p>.

Addpathcost Cp, ~-: > Add the real value x to the cost of

every vertex on the path p.

Join<p,v,q) Add an edge from the tail of p to v

Split<v>

49

and another edge from v to the head

of q.

path.

Return the resulting new

Return the pair [p,ql where p is the

part of the path containing v from

the head to the vertex just before v,

and q is the part from the vertex

just after v to the tail of the path

containing v. The paths p and q may

be empty if v is the head or the tail

in its path, respectively.

Another operation that is needed to carry out the

link/cut tree operations is the expose operation which is

defined as follows:

E:<pose <v> Make the tree path from v to

findroot<v> solid by converting

dashed edges along the path to

and solid edges incident

vertices along the path to

Return the resulting

Figure 14.

path.

solid

to the

dashed.

See

In an actual tree, no more than one solid edge can

enter a verte~-: but there can be any number of dashed edges

entering a vertex at the same time. In the following

implementation, the paths are represented as binary trees.

Any binary tree variant can be used but here a simple binary

tree representation is used and the splaying technique is

used on the solid trees to provide a better amortized

a.>

x
/ '

/ ' ./ ,.
1. J

Result of expose<x> on an actual tree.

50

a
/ I',

I ' /:"p
e k b

/I"'-. :
f g d n

/: I :
x h r m

..... ,,
./" I. 't 1 J

b.> Result of expose<x> on a virtual tree.

Figure 14. Expose operation on vertex x demonstrated
on both the virtual and actual tree.

q

51

efficiency. The following is the implementation of the path

operations: <The code is a C language notation and is fully

tested.>

The type definition used for the vertices in the

implementation below is :

typedef struct vertex type {

float dcost,dmin;
int vrtx;
struct
struct
struct
struct

} vertex, *Vertexptr;

vertexptr makepath<k>
int k;
{

char *malloc<>;
vertexptr v;

vertex type
vertex type
vertex type
vertex type

lt; I
rt; I
pt; I
sc; I

v=<vertexptr> malloc<sizeof<vertex>>;
v->vrtx=k;

}

v->pt=NULL;
v->lt=NULL; v->rt=NULL;
v->dcost=O; v->dmin=O;
return <v>;

vertexptr findpath<v>
vertexptr v;
{

vertexptr splay<>;
splay<v>;
return <v>;

}

vertexptr findtail<p>
vertexptr p;
{

vertexptr splay<>;

}

while<p->rt!=NULL> p=p->rt;
splay<p>;
return Cp>;

left *I
right *I
parent *I
successor *I

vertexptr findpathcost<p>
vertexptr p;
{

vertexptr splay<>;

while (p->dcost!=O : : <p->rt!=NULL && p->rt->dmin<=O> > {
if(p->rt!=NULL && p->rt->dmin==O>

}

}

p=p->rt;
else if <p->dcost>O>

p=p->lt;

splay<p>;
return<p>;

addpathcostCp,x>
vertexptr p;
float x;
{

p->dmin=p->dmin + x;
}

vertexptr join(p,v,q>
vertexptr p,v,q;
{

}

v->l t=p; v->rt=q;

ifCp!=NULL> {
p->pt=v;
p->sc=NULL;

}

if(q!=NULL> {
q->pt=v;
q->sc=NULL;

}

return <v>;

split(v,l,r>
I* The pair returned by split is Cl,rl.

These are put in the argument list */

vertexptr v,*l,*r;
{

verte:" ptr sp 1 ay < > ;
splay<v>;

}

*l= v->lt;*r=v->rt;
if<v->lt!=NULL) v->lt->pt=NULL;
if<v->rt!=NULL> v->rt->pt=NULL;
v->lt=NULL;v->rt=NULL;

52

The following is the implementation of expose:

vertexptr expose<v>
vertexptr v;
{

vertexptr p,q,r,w,s,join<>,findpath<>;

}

p=NULL; ·
whileCv!=NULL> {

s=findpath<v>;
w=s->sc;
split<v,&q,&r>;
if Cq!=NULL> {

}

}

q->sc=v;
q->pt=NULL

p=joinCp,v,r>;
v=w;

p->sc=NULL;
return Cp>;

53

There are a few things that should be noted about the

above implementation. The first is that the link operation

link<v,w> requires v to be a root of one tree and w to be

any vertex in any other tree. When the binary tree

representation is used, the vertex v is not the root of the

solid tree in the virtual tree but it is the vertex at the

rightmost position from the root of the solid tree

containing v. Notice that w is the parent of v <see

definition for link operation> only in the actual tree.

The second thing is that splaying does not have to be

used in the implementation. Wherever splaying is used there

exists a piece of code that can replace the splaying

operation and still be sufficient to carry out the

operation. If splaying is used, it will provide a better

amortized efficiency if there exist a few vertices that are

more frequently involved in the link/cut tree operations

54

than other vertices.

Finally, in an actual tree there can be no more than

one solid edge incident to a vertex. This is represented in

the virtual tree by the fact that each vertex has only one

successor and one predecessor. In the virtual tree, a

binary solid tree represents the solid path in the actual

tree.

The following is an implementation of the tree

operations using the above path operations. The C language

notation is used and the same structure definition for the

path operations is also used in the following tree

operations:

vertexptr maketree<k>
int k;
{

vertexptr v,makepath<>;
v=makepathCk>;
v->sc=NULL;
return <v>;

}

vertexptr findroot<v>
verte:xptr v;
{

vertexptr r;
vertexptr findtail<>,expose<>;

r=findtail<expose<v>>;
return <r>;

}

vertexptr findcost<v>
vertexptr v;
{

vertexptr p,findpathcost<>,expose<>;
p=findpathcost<expose<v>>;
return <p>;

}

addcostCv,x>
vertexptr v;

float x;
{

vertexptr expose<>;
addpathcostCexpose<v>,x>;

}

link<v,w>
vertexptr v,w;
{

vertexptr j;
vertexptr join<>,expose<>;

j=joinCNULL,expose<v>,expose<w>>;
j->pt=NULL;
w->sc=j;

}

cut<v>
vertexptr v;
{

vertexptr expose<>,p,q;
expose Cv>;
split<v,&p,&q>;

}

if Cp!=NULL> p->sc=NULL;
if Cq!=NULL> q->sc=NULL;

55

The above implementation has an amortized efficiency

of O<log2n> per operation. An advantage of using this

implementation is that it makes it possible to think about

the link/cut tree as an abstract data type CADT> and the

link/cut tree operations as a s~t of operations defined over

this ADT. The set of paths structure is another ADT with a

new set of path operations. ADTs, in general, provide a

systematic and efficient way in solving large and complex

problems. It makes the implementation of the link/cut

operations easier to understand since the overall

implementation can be done by using different combinations

of the path operations.

The expose operation acts like a backbone to this

method. The purpose of expose, besides making the path from

56

the root to the vertex under operation solid, is to convert

the solid edge, if any, entering the vertex in question to

dashed edge. This is the splice operation. The number of

splices executed determines the time efficiency of an

operation.

Using Three Pass Splaying

as a Primary Operation

Another implementation that will provide the same order

of OClog2n>

ADT> may be

but using only the splaying technique <no path

found easier to implement. What is special

about this implementation is that it does not use the expose

operation but it uses splicing as part of the splaying

operation on the link/cut tree.

The following is an implementation of the link/cut tree

operations using the three pass splaying, splay3: <see

Figure 15)

Maketree<v> Create a new tree with the node or vertex

v of cost zero.

Findroot<v> Splay3<v>, follow right pointers until

reaching the right most vertex w,

splay3<w>. Return w. See Figure 15.a.

Findmin<v> Splay3Cv>, use

to walk down

the dcost and dmin fields

from v to the last

minimum-cost node w after v in the same

solid subtree, splay at w, and return w.

See Figure 15.b. See equations for dcost

and dmin in Page 60 and 63.

57

d

/ ',,
a e

1
-->

2
--> b,./' "c 3

-->

4
-->

a.> Findroot<a>. 1. Splay at a and d each in its own
solid tree. 2. Splicing operation. 3. Splay
at a. 4. Splay at d, the right most vertex
from a.

b1
/1 -->

I
c 2 a 1

Actu1l tree
11ith casts

b1 ,o

/: ao,o c:z,o

c:z• i

"-. b-1,0
/

/
ai,o

3
-->

1
-->

4
-->

b1 ,o /\.
ao,o c:z,o

2
-->

b.> Findmin<a>. 1,2, and 3. Splay3<a>. 4. Splay at
b the vertex with minimum-cost.

Figure 15. Implementation of link/cut tree operations
findroot and findmin using three pass
splaying.

58

Addcost<v> Splay3Cv>, add x to dcost<v>, and subtract

x from dcost<left<v>> if left<v> !=null.

See Figure 16.a.

Link<v,w> Splay3Cv>, splay3Cw> and make v a middle

child of w. See Figure 16.b.

Cut<v> Splay3<v>, add dcost<v> to

dcost<right<v>>, and break the link

between v and right<v> by defining

pCright<v>>=null and right<v>=null. See

Figure 16.c.

FindcostCv> Splay3<v> and return the value dcost of

v.

The following is a description of how to walk down the

tree the find the minimum-cost when doing the findmin<v>

operation. Let p be the root vertex:

Repeat

if right<p> !=NULL and
CdcostCrightCp>>-dmin<right<p>>+dmin<p>>=O

p=right<p>;

if (rightCp>=NULL or
CdcostCright<p>>~dminCrightCp>>+dmin<p>> >O>

then

and dmin<p> > 0 then
p=left <p>;

Until both of the above conditions are false;
{The vertex at the new p has the minimum-cost}

For a sequence of m operations, this technique takes

an amortized time bound of 0 Cm*log2n>. The splaying

operation used in the above implementation differs from the

usual splaying operation in the sense that it may involve

more than one solid tree. Another important difference also

is that splaying here is a three pass operation moving a

1
-->

2
-->

a.> Addcost<a,-2>. 1. Splay3Ca>. 2. Add
x=-2 to dcost<a>. If left<a> !=null
then subtract x from dcost<left<a>>
which is not the case here.

c

c e 1 a e

"b / --> ""b I
I

f f
I I
I I
a c

a

,,' "" e b
I I
I I
f c

b.> Link<e,a>. 1. Splay3<e> and splay3<a>.
2. Link e to a by adding the dashed
edge [e, aJ.

' b
I
I
a

a
1 ' -->

a b
2 I

I
b --> c
I
I

c

c.> Cut<a>. 1. Splay3(a). 2. Delete the
solid edge [a~bJ. The result is
two trees rooted at a and b.

Figure 16. Implementation of the link/cut
tree operations addcost, link,
and cut using the three pass
splaying operation.

2
--)

59

60

vertex or node all the way to the root of the virtual tree

instead of only moving it to the root of its own solid tree.

This splaying process was described earlier in Chapter II.

The cost and mincost functions are stored implicitly

in the nodes. If cost<x> is the cost of a vertex x and

mincost<x> is the minimum cost of any descendant of x in the

same solid subtree then the values stored in the vertex or

node x are as follows:

dcost<x> = cost<x>

or

(see Figure 17>

if x is the root of a
solid tree.

= cost<x> - cost<parent<x>>
if x is not a root of a
solid tree.

dmin<x> = cost<x> - mincostCx>.

Note: In the above definition dmin<x>>O for any node x.

The values of dcost and dmin are effected by the

rotation and splicing operations and thus they have to be

readjusted after every rotate or splice operation. Let the

vertex v have a parent w, and let a and b be the children of

v before the rotation, and let b and c be the children of w

after the rotation. A primed function denotes values after

the rotation. Unprimed functions are the values before the

rotation. The formulas that are needed to adjust these

values are as follows: <See Figure 18>

dcost'Cv>= dcost<v> + dcost<w>,
dcost'<w>= -dcost<v>,
dcost'Cb>= dcost<v> + dcost,
dmin'Cw> =
Max{O,dmin-dcost', dmin<c>-dcost(c)}
dmin'(v) =
Max{O, dmin(a)-dcost<a>, dmin'(w)-dcost'(w)}.

\
i7

\
j1

\

Figure 17. Link/cut tree representation. Actual
tree on left with superscript
representing vertex costs. Virtual
tree on right with superscript
representing (dcost,dmin>.

61

Figure 18.

Figure 19.

The effect of rotation on the values
of dcost and dmin of the vertices.
The above is a single right rotation
in a solid tree. Values in brackets
are Cdcost, dmin>. Subtrees and
dashed edges are skiped for clarity.

The effect of a splice on the values of
dcost and dmin. The vertex d is the
right<~>. Values in brackets are
Cdcost,dmin). The vertices N, u and d
are part of one solid tree before the
splice operation.

62

63

The other restructuring operation that requires

modifications to these values is the splicing operation.

Splicing occurs in the expose operation when a solid edge

entering a vertex is converted into a dashed edge and a

dashed edge at the same time is converted into a solid edge.

If w is the root of a solid subtree and v is any middle

child of w, v becomes the left child of w, and the old left

child, if any, becomes a middle child of w. Let u be the

old left child of w, and let primed and unprimed functions

be the values after and before the splice operation,

respectively. The following are the formulas necessary to

adjust these values effected by the splice operation: <See

Figure 19)

dcost' Cv>= dcostCv> dcost<w>
dcost'Cu>= dcostCu> + dcost<w>
dmin' Cw> = Max
{0,dmin(v)-dcost'Cv>,dminCright<w>>-dcostCright<w>>}.

To find the cost of a vertex v, either splay at v and

return dcost<v> or walk along the path from the root of the

solid tree containing v to v adding up dcost. Note that the

value for dmin for a vertex v is :

Max {0,
dmin<left<v>>-dcost<left<v>>,
dminCrightCv>- dcostCrightCv>>

}

This method also divides a link/cut tree into paths

but it has no path operations. Instead, a three pass

splaying operation is used to conduct all the link/cut tree

operations. If the three pass splaying operation is

implemented and understood, then this method for

implementing the link/cut tree operations can be

64

particularly simple. The storage requirements of this

method are just like the method with the paths ADT; it

requires a left, right, parent and successor pointers.

As may be the' case with the other methods, this method

has some room for improvement. With little modification to

the link/cut tree operations the third pass of the splaying

operation can be eliminated providing faster but more

complex algorithms for the link/cut tree operations.

Another substantial improvement can be achieved if parallel

processing or programming is used. Each of the three passes

of the splaying operation can be done in parallel. For

example, the findroot<v> operation can be done by following

parent and successor pointers until the root is reached,

return the root then do the splaying for each solid tree in

a top-down fashion and in parallel. Then for the second

pass, do the splicing in parallel for each vertex on the

dashed path from v to the new root of the virtual tree.

Finally splay at v to complete the operation.

Applications

Link/cut tree data structure was specifically designed

·to provide an efficient way to solve a practical

application, namely the problem of finding a maximum flow in

a network. Using the link/cut tree, an algorithm for

finding a maximum flow can be done providing a time bound of

O<m*n*log2n>, better than the fastest previously known

algorithm by a factor of log2n. The maximum flow problem

is presented in Chapter V.

65

Many more applications exist for the link/cut tree data

structure. Obviously, it is a powerful tool to solve simple

as well as complex problems efficiently.

CHAPTER V

THE MAXIMUM FLOW PROBLEM

Introduction

Even though the link/cut tree has many applications, it

was specifically designed for finding maximum flows in

networks. In a network where the capacities of the branches

are limited, an objective which is usually of interest is to

maximize the total amount of flow from an origin to a

destination and here is where maximum flow problems arise.

Real life maximum flow problems include water, gas or oil

through a network of pipelines; the flow of traffic through

a road network; and the flow of products through a

production line system. In these examples and others the

branches may have different capacities, the road network is

an example where a branch may have one lane while another

branch may have four or more lanes leading to a higher

capacity of vehicles.

In this chapter the link/cut tree data structure is

used to solve the practical problem of finding a maximum

flow. A maximum flow algorithm is presented and an

illustration of the solution is shown to make it easy to

understand the use of a link/cut tree in the solution of a

maximum flow and possibly other useful problems.

66

67

Maximum Flow Problem Definition

The maximum flow problem is that of finding a flow of

maximum value from a single source to a single sink or

destination in a network. The following are the properties

of a flow f on a graph G:

1. The flow from a vertex v to a vertex w is equal to
the negative value of the flow in the other
direction; f<v,w> = -f<w,v>. A flow exists from v
tow if fCv,w>>O.

2. The flow from a vertex v to a vertex w can not at
any time exceed the capacity of the branch from v
tow; f<v,w>~cap<v,w>. An edge Ev,wl is said to
be saturated if the flow is equal to the capacity
of that edge.

3. Every vertex other than the source and the
destination has an in flow that is equal to the out
flow from that same vertex.

4. The total flow into the network through the
source is equal to the total flow going out of the
network through the destination vertex.

For a graph G={V,E}, where V and E are the sets of

vertices and edges respectively, a cut is defined to be a

partitioning of the vertex set V into two parts X and x·

where X'= V-X. The set X contains the source Cs> and the

set x· contains the sink or destination <t>. The capacity

cap<X,X'> of a cut is equal to the total capacities from the

vertices in X to the vertices in x·. Among all possible

cuts, a minimum cut is a cut with the minimum capacity.

Assuming that the capacity and the flow are zero from v to w

if there is no edge connecting the two vertices, then a cut

has a flow that is equal to the total flow from all vertices

in X to all vertices in x·. A theorem called min-cut

68

theorem states that the capacity of a minimum cut is equal

to the maximum flow for a given network.

The residual capacity for an edge Cv,wl of flow f is

defined by res<v,w> = capCv,w> fCv,w>. The residual

capacity is an indication of how much flow can be pushed in

the direction Cv,wl by increasing the flow in the direction

from v to w and decreasing the flow in the opposite

direction w to v. Figure 20 shows the residual graph R for

a given flow. The residual graph contains the same set of

vertices in the flow with edges Cv,wl of capacities equal to

res<v,w) in the direction v tow and capacities of f(v,w) in

the direction w to v.

augmenting path for f.

A path P in R from s to t is an

Finding a Maximum Flow

Before introducing the O<m*n*<log:zn> > solution for

the maximum flow problem, it is helpful to present the old

methods to give a better feeling of how this may be

approached. A method by Ford and Fulkerson <5,6) is

considered to be the simplest and is described below.

Another method by Dinic <3> resembles the solution using the

link/cut tree data structure but does not have the same time

bound.

Augmenting Path Method

Let G be a graph and G' be a subgraph of G such that

f'Cv,w> > 0 in G'. Let P~ be the paths found from s to

t ins·. The following is an outline of the algorithm for

2,2

a.> Original graph. Each edge has an
assigned capacity and flow
respectively. The edge [e,tJ is
one out of five saturated edges
in the above graph.

2

b.> Residual graph for the network in
<a>. The path Cs,b,c,a,d,tl is
an augmenting path with residual
capacity of 1.

Figure 20. Residual graph for a given
flow.

69

this method:

1. Let i=1.

2. Find an augmenting path P~ Ca path
of maximum residual capacity in
exists from s to t then halt.

from
G,.

70

s to t>
If no path

3. Let n~ be the minimum flow f'Cv,w> of an edge
[v,wl along P~.

4. Decrease the flow f'<v,w> for every edge along
P~ by n~.

5. Delete all edges [v,wl along P~ if the flow
f · <v,w>=O.

6. Increment i by one. Go to step number 2.

When choosing an augmenting path, that path must have

the maximum residual capacity, otherwise this method may

halt before finding a maximum flow. Table VII shows a trace

of the above algorithm when applied to the graph of Figure

20.a starting with the zero flow. When the algorithm halts,

a maximum flow is obtained by summing up the units of flow

n~ forced along its respective path P~. Each time step

number 5 is executed and edge is deleted from G' and thus

the algorithm halts after at most m loops where m is the

number of edges in the original graph G.

Dinic's Algorithm for Finding a Maximum Flow

Dinic's algorithm uses two new concepts that need to be

presented. The first concept is called a blocking flow. A

blocking flow f is a flow in G with all paths from s to t

containing at least one saturated edge. Having a blocking

flow does not necessarily mean having a maximum flow since

the flow may be increased by rerouting even when there is a

TABLE VII

A TRACE OF THE AUGMENTING PATH METHOD
FOR FINDING A MAXIMUM FLOW

Path n:1. Edge deleted
p from G

[s,a,d,tl 4 Ca,dl
[s,b,c,e,tl 3 [c,eJ,[e,tl
[s,b,f,tl 2 [b,f]
[s,b,e,f ,tl 1 [b,el

The value for the maximum flow is found by
adding all n:1.. In this example, a maximum flow
of ten is obtained. Notice that augmenting paths
with maximum residual capacity are choosen first.
This gurantees a maximum flow when the algorithm
halts. The algorithm halts if no more augmenting
paths can be found in G'.

71

72

blocking flow. For example, Figure 20.a shows a graph with

a blocking flow but not with a maximum flow. The other

concept is called the level graph. Let R be the residual

graph for f. The level of a vertex v, level<v>, is equal to

the shortest path from s to v in the residual graph R. The

level graph L for f is the subgraph of R such that L

contains only the edges [v,wl in R for which

level<w>=level<v>+l. The level graph L contains every

shortest augmenting path. This can be constructed using

breadth-first search.

At this point Dinic's algorith~ for finding a maximum

flow can be presented. A way for finding a blocking flow

is needed to complete the following algorithm. The

algorithm starts with the zero flow CfCv,w> = 0 for all

edges [v,wl> and is outlined below <See Figure 21>:

1. Find a blocking flow f' on the level graph for the
current flow f.

2. Add the flow in f' to the original flow f such
that the new flow f<v,w> = f<v,w> + f'(v,w>.

3. If the destination vertex t is in the current level
graph then go to step 1, otherwise halt.

If n is the number of vertices in a graph then the

above algorithm needs at most n-1 loops to find a maximum

flow. The way the augmenting paths are chosen in this

algorithm is such that shortest augmenting paths are chosen

first. A path length is defined by the number of edges

along the path. As suggested by Dinic (3), it is most

efficient to augment along paths of same length

simultaneously.

a.>

2

Original graph.
represent the

Values on edges
flow capacities.

(1) 2,2 (2)

~I~f~
s me e t (3)

(0)~ ~~~i (2) v
5,4~ ~4

a. d
(1) 4,4 (2)

b. > First lev'el graph with a blocking flow.
The two values on each edge are
the reseidual capacity and the flow,
respectively. Values in parentheses
are the levels of the vertices.

Figure 21. Dinic's algorithm for finding
a maximum flow. There is
no fourth level since there
is no path from s to t in
the residual graph R after
the third level graph.

73

(1) (4)
b f

/.1 f 2.0 1

s 12) c e t 14)

101~1 3,2 (3) 2,2
3,1

1,1
a
(1)

c.> Second level graph with a blocking
flow.

Ill 141

7-lI f2~
s !2l c ------• e t !5l

1,0
10) l 1,1 13)

a
13)

d.> Third level graph with blocking flow.

Figure 21. <Continued>

74

(1) 2,2 (!11)

~I~f2~
s 121 c: e t (111)

(0)~ --~,1j 3,3 (QI) 3,y

5,~ ~4
a. d
(3) 4,4 (111)

e.> Final flow. Maximum flow is 10 and
[s,a,b,cl,[d,e,f ,tl is a Minimum.
cut.

Figure 21. <Continued>

75

76

Finding a Blocking Flow

There are many known methods for finding a blocking

flow for an acyclic network. In this section two methods

are presented. The first is by Dinic and the second is

suggested by Sleator and Tarjan using the link/cut tree data

structure.

Dinic's algorithm finds any path from s to t, then

saturates at least one edge by pushing enough flow through

that path. Afterwards, it deletes all saturated edges and

repeats the process until t is not reachable from s. The

following is a more detailed outline of this method:

Initialize:
Let path P contain the vertex s; P=[s].
Let v=s.
Go to Advance.

Advance:
If there is no edge out of v then go to retreat.
else

let Cv,wl be an edge out of v.
Add the vertex w to P.
Let v=w.

If w=t then go to Augment. else repeat advance.

Augment:
Let d be the minimum of cap<v,w>-f<v,w> for an
edge Cv,w] along the path P.
Add d to the flow of every edge on P.
Delete from G all newly saturated edges.
Go to Initialize.

Retreat:
If v=s then halt.
else

Let Cu,vl be the last edge on p.
Delete v from P.
Delete Cu,v] from G.
Let v=u.
Go to Advance.

77

Table VIII shows the trace of the above algorithm

when applied to the graph in Figure 21.b. Each step of

initialize, advance, or retreat takes a constant time and

each augment step takes O<n> time. Each augment step

deletes at least one edge and each retreat step deletes one

edge at a time and thus there are at most m such steps.

There are at most m+l initialize steps all but the first

coming after advance steps. Since at most n-1 advance steps

are executed before augmenting or retreating, thus there are

at most Cn-l>m advance steps. Putting all results

together, it follows that Dinic's algorithm finds a blocking

flow in OCn*m> time. Since it takes n blocking steps to

find a maximum flow then the overall process takes 0Cn2 m)

time to find a maximum flow.

The other method for finding a blocking flow resembles

the one by Dinic in the sense that it saturates at least one

edge along a path at a time. The method uses the link/cut

tree data structure to reduce the time needed per edge

saturation. The result is an algorithm with a time bound of

for finding a blocking flow and thus an

OCm*n*log2n> for finding a

the number of vertices

respectively.

maximum flow

and edges

where n and m are

in the network,

Using the link/cut tree operations presented in

chapter IV an algorithm for fin~ing a blocking flow can be

done. The algorithm maintains for each vertex v a current

edge Ev,parentCv)] on which it may be possible to increase

the flow. The costs associated with the vertices are

Path
p

Cs,b,e,tl
[s,b,f,t]
[s,a,d,tl
Cs,b,c]
Cs,b]
Cs,a,c]
[s,a]
[s]

TABLE VIII

A TRACE OF THE FLOW OF THE ALGORITHM
BY DINIC FOR FINDING A

BLOCKING FLOW

d Edge deleted Operation
from G

1 [b,e] Advance &
2 [b,f] Advance &
4 [a,d] Advance &:

[b,c] Advance &
[s,bl Retreat
[a,c] Advance &
[s,a] Retreat

halt.

Augment
Augment
Augment
Retreat

Retreat

The minimum capacity d along a path P is added to
the flow of every edge in P. For example, after the
first step the flow of each edge [s~bl, [b~e], and
[e~tl is increased by a value of 1. The path P is
reset to [s] after every step.

78

79

defined as cap<v,parent<v>>-f<v,parent<v>> for all vertices

other that solid tree roots. If v is a solid tree root then

the cost is defined to be high, where high is a number

that is higher than the total capacities of all edges in

the graph. The following is the outline for the algorithm

using link/cut tree data structure to find a blocking flow,

it might be very helpful if this algorithm is compared step

by step with Dinic's algorithm:

Initialize:
for all vertices do

maketree<v>
addcost<v,high>.

Go to Advance.

Advance:
Let v=findroot<s>.
If v=t then Go to Augment.
If there is no edge out of v then go to retreat.
else

Augment:

Let [v,wJ be an edge out of v.
Addcost<v,cap<v,w)-high).
Link <v,w>.
Let p<v>=w.
if w=t then go to augment.
else repeat advance.

Let [v,dJ=findcost<s>.
Addcost<s,-d>.
Go to Delete.

Delete:
Cut<v>.
Addcost.Cv,high>.

Let fCv,p<v>>=capCv,p<v>>.
Delete the edge [v,p<v>J from the graph G.
Let [v,dJ=findcost<s>.

If d=O then repeat Delete.
else go to Advance.

Retreat:
If v=s then Go to Terminate.
else

Terminate:

For all edges [u,vJ do
Delete [u,vJ from the graph G.
If p<u> <> v then f<u,v>=O.
else

Cut<u>.
Let [u,dJ=findcost<u>.
Addcost<u,high-d).
Let f(u,v>=cap<u,v> - d.

Go to Advance.

For every undeleted edge ru,vJ do
If p<u> <> v then f<u,v>=O
else

Cut<u>.
Let [u,dJ=findcost<u>.
Addcost<u,high-d).
Let fCu,v>=cap<u,v> - d.

80

Figure 22 illustrates the effect of the above

algorithm when applied to the graph in Figure 21.b. Notice

that the abstract version <without the ~ets of paths

representation> of the link/cut tree is used in the figure

instead of using paths to represent trees for simplicity.

Each tree operation takes an O<log2n> and since there are

O<m> tree operations in the algorithm thus the overall

algorithm takes O<m*log2n>. Using this algorithm to find

a maximum flow, a time bound of O<m*n*log2n> can be

obtained.

Finally, it is clear that the link/cut tree is a

powerful technique that may be found useful in many network

algorithms as it is in the maximum flow problem. The

link/cut tree data structure was used simply to minimize

the time needed to construct a saturated edge in the case

of finding a blocking flow and was not meant to change the

/
tOI

e::s

/
b1

/
s9

a.> Advancing.

te

/ " /f5 e2

/
b2

s8

c.> Advancing

e.>

/
e2

b.> Augment then Delete.

/
s6

Delete [b,e] from G
and let its flow be
f[b,el=cap[b,el=1.

br»
co
t

/ " f3 e2

d.> Augment and delete.
Delete [b,fJ. Let
f[b,fl=2.

Advancing.

Figure 22. A trace of the algorithm for finding a
blocking flow using the link/cut tree
data structure. Values on vertices
are costs. Any implementation of the
link/cut tree operations can be used.
Terminating step deletes [d,tl, [f,tl
and [e,t] and set the flows f[d,tl=
7-3=4, f[f,tl=5-3=2 and f[e,tl=3-1=2.

(/J

t

81

1Cll

b

/
s6

f.> Retreating since there is
no edge out of c in G.
[u~vl = [b~cJ, [a,cJ.
f[b,cJ=cap[b,c] - 4 = 0.
The flow f [a,c]= 0 since
p<a> <> c. Delete all
[u,v].

g.) Retreating. No Edge
out of b in G.
f[s,b] = 9-6 = 3.
Delete rs,b].

/ s

GI
a

i.) Augment. Delete
the edge ra,d]
Let f[a,dJ=4.

Figure ..,..,

h.) Advance.

j.) Retreat since there
is no edge out of
a. f[s,a]= 5-1= 4.
Delete rs,a].

<Continued>

82

83

overall process used by Dinic to find a blocking flow.

CHAPTER VI

SUMMARY AND CONCLUSIONS

The main topic investigated and discussed in the

previous chapters is the idea of using self-adjusting data

structures. Self-adjusting data structures provide ways to

achieve amortized efficiency which is the average time per

operation on a given data structure over a worst case

sequence of operations. Splaying, the main operation used

in self-adjusting binary trees, was studied and new methods

were presented to perform splaying in a top-down fashion.

These new methods along with the original splaying operation

by Tarjan were empirically evaluated. Also, the effects of

having different frequency distributions of the items in the

tree and the effect of having a certain percent of the total

number of items in the tree with higher probability of being

accessed are shown from the results of the empirical study

on the splaying operation.

Two new methods to move a node to the root position are

presented in Chapter III. These methods are considered to

be an improvement over the original methods, move-to-root

and splaying. The first has the exact effect of

move-to-root but in a top-down fashion and in a much simpler

and more efficient method. The other is similar in effect

to top-down splaying but also much simpler and always as

84

85

good as the top-down splaying described by Tarjan.

Splaying provides most efficient results when few items

in the tree have higher probability of being accessed than

other items in the same tree. If this is the case then

splaying will be more time efficient in an amortized sense

than the balanced tree data structure which is known to

provide a time bound of OClog2n> in the worst case. The

splay tree data structure also allows the access frequencies

of the items in the tree to change dynamically during the

accesses which gives the splay tree an advantage over the

optimum tree.

In applications where the access frequency of an item

decreases after being accessed, splaying is not effective.

In such cases an attempt was made to move a node to the leaf

level thus giving way to other items in the tree to go up

the tree and shorten the access path. Many methods were

applied to move a node to the leaf level. These methods

include single rotations in all different orders, merging

the left and right subtrees,

of the left subtree,,and the

and merging the rightmost path

leftmost path of the right

subtree. Unfortunately, these methods only works when the

number of items in the tree is small but for large numbers

the results are disastrous. The reason is that it is

difficult if not impossible to move a node to the leaf level

systematically without extending the total path length of

the nodes in a tree. The same idea was discussed in a list

form of a self-adjusting data structures and shown to be

effective.

86

Perhaps one of the most important features of splaying

is that it allows the use of parallel programming or

processing. Parallelism can be applied in the top-down

splaying method 'where restructuring takes place during the

searching process. Also, the same idea applies to the new

top-down version of move-to-root presented in Chapter III.

The linking and cutting tree problem can be solved by

applying

addcost,

the operations maketree, findroot, findcost,

link, and cut. The tree over which these

operations are defined is called the link/cut tree.

Different ways are available to solve this:problem but not

all are efficient if amortization is the objective. One

method to solve this problem is by assigning parent

pointers to each vertex. The implementation is simple but

since the order of findroot, findcost, addcost is O<n> in

the worst case this method is not time efficient. The other

alternative is to divide the link/cut tree into sets of

paths and a new set of path operations is defined over the

sets of paths. These path operations are used to implement

the link/cut tree operations. Splaying proves to be an

efficient way to implement the path operations. The use of

the path operations can be avoided if a special type of

splaying is used directly to apply to link/cut tree

operations. This type of splaying is a three pass splaying

process that uses splicing as a part of the process. The

amortized time bound in either case is O<log2n> per

operation and the amortized time bound for a sequence of m

operations is O<m*log2n>. An implementation of the

87

link/cut tree operations illustrating the use of splaying in

these implementations is presented in Chapter IV.

The link/cut tree data structure was specifically

designed for the practical application of solving maximum

and minimum flow problems. Using the link/cut tree data

structure to solve the maximum flow problem provides an

algorithm with a time bound of O<m*n*log2n>, where m is

the number of tree operations used to find a maximum flow

and n is the number of vertices in the network. This time

bound is better than the fastest known algorithm by a factor

of log2n. Beside the applications in network flow

algorithms, link/cut tree data structure may be used to find

nearest common ancestors and in computing constrained

minimum spanning trees.

(1)

(2)

BIBLIOGRAPHY

Allen, B. and Munro,
Search Trees." JACM,
1978>, pp. 526-535.

I. "Self-Organizing Binary
Vol. 25, No. 4, <October,

Bent, S.W., Sleator, D.D, and Tarjan, R.E.
Search Trees." SIAM ~ COMPUT. ,
No. 3, <August, 1985>, pp 545-568.

"Biased
Vol. 14,

(3) Dinic, E.A. "Algorithm for solution of a problem of
maximum flow in a network with power estimation"
Soviet Math. Dokl., No. 11, (1970>, pp.
1277-1280.

(4) Feigenbaum, J. and
Biased Search
~' Vol. 62,
3139-3158.

Tarjan,
Trees."

No. 10,

R.E. "Two New Kinds of
Bell System Tech.

<December, 1983) , pp.

<5> Ford, L.R. and Fulkerson D.R. "Maximal flow through a
network" Canad. ~ Math., No. 8, <1956>,
pp. 399-404.

(6) Ford, L.R. and Fulkerson D.R. "Flows in Networks"
Princeton Univ. Press, Princeton, NJ,
(1962).

<7> Galil, z. and Naamad, A. "An O<e*v*log::zv> algorithm
for the maximal flow problem." ~ Comput.
System Sci., Vol. 21 (1980>, pp. 203-217.

(8) Guting, H. and Kriegel. H.P "Multidimensional B-tree:

(9)

An efficient dynamic file structure for
Informatik-Fachberichte." In proceedings of the
10th Gesellshaft fur Informatik Annual Conference.
Informatik-Fachberichte , Vol. 33.
Springer-Verlag, New York, 1980, pp. 375-388.

Mehl horn, K. "Dynamic
~ Comput., Vol.
175-198.

binary search
8, No. 2

trees" SIAM
(1979)' pp.

(10) Shiloach, Y. "An O<n*I*log::zI> maximum-flow
algorithm" Tech. Rep. STAN-CS-78-802,
Computer Science Dept., Stanford Univ., Stanford,
CA, <1978>.

88

(11> Sleator, D.D. and Tarjan, R.E. "Amortized
of list update and paging rules."
ACM, 23,2 <Feb. 1985>, pp202-208.

89

efficiency
Commun.

(12> Sleator, D.D. "An O<nm log n> algorithm for maximum
network flow" Tech. Rep. STAN-CS-80-831,
Computer Science Dept, Stanford Univ., Stanford,
CA, <1980).

<13> Sleator, D.D. and Tarjan, R.E. "A Data Structure For
Dynamic Trees." J-=-. Comp. Syst. Sci.,
Vol. 26, <1983>, pp 362-391.

<14> Sleator, D.D. and Tarjan, R.E. "Self Adjusting Binary
Search Trees." JACM, Vol. 32, No. 3, (July,
1985), pp. 652-686.

(15> Tarjan, R.E. "Data Structures And Network Algorithms"
Regional Conference Series in
Applied mathematics, pp. 45-111.

/

VITA

Ziad Ishaq Rida

Candidate for the Degree of

Master of Science

Thesis: SPLAYING IN THE IMPLEMENTATION OF THE LINK/CUT
TREE OPERATIONS USED IN SOLVING THE MAXIMUM
FLOW PROBLEM

Major Field: Computing and Information Sciences

Biographical:
Personal Data: Born in Amman, Jordan, July 3, 1963.

Education: Graduated form Terra Santa High School,
Amman, Jordan, in June, 1980; received Bachelor of
Science degree in Electrical engineering from
Oklahoma State University, May, 1984; completed
requirements for the Master of Science degree at
Oklahoma State University in December 1986.

Professional Experience: Applications programmer, Pan­
Arab-Computer Center, Amman, Jordan, May, 1984-
August 1984 and May, 1985- August, 1985; graduate
teaching assistant, Math Department, Oklahoma
State University, Fall 1985; member of ACM, 1984.

