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CHAPTER I 

INTRODUCTION 

The greenbug, Schizaphis graminum (Rondani), is one of the most 

important pests of cereals (wheat, barley, sorghum and oats). Damage due 

to this insect has been reported most frequently in the United States, 

Italy, Hungary, Russia, and South Africa (Wadley, 1931). The 

Commonwealth Institute of Entomology (1963) indicated that the insect was 

present in all continents; at least ten countries in Africa, 13 in Asia, 

nine in Europe and five in South America plus Mexico, Canada, Australia, 

and the Pacific Islands have the greenbug. 

The pest was reported to have been in the United States since 1882 

(Webster and Philips, 1912). The 1907 and 1951 outbreaks each caused 

about $50 million loss in Oklahoma, Kansas and Texas (Walton, 1921; Dahms 

et al. 1955). In 1976, the greenbug infestation in Oklahoma cost about 

$80 million for control and production loss (Starks and Burton, 1977). 

Greenbugs introduce their stylets into plant tissue to withdraw sap, 

and in this feeding process saliva is injected into the plant system. 

This saliva is thought to contain compounds that are harmful to the plant 

and greatly increases the potential damage (Chatters and Schlehuber, 

1951). The ability of aphids to penetrate the plant tissues varies with 

the plant, but the more successful the penetration the more damage is 

likely to occur. Therefore, it is desirable to understand how 
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the greenbug feeds and causes damage in order to successfully develop 

effective resistant varieties. 

The objectives of my research were: 

2 

1. To compare the feeding behavior of greenbug biotyPes B and E on 

selected resistant and susceptible wheat genotyPes. It has been shown 

that aphid feeding behavior could be influenced by many factors including 

the host genotype. Thus, if greenbugs are exposed to different hosts, 

there could be feeding behaviorial differences. I would expect greenbugs 

to exhibit more phloem ingestion on the susceptible than on resistant 

hosts. Conversely, the insects should show less activity (more 

baseline), more attempts to penetrate the leaf tissues (probes), more 

time spent salivating, and more attempts to reach the phloem to feed (X

waves) on resistant plants than on susceptible ones. 

To my knowledge no one has used the feeding monitor to study the 

greenbug feeding behavior of biotypes Band Eon TAM 105, TAM 107, and 

Largo x TAM 105 wheat genotypes. Therefore, my study should provide 

additional information on greenbug biotypes B and E and on how the three 

wheat genotypes affect these insects. 

2. To study the survival of the greenbug biotyPes B and E on 

resistant and susceptible wheat genotyPes. It has been demonstrated that 

greenbugs reproduce less on resistant than on susceptible plants. Thus, 

there should be a difference in the total number of nymphs produced, 

their relative weights, and honeydew production on the above 

biotype/genotype combinations. The resistant genotypes should result in 

lower greenbug survival rates than the susceptible. 

3. To characterize damage due to greenbug biotypes B and E on 

selected wheat genotyPes. Biotype E damages TAM 105 and TAM 107, 
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however, it is not known to cause significant damage to wheat lines 

containing the 'Largo' gene for greenbug resistance. A cross between 

Largo and TAM 105, (with four backcrosses to TAM 105) and selected for 

greenbug resistance after backcrossings, is expected to behave like a 

resistant genotype to biotype E, when compared to TAM 105 and TAM 107. 

TAM 107 contains the broken resistance, 'Amigo' gene, to biotype E and 

was expected to respond in a similar way as TAM 105 does to biotype E. 

The 'Amigo' gene for greenbug resistance present in TAM 107 provides 

resistance to biotype B, recently shown to have broken the 'Largo' gene 

for resistance to biotype E (Webster et al., 1986). Thus, damage due to 

biotype B on TAM 107 was expected to be significantly lower than that on 

TAM 105 and Largo x TAM 105 genotype. 

Overall, damage due to greenbug biotype E on the Largo x TAM 105 

genotype should be similar to that due to biotype B on TAM 107 since 

these entries are resistant to the respective greenbug biotypes. 

Susceptible (TAM 105) and broken resistances to the respective biotypes 

were expected to show comparable damage. 



CHAPTER II 

LITERATURE REVIEW 

A. General Biology of the Insect 

1. Life Cycle 

The type of reproduction usually found in the greenbug is 

parthenogenesis. The reproductive period can extend from 12 to 53 days 

(Abebe, 1983; Webster and Phillips, 1912) depending on the season. A 

wingless female greenbug may produce one to eight nymphs per day (Walton, 

1921). On the average, the nymphal stage lasts seven days during which 

the nymph passes through four instars before reaching the adult stage. 

Nymphal growth depends on temperature, and as indicated by Kirkland et 

al. (1981) the threshold for nymphal growth is 5°C and the optimum is 

30°C. Within this range, the relationship between temperature and 

nymphal growth is linear and under field conditions, a stadium lasts 

approximately 28-30 hours. 

2. Biotypes 

Greenbugs can produce 20-25 generations_~~a~ .. -Uie~ll!L. 

~ips, 1_2.12). The~ction of such larg~ numbers of generation§.J:§ 

~ible because of parthenoge~ In this type of reproduction, 

aphids can produce populations of similar genetic background which may be 

adapted to a particular cultivar or species of plant or to a particular 

4 
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environment (Dixon, 1985). Such populations are often referred to as 

"races" or 11biotypes 11
; terminologies used to describe aphids' ability to 

adapt to their hosts. Plant resistant biotypes were noted by Painter 

(1930) after comparing damage to wheat caused by different populations of 

Hessian fly, Mayetiola destructor (Say). He observed that the Hessian 
.. 

flies from eastern Kansas was more virulent than the ones from western 

Kansas. 

Scientists have attempted to define the 11biotype11 concept in several 

ways. Hatchett and Gallun (1970) proposed a definition based on genetic 

relationship between the host (wheat) and the pest (Hessian fly), "For 

every major gene for resistance in the host species, there is a 

corresponding matching gene for virulence in the parasite species". 

Their definition which implied gene matching was an extension of Flor's 

(1955) gene for gene concept regarding rust on flax. Eastop (1973) added 

that "aphids which can feed on a normally pest resistant plant may be 

referred to as a biotype". Within aphid populations, a biotype may also 

be considered as those individuals differing from others by characters 

other than morphology including parasitic ability (Gallun and Khush, 

1980). This may be a questionable statement, because investigations by 

Inayatullah et al. (1985) have shown that morphological differences could 

exist among greenbug biotypes. These authors identified a greenbug 

biotype which damages sorghum and breaks the 'Largo' source of resistance 

in wheat. This was described as biotype B even though the form observed 

in 1958 and reported by Wood (1961) has not been reported in Oklahoma for 

several years. Moreover, the original B was not a pest of sorghum. I 

will use biotype B in this thesis even though another designation such as 

"Largo breaking biotype 11 might be more descriptive. 
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Biotype C was reported in 1968 by Harvey and Hackerott (1969) as 

damaging grain sorghum. Biotype D was reported by Teetes et al. (1975) 

as able to survive disulfoton treatment. Biotype E was first reported by 

Porter et al. (1982) as breaking the 'Amigo' resistance source. 

Some investigators have questioned the biotype idea. Claridge and 

Hollander·(1983) suggested that further genetic studies are needed in 

order to give more value to the concept. For these authors, the concept 

as of today is a broad one based on virulence and with ignorance of 

insect and host genetics. 

3. Genetics of Greenbugs 

The genetics of greenbugs is not clearly known; also the genetics of 

biotypes has not been thoroughly investigated. With the objective of 

providing additional information on greenbug biotypes, Mayo and Starks 

(1972) used a chromosome staining technique to compare chromosomes of 

three known biotypes (A, B, and C). Comparisons were based on chromosome 

size, number and general morphology. Embryos from aphids were used and 

ten chromosome sets were measured at each meiotic stage to obtain their 

lengths. They found that all three biotypes possessed eight chromosomes 

which could be grouped into one large pair, one small pair, and four 

chromosomes intermediate in size and not distinctly paired. A Chi-square 

test showed that biotype B differed from A in all chromosomal comparisons 

but was similar to C. Apparently, biotype formation involves some 

genetic changes in the greenbugs. This suggests the possibility of gene 

matching between the insect and the host, and perhaps the ability of the 

insect to better feed on the host. 
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B. Feeding 

1. Mouthparts 

The greenbug has piercing-sucking mouthparts that allow it to 

extract plant sap for food. Saxena and Chada (1971) described the 

insect's mouthparts using electron microscopic techniques by which they 

were able to distinguish two mandibular and two maxillary stylets. The 

mandibular stylets are innervated. Each mandible has a central duct 

through which a nerve passes, and this canal also contributes to the 

flexibility of the stylets. There are three to four longitudinal grooves 

common to the maxillae of which the second grooves (largest) of right and 

left maxillae form the food canal (0.12 micron in diameter). The 

salivary canal is formed by the third groove of the right maxilla. The 

four stylets have four protractor and retractor muscles, also four 

rotator muscles for the mandibles. A sphincter muscle at the conical tip 

of the labium surrounds the stylets. 

2. The Feeding Mechanism and Site 

Feeding is a dual process in which aphids extract sap via the food 

canal and inject saliva into the plant via the salivary canal. Stylet 

penetration into the plant tissues is facilitated by contraction of the 

protractor muscles and downward movement of head. The maxillae can slide 

up and down against each other so that the greenbug can change the course 

of the stylets inside the plant tissue. In the feeding process, the 

aphid may actively suck sap by means of the pharyngeal pump (Pollard, 

1973). Chatters and Schlehuber (1951) pointed out that the major 

greenbug feeding site in wheat and barley was the phloem, and that the 
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saliva injected was the cause of damage. Saxena and Chada (1971) showed 

that biotype B fed preferentially in mesophyll parenchyma when 

susceptible 'Rogers' harley was used as a host. They also indicated that 

both intercellular and intracellular penetration occurred. Pennington 

(1985) studied probing behavior and damage by biotype C and E on barley. 

Her conclusion was that penetration is generally intercellular in the 

case of biotype E, but occasionally intracellular in biotype C. She also 

demonstrated penetration of the xylem by greenbugs. 

3. Feeding Behavior 

The first histological study on greenbug feeding behavior on wheat 

and barley was done by Chatters and Schlehuber (1951). Penetration was 

compared on 11 cultivars of wheat and barley. Greenbug feeding may be 

divided in two major sequences: 1) host selection and 2) feeding 

behavior. The host selection is comprised of three steps: host 

location, movement toward host, and contact. As Beck and Schoonhoven 

(1980) pointed out, host selection is a series of behavioral responses 

associated with internal drives to find ovipositional and feeding sites. 

Pollard (1973) indicated that light reflected from the host (wave 

length), color of host and odor were some of the factors that affect host 

finding. Upon contact with a potential host, ~a~p~h~1~·d.::._e~x=h=1=·b~1~·t~s"'--a~-

feeding behavior which is also a sequential henomenon comprisin r 

~yents usually referred to as probing, salivation, enetration and 

ingestion. 
~ 

McLean and Kinsey (1967) were able to trace the tissue region that 

an aphid contacts during the above behavioral sequences. Their study was 

conducted using the pea aphid, Acyrthosiphon pisum (Harris) and a feeding 
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monitor that they had developed earlier (McLean and Kinsey, 1964). They 

recorded waveforms associated with each feeding sequence and designated 

those as "S" salivation, "I" ingestion. They recognized the "X" and "Y" 

wave forms but they were not able to give their characterization. They 

also found that in 484 aphids monitored, the events occurred most often 

in the following sequences: 1) salivation, then ingestion; 2) 

salivation, X-wave - Y-wave - ingestion; and 3) salivation - X-wave -

ingestion. All the waveforms were measures of the voltage changes as the 

aphid fed. Salivation corresponded to high voltage peaks in a rapid 

succession whereas ingestion corresponded to a flat pattern. Another 

study (McLean and Kinsey, 1968) was conducted to determine variations in 

salivation and ingestion of~· pisum on host (broadbean, Vicia faba L.) 

and nonhost (lettuce, Lactuca sativa L.) plants. They found that the 

first probing resulted in ingestion (70% of aphids) regardless of the 

host, but there was a significant difference in probing, salivation and 

ingestion between host and nonhost as aphids stayed longer on the plant. 

C. Damage 

In general, damage due to greenbugs has been described in terms of 

reduction in plant growth (stunting), destruction of chlorophyll 

(chlorosis), and plant death if damage was severe. Ortman (1957) studied 

damage of the greenbug on wheat varieties ('Pawnee', 'Ponca', 'Bison', 

and 'Dickinson'). He infested plants with different numbers of 

greenbugs. The progenies were allowed to feed for seven days in one 

experiment and from two to 10 days in another. His results showed that 

leaf length, dry weight, and chlorophyll were adversely affected by the 



greenbug feeding. Furthermore, he added that there was a reduction in 

root weight which may cause several adverse plant conditions (lodging, 

less water absorption, and translocation of nutrients). 

10 

Many researchers have tried to explain the cause of the symptoms 

which occur with greenbug feeding. The authors above hypothesized that 

damage may be due to several factors such as interference of injected 

toxins with some metabolic and translocation processes in the plant. 

Chatters and Schlehuber (1951) had attributed symptoms to the salivary 

injection rather than food uptake, but Ortman (1957) thought that the 

food uptake by the insect was enough to cause reduction in roots. 

Gerloff and Ortman (1971) found a reduction in the rate of photosynthesis 

following greenbug feeding. Al-Mousawi et al. (1983) compared greenbug 

damage at the cellular level on a susceptible wheat variety (TAM 101) and 

a resistant one (TAM 101 x Amigo). They found that there was extensive 

damage to the mesophyll cells in the susceptible as opposed to the 

resistant, and that saliva produced was responsible. They postulated 

that this saliva could be dissipated or adsorbed by resistant tissues and 

fewer symptoms were noted in these plants. 

D. Host Plant Resistance 

1. Historic Review 

A historic review of host plant resistance was given by Ortman and 

Peters (1980). They indicated that the earliest documentation on 

resistance was by Havens who in 1792 reported the wheat variety 

'Underhill' to. be resistant to Hessian fly. Since this early report, 

plant resistance has become an important discipline in applied 
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entomology. It is commonly agreed that varietal resistance is one of the 

most economical methods to control insects such as the greenbug. 

2. Searching For Greenbug Resistance 

Dahms et al. (1955) tested many varieties of wheat, barley, rye and 

oats for their response to greenbugs. Varieties that survived greenbug 

attack (so presumed resistant) were tested for preference, antibiosis and 

tolerance. They also studied inheritance of resistance in barley .. Among 

the.wheat varieties, some durums showed tolerance and one, Dickinson No. 

485, CI 3707, was considered resistant. 

Painter and Peters (1956) tested 2141 strains of wheat with 'Pawnee' 

as a susceptible check and 1Dickinson 1 as a resistant check. They 

infested six to seven day old seedlings with greenbugs, then graded the 

plants based on a 1 to 5 damage scale (1 =no damage, - 5 = death). The 

grading started at about two weeks after infestation. Another similar 

study was conducted by Wood and Curtis (1967) in which pure-line 

selections of susceptible 1 Ponca 1 and resistant 1Dickinson 1 wheats were 

artificially infested with greenbugs and yields were measured for four 

seasons. Resistant selections produced higher yield than susceptible 

selections. 

3. Insect Adaptation to Resistant Genotypes 

The appearance of biotypes that overcome previous resistance has 

been an intriguing problem to entomologists. For instance, resistance in 

'Dickinson' has been overcome by biotype B (Wood 1961). A more recent 

example is that of 1Amigo 1 derived from 'Gaucho' triticale, which was 

previously resistant to greenbug biotype C (Wood et al., 1974). It was 
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overcome by biotype E (Porter et al., 1982). 'Largo' was reported as 

greenbug resistant by Joppa et al. (1980), but was overcome by the new B 

biotype (Inayatullah et al., 1985). Thus, efforts to breed resistant 

genotypes have been challenged by greenbugs. It becomes necessary to 

consider what could be potential sources for resistance and to know the 

genetics of resistance so that resistant gene transfer could be more 

effective and that more durable resistance be obtained. The 'Largo'gene 

has shown high resistance to biotype E in addition to its already known 

resistance to biotype C (Joppa et al., 1980). Hollenhorst and Joppa 

(1983) found the 'Largo' gene to be located in the 7D chromosome whereas 

the 'Amigo' gene is located in chromosome lA. 

4. Biochemistry of Resistance 

There have been several different approaches to the biochemistry of 

greenbug resistance. Maxwell and Painter (1962) measured variations in 

free auxin content of extracts of the ~· graminum and ~· pisum fed on 

resistant or susceptible wheat and alfalfa hosts. The following results 

were obtained: a) In susceptible 'Reno' barley, 3-indole-acetic acid and 

3-indolebutyric acid were present in significant amounts; b) In 

susceptible 'Pawnee' wheat, 3-indoleacetic acid was present; but c) These 

auxins were not found in resistant 'Dictoo' barley or 'Dickinson' wheat. 

The absence of auxins (non significant amounts) in the honeydew of aphids 

feeding on resistant plants was believed to be due to 1) inability of the 

greenbug to remove auxins from resistant plants, 2) only small amounts 

were removed, or 3) auxins were removed but not in significant 

concentration in the aphids bodies. 

Host plant resistance is often believed to be due to the presence of 
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secondary metabolites. In wheat such phenolic compounds as DIMBOA 

(Corcuera et al., 1982) are feeding deterrents to S. graminum. 

Pennington (1985) showed that penetration results in more silica 

deposition in barley tissues and that resistant barley 'Will' to biotype 

E contained more phenolic compounds. Also, she noted that the levels of 

these compounds changed following aphid feeding, indicating a possible 

relation between the compounds and aphid feeding. 

Pectinases are important enzymes in aphid feeding. Campbell and 

Dryer (1985) suggested that alterration of intercellular pectins or other 

chemicals in sorghum could reduce the effectiveness of greenbug 

pectinases, thus providing another way of obtaining resistance to aphids. 



CHAPTER III 

MATERIALS AND METHODS 

The experiments were conducted in the Controlled Environment 

Research Lab (CERL) at Oklahoma State University. Temperature in the 

feeding monitoring room recorded by a hygrothermograph was 26° ± 4°C, and 

relative humidity was 34 ± 5%, the photoperiod was 12 hrs light and 12 

hrs dark. 

Seeds of three wheat genotypes, TAM 105, TAM 107, and Largo x TAM 

1054 were obtained from Dr. Owen Merkle, Wheat Breeder, USDA, Plant 

Sciences Laboratory, Stillwater, Oklahoma. 

Greenbug biotype E had been in culture for several months from 

specimens collected on sorghum in West Lafayette, Indiana. Biotype B 

individuals were obtained from C. Inayatullah's colony (Ullah 1985). 

TAM 105 wheat is a release from Texas A & M University (Porter et 

al., 1980), and was selected from a composite bulk made up originally of 

F2 seed from crosses and backcrosses of several short experimental wheats 

to 'Scout'. It is susceptible to liotypes C and E. 

TAM 107 wheat is a release from Texas A & M University. It has the 

'Amigo' gene for resistance to biotype C, but this resistance was broken 

by biotype E. This genotype was a selection from Amigo X TAM 105 

backcrossed four times to TAM 105 and selected for greenbug resistance 

after each backcross. 

Largo x TAM 105 is a resistance source to biotype E but broken by 

14 
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biotype B. 'Largo' was produced by a cross between Triticum turgidum 

(L.), and Triticum tauschii (Coss.), and is an hexaploid and an 

amphiploid of the two wheats. Dr. Owen Merkle has been backcrossing 

several agronomically desirable lines with 'Largo' including the Largo x 

TAM 105 we used. 

TAM 105 was expected to be susceptible to biotype B as well as E. 

TAM 107 contained the 'Amigo' gene which was broken by biotype E but this 

gene was expected to confer resistance to biotype B. The cross of Largo 

by TAM 105 was expected to be resistant to biotype E but not to biotype 

B. Therefore, I had two susceptible, two resistant and two "broken 

resistance" biotype/genotype combinations to evaluate. 

Seeds of the above entries were placed in petri dishes for 

germination. Two or three days later, the germinated seeds were 

transferred into preweighed pots and filled to 280g with air-dried sandy 

loam soil. The pots were watered to 330g (field capacity) with 25% 

Hoagland's solution every other day. The plants were kept in a growth 

chamber in which fluorescent and incandescent lights were combined for 

optimum growth. The photoperiod was 14 hrs light and 10 hrs dark, and 

the temperature was 20°C + 0.5°C. After three weeks, plants with a fully 

formed third leaf were chosen for the experiments. 

A. Feeding Monitor 

Electronic feeding monitors which have been modified several times 

from original equipment of McLean and Kinsey (1964, 1967) were used. The 

monitors used in this experiment were a modification of Brown and 

Holbrock (1976), and built by Kendow Technologies, Perry, Oklahoma. 

Included was a 25 Hertz oscillator connected to the test plant, a 25 
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Hertz tuned amplifier rectifier that received signals from the test 

aphid, and a chart recorder. The oscillator converted direct current 

(supplied by the batteries) into alternating current, and the amplifier 

amplified the signal to readable levels. The strip chart recorder was 

operated at 0.5 cm per minute to record the changes in voltage. A 

plexiglass stand held an attached pot into which the test pots and plants 

were placed and a vertical, flat plastic piece from which the lead wire 

was suspended. This stand had two plugs and wires - one connected to the 

plant by the pot soil and one connected to a copper rod to which 10 

micron diameter and 3 cm long gold wire was glued. 

This system was less subject to interference because the tuned 

amplifier could amplify the desired signals while the undesired 

background signals were reduced to the minimum. Compared to Brown and 

Holbrock's system, this feeding monitor used two 9-volt batteries which 

gave off less electrical interference; Other monitors using transformed 

wall current (60 Hz) require much more electrical screening. 

To prepare the aphid for monitoring, a drop of silver glue was 

placed on the slide and the tip of a 3 cm long, 10 micron diameter wire 

was dipped in the drop until a ball was formed. Subsequently the 

greenbug dorsum was pressed to the ball of silver glue and thereby 

attached to the wire. The leaf used for monitoring was flattened and 

taped on the plexiglass stand. The insect was placed on the leaf as soon 

as possible, and the corresponding amplifier turned on. 

When the conductive saliva from greenbug mouthparts contacted the 

plant tissues, an electric ·circuit was completed. There was a direct 

current flowing from the two 9-volt batteries into the oscillator where 

it is changed to a 25 Hz oscillating current, passed into the pot soil, 
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to the plant, to the aphid and to the gold wire. From the gold wire, the 

current flowed to the "monitor" input, then filtered into the amplifier. 

The signal was amplified and rectified before the changes in voltages 

were transmitted on to the strip chart recorder where they were recorded. 

The amplitude of the current was adjusted by manipulating the gain knob. 

Six feeding monitors were used per monitoring session. Combinations of 

plant/greenbug biotype were selected at random within the block and were 

randomly assigned to monitors. Greenbug feeding was monitored for 12 

hours. The runs usually began at 9:00am and therefore were not completed 

until after the lights went off at 7:00pm. 

Overall there were eight blocks with six plants per block. There 

were six replacements making a total of 54 aphids monitored on 54 

different seedlings. 

The chart records were read to identify the feeding behavior codes 

and corresponding times. The adopted feeding behavior codes (BC) were 

identified as follows: 

BC.O: Baseline: describes the period when aphid's mouthparts are 

not in fluid contact with the plant tissue, and no current is flowing in 

the system; in other words, baseline is when the greenbug is not feeding. 

BC.l: Probe: describes penetration of the plant epidermal tissues 

by the aphid's stylets. It is seen as a sharp voltage spike followed· by 

a sharp drop. This is thought to represent sheath material being 

released (highly conductive) and its subsequent hardening (less 

conductive). 

BC.2: Salivation: describes active stylet movement within the plant. 

It is seen as a saw-shaped fluctuation in voltage. The fluctuation may 

correspond to successive secretion of watery saliva and sheath saliva 
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accompanied by hardening of the sheath saliva. The result is an 

irregular waveform of intermediate amplitude. 

BC.3: Describes an unknown behavior. It is seen as a low voltage 

wave with only very slight amplitude fluctuations. There are 

speculations that this may·be due to closed sheath at tissues just below 
. 

the stylets of the feeding aphid, it may be a resting behavior, but with 

the stylets in the tissues (Ryan, personal communication). 

BC.4: X-Wave: Is seen as an H-shaped wave of 40 seconds average 

duration. It always precedes phloem ingestion, but does not necessarily 

end up in phloem ingestion. 

BC.5: Phloem ingestion: It is seen as a relatively smooth tracing 

with very slight, changes in voltage. The phloem is considered the 

preferred feeding site for the greenbug. 

BC.6: Non-phloem ingestion: The wave pattern is different from all 

of the above. The stylets may be in mesophyll or xylem cells. In this 

study, I have combined BC.3 and BC.6 and will refer to all this activity 

as non-phloem ingestion. 

B. Survival 

1. Greenbug Growth and Honeydew Collection 

After each replicate was monitored (usually the next day) part of 

the third leaf on the plant was caged for honeydew collection. The caged 

leaf portion was also used to study greenbug survival and feeding damage. 

Using the same leaf should facilitate correlation of the feeding 

monitoring data to the amount of honeydew produced and greenbug biomass 

increase. 

Cylindric and transparent plexiglass cages about three cm high and 
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three cm in diameter with small nails in the bottom to hold them on 

stands of rectangular styrofoam covered with soft foam were used for this 

experiment. The piece of styrofoam on each stand was covered with 

aluminum foil so that no honeydew was lost. The stand was inserted in 

each pot adjacent to the plant. Each leaf was then laid flat on the 

styrofoam and two cages were placed over it. Subsequently, two adult 

greenbugs of the appropriate biotype were placed in each cage which was 

then closed with a fitted foam rubber stopper. The adult aphids were 

removed the next day, and six nymphs per cage were allowed to grow and 

reproduce on the host for a period of 10 days. At the end of the 10th 

day, the cages and foils were removed and cleaned of exuviae before they 

were put in tagged paper bags. All the aphids on each leaf were brushed 

off into transparent 120ml plastic specimen jars which were also tagged. 

Each caged portion of the leaf was excised and placed in a tagged plastic 

bag. Thus, feeding behavior, greenbug counts and weights, honeydew 

production and chlorophyll content, were taken on the same plant/biotype 

combination. Only four replicates were used in the greenbug growth, 

fecundity, honeydew, and chlorophyll content studies. 

2. Honeydew Extraction and Measurement 

A 500 ml beaker was filled to 125 ml with deionized water and placed 

on an electric plate. Small foil cups were tagged and weighed (W1). 

About 5 ml (at a time) of hot water was then poured into a preweighed 

cup, also placed on the hot plate to keep the water and cup warm. The 

washing of the foil and the cages was done repeatedly using the water 

from the cup (5ml), then at the end additional hot water (5-15ml) was 

sucked to rinse the foil and the cages. The cup, with the honeydew in 
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solution, was taken off the hot plate and set aside. The process was 

repeated until all cages were cleaned. All the cups, containing honeydew 

and water mixture, were placed in an oven at 70°C to evaporate the water. 

After 24 hours they were removed from the oven and their weight (W2) 

taken. The difference between the two weights (W2 - W1) was the amount 

of honeydew produced. 

3. Measurements on Aphids 

The aphids were counted and weighed immediately for live weight. 

Then they were oven dried at 70°C for at least 24 hours to obtain their 

dry weights. This allowed the estimation of aphid biomass, live weight 

per greenbug, and dry weight per greenbug, honeydew per weight greenbug 

dry weight and honeydew weight per greenbug live weight. 

C. Damage-Chlorophyll Extraction and Measurement 

The chlorophyll extraction method was modified from techniques 

described by MacKinney (1941) and Arnon (1949). Weights (and areas) of 

leaf samples were determined and the leaf sample kept in the freezer 

until immediately prior to chlorophyll analysis. Each leaf sample was 

placed in a mortar with O.lg of CaC03 and "pinch" of acid washed sand. 

The leaf was cut with scissors into smaller pieces and ground with a 

pestle until completely macerated. Eighty-five percent acetone was used 

to clean the mortar and the pestle. Rinsing and stirring was continued 

until all chlorophyll had been extracted. The solute was then filtered 

through a Whatman #2 filtering paper into a volumetric flask. The filter 

paper was rinsed repeatedly to remove any remaining chlorophyll. The 

volume was brought up to 25 ml with 85% acetone, then the flask was 
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capped and kept in a closed box (to prevent light penetration). The 

process was repeated for all the leaf samples. 

Absorbance readings were taken at 645 nanometers and 663 nanometers. 

These values were inserted in the following formula to obtain total 

chlorphyll readings: 

Total chlorophyll (mg/g of leaf) = (20.2 X A645 + 8.02 X A663)V 
w. 

A645 = absorbance at 645mM 

A663 = absorbance at 663 mM 

v = Total volume of volumetric cap in cm3 here 25 ml. 

w = Leaf weight in g 

D. Data Analysis 

Data input was on a remote terminal to an IBM 3081K system. Data 

were analyzed with analysis of variance (SAS Institute, 1982, 119-137) 

and tests of genotype/biotype combinations were compared using the "t" 

test (SAS Institute, 1982, 217-221). Inherent in the experimental 

design, which included the two wheat genotypes whose resistance had been 

overcome or "broken" by the respective biotypes, was a great potential 

for biotype/genotype interaction. My choice was to consider differences 

in genotypes and biotypes only if the interaction for the respective 

characteristics was not significant at P < 0.10 and to use the two tailed 

"t" test to compare the genotype by biotype combinations for all 

characteristics investigated. I am aware that there are more rigorous 

tests for mean comparisons, but considering the potential sources of 

variability of genotypes, biotypes and interpretation of insect behavior, 

the consistent application of the 11 t 11 test appeared to be a reasonable 

choice. 



CHAPTER IV 

RESULTS 

A. Feeding Behavior 

1. Baseline 

There was a significant difference (P ~ 0.05) in baseline time 

between the resistant and susceptible genotypes to biotype E (Table I, 

Fig. 1); biotype Eon Largo X TAM 105 stayed inactive longer than it did 

on TAM 105 or TAM 107. Baseline was considered a weak criterion for 

behavior since greenbugs readily probe many plants and baseline time was 

also an accumulation of time after all withdrawals from less desirable 

host leaves. The genotype/biotype combination, Largo x TAM 105 with 

biotype E, caused the greatest difficulty in overall monitoring and three 

of eight recordings were repeated due to broken tethers, aphids wandering 

off plants or uninterpretable recordings. 

2. Probes 

Biotype B probed significantly more often on TAM 107 than on TAM 105 

(P < 0.10) (Table II, Fig. 2) and Largo x TAM 105 was intermediate 

between these two. 

When I examined probing by biotype E on these genotypes, I could see 

that this greenbug probed significantly more often on the resistant Largo 

x TAM 105 genotype compared to the susceptible TAM 105 (P < 0.10) (Table 
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TABLE I 

MEAN DURATION OF BEHAVIORAL ACTIVITIES (BASELINE, SALIVATION, PHLOEM INGESTION, AND 
NON PHLOEM INGESTION) FOR 720 MINUTES BY TWO GREENBUG BIOTYPES 

FEEDING ON THREE WHEAT GENOTYPES 

TIME IN MINUTES 

Wheat Green bug Phloem Non-Phloem 
Genot;n~es Biot~ee Baseline Salivation Ingestion Ingestion 

TAM 105 E 15.9a 1 116a 553a 2 29a 2 

TAM 105 B 15.3a 187ab 499a 13a 

TAM 107 E 25.3a 165ab 454ab 71a 
TAM 107 B 26.0a 273b 344bc 66a 

Largo x TAM 105 E 66.8b 210ab 229c 205b 
Largo x TAM 105 B 16.6a 218ab 451ab 25a 

TAM 105 Both 15.6x 151x 526x 21x 

TAM 107 Both 25.7xy 219x 399y 68x 

Largo x TAM 105 Both 41.7y 214x 340y 115x 

All E 36.0e 164e 412e lOle 
All . B 19.3e 226f 431e Jlif 

1 Values with the same letters are not significantly different (t test, P < 0.05). 
2 

Values with the same letters are not significantly different (t test, P < 0.10). 
C0mparisons were restricted to biotype/genotype combinations, or genotyp;s and 
biotypes within each column. 

N 
w 



Figure 1. Mean Baseline Duration Observed During 720 Minutes of 
Monitoring Biotypes B and E Feeding on Three Wheat 
Genotypes. TAM 105L = Largo x TAM 105 
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Figure 2. Mean Number of Probes Observed During 720 Minutes of 
Monitoring Biotypes B and E Feeding on Three Wheat 
Genotypes. TAM 1051 = Largo x TAM 105 
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II, Fig. 2). TAM 107, a broken resistance to E behaved more like a 

susceptible and was not statistically different from the other two 

genotype combinations. 
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The overall statistical test among genotypes showed that there was a 

difference between susceptible (TAM 105) and the respective resistant 

genotypes. The broken resistances were variable and not statistically 

different from either the resistant or susceptible host genotype. 

3. Salivation 

The total salivation duration, was higher on resistant genotypes for 

both biotypes. Broken resistances were intermediate between susceptible 

and resistant. Biotype B salivated longer over all genotypes than 

biotype E (P ~ 0.05) Table I, Fig. 3). This pattern was consistant when 

compared at the progression in salivation in 4-hour intervals. 

4. X-waves 

Biotype E made fewer X-waves on TAM 107 than biotype B made on TAM-

107 and than both biotypes made on Largo x TAM 105 (P ~ 0.10) (Table II, 

Fig. 4). I could not show a difference for biotype B among the 

respective genotypes. However, biotype B made more X-waves than biotype 

E on all genotypes. When I looked at the time it took for the insects to 

start an X-wave, I could see that biotype E took longer on Largo x TAM-

105 than on any other genotype and that biotype B did not show any 

differences based on host genotypes (Table III, Fig. 5). The two 

biotypes on the respective broken resistant genotypes behaved 

differently; B made more X-waves than E did. 



TABLE II 

MEAN NUMBER OF PROBES, AND X-WAVES DURING 720 MINUTES OF 
MONITORING GREENBUG BIOTYPES B AND E ON 

THREE WHEAT GENOTYPES 

Wheat Green bug Mean Number Mean Number 
Genotype Bio type of Probes of X-Waves 

TAM 105 E 6.9a 
1 3.0ab 

TAM 105 B 7.4a 5.3ab 

TAM 107 E 8.5ab 2.8a 
TAM 107 B 15.0b 6.0b 

Largo x TAM 105 E 15.5b 6.3b 
Largo x TAM 105 B 11. 4ab 6.6b 

TAM 105 Both 7.lx 4. lx 

TAM 107 Both 11. 8xy 4.4x 

Largo x TAM 105 Both 13.4y 5.5x 

All E 10.3e 4.0e 
All B 11.3e 6.0f 

1 Values with same letter are not significantly different 
(P < 0.10). Comparisons were restricted to biotype/genotype 
combinations, or genotypes and biotypes within each column. 
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Figure 3. Mean Salivation Duration Observed During 720 Minutes of 
Monitoring Biotypes B and E Feeding on Three Wheat 
Genotypes. TAM lOSL = Largo x TAM 105 
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Figure 4. Mean Numbers of X-Waves Observed During 720 Minutes of 
Monitoring Biotypes B and E Feeding on Three Wheat 
Genotypes. TAM 105L = Largo x TAM 105 
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TABLE III 

MEAN TIME TO FIRST X-WAVE, A~D COIB-lITTED PHLOEM 
INGESTION DURING 720 MINVTESJF MONITORING 

GREENBUG BIOTYPES B AND E ON 
THREE WHEAT GENOTYPES 

Wheat Greenbug Minutes to Minutes to First 
Genotype Bio type 1st X-Wave Com..'::itted Phl. Ing. 

TAf1 105 E 95a 
1 

128a 

TAM 105 B 95a 197a 

TAM 107 E 98a 168a 

TAM 107 B 135a 195a 

Largo x TAM 105 E 388b 434b 

Largo x TAM 105 B 73a 183a 

1 
Values with same letters are not significantly different (P < 0.10). 
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Figure 5. Time (in minutes) it Takes for the Greenbug to Make its First 
X-wave as Observed During 720 Minutes of Monitoring Biotypes 
B and E Feeding on Three Wheat Genotypes. TAM 1051 = Largo x 
TAM 105 
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5. Phloem Ingestion 

For both biotype B and E, phloem ingestion was longer on the 

susceptible compared to resistant genotypes. The respective broken 

resistant genotypes were intermediate (Table I, Fig. 6). The largest 

difference existed between 'Largo' containing genotypes and TAM 105 when 

exposed to biotype E. It took significantly (P ~ 0.05) longer for 

biotype E to achieve first committed (15 minutes or more continued 

behavior) phloem ingestion on Largo x TAM 105 than on TAM 105 (Table III, 

Fig. 7). The pattern was the same as that seen in the number of X-waves. 

6. Progression of Behaviorial Events in Time 

a. Biotype E During the first four hours of monitoring (Table IV), 

this biotype showed slightly more salivation time, and extensively more 

phloem ingestion on TAM 105 than on Largo X TAM 105. The two forms of 

non-phloem ingestion were seen at high frequencies and extended time in 

the Largo x TAM 105 genotype. Largo x TAM 105 had the highest baseline 

duration, probes, and non-phloem ingestion during the first four hours • 
. 

In the broken resistance, TAM 107, the phloem ingestion was intermediate; 

this was also true for the non-phloem ingestion. 

During the next four hours, baseline, probes, salivation, and non-

phloem ingestion were reduced, but more phloem ingestion occurred on TAM-

105 compared to Largo x TAM 105. Again, biotype E on Largo x TAM 105 had 

the highest salivation duration and X-wave frequency. The broken 

resistance was different from the susceptible TAM 105, and showed reduced 

non-phloem ingestion and salivation, but more phloem ingestion than the 

'Largo' containing genotype. 

By the third 4-hour period biotype E on TAM 105 continued phloem 



Figure 6. Mean Phloem Ingestion Duration Observed During 720 Minutes 
of Monitoring Biotypes B and E Feeding on Three Wheat 
Genotypes. TAM lOSL = Largo x TAM 105 
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Figure 7. Time (in minutes) it Takes for the Greenbug to Start Its 
Committed Phloem Ingestion (lasting more than 15 minutes) 
as Observed During 720 Minutes of Monitoring Biotypes 
B and E Feeding on Three Wheat Genotypes. TAM 105L = 
Largo x TAM 105 
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TABLE IV 

FEEDING BEllAVTOR PER FOUR HOUR INTERVALS OF MONITORING GREENBUG BIOTYPES B AND E ON THREE WHEAT GENOTYPES 

TIME IN MINUTES FREQUENCY 

Genotype/ Monitoring Phloem Non-Phl. X No. X No. 
Biotn~e Hours Base line Probing Salivation X-Waves Ingestion Ingestion X-Wave Probe 

TAM 105 0-4 14.5 2.5 88 1.4 117 16.5 2.1 5.9 
Biotype E 4-8 1.1 0.3 11 0.2 227 0.6 1. t 1. 5 

8-12 0.3 0.1 17 0.4 209 12.3 1.1 1. 3 
Total Time 15.9 2.9 116 2.0 553 29.4 

TAM 105 0-4 13.3 2.4 133 2.2 76 12.7 3.4 6.8 
Biotype B 4-8 1. 7 0.1 36 0.8 201 o.o 1.8 1.3 

8-12 0.2 0.1 18 o.s 221 0.0 1. 5 1.0 
Total Time 15.2 2.6 187 3.5 l~98 12. 7 

TAM 107 0-4 11. 3 1.8 82 0.9 96 47.6 1.5 4.8 
Biotype E 4-8 9.4 0.6 36 0.4 176 17.0 1.4 3.0 

8-12 4.4 0.6 46 0.4 182 6.3 1. 5 2. 1 
Total Time 2.5. 1 3.0 164 1. 7 454 70.9 

TAM 107 0-4 5.3 1.8 95 1.9 84 51. 7 3.4 4.8 
Biotype B 4-8 10.5 1.8 87 0.8 134 6.0 1.6 4.5 

8-12 10.2 2.0 92 0.9 126 8.6 1. 9 6.8 
Total Time 26.0 5.6 274 3.6 344 66.3 

Largo X TAM 105 0-4 30.2 3.3 68 0.5 25 113.2 1.3 9.9 
Biotype E 4-8 13.5 1. 2 96 1.6 90 37.1 3.0 4.5 

8-12 23.1 0.6 46 1.0 114 55.2 1.9 1. 9 
Total Time 66.8 5.1 210 3.1 229 205.2 

Largo x TAM 105 0-4 10. 4 3.2 112 1. 7 92 20.5 2.8 6.9 
Biotype B 4-8 3.7 1.1 61 1.6 171 1.6 2.8 3.3 

8-12 2.6 0.6 48 0.9 185 2.4 2.0 2.4 
Total Time 16.6 4.9 221 4.2 448 24.5 ..,.. 

N 
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ingestion with greatly reduced time spent in baseline, salivation and 

non-phloem ingestion. On Largo x TAM 105, there was increased phloem 

ingestion but not up to half of the total time. The broken resistance 

showed a decrease in baseline duration time and non-phloem ingestion, but 

increased phloem ingestion compared to the resistant. 

b. Biotype B. In the first four hours, there was slightly more 

salivation duration, but shorter phloem ingestion on TAM 105 compared to 

the resistant TAM 107 or Largo x TAM 105 (Table IV). The phloem 

ingestion of biotype B on TAM 105 was much less than that of E on the 

same genotype. 

During the next four hours, the baseline duration, the number of 

probes, salivation duration and non-phloem ingestion duration dropped 

while phloem ingestion was increasing on TAM 105 as compared to TAM 107. 

In the broken resistance, Largo x TAM 105, the baseline, salivation, and 

non-phloem ingestion durations were nearly twice as great as those in TAM 

105. 

By the third four-hour period biotype B continued phloem ingestion 

for virtually the entire time on TAM 105 whereas all other events were 

greatly reduced. Phloem ingestion remained at about half the activity 

time in the resistant TAM 107, but in the broken resistance of Largo x 

TAM 105, phloem ingestion time was showing a slight increase to about 

three-fourth of the activity time. 

B. Survival 

1. Growth 

There were over twice as many greenbugs of each biotype produced on 

the susceptible as on the resistant genotypes for the respective biotypes 
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(Table V, Fig. 8). The broken resistances were intermediate, but were 

more similar to the susceptibles. 

Biotype E greenbugs weighed significantly (P ~ 0.05) more (live 

weight) on the susceptible than on the resistant genotypes. It also 

produced heavier offspring compared to B on each genotype. There was no 

statistically significant difference (P < 0.05) in live weight per insect 

in the case of biotype Bon the respective genotypes (Table V, Fig. 9). 

The live weight represented the total biomass of nymphs which became 

adults during the period as well as new nymphs produced. Based on the 

live weight per greenbug, biotype E performed better than biotype B. 

Biotype B on TAM 105 was not heavier on a live weight per greenbug basis, 

than on the other two genotypes. I included dry weight information in 

case there were differences in water content and did observe possible 

trends but interactions of biotypes by genotypes were also significant 

for all measurements other than live weight per greenbug. 

2. Honeydew production 

Honeydew production (Table VI, Fig. 10) was relatively complex since 

it might indicate both food availability and the aphid's ability to 

utilize plant sap for a nutritionally adequate diet. The analysis 

indicated a significant interaction (P ~ 0.05) for variety by biotypes, 

but such significance (P = 0.245) was not seen when I looked at honeydew 

production per greenbug (Fig. 11). The differing number of insects 

produced on the susceptible, resistant, and broken resistant genotypes 

constitute one factor considered. The honeydew per greenbug and per unit 

of dry weight was included to explain biomass gain in relation to 

excretion (honeydew) since the material removed from the host was weighed 



TABLE V 

MEAN GREENBUG NUMBERS, LIVE WEIGHTS, DRY WEIGHTS, AND LIVE WEIGHT PER INSECT (WEIGHTS ARE IN 
MILLIGRAMS) OF GREENBUG BIOTYPE B AND E FED ON THREE WHEAT GENOTYPES FOR 10 DAYS 

Wheat Greenbug Mean No. Live Live Weight Dry 
Genotype Biotype Greenbugs Weight (mg) per Greenbug (mg) Weight (mg) 

1 TAM 105 E 153a 26.Sa 0.176a 7.9a 
TAM 105 B 136a 17.Bb 0.122bc 5.9a 

TAM 107 E 129a 18.3b 0.139b 6.la 
TAM 107 B 56b 4.9c O.OBBc 2.0b 

Largo x TAM 105 E 69b 7.Bc 0.115c 3.0b 
Largo x TAM 105 B 152a 16.7b 0.112bc S.9a 

TAM 105 Both 144x 21.6x 0.149x 6.Bx 

TAM 107 Both 93y 11.6y 0.114y 4.0y 

Largo x TAM 10.5 Both llOy 12.3y 0.11L1y 4.4y 

All E 117e 17.Se 0 .143e 5.7e 
Al 1 B llSe 12.Bf 0. 107 f 4. Se 

l 
Values in each column with the same letters are not significantly different (P < 0.05). 
Comparisons were restricted to biotype/genotype combinations, or genotypes and biotypes 
within each column. 
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Figure 8. Mean Greenbug Biotypes B and E Numbers Produced During 
10 Days of Feeding on Three Wheat Genotypes. 
TAM 1051 = Largo x TAM 105 
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Figure 9. Average Live Weight (in milligrams) per Greenbug of Biotype 
B and E Feed on Three Wheat Genotypes for 10 Days 
TAM 105L = Largo x TAM 105 
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TABLE VI 

MEAN GREENBUG NUMBERS, TOTAL HONEYDEW, HONEYDEW PER GRi'.ENBUG, AND HONEYDEW PER GREENBUG 
PER DRY WEIGHT (HD/GB/DW) PRODUCED BY BIOTYPE B AND E FEEDING ON 

THREE WHEAT GENOTYPES FOR 10 DAYS 

No. of 
Wheat Greenbug Green bugs Honeydew Honeydew 
Genotn~e Biotyee eer Reelication Weight (mg) eer Greenbug (mg) HD/GB/OW 

TAM 105 E 153a 
1 

11.3a 0.057bc 1. 44bc 
TAM 105 B 136a 6.8bc 0.050c 1. 21c 

TAM 107 E 129a 10.6a 0.082ab 1. 75abc 
TAM 107 B 56b 4.Sc 0.074bc 2.12ab 

Largo x TAM 105 E 69b 7.0bc 0.104a 2.42a 
Largo x TAM 105 B 152a 8.9ab 0.065bc 1. 66bc 

TAM 105 Both 144x 9. lx 0.062x 1.33x 

TAM 107 Both 93x 7.6x 0.078xy 1.94y 

Largo x TAM 10.5 Both llOy 8.0x 0.084y 2.04y 

All E 117e 9.7e 0.087e 1.87e 
All B 115e 6.8f 0.063f l.66e 

1 Values in each column with the same letter are statistically similar (P < 0.05). 
Comparisons were restricted Lo biotype/genotype combinations, or genotypes and 
biotypes within each column. 
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Figure 10. Total Honeydew Produced (in milligrams) by Greenbug Biotypes 
B and E Fed on Three Wheat Genotypes for 10 Days 
TAM lOSL = Largo x TAM 105 
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Figure 11. Average Honeydew Produced (in milligrams) per Greenbug 
Biotypes B and E Fed on Three Wheat Genotypes for 10 Days 
TAML = Largo x TAM 105 
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as dry weight of greenbug or honeydew or escaped as water vapor (which 

was not accounted for). 

Biotype E produced more honeydew per greenbug than biotype B (Table 

VI, Fig. 11). The effects of genotypes on biotype B were not significant 

when honeydew per insect was considered, but, when adjusted for dry 

weight, significantly (P ~ 0.05) more honeydew was produced on the 

resistant TAM 107 than on the susceptible TAM 105 (Table VI, Fig. 12). 

Biotype E also showed significantly (P ~ 0.05) more honeydew per 

greenbug, and honeydew per greenbug unit dry weight on the resistant than 

on the susceptible. In both honeydew per greenbug and honeydew per 

greenbug per unit dry weight, broken resistances were intermediate. 

C. Damage 

In all genotypes, there was a significant (P ~ 0.05) reduction in 

chlorophyll as compared to the respective checks. There was 

significantly (P < 0.05) less chlorophyll reduction in resistant 

combinations compared to the susceptible (Table VII, Fig. 13). The 

broken resistance to E was intermediate, whereas the broken resistance to 

B was similar to the susceptible. The percent reduction column and 

Figure 14 were included to help visualize the relative responses. 



Figure 12. Average Honeydew Produced Per Greenbug and Per Unit Dry 
Weight for 10 Days of Feeding on Three Wheat Genotypes. 
TAM lOSL = Largo x TAM 105 
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TABLE VII 

TOTAL CHLOROPHYLL MEASUREMENTS (MG/G OF FRESH WEIGHT) OF INFESTED 
AND UNINFESTED LEAVES, AND PERCENT CHLOROPHYLL REDUCTION DUE TO 

BIOTYPES B AND E FEEDING ON THREE WHEAT GENOTYPES 

Wheat Greenbug Chlorophyll (mg) Percent 
GenotiEe Biotl':Ee Infested Uninfested Reduction 

TAM 105 E 661d1 1626ab
1 

59io 
TAM 105 B 536d 1626ab 67'7o 

TAM 107 E 857cd 1673ab 49io 
TAM 107 B 1316b 1673ab 21 /~ 

Largo x TAM 105 E 1297bc 1824a 29io 
Largo x TAM 105 B 571d 1824a 69/~ 

1 
Values with the same letters in both chlorophyll columns are not 
significantly different (P < 0.05). 
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Figure 13. Total Leaf Chlorophyll Content (in mg/g of leaf per weight) 
of Three Wheat Genotypes Before (check uninfested) and 
After 10 Days of Greenbugs Biotype B and E Feeding 
TAM 105L = Largo x TAM 105 



(/) 
w 
a. 
~ 
0 
m 

0 
0 
0 
~ 

. 
~ 
\l .. 
~ 
~ 

w m '> 

~D 
r-~ 

' I 

I j 

'--~-' 

\-----------
l LLS 
l . r--
1 
L~ 

L6Z1 

0 
0 • .. 

r---
' 9'£1 s 
I ~ 
r--~-~..._~~~~~~~-.~~r---~~-.~ 
l ~ 
I ru ~ 
L - ....__ - - - - --i.--.....---.~~~~----...;M,......11 

,-- --- -- -
I 9£S 

' r- - - - _..._ '2.--

' L99 

0 
0 
ID ... 

0 

~ .. 
0 
0 
0 .. 

0 

ii 
g 
ID 

0 
0 
N 

0 

60 



Figure 14. Percent Chlorophyll Reduction Due to Greenbug Biotypes 
B and E Feeding on Three Wheat Genotypes for 10 Days 
TAM 1051 = Largo x TAM 105 
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CHAPTER IV 

DISCUSSION 

In three of the feeding behavior events (probes, salivation and 

phloem ingestion), there were significant differences between resistant 

and susceptible wheat genotypes to the respective greenbug biotypes. In 

addition, biotype E showed significant differences in baseline, probes, 

X-waves, time to first x-wave, and time to first committed phloem 

ingestion. 

McLean and Kinsey (1968) found significant differences between aphid 

feeding on host and nonhost plants. In my experiments the resistant 

plants could be considered as nonhosts and the susceptible plants as 

hosts; thus the difference observed in aphid feeding behavior·between 

resistant and susceptible could be viewed as nonhost versus host 

relationship. As expected, the feeding behavior studies showed that 

greenbugs fed less successfully on resistant plants as indicated by 

reduced phloem ingestion, but increased inactivity duration (baseline), 

higher frequencies of epidermal penetration (probes) and phloem 

penetration (x-waves). Moreover, the relatively short salivation 

duration on the susceptible genotype TAM 105 compared to the resistant 

genotypes pinpoints the difficulties the greenbugs had when feeding on 

the resistant wheats. 

Ryan et al. (1986) found similar results on 'Largo 1 compared to 

another susceptible wheat variety, 1 Sturdy 1
• There was less feeding 
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behavior success by biotype E on the resistant 1 Largo 1 wheat compared to 

the susceptible 'Sturdy'. The 1 Largo 1 gene present in the Largo x TAM 

105 has conferred high resistance in this genotype as indicated by the 

results. As a matter of fact, the differences between the susceptible 

and resistant genotypes to biotype E were consistant in all the feeding 

behavior events. It is likely that resistance to biotype E is more 

effective than resistance to biotype B. This indicates a possible 

difference in the mechanisms of resistance involved in these two sources. 

As indicated earlier, the resistance to B that exists in TAM 107 is 

conferred by the 'Amigo' gene. This resistance was more variable than 

that in Largo x TAM 105 when feeding behavior was considered. Biotype B 

salivated more than biotype E in all wheat genotypes; this is probably a 

difference between the two biotypes. 

Ryan et al., (1986) stated that ultimately greenbugs feed in the 

phloem (the feeding site), but that the differences due to host could be 

seen in the early hours after the greenbug contacts the host. Thus, a 

resistant plant most likely delays aphid feeding on the host, and 

consequently would delay damage. I have found that the greenbug feeding 

behavior changed through time depending on the host. In all genotypes, 

the greenbugs were showing a significant and progressive increase in 

phloem ingestion through time while they expended less time in probing, 

salivation and attempting to penetrate the phloem. 

Because of many unusual patterns in biotype E/Largo x TAM 105 

combination, additional aphids were monitored on this host in an attempt 

to obtain comparable results. When the host is acceptable to the insect, 

the feeding pattern follows the regular sequence described earlier. The 

deviations I saw in this combination could be an indication that the host 
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was very unsuitable to the greenbug, to the extent that it could not feed 

properly. The resistance in 'Largo' is highly effective to biotype E. I 

found that the overall trend in feeding behavior over time was the same 

and that there was an increase in phloem ingestion regardless of the host 

and biotype. These results confirm those by Ryan and coworkers. 

McLean and Kinsey (1968) found that 70% of the pea aphids made the 

same amount of probes during the first minutes of contact with the host, 

and non-host but differences due to host occurred later. Even though 

these two workers did not use the greenbug, I saw the similarity of their 

results to mine. Biotype E probed more on Largo x TAM 105 plants than it 

did on any other combination or than B did. The resistance of 'Largo' 

containing wheat to biotype E could be seen in less than 240 minutes 

following contact but also persisted in causing less phloem ingestion 

during the next 480 minutes. 

The broken resistances to respective biotypes were variable. In 

probe frequencies all broken resistances were similar to the susceptible 

TAM 105. However, in phloem ingestion and salivation, the broken 

resistances to respective biotypes were similar to the respective 

resistant genotypes. In other behavior characteristics, they were 

intermediate or susceptible. These results were not totally in 

conformation with my expectations on the broken resistances. They were 

expected to react similar to the susceptible TAM 105, but apparently the 

broken resistances are not always susceptible, they may still have some 

level of resistance. 

Greenbugs reproduced less on resistant plants and individuals 

produced on such plants were smaller despite the increased honeydew 

uptake. There were fewer insects of biotype E on the 'Largo' containing 
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genotype and fewer of B on the 'Amigo' containing genotype. The amount 

of honeydew produced per insect of biotype E on the resistant is higher 

than that on the susceptible. Greenbugs ingest fluid extracted from the 

plant. If the fluid is of good nutritional quality, more may be 

assimilated into biomass and thus less would be excreted as waste 

(honeydew). If the fluid is poor in nutritional value, less of it would 

be assimilated into biomass, thus more would be excreted as honeydew. I 

think that since greenbugs were smaller and excreted more honeydew on the 

resistant plants, there may be a poorer nutritional value of· the 

extracted fluid making it less assimilable by the insect. This explains 

what was observed on Largo x TAM 105 plants. The difference was not seen 

in any other combination. Starks et al. (1983) found that the 'Largo' 

gene mediated high antibiosis, tolerance and even antixenosis mechanisms 

of resistance against biotype E. My results confirm the antixenosis and 

antibiosis mechanisms. Biotype E weighed less but consumed (or excreted) 

more fluid per unit of weight when honeydew per insect and per unit dry 

weight was measured. As mentioned earlier, each insect excreted more 

honeydew, possibly because of the poor quality of the sap ingested and 

consequently poor assimilation and reduced weight. These may be signs of 

antibiotic effects. The reduced reproduction (fewer insects) could then 

be another explanation of the antibiotic mechanism. There may be some 

chemical present in the plant sap making it less digestable to the 

greenbug, but this needs further investigations. 

There were no statistical differences in total honeydew production 

and honeydew produced per greenbug between resistant and susceptible 

genotypes to biotype B. The fewer nymphs produced on TAM 107 suggested 

that there may be antibiosis. Starks et al. (1983) indicated that the 
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'Amigo' gene conferred non-preference against biotype E rather than 

antibiosis. Under my experimental conditions, the results have shown 

that 'Amigo' gene could impart antibiosis. Results from the growth and 

honeydew studies have supported the point Starks et al. (1983) made on 

'Largo' but showed that 'Amigo' gene also confers antibiosis to the TAM 

107 genotype. The feeding behavior studies which were essentially host 

preference studies indicated that the '·Largo' containing genotype was not 

preferred by biotype E and the 'Amigo' containing one not preferred by 

biotype B. Furthermore, I was able to see that when broken resistances 

were used, the results varied from resistance to susceptibility and that 

in all feeding behavior events, resistance in Largo x TAM 105 was always 

apparent. The honeydew and growth studies indicated that even though 

fewer aphids were produced on the TAM 107, resistant to biotype B, the 

effect of the nutritional quality was apparent in that less honeydew was 

produced per mg dry weight by biotype Bon TAM 105 than on TAM 107. 

My results were comparable to those of Gerloff and Ortman (1971), 

since despite the fact that there was reduction of chlorophyll in all 

genotypes, more chlorophyll was lost in the susceptibles. The B 

combinations caused a relatively greater loss of chlorophyll. As 

mentioned in earlier chapters the cause of damage was generally thought 

to be the saliva and food uptake. The damage to leaves was mainly due to 

saliva as Chatters and Schlehuber (1951), and Al-Mousawi et al. (1983) 

had pointed out. The latter have postulated that the toxic saliva may be 

dissipated or adsorbed by resistant tissues, thus become nontoxic. This 

may be what happened in our resistant entries. However, the amount of 

the salivary toxic activity which could be buffered by the resistant 

plant is unknown, but it is certain that not all of it can be buffered 
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since chlorophyll reduction was observed in all combinations. Probably, 

the more saliva that could be broken down, the less chlorophyll reduction 

occurred. The toxic factors of the saliva and the factors that could 

cause detoxification of the saliva in the resistant plant are unknown. 

Pennington (1985) noted that phenolic compounds and silicon were abundant 

around the aphid feeding area. These phenolic compounds may contribute 

to detoxification of saliva in barley. Corcuera et al. (1982) mentioned 

hydroxamic acid as a feeding deterrent to greenbug in wheat. Chemicals 

might be involved in salivary adsorption in these resistant wheat 

genotypes, but no experiment was designed for such studies. 

Reduction in chlorophyll due to biotype E on its resistant Largo x 

TAM 105 was similar to that due to B on its resistant TAM 107 (Amigo x 

TAM 105). In other words, in terms of affecting the degree of damage, 

the 'Amigo' gene does not differ from the 'Largo' gene. Thus if 'Largo' 

gene confers tolerance to biotype E, then 'Amigo' gene would also confer 

tolerance due to similarity in chlorophyll reduction. Furthermore, since 

chlorophyll reduction in the resistant combination was as low as 20 to 

30%, I infer that tolerance may be involved, but insect numbers were not 

the same for each genotype as they should be in tests for tolerance. 

The broken resistances to both insects showed damage similar to 

susceptibles, but reduction in chlorophyll by biotype B in Largo x TAM 

105 was even higher than that in the susceptible TAM 105. This shows 

that biotype B is definitely virulent to the 'Largo' gene, and these 

results conform to Webster et al. (1986). As a matter of fact, the 

observed reduction in chlorophyll was as high as 69% when biotype B fed 

on Largo x TAM 105. 

To briefly review what was observed, I can say that on the 
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To briefly review what was observed, I can say that on the 

susceptible genotype to both biotypes, there was less salivation 

duration, but more chlorophyll removal compared to the respective 

resistant genotypes. The broken resistance to E was intermediate in both 

salivation duration and chlorophyll removal whereas the broken resistance 

to B was like a susceptible. Thus, susceptible combinations showed more 

damage than resistant ones because of higher greenbug populations. 

Broken resistance to E was intermediate as far as damage versus greenbug 

numbers was considered, but broken resistance to B was not. 

The least total honeydew per greenbug and per greenbug dry weight 

was produced on the susceptibles. In other words, less honeydew per 

greenbug was produced where there was more damage. Thus the lower the 

amount of honeydew produced, the more efficiently the insects feed, and 

consequently the higher the damage observed. Therefore, I had more 

chlorophyll removal when the greenbug fed, and survived successfully on a 

host. Overa!l, biotype B produced less honeydew, indicating that this 

biotype is probably more efficient in using these wheat genotypes for 

food than the biotype E. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

From these studies, I have been able to note that there are 

variations in feeding behavior of the greenbug biotypes B and E on the 

three wheat genotypes. Those variations may be due to the aphid 

themselves (difference in biotype virulence) or to the host. The 

greenbugs feed less successfully on resistant plants, and the !Largo! 

gene was apparently a highly resistant gene compared to the 1Amigo 1 gene. 

It was found that biotype B salivated and made more x-waves on all wheat 

genotypes than E did. I cannot explain these observations as such, but I 

may speculate that these are variations in the biotypes themselves. The 

broken resistances caused varied responses from the biotypes. Given all 

these results, I can say that non-preference is involved in both 

resistant genotypes. 

The survival studies have indicated a strong possibility for 

antibiosis in the 'Largo' containing genotype to biotype E, and for 

'Amigo' containing genotype for biotype B. Further research on the 

chemical factor(s) causing the observed harmful effects on greenbugs 

feeding on 'Largo' and 'Amigo' seem desirable. The broken resistances 

gave variable responses as far as survival studies were concerned. 

Finally, the damage due to greenbugs feeding on the leaves was 

characterized by the loss in chlorophyll. Resistant genotypes lost less 

chlorophyll than the susceptibles and the broken resistances were 
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variable in responses. Overall, resistance in Largo x TAM 105 to biotype 

E and that in TAM 107 to biotype B include antibiosis, antixenosis, and 

possibly tolerance. The variability in the broken resistance responses 

in feeding behavior, survival and damage, lead me to conclude that the 

resistance relationship is not a simple gene-to-gene response but may be 

controlled by more than one gene or a pleiotropic gene. 
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