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CHAPTER I 

INTRODUCTION 

The problem of wrinkles being formed in webs is a major one in web 

handling. When attempts to remove the formed ~rinkles are not success

ful, wrinkled material will be wound that most likely becomes waste. 

In a situation where one edge of the web ·advances in position over 

the other edge, shear stress is produced in addition to the already ex

isting tensile stress. Diagonal wrinkles generally form ·pointing in the 

direction of high tension (the direction of one principal stress, shear 

stress being zero in this direction). Shear stresses always appear in 

perpendicular and opposite pairs. It is obvious that the same effect 

could be produced by displacing the trailing edge of a sheet in the trans

verse direction, while the leading edge is fixed along a cross-machine 

direction line. This often occurs when shifting an unwinding roll later

ally at a speed too high for the web to move over the next carrying roll. 

Wrinkles can be introduced in the web due to tensile loads alone. High 

tension causes excessive lateral contraction, thus allowing wrinkles to 

form. In this case the wrinkles are parallel to the longitudinal direc

tion of the web. 

This type of wrinkling is classic in thin webs in aircraft struc

tures. It is historically nomenclated as semi-tension field web wrink

ling. The boundary conditions, however, are very different. In air

craft semi-monocoque structures, each thin web is given support on four 
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sides such that fixed boundary conditiqns can be assumed. The guided web 

is supported on two sides only. This has a different effect on the shear 

and tension field stress distributions. 

At present, no real attempt has been made to solve this problem. Some 

empirical methods have been successful in partly eliminating the problem. 

Techniques such as introducing grooves in the roller occasionally remove 

some of the incoming wrinkles. However, no one has been able to present 

a satisfactory explanation as to why this works. Others profess that 

grooved rollers can introduce more wrinkles than they eliminate. Thus 

the development of a general method to predict the bnset of wrinklihg 

and el[minate it is very much in order. 

1.1 Objectives 

The objectives of this study are: 

l. To develop a finite element computer code to analyze models of 

the web. The program must be able to predict wrinkling in the web and 

completely analyze the states of strain and stress on each element. 

2. To investigate the effect of material properties (modulus of 

elasticity and Poisson 1 s ratio), various loading conditions, and web geo

metry on the behavior of the web and the amount of lateral contraction. 

3. To derive equations to predict the overall lateral contraction 

of the web for known input quantities such as average web tension and ma

terial properties. 

4. To model the web using NASTRAN and observe its buckling modes, 

visualize the number of wrinkles formed, and calculate an average wrin

kle amplitude. 
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1.2 Literature Survey 

As mentioned previously, there has not been any conclusive work done 

on this problem. Most work of this nature has been done on thin-plate 

and membrane elements found in flight vehicle applications. 

Studies of stability and failure of thin-plate elements have been 

conducted by Rivello [1] and Timoshenko [2], among others. The small de

flection elastic buckling theory for perfectly flat plates was investi

gated. These studies were aimed at predicting the critical loads, since 

stress distribution and stiffness of the structure are affected by buck-

1 ing. Results for buckling of plates with various loading and boundary 

conditions have been presented by Flugge [3]. 

There is a large amount of literature on the subject of membrane 

structur.es due to their vast applications on space vehicles and light

weight structures. Hideki, Okamura, and Kawaguchi [4] have presented 

a practical method of shape finding and nonlinear analysis of membrane 

structures considering the wrinkling effect. Partly wrinkled membranes 

have been the subject of investigation conducted by Miller et al. [5], 

Hedgepeth et al. [6], and Mikulas [7]. In Reference [6], a theory is 

derived to predict the stresses and deformations of stretched-membrane 

structural components for loads under which part of the membrane wrin

kles. This theory studies ~verage displacements of the wrinkled materi

al. Geometric features of wrinkling such as lateral overcontraction 

were incorporated into a Hookean material model by appropriately increas

ing the local effective value of Poisson 1 s ratio in wrinkled regions. 

In later work, Miller et al. [5] presented a generalization and 

numerical implementation of his previous work on partly wrinkled mem

branes. Slack or unstressed regions have been included in the analysis 
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by setting the local modulus of elasticity equal to zero in such regions. 

This generalized work was limited to flat membranes with in-plane load

ing. 

From this review of the literature, it became evident that theory _ 

developed for partly wrinkled membranes ca~ be applied on web wrinkling 

as well. A membrane by definition has no bending stiffness and can carry 

no compnessive stress. This is the case in webs as well, since :most web 

materials are able to resist little or no compression at all. In this 

study, a method developed by Hiller et al. [5] is implemented in a com

puter code to predict the onset of wrinkling in the web model due to load

ing in the transverse and. lateral directions. 

1.3 Organization 

Chapter I I consists of the theory behind this analysis. The theory 

developed by Miller et al. [5] and the basic theory of elasticity are pre

sented. Chapter I I I discusses the computer code developed for the imple

mentation of the constitutive relationships derived in Chapter I I. The 

modeling of the web by this code and the structural analysis computer 

code NASTRAN are also presented in the same chapter. Chapter IV presents 

the results of this analysis. Data tables and plots of the different 

parameters are provided for better understanding. Chapter V presents con

clusions formulated during the study and a summary. Recommendations for 

further investigation of the subject are also included in Chapter V. 



CHAPTER 11 

DEVELOPMENT OF THE FINITE ELEMENT EQUATIONS 

In this chapter general forms of the equations employed are present

ed. A brief explanation is given on the meaning of each relationship. 

Familiarity of the reader with basic theory of elasticity and finite ele

ment methods is assumed. 

The subject of how the constitutive relations [D] matrix is modified 

to fit both slack and taut web behaviors is discussed in section 2.2. The 

theory on partially wrinkled membranes, developed by Stein and Hedgepeth 

[6], is discussed in section 2.3. The principles governing the study and 

the resultant modification of matrix [D] are discussed. Finally, summa

rized in this section are the constitutive relationships employed to as

sist this study. 

2.1 Strain, Stress, and Displacement Equations 

In a two-dimensional field, each displacement component at each point 

is a function of the two coordinate directions, that is, 

u = f (x,y) (2. la) 

and 

v = g (x, y) (2. lb) 

The objective of every analytical and finite element analysis is to deter

mine the equations corresponding to f(x,y) and g(x,y). The finite element 

5 
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approximations for these functions are continuous, piecewise, smooth equa-

tions defined over the individual elements. The general form displace-

ment equations in two dimensions are: 

JUV( = ( ) l J [NJ {U e } (2. 2) 

where {U(e)} is a column vector containing the element nodal ·displace-

ments. The matrix [NJ contains the element shape functions. A general 

triangular element defining the individual components of the {U(e)} vec-

tor is shown in Figure 1. 

The strain vector {E} is defined as 

fr} 

Similarly, a stress vector is defined as 

{cr} = {cr cr cr }T 
x y xy 

(2. 3a) 

(2. 3b) 

The strain components in {d and the displacements are related. The set 

of the strain-displacement equations consists of 

(2. 4) 

A general matrix [BJ is defined to relate the nodal displacements to the 

strain vector: 

fr}= [BJ {U(e)} (2.5) 

The matrix [BJ is called the gradient matrix. The first row of [BJ is ob-

tained by differentiating the displacement equation for u with respect to 

x, that is, au/ax. The second row contains av/ay, and so on. The stress 
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Figure 1. Nodal Displacements for a Tri
angular Elasticity Element 

7 
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and elastic strain components are related by a set of coefficients known 

as the generalized Hooke's law. This law can be written as 

{CJ}= [D] {d (2.6) 

where [D] is an equivalent elasticity matrix. 

The element stiffness matrix and the element force vector are the 

element's contribution to the system of equations that result when the 

potential energy is minimized. Strain energy considerations define the 

element stiffness matrix as 

(2. 7) 

The element nodal displacement vector is obtained using the equality 

(2. 8) 

where {F} is the applied forces vector. Equation (2.5) can be solved to 

yield the strain vector {s}. Knowing {s} enables the solution of Equa-

tion (2.6) for the stress vector {cr}. 

2.2 Matrix [D] for Plane Stress-Isotropic Material 

The matrix [D] in Equation (2.6) can be explicitly stated for any 

material. For the plane stress state in an isotropic material by defini-

t ion: 

E = - ( cr - vcry) x E x (2. 9a) 

E E (cry - vcr) y (2. 9b) 

2 (1 + v) Yxy = - Txy E (2.9c) 

Solving the above for the stresses yields the elastic matrix [D] as 
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\) 0 

E 
[D] = --=-

2 - \) 

\) 0 (2. l 0) 

0 0 
(l - v) 

2 

This [D] matrix applies to elements within the elastic region when 

characteristics of taut behavior are exhibited. That is, when both prin-

cipal strains El and E2 are positive or when El is positive and the ob

served E2 can be predicted accurately by multiplying El times Poisson 1 s 

ratio. It is assumed that El is always greater than or equal to E2 . 

Similarly, when El is less than zero, compressive loads are present. 

However, by definition no compressive stresses can be carried by a mem-

brane. Hence, it is said that the membrane has assumed slack behavior. 

The constitutive relations are therefore set equal to zero on elements 

for which El is negative. Thus, 

[D]=O (2.11) 

for slack or unstressed elements. 

2.3 Elasticity Matrix for Partly Wrinkled Membranes 

This analysis of partly wrinkled membranes is based on the observa-

tion that when wrinkles develop within a membrane parallel to, for exam-

ple, the x-direction, the associated overall contraction in the y-direc-

tion exceeds that predicted by the Poisson 1 s ratio effect. This feature 

of wrinkling may be incorporated into a Hookean material model by appro-

priately increasing the local effective value of Poisson 1 s ratio in wrin-

kled regions. This value may be determined by imposing a locally uniaxi-

al stress state in a wrinkled region. The net result is that effective 

Hookean material properties become dependent on the local state of strain. 
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It is convenient to look first at the principal stresses. If both 

principal stresses are positive, the membrane is in tension and thus will 

not wrinkle. If both principal stresses are zero, the membrane is unload-

ed and thus will not wrinkle. In a wrinkled membrane,oneprincipal stress 

must be zero and the other nonzero. The nonzero principal stress may be 

assumed to act along the wrinkle. This may be justified as follows. As-

sume cr 1 is the nonzero principal stress. In a wrinkled membrane in ten-
.... L--' V' ~ ,_,J : -\ 

, ,,.,;') ' 
sion, tide strips in the longitudinal direction may be observed parallel 

to the wrinkles. Those strips are in the direction of maximum stress. 

Since cr2 is zero, it follows that cr 1 acts parallel to the wrinkles. 

Corresponding to the nonzero principal stress cr 1,theprincipal strain 

El parallel to the wrinkle at each point would be expected to be 

(2. 12) 

Because of the 11overcontraction11 behavior of a wrinkled membrane in the 

direction normal to the wrinkles, a ''variable Poisson's ratio 11 A. is de-

fined so that 

(2. l 3) 

The quantity A. allows an average measure to be made of the E
2 

strain that 

would otherwise be either indeterminate or dependent on detailed large de-

flection analysis. At points where a wrinkled region borders on an un-

wrinkled region, A. must equal Poisson's ratio for the material. 

From the relationships between the strains in the rectangular-coordi-

nate directions and the stresses, 
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E: = - (o - AO ) (2. l 4a) 
x E x y 

E: = - (o - AO ) (2. l4b) 
y E y x 

Yxy = 2 ( l + A) T /E 
xy 

(2. l 4c) 

The preceding equations, through the quantity A, define the average 

strains in rectangular coordinates. The 11variable Poisson 1 s ratio 11 A 

can be written as 

Consideration of the geometry of Mohr 1 s circle for strains yields 

(2. 15) 

(2. l 6a) 

(2. l 6b) 

where R = 1/2 (El - E:2) is the radius of Mohr 1 s circle for strains and D = 

1/2 (E - E: ) is the distance from the origin of the coordinate system to 
. x y 

the center of the circle. Hence, Equation (2. 15) may be written in an 

alternative form: 

(2. 17) 

The expression for A in Equation (2.lJ) may be substituted into Equation 

(2. 14). Separation of variables is then performed to transform the three 

resulting equations into the form of Equation (2.6). 

The resulting plane stress formulation for initially flat membranes 

with in-plane loading is identical to the linear elastic case described 

by Zienkiewicz [8]. The equivalent elasticity matrix [D] in Equation 

(2.6) takes the following form: 



2 (1 + P) 0 Q 

E 
[D] = 4 0 2(1-P) Q 

Q Q 

for partly wrinkled membranes, where 

P = (E - E )/(E - E ) x y 1 2 

Q = '( I (E - E ) xy 1 2 

12 

(2. 18) 

(2.19a) 

(2.19b) 

Matrix [D] of Equation (2. 18) satisfies all of the conditions imposed due 

to the presence of wrinkles. Thus when [D] is substituted into Equation 

(2.6), either a 1 or a2 becomes zero. For a zero a 1, a2 has a nonzero val-

ue and vice versa. 

2.4 Conclusions 

In this chapter the constitutive relationships employed in this anal-

ysis were described. The elasticity matrix [D] was defined for all three 

allowable behaviors (taut, wrinkled, and slack). A useful algorithm for 

choosing the [D] matrix may·be expressed as 

[ D] = [ D S] ; El < 0 (2. 20a) 

= [DW]; 0 < El and VE l < -E 
= 2 (2. 20b) 

[ DT] ; Otherwise (2. 20c) 

where the [D] matrices are defined as 

Slack behavior: 

(2.2la) 
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Taut behavior: 

\) 0 

E [D] = - \) 0 
T l -v2 

(1 - v) 
0 0 2 

(2.2lb) 

Wrinkled behavior: 

2(l+P) 0 Q 

[DW] 
E 

0 2 (l - P) Q =4 (2.2lc) 

Q Q 

where P = (Ex- E:y)/(E: 1 - E2) and Q = yxy/(E: 1 - E2). This algorithm is em

ployed in a computer code described in Chapter I I I for the analysis of 

wrinkling in webs. 



CHAPTER 111 

ANALYTICAL STUDY 

The purpose of this study is to examine the contribution of varia

bles such as modulus of elasticity, Poisson's ratio, thickness, tension, 

and shear loading in the formation of.wrinkles in webs. How the overall 

lateral contraction of the web is affected by these parameters is examin

ed. An average wrinkle amplitude is calculated for an estimated number 

of wrinkles in a given length-to-width ratio of the web. 

For the purpose of applying the constitutive relationships develop

ed in Chapter I I, a finite element computer code was developed. A good 

understanding of how this code implements the constitutive relationships 

to the finite element model is very important. A description of the lo

gic behind the FORTRAN program STRESS.FOR (Appendix) is presented in this 

chapter. A description of how the web was modeled as we 11 as the approach 

taken to the solution of this problem is also presented. 

3. l Description of the Computer Code STRESS.FOR· 

The computer code STRESS.FOR was written around an already existing 

code under the same name (see Reference [9]). The program is used to 

completely analyze every element in the finite element model. Its final 

version performs tasks such as searching the model to identify wrinkled 

elements, comp.ute element stresses and strains, and calculate nodal dis

placements. 

14 
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It becomes apparent through descriptions of the main program and its 

subroutines how this code uses the constitutive relationships in Equa-

tions (2.19) and (2.20) to perform its functions. This code was written 

to handle triangular elements. Only two-dimensional, plane stress elas-

ti city problems can be analyzed. Possibilities such as body forces, 

thermal changes, or composite material construction are beyond the scope 

of this study and were not included in this code. 

The elements in the models under study can assume three different 

behaviors: slack, taut, and wrinkled. The matrix [D] in Equation (2.6) 

is dependent on these different behaviors. In Chapter I I, three differ

ent [D] matrices have been defined, one for each case. Equation (2. 19) 

is employed to def1ne the state of each element and assign the appropri-

ate [DJ matrix to it. 

Any time there is a transition of elements from one behavior to an-

other, the computer code analyzes its effect on the neighboring elements. 

In Chapter I I, the element stiffness matrix is defined as 

[K(e)J [B]T [DJ [BJ t A (3. l) 

where [BJ is the gradient matrix, and [B] and [DJ consist entirely of 

constant terms. Since the element stiffness matrix [K] is used for the 

calculation of the nodal displacements, according to Equation (2.8), any 

changes in [DJ yield different displacements. The altered displacements 

affect the strain calculations, since 

where {U(e)} is the element displacement vector. The element strains 

are used in the calculation of the principal strains. These calcula

tions are therefore affected by any ~hange in {s(e)j. The principal 
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strain values are used in the constitutive relationships to decide the 

type of the [D] matrix. The computer code performs a global search of 

the model to reassign [D] matrices where needed. This procedure is fol

l owed unt i I the behavior of a 11 e 1 ements has been determined for the same 

loading condition. 

During execution, the calculated strains for the last two passes 

for each wrinkled element are stored in two different arrays. After all 

elements have been examined and all necessary changes in [D] are perform

ed, the two arrays are checked for closeness. For this purpose a conver

gence criterion has been preassigned. Upon satisfaction of this criteri

on, a load step is added to the previous load and al I steps are repeated. 

In every case a maximum load in the longitudinal direction and a 

maximum in the lateral direction are defined. The computer code is made 

to iterate on the longitudinal load initially, until maximum load has 

been reached. It then proceeds to iterate on the lateral load with the 

longitudinal load still present. The program stops executing when the 

maximum lateral load has been reached. 

Initially, the general model is formed using triangular elements. 

Before the program can be executed, a file with the designated name 

DATA.DAT must be created. This file contains the node numbers and their 

location in the model with respect to a preassigned (x-y) coordinate sys

tem. The information above is followed by, the element numbers and the 

node numbers associated with the particular element. These node numbers 

must be presented in a counterclockwise fash·i•on, with the starting node 

selected at random (see Figure l). 

The file TEMP.DAT is created by the computer code. It temporarily 

stores all calculated element stresses and strains for each step before 
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moving to next. lf,for any reason other than the one defined by the 

user the program terminates execution, the intermediate results can be 

retrieved from that file. The file OUT.DAT is created by the computer 

code also. This file stores the final solution to the problem. The so

lutions to the longitudinal load applied alone are always included. 

The code enables the user to define a load step for the output of 

the results when load in the transverse direction is applied. For exam

ple, when the user defines a print load step of 5 lbs, the computer will 

output the intermediate results every time the magnitude of the lateral 

load applied is a multiple of 5. 

For the purpose of making this code 11 user friendly, 11 check points 

designed to detect common errors have been added throughout the program. 

Subroutine CORRECT prints on the screen all user input up to the point 

it is called. The user is given the opportunity to correct any incor

rect input. 

In cases where symmetry prevails, it is often unnecessary to output 

the calculated stresses and strains for all the elements. The user is 

cautioned to identify the smallest element number for which output is 

saved. All elements with smaller identification numbers are excluded 

from the output. 

The general model is defined as soon as the file DATA.DAT is read. 

The code is then able to calculate the bandwidth for the particular mod

el. The bandwidth is used to dimension and initialize the storage vec

tor {A}. The global stiffness matrix [K] and the force vector {F} are 

stored in {A}. The calculated nodal displacements are stored in {A} al

so. Vector storage eliminates the need to change the dimensions of the 

stiffness matrix each time a different model is examined. 
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Initially, for start-up purposes, taut behavior is assumed and [Dt] 

is used for the assembly of the initial global stiffness matrix. Since 

at this stage the material is unloaded, elastic, and Hooke's Jaw applies, 

this assumption is justifiable. 

Subroutine ELSTMX performs the assembly of the element stiffness ma

trix. This subroutine evaluates the element stiffness matrix, [K(e)], 

for a 1 inear triangular element using the relationship in Equation (3. 1). 

The subroutine also evaluates the gradient matrix [B] in a loop which 

calculates the stress component in each element. A small loop after the 

subroutine call assembles the global stiffness matrix which is stored in 

the vector {A}. 

Subroutine MODIFY enables the user to apply concentrated loads to 

the structure. It also allows nodes to be restrained in one or both de-

grees of freedom. This subroutine was written to facilitate the loading 

pattern on the models in this study. Forces can be applied in both X 

and Y directions. However, forces in .the X-direction may only be of the 

same m.agnitude (uniform). The same restriction holds true for the force's 

applied in the Y direction. MODIFY allows the definition of maximum 

forces and their direction of application. Load increments for itera-

tion are input in this subroutine. Boundary conditions are defined with-

in this subroutine .. Any degree of freedom of any node can be set.to zero 

to achieve a fixed condition. 

Subroutine DCMPBD decomposes the global stiffness matrix [K] into 

an upper triangular form using the method of Gaussian elimination. This 

subroutine assumes [K] to be symmetric and only those elements within 

the bandwidth and on or above the main diagonal are stored. The program-
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ming logic is not easy to follow since the coefficients of [K] are star-

ed in a vector rather than a two-dimensional array. 

The subroutine SLVBD decomposes the global force vector, {F}, and 

solves the system of equations using back substitution. The solution to 

this system yields the nodal displacements. 

Once the nodal displacements are known, the strain vector for each 

element is obtained according to Equation (3.2). Similarly, Equation 

(2.6) is employed to yield the stress vector for each eler.1ent. The prin-

cipal stresses and strains are calculated using the relationships 

(J + (J 
x y 

2 
+ X y + T 

,..~((J - (J ~2 2 ]1 /2 
2 xy (3.3a) 

E + E x y 
2 

I .., ]1lz., l 2 2 l 2 / '.. :;r 
+ -

2 
[(E - E ) + y J -1[fil'-~\-1, t;.'I (3.3b) 

x y xy \ 2. ) 

The angle ~ between the principal axis and the x axis is 

Yxy 
tan 2~ = 

E -E: 
x y 

The calculated principal strains are used to define the matrix [DW] 

(wrinkled behavior). 

(3 .4) 

At this point the computer code performs all the checks mentioned 

earlier in this section. Subroutines are cal led as needed and al 1 inter-

mediate results are stored i:nthe file TEMP.DAT. 

Subroutine PRINTR writes the final results in the output file OUT.DAT 

in a formated manner. The results are read from the temporary storage 

file TEMP.DAT. 

An element can assume three different behaviors (taut, wrinkled, 

and slack). One [D] matrix for each case has been defined in Chapter I I. 
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Subroutine CHECK assigns the appropriate [D] matrix to each element. Any 

time there is a transition in the behavior of an element (taut to wrink

led, etc.), the element stiffness matrix changes and so does the global 

stiffness matrix [K]. Subroutine MOD1FI reapplies the restrictions plac

ed on the degrees of freedom during execution. 

Subroutine LOAD increases the magnitude of the load in the force vec

tor by a load step each time the program has finished computing the re

sults for the current loading condition. 

3.2 Finite Element Modeling of the Web 

A portion of the web is modeled to simulate its behavior between 

rollers. The different models used in this study consist of 1 inear tri

angular elements (Figure 2). This is due in part to the fact that the 

computer code employed is limited to triangular elements. However, lin° 

ear triangular elements are preferred over bilinear rectangular elements 

because they can assume any orientation where the sides of the rectangu

lar elements must remain parallel to the x-y coordinate system. 

Two carrying rolls are aligned so that the web path is accurately 

tangent to both surfaces, i.e., the web between the two rolls could be 

replaced by a plane touching both ends of both rolls. For the purpose 

of achieving good traction, the angles of approach and departure for the 

web differ greatly (Figure 3). Large wrap angles allow for large contact 

area between the web and the roller. Surface elements of the web materi

al meeting surface elements of a carrylng roller remain in a one-to-one 

correspondence with each other for a finite and measurable distance of 

travel. Lack of traction is relative motion between adjacent points, 

which may be supported by film shear. When tension changes going over a 



figure 2. 
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roll, there may be a zone of traction followed by a short zone not in 

traction, where either the tension becomes too high or the normal force 

becomes too low to maintain traction. If ideal traction is achieved be

tween the incoming web and carrying roll, there is no relative displace

ment between any two adjacent points in the web in both the longitudinal 

and lateral directions. Therefore, in modeling the leading end of the 

web, fixed end conditions may be assumed. On the opposite end, just be

fore the web leaves the roller surface, it is still in a one-to-one cor

respondence with the carrying roll in the lateral direction. No rela

tive displacement occurs in the lateral direction between any two adja

cent points in the web. However, relative displacement does exist in the 

direction of the web travel. This is due to the tensile force induced 

in the web by the combined effect of traction and speed differential be

tween the carrying roll and .its preceding roll. Therefore, the computer 

model of the web is allowed to translate in the longitudinal direction 

at the trailing end. 

The boundary conditions of the web model are summarized as follows. 

The leading end in the direction of travel is held completely fixed, 

while the trailing opposite end is al lowed to only translate in the long

itudinal direction. The remaining two ends, parallel to the direction 

of motion, are free of ·constraints. 

3.3 NASTRAN Model Details 

In tbe last phase of this study, _buckling analysis is performed on 

the web model. For this purpose the finite element code known as NASTRAN 

is employed. NASTRAN is an acronym for NASA ~ructural Analysis. The 

objective is to use NASTRAN 1 s buckling analysis to predict the number of 
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wrinkles for a given length-to-width ratio. NASTRAN 1 s plotting capabi li

ties are employed to obtain plots of the different modes. The calculat

ed out-of-plane deformations define the formed wrinkles which can be vi

sualized on the plots. The number of wrinkles counted on the plots for 

a given length-to-width ratio is checked against the number of stress re

versals counted along the lateral web direction. If the number of wrin

kles in a web and the overall lateral contraction for a given loading 

condition are known, an average wrinkle amplitude may be calculated. 

The first step is to discretize the web model in terms of geometric 

grid points located in a Cartesian coordinate system. These grid points 

were aligned to form rectangular elements when connected. These points 

can have from zero to six degrees of freedom in a particular coordinate 

system. 

The second step included choosing the elements of which the model 

would be composed. The quadrilateral element CQUAD2 was selected. This 

element, with both in-plane and bending stiffness, assume~ a sol id homo

geneous cross section. Transverse shear flexibility is also included 

within CQUAD2. The NASTRAN model of the web is shown in Figure 4. The 

quadrilateral elements are intended for use when the surfaces are flat 

and the geometry near rectangular. Membrane elements could not be em

ployed as there is no ability to model out-of-plane deflections incurred 

during wrinkling. The property card MATl defines the structural proper

ties of the quadrilateral element.· This data card includes such enti

ties as Young 1 s modulus, Poisson 1 s ratio or the shear modulus, and den

sity. The boundary conditions in the NASTRAN models remain the same as 

the previous ones. The data card GRID is used to indicate the location 



2.S 



26 

of each grid point on the model. It also serves to restrain any degree 

of freedom on a particular node. 

3.4 Summary 

In this chapter a full description of the computer code STRESS.FOR 

was given. It becomes obvious through that description how the constitu

tive relationships are employed to predict web behaviors. In section 

3.2, the final form of the computer model of the web was derived through 

careful consideration of the actual system. In section 3.3, the NASTRAN 

model was presented. The elements used to model the web were described 

and reasons were given to justify their choice. Chapter IV in this study 

presents the results of this analysis. A number of plots and data ta

bles are presented to verify the derived relationships among the various 

parameters. 



CHAPTER IV 

ANALYTICAL RESULTS 

As stated in the introduction, the objectives of this study are to 

investigate the effect of material properties (Poisson 1s ratio, modulus 

of elasticity), web geometry (thickness, length-to-width ratio), and 

various loading conditions on the formation qf wrinkles in webs. Equa

tions are derived to predict the overall lateral contraction of the web, 

based on these observations. 

4.1 Results of Web Variables Variation 

Element density in the model is impo~tant for numerical accuracy. 

The selected general model .is 32 inches wide and 128 inches long. In 

order to achieve a relatively dense model, the nodes were placed four 

inches apart in the lateral direction, yielding a total of nine nodes 

along the width of the web. Similarly, nodes were placed four inches 

apart in the longitudinal direction. However, close to the leading and 

trailing ends of the web, the density of the elements drops to half the 

origlnal density (see Figure 2). Simple static analysis runs are made 

to examine the numerical accuracy of the calculations for the given mod

el density. 

Initially, reference values are assigned to the variables under in

vestigation and a general solution is obtained. The effect of each pa~a

meter on the overall lateral contraction of the web is examined in the 

27 
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following manner. The variable under investigation is varied over a 

specified domain while the remainder of the variables are held constant 

at their reference values. A region is defined on the web, in an area 

where wrinkles are most likely to form. In each run, for each isolated 

variable, the computed principal strain epsilon two for a wrinkled ele

ment in that region is recorded. Hence for each parameter value (datum) 

there exists a corresponding functional value epsilon two. The accumu

lated data are curve fitted to yield how.the average principal strain 

epsilon two of an element varies with respect to the variable under in

vestigation. The same procedure is followed for all variables to be ex

amined. 

Two sets of equations are obtained relating each variable to epsi

lon two. One set consists of the equations derived when the web is loaded 

in tension only. The second set of equations shows the relationship be

tween the variables and epsilon two when both tensile and shear loading 

are applied to the web. Each set of equations is collapsed separately 

to yield two gener~l equations that relate all variables to the princi.

pal strain epsilon two. The combined effect of all parameters involved 

may then be determined thr©ugh the use of these equations. The domains 

over which the examined variables were allowed to vary were determined 

by the properties of the webs most often encountered in the industry. 

The reference values assigned to each variable are 10 lbs/in. tension 

loading, 3.75 lbs/in. shear loading, 0.001 in. thickness, 0.3 Poisson 1 s 

ratio, 500,000 psi modulus of elasticity, 32 in. width, and 128 in. 

length model dimensions. The load in the transverse direction is ap

plied midway through the model. Therefore, the effective length is 

reduced to half its original in this case. Thus, in the case of the 
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general model when shear loading is present, the length of width ratio 

is two. 

Poisson's ratio is allowed to vary over a domain of 0.2 to 0.4. 

The recorded values for epsilon two for the simple tension loading and 

the combined tension and shear loading are listed in Table I. Linear 

regression (general form y = b0+blx) curve fitting is employed to re-

veal the linear relationship between epsilon two and Poisson's ratio in 

both loading cases (relative error <0.03%). The resulting equations 

are: 

. -6 
E2 ( \!) = - l . 95996.8~~10 - 0. 0200364 \! (4. la) 

when tension is the only applied load, and 

-0.0024081 - 0.0238358\) ( 4. 1 b) 

when both tension and shear are present. Equation (4. la) may be approx-

imated by 

E2 (\!) = -0.0200364\! ( 4. 2) 

with no significant error (less than 0.02%). Plots of the rel.ationships 

in Equations (4.2) and (4. lb) are shown in Figures 5 and 6, respective-

ly. 

Poisson's ratio dictates the prewrinkled behavior of the web model 

primarily. For small Poisson's ratios, larger loads are required to 

produce large enough lateral contraction to allow wrinkles to form. 

Large Poisson's ratios result in the formation of wrinkles at an early 

stage and small loads. In the extreme case, for small enough Poisson's 

ratios, wrinkles may not be allowed to form even when large loads are 

applied because of the resulting small lateral contraction. Even 



Poisson's 
Ratio 

0.20 

0.25 

0.10 

0.35 

0.40 

TABLE I 

EVALUATION OF PRINCIPAL STRAIN EPSILON TWO 
FOR VARYING POISSON 1 S RATIO 

Eps i 1 on Two 
Shear= 0 lbs/in. Shear=3.75 lbs/in. 

-0.0040092 -0.0071730 

-0. 0050110 -0.0083671 

-0.0060129 -0.0095621 

-0 .0070150 -0.0107530 

-0.0080163 -0.0119390 

30 



31 

though Poisson's ratio is replaced by the 11variable Poisson's ratios 11 
/.. 

when an element assumed wrinkled behavior, as shown in Equations (4. lb) 

and (4.2), the variation of Poisson's ratio has an effect on wrinkled 

elements due to the influence on the surrounding taut behavior elements. 

It may be seen by comparing Figures 5 and 6 that larger lateral contrac-

tion results when loads are applied in both the longitudinal and trans-

verse 9irections. 

With Poisson's ratio set ~qual to its reference value of 0.3, the 

modulus of elasticity of the material is al lowed to vary from 100,000 

to.500,000 psi, at an increment of 100,000. The principal strain epsi-

lon two is recorded for both the applied loading conditions. These val-

ues are listed in Table I I. Examination of the recorded values indi-

cates that epsilon two is inversely proportional to the modulus of elas-

ticity. Therefore, stiffening of the material reduces the amount of 

lateral contraction. 

TABLE 11 

CALCULATED VALUES OF EPSILON TWO FOR 
VARIOUS MODULI OF ELASTICITY 

Modulus of 
E 1 as tic i ty (PS I) 

100,000 

200,000 

300,000 

400,000 

500,000 

Epsilon Two 
Shear= OLbs/ln. Shear=3.75 Lbs/In. 

-0.0300630 -0.0478070 

-0.0150310 -0.0239030 

-0.0100210 -0.0159360 

-0.0075315 -0.0119520 

-0.0060129 -0.0095621 
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An inverse X {general form y = (bOx + bl)fx) curve fitting routine 

is employed to yield a close fit. The resulting equations are: 

(-4.762779 x l0-7E - 4730.63) 
E 

(4.3a) 

Equation (4.3a) is val id when tension is the only applied load, and Equa-

tion {4.3b) when both tension and shear forces are applied on the web. 

Equations (4.3a) and (4.3b) may be approximated by 

-3005.503 = ----"'---'"-~ 

E 

-4780.63 
E 

(L1.4a) 

(4.4b) 

introd~cing very small error (less than 0.003%). Plots of Equations 

(4.4a) and (4.4b) are shown in Figures 7 and 8, respectively. It may 

be seen that the amount of lateral contraction in the web decreases 

rapidly for Young 1 s modulus values ranging from 100,000 to 350,000 psi. 

The rate of decrease in epsilon two becomes smaller beyond the 350,000 

psi mark. Even though both plots assume the same shape, the ~Jot in Fig-
. 

ure 8 predicts larger lateral contraction due to the presence of shear 

loading. 

In the equations alneady described and in the ones to follow, it is. 

understood that the constant terms have units associated with them such 

that the final answer has units of strain (in.fin.). Thus in Equation 

(4.2), for example, the constant term has units of strain (in.fin.) 

since\)' being a ratio is unitless. 

The thickness of the model becomes a factor ih the calculations of 

the element stiffness matrix as may be seen from Equation (3.1). It may 
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be predicted that a decrease in thickness yields larger nodal displace-

ments which in turn yield larger element strains according to Equations 

(2.5) and (2.8). The thickness of the web is allowed to vary over a 

range of values from one-tenth of an inch to one ten-thousandth of an 

inch. The calculated values of the principal strain epsilon two are 

listed in Table 111. It is appar.ent from the examination of the tabu-

lated values that epsilon two is inversely proportional to the material 

thickness. Each order of magnitude decrease in thickness results in an 

order of magnitude increase in epsilon two. This is true for both the 

tens ii e loading case arid the combined tension and shear 1 cads. 

TABLE 111 

CALCULATED VALUES OF EPSILON TWO FOR 
VARIOUS MODEL THICKNESSES 

Eps i Ion Two Thickness 
( In.) Shear = 0.0 Lbs/In. Shear = 5 Lbs/In. 

0.1000 

0.0100 

0 .. 0010 

0.0001 

-0.601321:10-4 

-0.60130~·:10- 3 

-0 . 60 1 29 7: l 0 - 2 

-0. 60130~·: l 0 - l 

-0. 11658~~10-3 

-0.11656~~10- 2 

-0.11656~<10 
-1 

-0. 11657 

Curve fitting of the data pairs yields the following equations: 

1 
E2(t) = -!66300.6 t (4.5a) 
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1 = ---=----~-
- 85777. 58 t 

( 4. Sb) 

Equation (4.Sa) applies when the tension force acts alone and Equation 

(4.Sb) applies when the combination of tensi~n and shear forces is pre-

sent. The abrupt changes in epsilon two are evident in the plots of 

Equations (4.Sa) and (4.Sb) shown in Figures 9 and 10. The reactions 

of web models to the variation of the material thickness result in the 

same abrupt changes in epsilon two regardless of how the web is ·loaded. 

As in the previous cases, it is obvious that larger lateral contraction 

results when the model is loaded in both the longitudinal and trans-

verse directions. 

The effects of the applied tension load on the lateral contraction 

of the web is examined. Initially there is no force applied in the lat-

eral dtrection. The tension force is allowed to vary from 5 lbs/in. to 

a maximum of 25 lbs/in .. for the purpose of better numerical accuracy, 

the load step i·s defined at 1 lb/in. in this case. The computer runs 

are repeated after the force in the transverse direction (shear) is add-

ed to the model. The average principal strain epsifon two is recorded 

for wrinkled elements in the predefined region. The values of epsilon 

two for both loading conditions are 1 isted in Table IV. The best curve 

fit for this set of data is linear regression for the sim~le, tension 

only loadtng case, and a second order polynomial in the case of the com-

bination loading in the lateral and transverse directions of the web. 

The two equations relating the applied tension force to epsilon two are 

E
2

(T) = -1.97615*10-8 ~·6.01292*10- 4 T (4.6a) 

E
2 

(T) = -4. 585975'"10- 3 - 1. 7423;':] 0-4 T - 1. 4628;':] 0-S T2 (4. 6b) 
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Tension 
(Lbs/ In.) 

5.0 

7.5 

10.0 

12. 5 

25.0 

TABLE IV 

CALCULATED VALUES OF EPSILON TWO FOR 
VARIABLE TENSILE LOADING 

Epsilon Two 
Shear= 0.0 Lbs/In. Shear= 2.5 Lbs/In. 

-0.0030065 -0.0058282 

-0.0045097 -0.0066994 

-0.0060129 -0.0078072 

-0.0075162 -0. 0090441 

-0.0150320 -0~0134025 
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Since the constant term in Equation (4.6a) is a very small number, it 

may. be excluded from the equation. Hence 

-4 
E2 (t) = -6.01292*10 T (4.7) 

This approximation introduces negligible error (less than 0.0004%) to 

the expression. Plots of Equations (4.7) and (4.6b) are shown in Fig-

ures 11 and 12, respectively. In the case where there is no load act-

ing in the transverse direction, the relationship is linear (Figure 11). 

Large applied tension load produces large amounts of lateral contrac-

tion. These amounts are sufficient for wrinkles to be formed in the 

longitudinal direction. Small nonlinearities arise when shear loading 

is present (Figure 12). However, the overall effect on the lateral con-

traction of the web, by the variable tension load, remains the same as 

before (the larger the load the greater the lateral contraction). 

In order to further examine the effect the various loading forms 

have on the lateral contraction of the web, the shear force is al lowed 

to vary while the uniform tension load is held constant at 10 lbs/in. 

The shear force is induced to the web through a guide roller or a mis-

aligned roll. This load is therefore always smaller than the tension 

load which is induced to the web by means of driver rollers. The shear 

load is allowed to vary from 0 lbs/in. to 5 lbs/in. The resultant val-

ues of the principal strain epsilon two are listed in Table V. A third 

order polynomial curve fit is employed to define the relationship be-

tween epsilon two and shear for the data pairs in Table ·V. Curve fit-

tings yield the following expression: 

-6.012328*10- 3 - l .075685*10- 4 s 

- 2.829943~·:10- 4 s2+ 1.575681~·:10- 5 s 3 ( 4. 8) 
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TABLE V 

CALCULATED EPSILON TWO FOR 
VARIABLE SHEAR FORCE 

Shear 
(Lbs/In.) 

0.00 
1.25 
2.50 
3.75 
5.00 

Epsilon Two 
(In.fin.) 

-0.0060129 
-0.0065559 
-0.0078072 
-0.0095621 
-0.0116560 

A plot of Equation (4.8) is shown in Figure 13. The third order 

polynomial yields the best fit for the data set (relative error less 

45 

than 0.004%). The graph assumes the shape of a parabola for values of 

shear ranging from 0 lbs/in. to 2 lbs/in. For shear force values great-

er than 2 lbs/in., the relationship approaches that of a 1 inear ·function. 

The dimensLons of the web are varied to study the effect on the 

overall lateral contraction. Various length-to-width ratios are examin-

ed to determine the effect of the different dimensions on the pr~ncipal 

strain epsilon two. In order to obtain the various length-to-width ra-

tios, either the width of the model is held constant while the length 

is allowed .to vary or the width is varied while the length is held con-

stant. The element density of the model, however, must be held rela-

tively constant during these variations. This is because finite ele-

ment methods become inaccurate if the model is not·adequately dense 

(nodes placed too far apart). For this reason ·several new web models are 

input with nodes placed two inches apart in both x and y directions. 
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The results of these calculations are recorded for both loading forms. 

One model is assigned to be the reference model at a length-to-width ra

tio of two. The predefined region from wh~ch the epsilon two value is 

record~d for a wrinkled element within that region is defined for each 

separate length-to-width ratio. The ratios of the dimensions of the re

ference model to the model under investigation are taken to determine 

the new location of that region. The recorded values of epsilon two 

are listed in Table VI. Figures 14 and 15 show plots of epsilon two 

versus various length-to-width ratios. 

In the case where tension is the only appl led force, the amount of 

lateral contraction is constant for the various ratios. The amount of 

lateral contraction is larger in the case of combined loading. Small 

variations in the epsilon two values are evident in this case. This is 

due to the nature of the finite element modeling of the web. Better re

fined models reduce the numerical inaccuracy in large. Relatively large 

variations had been observed for s~all ratios (1 .0 to 2.0). The use of 

refined models, however, proved.those variations in epsilon two to be 

erroneous (see Figure 15). The same holds true for length-to-width ra

tios greater than 3.5. Better refined models eliminate these small var

iations. 

Curve fitting of the data sets in Table VI can only be accomplish

ed through the use of higher order polynomials. This is because of the 

small variations in epsilon two. However, since the lateral contrac

tion is actually constant, no attempt is made to obtain a relationship. 

The contribution of each ~f the selected variables to the lateral 

contraction of the"web has been examined. Expressions have been deriv

ed to relate each individual variable to the principal strain epsilon 



L/W Ratio 

1.000 

· l .250 

l. 375 

l .500 

l .625 

l. 750 

2.000 

2.286 

2.667 

3, 167 

3.500 

4.000 

4 .250 

4.500 

TABLE VI 

CALCULATIONS OF EPSILON TWO FOR VARIABLE 
LENGTH-TO-WIDTH RATIOS 

Epsilon Two 
Shear = 0.0 Lbs/In. Shear= 3,75 Lbs/In. 

-0.0061903 -0.0088448 

-0.0061448 -0.0086799 

-0.0061138 -0 .0091436 

-0.0061006 -0.0086989 

-0. 0060695 -0 .0086971 

-0.0060439 -0.0086924 

-0.0060129. -0.0095621 

-0.0060321 -0.0094694 

-0.0060058 -0.0088866 

-0.0059949 -0.0100530 

-0.0060109 -0.0087418 

-0.0060085 -0 .0083948 

-0.9059903 -0.0107760 

-0.0059908 -0.0083167 
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two. The objective of this study is to derive general expressions to 

calculate epsilon two. All equations relating each variable to the prin-

cipal strain epsilon .two are combined to yield two equations. The first 

one calculates epsilon two for the case where there is only tension 

force applied. The second calculates epsilon two for the combined load-

ing case where both tension and shear forces are applied. The changing 

dimensions of the web model due to variable length-to-width ratios do 

not affect the amount of lateral contraction. Therefore, the general 

expressions do not include length and width terms. 

Equations (4.2), (4.4a), (4.5a), and (4.7) calculate epsilon two 

.for the simple tensile loading case. Each of these equations contains 

no higher order terms. Tension and Poisson's ratio are directly proper-

tional to epsilon two, unlike thickness and modulus of elasticity which 

are inversely proportional. Therefore, it may be assumed that a :general 

expression combining all four variables may be written as 

K vT 
tE (4.9) 

where K is a constant o( proportionality. Each one of the Equations 

('4.2), (4.4a), (4.5a), and (4.7) may be written in a general form: 

£2 ( t) = (4.lOa) a t 

£2 ( \)) = -b \) ·(4. lOb) 

£2 (E) 
c (4. lOc) = --
E 

£2 (T) = -d T ( 4. l Od) 

where a= 166300.6 in.-l, ~ = 0.0206364 in./in., c = 3005.503 lbs/in., 

and d = 601 .292*10-6 in./lbs. Equating each one of Equations {4.10) to 
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Equation (4.9) enables a unique solution for the unknown constants: 

a 

c = 

-k 
l 

vT 
E 

v 
d = -k4 tE 

(4. lla) 

(4.llb) 

(4. 11 c) 

( 4. 11 d) 

where k1 = -1 .00220124, k2 ·= -1 .00182, k
3 

= -1.0~183433, and k4 = 

-1 .00215333. The arithmetic average of the four constants yields the 

constant K since the expressiqns involved are linear. The general ex-

pression of Equation (4.9) becomes 

-1.00200223 vT 
tE 

(4. 12) 

which is a general expression to calculate epsilon two when there is no 

shear force applied and all parameters are within their limiting values. 

If a unit area is defined as A= t *unit width, Equation (4.12) may be 

written in an alternative form· 

where crL is the longitudinal stress in the web. The rel.ative error be

tween the.calculated epsilon two and that predicted using Equation 

(4.12) or (4.13) is less than 0.5 percent, which is accept~ble for num-

erical solutions such as this. 

In the case of tension and shear forces ·acting on the web simultan-

eously, the amount o-f lateral contraction may be calculated for each in-

dividual variable using Equations (.4.lb), (4.4bl, (.4.5b)., (4.6b.)_, a~d 
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(4.8). The presence of the shear force introduces nonlinearities and 

higher order terms in the expression for the tension force (Equation 

(4.6b)). A general expression combining all variables may be written 

as 

(4. 14) 

where Kv' KE, Kt, ~' and K5 are values of epsilon two which may be cal

culated using Equations (4.lb), (4.4b), (4.5b), (4.6b}, and (4.8), re-

spectively. C is a constant of proportionality which acts as a 11correc-

tion factor." Values of the factor C may be extracted from the graph 

in Figure 16 or evaluated using the expression 

p c = ...,....~--,........,,....--~~~~~~-.-

( 1 .226584 p + 0.3770973) (4. 15} 

P is the variable product times 100. The variable product is defined 

as 

Product = (4.16} 

The procedure used to obtain the constant Kin _Equation (4~9) is employ-

ed in this case to obtain C. However, nonlinearities are involved rn 

this case and the data ·set is curve fitted to yield an expression for C 

in terms of P (product * 102). 

A relatively large error is introduced -in the case of curve fitting 

the data set to obtain an expression for the constant C. Hence the total 

error a·mounts to 10 percent approximately.:- This is due, in part, to the 

nonlinearities involved and the large number of curve fitting. 
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Equations (4.12), (4.13), and (4.14) calculate the average lateral 

strain of an element in the model. By definition 

b.w 
£2=-w (4.17) 

Therefore, the total lateral contraction of a web with width w is £2 *w. 

Figure 17 shows the principal stress directions for each element 

for a successful run of the general model. The tension load in this run 

is 4 lbs/in. and the shear force is 2.5 lbs/in. The elements for which 

directions for both principal stresses are shown have assumed taut be-

havior. Those with one principal stress direction are wrinkled ele-

ments. According to the theory on partly wrinkled membranes (Chapter 

I I), in a wrinkled element one of the principal stresses is zero while 

the nonzero principal stress acts parallel to the wrinkle. The forma-

tion of wrinkles along the diagonal is evident in Figure 17. No ele-

ment has assumed slack behavior. 

4.2 NASTRAN Buckling Analysis 

The NASTRAN version of the web model (Figure 4) is subjected to 

buckling analysis. The objective is to force the model to buckle in 

order to determine the number of formed wrinkles. This may be accom-

pl ished either by counting the stress reversals in the transverse di-

rection or by using the NASTRAN plotting capabilities to plot the vari-

DUS mode shapes and visualize the formed wrinkles. A re(ationship is 

to be derived to predict the number of wrinkles as a function of the 

various length-to-width ratios. 

The quadrilateral element ~QUAD2 is em~loyed for its ability to 

model out-of-plane deflections i'ncurred during wrinkling. The boundary 



Figure 17. Directions of Rrincipa/ Stresses for 

Node/ Loaded in Both Tens/on •nd Compression 
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conditions in the NASTRAN models remain the same as in the general mod-

el cpnsisting of triangular elements. The inverse power method is em-

ployed in the analysis for symmetric matrix operations. The observed 

number of wrinkles for the input length-to-width ratios are listed in 

Table VI I. These data pairs are curve fitted to yield the inverse re-

lationship 

WR= (2.3319R + 2.854609) (4.l8) 
R 

where R denotes the length-to-width ratio. A plot of Equation (4.18). 

is shown in Figure 18. It may be observed that the number of wrinkles 

decreases asymptotically to a small number at large ratios (greater 

than 3,5). Changes in the number of wrinkles formed at large ratios 

occur slowly and at large i.ntervals (number of wrinkles may drop to 2i 

for a ratio of ].0). Abrupt increases in>the number of wrinkles is ob-

served for length-to-width ratios less than 2.0. 

TABLE VI I 

OBSERVED NUMBER OF WRINKLES FOR VARIOUS 
LENGTH-TO-WIDTH RATIOS 

Length-to
W idth Ratio 

l.O 
l. 5 
2.0 
2.5 
3.0 
3,5 
4.0 
4.5 
5.0 

Number of 
.Wrinkles 

5.0 
4.5 
4.0 
3,5 
3.0 
3.0 
3 .o, 
3.0 
3.0 
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Figures 19, 20, and 21 show the results of the buckling analysis. 

The number of wrinkles formed becomes apparent for the various length-

to-width ratios. 

4.3 Calculation of the Wrinkle Amplitude 

The final task in this study is the calculation of the amplitude 

of the formed wrinkles. Two assumptions are made to assist this task. 

The wrinkles are assumed to be sinusoidal in form of constant amplitude. 

These assumptions are justified through observations of real time web 

processing and examination of the wrinkles formed during the buckling 

analysis _previously mentioned. 

The amplitude of the sine wave may be calculated as follows. The 

wavelength of the sine wave may be obtained using the expression 

p = W- t:i.W 
WR (4. 19) 

where Wis the width of the web, t:i.W is the overall lateral contraction_, 

and WR is the number of wrinkles in the web. The sine wave takes the 

form 

A . 21T 
= sin - x 

p 
(4. 20) 

where A is the amplitude of the formed wrinkles. The total length of 

the arcs forming the sine wave may be obtained: 

(4.21) 

The integration of this expression i? a difficult task. Therefore, Simp

son's rule is applied to obtain a solution. The expression of Equation 

(4.21) may be written as 
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(4.22) 

The solution of Equation (4.22) is the amplitude of the sine wave. A 

combination of Simpson's l/3 and 3/8 rules is employed to numerically 

integrate the integral part of the expression. A listing of the com-

puter algorithms is presented in the Appendix. The Modified Linear In-

terpolation scheme is applied to obtain a final solution. For a known 

number of wrinkles in the web and a known width, a curve may be obtain-

ed showing the relationship between the amplitudes and the amount of 

lateral contraction. One such curve is shown. in Figure 22. The width 

of the web is 32 inches and the number of wrinkles is four. The ampli-

tude of the wrinkles is predicted over a range of contraction from 0.5 

to 3.0 inches. For example, for a one-inch contraction of the web, the 

wrinkle amplitude is predicted to be 0.43 inches. 

4.4 Summary 

In this chapter the analytical results of this stu~y were present-

ed. The selection of the 11 important 11 variables to influence the amount 

of lateral contraction and how they were examined was presented. Rela-

tionships were derived for epsilon two as a function of each individual 

variable. Plots for each expression were presented for a specified do-

main of variable values. Two gen~ral equations were derived to predict 

the overall lateral contraction of the web by means of combining the in-

dividual variables into one expression. 

NASTRAN was employed to perform buckling analysis on the web mod-

els. Plots of the various mode shapes were obtained to show the number 
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of formed wrinkles. A relationship was obtained to predict the number 

of wrinkles formed for a given length-to-width ratio. 

Finally, an algorithm was developed to predict the amplitude of 

the Wrinkles as a function of the number of wrinkles formed and the 

overall lateral contraction. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5. l Overview 

In this analytical study, finite element methods were employed to 

study the formation of wrinkles in webs. The effects of several para

meters on the amount of lateral contraction of the web was studied, 

since excessive lateral contraction allows wrinkles to form. The com

puter code STRESS.FOR was the major instrument of investigation. An 

element·may assume three different behaviors: taut,wrinkled, and slack. 

The computer code is able to completely analyze the element and most im

portantly calculate the average lateral strain on it. A "variable Pois

son's ratio11 A. replaced the classic ratio v, since it has been determin

ed by Reference [l] that in the wrinkled region v fails to predict the 

excessive lateral contraction. 

The parameters thought to be of importance and therefore closely 

examined were the material properties (Poisson's ratio, modulus of elas

ticity), thickness of the region, various loading conditions (tensile 

loading, combination of tension and shear forces), and geometry of the 

web (various length-to-width ratios). The obtained results revealed 

various relationships between the lateral strain and the examined para

meters. In the cas_e where only tensile loading was applied·, the lateral 

strain varied in a linear fashion with the tensile loading and Pois

son's ratio. Large tension caused large lateral contraction. For the 
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same loading form, the thickness of the material and Young's modulus 

were inversely proportional to the lateral strain. When the combined 

tensile and shear loading form was applied, nonlinearities were intro

duced to the various relationships. Expressions including higher order 

terms were obtained. Two different sets of equations were assembled re

lating the examined parameters to the element lateral contraction, one 

for each loading form. The equations in each set were combined to form 

two general expressions. These expressions predict the overall lateral 

contraction of a web for various parameter values within the domains 

specified in Chapter IV. 

The finite element code NASTRAN was employed to perform buckling 

analysis on the web model. The capability of this code to calculate 

out-of-plane displacements allowed the number of wrinkles formed for 

given length-to-width ratios to be determined. Several models of vari

ous ratios were examined. The data set of the recorded number of wrin

kles for a given ratio enabled the derivation of an expression relating 

the two. Thus the number of wrinkles may be predicted analytically for 

a known length-to-width ratio. This relationship revealed that the num

ber of wrinkles is inversely proportional to the various ratios. The 

number of formed wrinkles becomes smaller at large length-to-width ra

tios. The reverse is also true. 

Finally, an algorithm was developed for the calculation of the ave

rage wrinkle amplitude. The amplitude is dependent on the number of 

wrinkles and the amount of overall lateral contraction present. The re

sulting expressions require simple numerical integration and root find

ing schemes. 
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5.2 Conclusions Regarding Modeling Characteristics 

In this study, the performed analysis of the web assumed a static 

model. The boundary conditions of the two nor]fr.ee ends were as fol

lows. One end was completely fixed in both x and y directions while 

the opposite end was allowed to translate in the longitudinal direc

tion. These were considered suitable in this study, since it is desi·r

able for the traveling web to ride onto the carrying roller without any 

relative displacements in the x or y directions. The material of the 

web was assumed to be of uniform thickness and all thermal effects are 

neglected. The analysis is restricted to in-plane element interaction. 

The physical length·of the model was twice its 11effective 11 length. 

This was implemented to account for the portion of the web traveling to

ward the guiding roller and enable the application of the tensile load

ing upstream from it. The model consisted of triangular elements which 

are orientation ~ndependent. Hence no transformation of axes was re

quired. The element density of the model is important for good numeri

cal accuracy. Nodes placed far apart result in inaccurate displacement 

cal~ulations which in turn affect the overall outcome. 

Basic web loading characteristics were incorporated in the model. 

The tensile loading is induced to the web by the driver roller. The 

shear forces were applied along the midspan of the model. These forces 

are the result of the effect of the guiding roller on the web. In the 

case of a misaligned roller, the forces induced are applied to the web 

at an angle. Breaking these forces into components in the x and y di

rections enables the computer code to simulate the effects of the mis

aligned roll on the web. As is the case with all numerical solutions, 



an iterative process was employed in the application of the various 

loads. 
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The obtained results are accurate and simulate the behavior of the 

web up to a small distance away from the boundaries (roller surface). 

The small region before the web comes in contact with the roller sur

face is· a region of high stresses. This is because shear forces can be 

resisted in that area. The validity of the obtained results in that re

gion was not examined. The study of web behavior over a roller is a 

problem which cannot be analyzed with the present model. The results 

of the present study, however, may serve as 11 boundary conditions 11 for a 

study to determine the behavior (failure criteria) of wrinkles as they 

travel around the roller wrap. 

5.3 Recommendations for Future Studies 

In future research the boundary conditions should be modified to 

better simulate the process of the web traveling over the roller sur

face. The web slides in the lateral direction as it travels over the 

carrying roller. This may be simulated by defining spring reactions in 

the lateral direction. The same concept should be applied in both ends 

with the spring reac~ions acting oppositi to each other in the longitu

dinal direction. 

The computer code STRESS.FOR may be modified easily to accommodate 

various web behaviors. For example, the 11 spreading 11 effect of the curv

ed axis roller may be simulated by defining permanent displacements on 

the web in the region near and on the roller. 
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In summary, it is noted that extensive experimental analysis is re

quired to verify all of the derived relationships. Due to the simplis

tic approach taken in this study, some variables which affect web behav

ior may have been overlooked. 
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C********************************************* 
C ----------PROGRAM STRESS.FOR --------------
C********************************************* 
c 
c 
c 
c 
c 
c 
c 
c 
c 

The computer program STRESS is used to 
analyze two-dimensional, plane stress 
elasticity problems.The program includes 
the possibility of wrinkles being formed 
within the model due to loading.The 
program uses only the three node triangular 
element. 

C********************************************* 

c 

COMMON/ELMATX/ESM(6,6),X(3),Y(3),D(3,3) 
+ ,DT(3,3),DW(3,3),IELR 

COMMON/GRAD/B(3,6),AR2 
COMMON/MTL/EM,PR,TH,NE,NN 
COMMON/TLE/TITLE(20) 
COMMON/VARS/TMAX,TDF,SMAX,DSF,NUM,NUMl 
COMMON/TEMPS/IAN(400),AF(400), 

+ IASN(400),ASF(400) 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

+ IPC(400),PC1(400),NUM2 
COMMON/AA/ARB(500),ARC(500), 

+ DTEMP(500,9),KEL 
DIMENSION NEL(500,3),XC(400),YC(400) 
DIMENSION NS(6),U(6),STRA(3),STRE(6) 

+ , ICK( 500) 
DIMENSION AEC(500),AEB(500) 

CHARACTER DN,Dl 

C********************************************* 
C DEFINITION OF THE INPUT VARIABLES 
C*************************************~******* 
c 
c 
c 
c 
c 

·c 
c 
c 
c 
c 
c 
c 
c 
.c 
c 
c 
c 
c 

TITLE AND PARAMETERS 
TITLE - A DESCRIPTIVE STATEMENT OF THE 

NN 
NE 

PROBLEM 
NUMBER OF NODES 

- NUMBER OF ELEMENTS 

MATERIAL PROPERTIES AND THICKNESS 
EM - MODULUS OF ELASTICITY 
PR - ~OISSON'S RATIO 
TH - THICKNESS OF THE REGION 

-NODAL COORDINATES 
XC(I) - X COORDINATES OF THE 

NUMERICAL SEQUENCE 
YC(I) ·- Y COORDINATES OF THE 

NUMERICAL SEQUENCE 

NODES IN 

NODES IN 

C ELEMENT DATA. 
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c 
c 
c 
c 
c 

N 
NEL(N,I) 
NEL(N,J) 
NEL(N,K) 

- ELEMENT NUMBER 
- NUMERICAL VALUE OF NODE I 
- NUMERICAL VALUE OF NODE J 
- NUMERICAL VALUE OF NODE K 

C*********************************************** 
C------ INPUT SECTION OF THE PROGRAM --------·--
C*********************************************** 
c 

c 

OPEN(lO,FILE='DATA.DAT',STATUS='UNKNOWN') 
OPEN(9,FILE='TEMP.DAT' ,STATUS='UNKNOWN') 
OPEN(15,FILE='OUT.DAT' ,STATUS='UNKNOWN') 

C INPUT OF THE TITLE CARD AND PARAMETERS 
c 

WRITE(6,*) 'ENTER PROJECT TITLE ' 
READ(5,3) TITLE 

3 FORMAT(20A4) 

c 

WRITE(6,*) 'ENTER NUMBER OF ELEMENTS ?' 
READ(5,*) NE 
WRITE(6,*) 'ENTER NUMBER OF NODES ?' 
READ(5,*) NN 

C COMPARISON CHECK OF NN AND NE WITH THE 
C VALUES USED IN THE DIMENSION STATEMENTS 
c 

ISTOP = 0 
C**** CHECK NUMBER OF NODES **** 

IF (NN.LE.400) GO TO 6 
WRITE(6,10) 

10 FORMAT(lOX,'NUMBER OF NODES EXCEEDS 400'/ 
$ 10X,26HCHECK DIMENSION STATEMENTS/ 
$ 10X,20HEXECUTION TERMINATED) -

ISTOP = 1 
c 
C CHECK NUMBER OF ELEMENTS 
c 
6 IF (NE.LE.500) GO TO 1 

WRITE(6,2) 
2 FORMAT(lOX,'NUMBER OF ELEMENTS EXCEEDS' 

$ ' 500'/lOX,'CHECK DIMENSION_ STATEMENTS'/ 
$ 20HEXECUTION TERMINATED) 

ISTOP = 1 
1 IF (ISTOP.EQ.1) STOP 
c 
C INPUT OF THE MATERIAL PROPERTIES 
c 

WRITE(6,*) 'ENTER YOUNGS MODULUS ?' 
READ(5,*) EM 
WRITE(6,*) 'ENTER POISSONS RATIO ?' 
READ(5,*) PR 
WRITE(6,*)'ENTER THICKNESS OF REGION?' 
READ(5,*) TH 
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C CORRECT ANY INCORRECT INPUT ---
C 

c 

c 

c 

CALL CORRECT 

NP = 2*NN 

WRITE(6,*)'ENTER PRINT STEP FOR SHEAR?' 
READ(S,*) ISTEP 

C ELEMENT NUMBERS SMALLER THAN THE ONE ENTERED 
C WILL. BE EXCLUDED FOR THE OUTPUT 
c 

c 

WRITE(6,*)'ENTER LOWEST ELEMENT NUMBER' 
WRITE(6,*)'TO BE INCLUDED IN THE OUTPUT' 
READ(S,*) KEL 

C INPUT NODAL COORDINATES FROM FILE DATA.DAT 
c 

READ(lO,*) (XC(I),YC(I),I=l,NN) 
c 
C OUTPUT OF TITLE AND DATA HEADINGS 
c 

WRITE(l5,4) TITLE,NN,NE 
4 FORMAT(1Hl////10X,20A4//13X,'NN ='I6/ 

$13X,5HNE =I6) 
WRITE(lS,16) EM,PR,TH 

16 FORMAT(//lOX,'PARAMETER VALUES' 
$/13X,4HEM =,E15.5/13X,4HPR =, 
$ E15.5/13X,4HTH =,E15.5) 

c 
C INPUT AND ECHO PRINT OF ELEMENT DATA 
C CHECK TO SEE IF THE ELEMENTS ARE IN SEQUENCE 
c 

NID = 0 
DO 9 KK = 1,NE 

READ(lO,*) N,(NEL(N,I),I=l,3) 
IF ((N-1).NE.NID) WRITE(6,17) N 

1 7 FORMAT ( I 1 ox' 7HELEMENT' I 4 ' I NOT IN SEQUENCE I.) 
NID = N 

9 CONTINUE 
CLOSE(lO) 

c 
C************************************************ 
C ANALYSIS OF THE NODE NUMBERS 
C************************************************ 
c 
C INITIALIZATION OF A CHECK VECTOR 
c 

DO 20 I = 1,NN 
20 ICK(I) = 0 
c 
C CHECK TO SEE 'IF ANY NODE NUMBER EXCEEDS NP 
c 
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DO 25 I = l,NE 
DO 3a J = 1,3 

K = NEL(I,J) 
ICK(K) = 1 

3a IF (K.GT.NN) WRITE(6,35) J,I,NN 
35 FORMAT(/laX,4HNODE,I4,llH OF ELEMENT 

$ ,I4,13H EXCEEDS NN =,I4) 
25 CONTINUE 
c 
C CHECK TO SEE IF ALL NODE NUMBERS 
C THROUGH NN ARE INCLUDED 
c 

DO 4a I = l,NN 
4a IF (ICK(I).EQ.a) WRITE(6,45) I 
45 FORMAT(/laX,4HNODE,I4,' DOES NOT EXIST') 
C********************************************* 
C CREATION AND INITIALIZATION OF 
C THE STORAGE VECTOR {A} 
C********************************************~ 
C CALCULATION OF THE BAND WIDTH 
c 

IEL = a 
INBW = a 
NBW = a 
DO 5a KK = l,NE 

DO 55 I = 1,3 
55 NS(I) = NEL(KK,I) 

DO 5a I = 1,2 
IJ = I + 1 

DO 5a J = IJ,3 
NB= IABS(NS(I)-NS(J)) 
IF (NB .. EQ.a) WRITE(6,6a) KK 

6a FORMAT(/laX,iHELEMENT,I3,' HAS TWO' 
$ 'NODES WITH THE SAME NODE NUMBER') 
IF (NB.LE.NBW) GO TO 5a 

INBW = KK 
NBW = NB 

5a CONTINUE 
NBW = (NBW+l) *2 
WRITE(6,65) NBW,INBW 

65 FORMAT(/laX,12HBANDWIDTH IS,I4, 
$ llH IN ELEMENT,I4) 

c 
C INITIALIZATION OF THE COLUMN VECTOR {A} 
c 

JGF = NP 
JGSM = JGF + NP 
JEND = JGSM + NP * NBW 
IF (JEND.GT.35aaa) GO TO 7a 
JL = JEND - JGF 

DO 75 I = l,JEND 
75 A(I) = a.a 

GO TO 85 
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70 WRITE(6,80) JEND 
80 FORMAT(lOX,'DIMENSION OF {A} VECTOR' 

$ ' HAS BEEN EXCEEDED'/ 
$10X,'DIMENSION MUST BE EQUAL TO' ,ElO.O,/ 
$ lOX,'EXECUTION TERMINATED') 

STOP 
c 
C******************************************** 
C GENERATION OF THE SYSTEM EQUATIONS 
C******************************************** 
c 
85 

86 
c 
c 
c 
c 

205 
c 
c 
c 

c 

c 

DO 86 I = 1,NN 
ASF( I) = 0 .·o 
IASN(I) = 0.0 
AF(I) = 0.0 
IAN(I) = 0.0 
PCl(I) = 0.0 
IPC(I) = 0 

CONTINUE 

INITIALIZATION OF [Dw] WRINKLED BEHAVIOR 
MATRIX 

DO 205 I = 1,3 
DO 205 J = 1,3 
DW(I,J) = 0.0 

GENERATION OF (DT) TAUT BEHAVIOR MATRIX 

R = EM /(l.0-PR**2) 
DT(l,1) = R 
DT(2,2) = DT(l,1) 
DT(3,3) = R*(l.0-PR)/2.0 
DT(l,2) = PR*R 
DT(2,1) = DT(l,2) 
DT(l,3) = 0.0 
DT(3,1) = 0.0 
DT(2,3) = 0.0 
DT(3,2) = 0.0 

IFLAG2 = 0 
IFLAG = 0 

C SET [DT] EQUAL TO [D] 
c 

DO 135 I = 1,3 
DO 135 J = 1,3 

135 D(I,J) = DT(I,J) 
c 

DO 140 I = 1,NE 
AEC(I) = 0.0· 
AEB(I) = 0.0 
ARB(I) = 0 
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140 ARC(I) = 0 
c 
C START GENERATING THE ELEMENT MATRICES 
c 
145 IFLAGl = 0 

IFLG = 0 
IELR = 0 
KK = 1 

C********************************************* 
C GENERATION OF THE NODAL DEGREES OF FREEDOM 
C RETRIEVAL OF THE NODAL COORDINATES 
C********************************************* 
c 
C SUBROUTINE CHECK ASSIGNS THE 
C APPROPRIATE [D] MATRIX TO EACH ELEMENT 
c 
150 CALL CHECK(KK) 
c 

DO 155 I = 1,3 
J = NEL (KK,I) 
NS(2*I-1) = J*2-1 
NS(2*I) = J*2 
X(I) = XC(J) 

155 Y(I) = YC(J) 
c 
C CALCULATION OF ELEMENT MATRICES 
c 

CALL ELSTMX(KK) 
c 
C DIRECT STIFFNESS PROCEDURE 
c 

DO 160 I = 1,6 
II = NS(I) 

DO 160 J = 1,6 
JJ = NS(J) + 1-II 
IF (~J.LE.O) GO TO 160 
Jl=JGSM+(JJ-l)*NP+II-(JJ-l)*(JJ-2)/2 
A(Jl) = A(Jl) + ESM (I,J) 

160 CONTINUE 
KK = KK + 1 
IF (KK.LE.NE) GO TO 150 

C*******************************************~* 
C CALCULATION OF THE ELEMENT STRESS AND 
C STRAIN COMPONENTS AND THE PRINCIPAL 
C STRESS VALUES 
C********************************************* 
c 

c 

IF (IFLAG2.EQ.O) CALL MODIFY 
IF (IFLAG2.EQ.1) CALL MODIFl 
CALL DCMPBD 
CALL SLVBD 

IELR = 1 
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DO 165 KK = 1,NE 
c 
C GENERATION OF THE NODAL DEGREES OF FREEDOM 
C RETRIEVAL OF THE NODAL COORDINATES 
c 

DO 170 I = 1,3 
J = NEL(KK,I) 
NS(2*I-l) = 2*J-l 
NS(2*I) = 2*J 
X(I) = XC(J) 

170 Y(I) = YC(J) 
c 
C RETRIEVAL OF THE ELEMENT NODAL DISPLACEMENTS 
c 

DO 175 I = 1,6,2 
NSl = NS(I) 
NS 2 = NS ( I+ 1 ) 
U(I) = A(NSl) 

175 U(I+l) = A(NS2) 
c 
C CALCULATION OF THE STRAIN VECTOR 
C STRAIN = [BJ [U] 
c 

CALL ELSTMX(KK) 
DO 180 I =1,3 

STRA(I) = 0.0 
DO 180 K=l,6 

180 STRA(I) = STRA(I)+B(I,K)*U(K)/AR2 
c 
C CALCULATION OF THE STRESS VECTOR 
C STRESS = [DJ [STRAIN] 
c 

CALL CHECK(KK) 
DO 185 I=l,3 

STRE(I) = 0.0 
DO 185 K = 1,3 

185 · STRE(I) = STRE(I)+D(I,K)*(STRA(K)) 
c 
C CALCULATION OF THE PRINCIPAL STRESSES 
c 

AA= (STRE(l) +STRE(2))/2.0 
AD=((STRE(l)-STRE(2))/2.0)**2+STRE(3)**2 
AB = SQRT(AD) 
Sl = AA + AB 
S2 = AA - AB 
Wl = STRA(l) + STRA(2) 
W2 = (STRA(l) - STRA(2))**2 + STRA(3)**2 
El= (Wl + SQRT(W2)) / 2.0 
E2 = (Wl - SQRT(W2)) / 2.0 
IFLAG2 = 1 
IFLAG = 1 
TM = AB 
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AC= ATAN2(STRA(3),STRA(l)-STRA(2)) 
THM = ((180.0/3.14159265)*AC)/2.0 
GO TO 195 

190 THM = 90.0 
c 
195 ARB(KK) = ARC(KK) 

AEB(KK) = AEC(KK) 
c 

C· 

c 

c 

AEC(KK) = El 

IF (ARC(KK).EQ.2.0) THEN 
Sl = EM * El 
S2 = 0.0 

END IF 

ARC(KK) = 0 
IF (El.LT.0) ARC(KK) = 1 
IF (El.GT.0.AND.PR*El.LT.-E2) ARC(KK)=2 

C DEFINE [Dw] WRINKLED BEHAVIOR MATRIX 
c 

c 

c 
c 

c 

IF (ARC(KK).NE.2.0) GO TO 215 

PP= (STRA(l) - STRA(2)) / ( El-E2 
QQ = STRA(3) / ( El-E2 ) 

DW(l,l) 
DW(2,2) 
DW( 3, J) 
DW(l,3) 
DW(2,3) 
DW(3,l) 
DW(3,2) 

M = 1 
I = 1 
J = 1 

= EM * (l+PP)/ 2.0 
= EM * (1-PP)/ 2.0 
= EM I 4.0 
= QQ * EM I 4.0 
= DW(l,3) 
= DW(l,3) 
= DW(2,3) 

210 DTEMP(KK,M) = DW(I,J) 
J = J + 1 
M = M + 1 
IF (J.GT.3) THEN 

I = I + 1 
J = 1 

ENDIF 
IF (M.GT.9) GO TO 215 
GO TO 210 

215 WRITE(9,*) KK,STRA(l),STRE(l),Sl,STRA(2) 
$,STRE(2),S2,STRA(3),STRE(3),TM,El,E2,THM 

c 
165 CONTINUE 
c 
C CHECK FOR SIMILAR PREVIOUS @ CURRENT 
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C [D] MATRICES 
c 

DO 220 KK = 1,NE 
IF (ARC(KK).NE.2.0) GO TO 220 

IF(ABS(ARB(KK)-ARC(KK)).EQ.O.) GO TO 220 
IFLAGl = 1 

220 CONTINUE 
c 
C ADJUST AND RETURN IF THE ABOVE IS FALSE 
c 

c 

IF (IFLAGl.EQ.1) THEN 
REWIND(9) 
CALL LOAD 
GO TO 145 

ENDIF 

C CONVERGE ON PRINCIPAL STRAIN El 
C WHEN WRINKLES ARE PRESENT 
c 

DO 225 KK = 1,NE 
IF (ARC(KK).NE.2.0) GO TO 225 

IF(ABS(AEB(KK)-AEC(KK)).LE.0.0001) THEN 
GO TO 225 

END IF 
IFLG = 1 

225 CONTINUE 
c 
C ADJUST AND RETURN IF NO CONVERGENCE 
c 

c 

IF (IFLG.EQ.1) THEN 
REWIND(9) 
CALL LOAD 
GO TO 145 

ENDIF 

C IF TMAX IS REACHED @ SHEAR IS ZERO 
C THEN PRINT RESULTS 
c 

c 

c 

IF (ABS(AF(2)).GE.ABS(TMAX) 
$ .AND.ASF(2).EQ.0.0) THEN 

REWIND(9) 
CALL PRINTR(ASF(2),TMAX,NE) 

ENDIF 

IF (ASF(2).EQ.0.0) GO TO 228 

C PRINT INTERMEDIATE RESULTS FOR EVERY 
C ISTEP INCREASE IN SHEAR LOADING 
c 

IF (INT(ASF(2))/ISTEP*ISTEP 
$.EQ.INT(ASF(2))) THEN 

REWIND(9) 
CALL PRINTR(ABS(ASF(2)),TMAX,NE) 
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ENDIF 
c 
228 IF(ABS(AF(2)).GE.ABS(TMAX)) GO TO 230 
c 
c 

DO 235 I = l,NUM 
·IB = IAN(I) 
BV = AF(I) + TDF 

IF(I.EQ.1.0R.I.EQ.NUM) THEN 
BV = (AF(I)*2 + TDF)/2.0 

END IF 
AF(I) = BV 

235 CONTINUE 

c 

CALL LOAD 
REWIND(9) 
GO TO 145 

230 IF(ABS(ASF(2)).GE.ABS(SMAX)) STOP 
c 

DO 240 I = l,NUMl 
IB = IASN(I) 
BV = ASF(I) + DSF 
IF (I.EQ.1.0R.I.EQ.NUMl) THEN 

BV = (ASF(I)*2 + DSF) / 2.0 
END IF 

ASF(I) = BV 
240 CONTINUE 

CALL LOAD 
REWIND(9) 
GO TO 145 

END 

C********************************************* 
SUBROUTINE PRINTR(ASF,AF,NE) 

C********************************************* 

c 

COMMON/AA/ARB(500),ARC(500), 
$ DTEMP(500,9),KEL 

COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 
$ IPC(400),PC1(400),NUM2 

COMMON/TLE/TITLE(20) 

WRITE(15,320) TITLE 
320 FORMAT(1Hl///10X,20A4) 
c 

WRITE(15,300) AF,ASF 
300 FORMAT(//7X,14HTENSION LOAD =,E15.6, 

$ 5X,14H SHEAR LOAD = ,E15.6/) 
c 

WRITE(15,301) 
301 FORMAT(//lOX,'NODAL DISPLACEMENT' 

$ I VALUES'/) 
NN = NP/2 
DO 303 I = 1,NN 
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WRITE(15,302) I,A(I*2-1),A(I*2) 
302 FORMAT(llX,'NODE' ,I4,3X, 

$ I X=',E15.6,3X,' Y=',E15.6) 
303 CONTINUE 
c 
315 READ(9,*) I,SSTRA1,SSTRE1,SS1,SSTRA2, 

$SSTRE2,SS2,SSTRA3,SSTRE3,TTM,EE1,EE2,TTHM 
c 

c 

IF (I.LT.KEL)THEN 
I = I + 1 
GO TO 315 

END IF 

WRITE(15,305) I 
305 FORMAT(/10X,7HELEMENT,I4) 
c 

IF (ARC(I}.EQ.0.0) THEN 
WRITE(15,306) 

306 FORMAT(lOX,'TAUT BEHAVIOR [D] MATRIX'/) 

c 
END IF 

IF (ARC(I).EQ.1.0) THEN 
WRITE(lS,307) 

307 FORMAT(lOX,'SLACK BEHAVIOR [D] MATRIX'/) 
ENDIF 

c 
IF (ARC(I).EQ.2.0) THEN 
WRITE(15,308) 

308 FORMAT(-lOX, 'WRINKLED BEHAVIOR' 
$' [D] MATRIX'/) 

c 
ENDIF 

WRITE ( 15-, 310 ) SSTRAl, SSTREl , SS 1, SSTRA2, 
$SSTRE2,SS2,SSTRA3,SSTRE3,TTM,EE1,EE2,TTHM 

310 FORMAT(15X,5HEXX =,El2.5,5X,5HSXX =, 

c 

$ El2.5,5X,5HS1 =,El2.5/15X,5HEYY =, 
$ El2.5,5X,5HSYY =,El2.5,5X,5HS2 =, 
$El2.5/15X,5HGXY =,E12.5,5X,5HTXY =,E12.5, 
$ 4X,6HTMAX =,E12.5/15X,5HE1 = ,E12.5,5X, 
$ 5HE2 = ,E12.5,5X;7HANGLE =,F6.2,4H DEG/) 

I = I + 1 
IF (I.LE.NE) GO TO 315 

RETURN 
END 

C********************************************* 
SUBROUTINE ELSTMX(KK) 

C********************************************* 
COMMON/MTL/EM,PR,TH,NE,NN 
COMMON/GRAD/B(3,6),AR2 
COMMON/ELMATX/ESM(6,6),X(3),Y(3),D(3,3) 

$ ,DT(3,3),DW(3,3),IELR 
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DIMENSION C(6,3) 
c 
C GENERATION OF THE B MATRIX 
c 

DO 400 I=l,3 
DO 400 J=l,6 

400 B(I,J) = 0.0 

c 

B(l,1) = Y(2)-Y(3) 
B(l,3) = Y(3) - Y(l) 
B(l,5) = Y(l) - Y(2) 
B(2,2) = X(3) - X(2) 
B(2,4) = X(l) - X(3) 
B(2,6) = X(2) X(l) 
B(3,1) = B(2,2) 
B(3,2) = B(l,1) 
B(3,3) = B(2,4) 
B(3,4) = B(l,3) 
B(3,5) = B(2,6) 
B(3,6) = B(l,5) 
AR2 = X(2)*Y(3)+X(3)*Y(l)+X(l)*Y(2)

$ X(2)*Y(l)-X(3)*Y(2)-X(l)*Y(3) 
IF (IELR.EQ.1) RETURN 

C MATRIX MULTIPLICATION TO OBTAIN C = [BT] [D] 
c 

DO 405 I = 1,6 
DO 405 J = 1,3 
C(I,J) = 0.0 

DO 405 K = 1,3 
405 C(I,J) = C(I,J) + B(K,I) * D(K,J) 
c 
C MATRIX MULTIPLICATION TO OBTAIN ESM 
C ESM = [BT] [ D] [ B] = [ C] [ B ] 
c 

DO 410 I = 1,6 
DO 410 J = 1,6 
SUM = 0.0 
DO 415 K = 1,3 

415 SUM = SUM + C(I,K) * B(K,J) 
ESM(I,J) = SUM*TH/(2.0*AR2) 

410 CONTINUE 
RETURN 
END 

C********************************************** 
SUBROUTINE DCMPBD 

C********************************************** 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

$ IPC(400J,PC1(400),NUM2 
c 
C DECOMPOSITION OF A BANDED MATRIX INTO AN 
C UPPER TRIANGULAR FORM USING GAUSSIAN 
C ELIMINATION 
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c 
NPl = NP - 1 
DO 500 I = 1,NPl 

MJ = I + NBW - 1 
IF (MJ.GT.NP) MJ = NP 
NJ = I+l 
MK = NBW 
IF ((NP-I+l).LT.NBW) MK= NP -I +1 
ND = 0 

DO 505 J =NJ,MJ 
MK = MK - 1 
ND = ND + 1 
NL = ND + 1 

DO 505 K = 1,MK 
NK = ND + K 
JK = JGSM+(K-l)*NP+J-(K-l)*(K-2)/2 
INL= JGSM+(NL-l)*NP+I-(NL-l)*(NL-2)/2 
INK= JGSM+(NK-l)*NP+I-(NK-l)*(NK-2)/2 
II = JGSM + I 

505 A(JK)=A(JK)-A(INL)*A(INK)/A(II) 
500 CONTINUE 

RETURN 
END 

C********************************************** 
SUBROUT.INE SLVBD 

C********************************************** 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

$ IPC(400),PC1(400),NUM2 
NPl = NP - 1 

c 
·c DECOMPOSITION OF THE GLOBAL FORCE VECTOR 
c 

DO 550 I = 1,NPl 
MJ =I + NBW - 1 
IF (MJ.GT.NP) MJ =NP 
NJ = I + 1 
L = 1 

DO 550 J = NJ,MJ 
L=L+l 
IL=JGSM+(L-l)*NP+I-(L-l)*(L-2)/2 

550 A(JGF+J)=A(JGF+J)-A(IL)*A(JGF+I)/A(JGSM+I) 
c 
C BACKWARD SUBSTITUTION FOR DETERMINATION OF 
C THE NODAL VALUES 
c 

A(NP)= A(JGF+NP)/A(JGSM+NP) 
DO 555 K = l,NPl 

I = NP -. K 
MJ = NBW 
IF((I+NBW-1).GT.NP) MJ=NP-I+l 
SUM = 0.0 

DO 560 J = 2,MJ 
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N = I+J-1 
IJ=aGSM+(J-l)*NP+I-(J-l)*(J-2)/2 

56a SUM = SUM + A(IJ)*A(N) 
555 A(I)=(A(JGF+I)-SUM)/A(JGSM+I) 

RETURN 
END 

C********************************************** 
SUBROUTINE CHECK(KK) 

C********************************************** 

c 

c 

COMMON/AA/ARB(5aa),ARC(5aa), 
$ DTEMP(5aa,9),KEL 

COMMON/ELMATX/ESM(6,6),X(3),Y(3),D(3,3) 
$ ,DT(3,3),DW(3,3),IELR 

IF (IFLAG.NE.1) RETURN 

IF (ARC(KK).EQ.a) THEN 
DO 6aa I = 1,3 
DO 6aa J = 1,3 

6aa D(I,J) = DT(I,J) 

c 
ENDIF 

IF (ARC(KK).EQ.1) THEN 
DO 6a5 I = 1,3 

DO 6a5 J = 1,3 
6a5 D(I,J) = a.a 

c 

61a 

615 

62a 

ENDIF 

IF (ARC(KK).EQ.2) THEN 
M = 1 
I = 1 
J = 1 
DW(I,J) = DTEMP(KK,M) 
J = J + 1 
M = M + 1 
IF (J.GT.3) THEN 
I = I + 1 
J = 1 
ENDIF 
IF (M.GT.9) GO TO 615 
GO TO 61a 
DO 62a I = 1,3 

DO 62a J = 1,3 
D(I,J) = DW(I,J) 

ENDIF 
RETURN 
END 

C********************************************** 
SUBROUTINE MODIFY 

C********************************************** 
COMMON/TEMPS/IAN(4aa),AF(4aa), 
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c 

$ IASN(400),ASF(400) 
COMMON/VARS/TMAX,TDF,SMAX,DSF,NUM,NUMl 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

$ IPC(400),PC1(400),NUM2 

NUM = 0 
NUMl = 0 
NUM2 = 0 
SMAX = 0 
DSF = 0 

C********************************************** 
C INPUT OF THE NODAL FORCE VALUES 
C NV - NODE NUMBER 
C BV - VALUE OF THE FORCE 
C IB - DEGREE OF FREEDOM OF THE FORCE 
C********************************************** 

WRITE(6,90) 
90 FORMAT(/3X,'*** STRUCTURE LOADING***'/) 
91 WRITE(6,*)'LOAD STRUCTURE IN X-DIR (Y/N)?' 

READ(5,'(Al)') Dl 

c 

IF (Dl.EQ.'N') GO TO 109 
IF (Dl.EQ.'Y') GO TO 92 
GO TO 91 

92 WRITE(6,93) 
93 FORMAT(/3X,'ENTER DIRECTION OF FORCE 

c 

$APPLICATION'/ 
$ 3X,' XP --- POSITIVE X DIRECTION'/ 
$ 3X,' XN --- NEGATIVE X DIRECTION') 
READ(5,'(A2) I) DN 
IF ( DN. NE . I XP I • AND . DN. NE • I XN I ) GO TO 9 2 

IF (DN.EQ.'XP') WRITE(6,94) 
IF (DN.EQ.'XN') WRITE(6,95) 

94 FORMAT(/3X,'ENTER NUMBER OF NODES ON WHICH 
$ FORCE'/,3X,'IN THE POSITIVE 
$ X DIRECTION IS TO BE APPLIED?') 

95 FORMAT(/3X,'ENTER NUMBER OF NODES ON WHICH 

c 

$ FORCE'/,3X,'IN THE NEGATIVE 
$ · X DIRECTION IS TO BE APPLIED?') 

READ(5,*) NUM 
WRITE(6,*)' ENTER NODE NUMBERS?' 
READ(5,*)(IAN(I),I=l,NUM) 

98 DO 96 I = l,NUM 
WRITE(6,97) I,IAN(I) 

97 FORMAT(3X,I3,' --- NODE' ,I4) 
96 CONTINUE 
99 WRITE(6,*)'ANY INCORRECT NODES (Y/N) ?' 

READ(5,'(Al) ') Dl 
IF (Dl.EQ.'N') THEN 

WRITE(6,*)'ENTER NUMBER OPPOSITE TO NODE?'. 
READ(5,*) I 
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WRITE(6,*)'ENTER CORRECT NODE NUMBER?' 
READ(5,*) IAN(I) 
GO TO 98 
END IF 
IF (Dl.EQ.'Y') GO TO 100 
GO TO 99 

100 DO 101 I = 1,NUM 
101 IAN(I) = IAN(I)*2 - 1 

89 

102 WRITE(6,*)'ENTER LOAD STEP FOR TENSION FORCE?' 
READ(5,*) TDF 

105 WRITE(6,104) TDF 
104 FORMAT(/3X,'IS ',Fl0.2,' THE CORRECT 

$INCREMENT (Y/N) ?') 
READ(5,'(Al) ') Dl 
IF (Dl.EQ.'Y') THEN 
IF (DN.EQ.'XN') TDF = -TDF 

GO TO 106 
END IF 
IF (Dl.EQ.'N') GO TO 102 

GO TO 105 
106 WRITE(6,*)'ENTER MAX FORCE IN X-DIR ?' 

READ(5,*) TMAX 
TMAX = ABS(TMAX) 

107 WRITE(6,108) TMAX 
108 FORMAT(/3X,'IS ',El0.2,' THE CORRECT 

c 

$MAX FORCE (Y/N) ?') 
READ(5,'(Al)') Dl 
IF (Dl.EQ.'Y') GO TO 109 
IF (Dl.EQ.'N') GO TO 106 
GO TO 107 

109 WRITE(6,*)'LOAD STRUCTURE IN Y-DIR (Y/N)?' 

c 

READ(5,'(Al)') Dl 
IF (Dl.EQ.'N') GO TO 800 
IF (Dl.EQ.'Y') GO TO 110 
GO TO 109 

110 WRITE(6,lll) 
111 FORMAT(/3X,'ENTER DIRECTION OF FORCE 

$APPLICATION'/ 
$ 3X,' YP --- POSITIVE Y DIRECTION'/ 
$ 3X,' YN --- NEGATIVE Y DIRECTION') 

READ(5,'(A2)') DN 
IF (DN.NE.'YP'.AND.DN.NE.'YN') GO TO 110 

IF (DN.EQ.'YP') WRITE(6,112) 
IF (DN.EQ.'YN') WRITE(6,113) 

112 FORMAT(/3X,'ENTER NUMBER OF NODES ON 
$WHICH FORCE'/,3X,'IN THE POSITIVE 
$ Y DIRECTION IS TO BE APPLIED?') 

113 FORMAT(/3X,'ENTER NUMBER OF NODES ON 
$WHICH FORCE'/,3X,'IN THE NEGATIVE 
$ Y DIRECTION IS TO BE APPLIED?') 

READ(5,*) NUMl 



c 

WRITE(6,*)'ENTER NODE NUMBERS?' 
READ(5,*)(IASN(I),I=l,NUM1) 

117 DO 114 I = l,NUMl 
WRITE(6,115) I,IASN(I) 

115 FORMAT(3X,I3,' --- NODE' ,I4). 
114 CONTINUE 
c 
116 WRITE(6,*)'ANY INCORRECT NODES (Y/N)?' 

c 

READ(5,'(Al)') Dl 
IF (Dl.EQ.'N') THEN 
WRITE(6,*)'ENTER NUMBER OPPOSITE' 
WRITE(6,*)'TO INCORRECT NODE?' 

READ(5,*) I 
WRITE(6,*)'ENTER CORRECT NODE NUMBER?' 

READ(5,*) IASN(I) 
GO TO 117 

END IF 
IF (Dl.EQ.'Y') GO TO 118 
GO TO 116 

118 DO 119 I = 1,NUMl 
119 IASN(I) = IASN(I)*2 
c 
120 WRITE(6,*)'ENTER LOAD INCREMENT FOR SHEAR?' 

READ(5,*) DSF 
121 WRITE(6,122) DSF 
122 FORMAT(/3X,'IS ',Fl0.3,' THE CORRECT 

c 

$INCREMENT (Y/N) ?') 
READ(5,'(Al)') Dl 
IF (Dl.EQ.'Y') THEN 

IF (DN.EQ.'YN') DSF = -DSF 
GO TO 123 

END IF 
IF (Dl.EQ.'N') GO TO 120 
GO TO 121 

123 WRITE(6,*)'ENTER MAX FORCE IN Y-DIR ?' 
READ(S,*) SMAX 

124 WRITE(6,125) SMAX 
125 FORMAT(/3X,'IS ',El0.2,' THE CORRECT 

$MAXIMUM FORCE (Y/N) ?') 
READ ( 5' I (Al) I ) Dl 
IF (Dl.EQ.'Y') GO TO 800 
IF (Dl.EQ.'N') GO TO 123 
GO TO 124 

C*********************************************** 
C INPUT OF PRESCRIBED NODAL VALUES AND/OR 
C CONSTRAINED DOF 
C NV - NODE NUMBER 
C BV - THE VALUE OF THE DISPLACEMENT 
C IB - DOF OF THE KNOWN DISPLACEMENT 
C*********************************************** 
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800 WRITE(6,801) 
801 FORMAT(/3X,'SEQUENCE TO RESTRAIN NODES'/ 

c 

$ 3X,'ANY NODES TO BE RESTRAINED (Y/N) ?') 
READ(5,'(Al)') Dl 
IF (Dl.EQ.'N') RETURN 

IF (Dl.EQ.'Y') GO TO 802 
GO TO 800 

802 WRITE(6,*)'ENTER NUMBER OF NODES TO BE' 
WRITE(6,*)'RESTRAINED IN THE X-DIRECTION ?' 
READ(5,*) NNl 

c 

IF (NNl.EQ.0) GO TO 807 
WRITE(6,*)'ENTER NODE NUMBERS?' 
READ(5,*)(IPC(I),I=l,NN1) 

803 DO 804 I = 1,NNl 
WRITE(6,805) I,IPC(I) 

805 FORMAT(3X,I3,' NODE' ,I4) 
804 CONTINUE 
806 WRITE(6,*)'ANY INCORRECT NODES (Y/N) ?' 

READ(5,'(Al)') Dl 

c 

IF (Dl.EQ.'N') THEN 
WRITE(6,*)'ENTER NUMBER OPPOSITE TO' 
WRITE(6,*)'INCORRECT NODE?' 
READ(5,*) I 

WRITE(6,*)'ENTER CORRECT NODE NUMBER?' 
READ(5,*) IPC(I) 
GO TO 803 
END IF 
IF (Dl.EQ.'Y') GO TO 807 
GO TO 806 

807 DO 808 I = 1,NNl 
808 IPC(I) = IPC(I)*2-1 
c 

c 

WRITE(6,*)'ENTER NUMBER OF NODES TO BE' 
WRITE(6,*)'RESTRAINED IN THEY-DIR?' 
READ(5,*) NN2 
IF (NN2.EQ.0) THEN 

NUM2 = NNl 
GO TO 815 

END IF 
NUM2 = NNl + NN2 

WRITE(6,*)' ENTER NODE NUMBERS?' 
READ(5,*)(IPC(I),I=NN1+1,NUM2) 

810 DO 811 I = 1,NN2 
WRITE(6,812) I,IPC(NNl+I) 

812 FORMAT(3X,I3,' NODE' ,I4) 
811 CONTINUE 
813 WRITE( 6 ,·*)'ANY INCORRECT NODES (Y/N) ? ' 

READ(5,'(Al)') Dl 
IF ( Dl. EQ. I N I ) THEN 
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WRITE(6,*)'ENTER NUMBER OPPOSITE TO' 
WRITE(6,*)'INCORRECT ~ODE?' 

READ(5,*) I ~· 
I = NNl+I 

WRITE(6,*)'ENTER CORRECT NODE NUMBER?' 
READ(5,*) IPC(I) 
GO TO 810 
END IF 

IF (Dl.EQ.'Y') THEN 
DO 814 I = NN1+1,NUM2 

814 IPC(I) = IPC(I)*2 
GO TO 815 
END IF 
GO TO 813 

c 
C MODIFICATION OF THE [K] MARTIX DUE TO 
C THE PRESENCE OF RESTRAINTS 
c 
815 DQ 816 I = 1,NUM2 

IB = IPC(I) 
BV = 0 
K = IB -1 
DO 820 J = 2,NBW 
M = IB + J - 1 
IF (M.GT.NP) GO TO 825 
IJ = JGSM + (J-l)*NP+IB-(J-l)*(J-2)/2 
A(JGF+M) = A(JGF+M) - A(IJ)*BV 
A(IJ) = 0.0 

825 IF (K.LE.0) GO TO 820 
KJ=JGSM+(J-l)*NP+K-(J-l)*(J-2)/2 
A(JGF+K) = A(JGF+K) - A(KJ)*BV 
A(KJ) = 0.0 
K = K-1 

820 CONTINUE 
A(JGF+IB) = A(JGSM+IB)*BV 

816 CONTINUE 
RETURN 
END· 

C********************************************** 
SUBROUTINE MODIFl 

C********************************************** 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

c 
$ IPC(400),PC1(400),NUM2 

DO 650 I = 1,NUM2 
IB = IPC(I) 
BV = PCl(I) 
K = IB - 1 

DO 655 J = 2,NBW 
M = IB + J - 1 
IF (M.GT.NP) GO TO 660 
IJ = JGSM + (J-l)*NP+IB-(J-l)*(J-2)/2 
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A(JGF+M) = A(JGF+M) - A(IJ)*BV 
A(IJ) = 0.0 

660 IF (K.LE.0) GO TO 655 
KJ = JGSM+(J-l)*NP+K-(J-l)*(J-2)/2 
A(JGF+K)=A(JGF+K) - A(KJ)*BV 
A(KJ) = 0.0 
K = K - 1 

655 CONTINUE 
A(JGF+IB) = A(JGSM+IB)*BV 

650 CONTINUE 
RETURN 
END 

C********************************************** 
SUBROUTINE LOAD 

C********************************************** 
COMMON/VARS/TMAX,TDF,SMAX,DSF,NUM,NUMl 
COMMON/TEMPS/IAN(400),AF(400),IASN(400) 

$ ,ASF(400) 
COMMON/AV/A(35000),JGF,JGSM,NP,NBW, 

c 
$ IPC(400),PC1(400),NUM2 

JEND2 = JGSM + NP * NBW 
DO 700 I = l,JEND2 

700 A(I) = 0.0 
c 

DO 702 I = 1,NUM 
IB = IAN(I) 
BV = AF(I) 
.A(JGF+IB) = BV 

702 CONTINUE 
c 

IF (ABS(AF(2)).GE.ABS(TMAX).AND. 
$ ASF(2).EQ.O.O) RETURN 

IF (ABS(AF(2)).GE.ABS(TMAX)) THEN 
IF (SMAX.EQ.0.0) RETURN 
DO 704 I = 1,NUMl 

IB = IASN(I) 
BV = ASF(I) 
A(JGF+IB) = BV 

704 CONTINUE 
END IF 
RETURN 
END 

C********************************************** 
SUBROUTINE CORRECT 

C********************************************** 
COMMON/MTL/EM,PR,TH,NE,NN 

c 
711 WRITE(6,710) NE,NN,EM,PR,TH 
710 FORMAT(/5X,'1 --- NUMBER OF ELEMENTS 

$ = ',I4,/5X,'2 --- . NUMBER OF NODES 
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c 

c 

c 

c 

c 

c 

c 

$ = I I I4 I I 
$5X,'3 MODULUS OF ELASTICITY= ',El0.4,/ 
$5X,'4 POISSONS RATIO = ',F6.4,/ 
$5X,'5 THICKNESS OF REGION = ',Fl0.5,/) 
WRITE(6,*)'TO CHANGE ANY VALUE ENTER NUMBER' 
WRITE(6,*)'0PPOSITE TO SELECTION' 
WRITE(6,*)'TO CONTINUE ENTER THE NUMBER 6' 
WRITE(6,*)'PLEASE ENTER CHOICE?' 
READ(5,*) CHOICE 

IF (CHOICE.EQ.6.0) RETURN 

IF (CHOICE.EQ.1.0) THEN 
WRITE(6,*)'ENTER NEW NUMBER OF ELEMENTS?' 

READ(5,*) NE 
GO TO 711 

END IF 

IF (CHOICE.EQ.2.0) THEN 
WRITE(6,*)'ENTER NEW NUMBER OF NODES?' 
READ(5,*) NN 
GO TO 711 

END-IF 

IF (CHOICE.EQ.3.0) THEN 
WRITE(6,*)'ENTER NEW YOUNGS MODULUS?' 
READ(5,*) EM 
GO TO 711 

END IF · 

IF (CHOICE.EQ.4.0) THEN 
WRITE(6,*)'ENTER NEW POISSONS RATIO?' 
READ(5,*) PR 
GO TO 711 

END IF 

IF (CHOICE.EQ.5.0) THEN 
WRITE(6,*)'ENTER NEW THICKNESS ?' 
READ(5,*) TH 
GO TO 711 

END IF 

GO TO 711 
END 
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C*********************************************** 
C ---------- PROGRAM AMPL.FOR ---------- * 
C*********************************************** 
c 
C THIS PROGRAM CALCULATES WRINKLE AMPLITUDES 
C FOR A GIVEN WEB WIDTH AND NUMBER OF WRINKLES 
c 

c 

COMMON/FUN/F(lOOOO),X(lOOOO) 
COMMON/PAR/N,H,NUMR,W,DSTEP,OM 
PARAMETER(PI=3.141592654) 
OPEN(9,FILE='DATA.DAT' ,STATUS~'UNKNOWN') 
WRITE(6,*)'ENTER WITH OF THE WEB?' 
READ(5,*) W 
WRITE(6,*)'GUESS TWO AMPLITUDES?' 
READ(5,*) Gl,G2 

WRITE(6,*)'ENTER MIN@ MAX CONTRACTION?' 
READ(5,*) DWMIN,DWMAX 
WRITE(6,*)'ENTER CONTRACTION INCREMENT?' 
READ(5,*) WSTEP 
WRITE(6,*)'ENTER NUMBER OF WRINKLES?' 
READ(5,*) NUMR 

C WAVELENGTH CALCULATION 
.c 

c 

DW = DWMIN 
WL = (W-DW)/NUMR 
XTOL = 0.001 
FTOL = 0.0001 
NLIM = 50 

2 OM = 2.0*PI/WL 
H = 0.001 
DSTEP = 0.0 
N = ANINT(WL/H) 
DO 6 I = l,N 

6 F(I) = 0.0 
Al = Gl 
A = Al 
FLAG = 0 

5 DO 10 I = l,N 
X(I) = DSTEP 
YP = OM*A*COS(OM*X(I)) 
F(I) = SQRT(l+YP**2) 
DSTEP = H * I 

10 CONTINUE 
CALL SIMPS(N,H,RESULT) 
IF (FLAG.NE.O) GO TO 15 
STOREl = RESULT 
A2 = G2 
A = A2 
DSTEP = 0.0 
FLAG = 1 
GO TO 5 
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15 STORE2 = RESULT 

c 

IF (DW .GT. DWMAX) STOP 
Fl = NUMR * STOREl - W 
F2 = NUMR * STORE2 - W 
XR = 0.0 
I = 0 
CALL MDLNIN(Fl,F2,Al,A2,XR,XTOL,FTOL, 

$ NLIM,I) 
WRITE(9,*) DW,XR 

DW = DW + WSTEP 
WL = (W-DW)/NUMR 
GO TO 2 
END 

SUBROUTINE MDLNIN (Fl,F2,Xl, X2, XR,XTOL, 
$ FTOL,NLIM,I) 

c 
C SUBROUTINE FOR ROOT FINDING BY MODIFIED 
C LINEAR INTERPOLATION 
C PARAMETERS ARE -
C Xl,X2 INITIAL VALUES OF X. F(X) MUST 
C CHANGE SIGNS AT THESE POINTS 
C XR RETURNS THE ROOT TO MAIN PROGRAM 
C XTOL,FTOL TOLERANCE VALUES FOR X AND F(X) 
C TO TERMINATE ITERATIOS 
C NLIM LIMIT TO NUMBER OF ITERATIONS 
C I A SIGNAL OF HOW ROUTINE TERMINATED 
C I = 1 MEETS TOLERANCE FOR X VALUES 
C I = 2 MEETS TOLERANCE FOR F(X) 
C I = -1 NLIM EXCEEDED 
C I = -2 F(Xl) NOT OPPOSITE IN SIGN TO F(X2) 
c 

COMMON/FUN/F(lOOOO),X(lOOOO) 
COMMON/PAR/N,H,NUMR,W,DSTEP,OM 
LOGICAL PRINT 
PRINT = .TRUE. 
IF (I.NE.O) PRINT = .FALSE. 
IF (Fl*F2 .GT. 0) GO TO 50 
FSAVE = Fl 
DO 20 J = l,NLIM 
XR = X2-F2*(X2-Xl)/(F2-Fl) 
DO 7 I = l,N 

7 F(I) = 0.0 
STP = 0.0 
DO 6 L = l,N 
X(L) = STP 
TEMP= OM*XR*COS(OM*X(L)) 
F(L) = SQRT(l+TEMP**2) 
STP = H*L 

6 CONTINUE 
CALL SIMPS(N,H,RESULT) 
FR=RESULT*NUMR-W 
XERR = ABS(Xl-X2)/2.0 
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IF (.NOT.PRINT) GO TO 5 
WRITE(6,199) J,XR,FR 

199 FORMAT(lH , 13HAT ITERATION ,I4, 
$5H X = ,El2.5,9H, F(X) = ,El2.5) 

5 IF (XERR .LE. XTOL) GO TO 60 
IF (ABS(FR) .LE. FTOL) GO TO 70 
IF (FR*Fl .LT. 0 ) GO TO 10 
Xl = XR 
Fl = FR 
IF (FR*FSAVE . GT. 0) F2 = F2/2.0 
FSAVE = FR 
GO TO 20 

10 X2 = XR 
F2 = FR 
IF (FR*FSAVE .GT. O) Fl = Fl/2.0 
FSAVE = FR 

20 CONTINUE 
C WHEN LOOP IN NORMALLY COMPLETED, NLIM 
C IS EXCEEDED 

I = -1 
WRITE(6,200) NLIM, XR,FR 

2 0 0 FORMAT ( lHO , 2 6HTOLERANCE NOT MET .. 
$ AFTER ,I4,15H ITERATIONS X = ,El2.5, 
$ 12H AND F(X) = , El2.5) 

RETURN 
C THIS SECTION FOR RETURN WHEN F(Xl) AND F(X2) 
C NOT OPPOSITE IN SIGN 
50 I = -2 

WRITE(6,201) 
201 FORMAT(lHO, 35HFUNCTION HAS SAME SIGN 

$ AT Xl AND X2) 
RETURN 

C THIS SECTION RETURNS AFTER MEETING XTOL 
60 I = 1 

WRITE(6,202) J,XR,FR 
202 FORMAT(lHO, 19HX TOLERANCE MET IN ,I4, 

97 

$ 18H ITERATIONS. X = ,El2.5,8H F(X) = , El2.5) 
RETURN 

C THIS SECTION RETURNS AFTER MEETING F(X) TOLERANCE 
70 I = 2 

WRITE(6,203) J,XR,FR 
203 FORMAT(lHO, 19HF TOLERANCE MET IN , I4, 

$18H ITERATIONS. X = ,El2.5, 8H F(X) = ,El2.5) 
RETURN 
END 

SUBROUTINE SIMPS (N,H,RESULT) 
C THIS ROUTINE PERFORMS SIMPSON'S RULE INTEGRATION 
C OF A.FUNCTION DEFINED BY A TABLE OF EQUISPACED 
C VALUES 
C PARAMETERS ARE 
C F ARRAY OF VALUES OF THE FUNCTION 
C N NUMBER OF POINTS 



c 
c 

H UNIFORM SPACING BETWEEN X VALUES 

COMMON/FUN/F( 10000) ,X( 10000 )· 
c 
C NUMBER OF PANELS = N -1 ; EVEN ? 
c 

NPANEL = N -1 
NHALF = NPANEL / 2 
NBEGIN = 1 
RESULT = 0. 
IF ((NPANEL - 2*NHALF) .EQ. 0) GO TO 5 

C NUMBER OF PANELS IS ODD. USE 3/8 RULE ON 
C FIRST THREE PANELS 

c 

RESULT= 3.0*H/8.0*(F(l) + 3.0*F(2) + 
$ 3.0*F(3) + F(4)) 

NBEGIN = 4 

5 RESULT = RESULT + H/3.0*(F(NBEGIN)+ 
$ 4.0*F(NBEGIN+l) + F(N)) 

NBEGIN = NBEGIN + 2 
IF (NBEGIN .EQ. N) RETURN 

c 
NEN:D = N-2 
DO 10 I = NBEGIN, NEND, 2 

10 RESULT = RESULT + H/3.0*(2.*F(I) + 
$ 4.0*F(I+l)) 

RETURN 
END 
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