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PREFACE 

The Ground-State Energy of a system of two neutral molecules was 

developed using the formalism of Density Functional Theory. This method 

of approach in deriving the Ground-State Energy bypasses the traditional 

quantum mechanical wave function method and was seen to be considerably 

simplified in its computational procedures. 

Using the formulation of Levy and Freed, the electron density, and 

then the Energy Functional, was obtained as a Taylor Series expansion 

about a reference density. Optimization of the density then led to the 

derivation of the Ground-State Energy whentthis optimum density was used 

as the density in the Energy Functional. 

I am indebted to Dr. Paul Westhaus, my major adviser, who intro-

· cuced me to the subject of Density Functional Theory and without whose 

invaluable help, concern and guidance I find it impossible to produce 

these pages. 

I am also thankful to Dr. Larry Scott and Dr. George Dixon for ser­

ving as my committee members, as well as to other professors whose tuto­

ring in Physics and Mathematics led to the understandingg of the 

physical concepts displayed.~n this thesis. 

I dedicate this work to my two sons Ahmad Abu Dhar and Abdullah 

Bakhtiar Junaidi. 
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CHAPTER I 

INTRODUCTION 

The theoretical approach now known as Density Functional Theory 

has been popular for the last two decades in the realm of molecular 

physics due to its predictive and interpretetive formulations of the 

forces in molecules and molecular systems. This approach is appealing 

because it holds the promise of conceptual as .well as computational 

simplifications as it attempts to derive, without resorti_ng to the tra­

ditional wavefunction method, the total electronic ene_rgy of systems 

within the context of potential energy surfaces. The knowle_dge of 

such systems is very important because it can help us to understand a 

lot about macroscopic phenomena. 

For example, if the nuclei are arranged on a periodic lattice, we 

can predict the lattice vibrational (phonon) spectrum of the solid by 

slightly distorting the lattice and :recalculati_ng · th_e ground state 

electronic energy as a function of the distortion. Knowi_ng this allows 

us to evaluate optical, thermal and magnetic properties of the solid. 

We can also write down the equation of state, electron.density distri -

butions and cohesive energy of such a solid all of which can be veri­

fied by experiments. And when phonon and electron properties of a 

metal are investigated together, one can calculate its superconducti_ng 

transition. temperature. 

1 
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Density Functional Theory provides a systematic approach with 

which one can obtain the energies necessary to observe and predict all 

of the phenomena described above. We can use the theory to derive inter-

action energies that in turn produce potential energy surfaces that fit. 

well with experimental results. The energy of interaction of two or more 

molecular fragments is defined as the total electronic energy of the sys-

tern with the nuclei of all the atoms fixed in place plus the Coulombic 

repulsion energy of the nuclei. Here, by "molecular fragments" we mean 

a collection of nuclei whose internal coordinates do not change during 

the course of our considerations. Of course, we shall want to obtain the 

interaction energy as these fragments assume different spatial arrange-

ments vis a' vis each other. 

The electronic energy of each fragment (including the nuclear re-

pulsion energy) computed for the isolated fragment, is then subtracted 

to define the potential energy of interaction for that configuration of 

the fragments. A plot of such potential energy of interaction in terms 

of all the coordinates which are allowed to change as: the fragments 

assume various positions relative to one another constitutes the paten-

tial energy surface. The focus of the problem, point by point on the 

potential energy surface, is then finding the total·· electronic energy of 

the interacting fragments. This then is the motivation for Density Fune-

tional Theory. 

In general, let us consider F fragments indexed f = 1,2,3, •••••• ,F. 

The fth fragment has Af nuclei and thus 3Af nuclear coordinates. In 

turn, these may be divided into two sets~ six "external" coordinates 

-+ 
R 

f 
and n which are 

f 
the center of mass and the Euler angles, res-

pectively and 3Af-6 "internal" coordinates which we will write as ftfl. 
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The Hamiltonian can be written quite generally as 

F Af e2 2 
H = l {-X v2 + l l - z } + .l. .. e + 

i af 
i=l 2m f=l a =l 1<] 1-+ . -+ I f 

l;i - ~ I ri - rj 
af 

F 2 
Af 

l 
Za za,e 

+ l f f (1.1) 
l<a <a'<A f=l ,... -+ I f f f Ra -Ra' 

. f f 

-+ 
where it is understood that each nuclear coordinate Raf may ultimately 

be expressed in terms of 
-+ 
R ' f 

. -+ 
Q , and the set {T }. The sums have 

f f 
been 

written so as to envision summing first over fragments and then over the 

nuclei within a given fragment. The electronic eigenvalue problem 

(1. 2) 

is then solved for various choices of the center of mass and Euler 

angles for all fragments. Of course the energy will also depend upon the 

internal coordinate sets. We indicate this by writing 

More specifically our interest is limited to the electronic ground 

state energy of the system and so E should be understood as the lowest 

energy eigenvalue of the electronic hamiltonian. Then subtracting the 

energies of the isolated fragments - which surely depend only upon the 

internal coordinates of each fragment - we arrive at a formal expression 

for the potential energy of interaction and thus the potential: energy 



surface given by 

+ . + 
V(R ,Q ;{T }) 

f f f 
= 

+ . + 
E (R , Q . ; {Tf}) 

f f 

4 

F 
l E({°i }) 

f=l f 

The notation suggests that the potential energy surface is to be 

considered a function of only the external coordinates - the center of 

mass and the Euler angles - of each of the molecular fragments. Indeed, 

the internal coordinates parametrize this potential energy surface but 

they are not varied from point to point. As a matter of fact! however, 

the potential energy of interaction cannot depend upon the center of 

mass of the entire system or its orientation in space. Indeed, then, of 

the 6F variables appearing explicitly in the argument of V, we anticipate 

that six a·re ignorable with the potential energy actually a function of 

6F-6 variables. We should note that there .are special cases, such as the 

fragments being atoms or linear molecules where the number of ignor.able 

coordinates must be determined individually. 

The focus of this thesis is just on two interacting molecules 

which, with F = 2, we designate A and B. To be specific, we might consi-

der two interacting water molecules in which the bond lengths ·and the 

bond angles of each water molecules are fixed. Then there are a total of 

F = 2 fragments with A
1 

= 3 and A2 = 3. There are 18 nuclear coordinates 

in all, but with each molecule having three internal (fixed) coordinates, 

there remain twelve external coordinates, the ceriter of mass and three 

Euler angles for each of the two molecules. Finally, however, six of 

these 12 coordinates are ignorable, leaving just six coordinates to be 

varied as we calculate the potential energy surf ace of two interacting 

water molecules. 



5 

It is then the total electronic ground state energy for various 

configurations of these molecules which occupies our attention. Rather 

than solving the Schrodinger eigenvalue problem by the traditional 

methods - using approximate schemes such as the Hartree-Fock or configu­

ration mixing techniques - we shall use Density Functional Theory. The 

formal approach of Density Functional Theory is elegant, although it is 

based upon a very simple idea. 

The essential idea is that there exists a functional of the elec­

tron density whose value is never less than the exact ground state elec­

tronic eigenvalue, and in fact assumes this eigenvalue for the true 

electronic density. Thus by trying various densities one seeks to mini­

mize this functional, knowing that the minimum value will in fact be the 

sought-for ground state electronic energy. We discuss this later on in 

the following chapters. The practical problem however is that explicit 

expressions for the functional of the density to.be used in the calcula-

tion are not known. We will obtain an approximate expression for 

case that the two molecules are very far apart. Thus our results are 

applicable in the theory of long-range intermolecular forces. 

Havi_ng seen how the electron density plays a central role in 

the 

Density Functional Theory, we therefore see the emergence of research 

papers in recent years covering the alternative formulation of quantum 

mechanics of many-electron systems in terms of the electron density 

rather than the wavefunction~ The single-particle density, the total 

particle electron density in three-dimensional space, is a quantity that 

can be measured directly by experimental methods like diffraction and 

scattering. 
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Now there has been in existence for quite some time a statistical 

theory which tries to develop a method for the direct evaluation of the 

electron density bypassing the wave function method, known as the Thomas-

Fermi theory. 2 , 3 In fact the model proposed by Thomas and Fermi was 

the first among Density.Functional Theories. The essence of the model 

is that one can give a self-consistent description of motion of the elec-

trans in a·potential produced by the nuclei and the electron charge 

density itself by finding a simultaneous solution to Poisson's equation 

with 
+ 

+ - 47Tp (r) 

r =f 0 

and the electron density below the Fermi surface given by 

+ 
p (r) 

r, + J t · {2m~f - el(r) } 
= 

37T2ti 3 

(1. 3) 

(1.4) 

The motivation for writing this latter expression is the electron gas 

model in which the local kinetic energy per particle is given in terms 

of the local density : 

Ekin 
= 2.{ 112k2 } 

N 5 -f 2m 
(1. 5) 

with 
1 

kf = [a37TP}3 (1.6) 

from whence (1.4) is derived. 



An alternative derivation of this density is by considering the 

Enerqy Functional of the Thomas-Fermi theory which, in its simplest 

version, has the form 

= f 
-+.5....-+ 

y p{r)3 dr + f PC;)V{;)d; + ~e2Jf p(~)p(~') 

I ~ - ~·I 

+ u 

(1. 7) 

and then Performing the variational procedure O subject to 

the constraint 

= (1. 8) 

Perform~_ng such a variation is guaranteed to produce the same density 

(l.4}. In (1.7) the third term is the Coulombic Self-Energy while the 

fourth term is the repulsive electrostatic energy given by 

u = (1.9) 

-+ 

7 

V(r) is the electrostatic potential of k nuclei of charges z1e, Z e, Z e, 
2 3 

ana 

-+ 
V(r) 

located at vector positions 

F 
:c: l 

f=l 

A 

.
\f .. Z e2 
l af 

a =l 
f 1-+ -+ I r - R 

af 

-+ -+ -+ -+ 
R , R , R , • • • , Rk : 

1 2 3 

y is a constant: Y = 
2 h2 -+ 

(37T2)3-. V(r) is connected .with 
2m 

-+ 
e<P (r) = 

-+ 
V (r) .J IP(-; ) e 2 

+ dr + -+ 
fr - r' I 

(1.10) 

-+ 
<P(r) by 

(1.11) 



In the Thomas-Fermi-Dirac model~ Dirac considered including an 

"exchange energy" contribution based from .the.electron gas expression, 

so that the Energy Functional takes the form 

= J 
+...!i.. + 

C p(r) 3 dr 
e 

(1.12) 

where Ce is a positive constant. The variational procedure is again 

applied to obtain the d§!nsity.Butfor thi,s case, the variation 

= 0 (1.13) 

will yield .. a·· dens;!. ty of the form 

+ 2 c }
3 

--e 
Sy 

( 1.14) 

But both of these models still neglects two effects that can be 

8 

important in many-body systems: the correlation between particles and the 

variations that might exist in the potential. It is clear from (1.4) that 

the approximation fails when V(f) becomes infinitely negative near a 

nnucleus since p must be infinite if we solve Schrodinger's equations. 

The models also suffer from the absence of molecular binding - a conse-

quence of the "no-binding" theorem discovered by E. Teller,5 whose 

proof was b~ought into full rigour by Balazs. 6 The theorem shows that if 

+ 
the density p(r) is expressed as a local function of the electric 

potential alone, then there will be no molecular binding. ~n·the Thomas­

Ferrni and Thomas-Fermi-Dirac theory, the density is related to ~(1) 

algebraically as in (1.4) and (1.14). Whenever P = f (~), no stable 
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molecule can be formed: The nuclei seek infinite separation from one 

another. Binding can only occur if there exists a range of internuclear 

separations for which the forces on the nuclei are attractive. 

Nevertheless, binding is displayed in the von-Weizsacker correction. 

The Thomas-Fermi-von-Weizsacker7 Energy Functional has the form 

= + (1.15) 

where o is a c.onstant. The variational procedure is again applied to 

obtain the optimum density 
+ 

P (r). The variation implies that 
+ 

p (r) 

satisfies 

2..y 
2 + v2p ~ ci:> + p3(r) 4 0 

P ~ c:t> 
e V(r) + 

3 

+ ..l...+ 
e2 

+ P (r') 4 f dr' ,; - - Ce p3 (r) - µ = 0 (1.16) - ;. I 3 

We see that due to the presence':of the derivative of the density in the 

second term in this equation, the density is not directly connected 

to the potential in an algebraic manner. and from Teller's theorem this 

indicates that there might exist molecular binding. 

The most complicated and least analyzed of all the Thomas-Fermi 

models is the one that involves the combination of all three: 8 

ETFDW[ p ] = + 

(1.17) 

But for the present context we shall not dwell too much on the 

Thomas-Fermi model and its subsequent developments and modifications, 
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but rather we confine ourselves to the modern developments of Density 

Functional Theory, particularly beginning from the remarkable theorem 

due to Pierre Hohenberg and Walter Kohn.9 This theorem states that for 

both degenerate and non-degenerate ground states of many-electron sys-

terns, there exists an Energy Functional of the density which is an 

upper bound to the ground state energy for all densities and equals the 

exact ground state energy for the exact density. This means that all 

information about the ground state of molecules can be obtained once 

we obtain the density function. We shall look more closely at the 

Hohenberg-Kohn theorem and its proofs in the next chapter. 

In 
10 . 

1972, R. Gordon and Y.S. Kim proposed a model which describes 

inter-molecular potential energy of interaction between closed-shell 

-+ 
systems using the electron density p(r). In obtaining the energy, the 

Gordon-Kim model is based upon three approximations :-

(i) When the atoms approach one another, there are no rearrangement. 

or distortion of the atomic densities~ the total density is the 

-+ -+ -+ 
superposition of individual atomic densities: p(r) = p(r)+p(r). 

A B 

(ii) The Coulombic interaction between all charges are calculated by 

using additive electron densities. The kinetic, exchange 

and correlation energy of the electr~ns are evaluated using the 

uniform electron-gas approximation. 

(iii) In constructing p(i),.atomic Hartree-Fock wave-functions are used. 

Within the context of determining the ground-state electronic pro-

perties of a large number of different types of interacting closed shell 

systems, the Gordon-Kim model is very sucessful. The same authors used 

the model to evaluate the interactions of rare-gas atoms and halide 

. 11 
crystals. 
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Nevertheless., the theory describes accurately only the potentials 

between closed shell systems at shorter distances out to the potential 

minima. It fails to give accurate descriptions of the entire potential 

12 
curve. According to Harris, the model has flaws in that it is quite 

unclear how the full form of the induction and dispersion forces are 

incorporated within the scheme of the theory; only lowest order induction 

effects are included, since the densities are additive in the undistorted 

molecular densities. 

Using mean field electron densities, Harris managed to remove a 

part of the flaw of the theory - the inclusion of induction forces. How-

ever, he only partially solved the dispersion-forces problem. It is our 

intent to display in our work both the induction and dispersion terms 

for the case of two molecules interacting via long-range interactions 

within the context of Density Functional Theory. 

The understanding of the properties of dispersive forces is vital 

in forecasting some practical consequences of the way molecules behave: 

for example, the additivity of the dispersive forces represents the fact 

. 13 h' . . . 1 1 of general cohesion. In t is thesis, we show as a preliminary ca cu a-

tion the orig_in of the term "dispersion" as first coined by London in 

1932; that we obtain a term, in the second order energy correction to the 

system of two molecules as a dispersion integral. 

In 1980, the formalism of Density Functional Theory received yet 

l '+ another boost when Mel Levy and Karl Freed developed an algorithm for 

determining the Energy Functional. Using an external "driving potential" 

term, they managed to obtain a Taylor expansion.for the "exact" 

Energy Functional about a reference density. This formulation is a gene-

ralization of the Hohenberg-Kohn theorem in that it takes advantage of 
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an arbitrary choice of expansion point. We shall look more closely into 

Fred and Levy's formulation in the next chapter. 

So powerful is the idea purported by Density Functional Theory in 

that the three-dimensional particle density p(1) should be a fundamental 

carrier of physical information about a system and thus bypassing the 

wave-function that the formalism has been extended, with sucess, to spin­

pola~ised systems, 15. relativistic systems, 16
,

17 ·and also to any exc~-

ted states that correspond to the lowest state of a given symmetry 

(see reference 18). There are also suggestions to extend the formalism 

completely to a dynamical Density Functional Theory and therefore consi-

dering extending the Hohenberg-Kohn theorem to include a time-dependent 

. 19 20 oscillating potential. ' 



CHAPTER II 

DENSITY FUNCTIONAL THEORY 

The modern formalism of Density Functional Theory rests on the 

powerful theorem by Hohenberg and Kohn that states that there exists an 

Energy Functional of the a~nsity which is an upper hound to the around-

state enerqy. If this Energy ~unctional is minimized with~respect to the 

density , i.e. finding 

= 0 subject to I + + drp (r) N (2 .1) 

an Euler equation will be yielded which can be a deterministic equation 

+ 
for p(r). However, since no one can write down the actual form of the 

Energy Functional, we have to invoke,some approximations. In this chap-

ter, we will review the theorem due to Hohenberg and Kohn and then move 

to one way of approximating the Energy Functional using Taylor's expan-

sion as firstly suggested by Freed and Levy. 

In demonstrating the Hohenberg-Kohn theorem, let us use the lan-

guage of second quantization: we define ipt (x) and- 1jJ (x) as local 

field creation ·and annihilation operatbr-s. If we now consider 

a very large box containing an arbitrary number of electrons moving un-

der the influence of an external potential 
+ u (r) , the Hamiltonian of 

the system is given by 

H T + V + U (2. 2) 

13 
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t 
where T = fi.2 fvtJ! (x) 'VtjJ (x) dY. ( 2. 3) 

2m 

v fu(x)tjJt(x)tjJ(x) dx (2.4) 

u ==~JJ ,~ 
1 

tjJ*(r)tjJ*(r')tjJ(r)tjJ(r )dr dr' ( 2. 5) 
1· I 

We stress that we deal, for simplicity, only with situations in' which the 

ground state is nondegenerate. rhe electron density is defined as 

-+ P (r) = < '¥ I t ,,,.t +:;; ~ > 1/1 <;, ~ > I '¥ > • 
~ 

( 2. 6) 

-+ . -+ p(r) is thus a functional of u(r) since clearly u determines the ground 

state j'i' > • 

Theorem 

-+ The converse of this statement is also true: U(r) is a fun~c~cnal uniquely 

. detE'!rmined -+ P (r) • 

Proof 

Let us assume there exists another potential u' (~) with ground state '¥' 

-+ 
that proaiices the~ density p(r). Now~· cannot be equal to'¥ since they 

are eigenvectors of different Schrodinger equations. Thus if H and H' 

are the Hamiltonians associated with '¥ and '¥' and generate ground state 

energies ·c and 8' : 

and H' j'i'' > 

where H = Ho + V and H' H0 + V' , then due to the mini-

mal property of the ground state, 



E' 

where 

Therefore 

= < ~jH + V + V' - vj~ > 
0 

15_ 

( 2. 7) 

( 2. B) 

(2. 9) 

If we interchange the primed and unprimed quantities and go through the 

same procedure, we find that 

(2.10) 

Adding together, we are led to the inconsistent result that 

E + E' < E + E' (2.11) 

Clearly, our assumption concerning u' leading to the same density p 

cannot be correct, Therefore within a constant, we have shown that 

u c±l is uniquely determined by the density -+ -+ p(r) and so due to u(r) 

fixing a particular Hamiltonian in (2.4) and (2.2), we see that the full 

many-particle ground state is also unique-ly determined by the, density 

-+ 
p(r), com~letinq the proof of the theorem. 
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Another aspect of the Hohenberg-Kohn theorem concerns itself with 

the Energy Functional defined by 

where 

I -+ -+ ·-+ 
u (r) p' (r) dr (2 .12) 

(2 .13) 

is a universal functional of a "v-representable" density.- and 'I'~ being 

the grouna state eigenfunction uniquely determined by p' according to 

the previous theorem. By "v-representability" we mean the trial 

density is required to be the ground state density associated with 

some local external potential. 

Theorem 

Eu [P •] assumes its minimum value for the true ground state density p Cf) 

under the restriction 

= 
-+ -+ 

fp(r)dr = N (2.14) 

Proof 

The quantum mechanical variational principle states that for a system 

of N particles, the Energy Functional of 'I'' , tu [ 'I'' J which is 

written as 

~ [ 'l''] u v < 'l'' lvl'l''> + (2 .15) 

~ e[ 'I' J 
'II 



1.7 .. 

has a minimum at the correct ground state wavefunction ~. relative 

to variations of ~·, in which the number of particles is constant. 

Let ~· be associated with an external potential + u' (r) . (different 

+ from u{r) ). Thus 

= J -+ -+ -+ r +] u (r) p' (r) dr + F LP' (r) ( 2 .16) 

where, as the density p' implies the wave function ~·,then the 

Energy Functional --.Eu [ p' ] implies the Energy Functional of the 

density e c~'J u 

Now due to the Rayleigh-Ritz principle, the Energy Functional of 

the arbitrary wave function ~· is bigger than the Energy Functional of 

the ground state wave function~- Therefore since 

> 

this implies that 

where 

= 

> 

E. [ ~ J u 

J -+ + + 
u(r)p(r)dr + (2.17) 

. + 
where P(r) is the ground state density. This establishes the minimal 

property of E [P' (t)] 

We now see the thorough simplification brought about by the 

Hohenberg-Kohn theorem: that the major part of solving many-electron 
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problems are associated with the determination of F[P] : if F[pJ were 

a known and simple functional of p(~), the determination of the ground-

state energy in a given external potential would not be difficult, since 

the only thing required is.the minimization of a functional of a three-

dimensional density function. 

Since its debut in 1964, many works have been produced to improve 

and generalize the Hohenberg-Kohn theorem. It was even shown21 that the 

theorem is a special case where the constraints are expressed by the 

expectation values of an indenumerable set of charge density operator, 

the members of which are indexed by the continuum of eigenvalues of the 

single particle position operator. One could also obtain22 the energy 

as solutions to a first order noplinear partial differential eq~ation. 

'Wrrat is needed now is an exact and explicit form for the Energy 

Functional :e:[ p J . Mel Levy and K. · Freed provides an abstract theorem 

-+ 
that derives E [ p ] as a Taylor expansion of op (r) where 

and -+ p (r) 
0 

-+ 
op (r) -+ -+ 

= p(r)- p(r) 
0 

is a certain reference density. 

(2 .18) 

In discussing Levy and Freed's formulation, it is important to 

mention that while Hohenberg and Kohn restricts the functional F [ p ] 

to be "v-representable", Levy and Freed lifts this restriction. To 

begin with, the Energy Functional of Levy and Freed is defined as 

(2 .19) 
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The notation implies minimizing the expectation value by searching through 

the class of wavefunctions jo/ > each of which yields the specified density: 
p 

-+ 
P (r) < o/ I s lo/ > 

p p 

assuming that I o/ > is normalized: 
p 

<o/jo/> 
p p 

= 1 

P is the sum of one-body operators given by 

p (i:) = 

(2.20) 

(2.21) 

(2.22) 

To minimi~e ·(2.19), we minimize 'bhe · auxilliary functional defined by 

Levy and Freed as 

~{< o/jo/ > - l} } (2. 23) 

If the wave function < o/j or jo/ > is subjected to a variation, say 

< o/I -+ {< o/l + < co/I } 

then we envision obtaining a corresponding variation in the functional 

(2.24) 

-+ 
The A(r) is a Lagrange multiplier function used in the minimization 
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procedure, for we will have to set o~ = 0 
-+ 

to obtain the optimum p(r) 

for the purpose of evaluating the Energy Functional in order to get the 

ground state energy. 

The way to do this is by inverting the form of A(~) and obtain p 

in terms .of A; This inversion is derived from (2.20) with I~ > being 

a function of A. From (2.20) one obtains 

-+ -+ p(r) = p0 (r) + (2.25) 

where K- 1 c1,11
) is a quantity called the density-density correlation 

function which will be defined and derived in the forthcoming chapters. 

If we define the inverse of this correlation function : 

-+ -+ -+ -+ -+ J K ( r , r" ) K- l ( r" , r ' ) dr" -+ -+ 
o(r - r') (2. 26) 

then equation (2.25) can be inverted to give 

-+ 
A. (r) 

-+ -+ -+ -+ -+ J dr'K(r,r'){p(r') - p0 (r')} + (2.27) 

and we can use this expression to write the Energy as a functional of 

the density. 

All of this will be dealt with in more detail in chapters 4 and 5. 

Before using the Levy and Freed formalism to construct the Energy 

Functional, we review in the next chapter the traditional theory of 

long-range intermolecular forces based upon the Rayleigh-Schrodinger 

Perturbation Theory (RSPT). This formalism will be used again in 

chapter IV when we include the "driving potential" of Levy and Freed. 



CHAPTER III 

THE FIRST- AND SECOND-ORDER CORRECTION 

TO THE ENERGY OF THE SYSTEM 

Our system in consideration consists of two neutral molecules A and 

B whose ground state eigenfunction do not overlap (i.e. we consider both 

A and B separated farther than the sum of their van der Waal's radii and 

therefore disregard any considerations of short-range forces). Molecule 

A has A nuclei-centers and NA electrons while molecule B has B nuclei 

centers and NB electrons. Since the wavefunctions of the electrons do 

not overlap within the space of each other as the electrons only act 

from a distance, the total asymptotic (i.e. infinite separation) g_ro'<md-

state :'.energy of the system is given by 

= ( 3 .1) 

The problem of determining the interaction energy between these·two 

molecules reduces in principle to obtaining the ground state electronic 

eigenvalue of a Hamiltonian which can be partitioned into the sum .of the 

Hamiltonians of the isolated molecules H0 + H0 plus the Coulombic in-
A B 

teractions V between all the charges in molecule A and those in B, i.e. 

H = 

where 

H0 + H0 + V 
A B 

T + 
A 

21 

~ + ee 

(3.2) 

0 en + 0 nn 
( 3. 3) 
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and = t?' 
ee + t?' en + ~n (3. 4) 

where, if written explicitly, 

A l 
2 

Vee = e (3. Sa) 
i<i' 1; - ; I 

i i' 

Ven = l l - z e 2 
(3.Sb) a 

i a l;. - it I 
J. a 

VA l z Z e 2 
= a' a (3. Sc) nn 

a<a' l-+ -+ l R - R 
a' a 

VB l .e2 = ee ( 3. Ga) 

'<''I+ -+I J J r.,- r. 
J J 

vB l l 
2 

= - Z13e 
en !.. =+ I j s rj - RS 

(3.Gb) 

vB = l I z6,zSe2 
nn 

e,<S'I-+ -+I 
R,s,- Rs 

( 3. Ge) 

The system of notation we follow is as such: the limits on the sums 

over i, the electron index in molecule A, are from i = 1 to i = NA and 

the limits on the sums over the electron index j of molecule B are from 

the nuclei index for molecule A and B 

respectively, have limits ranging from 1 to A and B respectively. ·, For 

purposes of simplifying the notations, we will not write these limits 

explicitly, but for example, l 
j 

. NA+NB 
should always be understood a~ l . 

j=NA+l 



Now the eigenstate of the Hamiltonian Ho + Ho 
A B 

23 

can be written as 

(3. 7) 

where '¥0 and 'i'o 
A B are the eigenstates of the individual Hamiltonians 

H0 and H0 and we have ignored antisymmetry. It is also worth noting that 
A B 

while the·Hamiltonian H is totally symmetric under .the· inter-

0 0 . 
change of any pair of the (NA+ NB) electron labels, neither HA , HB nor 

Vin (3.2) is separately symmetric under the interchange· of particle 

labels. 

In (3.2)r the Coulombic potential. V can be written explicitly as 

- z e 2 l l - ZBe 
2 

e2 zaz§e 
2 

v = l l a + + l l + l l 
j a 

l;j - ~al i f3 l~i - Rs I ijlt-1.I a B 
!Ra-Rel 

l. J 

( 3. 8) 

The first term denotes the interaction between the electrons in mole-

cule B with the nuclei in molecule A, while the second term · denotes the 

interaction between the electrons in molecule A with the nuclei in mole-

cule B. The next two terms are the electron-electron interaction and 

the nuclear-nuclear repulsion of A and B. 

Now if we regard V to be perturbations to the total Hamiltonian 

of the system, we can find the first and second order correction to the 

energy using perturbation theory. Let us recall that in the Rayleigh-

Schrodinger Perturbation Theory,(RSPT), the first and second order 

energy correction are given by the formulae 
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E (1) = < '¥0 I v I '¥0> (3.9) 

and 

E (2) 
I 

I < '¥v I v I '¥0 >12 
= 

\) Eo v-:f o E 
(3.10) 

respectively. where '¥ 0 is the ground state of the unperturbed 

Hamiltonian, assumed to be normalised and v is an index that denotes 

the excited states of the system. 

Applying the RSPT to our system in consideration, we can write the 

first-order energy correction as 

= 

< '¥0'¥01 I l - Za.e2 j '¥o'l'o > 
AB j 0.1 :t. - Ra. I A B 

J 

< '¥0'¥0 I 2 
+ I I e j'¥o'l'o > 

AB 
i jlti-

AB 
t. j 

J 

The first term can be ··written out as 

x l 
a 

I 
j 

- z e 2 
Cl. 

+ < 1110'¥01 l l -zse2j1i'o'l'o > 
AB 

i s It i -Rs I A B 

+ < '¥0'¥01 I 
2 

Iza.zse j '¥0'¥0 > 
a.S-+-+ 

I Ra-Rs I 



The electron coordinates in the .molecule A wave function can be 

integrated due to the fact that the interaction is only between the 

nuclei in A and the electrons in B. Therefore the molecule A wave-

function can be collected together and integrated to give 

(3.13) 

since it is assumed to be normalised. We are now left with evaluating 

x l l 
a. j 

- z e 2 
a. 

I-;. - ~ I 
J a; 

(3.14) 

Now for the purpose of simplifying the equations, let I denote any one 

of the coordinates in set A and J be any one of the coordinates in set 

B. Specifically for the present purpose let I: 1 and J = NA + 1. Then 

for example the probability density of the B molecule is written as 

= I O* 0 
d~ +2° 00 d~ +N ~B ~B 

A A B 

so that (3.14) becomes· [CNA+NB)-NA] l Jc.xJ PB(xJ) 
a. 

Let f a.xJ - l f d
3
rJ 

E;,J 

- z e 2 
a 

(3 .15) 

(3.16) 

25 

where we have indicated .a summation over spin states and an integration 

over ordinary three-dimensional space. Thus our term becomes 



2 - z e a 

26 

(3.1?) 

But according to definition, 
-+ 

N l P (r ,~ ) is just the electron 
B B J J 

density of' molecule B, ,written as 

-+ LPB(;,~) P (r ) - NB B J ~ J J 
J 

< '¥01 l -+ 1 ) 11¥0 > - o(r -
B J j B 

j 
(3.18) 

Thus our expression for the first term becomes 

(3.19) 

Likewise, the other three terms in (3.ll)can be simplified in terms of 

these density functions and we write the first order correction to the 

energy (after all integrations are performed) as 

P s ctJ> 

ltJ - Ral 

-+ -+ 

+ e2 f Jd3rid3rJ :A(rI:PB(rJ) 

Irr - rJI 

where for example 

+ I l: z z e 2 
a e 

-+ 
- R e 

-+ 
P (r) 

A 

(3.20) 



This expression that we obtained is just the lowest order electro-

static contribution to the intermolecular potential energy, using wave-

functions without polarization. We proceed next to observe the form of 

the second order correction to the energy- of the system •. ·-. From second 

order Perturbation theory, 

= (3.21) 

where V is our four-term Coulombic perturbation. At this point let us 

mention that the wave function j'¥~'¥~ > can be written as a direct 

product since we ignore antisymmetry 

Similar is the 

antisymmetry. 

case for the excited states j'f'A'f'K > 
AB 

- A K 
The direct product basis {j'f' >j'f' >} 

A B 

(3.22) 

if we are to ignore 

forms an orthonormal 

set, a fact which can be seen if we consider the eigenvalue equations 

(3. 23) 

( 3. 24) 

From whence 

< 'f'A j 'f'A "» = on .. (3.25) 
A A 

< 'f'Kj'f'K"> ~ 

B B °KK .. (3.26) 
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so that 

= (3.27) 

In {3.21) the expression involves sums over the excited zeroth 

order states of the molecules. We often speak of "virtual excitations" 

of the molecules to describe the terms in the expansion. So in effect 

we have a combination of three possibilities: one when molecule A only 

is "virtually excited" and molecule B stays in the ground state condi-

tion, another when molecule B is "virtually excited" and A stays in the 

ground state condition, and the third condition wherein both molecules 

are "virtually" excited. Therefore we have 

(2) 
E 

Let us evaluate the matrix elements and introduce 

and ~oo as well as a transition density function: 

@ OK(tJ) l f Tidx. 
o* '!'K - '¥ 

t; j7'1J J B B 
J 

POK - N~OK('t J} B 

(3.28) 

a quantity f?oK,A 

(3.29) 

Using tne fact that the NA indices i = l, ••• ,NA are all equivalent 

and the NB indices are also equivalent (j = NA+l, ••• ,NA+NB) we arrive at 

the following expression for the second order energy correction:-
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E (2) 
I Jf dirrd 3rJ 

GJoo -+ ~OK -+ V + + 12 A (rI) B (rJ) (rI,rJ) + 
K 

I I Jf d3rid3rJ (Yo!..(+}@oo(+)V(+ +) 12 + 
A. 

A rI B rJ rI,rJ 

I I l ff 3 3 OA -+ OK -+ 1J -+ -+ 12 (3.30) d rid r J @A (rI). (ilB (r J) (rI ,r J) 
A K 

where I is the prototype for the electrons in molecule A and J the 

prototype for the electrons in molecule B. The ciJ(rI,rJ) is defined as 

.l'\C' -+ -+ v (r ,r ) 
I J 

. 2 
+ N l - Za.e 

Bet I~ - R I 
J ct 

+ + 

(3.31) 

Our expression for the second order correction to the energy can 

be written in terms of multipole-moment expansions. But before doing so 

let us observe the orientation of the two molecules in space and note 

that they can be looked upon as being in a common coordinate system even 

though each molecule has got different coordinate systems distinct from 

each other. 

From figure 1 we can deduce the transformation from a global coor-

dinate system where all nuclei and electrons of the "supermolecule" have 

a common axis to a pair of local coordinate systems each located within 

the respective molecule (say at the center of mass): 

-+ -+ -+ -+ -+ -+ 
r = DA + r;I r DB + r;J 

I J 

-+ -+ -+ -+ -+ -+ 
R = DA + r,;ct RS = DB + r; s (3.32) ct 



Figure l: Relative Orientatio~ of the Two Molecules in a New 
Coordinate System 

30-
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Thus it follows that 

-+ +· -+ -+ -+ 
r - R = - R + r; - r;a. J a. J 

-+ -+ -+ -+ -+ 
r - RS = R + r;I - r; s I 

-+ -+ -+ -+ -+ 
rI - rJ = R + r;a. + r;J 

-+ -+ -+ -+ -+ 
R - RS = R + r; a. r; s (3.33) 

a. 

-+ -+ -+ 
where we have written R = DA DB. A more illustrative and practical 

example is shown in figure 2 where we have .shown this coordinate 

transformation pictorially for the system of two water molecules • 

.. ~-+ -+ 
Now let us evaluate the matrix elements of v(r

1
,rJ) sandwiched 

between the wave functions '¥ 0 '¥ 0 using the "two-center expansion" for 
AB 

a charge distribution. 23 • 24 For example, we can write 

1 1 

= 

co co 
!ml m m 

B (r; ,r;
0

,R)P (cos 8 ) P (cos 80 ) 
na,nb a. µ na a. nb µ m=-n< 

= 

x (3.34) 

where the symbols n denotes the smaller of n and ~ and where the 
< a o 

coefficients Blmln. (r; ,r; 0 ;R) are in general complicated functions of 
a' o a. µ 

r;a. and r;S. According to Hirschfelder
24 
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Figure 2: Orientation of Two Water Molecules in a Common. 
Coordinate System 
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B lml (1; l; ;R) 
na'~ a' B 

= (3. 35) 

provided that R > (l;c:t + i;;
8
), i.e.,the two charge distributions do not 

overlap, which is the case in question. Note that throughout we have used 

Roman or Greek letters without the arrow to indicate their corresponding 

vector magnitude, i.e. 

etc. 

The angles e and e are defined with resoect to the centers a and b as A B ~ 

shown in figure 1. Note that we have defined the z-axis to be orientated 

along the line joining the centers of the coordinate systems of the two 

molecules. Substituting some values for na and nb as well as m, we· get 

for the first few multipole-multipole interactions, 

monopole-monopole ;-. na 

monopole-dipole . 

dipole-dipole . 

n 
a 

n a 

n a 

n 
a 

= o, 

1, = 

1, ~ = 

1, nb = 

1, nb = 

O, m = 0 (3.36) 

1, m = 0 (3.37) 

o, m 0 

1, m -1 

1, m 0 (3.3 8) 

1, m = +l 
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Therefore our expression for the potential ene_rgy operator in. terms 1 of 

the first three multipole interactiqns is • 

- i._r;; r;; Cose N l:-z,,.e2 [_!_ - r;; 
B et ~ R a 

Cos e 
ci R2 R3 a J a 

Cose 
J 

+ 1 r;; r;; Sine Sine Cos(~a- ~ ) J 
--p:3JCI. J Ct J 

+ 

+ N N e 2 ( ]__ - -b_ { r;; Cose + r;; I Cose I} 
AB R R J J 

+ r;; 1 r;; SineISine Cos(~ - ~ ) J 
J J J I 

+ 

r;; Cose 
171 

+ 
r;;ar;; 6sineo.sine 6cos(~S - ~a) ] 

. R3 

The monopole-monopole terms collect together to give 

N N 
AB 

2r;; r;; Cose
6
cose 

S IR3 I 

(3.39) 



= 

For a neutral molecule this vanishes because 

l z = a. 
N 

A 
l z 
13 13 

= 

35 

( 3.40) 

(3.41) 

the monopole-dipole terms· also vanish, and only the dipole-dipole i"s left: 

+ z r; Cose 
a. a. a. + 

At this point we define the molecular dipole moment operators 

(3.43) 

(3.44) 

It takes a little manipulation of the vectors to notice that we can write 

the second-order energy in terms of these dipole moment operators:-



+ 

If we denote 

+ 
<µA> 

00 

36 

(3.45) 

= (3.46) 

as the expectation value of the dipole-moment operator for molecule A, 

and = I d 3r GPK (f ) + 
J B . J lJB 

as the matrix element of the transition dipole-moment operator for 

molecule B, then we can write 

,.. .;... 
E (2) l I + + + + + + 12 <µ > • <µ > 3<µ > .z <µ > • z 

'R6 K:/=O A oo B OK A 00 B OK 

EO - EK) 
B B 

+ 

.A. ,.., 
1 I + + + + + + 12 <µ > • <µ > 3<%> .z <µ "> • z 
R"6 A.::/=o B oo A OA 00 A OA 

Eo -
A 

EA) 
A 

(3.47) 
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A. ,,., 

-+ -+ 
<µ > • <µ > 

A OA B OK 
-+ -+ -+ -+ 12 3 <µ > • z <µ > • z 

A OA B OK 

A EK) E + 
A B 

( 3. 48) 

Now this form· for the energy depends on the angular orientation of 

molecules A and B as well as the distance R. We therefore want to write 

down the angular average of this expression. If we let 

-+ 
<µ >" 

B 

= 

= 
-+ 

R ( 8 , $ , 1jJ ) <µ > 
B B B B 

be column vectors with ~hree SEatial components 

(3.49).-

(3.50) 

fixed complex vectors depending on which of the three terms are being 

evaluated), where e, ~, 1jJ are the Euler angles and R(8,$,1jJ) is the 

3 x 3 rotation matrix given by 

= 

Cos8Cos$Cos1jJ - Sin~SinljJ -Cos8Cos~Sin1jJ- Sin~CosijJ -Sin8Cos$ 

Cos6Sin~Cos1jJ+ Cos$Sin1jJ -cos9Sin~Sin1jJ+ Cos$Cos1)J Sin8Sin$ 

-Sin9Cos1jJ Sin9Sin1jJ Cose 

then we ara left with evaluating only terms iike 

(3.52) 
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Of course we have to bear in mind that there are three "kinds" of such 

primed quantities as depicted by the three terms in (3.48). For simpli-

city, let us denote in any of the three types of te·rms the complex vec­

to~ ,Il)atrix elements by_JA and JB. For example in the first term of 3.48, 

-+ I 
JA 

"!a' J '} (3.53) 

What we have done is we have rotated the (unprimed) vectors using the 

rotation matrix R(nA) and R(~) {short for R(SA,~A'~A) and 

R(8B,~B'~B) respectively} containing the Euler angles. Therefore we 

want to evaluate 

,.. 
-+A' ~J : -J • 

"!B'-+ 
J .z 12 

3 , B' l J~ Ji· - 3·JA3 B 12 
i=l 1 J3 

K , , , , , 
A' B"' / I , , 

= l l J, J~ .i?-·J~* - 3 {JA* JB* l J. J• + JAJ.BL J~* ~} 
. 1 1 J .J 3 ·3 1 1 3 3 . J JJ 

i j i . J 
, , , , 

+ 9 ~·~· 3 3 
J B•JB* 

3 3 (3.54:) 

-+ 
Explicitly, the complex vectors J's are given by 

= = (3.55) 

~. 

Thus this leads us to evaluate the angular average of the expression 

* I I I I I I R rn .> R w > R rn·. > R ( Q. > JAJ~jB JB 
i j fl k fl 'k.. ik A j fl A ik' B j.fl.. B k fl k.. 9., .. 
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(3.56) 

Now evaluating the angular average of this expression means performing 

integration over the Euler angles, i.e. 

Now the integration of (3.56) is quite involved, but fairly straight-

forward. Using the result 

our expression becomes 

I I r o o l I I I I 
Q, .. k .. I ~j k.t i j R, k 

l 3 ) 

-3 I I l l l [ o,i:ik] i R, k R, .. k" 

[ 0 0 l . i; k".t" 

[ 03i0~y ] 

1 
3 

0 0 
ij kQ. 

J'A*JA* ~ B* 
k .. J .i" k R, 

JA*JA J~* JB 
R, k .t" k" 

[ 03; 
0
kt ] [ 

0
,<k't' ] 

JA JA*JB B* 

- 3I l l l l J· 
k R, k" R, .. 

j R, k R, .. k .. 

[ o~k 1 l l 
* 

I I l l 0 i"k" 
.fo.JA*JB .. JB .. 

+ 9 R, k k R, 
.t k R, .. k' 3 

(3.58) 
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The action of the Kronecker deltas bring us to 

1.. l l 
9 i R, 

+ l 
R, 

We notice that the first two terms cancel 

above expression equals 

= 

= 
2 -+ * -+A-+B * -+B 

- JA. J J . J> 
3 

( 3 .s 9) 

because ..!.. 2:1 = 1 • Thus tbe 
9 i 3 

( 3 .6 0) 

Now (3.60) is a general expression that can be used to evaluate or 

simplify each of the three te:t:ms in the energy expression (3.48) if we 

identify 

"'°A -+ JB .-+ 
(i) J = < 11 >. = < 11 > (3.6la) A Oo B OK 

"'°A -+ "'°B -+ 
(ii) J = < 11A>oA. J < 11 > (3.6lb) B oo 

-+A -+ -+B -+ 
(iii) J = < 11 > A. J = < llB > (3.6lc) 

A o OK 

With all these contributions, we can then write down the angular -

average form of the second order energy as 



= 2 
3 

+ 

41 

I 
A. (3.62) 

New we simplify this result in terms of more familiar quantities. 
25 

Following the notation of Margenau and Kestner we introduce.the 

oscillator strengths for the corresponding electronic transition by 

f = 2m I «t > 12 EK - Eo 
(3.63) . OK ~ BoK B B 

3e _ 

2m I<-+> 12 A. 0 
f = E - E (3.64} oA. -- µA A. A A ti2 0 3e 

where m is the electron's mass and e its charge. Rearranging, we 

can get the square of the magnitude of the expectation values of the 

dipole moment operators in terms of these oscillator strengths:-

I<;> 1
2 

3e
2h2 fOK 

(3.65) B OK 2m K 0 
(E B - E ) 

B 

I <li > 1
2 2112 fol.. 3e 

A oA.' 2m 
(EK - Eo) ( 3. 66) 

A A 

so that the second-order energy can be written as 



1 
-5 

R 

+ 

m 

I -+ 

I I<µ > 1
2 I L A 00. K 

- f OK. 

We now define the polarizability by 

a.(µ) = 
m y 

42 

+ 

(3.67) 

(3.68) 

where µ is a general frequency. We can have two special eases : .<:me 

in which the frequency µ is generally complex, µ = iw ·where w is real, 

and the other one in which the frequency µ is zero f0r which case we 

have what we call the static polarizabilities.a.(O). For example, for 

molecule ·; A, 

= ( 3 .-69) . 

For the complex frequencies, the polarizability is written as 

(3.70) 

- e2h2 l (3. 71) 
m K 

K 0 2 h2w2 (E - E ) + B B 



We can rewrite the induction part of the spherically-averaged second 

order energy in terms of these "static" polarizabilities:-

= - 1 [ R13 
l<t > 12 aA(O) + 

Aoo 
l<t > 12 aB(O) 

Boo 
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3 ( e.Ji2 l2 
- -t m· l 
. 2 J A. 

OK OA f f l 

The third term (the dispersion energy) is still in its original form 

because the energy denominator is not a simple product of the two sepa.-

rate energy denominators. However, we can rewrite this term as an inte-

gral over the product of the frequency-dependent polarizabilities. 

Claim 

l l 
A. K A. 

(E 
A 

Proof 

(3.73) 

Let the right-hand side of (3.73) be written out explicitly as 

00 

Ja(iw)a(iw) dw 

0 

dw 
= 

If we break the integrand into partial fractions, it becomes 

(3. 74) 
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= 

~ 1 

1 
(e!i~ 4 l l fOKfOA ir { A. 0 K 0 i] m A. K 

A. 2'fi (:EA- EA) (E - EB) 
(EK- Eo)2- Eo)2 B 

(E -B B A A 

•••• (3.75) 

Further simplifications give 

= ir (e2fi2) 2 l l 
Th m ) A. K 

( 3 •· 76) 

Thus to within a (negative) multiplicative constant, we have shown that 

the claim we make in equation (3.73) is true. We can now finally .write 

down the second-order energy correction in terms of molecular static as 

well as frequency-dependent polarizabilities which emerge as a disper-

sion integral : 

= -1 [ 
~ 

I <t > 1
2 a co> A A + 

+ 3b 
] ••• (3.77) 

'IT 

In Appendix A, we show some theoretical and experimental values of 

the constants and parameters in this second-order Energy formula for 

26 
the case of two water molecules interacting with each other • 



CHAPTER IV 

DERIVATION OF THE UNIVERSAL ELECTRON DENSITY AND ENERGY FUNCTIONAL 

At this point let us state what we want to achieve: we would like -

to derive an Energy Functional - an explicit expression for an energy-

like quantity as a functional of the density - such that for all densi-

ties this Energy Functional will be an upper bound to the true ground 

state energy whose value the functional attains at the true density 

This Energy Functional is defined as 

E[ p J = 
< ~ I Ho + v ~ > 

min P --------P 

{j~ >} 
p 

< ~ ~ > 
p p 

p • 
0 

(4.1) 

This definition envisions obtaining E [ p J for a specified p (°t) as the 

minimum expectation value of the Hamiltonian after a search is made 

over the class of N-electron states all of which gives the same density 

p(;). Ho and v are defined in equations (3.3) ,_ (3.4) and (3.8). We can 

rewrite (4.1) as 

E[ p ] = (4.2) 

where I -;;-; > r is the "optimized"·- wavefunction obtained as the lowest 
p 

eigenstate of the following ·equation which follows from (2.24) :-

# 

{ H0 + V + A } 1~ > 
p 

45 

( 4. 3) 
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The A here which is added to the total Hamiltonian Ho + v represents an 

operator yet to be determined, but has a form as shown in chapter II, 

A = I -+ -+ "-+ dr A (r) p (r) (4.4) 

" -+ where the density operator p(r) is the sum of one-body operators: 

,.. -+ 
p (r) = (4. 5) 

-+ 
and ;\(r) is the Lagrange multiplier function introduced to insure the 

-+ 
constraint -+ p(r) = ~I A 1""' <1¥ p 1¥>. 

p p 
;\(r) is to be obtained in principle 

-+ by inverting the expectation relation for p (r) and get 

I~ > is obtained as the solution of (4.3) approximately using 
I' 

Perturbation Theory, where the "unperturbed Hamiltonian" is H0 

while the perturbation is now V +A. Specifically, 

(4. 6) 

where ]1¥(l) > is the first-order correction to the wave function and 

also obtained from Perturbation Theory: 

= 
l1¥A1¥K > < 1¥A1¥Kl£V + £Al1¥o1¥o > l l AB AB AB 

A K 
(4. 7) 

The £ is just an order parameter having value between 0 and 1 (which we 

will let equal l subsequently) whose purpose, as we shall see, is to 

-+ 
filter out certain high orders in the final expression for p(r). 
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Let us reiterate the fact about the wave functions j~0~0 > and 
AB 

.as explained in chapter III, particularly equations (3.22) and 

(3.27) that since we ignore antisymmetry, the wave functions can be 

written as a direct product: 

1~0~0 > 
AB 

= (4. 8) 

(4.9) 

We will now evaluate explicitly the electron density function using 

-+ 
p (r) = (4 .10) 

The motivation for evaluating this density is so that we can obtain an 

expression for the Lagrange Multiplier A in terms of p through inver-

sion of this density -as mentioned earlier, which in turn can be substi-

tuted into the energy (4.1) which we shall also evaluate explicitly in 

the forthcoming pages, so that we get the quantity that we want : that 

is the Energy as a functional of the density. 

Now the wave function approximation (4.6) can be used to write out 

out the denominator of (4.10) to order 

= 

~ 1 

where we have used the approximation 

2 e: : 

(4 .11) 
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(1 + a.)-1 = 1 - a. + (4.12) 

for any a. where la.I < 1. Therefore the density is evaluated as 

+ + < '1'<1) I Ioc"t-ti) l'l'o) > 
i 

} 

(4.13) 

It is not difficult to see that because we have neglected anti-

symmetry, the first term in the curly bracket just gives the total super-

imposed electron density of the system : 

= 

= 

+ 00 (-+) 
PN r 

B 

The second term gives, after a little manipulation, 

r:< A > 
AO } + 

-+ 
LPOK (r) { 

·K 

(4.14) 

(4.15) 

where 
A -+ OK -+ p0 (r) and p (r) are the. "transition density" functions of the 

electrons in molecule A and B respectively and are defined according to 

POA(t) = < 'l'~l~oc"t-ti) l'l'~ > (4.16) 
l. 
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p OK (°t) < '1'
0 Ip c°t) I 'l'K > 0 II + + I K - = < 'I' o(r-r ) 'I' > (4.17) B B B i B 

with i E {l, •.• ,NA} and j E {NA+l, ••• ,NA+NB}. The matrix 

elements < v > and < A > 
' for exa."Tlple, are shq;i:t forms for 

AO AO 

< v > = < 'l'A'l'o I v j'l'o'l'o > (4.18) 
AO AB AB 

A. olf +~ + + o o and < A > = <'I' 'I' drp(r~)A(r') j'I' 'I' > (4.19) 
AO AB AB 

In (4.13), the virtual excitations of both A and B molecules yield 

vanishing contributions since o(t-t.) is a one-body operator. When the 
1 

third term in (4.13) is evaluated, it turns out that it is just the com-

plex conjugate of (4.15) :-

, e:< V > + e:< A > IP /\O (;) {" __ ;>.._o _____ ;>..o } 

A E 0 Ex 
A A 

+ 
e:< v > + 

KO 

Eo -
B 

e:< A > 
KO } 

(4.20) 

Evaluating the last term in (4.13) is somewhat longwinded, but 

there are many orthogonal terms involving terms like and 

they all yield zero. Moreover, the nonvanishing terms in this expres-

2 sion are of order e: which we do not really want and thus ignore. 

Therefore if we take only expressions of the first order e: (noting 

that < '1'(1) j'l'(l) >includes e: 2) and .. then putting e: = 1, the density 

then becomes 

+ 
p(r) = + + 



p OA (;) AO -+ * -+ -+ 
< A p°K(r)< A PKO(r)< A * 

\o 
p (r) < A 

1o > ~o 
l l l 

KO 
l 

- EA 
+ + + 

A Eo A Eo - EA K Eo - EK K Eo EK 
A A A A B B B B 

p OA (°t) < v PAO (°t) < v * KO -+ * 
>AO \o 

pOK(°t)< V > p (r) < V > 

l l l 
KO 

l 
KO 

+ + + + 
Eo A EA A - E A. Eo - K .Eo ·- .EK K Eo EK 

A A A A B B B B 

(4.21) 

Now substituting in the values for < A > and < A > which, if evalua-
AO KO 

ted from (4.19) becomes 

< A ~o 

f< ~~I ~5(;,_;i) 1~~ > A(;)d; 
1 

(4.22) 

for example, the four terms involving < A > · can be simplified as 
A,Ko" 

+ 
AO(-+) OA (-+') -+ 

p rp r A(r') 

Eo EA 
A A 

+ (4.23) 

-1 -+ -+ 
Let us, at this stage, define a quantity K (r,r') called the 

density-density correlation Kernel. For the molecule A, the Kernel 

has the form 



-1 + + 
KA (r ,r') = 

= 2 Re 
OA (+) AO(+') l p r p r . 

/.. 
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(4.24) 

We can also write down an analogous expression for the B molecule, and 

define the sum of the two Kernels as 

-1 (+ +,) KA r,r + -1 (+ +,) 
~ r,r 

-1 + + 
K (r,r') (4.29) 

We shall assume the existence of the inverse Kernels KA' ~ and K. For 

example, we can write 

J + + + -1 + + dr'K(r,r')K (r",r') = 0 (t - t") (4.26) 

It is also obvious from (4.24) that by interchanging t and t', the Kernel 

has the property 

++ 
K(r,r') 

= 

= 
+ + 

K(r' ,r) 

(4.27) 

(4.28) 

It should also be borne in mind that the inverse Kernels are not necessa-

rily additivei for example 

+ + 
K (r,r') 

A 
+ 

++ 
~(r,r') 

++ 
K(r,r') (4.29) 



Returning to our evaluation of the density function, writing down 

the transition densities in terms of the correlatiqn-correlation Kernel 

offers a vast simplification to the expression of the density. We can now 

write -+ p(r) as 

(4.30) 

-+ . 
where p 0 (r) is the total superimposed electron density of the system and 

p(l) (-;) summarizes the last four terms of (4.21) : 

P (1) (r) = I 
POA(t)< V >xo + 

AO -+ 

I p (r) < V >xo + 
A A 

K 
0 X 0 

EA - EA E - E 
A A 

OK -+ KO -+ p (r) < V > P (r) < V >. 

l 
KO 

I 
KO 

+ 
K Eo - EK K Eo - EK 

B B B B 

(4. 31) 

We can also write p(l) (;) in terms of the correlation-correlation 

Kernel. If we write the full form for the matrix elements of V, say 

equation (4.18), we get 

< v >. 
AO 

< v > 
KO 

= 
-+ pKO (r') 

1-;· - ~ I 
Cl. 

+ 
' -+ 00 -+ 

JJ
-+ -+ p/\ 0 (r')p (r") 

e 2 drrdrlt B 

-;. - -; .. I 

+ 

(4.32) 
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In each case the orthogonality of the excited states to the ground 

state of the respective molecules makes two other terms vanish. And 

considering an almost similar expression for the complex conjugates 

< V >"' and 
AO 

p ( l) ,;) = 

< v >* 
KO and substituting them into (4.31), we get 

e2 ff d-; I d-;11 K~l (;,-;,) { Poo(°i") I -+ -+ 
} Z o(r"-R) 

B s s s 
,-;. -+ 

-,r" 

2ff-+ -+ l -+-+ { poo(°i") - I -+ -+ } e dr'dr" ~ (r,r') Z o (r"-R ) 
A a. a. 

a. 

Ii· -+ - r" 

+ 

(4.33) 

Keeping in mind that the p(l) (-;) can be written in this form invol-

ving the Kernels, we go back to our discussion on the expression for the 

electron density, equation (4.30). We have written C?(E 2) to mean terms 

of quadratic order in E, which is not quite very important in our 

-+ 
present discussion. Let us rewrite the density as a function of r' as 

J -+ -1 -+ -+ -+ = dr 11K (r' ,r" P.Cr") (4.34) 

Now if we multiply both sides of this equation by K(t,t') and integrate 

d
+, over r , the right-hand side yields 

and by virtue of the property of the Kernel as explained i~ (4.26), this 

is simplified to A(t) through the action of the delta function. The left 

hand side of the equation becomes 
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f + + + . + + (1) + 
dr' K (r, r' ) { p (r' ) - p 0 (r' ) - p . (r' ) } 

+ + 
so that finally we can have an equation involving A(r) in terms of p(r): 

= f + + + . + + (1) + 
dr ' K ( r , r ' ) { p ( r ' ) - p 0 ( r ' ) - p ( r ' ) } (4.35) 

Now we want to utilize this equation in terms of the density in 

+ 
the derivation of the Energy Functional. The role that A(r) plays in 

this derivation will be realized shortly. Let us assert, echoing Levy 

and Freed, that E [ p ] as a functional is merely a rule for associa -

ting a single number E [ p ]with the full function p (f). We envision 

evaluating 

E [ p J 
,.., -.J 

< 1¥ IH~ + H~ + EVI 1¥ > 
p p 

<-;I~> 
p p 

(4.36) 

.-.J 

I 1¥ > , the optimized eigenfunction as explained previously and defined 
p 

in equations (4.3), (4.6) and (4.7) is obtained from Perturbation Theory. 

To display the role of the driving potential explicitly, let us note 

that (4.7) can be written as 

where 

,..,, 
1¥ > 

p 

I 1¥ c1,v) 

11¥(1,A) 

= 

= l l 
A :< 

l l 
A K 

11¥(1,A) > 

11¥A1¥K > < 1¥A1¥KI V 11¥01¥0 > 
·AB AB AB 

Eo + Eo - EA - EK 
A B A B 

11¥A1¥K > < 
AB 

1¥A1¥K I A 
AB 

11¥01¥0 > 
AB 

E~ + 
0 

E -
B E~ EK 

B 

(4.37) 

(4.38) 

(4.39) 
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are first-order corrections to the wave functions corresponding to the 

potentials V and A • Our evaluation of the Energy Functional there-

fore proceeds as 

E[ p J = 

0 0 (l,V) (l,A) l 0 e:vl\l/Ao\l/Bo + \ll(l,V) • \l/(1,A)> 
< 'l'A'l'B + '¥ + '¥ H + T T T ~ T 

.(4. 40) 

with Ho = H~ + H~ • Expanding the denominator in Taylor series and 

keeping only second-order powers of the expansion, we obtain 

+ + 

(4. 41) 

Multiplying it out and noting that the fourth and fifth terms in the 

Energy numerator are just the second-order energy corrections that we 

obtained in chapter III, we get : 
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< ~o~ole:vl~A~K > < ~A~Kle:Al~o~o > I l A B A B A B A B 

A K 

0 01 I A K A K b 0 l LA<~A~B e:A ~A~B> <~A~Ble:vl~A~B> 

A K EA + EK Eo Eo 
A B A B 

+ l l < ~~¥~le:AI~~~~> <~~~~le:vl~~~~>(E~+E~). 
A K EA + EK - Eo - Eo ) 2 

+ 

+ 

A B A B 

I G 01 I AK 12 l l _<_~_A;_~:--B_e:_v_~::..:.A.....:~ B:::..,> __ (_;E A::.:.o+_E_::~'.....;.) __ 

A K (EA + EK - Eo - Eo)2 
A B A B 

+ 

0 
+ E 

B 
+©(e:)} 

+ Eo .. B + @(e:)} (4.42) 

What we have done is this: To the third last term in the second bracket 

of equation (4.41) which, if written explicitly, is 
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< '¥ ( 1 'A) I H I '¥ (1 'v» 
0 = 

(4.43) 

we subtract to the numerator (i.e. to the energy term E~ + E~ ) a term 

0 0 
(EA + EB) so that the total factor 0 0 

EA - EB) can be cancelled 

with one equivalent factor in the denominator. But what is subtracted 

is then added back and the added term materializes as the eight term in 

(4.42). Doing similar addition and.subtraction of terms with the 

other three terms involving. H0 , we obtain (4.42). Now notice that in 

(4.42), if we discard terms of order e3 and higher, we get a series of 

cancellations. The pairs that cancel are: the twelfth term with the 

fifteenth, the fourteenth term with the sixteenth, the eight term with 

seventeenth and the tenth term with the eighteenth. We can then simpli-

fy our expression to 

E[ p J = l: I 
A K 

l l 
A K 

(4. 44) 



We see that the fifth a~~ eighth terms cancel, as do the sixth and 

tenth. terms. The seventh · is just the second-order energy E( 2 ~ so 

it will be subtracted from the fourth term, leaving just (2' 
E ~ There-

fore our Energy Functional becomes 

E + E + E(l) + E( 2 ) -
A B 

A K . 0 0 
< '¥ '¥ I EA 11¥ '¥ > 

AB AB 

- EA - EK 
A B 

••• (4.45) 
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Now this form of the energy is not quite what we want becaus~ the 

-+ -+ 
functional is that of A.(r) rather than p(r). When we talk about energy 

functionals in density functional theory, we usually have in mind the 

expression of energy as an explicit functional of· the density function 

-+ 
(i.e. the dependence on p(r) must not merely an implicit one, like that 

of equation Therefore we want to insert the formula -+ for p(r) 

that we obtained in equation Ca.35) into this energy expression.Let the 

summation (i.e. the fourth terin in equation (:...4. 45) .. be 

f[_A r = 

= 

= f fdtdt' 

l l 
A K 

0 0 
E + E 

A B 

A. 
- E 

A 

K 
- E 

B 

+ ff aiai• I 
K 

x 

·· -+ -+ KO -+ -+ · POK(r)A.(r)p (~)A(~) 

(4.46) 
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Now using the definition of the density-density correlation kernel ~4.24) 

this expression is sirnplif ied to 

= ff + + -1 + + + + 
~ drdr' K (r,r'))..(r)A.(r') (4 •. 47) 

Writing A.(t) and A.(;') in terms of the inverted equation (4.35), we get 

. + 0 -+ 
{p (r") - p (r") -

••• (4.48) 

We can still further simplify this if we use the property of the density-

density correlation Kernel (4.26) as well as the property of the Dirac 

delta function: J
-+ -+ -+-+ -+ 

dr ~(r)o(r-r') = f(r'). We therefore get 

-+ -+ -+ -+ -+ 0 -+ (1) -+ 
= ~ffdr"dr"' K(r"' ,r"){p(r").;,..p (r")-p (r")} x 

-+ 0 -+ (1) -+ 
{p(r'")-p (r'")-p (r"')} ••. (4.49) 

-+ -+ 
Note that the r" and r"' are just dummy variables and we can change 

-+ -+ 
them tor and r'. And so we get our final form of the Energy 

Functional: 

E[ p J = Eo + Eo + E(l) + E(2) ._ 
A B 

(4.50) 



CHAPTER V 

THE GROUND-STATE ENERGY 

We have now obtained, using the algorithm of Levy and Freed, an 

explicit expression for the Energy Functional of the system of two inter-

acting neutral molecules in terms of a Taylor expansion in powers of 

- {p(;) - p0 (;) - p(l) (;)}. Note that under the assumption that the 

Kernel K is negative definite, f ( p J in (4. 50) is always positive 

so that p (t), the optimum density whic;:h minimizes E{ p J, ·becomes 

+ rJ + 
p (r) = p (r) = (5 .1) 

No~'tqis Energy F~nctional that we had obtained is the energy at 

.... 
a certain reference point that we called R, the nuclear coordinates. 

Therefore E is pa~ametrized by the position of the nuclei which are 

held fixed, and we write this as_ E[p;Rj. As a proper notation -, let 

us call this fixed coordinate R
0 

instead of R. Doing so, it is easy 

+ 
for us to understand that whenever we write R, we mean a general vector 

position of the nuclei necessarily away from 

Our problem now is this: we want a more general expression for the 

+ 
Energy Functional for points not only at R0 , but for other 

configurations in the vicinity of ~0 • In deriving such an expression, 

let us start from the beginning and note that initially, we have the 

system's Hamiltonian to be 

60 



+ -+ -+ H(R) = T + Ven (R) + v + V (R) ee nn 

-+ -+ -+ . -+ 
T + Ven (Ro) + v -+ V (R ) +· {V (R) V -(R ) } 

ee nn o en en o 

{V 
-+ -+ 

+ (R) - V (R
0

)} (5. 2) nn nn 

-+ -+ -+ -+ 
Where lm = Ven (R) - ven<Ro) and 6.V = V (R) - vnn(Ro) and nn 

-+ l l - zy 
e2 

V. ·(R ) = (5. 3) ·en 0 
k y -+ -+o 

rk- RY 

= (5. 3) 

k is the summation index that runs over all electrons and y is the 

summation index that runs over ali nuclei. T is the kinetic energy 

operator , Ven the electron-nuclear interactions, Vee the electron-

electron repulsion and Vnn the nuclear-nuclear repulsion. Now calling 

the first four terms in (5.2) the "reference" Hamiltonian whose corres-

ponding Energy Functional was·obtained in chapter rv, we can rewrite H: 

-+ 
H (R) = + 6.U + 6.V (5. 4) 

-+ 
Explicitly, H (R ) is the Hamiltonian on which we have been working ref o 

in chapter IV, namely 

-+ 
H f (R ) re o = 

-+ 
TA + v·A (R ) + ~ 

en o ee + 

'!=! -+ 
+ v·' (R

0
) 

nn 
( 5. 5) 
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with the corresponding (eigenvalue) Energy Functional 

+ 
E f[p;RJ = re E~ + E~ + (5. 6) 

+ 
where f [p ; RJ is equation ( 4. ~'9) of chapter IV and is the functional 

of .the density arising from the constraint. Specifically, 

+ + + + . . -+ + (l) + . + 0 +, (1) +, } 
~Jfdrdr'K(r,r'){p(r)-p 0 (r)-p (r)}{p(r')-p (r )-p (r) 

It should be borne in mind that the Kernel K is parametrized by 

through its dependence on the transition densities. 

-+ 
R 

0 

Therefore the total Energy Functional in the whole configuration 

of the potential energy surface is given by 

r.J 
We should note that the ·integral involving /J. u 

( 5. 8) 

can be removed from 

the minimization search because it depends only of p and not I ~ > 

/J.V is 

a where 

constant throughout. Thus E [P ; RJ. can be written as 

++ 
. Eu.IP ;R,Ro] = 

llU = I I 
k y 

+ + rJ 
fdrp(r)llU 

- z e2 
-+ ~-
Ir - R I 

k y 

r...,I 

and ~u is a prototype of 

I I 
k y 

- Z e2 
-+ ¥ :+ 

Ir - Roi 
k y 

(5.9) 
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If we define the auxilliary functional 

(S.lQ), 

then the problem of extremizing the functional, 

oF [ p ] = 0 (S.ll) 

involves evaluating the variation in F 

F [ p + op ] (5 .12) 

which defines the functional derivative 
oF 

Using op •. (S .iO), and 

then writing the forms of the energy explicitly, we obtain for F[p+op]: 

F [ p + op ] E [P.f. op] 
u 

= E + E + E(l) (; ) + E( 2 ) (; ) 
A B o o 

. -+ 0 -+ (1) -+ -+ 
{p(r') - p (r')- p (r')+ op(r')} 

.. ·r.-+r:-+ . o-+ (1)-+ -+] 
- µ {J dr LP ( r) - p ( r) - p . ( r) + op ( r) - N } (S.13) 
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F [Pl t:N 

If -+ -+ -+ -+ . -+ 0 -+ ( 1) -+ .} -+ 0 -+ (1) -+ } 
- ~ drdr'K(r,r'){p(r)-p (r)-p (r) {p(r')-p (r')-p (r') 

f -+-+ -+ . f-+ -+ 
drp(r)6U(r) - µ{ dr p(r) N} (5 .14) 

Now we know that for the optimum density p, 

(5 .15) 

Subtracting the two expressions that we obtained above, we get 

o = - ~ff d°td°f' {p' ci°>P' Ct'> ... -+ -+ + p(r)op(r') 
,.., -+ -+ .... -+ (1) -+ 

- p(r)op(r')- p(r)p Cr') 

-+ ... -+ -+ -+ -+ -+ op<;> P Cl> ct•> + opCr)pCr') + op Cr) op Cr') Op Cr) p Q (r I) 

-+ ... -+ -+ -+ -+ -+ p (~)pCl) C~') p
0

Cr)pCr') p Cr)opCr') + po(r)po(r') + 
0 0 

Cl) -+ -+ 
P <

1
> ct> op ct•> + Pc1>c;>P ct·> p Cr)pCr') - + 

0 

P c1> c-::> P c1> c-::· > } 
-+ -+ !+ ... -+ -+ } + KCr,r') + dr{p(r)6UCr) 

{ I-+ -+ + drop(r)6UCr) { f -+ ... -+ µ drp Cr) + J -+ -+ drop Cr) N } 

I I -+ -+ {"" -+ ~ + ,., -+ -+ r -+ C 1) -+ -+ ,.. -+ 
+ ~ drdr ' p Cr) p ( r ' ) - p ( r) p Cr ' ) - pCr)p Cr') - p Cr) p Cr') 

0 0 

+ 
-+ -+ -+ (1) -+ 

p Cr)p (r') + p
0

Cr)p (r') 
0 0 

Cl)(-+},..,(-+') p (1) C-+r) p C-+r') p r p r + 
0 

+ 
Cl) -+ Cl) -+ -+ -+ 

p Cr)p Cr') } K(r,r') I + ... -+ -+ 
drp(r)6UCr) + 

[ J 
+. # -+ -+ 

+ µ dr {p(r) -op(r)} (5 .16) . 
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Aft.er a series of cancellations, and discarding quadratic and higher 

orders in op, plus using the symmetric property of the Kernel: 

-+ -+ -+ -+ 
K(r,r') = K(r' ,r) (5.19) 

our expression is reduced to 

J -+ -+ -+ [ -+ 0 -+ (1) -+ J -+ -+ - drdr'op(r') p(r)- - p (r) --p · (r) K(r,r') 

f -+ -+ 
µ op(r)}dr = 0 (5.18) 

Now if we rearrange this equation so that 

+ = 0 (5 .19) 

-+ 
we can clearly see that due to the fact that op(r) is an arbitrary 

v~riation, then the integrand in the integral is zero, giving 

f -+ -+ 0-+ (1)-+ -+-+ 
- dr'. {p(r') - p (r') - p (r')} K(r,r') = µ 

-+ 
- llU (r) (5.20) 

Multiplying both sides by 
-1 -+ -+,. -+ 

K --(r,r) and integrating over dr, and using 

the property of the Kernel (4.26) as well as the dirac delta function, 

we get 

-+ -+ 
p (r) - p 0 (r) 

(1) -+ 
p (r) = f -+ -1 -+ -+ . -+ 

- dr' K · (r,r'){~ - llU(r')} (5.21) 
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where we have taken into account the fact that all the variables in the 

-+ 
integrals are just dummy variables so that r' can be interchanged to 

i and so on. Now on the right hand side of (5.21) we have an integral 

of an operator K-1,;,;') operating on a function involving a constantµ 

-+ and a position-dependent potential AU(r'). But 

J 
-1 -+ -+ -+ K (r,r' )µ dr' = 0 (5.22) 

bec~use the integral involves expressions like 

J < '¥;. I I a c1 - 1. > I '¥
0 

> 
A i 1 A 

(5. 2 3) 

which is zero due to the orthogonal property of the wave functions. 

We therefore have now obtained 

(5.21), it can be written as 

,.,, -+ 
p (r) = 

~ -+ 
the optimum density p(~) • From 

J 
-+ -1 -+ -+ dr' K (r,r') 

-+ 
AU (r') (5.24)· .. · 

According to the Hohenberg-Kohn theorem, this is the density that will 

produce the ground state energy of the system if it is used as the den-

sity in.the Energy Functional (5.8). Of course, this is within the con-

text of approximation to the functional itself. Substituting this form 

for the optimum density into (5.8), we get 
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J -+ -+ -+ J (1) -+ -+ -+ J -+ -+ -1 -+ -+ -+ -+ + p (r")6U(r")dr" + p (r")6U(r")dr" + dr'dr"K (r",r')6U(r')6U(r") 
0 

(5.25) 

The sixth term can be ·.simplified using the property of the Kernel, 

equation (4.26) as well as the Dirac Delta function. Since all integra-

-+ -+ 
tion variables are dummy variables, we --can change them into rand r'. 

Our final expression for the energy becomes 

= 

+ J
-+ -+-+ 

p
0

(r)6U(r)dr + (5. 2 6) 

Thus have we obtained the Ground-State Energy of the system of two 

interacting molecules using the Energy Functional derived in chapter IV 

valid only for long-range forces acting between them using a method 

which does not take into account the explicit form of the system's wave 

functions as in the traditional quantum-mechanical formalism. Equipped 

with the expression for the electron density which we derived and then 

finding the Energy as a functional of this density, we applied the vari-

ational procedure to this Energy Functional to get the "optimum" · den -

sity which, according to the Hohenberg-Kohn theorem,·· will produce the 

Ground-State Energy when substituted into the Energy Functional. 

What is unclear at this juncture, and perhaps something worth 

investigating into in the future, is whether the theory is valid for 

-+ 
short-range forces; i.e. at distances which are not far away from R0 • 

Remember that the Energy Functional "at" R
0 

which we called Eref [P ;RJ 

is not exact and its derivation involves some approximations. Thus we 
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simply cannot extrapolate the use of the Energy Functional and the· 

Ground~State Energy ·to include.short-range forces. 

Nevertheless, we hope that the simplicity of the method of Density 

Functional Theory as well as the vast simplification it suggests to the 

computational aspects will make this formulation a standard method for 

evaluating Ground-State Energies of atomic and molecular systems in the 

future. 
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Appendj~ A 

Dispersion Energy Constants: and Dipole Polarizabilities 

Quantity 

ct (0) 

for the Water-Water Interaction. 

Theoretical 

6 .. 
47.3±5.5 hartree(bohr) 

. 3 
9.86 bohr 

Experimental 

6 45.37 hartree(bohr) 

3 9.642 bohr 

c6 CH
2
o) - The orientation-averaged long-range dipole-dipole dispersion 

dispersion energy coefficient for the water-water interaction, 

which is the third term in the bracket in equation (3.77) 

a(O) - The dipole polarizability for one water molecule 
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