IMPROVED DESIGN PROCEDURES FOR VEGETATION

LINED CHANNELS

By

JAMES EDWARD PETER GREEN

Bachelor of Science in Engineering

University of Natal

Pietermaritzburg

Republic of South Africa

1967

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1980

IMPROVED DESIGN PROCEDURES FOR VEGETATION

LINED CHANNELS

Thesis Approved:

z Thesis Adviser Ç

Dean of the Graduate College

PREFACE

The outcome of the work reported in this thesis was the production of 21 nomographs for the design of vegetation lined parabolic, triangular, and trapezoidal channels. The graphical design procedure based upon the use of the nomographs that were developed proved to be a time saving procedure without any significant loss in accuracy.

The author wishes to extend sincere thanks to his major adviser, Dr. James E. Garton, Professor in Agricultural Engineering, for the guidance, inspiration, and most competent counseling during the course of this study and in the preparation of this manuscript. Appreciation is also extended to Dr. Richard H. DeVries, Professor in Civil Engineering, and Dr. C. T. Haan, Head of the Department of Agricultural Engineering, for serving on the advisory committee and reviewing the final draft.

Further thanks are extended to Dr. C. T. Haan for providing the assistantship during my graduate program and to the Principal of the University of Natal, Republic of South Africa, for granting me 12 months sabbatical leave to pursue the program. Also, to Jack Fryrear, Supervisor of Drafting Services, Department of Agricultural Engineering, for his help in reproducing the final copies of the nomographs, my grateful thanks.

Finally to my wife, Maryann, and children, Jeremy, Trevor, and Cindy (born in Stillwater), for their many sacrifices, understanding,

iii

love, and moral support during my sabbatical leave, this thesis is dedicated.

TABLE OF CONTENTS

Chapter		Page	
I. INTRO	DUCTION	. 1	
	The Problem	. 1 . 1 . 2	
II. LITER	ATURE REVIEW	. 3	
	Introduction	. 3 . 3 . 4 . 21	
III. RESEA	RCH PROCEDURE	. 29	
	Introduction	 29 29 32 34 35 36 40 	
IV. RESUL	TS AND DISCUSSION	. 44	
	Analytical Design Procedure	• 44 • 47 • 49	
V. SUMMA	ARY AND CONCLUSIONS	• 52	
	Summary	• 52 • 53	5
SELECTED BII	BLIOGRAPHY	• 54	
APPENDICES		• 56	1
APPEI	NDIX A - GRAPHICAL COMPARISONS OF ANALYTICALLY AND GRAPHICALLY DETERMINED DEPTH OF FLOW AND VELOCITY OF FLOW	. 57	,

ĺ

APPENDIX	в –	NOMOGRAPHS CHANNELS .	FOR THE	DESIGN OF	PARABOLIC	•	•	••	66
APPENDIX	C -	NOMOGRAPHS CHANNELS .	FOR THE	DESIGN OF	TRIANGULAR	•	•	•	73
APPENDIX	D -	NOMOGRAPHS CHANNELS .	FOR THE	DESIGN OF	TRAPEZOIDAL	•	•		80
APPENDIX	Е -	PROGRAMS U	SED TO G	ENERATE DE	SIGN DATA .	•	•	•••	90
APPENDIX	F -	DATA USED	IN STATI	STICAL ANA	LYSIS			• •	95

Page

LIST OF TABLES

Table					Pa	age
I.	Guide to Selection of Vegetal Retardance	•	•	•	•	11
11.	Permissible Velocities for Channels Lined with Vegetation	•	•	•	•	12
111.	Classification of Vegetal Covers as to Degree of Retardance	•	•		•	13
IV.	Models of the Standard Retardance Curves	•	•	•	•	32
ν.	Hydraulic Parameters of Parabolic, Triangular, and Trapezoidal Channels	•	•	•	•	33
VI.	Computation Form for the Design of Vegetation Lined Channels	•	•		•	35
VII.	Calculation for Stability Design	•	•	•	•	45
VIII.	Calculation for Capacity Design		•	•	•	46
IX.	Regression Analyses on Channel Depths	•	•	•	•	51
х.	Regression Analyses on Channel Velocity	•		•		51

LIST OF FIGURES

Figu	re	Pa	ige
1.	n-VR Curves for the Standard Retardance Curves \ldots .	•	· 6
2.	Experimental n-VR Curves for Very High Vegetal Retardance	•	7
3.	Experimental n-VR Curves for High Vegetal Retardance	•	8
4.	Experimental n-VR Curves for Moderate Vegetal Retardance	•	9
5.	Experimental n-VR Curves for Low and Very Low Vegetal Retardance	•	10
6.	Experimental n-VR Curves for Row Crops	•,	16
7.	Experimental n-VR Curves for Simulated Vegetation	•	17
8.	Simulated n-VR Curves		20
9.	Transformation of a Cartesian Chart to an Alignment Chart	•	23
10.	Rectification of Curves (Graphical Anamorphosis)	•	24
11.	Nomograph Developed from the Family of Curves in Figure 10 $$.	•	25
12.	Bilineality Test	•	26
13.	Useful Nomographic Type Forms	•	27
14.	Comparison of Calculated Values of n with the Standard Retardance Curves	•	31
15.	Schematic Flow Chart of the Program Used to Generate Data for the Construction of the Nomographs	•	37
16.	Nomograph Plotting Sequence	•	42
17.	Analysis on Parabolic Channel Depths and Velocities	•	58
18.	Analysis on Triangular Channel Depths and Velocities	•	60
19.	Analysis on Trapezoidal Channel Depths and Velocities (4:1 Slopes)	• 1	62

Figure

20.	Analysis on Trapezoidal Channel Depths and Velocities (6:1 Slopes)	
	()	
21.	Solution for Parabolic Channel Velocity	
22.	Solution for Parabolic Channel Depth	
23.	Solution for Triangular Channel Velocity	
24.	Solution for Triangular Channel Depth	
25.	Solution for Trapezoidal Channel Velocity 81	
26.	Solution for Trapezoidal Channel Depth (6:1 Side Slope) 86	
27.	Solution for Trapezoidal Channel Depth (4:1 Side Slope) 88	

Page

CHAPTER I

INTRODUCTION

The Problem

In the 1940's, the United States Department of Agriculture-Soil Conversation Services (USDA-SCS) conducted experiments at Spartenburg, South Carolina, and the Stillwater Outdoor Hydraulic Laboratory, Oklahoma, on vegetation lined channels. The results of these experiments provided the information which led to the compilation of the <u>Handbook</u> of Channel Design for Soil and Water Conservation (USDA, 1954). The semi-graphic design for parabolic channels, triangular channels, and trapezoidal channels presented in this handbook have been widely used since its publication.

In more recent years, other more sophisticated analytic design procedures which make use of the modern computer in varying degrees were developed. The art of estimating the velocity in a channel lined with vegetation was replaced by the science of estimating the velocity of flow in such channels. The methods available to designers for the design of vegetated channels are now either bothersome, semi-graphic, iterative procedures, or more sophisticated procedures requiring the use of a computer.

Scope of Investigation

The research project described in this thesis was an attempt to

develop a simple design technique for the design of vegetated channels using all the knowledge available at the time. Current techniques and design aids were examined. These were simplified to produce design solutions within the bounds of practical application and implementation. Use was made of the familiar retardance classes and related standard curves found in most texts in preference to other more recently developed models for the n-VR relationships. The original standard curves produced by Ree and Palmer (1949) were used without modification. No new data were collected or used and the design technique developed was kept as simple as possible to facilitate its use in the field or field office where the main design facility is a regular pocket or desk calculator.

A large number of hypothetical channels were designed and a bank of solutions covering a range of conditions was generated using a computer. From this data, nomographs were compiled to provide graphical solutions to most of the design situations commonly encountered.

Objectives

The objectives of this project were: (1) to develop a simple analytical design procedure within the capabilities of a scientific calculator and (2) to develop a purely graphical design procedure from computer synthesized data.

CHAPTER II

LITERATURE REVIEW

Introduction

This chapter provides some background to the problems related to flow in vegetated channels and channel design that researchers have sought to solve. The inclusion of this historical development to the present state of the art was considered desirable because some of the earlier researchers did not consider that their work provided infallable answers to all the design problems related to vegetation lined channels (Ree, 1979). The findings of some of the earlier researchers, however, were widely accepted and there followed a period in which little further interest was shown in this field.

Analytical considerations of fluid flow and the development of such aspects of the principles of momentum and energy are not included. The material in this chapter was confined to the state of the art with respect to the application of the presently accepted principles of fluid flow in the design of vegetated channels. The concluding section contains a summary of the techniques that can be used to construct nomographs for several forms of mathematical equations.

Background

The design problem for grassed lined channels is more complicated than for bare and other non-vegetation lined channels. Although the

Manning formula for open channels can be used, it has been shown that the value of the retardance coefficient does not remain constant (Ree and Palmer, 1949). Under the influence of velocity and depth of flow, the vegetation tends to bend and oscillate as water passes. The retardance of flow in open channels due to vegetation thus varies with these two parameters, as well as such vegetative characteristics as stage of growth, condition (cut or uncut), plant density, and blade and stem flexibility (Ree and Palmer, 1949; Frevert, 1955). These parameters are difficult to quantify. The earlier workers in this field succeeded in classifying the vegetation most often used to line channels into five retardance classes (Ree, 1949).

Most of the earlier experimental work on vegetation lined channels was conducted by the USDA Soil Conservation Services at Spartanburg, South Carolina, and the Stillwater Outdoor Hydraulic Laboratory, Stillwater, Oklahoma. In 1946, it was determined that sufficient information was available from these experiments to permit the development of a handbook for the design of channels lined with vegetation. The handbook produced was revised in 1954 and supplemented by data, graphical methods, and design charts useful in the design of vegetated channels. This resulted in the publication of the <u>Handbook of Channel Design for Soil and Water</u> Conservation (USDA, 1954).

Vegetation Lined Channels

The work of Ree (1949) played a major role in the development of the Handbook of Channel Design for Soil and Water Conservation (USDA, 1954). He showed that in both small and large channels, the Manning number (n) varied with the product of the channel hydraulic radius and the velocity

of flow in the channel (V). The retardance curves in the Handbook of Channel Design for Soil and Water Conservation (USDA, 1954) shown in Figure 1 were developed by Ree (1949) from the work done by Ree and Palmer (1949) who produced the experimental n-VR curves for a variety of vegetative linings shown in Figures 2 through 5. In these figures it can be seen that the same range of flow was not used for all the vegetative linings tested. The extrapolation of the average n-VR curves for each retardance class, therefore, could not be done with great confidence. These curves have, however, received widespread recognition and are often referred to as the Standard Retardance Curves. They form the basis of the design procedure outlined in the Handbook of Channel Design for Soil and Water Conservation (USDA, 1954). Further work by Ree (1960) showed that for submerged vegetation the typical n-VR relationships of the standard retardance curves was observed to hold. When the vegetation remained upright and was not disturbed by the flow, the n value bore no consistent relationship to the product of VR.

The <u>Handbook of Channel Design for Soil and Water Conservation</u> (USDA, 1954) contains a summary of all the work on vegetation lined channels done prior to its publication. In this handbook, it is also noted that for shallow flow, through upright vegetation with no submergence, Manning's n ceases to be related to VR. Valuable guides to the selection of vegetal retardance (Table I) and the permissible velocities for channels lined with vegetation (Table II) are contained in the handbook. The classification of vegetal covers as to the degree of retardance (Table III) is also contained in the handbook. The semigraphic design procedure outlined in this publication is used by most hydraulicians in the design of channels lined with vegetation.

Figure 1. n-VR Curves for the Standard Retardance Curves (USDA, 1954)

Figure 2. Experimental n-VR Curves for Very High Vegetal Retardance (after USDA, 1954)

Figure 3. Experimental n-VR Curves for High Vegetal Retardance (after USDA, 1954)

Figure 4. Experimental n-VR Curves for Moderate Vegetal Retardance (after USDA, 1954)

Figure 5. Experimental n-VR Curves for Low and Very Low Vegetal Retardance (after USDA, 1954)

TABLE I

GUIDE TO SELECTION OF VEGETAL RETARDANCE

Stand	Average Length of Vegetation (mm)	Degree of Retardance
Good	Longer than 760 250-600 150-200 50-150 < 50	A B C D E
Fair	Longer than 760 250-600 150-250 50-150 < 50	B C D D E

Source: USDA (1954).

Cover	Slope Range ² (%)	Erosion Resistant Soils (m/s)	Easily Eroded Soils (m/s)
	0-5	2.50	1.80
Bermudagrass	5-10	2.10	1.50
	Over 10	1.80	1.20
Buffalograss	0-5	2.10	1.50
Kentucky bluegrass	5-10	1.80	1.20
Smooth brome Blue grama	Over 10	1.50	0.90
	0-52	1 50	1 20
Grass mixture	5-10	1.20	0.90
Lespedeza sericea			
Weeping lovegrass Yellow bluestem	0-5 ³	1.10	0.75
Alfalfa Crabgrass			
Corren lognodore4			
Sudangrass ⁴	0-5 ⁵	1.10	0.75

PERMISSIBLE VELOCITIES FOR CHANNELS LINED WITH VEGETATION¹

TABLE II

¹Use velocities exceeding 1.5 m/s only where good covers and proper maintenance can be obtained.

²Do not use on slopes steeper than 10 percent, except for side slopes in a combination channel.

³Do not use on slopes steeper than five percent, except for side slopes in a combination channel.

⁴Annuals--used only on mild slopes or as temporary protection until permanent covers are established.

 $^{5}\mathrm{Use}$ on slopes steeper than five percent is not recommended.

Source: USDA (1954).

TABLE III

CLASSIFICATION OF VEGETAL COVERS AS TO DEGREE OF RETARDANCE

Retardance	Cover	Condition
А	Weeping lovegrass Yellow bluestem Ischaemum	Excellent stand, tall (average 760 mm)
В	Kudzu	Very dense growth, uncut
	Bermudagrass	Good stand, tall (average 300 mm)
	Native grass mixture (little bluestem,	
	blue grama, and other long and short	
	midwest grasses)	Good stand, unmowed
	Weeping lovegrass	Good stand, tall (average 610 mm)
	Lespedeza sericea	Good stand, not woody, tall (average 480 mm)
	Alfalfa	Good stand, uncut (average 280 mm)
	Weeping lovegrass	Good stand, mowed (average 330 mm)
	Kudzu	Dense growth, uncut
	Blue grama	Good stand, uncut (average 330 mm)
С	Crabgrass	Fair stand, uncut (250 to 1,220 mm)
	Bermudagrass	Good stand, mowed (average 150 mm)
	Common lespedeza	Good stand, uncut (average 280 mm)
	Grass-legume mixturesummer (orchard	
	grass, redtop, Italian ryegrass, and	
	common lespedeza)	Good stand, uncut (150 to 200 mm)
	Centipedegrass	Very dense cover (average 150 mm)
	Kentucky bluegrass	Good stand, headed (150 to 300 mm)

TABLE III (Continued)

Retardance	Cover	Condition
D	Bermudagrass Common lespedeza Buffalograss Grass-legume mixturefall, spring (Orchardgrass, redtop, Italian rye- grass, and common lespedeza) Lespedeza sericea	Good stand, cut to 65 mm height Excellent stand, uncut (average 115 mm) Good stand, uncut (75 to 150 mm) Good stand, uncut (100 to 125 mm) After cutting to 50 mm height. Very good stand before cutting.
E	Bermudagrass Bermudagrass	Good stand, cut to 38 mm height Burned stubble

Source: USDA (1954).

Ree and Crow (1977) conducted experiments to determine values of Manning's n for vegetated waterways of flat slopes planted to row crops. Their results showed a marked variation of n over the range of flows used. Up to a fivefold change was observed. The retardance of the vegetation in the channels tested varied through the three highest standard retardance classes (A, B, and C) shown in Figure 1. The n-VR relationships, however, were not altogether consistent with the standard retardance curves. The value of the Manning's n was found to peak at a VR value below one and then decrease markedly as VR increased (Figure 6). The variables that caused this phenomena were not identified.

Kao and Barfield (1978) conducted experiments on simulated dense vegetation to determine the hydraulic properties of flow at small nonsubmerging depths. Their results (Figure 7) supported the evidence that Manning's n increased to a peak and then decreased as VR increased. They suggested that the standard retardance curves were not intended for use and should not be used for shallow flow applications.

The empirical curves of Ree and Palmer (1949) are widely used to determine Manning's n and feature in most design procedures (USDA, 1954; Frevert, 1955; Chow, 1959; Henderson, 1966). Such procedures range from the semi-graphic iterative processes to sophisticated computer models. Several mathematical models describing the n-VR curves portrayed in the <u>Handbook of Channel Design for Soil and Water Conservation</u> (USDA, 1954) have been suggested.

Gwinn and Ree (1979) presented the relationship

n = 1/(2.08 + 2.30x + 6ln(VR)) 0.02 < n < 0.2 (1) where x = -0.5, 2, 5, 7, 11, for the A, B, C, D, E, retardance classes respectively. It was stated that for Manning's n less than 0.2 the n-VR

Figure 6. Experimental n-VR Curves for Row Crops (Ree and Crow, 1977)

curves produced using this relationship fell within the experimental results from which the standard retardance curves were derived (Figures 2 through 5).

Temple (1979) suggested that the relationship

 $\ln(n) = [0.01329 \ \ln^2(R_v) - 0.09543 \ c \ \ln(R_v) + 0.2971] - 4.16$ (2) where R_v = (VR/kinematic viscosity) x 10⁻⁵

C = 10.0, 7.643, 5.601, 4.436, 2.867 for the A, B, C, D, E,

retardancy classes respectively

would produce curves with similar limitations of Manning's n. This was not considered a serious constraint as most designs provided for maximum and not minimum flow conditions. Temple (1980) suggested that the above relationship with

C = 10.0, 8.0, 6.0, 4.0, and 2.0

would produce a more orderly family of retardance curves (Figure 8) which would still be within the experimental results from which the standard retardance curves were derived.

In 1969, Kouwen first indicated his reservations concerning the empirical n-VR curves developed by Ree and Palmer (1949). He introduced a stiffness parameter for vegetation and suggested that this could better describe the retardance caused by vegetative linings of channels. He used various plastic strips with different mechanical properties to simulate vegetation. In 1979, Kouwen suggested that Manning's n could better be described by the equation

$$n = \frac{R^{1/6}}{(a + b \ln k/y)}$$
(3)

where a & b = fitted parameters for the erect or prone condition

Figure 8. Simulated n-VR Curves (Temple, 1979)

- k = deflected roughness height
- y = normal depth of flow

Kouwen (1979) developed a method of calculating k from the stiffness and density of the vegetation and was thus able to predict n values for all types of vegetation under any flow conditions. These procedures cannot be easily applied at present, however, because the classification of vegetation by stiffness is not yet available. He stated that

Because the method . . . [of applying his design procedure based upon the stiffness and density of vegetative linings] . . . is not lengthy or complicated, it can be applied through the use of a small programmable pocket calculator and can be incorporated in any mathematical model (p. 18).

While the above mentioned models are valuable to all researchers in their quest to understand the interaction of flow with the varying boundary conditions of an open vegetated channel, their application by field designers is limited. There is a need by field designers and professional engineers for a simple design procedure, compatible with the present day means of identifying the retardance classes of vegetation, which can be executed with the minimum of time, effort, and mathematical manipulation. With such a procedure, a designer would be able to consider several alternative channels which could accommodate the flow conditions as well as the economic or land use constraints that may prevail.

Nomography

Nomography deals with the graphical representation of mathematical relationships for the purpose of obtaining solutions. The use of nomographs cannot only save time in the repetitive solution of mathematical formulae, but also allow the interrelationships of the variables of the relationship to be analyzed quickly and easily (Levens, 1965). There are two types of nomographs: (a) the Cartesian co-ordinate chart (concurrency chart) and (b) the alignment chart.

Levens (1965) showed how a family of straight lines could be represented in both types of nomographs. Using the projective geometry principle of duality, he showed how a Cartesian co-ordinate chart could be transformed into an alignment chart (Figure 9). The duality relationship is:

. . . for every line in the Cartesian co-ordinate system there is a corresponding point in the parallel co-ordinate system, and for every point in the Cartesian chart there is a corresponding line in the alignment chart (p. 102).

In the transformation of Cartesian charts to alignment charts, Levens (1965) emphasized that no mathematical expressions need be employed. He further showed that a family of curves, after rectification, could be transformed into an alignment chart as illustrated in Figures 10 and 11. He suggested that such alignment charts provided a simpler means of relating the variables involved. Levens pointed out that the rectification or the graphical anamorphosis of a family of curves (Figure 10) could only be performed if the family of curves could be subjected to a bilineality test. This test requires that a rectangular chain, when constructed on three adjacent curves, must form a closed loop as shown in Figure 12. Besides the parallel scale nomographs, Levens presented other forms of alignment charts together with the parametric equations governing the spacing between the axes and the scale modulii used to graduate the respective scales. These forms, illustrated in Figure 13, are the main type forms which can be repeated and combined in a single nomograph. The combination of these type forms depends upon the number and juxtaposition of the variables in the mathematical relationship which the nomograph is to represent.

Figure 9. Transformation of a Cartesian Chart to an Alignment Chart (Levens, 1965)

Figure 10. Rectification of Curves (Graphical Anamorphosis) (Levens, 1965)

Figure 12. Bilineality Test (Levens, 1965)

(a) Alignment chart for an equation of the form $f_1(u) + f_2(v) = f_3(w)$.

(b) Proportional chart for an equation of the form $f_1(u)/f_2(v) = f_3(w)/f_4(q)$.

(c) Nomograph for an equation with a recurring variable of the form $f_1(u) + f_2(v)f_3(w) = f_4(w)$.

where $r_1 = \frac{m_u}{m_u}$ and K is the length of the diagonal.

(d) Z-type chart for an equation of the form $f_1(u) = f_2(v)f_3(w)$.

Figure 13 (Continued)

CHAPTER III

RESEARCH PROCEDURE

Introduction

Although the second objective was not essentially dependent upon the successful achievement of the first, such success made the task of synthesizing the wealth of data required to draw up the graphic solutions much easier. The two objectives were pursued in their order of presentation.

Analytical Design Procedure

An iterative design procedure using the continuity equation

$$Q = VA \tag{4}$$

and the Manning equation

$$V = \frac{R^{2/3} S^{1/2}}{n}$$
(5)

for parabolic, triangular, and trapezoid channels was developed. The procedure developed differed from the normal trial and error procedures found in the <u>Handbook of Channel Design for Soil and Water Conservation</u> (USDA, 1954) and texts of open channel hydraulics (Chow, 1959; Henderson, 1966) in that (a) the hydraulic properties of the channel were described in terms of a parameter(s) related to the shape of the channel and (b) the calculated value of the velocity of flow (or output) from one iteration was used as an estimate (or input) for the following iteration.

Successive iterations resulted in the estimated and calculated values of the velocity of flow converging to the design velocity. In each iteration, the numerical value assigned to the Manning coefficient was different. The value varied with the product of the velocity and hydraulic radius as indicated by the standard retardance curves in the <u>Handbook of</u> Channel Design for Soil and Water Conservation (USDA, 1954).

Models for successive sections of the five curves were developed and used to determine the value of n for each iteration. The general forms of the relationships from which the models for Manning's n were developed were

$$n = a + b VR \tag{6}$$

for convex sections of the retardance curves and

$$n = a + b/VR \tag{7}$$

for concave sections of the retardance curves where a and b are constants.

The constants were determined by substituting graphically determined values of n and VR for two different points on the standard retardance curves (Figure 1) in the applicable models to obtain two equations. These were then solved simultaneously. The acceptability of these models was verified by superimposing approximately 50 values of n, calculated using the models, on the standard retardance curves (Figure 14). The models used to calculate Manning's n and the limits within which each apply are shown in Table IV.

Design procedures were developed for the three types of channels most often used for drainage and water conveyance, namely parabolic channels, triangular channels, and trapezoidal channels. The design procedures are given below.

Figure 14. Comparison of Calculated Values of n with the Standard Retardance Curves

 $\underline{\omega}$

Retardance Class	Mode1	Limits of VR (m ² /s)	
A	n = 0.044 - 0.0139 VR n = 0.046 + 0.0024/VR	VR < 0.155 0.155 < VR	
В	n = 0.403 - 0.0288/VR n = 0.046 + 0.0096/VR n = 0.0354 + 0.0115/VR	VR ≤ 0.047 0.047 < VR < 0.186 0.186 < VR	
C	n = 0.034 + 0.0046/VR n = 0.028 + 0.0051/VR	VR < 0.093 0.093 < VR	
D	n = 0.038 + 0.0020/VR n = 0.030 + 0.0028/VR	VR ≤ 0.116 0.116 < VR	
E	n = 0.29 + 0.0007/VR n = 0.0225 + 0.0015/VR	VR < 0.114 0.114 < VR	

MODELS OF THE STANDARD RETARDANCE CURVES

Parabolic Channels

The shape of a parabolic channel was described by the width (W) of the channel in meters for a depth of 0.305 m (1.0 foot). Wide shallow channels were thus characterized by larger values of W and deeper, narrower channels by smaller values of W. The hydraulic relationships for the channel dimensions such as depth of flow (D), flow area (A), wetter perimeter (P), and top width (T) were determined in terms of the descriptive parameter (W) as shown in Table V.

For a given discharge, channel shape, and gradient, it is suggested that the design of a parabolic channel would proceed in the following steps:

TABLE	V	
-------	---	--

HYDRAULIC PARAMETERS OF PARABOLIC, TRIANGULAR, AND TRAPEZOIDAL CHANNELS

	Parabolic	Triangular	Trapezoidal
Slope Descriptor	W	Ζ	Ζ, Β
Flow Area (A)	$\begin{cases} Q/V \\ 1.207 WD^{3/2} \end{cases}$	Q/V 1/2 TD	$\begin{cases} Q/V \\ BD + ZD^2 \end{cases}$
Flow Depth (D)	$0.882 (A/W)^{2/3}$	VAZ	$(\sqrt{B^2 + 4ZA} - B)/(2Z)$
Wetted Parameter (P)	$\begin{cases} T + 8/3 D^2/T \\ approx = T \end{cases}$	$2\sqrt{D 1 + Z^2}$	$2 D\sqrt{1 + Z^2} + B$
Hydraulic Radius (R)	A/P approx = 2/3 D	A/P	A/P
Top Width (T)	1.811 W√D	2 ZD	B + 2 ZD
Manning's n	From Table IV		

W = width of channel (m) at 0.305 m (1 foot) depth, Z = side slope, B = bottom width.

1. estimate the velocity of flow (V_{ρ}) ;

2. calculate the estimated flow area (Q/V_e) ;

3. calculate the estimated flow depth;

4. calculate the hydraulic radius (R);

5. calculate the value of VR;

6. determine the Manning's n using the relationship in Table IV;

7. using Manning's equation, calculate the flow velocity (V_c) ;

8. repeat the above procedures until $V_c = V_e$.

With experience, a good initial approximation of the velocity of flow can be made, thus decreasing the number of iterations that would be required before the estimated and calculated values of the velocity of flow converge. Trial computations could be tabulated as shown in Table VI.

The velocity of flow determined in this way should be compared with the maximum allowable safe velocity (Table II) for the condition expected to prevail in the proposed channel. If the solved velocity is higher than the allowable velocity, a broader shallower channel, a reduced slope, or a change in vegetation may be needed.

Triangular Channels

The parameter used to describe triangular channels was the side slope, that is the ratio (z) of half the top width (T) to depth (D). Flatter slopes were thus characterized by large values of Z and vice versa. Relationships for the hydraulic properties of triangular channels were determined in terms of Z (the side slopes) as shown in Table V. For a given discharge capacity, channel side slope, and gradient, the design procedure should follow the same steps suggested for parabolic channels. The computation form in Table VI should be used.

TABLE VI

COMPUTATION FORM FOR THE DESIGN OF VEGETATION LINED CHANNELS

	Symbol	Trial 1	Trial 2	Trial 3	Trial 4
Channel Shape	W				
Channel Gradient	S				
Estimated Velocity	Ve				
Flow Area	А				
Flow Depth	D				
Wetted Parameter	Ρ				
Hydraulic Radius	R				
Product of V and R	VR				
Manning's Coefficient	n				
Calculated Velocity	V _c				
Velocity Difference	ΔV				
Maximum Allowable Velocity	v _a				

Trapezoidal Channels

Two parameters were used to describe the shape of trapezoidal channels. These were the bottom width (B) and the side slope (Z). In the design of trapezoidal channels, two approaches were considered. For a predetermined side slope, a channel could be designed to carry a certain discharge by (a) choosing a preferred depth of flow and calculating the bottom width needed to provide the required channel capacity or (b) choosing a preferred bottom width and calculating the flow depth that would occur with the design discharge.

The latter approach was chosen because of the practical advantages of choosing the channel width to suit the equipment to be used in the construction. This approach was also found to be more appropriate in the generation of design data required later in the study to develop a graphical design procedure. Relationships for the hydraulic properties of trapezoidal channels were determined in terms of the side slopes (Z) and the bottom width (B) as shown in Table V. For a given discharge, channel side slope, bottom width, and gradient, the design procedure should follow the steps suggested for parabolic channels. The computation form in Table VI should again be used.

Graphical Design Procedure

Theory

The analytical design procedure which incorporated the calculation of Manning's n values dependent upon the VR values calculated in the procedure was used in developing a graphical design procedure. A computer program (Appendix D) was designed to calculate the geometric elements of a range of channels of different shapes and different discharge capacities. A schematic flow chart of the program is shown in Figure 15. This program provided the values of the velocity of flow (V), the depth of flow (D), the top width (T), the product (VR), and

Figure 15. Schematic Flow Chart of the Program Used to Generate Data for the Construction of the Nomographs

Manning's n for a series of channels for which the retardance class and shape were specified. Over 4,000 parabolic channels, triangular channels, and trapezoidal channels were designed using this program. The data thus generated were used to construct the alignment charts or nomographs in Appendices B through D. These charts were constructed in two parts, being a combination of two basic forms of alignment charts (Levens, 1965). The right-hand half of each chart was the nomographic layout for an equation having a recurring variable. The left-hand half of each chart was a Z-type chart for the product of the functions of two variables. The relationships for the left- and right-hand half of these charts are of the following forms respectively (Levens, 1965; Johnson, 1952):

$$f_1(u) = f_2(v) \cdot f_3(u)$$
 (8)

$$f_1(u) + f_2(v)f_3(w) = f_4(w)$$
 (9)

The Manning equation can be reduced to the above forms by the appropriate substitution of the continuity equation and the models developed for Manning's n as follows:

In Table IV for the B retardance class, we have the relationship

$$n = 0.4 - 0.03 VR$$

Substituting the above expression in the Manning equation produces

Multiplying through

0.4 V - 0.03
$$V^2 R = R^{2/3} s^{1/2}$$

by A^2 and substituting Q for VA yields

0.4 QA - 0.03
$$Q^2 R = A^2 R^{2/3} s^{1/2}$$

Rearranging after expressing A and R in terms of W and D, according to the relationships in Table V for parabolic channels, produces

$$0.4 \text{ Q} - \frac{0.03 \text{ Q}^2}{W\sqrt{D}} = D^{13/6} \text{WS}^{1/2}$$
(10)

For constant gradient (S), the form of the above equation conforms with the form of equation (9) with Q as the recurring variable. Using this equation, the flow depth can be determined for a channel given the channel shape and desired discharge capacity.

A similar procedure can be used to reduce Manning's equation to an equivalent relationship in which the hydraulic radius (R) is expressed in terms of the channel slope (W) and velocity of flow (V). For parabolic channels, using the relationships in Table V, this results in the relationship

$$0.4 \text{ Q} - 0.03 \text{ Q}^2 \text{R} = \text{V}^{-2} \text{R}^{2/3} \text{s}^{1/2}$$
(11)

The right-hand half of each chart in Figures 21 through 27 (Appendices A, B, and C) is the nomographic layout of the above relationships with an arbitrary value of 2% assigned to the channel gradient. The left-hand side of the charts provides the graphic solution for the depth (velocity) of flow in the channel with a gradient of between 0.5% and 10.0%. The above relationships were not used in the construction of the nomographs. They were subsequently deduced to confirm that the nomographic layouts used were valid.

Construction of Nomographs

The designer of nomographs for problem solution is required to be thoroughly familiar with the theory used in an analytical solution. A knowledge of the basic forms of equations and their nomographic layouts is also essential. The design technique used to design nomographs is an art which is difficult to develop in isolation. The experience and intuition of other designers are invaluable. It was the experience of

the writer's major adviser that led to the choice of the nomographic layout used.

In the construction of the nomographs for the graphical design of vegetation lined channels, a large scale was initially used to graduate the depth (velocity) axis. This scale and the distances between the vertical axes of depth (velocity), pivot line, and shape parameter were chosen so as to utilize as much of an A3 size sheet as convenient. A range of shape factors was chosen and the extreme values (high and low values) of the range were suitably plotted on the appropriate axis. The anticipated mid-value of the range of channel gradients to be considered (2%) was located between the depth (velocity) of flow axis and the pivot line. Using these three points and the computer generated design data, the following steps were followed in plotting the channel capacity curve:

- 1. Choose the channel capacity (Q_1) to be plotted.
- 2. Plot the simulated depth of flow (D_{wl}) associated with a channel shape (W_1) and the channel discharge capacity chosen (Q_1) on the depth axis.
- 3. Draw a ray through D_{w1} and the channel gradient and produce it to cut the pivot line at P_1 (Figure 16a).
- 4. Join P_1 and W_1 .
- 5. Plot another depth of flow (D_{w2}) associated with a second channel shape (W_2) and the same channel discharge capacity (Q_1) on the depth axis.
- 6. Draw a ray through D_{w2} and the channel gradient and produce it to cut the pivot line at P_2 .
- 7. Join P_2 and W_2 and mark the intersection with P_1W_1 .

8. The point of intersection of P_1W_1 and P_2W_2 represents the point Q_1 on the channel discharge capacity curve.

9. Repeat for other values of the channel discharge capacity (Q).

Other values of the shape parameter were then plotted following a similar procedure illustrated in Figure 16b. All the channel capacities plotted by the previous procedure were used to locate the intermediate points between the extreme shape parameter values. This procedure was repeated to produce the channel discharge capacity curves for all the retardance classes.

The channel gradient curve was completed using the points plotted on the channel discharge curve as illustrated in Figure 16c. The above construction procedure conforms with the procedure suggested by Levens (1965) for the construction of alignment charts.

CHAPTER IV

RESULTS AND DISCUSSION

The hydraulic design of a grassed channel consists of two stages (Ree, 1949). The first stage is to design the channel for stability; that is, to ascertain whether the design velocity in the channel exceeds the limiting velocity for the anticipated slope, soil, and minimum cover combination. The second stage is to review the design for maximum discharge capacity; that is, to determine the increased depth of flow that would be necessary to maintain the maximum discharge capacity under the condition of highest retardance. In presenting the results of this study, a channel design will be executed to show how the design procedures developed may be applied. The design will follow the two stages described above. At the conclusion of each design, a freeboard of 0.100 m (four inches) will be added to the design depth.

Analytical Design Procedure

The analytical design procedure is based upon the calculation of the Manning's n using the models presented in Table IV. In the graphical comparison (Figure 14), the models were shown to portray the standard retardance curves satisfactorily. The use of the computation form shown in Table VI would ensure the orderly iteration of the design steps which have to be followed in order to achieve a solution. The following

example illustrates how the analytical design procedure should be executed:

Given a discharge of $6.0 \text{ m}^3/\text{s}$ (210 cfs) and a channel gradient of 2%, determine the section of the trapezoidal channel (4:1 side slopes) lined with bermudagrass expected to fall in the B retardance class.

1. Design for stability (use retardance D, Table III), try a 10 m wide channel. The number of iterations in the calculations presented in Table VII were reduced by the judicial choice of V_e in the successive calculations instead of using the preceding calculated value of V_c . The value of ΔV would depend upon the designer's discretion. The value of 1.70 m/s was compared with the permissible velocity of 1.80 m/s for the expected conditions (Table II). As the permissible velocity was not exceeded the choice of the bottom width was acceptable.

TABLE VII

			·
	Trial 1	Trial 2	Trial 3
В	10.000	10.000	10.000
S	0.020	0.020	0.020
Ve	1.500	1.600	1.700
A	4.000	3.750	3.530
D	0.350	0.331	0.314
Р	12.893	12.731	12.586
R	0.310	0.295	0.280
VR	0.465	0.471	0.477
n	0.0360	0.0359	0.0358
Vc	1.799	1.746	1.690
ΔŬ	0.299	0.146	0.010
Va	1.800	1.800	1.800

CALCULATION FOR STABILITY DESIGN

2. Design for capacity (use retardance B for mature cover). The velocity calculated in this section of the procedure (Table VIII) will always be less than the velocity calculated in design for stability. After a free board of 0.100 m (four inches) was added to the design depth, the top width for the total depth (including the free board) was calculated using the relationship T = B + 2ZD in Table V. The resulting trapezoidal section would then be:

Bottom width = 10 m Depth of channel = 0.530 m Top width = 13.440 m Velocity of flow = 1.19 m/s

This design procedure was used to generate the data required to construct the nomographs for the graphical design procedure.

TABLE VIII

	Trial 1	Trial 2	Trial 3
D	10.000	10.000	
В	10.000	10.000	
S	0.020	0.020	
Ve	1.500	1.200	1.190
A	4.000	5.000	5.040
D	0.350	0.427	0.430
Р	12.893	13.522	13.546
R	0.310	0.370	0.372
VR	0.465	0.444	0.443
n	0.0602	0.0614	0.0614
Ve	1.076	1.187	1.191
ΔŬ	0.424	0.013	0.001
V _a	1.800	1.800	1.800

CALCULATION FOR CAPACITY DESIGN

Design depth is 0.430 m.

Graphical Design Procedure

The computer program (Appendix E) was used to execute the above design procedure for a range of channel slopes, channel gradients, and discharge capacities for each of the five standard retardance classes. The iterations were terminated when the value of ΔV was equal to or less than 3.05 x 10^{-3} m (0.01 ft). Over 1,000 hypothetical channels for each of the four different channel types were designed and the data used to construct nomographs for the design of parabolic channels, triangular channels, and trapezoidal channels with side slopes of 4:1 and 6:1 (see Figures 21 through 27 in Appendices B through D).

The nomographs are grouped into two sections for each channel type. The first section (five charts) relates to the channel velocity. The second section (one chart for parabolic and triangular channels and four charts for trapezoidal channels) relates to the channel depth of flow. The same discharge capacities, channel gradients, and shape values are repeated on the charts in both sections.

The example introduced in the section on the analytical design procedure will be used to illustrate the use of these nomographs in the graphical design procedure.

The design for stability should proceed in the following steps:

- 1. Choose a desirable channel bottom width (say 10 m).
- Choose the lowest expected retardance for the vegetal lining from Table III (retardance D).
- Choose the trapezoidal channel velocity chart (Figure 25, Appendix D) for this retardance.
- 4. Draw a ray from the value 10 on the bottom width scale through

 $6.0 \text{ m}^3/\text{s}$ on the flow curve and produce it to cut the pivot line at "a".

- 5. Draw a ray from the point "a" on the pivot line through the value of 2% on the slope scale and produce it to cut the velocity axis at 1.7 m/s.
- 6. Compare this velocity with the limiting velocity in Table II. Change the bottom width if the maximum allowable velocity is exceeded and repeat (4) and (5) above. If the solved velocity is extremely low the channel may be made more economical by making it narrower.

The design for maximum capacity should proceed as follows:

- Determine the retardance class for the mature vegetal lining from Table III (retardance B).
- Turn to the depth chart for trapezoidal channels with 4:1 side slopes (Figure 27, Appendix D).
- 9. Draw a ray from the value 10 on the bottom width scale through 6.0 m³/s on the D flow curve and produce it to cut the pivot line in "b".
- 10. Draw a ray from the point "b" on the pivot line through the 2% value on the slope curve and produce it to cut the depth axis at 0.422 m.
- 11. Add the freeboard of 0.100 m and calculate the top width of the channel using the relationship T = B + 2ZD in Table V (T = 13.380).

The trapezoidal section will then be:

Bottom width = 10 m

Depth of channel = 0.522 m

Top width = 13.380 m

Velocity of flow = 1.20 m/s

This procedure can be executed in a fraction of the time required by the analytical design procedure and compares favorably with it. Reversing the procedure, the maximum discharge capacity of an existing channel can be conveniently determined.

During the construction of the nomographs it was found that in some cases it was not possible to develop a curve for low flows in channels with high retardance. In the region of low VR values, the n-VR curves do not conform to the same shape and convergence. The bilinear test also fails in this region. The nomographs cannot, therefore, be used for slow flows which have little influence on the erect condition of tall vegetation (class A retardance). When VR values of less than 0.1 are encountered, a friction factor of between 0.3 and 0.4 should be used when the class A retardance condition applies (see Figure 1). The reliability of the nomographs tends to decrease as the extremities of the curves are used.

Statistical Analysis

An average of about 240 parabolic, triangular, and trapezoidal channels were designed using both the analytical and graphical design procedures. A range of three slopes, four flow rates, and four channel shapes were used for each of the five retardance classes. The design parameters of depth and velocity, determined by the analytical and graphical design procedures, were compared. The graphical comparisons (Figures 17 through 20, Appendix A) showed that there was a good linear correlation between the values from the two procedures.

Barr et al.'s (1979) regression analysis, using a linear model with the intercept forced through the origin, was carried out on the results for the depth of flow and velocity of flow respectively. The data fitted the linear model extremely well showing a very high corrolation coefficient ($\mathbb{R}^2 > 0.999$). The standard deviation of the data from the model was found to be between 0.008 and 0.014 for the depth analysis and between 0.031 and 0.070 for the velocity analysis (Tables IX and X). The coefficient of variation of all the data points in every case was less than 4.4% with a mean value of 2.475% and 3.628% for the depth and velocity comparisons respectively. With a variation of 0.986 to 1.001 in the regression coefficient of the models for all the channel types, the analysis showed that the model was a good approximation of the line of equal value. The analysis thus showed that there was no meaningful difference between the design values of depth and velocity of flow determined by means of the analytical and graphical design procedures.

TABLE IX

	Parabolic	Triangular	Trapezoidal (6:1)	Trapezoidal (4:1)
Regression Coefficient	0.998	1.001	0.998	0.994
Standard Deviation	0.008	0.014	0.009	0.008
Correlation Coefficient	1.000	0.999	1.000	1.000
Coefficient of Variation	2.225	3.129	2.473	2.074

REGRESSION ANALYSES ON CHANNEL DEPTHS

TABLE X

REGRESSION ANALYSES ON CHANNEL VELOCITY

	Parabolic	Triangular	Trapezoidal (6:1)	Trapezoidal (4:1)
		·		
Regression				
Coefficient	0.997	0.992	0.986	0.991
Standard				
Deviation	0.031	0.032	0.070	0.063
Correlation				
Coefficient	0.999	0.999	0.999	0.999
Coefficient		· · · · · ·		
of Variation	3.267	3.088	4.347	3.808

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

An iterative analytical design procedure and a graphical design procedure were developed for the design of vegetal lined parabolic, triangular, and trapezoidal channels. Simple models for the five standard retardance curves (n-VR curves) were also developed. These models were used to determine Manning's n in each iteration in the analytical design procedure which could be executed using a non-programable scientific calculator. Using a programable calculator or computer, the output of each iteration could be used as the input of the next iteration. The number of iterations, however, could be significantly reduced by the judicial choice of the value of the input to each iteration.

The analytical design procedure was used to design a large number of hypothetical channels by means of a computer. The design data generated were used to construct nomographs for the graphical design of parabolic, triangular, and trapezoidal channels. The two procedures were used to design over 900 channels. The design outputs of the two procedures (depth of flow and velocity of flow) were analyzed statistically. The regression analysis on the graphically and analytically determined depth of flow and velocity of flow showed that, within practical limits, no accuracy was forfeited when the graphical procedure was used. A

considerable saving in time and greater flexibility was achieved through the use of the graphical design procedure.

Conclusions

The analytical design procedure developed could be profitably used to design vegetation lined channels using an ordinary scientific or engineer's calculator. Using the recommended computation form for successive iterations, the number of iterations could be significantly reduced.

The use of the graphical design procedure and the nomographs, developed from the computer synthesized data, vegetation lined parabolic, triangular, and trapezoidal channels can be designed in a fraction of the time required by other design procedures with no significant loss in accuracy. The method is especially suitable for field use and is more flexible than any other design procedure. The method can also be used to determine the discharge capacity of an existing channel in the field quickly and easily. Because of the speed and ease with which a designer can execute a design using this graphical design method, this method will in the future allow designers to consider many alternative designs that otherwise would possibly never be considered.

The credibility of any design procedure is as good as the data upon which it is based. The reliability with which the retardance of the vegetation in the channel is classified remains the key to success in the design of vegetated channels. In practice, such classification will be influenced by the experience and preferences of the assessor.

SELECTED BIBLIOGRAPHY

Barr, A. J., J. H. Goodnight, J. P. Sall, W. H. Blair, and D. M. Chilko. SAS User's Guide. Raleigh: SAS Institute, Inc., 1979.

Chow, V. T. Open Channel Hydraulics. New York: McGraw-Hill, 1959.

- Frevert, R. K., G. O. Schwab, T. W. Edminster, and K. K. Barnes. <u>Soil</u> <u>and Water Conservation Engineering</u>. New York: John Wiley and Sons, 1955.
- Gwinn, W. R. and W. O. Ree. <u>Maintenance Effects on the Hydraulic</u> Properties of a Vegetation Lined Channel. ASAE Paper No. 79-2063.
- Henderson, F. M. <u>Open Channel Flow</u>. New York: MacMillan Company, 1966.
- Johnson, L. H. <u>Nomography and Empirical Equations</u>. New York: John Wiley and Sons, 1952.
- Kao, D. T. Y. and B. J. Barfield. "Predictions of Flow Hydraulics for Vegetated Channels." <u>Transactions of the ASAE</u>, 2., 3 (1978), 489-494.
- Kao, T. Y. and B. J. Barfield. <u>Hydraulic Resistance of Grass Media on</u> <u>Shallow Overland Flow</u>. Research Completion Report, Project A-049-KY, Kentucky Water Resources Research Institute, 1976.
- Kouwen, N. "Bio-Mechanics of Vegetative Channel Linings." Journal of Hydraulics Division of the ASCE. To be published.
- Kouwen, N. "Flow Retardance in Vegetated Open Channels." (Unpub. Ph.D. thesis, University of Waterloo, 1969.)
- Levens, A. S. <u>Graphical Methods in Research</u>. New York: John Wiley and Sons, 1965.
- Palmer, V. J. "A Method for Designing Vegetated Waterways." <u>Agricul-</u> tural Engineering, 26, 11 (1945), 516-520.
- Ree, W. O. Personal communication. Stillwater, Oklahoma, 1979.
- Ree, W. O. "Hydraulic Characteristics of Vegetation for Vegetated Waterways." Agricultural Engineering, 30 (1949), 184-189.

- Ree, W. O. Friction Factors for Vegetation Covered, Light Slope Waterways. Research Report No. 35, Watershed Technology Research Branch. Soil and Water Research Division, Agricultural Research Service, United States Department of Agriculture. 1960.
- Ree, W. O. and F. R. Crow. <u>Friction Factors for Vegetated Waterways of</u> <u>Small Slope</u>. Washington, DC: United States Department of Agriculture Publication ARS-S-151, 1977.
- Ree, W. O. and V. J. Palmer. <u>Flow of Water in Channels Protected by</u> <u>Vegetative Lining</u>. Washington, DC: USDA, Technical Bulletin No. 967, 1949.
- Temple, D. M. <u>Tractive Force Design of Vegetated Channels</u>. ASAE Paper No. 79-2068.
- Temple, D. M. Personal communication. Stillwater, Oklahoma, 1980.
- United States Department of Agriculture. <u>Handbook of Channel Design</u> for Soil and Water Conservation. Washington, DC: Soil Conservation Service, SCS-TP-61, 1954.

APPENDIXES

APPENDIX A

GRAPHICAL COMPARISONS OF ANALYTICALLY AND GRAPHICALLY DETERMINED DEPTH OF FLOW AND VELOCITY OF FLOW

SYMAGE USED IS

DC AL

PLAT OF UNA

Figure 17 (Continued)

PLOT OF

60

1

TRIANGULAR CHANNELS

SYMBOL USED IS .

EOR

ANALYSIS FOR TRAPEZOIDAL CHANNELS SIDE SLOPE=411

ANALYSTS FOR TRAPEZUIDAL CHANNELS SIDE SLUPE=411

PLUT OF VNDM+VCAL SYMBOL USED IS +

Figure 19 (Continued)

ANALYSTS FOR TRAPEZUTDAL CHANNELS SIDE SLOPE=6:1

APPENDIX B

NOMOGRAPHS FOR THE DESIGN OF PARABOLIC

CHANNELS

ŧ

Figure 21. Solution for Parabolic Channel Velocity

Ð

Figure 22. Solution for Parabolic Channel Depth

APPENDIX C

NOMOGRAPHS FOR THE DESIGN OF TRIANGULAR

CHANNELS

Figure 23. Solution for Triangular Channel Velocity

Figure 24. Solution for Triangular Channel Depth

CHANNELS

NOMOGRAPHS FOR THE DESIGN OF TRAPEZOIDAL

APPENDIX D

Figure 25. Solution for Trapezoidal Channel Velocity

TRAPEZOIDAL CHANNEL VELOCITY (Metric Scale)

Figure 26. Solution for Trapezoidal Channel Depth (6:1 Side Slope)

APPENDIX E

PROGRAMS USED TO GENERATE DESIGN DATA

С DATA SIMULATION FOR PARABOLIC CHANNALS C ******* С Z = TOP WIDTH AT 0.305M DEPTH (ONE FOOT) C CATA INPUT IST CARD DATA READ IN 12 FORMAT C NS=NUMBER OF SLOPES ANALYSED (MAX=16) NQ=NUMBER OF FLOWS ANALYSED (MAX=16) C С NR-NUMBER OF RETARDANCE CLASSES Ć C. 2ND CARD SLOPE DATA READ IN E5.3 FORMAT С C 3RD CARD FLOW DATA READ IN F5.3 FURMAT DIMENSION - S(10), Q(10) С 1 13 READ (5.1) NS.NQ.NR IF (NQ) 400,400,11 K[4D(5,3)(S(1), [=1,NS) 11 FFAD(5,2) (Q(1),1=1,NQ) 55 IF(B.GT.50) GD TD 10 WR ITE(6,85)Z WR [TE(6,80) CO 100 I= 1, NR WRITE(6,90) 00 200 J=1,NQ CO 300 K= 1, NS VLAST=6.0 CN0=C.0 15 V=VLAST ^=Q(J)/V 0=(A/((2./3.)*/))**(2./3.) 1=2*0**0:5 R=2.0+D/3.J VR = V +R CALL MAN(VR. I. AN) C. AN=MANNING N V=1.486*(R**(2./3.))*(S(K)**(0.5))/AN UV = V -VL AST CN0=CN0+1 .0 IF (CN0.GT.200)G.0. Th. 77 VLAS1=V IF (ABS(DV) LE.D.OL)GD TO 20 GO TO 15 77 WR ITE(6, 95 W, VLAST, CNT IF (I . EQ . 1) WRITE (5, 30) S (K) . Q (J) . V . D. I . V R; AN, R. A. P 20 IF (I . FQ . 2) WR I TE (6, 40) S(K) ,Q (J) , V, 1, 1, VR, AN, R, A, P IF (1 . FQ.3)WRITF (6,5) S (K),Q (J), V, ", T, VR, AN, R, A, P IF (I .FQ. 4) WP I TI (G. 60) S(K) .Q(J) .V. 0. T. VR. AN, R. A. P IF(I. EQ. 5) WR ITE (6, 70) S(K), 2(J), V,), T, VR, AN, R, A, P GU TC 300 1 FURMATE 31 2) 2 FURMAT(16F5.0) FORMAT(13 65.4) 3 30 FORMAT(4X, 'A', 7X, F7.4, 4X, F7.1, 4(5X, F6.2), 5X, F7.5, 3(2X, F7.2)) FORMAT(4X. **** , 1X.F7.4+4X.F7.1.4(5X,F6.2),5X.F7.5 ,3(2X.F7.2)) 43 FURMAT(4x, *C*, *Tx+F7.4, *X+F7.1, 4(5x, F6.2), 5x, F7.5, 3(2x, F7.2)) FURMAT(4x, *C*, *Tx+F7.4, *X+F7.1, 4(5x, F6.2), 5x, F7.5, 3(2x, F7.2)) FURMAT(4x, *D*, *Tx+F7.4, 4x, F7.1, 4(5x, F6.2), 5x, F7.5, 3(2x, F7.2)) FURMAT(4x, *F*, *Tx+F7.4, 4x, F7.1, 4(5x, F6.2), 5x, F7.5, 3(2x, F7.2)) FURMAT(1x, *RETARDANCE*, 3x, *SLOPE*, 4x, *FLOW RATE*, 3x, *V*LOCITY*, 50 63 70 80 * 4X, "DEPTH", 4X, "TOP WIDTH", 6X, "VR ", 5X, "MA NNI NO N") FIRMAT ('1 '// 10X, 'Z* ', F5.1.24X, 'PAPABOLIC CHANNALS (IMP) ',/10X, 85 90 FCHMAT(1) FORMATE ABSIDVI GREATER THAN 0. 01 . 7110.2 . FLD. 1) 95 30 2 CUNT INCE 20.01 CONT INUE 100 CONT INUE (F(Z.GE.30)Z=Z+10 IF(Z.LT.30)Z=Z+5 GO TO 55 400. STOP END

```
С
        CATA SIMULATION FOR TRIANGULAR CHANNELS
C
                                  *** **** *********
С
        Z . SIDE SLOPE OF CHANNEL BANK
       DATA INPUT
IST CARD DATA READ IN 12 FORMAT
C
C
           NS=NUMBER OF SLOPES ANALYSED (MAX=16)
NQ=NUMBER OF FLOWS ANALYSED (MAX=16)
С
C
           NRENUMBER OF RETARDANCE CLESSES
С
С
        2ND CARD
С
           SLOPE DATA READ IN F5.3 FCP.MAT
C
        3RD CARD
C
           FLOW DATA READ IN F5.3 FCRMAT
       CIMENSION S(10),Q(10)
READ (5,1) NS,NQ,NR
  10
        IF (NQ) 400,400,11
       REAC(5, 3)(S(1),1=1,NS)
  11
       READ(5,2) (Q(1),1=1,NQ)
        1 = 4
55 :
        IF(Z.GT.25) GO TO 10
        WRITE(6,85)2
        W I TF( 6,80)
        00 100 I= 1, NR
     i
        WRITE(6,90)
        DU 200 J=1,NQ
        LU 300 K= 1.NS
        VLAST=6.J
        CNU=C.0
15
       V=VLAST
        A=Q(J)/V
        U= (A/Z) ++ 0.5
        T=2=Z=D
       P=2*D*(1+2**2)**0.5
        R= A/P
        VR =V +R
        CALL MAN( VR, I, AN)
С
        AN= MANNING N
        V=1 .486* (R** (2 ./3 . ))* (S(K) ** () .5))/AN
        EV=V-VLASI
        CNU= CND+1 .0
        IF (CNO. GT . 200) GO TO 71
        VLAST=V
        IF (ABS (DV ) .L F .J .O1) GO TO 20
        CU TC 15
77
        WR ITE( 6, 95)V, VLAST, CNO
23
        IF ( I . FQ . 1 )WRITE (6, 30) S (K) , 0 (J) , V, 0, 1, VR, AN, R, A, P
        IF ( 1. EQ. 2 ) WRITE (6,43) S(K), Q(J), V, ), T, VR, AN, R, A, P
        IF ( 1 . EQ . 3 )WRITE (6, 50) S(K), J(J), V, ), T, VR, AN, R, A, P
        IF ( I . EQ. 4 JWK ITE (5,50 ) S (K), Q (J), V, D, I, VR, AN, P, A, P
        IF(I.EQ.5)WRITE(6,7C)S(K),0(J),V,0,1,VR,AN, K, A, P
        00 TC 300
        [0 RMAT(317 )
1
        FORMAT( 16F 5. 3)
2
        FORMAT(13F5.4)
3
       FOR MAT(4X, '4', 7X, F7.4, 4X, F7.1, 4(5X, F6.2), 5X, F7.5, 3(2X, F7.2))
FOR MAT(4X, 'B', 7X, F7.4, 4X, F7.1, 4(5X, F6.2), 5X, F7.5, 3(2X, F7.2))
30
    4
40
        FOR MAT (4X, + C', TX, FT .4 .4X, FT .1 .4 (5X, F6 .2 ).5X, FT .5 . 3(2X, FT .2))
50
        FORMAT( 4X, 10 + 7X, F 7.4, 4X, F 7.1, 4(5X, F6.2), 5X, F7.5 , 3(2x, F7.2))
60
        FORMAT (4X, "E", 7X, F7.4, 4X, F7.1, 4( 5X, F6.2), 5X, F7.5, 3(2X, F7.2))
7C
      FORMAT(1X, 'RETARDANCE', 3X, 'SLOPE', 4X, 'FLOW RATE', 3X, 'VELCCITY', *4X, 'DEPTH', 4X, 'TOP WIDTH', 5X, 'VR', 5X, 'MANNING N')
FORMAT('1'//10X, 'Z=', F5.1, 24X, 'TRI ANGULAR CHANNALS (IMP)', /10X,
ია
85
       90
95
        FIRMATI ABSIDVIGREATER THAN 0.011.2110.2.F10.11
30)
        CONT INUE
2001
        CONTINUE
        CONT INUE
1001
        IF(2-6) 101,102,112
101
        2=2+1
        GO TC 55
102
        1=2+2
        GO TO 55
135
        1=1+2.5
        CC: TC 55
112
        IF(Z-10) 102,105,105
400
        STUP
        END
```

С CATA SIMULATION FOR TRAPEZTID CHANNELS ٢ *** ** ** *********** C B . BOTTOM WIDTH OF CHANNEL Z . SIDE SLOPE OF CHANNEL BANK CATA INPUT C С C IST CARD DATA READ IN 12 FORMAT NJ=NUMBER OF SLOPES AVALYSED (MA X=16) NQ=NUMBER OF FLOWS ANALYSED (MAX=16) C С C NR=NUMBER OF RETARDANCE CLASSES C 2ND CARD C SLOPE DATA READ IN E5.3 FORMAT C 3P.D. CARD C FLUW DATA READ IN F5.3 FORMAT C. 4TH CARD i BOTTOM WIDTH DATA READ IN 12 FORMAT C CIMENSION S(10),Q(10) READ (5,1) NS,NQ,NR 1b IF (NQ) 400,400,11 RFAD(5,3) (S(1), [=],NS) 11 READ(5,2) (Q(1),1=1,NQ) READ(5,4)Z 8 = 10 1F(B.GT.50) GO TO 10 53 WP ITE(6,85)2,8 #RITE(6,8) CU 100 1=1,NR WRITE(6,90) 1 00 230 J=1,NQ 10 300 K= 1,NS VLAST=6.0 CNU= 3.0 V=VLAST 15 4=Q(J)/V D=(-B+(B**2+4*A*Z)**0.5)/(2*Z) "= B+2*D*(1+2**?)**0.5 T=8+2+ Z+1) R=A/P VP=V *R CALL MAN(VR, I, AN) C AN= MANN ING N V=1.486*(R**(2./3.))*(5(K)**(0.5))/AN IV= V-VLAST CNU=CN0+1.0 IF (CNO.GT .200)GD TO 71 VI 1ST=V IF(ABS(DV).LE.0.01100 TO 20 CD TF 15 WR ITE(6,95)V,VLAST,CND 77, 20 IF (I . EQ. 1) WR ITE (6, 30) S(K), 2 (J), V, 2, T, VR, AN, R, A, P IF (1. EQ. ?) WR ITI (5.40) 5 (K) , 2 (J) , V , D, T , J R, AN, K, A, P IF (I .FQ. 3) WP [TF (6, 50) 5(K) .0 (J) . V, 7, 1, VR, AN, R, A, P IF (I . EQ . 4) WEITE (6, 60) S(K) , 7 (J) , V , 7 , I , VR , AN, 4, A, P 1F (1. EQ. 5) WR ITF (5, 70) S(K), U(J) . V, D, T, VR, AN, P, A, P GI TO 330 FORMAT(312) 2 "CIR MAT(16F 5. J) IORMAT(1355.4) 3 4 HOPMAT(F5.1) ن ٦ FORMAT(4x, *A*, 7x, F7.4, 4x, F7.1, 4(5x, F6.2), 5x, F7., 3(2x, F7.2)) LUR MAT(4X, 181, 7X, F7.4, 4X, F7.1, 4(5X, F6.2), 5X, F7.5, 3(2%, F7.2)) FUP MAT(4X, 101, 7X, F7.4, 4X, F7.1, 4(5X, F6.2), 5X, F7.5, 3(2X, F7.2)) 4.5 50 FOR MAT (4x, +1) , TX, FT .4 .4 x . FT .1 .4 (5x, F ... 2), 5x, 17 . 5 , 3(2x, F7.2)) 50 FORMAT(4X, 1+, 7X, F7.4, 4X, F7.1, 4(5X, 1.5.2), 5X, F7. 3 (2X, F7.2)) 70 FORMAT (1X, "RETARDANCE", 3X, "SLOPE", 44, "FLOW RATE", 3X, "VELOCITY", #4X," CEPTH", 4X, "TOP WEDTH", 5X, "VR", 5X, "MANNING N") 80 85 90 3 95 FURMAT (ABS (DV) GREATER THAN D.)11,2110.2, FI J. 1) 1000 CONTINUE 200 CONT INUE CONT IN'IE 100 P= 8+10 CO TO 55 400 STOP END

1	
	SUBRCUTINE MAN(VR, I, AN)
	GO TC (10,20,30,40,50).1
10 :	IF(VR.GT.1.67)G0 TO 15
1.	AN=0.44-J.15+VR
	GO TC 70
15	AN=0.046+0.24/VR
	GO TC 70
20	IF (VR.GE.2.0) GO TO 27
1	IF (V R.LT. 2.0. AND. VR. GT. 0. 5) GO TO 25
	AN=0.403-0.31 #VR
i	CO TO 70
25	$A^{N} = 0.046 \pm 0.103 / VR$
1	GO TC 70
27	4N= 0.0354+ 0.124/VR
	CN TC 70
30 :	IF (VR.GT. 1.0) GO TO 35
	AN=0.034+0.049/VR
	G1 TC 70
35	AN=0.028+0.055/VR
	CO TC 70
40	IF (VR.GT.1.125) GD TC 45
	AN= 0.038+ C.021/VR
	CG TC 70
45	AN=0.03 J+0.03 J/VR
	GO TO 70
53 -	1F (VR.GT.1.23)G0 TO 55
	AN=0.029+0.008/VB
	CÚ TO 70
55	AN=0.0225+0.016/VR
70	KFTURN
	END

i

1

i

.

APPENDIX F

DATA USED IN STATISTICAL ANALYSIS

ANALYSIS FOR PARABOLIC CHANNELS

CBS	SHAPE	R ET,	SLOPE	FLOW	VCAL	VNCM	V_DIFF	DCAL	DNOM	O_DIFF
1	10	A	2.0	100	•	•	•	0.792683	0,792683	0,000000
2	10	Α	2.0	200	•	•	•	0.984756	0.984756	0.000000
3	10	8	0.5	25	• ,	•	•	0.637195	0.615854	0.021341
2	15	8	0.7	20	•	. •	•	0.740951	0.740854	0.006098
2	10		8.0	23	•	• •	•	0.342805	0.371051	-0.003049
	10			100	•	•	•	0.451220	0.571951	-0.003049
8	10	Å	8.0	200	:			0.579268	0.582317	-0.003049
ñ	10	Ċ	0.5	25	0.59146	0.57927	0.01220	0.472561	9.466463	0.006098
1)	10	č	0.5	50	C.86890	0. 22850	0.00000	0.577268	0.579268	0.000000
11	10	С	0.5	100	1.20732	1.21951	-0.01220	0.740854	0.743902	-0.003049
12	10	С	0.5	203	1.60976	1.63110	-0.02134	•	•	•
13	10	c	2.0	25	1.01524	0.99085	0.02439	0.329268	0.329268	0.000000
14	10	ç	2.0	50	1.46341	1.46341	0.00000	0.411585	01411585	0.000000
17	12	, Ç		100	2.00101	2.05/55		0.72/434	3.577439	0.000000
17	10	č	8.0	50	2 44817	2.44.817	0.00000	0.292683	2 280636	0.003046
19	10	č	8.0	100	3.30793	3, 36939	-0-09146	0.378049	0.381098	-3.303049
19	10	č	8.0	240				0.503049	0.506098	-0.003049
20	10	D	0.5	25	C.69237	0.685 98	0.00610	0.426829	0.426829	0.000000
21	10	C	0.5	50	0.94817	0. 94512	0.00305	0.545732	0.554878	-2.209146
22	10	C	3.5	107	1.25305	1.26524	-0.01220	0.722561	0.728659	-0.00609R
23	10	C	2.0	25	1.15854	1.14329	0.01524	0.301829	0.304678	-0.003049
24	10	C	2.)	50	1.57012	1.56058	0.00915	0.393293	J. 193293	0.0000000
25	13	D	2.0	100	2.05793	2.08841	-0.03049	0.518293	3 521341	-0.003049
26	10 ,	D	8.0	25	1.97297	1.50149	0.02744	0.216463	0.210366	0.006098
21	10	D	9.7		2.58541	2.79140	-0.00305	0.280488	3.274390	0.005048
20	12.	0	8.7	2.10	3.30,302	2.4/201	-0.10476	0.575000	1.406061	1.309146
25	ić i	š	1.5	25	0.91768	0.88415	0.03354	2.353659	0. 365854	-0.012195
31	12	ï	0.5	50	1.21951	1.20427	0.01524	0.463415	0.466463	-0.003049
32	10	F	7.5	100	1.50232	1.40061	-0.01 529	0.618902	0.621951	-0.303049
2.3	10 1	F	3.5	2.30	2.01220	2.04268	-0.23349	3.838415	3.8567.37	-0.018293
34	10	E	2.0	25	1.52134	1.40341	0.05793	0.253049	0.256098	-0.003049
35	10	F	2.0	50	2.00610	1.98780	0.01829	0.332317	J. 335366	-0.303049
76	15	Ē	2.5	100	2.57927	2.63720	-0.05793	0.445122	0.445122	0.000000
37	11	E	2.0	200	- 26929	3.35366	-0.08537	0.606707	0.609756	-3.303049
2.0	10	E E	4.5		2.51223	7.43907	0.07317	0.1/98/8	0.179878	0.000000
6.0	10	5		50	3 394 50	1 74455	0.03963	0.240854	0.241707	0.009146
41	10	Ġ	8.1	1.0.0	1.20014	3.24014	0.03463	3.323171	3.314724	0.009146
42	15	i i	9.0	200		:		0.439024	0.432927	0.006098
43	20	Å	2.5	25	0.14024	2.09146	0.34874	•	•	•
44	20	۸	J.5	50	C.22561	0.22865	-0.00305	•	•	•
4 ·,	20 1	۸	0.5	100	0.40244	0.35634	0.00610	•	•	•
46	23	A	2.5	200	0.63770	0.62500	0.01720	•	•	•
	2.3	A	2.0	25	C. 24085	0.243 50	-0.00305	•	•	•
4.7	20	Å	2.0	1.0	3.42579	0.42025	-0.00305	0.647683	1. 467683	0.000000
5.1	20	Å	2.0	100	C. 704 27	2. 761.22	C. 00305	0. 192683	0.792683	0.000000
×1	21	Ä	2.0	200				0.792683	3.798780	-0.105098
5?	23	٨	2. 3	200	1.00146	1.05/56	-0.00610	0.792683	0.748780	-0.006098
53	2.0	Α	4.0	25	0.42988	0.45732	-0.02744	•	•	•
• 4	2) j		я.)	50	0.75305	n • 162 50	-).00915	•	•	•
55	20	Α	8.0	100	1.22561	1.21951	0.00610	0.460366	0.478559	-0.018293
×6	20	۸	8.0	200	1.85576	1.25976	0.00000	0+5548/8	0.570122	-0.015244
51	2)	8	J.5	25	C.?3171	0.15817	0.033517	0.554878	0.536585	0.018243
5 .9	5.2	H	0.5	50	0.225/1	0.22966	-0.30304"	0.637195	0.625000	0.012195
50	20	P.	0.5	1.00	0.59756	0.57927	0.218293	0.746951	0.740854	0.006048
60	30 .	н	0.5	200	0.49024	0.25365	0.036585	170.140	6 1 10.040	·
21	22 3				5.16115	0.18110	0.010203	0.518293	0.570049	-0.003040
6.3	2.0		2.0	100	1.02744	0.55655	0.030488	0.640744	3.640244	3.000000
6.4	20	A	2.0	200	1.51524	1 .4 53 93	0.321341	0.820122	U.837927	J. 012195
65	2.)	8	8.0	29	C. 68253	C. 67C73	0.012195	0.259146	0.268293	-0.009140
65	27	Ä	9.0	50	1.13722	1.09756	0.37634	0.304878	3. 310976	- 0. 006 099
61	: 20	B	8.J	100	1.76220	1.76732	0.354878	0.362805	0.3/1951	- 0.009146
63	20	8	3.0	200	2.54878	2. 1524	0.033537	0.451220	0.454268	-0.03 304
49	20 /	c	0.5	25	0.37500	0.38110	-0.006098	0.402439	0.393293	3. 039140
7.5	20	. C.	2.5	53	C. 39146	0.60576	-0.019293	0.472561	0.475610	-0.03304
71	20	ć	0.1	100	0.00000	1.204.27	0.000000	3.740864	0.786000	- 3. 01524
22	20	ć	2.0	24	6.65540	0. 44449	0.000000	0.277430	0.217434	0.00000
74	20	č	2.0	5.5	1.01524	1.021 34	-0.006048	0.329268	0.332317	-0.03304
75	23	č	2.)	100	1.46341	1.46341	0.000000	0.411585	0.411585	0.00000
76	20	Ċ.	8.0	25	1.14329	1.14329	0.00000	0.192073	0.192073	0.00000
17	20	c	H . J	50	1.72561	1.71646	0.309146	0.231707	0.234756	-0.00304
78	20 :	С	8.0	100	2.44817	2. 4:427	-0.006098	0.292683	0.289634	0.00304
79	20 .	c	8.0	200	3.30793	3.33641	-0.030488	0.378049	0.384146	-0.03609

					ANALYSIS	FOR, PARABOL IC	CHANNELS			
n în S	SHAPE	RFT	SLOPF	FLCW	VC AL	VNCM	V_DIFF	DCAL	DNOM	0.0155
41	20	C	0.5	50	6.69707	0. 761 22	-0.000144			0_01//
	2.)	n	2.0	25	0.81402	0.82317	-0. 100146	0.426829	0.426829	0.000000
03	2.3	0	7.0	50	1.15854	1.14329	0.315244	0.240874	0.240854	0.030000
24	.20	0	2.0	100	1.57012	1. 554 89	0.015244	0.301201	0.304878	- 0. 00 3049
86	1.	C	9.7	25	1.38110	1.37195	0.009146	0.170732	0.164634	0.000000
87	20	0	9.0	.50	1.93293	1. 52 0 73	0.012195	0.216463	0.210366	0.004068
H H	71		H .0	100	2.58841	2.439 62	0-149390	0.280488	0.274390	0.005098
11.2	20			100	2.54441	2.671 95	-0.0335.37	0.280488	0.274340	0.006098
4.5	20	Ē	0.5	200	3.36569	3.42988	-0.064024	0.375000	0.368902	0.006048
11	2 :	Ë.	0. 5	50	0.001 77	0.67373	-0.009146	0.277434	0.271439	0.000000
<c>></c>	2.)	i i	0.5	100	1.2104	0.91963	0.001349	0.353659	0.353659	0.0000000
6.4	2)	E -	3.5	200	1.58732	1 868 37	0.000000	0.463415	0.467512	-0.001099
24	20	r	2.0	25	1.10976	1. 103.44	-3.333344	3.618702	0.631098	~ 0.01/195
94	20	F	2.)	50	1.52134	1 493 03	0.006098	0.195122	0.195122	0.000000
24	2)	F	2.0	175	2.00610	2.01820	-0.017101	0.253049	0.253.)49	0.000000
	2.1	ŧ	7.3	260	2.47927	2.66671	-0.077430	0 4451 22	0.332317	0.000000
	23	F	8.3	25	1.85976	1.82927	0.03.408	0 140744	0.445171	-0.00 3049
	2.2	1	9.0	50	2. 51720	2. 484 76	0.027439	0.179874	0 171700	3.006048
1,5		(4.0	100	7.28659	1. 30753	-0.021341	0.240854	0.175780	0.00404
112	20	f	н.)	200	•	•		3.323171	0.317.77	0.01/1//
	10	A		100	•	•	•	0-618202	0.615854	0.000094
114		2	2.7	200	. •	•		3.713415	0.716463	-1. 02 1049
1.5	61	4		25	C.1 3366	0.07622	0.02/439			- 0. 00 7047
1 14	4			50	C.14024	0.13720	0.003049			
	4	A A		100	0.22561	0.24390	-0.010203			· ·
1 . 9		<u>^</u>		2.00	0.40244	0.411 99	-0.009146	•		
1.10	11				0.17073	0.18253	-C.012195	•		
11.2	4,1				3.32517	2.274.39	0.345732	• •	•	
111	41	A .		100			•	J. 591463	J .585361	0.036098
112	4)	ñ		150	6.47374	0.45732	-0.333537	0.591463	3.585364	3.036049
11.5	4.			200		•	• *	3.667683	0.676829	- 9.009146
114	4.)	Å		200	5.73421	0.71646	-0.01220	0.667683	7.676829	-0.004146
115	40	Ā	3.1	·	3. 28 1.4	C. 335 17	-0.05183	•	•	
114	4 1	A	1. 1	100	1.47544	0 33 .4	-0.10366	•	•	•
1 } 7	41	Δ	3.0	200	1 22541	J. P. 17	-2.27146	J.4.)2439	J.417693	-0.015244
119	4)	ß	0.5	25	3.13415	2 2 2 2 2 2 1	-0.37419	0.460366	0.481707	-) .J21 141
11.3	4.)	р	0.5	25	0.22864	0 22844	0.07744	0.476951	3.481707	0.015244
1.,	47	в	3.5	50	6-14024	6.13723	0.33305	J.353659	2.341463	0.012145
12.1	4)	n	2.5	1 3.5	2.37805	0.38110	-0.00105	J. 7 74878	0.542684	3 .012195
111	4)	- 19	0.5	203	C. 40744	0-411 59	-0.00416	0.03/145	3.421951	0.015244
12.1	4)	P .	· · · ·	25	0.23476	0.22844	0.00610	0.740451	0.130/15	0.000.308
1.1.4	4	4	·• >	50	0.38110	3.35634	-0.31524	2.478.169	0.518919	3.30134
	• • •	14	2.0	100	C.64539	6. 19549	-0.00610	0.439024	1.612027	3.003.000
		н	2.)	200	1.07744	1 . 671 34	0.00610	0.518293	0.515244	J .J 04 141
1.14	4.1	P	". ?	25	C. 42370	0.42643	-0.33335	2 . 2 34 750	1.24 1854	- 1.006.16.1
1.1	4 1				C.68293	0.761 22	-0.01429	3.2/1341	1.264243	9.333149
1 . 2	4.)		3.4	100	1.1.1725	1.128.05	0.009.15	3.334878	0.310476	-0.005 198
1.11	4	r		50	1.7677.)	1. 70 7 32	0.05488	0.362805	0.371451	-3.009144
1	4.	è	5.5	1.00	0.175,34	0. 781 1.7	- C. 00610	0.402439	J. 376 341	.) . 004 370
1.1.1	45	c	2.5	200	(84.800	1.194.1	-0.30134	0.472561	3.475610	-0.001744
1 / 4	4.0	(2.2	25	0.40266	C. 41150	0.00000	0.579268	0.591463	-0.012195
114	40	С.	· · ·	50	3.41180	3. 4 37 44	-0.00019	0.740854	7.240854	0.000000
174	47	۲ (2.3	100	1.01524	1. (21.44	-0.00410	J. 277439	0.277419	3.000000
1.17	47	C	4.5	25	0.71037	0.731 71	-0.02134	0.1644.54	0.329768	0.000.000
1.44	41	C	3.0		1.14320	1.158 54	-0.01524	0 102073	J. 167683	- 3. 003044
1.1.1	4)	5	4.)	100	1.77541	1.71646	0.00915	0.211707	0.22/122	-0.001344
1 4 1	4 5	C	1.5	200	2.44817	2.45427	-0.27613	0.292684	1.296742	-3.301344
14.2	4.5		0.5	25	C. 12971	0.365 85	-0.03459	0.277439	5.216100	~0.001)40
1.5.4	4.7	C		50	C.47966	0.4 67 90	-0.00015	J. 144512	3.338415	0.0.600
1.44	40	0		105	0.69207	0.761 72	-0.00915	3.426829) . 429879	- 1.0 33340
14.5	43	5	2)	~ ~ ~	(.56658	0. 4878	0.01220	2.195122	J.195122	0.000000
146	41	5	2.1	50	J.91407	0.81402	0.00000	0.240854	0.247854	0.000000
147	4)	ř	4.1	1.00	1.15854	1.14329	0.01524	0.301829	0.304878	-0.003.144
14.4	43	5	3. 3	63	1.70110	0. 979 88	0.01979	0.137195	0.131098	3.J05.J9P
140	4)	L	8.2	100	1-03203	1.55671	J .02439	0.170732	J. 164634	0.006 394
147	47	n	9.0	200	2. 88841	2.84144	-0.04768	0.216463	3.213366	1.006.144
151	4.3	1	7. 5	25	2.48474	0.4726.	0.01105	0.290484	0.274300	3.004040
157	4.)	L	0.5	50	6.66140	6.610.73	-0.00015	0.213415	2.216463	- 3.007 144
1.4	43	r). •	100	0.91748	0.91463	0.00414	0.217439	3.774340	J 03949
1	43	F	0.5	200	1.21951	1.20427	0.01524	0.463416	3.356737	-0.003340
	4.7	C	2.0	25	3.80751	0.75268	0.01524	0.152430	3 160203	-0.009146
1.4	40	r	2.0	50	1.10976	1.10365	0.00610	0.195122	1.102223	0.101.349
157	47	F	2.0	100	1. 92134	1.453 50	0.07744	0.253049	1.251040	0.003 349
160	47		2.0	200	2.00610	1 . 5 56 95	0.00915	0.332317	5. 132117	0.000000
16.1	4		8. 5	25	1. 31098	1 . 341 46	-0.33349	0.139756	2.109610	0.000164
,,	• •	,	e.5	- C	1. # 55 74	1.82927	0.03 149	1.140244	0.131098	3.304144

ł

ANALYSIS FOR PARABOLIC CHANNELS

;

CAS	SHAPF	RET	SLOPE	FLOW	VCAL	VNCM	V_DIFF	DCAL	DNCM	C_DIFF
161	40	Έ	8.0	100	2.51220	2 . 484 76	0.02744	0.179878	0 176920	0.00000
162	47	E	8.0	200	3.28659	3.27744	0.00915	0.240854	0.234756	0.006099
163	60	A .	0.5	25	0.05541	0.04573	0.04268			0.000048
16.6	60	A.	0.5	50	0.11585	0 091 46	0.02439			
166	40		0.5	100	C. 16463	0.16768	-0.00305	•		•
167	60	Ä		200	0.29573	0.3 04 88	-0.00915	•	•	•
168	60		2.0	27	0.14329	0,121 95	0.02134	•	•	
169	4.4		2.0	-0	C. 14215	C+ 182 53	0.01220	•	•	•
170	61	A .	2.5	100		• • • • • • • • • • • • • • • • • • • •	• '	0.560976	0.542583	0.018293
171	60	<u>,</u>	2.0	100	0.30488	0.33537	-0.030488	0.560976	0.542683	0.01 8293
1.72	6 7	A.	2.0	200	6. 92744	0. 833 84		0.618902	0.618902	0. 000000
173	+C	A	8.0	25	0.23780	0.26916	-0.031341	0.610902	0.418907	C.000000
174	60	Α.	8.0	50	0.32622	0.365.05	-0.030434	•	•	•
175	67	٨	R.0	100	C.54F78	0.66976	-0.063976	0.381.098	0 347106	-0.004000
175	60	A	A.)	200	0.72988	0.96037	-0.030488	0.423780	0.439024	-0.015244
174	60	8	0.5	25	5.1 3671	0.06098	0.045732	0.451220	0.454268	-0.003049
179	67		0.5	50	0.11585	0+ 0 51 46	0.024390	0. 524390	0.506098	0.01 82 93
183	60	8	0.5	100	0.28659	0.77439	0.012195	0.582317	0.570122	0. 01 21 15
1 41	60	ä	2.0	25	0.11000	0.304 88	-0.009146	0.676829	0.664634	0.012195
102	60	8	2. 3	50	0.29878	0.27430	0.027439	0.314024	0. 120122	-0.006098
183	6.)	8	2.0	100	6.47166	0.44740	-0.000144	3.356707	0.356707	3.030000
144	60	R	2.0	200	0.19268	0.77744	0.015746	0.402437	0.399390	0.00 30 49
135	F O	н	9.0	25	0.31402	0.304 88	0.009144	3.219512	0.400401	0.031049
100	67	A	8.0	50	3.53354	0. 487 80	0.045732	0.243902	0.250000	-0.033047
190	6/1	0	8.7	100	0.45366	0. 66490	-0.015744	0.283537	0.283537	0.000000
149	~ ~ ~			200	1.37500	1.34146	0.033537	0.326220	0.332317	- 0. 036048
190	25	ć		25	C. 15463	0. 1.52 44	0.012195	0.335366	3.320122	0.015244
191	15	è		100	C.24049	0.21961	-0.009146	0.371951	0.362805	0.039146
192	60	č	0.5	200	(70100	0.45732	0.000000	0.429878	0.420732	0.004146
193	. 63	č	2.0	25	0.20573	0. 774 10	0.0000000	0.512195	0.512195	0.000000
194	6.)	c	2.0	50	6.23573	0. 276 39	0.021341	J.22561J	0.225610	0. 00 0000
105	60	C	2.0	105	C.79268	0.75268	0.000000	0.329248	0.230344	0.000000
106	60	C	2.0	1 30	0.7976R	0.792 68	0.000000	0.294732	0.295737	0.000000
197	60	с	9.0	25	C. 92744	0. 533 54	-0.006098	J.155488	0.155488	0. 000000
198	60	ç	8.0	50	C.86870	0.86850	0.003030	0.176829	0.179878	-0.033369
20.0	5), 5)	ç	8.0	100	1.76890	1.34146	0.027439	0.207317	0.237317	0.000000
201	60		8.0	200	2.00515	1.561 71	0-027439	0.253049	0.253049	0.000000
2)2	ĂĴ	0	0.5	27	0.25615	0.25915	-0.003047	0.250000	0.243902	0.036098
2.33	63	ñ	3.5	100	0.56720	0. 190 34	-0.009146	0.304878	0.295732	0.039146
234	4.5	č	2.5	25	0.44207	0.56407	-0.001049	5. 375000	0.368902	0.036099
235	60:	C	2.0	50	C. 65244	0- 64024	0.012105	0.213416	0.173740	0. 000000
216	60	C	2.0	100	0.94817	0.52588	0.018293	1.262195	0.219419	0.0000000
737	60	D	R.)	25	C. 75915	0. 116 45	0.042683	J-121951	0.118902	0.000000
200	50	C C	8.0	50	1.10365	1. (12 32	0.021341	0.149390	0.143293	0.036098
210	65	0		100	1.59755	1.54 88	0.042683	0.185976	0.179878	0.036048
211	60	¹	2.2	200	2.19207	2 . 16463	0.02 1439	0.240854	0.231 107	0.009146
212	. 62	F	2.5	50	0. 195 19	0. 10110	0.018293	0.185975	0.189074	-0.033049
213	60	Ē	0.5	100	(.76220	0.1622.3	0.048780	3.237805	0.217435	J. UJ0000
214	6.1	F	2.5	200	1.03657	1 . 021 34	0.015244	0.309878	0.304878	0.000000
715	60	F	2.)	25	C. 67073	3.661 57	0.009146	0. 141004	0.131/00	-0.033040
21.6	50	F	2.0	50	C.90244	C. 25939	0.003049	0.170732	0.167683	0.0000000
217	(0	· +	2.0	100	1.27134	1.25003	0.021341	0.216463	0.219512	-0.033049
210	6.9	C C	2.0	200	1.71341	1.692 07	0.021341	0.283537	0.283537	0.000000
22.5	6.7		3.3	2	1.12195	1.11890	0.003049	0. 394512	J.071463	0.003049
271	60	5	1.0		1. 7744	1 . 3 56 71	0.170732	3.121991	0.115954	6. 006098
212	ec.	ę.	5.0	200	2 81207	2.07317	0.047683	0.1554BA	0.146341	0.009146
223	• •	٨	2.5	25	0.07317	2. (3049	0.027437	0.201220	0.195122	0.006078
274	ເທ່	۸	0.5	50	C.094"1	0. 045 73	0.04 #780	•	í • · ·	•
2.15	5,5	۸	3.5	100	0.12405	0. 106 71	0 031241		9 · · · · · · · · · · · · · · · · · · ·	•
2.26	94:	۸	2.5	200	2.18902	0.16253	0.006008	•	1 1 1	•
220	20	Α	2.0	25	0.11893	0.09146	0.027439	1 ·	•	•
229		A .	2.2	50	C.15549	0.12155	0.033537		1. L.	· · . •
211	90		2.0	100			•	0.539146	0.509146	0.033300
231	49	Â	2.0	200	C. 21 341	0.21341	0.00000	0.509146	2.509146	0.000000
212	59	A	2.0	200	0.35344	·		0. 5731 71	0.564074	0.009146
233	93	٨	8.0	25	C. 19512	0.107 45	~0.012195	0.573171	0. 564 3.74	J. 639146
244	99	A	8.0	50	0.25410	0.243 00	0.012105	•	•	•
235	GQ	۸	8.0	100	J.35976	0.402.44	-0.012145		2 242.000	· Since
236	97	A	8.3	200	C. 63415	0. 64024	-0.006099	0.390244	0. 562 805	-0.006098
230	69	1	0.5	25	C.08537	0.03049	0.054878	0.378049	0.426829	-0.012195
230	00		0.5	50	0.11585	0.07622	0.039634	3.469512	0.466463	0.00 1042
240	97	8	0.5	100	C. 19912	0.16769	0.027439	0.536585	0.518291	0.018294
	1	: • •	0.7	200	0.17672	0.304 89	0.021341	0.603659	0.594512	0. 00 41 44
NALYSIS FUR PAPABOLIC CHANNEL	N AL	. v S 1	SFIR	PAPAB	OL LC	CHANNEL	¢			
-------------------------------	------	---------	------	-------	-------	---------	---			
-------------------------------	------	---------	------	-------	-------	---------	---			

UPS	SEAPT	RET	SLOPE	FLOW	NCAL						
		•			VUAL	VNCP	V_MFF	DCAL		0NOM	0_0166
741	09	n n	2. 0	25	C.14024	Q. C.76 72	0.064024	0.268293	1 1	0.301822	-0.033537
242	41	6	2.0	50	C.20421	0.15244	0.051829	0.326220	2	0.129268	-1.011049
24		8	2.0	100	0.34451	3 .304 MB	0.039634	3.365854	t i	0.367 105	0.0000040
244	57	- Ņ	2.0	200	0.55183	0. 133 54	0.01 82 93	0.417683		0.414636	0.003049
247	99	P	4.J	25	0.23476	0.16253	C.051829	0-189024		0.213415	-2.024300
240	4,4	в	۲.)	5.)	2.35061	3.32717	0.080488	0.228650		0.241237	-0.001040
247	94	Ŗ	8.0	100	6.57317	C. 57527	-0.006098	0.262195	- A - 1	0.250146	0.003049
248	67	8	4.0	200	0.97256	0.979 AR	0.042683	3.292683		0.292463	0.00.0040
249	99	C). 5	25	C.1C571	0.07622	0.330488	0. 120122		0.298780	0.0313()
1.0	99	· C	0.5	5 C	C. 19207	0.16769	0.024390	3. 341463	No.	0 332317	0.021341
251	0.0	· C	0.5	100	0.32012	0.32312	0.000000	0.184146		0 375000	0.009146
232	20	C	0.5	203	0.51524	C. 51829	-0.003042	0.448171		3 415076	0.037140
254	<u> </u>	ſ	2.0	25	0.19512	3.16768	0.027432	0.216463		0 21 1344	0.01/1//
254	57	C	2.0	50	0.19512	0.1676A	0.327439	3.211707		7 763966	0.000049
255	97	ſ	2.0	100	C.56C98	0. 564 62	-0.001049	0.265266		0 245 244	- 0.00-7146
256	03	С	3.0	25	0.35361	0 . 304 AR	0.045732	0.141201		0 141202	0.000000
257	9)	. C	8.0	50	0.63366	0.55451	0.009146	3.158517		0.141646	0.000000
75.1	49	· · ·	H.0	160	C. 98470	0. 575 61	0.009146	0.192073		0 1010073	- 0.00 3040
240	4	· · · ·	4.0	200	1.52134	1.50715	0.012195	1.21644.1		0 210612	0.0000000
260	50	С	2.5	25	C. 175 PA	D. 1 F2 53	- 0.001 04 9	1.277541		0.217512	-0.033049
261	. 47	r	1.5	50	0.28659	0.28943	-0.001049	3. 363106		0 26014	0.003049
21.7	0.4	D).5	100	0.4237R	0.47256	-0.748781	3 130133		2 2 3 9 1 4 1	0.031049
21.4	99	13	2.0	25	C. 31/C7	0. 21563	0-027639	0 187470		0.157073	0.001349
214	97	n	2.2	50	0.47193	0 . 472 54	0.021341	0.182027		0 1 1 2 0 2 7	0.000000
20%	47	0	2.0	100	C. 71646	0. 71 44	0.00000	3 336613		0.13/9/7	0.033300
264	0.7	0	R.D	25	C. 3* 48.1	0.467 00	0. 36 7073	0.106707	1.14	0.225510	6.000000
, 71. 1 .		U U	A.)	50	0.84145	0.77144	0.066.126	3 120340		0.1010009	0.03 30 49
24.0	nn	1)	8.7	100	1.222*6	1.21951	0.003049	0.154577	1	0.179009	0.031049
240	6.9	C	4.0	200	1.7479.)	1 . 722 54	0-021361	0.1001.01		0.135488	0.00 10 49
210	5,6	, f	3.5	25	0. 10 488	0.28963	0.115244	0.1545171		0.19/0/3	0.004.194
271	27	ſ	7.5	50	C. 4 155 1	0.411.59	0.024200	3.100171		0.158537	0.000000
212	91	- F	2.5	100	6.597*6	0.49451	0.001060	0.1981/1		0.201220	-0.03 3049
212	17	F.	7. 5	230	C. 82921	0.87317	0.0055041	0.233049		0. 2591.46	-0.004049
774	(1.)	ſ	2.0	25	6.51829	6. 66365	0.016.244	5.120225		0.3.9764	- 0.00 1049
275	100	ŕ	2.7	50	0.73171	2. 701 22	0.010744	0.112805	, 1	0.112805	0.00.000
216	11	F	2.0	100	0.91493	0.00145	0.000000	0.140744		0.143203	- 3. 00 30 49
217	20	- F	2.0	200	1. 39110	1.36720	-0.004609	0.187927		0.182127	C.007010
210	\$7	F	9.)	25	0.97501	0.048.00	-0.000093	0.731707	1.1	0.731707	0.0000000
219	99	Ĺ	4.0	50	1.21646	1.169.02	0.031430	.0 1 19768	÷ -	7.079268	0.000000
20)	6.7	ł.	4.3	100	1.67073	1.661.60	0.0774.9	0.100610		0.097561	0.023049
241	• 5	1	ч	200	2 20020	7 7001 94	0.007146	0.128047		0.125000	3. 03 1.147
		••			C +7 10 / H	4,4,802.0	0.0121951	J. 1646 14	•	0.161595	0.0010461

					ANALYSIS FOR	TRIANGULAR	CHANNELS		20159 110	
085	STAPE	464	SLOPE	FLOR	VCAL	VNDM	V_OIFF	DEAL	DNU	0_0111
163	30	1)	0.5	100	0.64324	0. 03544	-0.012195	0.54/683		-0 000.000
104	30	D	0.5	200	0.85001	0.89366	-0.003044	0	0.67.5780	-0.000140
105			2.0	2%	2 . 61 692	1.62501	-0.006348	0-277439	8.27.140	0.303344
167	55	D	2.0	>1	0.89970	0.80840	-6.004140	0.332317	10.124268	0.003449
16.0	30	0	2.0	100	1.15854	1.17578	-0.015.44	0.402419	0.399340	0.00304/
1.00		0	2.0	200	1.10000	1.50915	-0.009146	0.503044	0.496951	0.000.040
170	2				1-1+024	1.14834	-0.340783	0.274268	3.174171	0.046.004
1 7 1				50	1.56701	1.57012	-0.00.3049	0.246951	0.24 190 2	0.001040
172	50		8.0	100	2.00044	2.07517	-0.012195	0. 101829	0.298740	0.001041
173	13			200	2.01490	2.63720	-0.018295	0.581098	0.175000	0.005047
174		6		25	0.51829	0.47256	0+045732	0. 101824	0.323322	-0.318243
175	1.0	•			0.97 37 5	0 - 07073	0.003049	0.5471.95	0.375005	0.012195
176	1 1.1	2		100	0.44024	0	0.006008	0.460366	0.475610	-0.015/44
177	13	с. #	2.0	200	1.13720	1 - 15 405	U.004146	0.576220	0.541465	-0.014244
178	1.	1 E 1			0.91901	0.41463	0.000000	0.225410	0.222561	0.005141
179	3.5	Ł	2.0	100		1.21.951	-0.006044	0-2774 34	0.2174 14	0.000000
180	0.0	Ē	2.0	200	1.57012	1.57012	0.000000	0.347561	0.34 141.5	0.000044
1 9 1	35	£	8-0		1. 97 101	1.98171	-0.006098	0.435976	0.432927	0.001044
182	32	· · ·			1.1.5.0	1.04034	-6.003049	0.170732	0.158517	0.012195
183	3)	E E		100	2013744		0.306048	J . 41 U 3 3 h	0+231220	0.004146
1 8 4	3.	ē		204	1.40300	2.72466	0.0091.00	0.262195	0.25 3041	0.004140
185	ر ک		C . 5		0.04817	3.41401	-0.01/144	0.512117	0+326220	0.006098
1 5 6	۰,	Α .	2.5	50	0.10471	0.03049	0.054878	•	1	•
197	4.1	A	0.5	100	0.14730	0.0.0.9	0.076220	•		•
1.8 4	۰.	Δ.	0	200	0. 201 11	0.04573	0.091463	•	•	
109	40	A	2.0		0.1.0.1.	0.14243	0.018294	•	•	1 · ·
1.10		A	2		3.1.544	5.10471	0.034634	•	· C • · ·	•
141	• 7	4	4.0	100	0.25610	0.10417	0.10.756	· · ·	•	•
192	40	4	2.0	200	0.00010	0.19917	0.057927	•	•	•
144	4.3	4	4.0		0.25305		0.0315.37	•	•	•
194	•)		4.7		2. 3.55.57	3. 28354	-0.067073	•	•	•
1.45	43	. Α	H. 7	100	0.52134	0	0.03.07.52	•	•	•
196	• 3		A. 0		0.902.4		0.07.9268	•	•	•
1 /	•)	٦.	C.5	25	0.10160	0.03.14.0	0. / 7 / .	• • • • • • • • •	•	•
198	• •	н	C • 5	5.50	2.14.131	2.19471	0. 1. 26.4 5	0. 14/11/	0. 591 41. 1	-0.001141
111	40	13	0.4	100	0.25000	0.19417	0.0514/0		3	- 3 - 7 3 5 5 37
	• 0	14	0.5	200	0. 347.0	0. 15001	0.010545	0	0.71.1.12	0.035.57
401	د • ر	.,	2.0	1. A.	0.19707	0.10708	0.024140	0	0.8.6	0.4427.4.5 4
.0.	ر •	-1	2.0	50	3. 11048	2 . 27 . 34	6.230505	0.424654	0.4329.77	
233	•)	"	2.0	100	0.49095	0.44207	0.05.074	0.01.00.07		3.333303
204	13		2.0	200	0.79915	0.71040	U.D.A.C.H.S	0.1.1.2.404	0.3335.37	0.000000
205	1.			25	0.38110	0. 18110	0.000000	J. 104 47 4	0.604756	0.00.041
200	• ¥ 1	14	. .c	·•)	0.62805	0	0.011517	0		-0.010291
231	•,		4.3	153	0.91.017	0.88415	0.316220	D. 154145	0-01-044	-0.7/03/
200	4.7		4.0	202	1.44817	1.37195	0.07420	0.44.207.3	0	- 0 - 0 - 1 - 1 - 1
210	4.J .	C	· · ·		0.17071	0.12145	0.044780	0.444171	0.43/9/7	-0.024100
211		-	2.3	• 0	3.28659	6-24390	U. D.4. 0H 5	0.484756	496951	-1.1.4.4
21.2		-	2	151	3.44247	2.41157	0.01000	3.56.4024	0.5579.7	0.0.01.000
213			0.1	200	0.65244	0.44024	0.012195	0.001585	0.652439	0.301140
214			2.0		0.35671	0.35 31.1	0.000000	0-114024	6.310974	0.00104
215		•			0.56402	0.54878	U+U15244	U. 15 1654	J. 350110	0.041.44
216		ć		100	1.85305	3. 13044	6.015244	0.438537	0.035517	0.000000
217	4.3	č		200	1.20732	1.14902	0.018243	U. + H475h	0.4A1707	0.001044
218	4.9	č	H.c.		0.71546	0.76220	-0.045712	0 . / 2 2561		0.009140
219		č			1.10.100	1.09756	0.000000	0-253044	0- 24 5402	0.001140
220	4 J	C I	8.0	20.0	2.10613	1.5731.	0 + 2 3 2 . 37	J . 2 147 80	1. 134874	-0.006030
221	٠,	0	0.5		0.20012	2.10403	0.0 104HH	0- 354756	0.35541.4	-0.00.090
400	• >	5	0.1	50	0.40854	0.27917	0.010444	0.140410	0.559756	-0.001141
222		0		100	0.5640.1	2.564210	0.027459	0-423780	0.41/081	0.0000 90
424	۰,	a -	0.5	.00	0.76.1.0	0.76.130	0.000005	0.20.2044	3.57 1141	-0.034344
22%	• 0	. 0	2.0	25	0.54304	0.78.20	0.000000	0.09756	0 . 621951	-0.01/1/0
220	4)	n	2.0	50	2.14040	1.74696	0.000000	0.200048	0.241041	0.001.41
221	• ,	U	- • 0	100	1.01049	1. 1. 1. 1. 1. 1. 1	0.000000	0.30/42/	U. SO.4 BTH	0.003044
220	•,	U)	2.3		1.15360	1. 15671	-0.0010.44	0.371451	3. 555854	0.344344
229	40	0	4.0	25	0.49695	1-02114	-0.0000044	0.47/31/	0.454204	0.001040
230	A U 1	- 1) - 1		50	1.38415	1.17100	- 0.024340	0.149024	0-182927	0.001.998
2 3 1	• >	0	4.0	100	1.85041	1.02927	0.0211-1	0.275610	0.22.1441	7.001047
- 32	•)	D	4.2	< 3 3	2.30117	2.15280	0.010301	0.277434	0.274140	0.00104/
233	4,	ı	0.5	25	0.46541	0.39634	0.00/021	0	0.344512	0.000000
234	• •	r	0.5	10	0.1.4411	0.574.7	0.021141	0.279 190	0.298780	-0.0.4 14)
	• /	e i	0.5	103	0.741174	0.77744	0.021141	0	0.341463	0.015.44
236	•)	F.	3.4	433	1.33354	1.021.54	0.312195	32526 624	0.00000	-0.014.44
2.57	•)	1		25	0.821.22	0.19.00	0.033337	0.207517	0.20-244	0.00100
2.18	• 0		1.0	50	1.079.7	1.08212	-0.005049	0.256040	0.251044	0.0010.00
	• • •	ç	2.0	100	1.41703	1.40244	0.015244	0. 31 707 5	0.11.0.24	0.001040
240	•)		22	52.2	1.40183	1.74354	U. 31 12.15	0.310541		0.0.0000
		с. с	4.0		1.45122	1.44617	0.00 1040	0.1554.88	0.140 141	0.001144
241				50	1.93598	1. 1.075	0.015244	0.192075	0.1829.17	0.001140
2				100	2.49065	2.46951	0.021341	0 37 40 4	0.228059	0.009140
		4		200	3.11695	3.09451	0.024393	0.301824	0.272645	3.3.1140

					ANALYSIS PO	R TREANGULA	R CHANNELS		20159 THU	REDAY, MAY B.
085	514PE	HET .	SLOPE		VIAL	VADM	V_DIFF	DIAL		0_01+1
1	10	۸.,	0.5	25	0.13415	0.07622	0-057427			
	10	A	0.5	50	0.19512	0.14293	0.012195	:		•
4 .	10		0.5	100	0.34756	0.31537	0.012195	•		
5	10		2.0		0.03463	1.55.554	0.006098	•	•	
6	10	A	2.0	50	0.43241	0.24390	0.006096	• • • • • •	•	• •
7	10		2.0	100	0.69207	U	0.021341	•	•	•
	15	•	5.9	400	1.03049	1.03659		•	•	•
9	10	A		25	0.50304	0.31134	-0.030486		•	. •
				10	0.87405	0.94512	-0.067073			
12	10			100	1.34451	1.31094	0.035557	•	•	
13	1.2	ñ	0.5	200	1.24140	1-92549	0.015244	•	•	•
14	10		0.5	50	0.37805	0.19817	0.045732	0.765244	0.71 3419	0.051829
15	10		0.5		0.37805	0.35061	0.027434	0.701220	0.640244	0.000976
16	1.5		0.5	100	0.57317	4.55344	0.039634	J. 300000	0.082005	-0.030488
	1)		0.5	233	0.92012	0.00795	0.012195			0.000000
19		2	2.0	25	0.48475	0.44207	0.042585	0.539634	0.527434	0.012105
20	10		2.0	50	0.73740	0.70123	0.030545	0.016902	0.440244	-0.041141
21	15			100	1.00212	1.05183	0.030488	0.722561	0.119512	0.003049
22	10	14		. 20	0.94207	1.47342	0.006094	0.000000	0.000000	0.000000
2.1	10	18		10	1.41768	1. 15671	-0.074266	0.387145	0.399390	-0.012195
24	10			50	11768	1. 35671	0.060976	0.445122	0.469512	-0.024 340
25	13	n		103	2.30914	1.93398	0.073171	U-550A48	0.464512	-0.024 \$40
26	15	N		200	2.64817	2.71.341	-0.015244	0.049190	0.571024	-0.021341
50	10	c	0.4	2.4	0.43245	0.34634	0.010105	0.570122	0.557927	0-012104
29	1.0	2	0.5	101	0.64024	0.04024	0.00000	0.0615#5	0.047041	-0.000498
10	1.9		0.5	103	0.88720	2.84415	U. JO 3049	0.798780	0.195732	0.003.44
34	10	č	4.0	200	0.010378	1.1/3/6	0.000000	•	•	•
52	1.1	٤.	2.0		1.18548	0.02317	0.012195	0.411585	U. 40 85 17	0.001049
39	10	· 2 . •		100	1.34736	4 - 383 37	0.11.11.44	0.487805	0.441707	0.006090
34	1)	C.	2.0	200	2.00707	2.07 517	-0.006098	0.740854	0.538415	0.346.98
37	15	c			1.57317	1. 724 34	0.044780	0.298780	0.125610	0.011244
17	10	C C	4.0	50	2.10159	4 . 1 3 4 1 5	0.027439	0.362805	0. 163.854	-0.001048
38				100	2.83441	2.01517	0.001049	0.448171	0.444171	0.0000000
34	10	ŭ	0.5		1.60671	1.612#0	-0-00009#	0.560976	0.540976	0.000000
+0	12	0	0.5	50	0.75000	0.54878	0.004048	0.306048	0-512195	-0.006098
41	1.)	0	0.5	100	0. 47561	0.46017	0.003844	0.621451	0-012805	0.004144
42	1)	U)	0.5	200	1.22866	1 1 9 5 1	0.017244 0.0041A5	0.762145	0.765244	-0.303344
4 1	1.5	U I	2.0	25	1.01324	1.04134	-0.000044	0. 101000	0.445122	0.000000
	10	D	2.0	n u	1.33537	1.32622	0.004146	0.460166	0	0.012145
		0	2.0	100	1.70421	1.70732	-0.003049	0.576220	0.5/01/2	0.00.044
47	1.2			203	2.12195	2.13415	-0.212193	0.131727	0.125610	0.001.098
	.10		H . 0	22	1.92117	1.74878	0.024340	0.277434	0.274 340	0.001044
44	10	Ð		100	1.95122	1.94.207	0.010293	0.347551	0.344412	0.001049
50		D	M. 0	233	3 . 6 37 23	3.68324		0.4390/4	0.435476	0.001049
51	10	'	0.5	25	0.70654	0.76220	0.024 140	0.4237#0	0.5577927	0.000000
32	10	F	0.2	50	1.018.9	1.00410	0.012195	0.551829	0.527.19	-0.074 140
5.	10		0.5	100	1.2014	1.20324	0.018241	U	0.082427	-0.018291
55	17		2.0	200	1.70441	1-50397	6.003044	0.044512	4.868402	-0-020 543
56	1.0	¢	2.0	90	1.780.49	1.70010	0.014295	0. 31 707 3	0.120122	-0.001049
57	10	ĸ	2.0	100	2.91040		0.01/145	0. 199340	0.40.414	-0.003049
50	10	1.	2.0	200	2.71341	2.69817	0.015244	0.506094	0.306094	0.000000
54	1.1	e i		23	2.46037	2.45427	0.006048	0.240854	0.083293	0.001141
60	1.0	K	H . D	50	3-04232	3.07927	0.001044	0-301824	0.248780	0.001049
61	10		8.0	100	3.79070	3.74049	0.014293	0.38/145	0.18.1.46	0-001044
	10	"		500		•	•	0.493402	0	0.300.000
					0.10671	0.04573	0.040476	•	•	
63	25	- -	0.5	100	0.13720	0.04100	0.049732	•	•	•
56	20	A	0.5	200	0.15671	0.15061	0.003049	•	•	•
61	11	4	1.3	10	2.1.5.45	0.10491	0.201044	•	•	•
6.8	23	4	2.0	10	0.23305	0.24.540	0.004146			•
67	20	A	2.0	100	0.44247	0.44207	0.00000		:	:
70	20		2.0	200	0.10732	0.71640	-0.009146	•		:
10	12				2.33537	0.42683	-0.241463	•	•	•
13	20	2		100	0.51629	0.51154	-0.015244	•	•	
14	20	A		200	1.36545	1.14471	0.044215	•.	1 •	•
15	20	15	0.5	25	0.14919	0.10671	0.14.444	0		
76	<i>4</i>)	15	0.5	50	0.24645	0 . 21 141	0.011537	0.7224.1	J. 54 5 J41	0.033634
"	20		0.5	100	0.38415	0.36585	0.010201	0.456707	0.415 164	0.0.111.
		*	0.1	200	0.54232	0.56402	U.018795	•	•	
	23		2.0		0.30791	D. 2896 1	0.018295	0.478659	0.473410	0.005349
	20				0.49.340	0.45780	0.006098	0.536585	0.516585	0.000000

۰.

					ANALYSIS FO	R TRIANGILA	R CHANNELS		20159 140	RSUAT. MAY 5.
085	544° E	RET	SLOPE	FLOW	VCAL	VNDH	V_DIFF	DCAL	DNDH	0_01FF
82	20		2.0	200	1.10061	1.08232	0.01.0201			
63	- 20			25	0.62500	0.64024	-4-015244	0.119314	0.719512	0.000000
	2)		5.0	50	2.95732	2.95237	-0.003049	0.384146	0.009/30	-0.024393
80	23			100	1.44207	1.40244	0.039634	0.442073	0.469512	-0.024390
	20			200	2.03659	2.01220	0.024390	0.536565	0.554.629	-0.0157439
	20		0.5	25	0.28354	0.25915	0.02.390	0.500000	0.490.654	0.00019244
89	20	-		50	0.43902	0.42683	0.012195	0+557947	0.3.7075	-0.009146
90	20	č	0.5	100	0.64939	0.64024	0-009146	0.661585	0.655488	0.006098
91	20	č	2.0	400	0.89939	0.49939	0.000000	0.794683	0.795752	-0.003049
92	23	ĩ	2.0	40	0.50098	0.57927	-0.018295	0.356707	0.353659	0.003049
93	20	c	2.0	100	1.20427		-0.006098	0.414634	2.438537	0.005998
94	20	с	2.0	200	1.61545	1-60061	0.000000	0.484756	0.484756	0.000000
95	20	ũ		25	1.09756	1.12405	0.013244	0.591463	0.591463	0.000000
96	2)	С	8.0	50	1.59756	1.58537	0.01/100	0.253049	0-262195	-0.009145
97	20	C		100	2.17988	2.17985	0.00000	0.454786	0.304478	-0.006098
98	20	C		200	2.86890	2.06585	0.001049	0.4441.22	0.387195	-0.027439
	20	0	0.5	25	0.40549	0.39634	0.009146	0.417443	0.474220	-0.005098
100	23	D	0.5	57	0.56432	0.54878	0.215244	0.512145	0.503049	-0.004146
102	23	D	0.5	100	0.75915	0.76220	-0.003049	0.609756	0.621451	-0-01/100
103	20		0.8	200	0.98475	0.97561	0.009146	0.759146	0.771341	-0.012195
104	20		2.0	25	0.74390	0.76220	-0.010293	0.307927	0.307927	0.000000
105	23	š	2.0	50	1.32744	1.02134	0.306098	0.371951	0.358932	0.003044
106	20	Ď	2.0	100	1.35061	1.35671	-0.006098	0.457317	0.457317	0.000000
107	20	ő	8.0	200	1.71951	1.72256	-0.003049	0.573171	0.588415	-0.015244
108	20	ő	8.0	40	1.37805	1.00244	-0.02+390	0.225610	0 - 22 2561	0.003049
109	20			100	1.04451	1.82927	0.215244	0 . 2774 39	J. 274 340	0.003349
110	20	D	8.0	200	2.97846	2.36280	0.012195	0.344512	0.344512	0.000000
111	20	E	0.5	25	0.60041	2.90/80	-0.009146	0.435976	0.448171	-0.012195
112	20	E	0.5	50	0.79573	0.348/8	0.051829	0.341463	0-359756	-0.018293
113	2)	E	0.5	100	1.01049	0.00420	0. 233537	0.439024	0-423732	0.010293
114	20	ε	0.5	200	1.29573	1.25000	0.034034	0.524390	0.542683	-0.018293
115	20	٤.	2.0	25	1.07622	1.03859	0.030634	0.001785	0.679878	-0.018293
116	23	E	2.0	50	1.41463	1.37195	0.042643	0.276098	0.256098	0.000000
117	2)	ε	2.7	50	1.41463	1.37195	0.042643	0.317075	3.31/0/3	0.0000000
118	20	E.	2.0	1.00	1.79573	1.73780	0.057947	0.396341	0.231707	0.006098
119	20	ε	2.0	200	2.23476	2.17988	0.054878	0.501049	0.596341	0.000000
120	20	Ĕ	8.0	25	1.92988	1.85975	0.070122	0.192073	0.182927	0.000000
1 2 2	23			52	2.48171	2.43854	0.273171			0.007140
123	20		8.0	100	3.10976	3-01829	0.091463	0.301829	0.292683	0.009146
124	30	e	0.0	200	3.63232	3. 82927	4.003049	0.384146	0.381098	0.003049
125	33	-	1.5	43	0.09146	0+03049	0.060976	•	•	•
126	33	Ã	0.5	100		2.23242	0.276223	•	•	•
127	30	Ä	0.5	200	0.26820	0.10671	0.051829	•	•	· •
128	30	· .	2.0	25	0.10159	0.15244	0.024390	•	•	•
129	30	A .	2.0	25	2.16159	3.15244	0.009146	•	•	•
1 30	30	•	2.0	50	0.21037	0.15244	0.057927	•	•	•
131	.30	A	2.0	100	0.30793	0.30.86	0.003049		•	• .
132	30	•	2.0	200	0.54573	0.55354	0.012195		•	•
1 3 3	30	•	.0	25	0.24354	0.36585	-0.382317			•
	33	•		50	0.39024	0.39634	-0.006098	•		
1 36	30	2	0.0	100	0.67988	0.64024	0.039634	•		
1 17	30			200	1.04232	1.03659	0.045732	•	•	
136	15		0.5	23	0.11890	0.06098	0.057927	0.631098	0.639756	0.021 341
139	32		0.5		0.10.00	0.15244	0.033537	0.673780	0.704268	-0.030488
140	30		0.5	200	0.00103	0.27439	0.027439	0.792683	0.762195	0.030488
141	30		2.0	25	0.22866	0.000002	0.000000	0.905488	0.884140	0-021341
142	37	н	2.0	50	0.30110	1.35585	0.000000	0.454268	0-448171	0.006098
143	30	. 15	2.0	100	0.58841	0.56602	0.024340	0.500000	0.500000	0.000000
144	30	+	2.0	200	0.89024	0.88415	U. 0000 98	0.652430	0.504024	0.003049
145	30	.8	8.0	25	0.47256	0.47256	0.000000	0.317071	0.649390	0-003049
146	30	8	8.D	50	0.75613	0.73171	6.024393	0.353659	0.338413	-0.021341
147	30	в	0.0	100	1.14634	1.09756	0.040780	0.405488	0.426820	+0.0-1144
140	30		8.0	200	1.67988	1.63110	0.048780	0.472561	0.496951	-0.024 190
150	30	5	0.5	25	0.21646	0.18293	0.033587	0.469512	0.454268	0.015244
151	31	č	0.5	50	0.34146	2.32012	0.021341	D.512195	1.524590	-0.012195
152	33		0.5	200	0.52439	0.50305	0.021341	0.609610	0.594512	0.006098
153	33	č	2.3	200	3.41694	0.74695	0.003049	0.710366	0.734268	0.005.98
154	30	č	2-0	60	0.67776	0.47732	-0.021341	0.329268	0.326220	0.003049
155	30	č	2.0	100	0.000.45	0.0000	0.003049	0.375000	0 . 371451	0.003049
156	30	5	2.0	200	1.17195	1.37194	0.000000	0+435976	0.435976	0.000000
1 57	3)	2	9.0	25	2.85471	3.91463	-0-357627	0.324390	0. 521341	0.003049
1 58	30	c	8.0	50	1.29474	1.29573	0.001040	0.27.36	0.240854	-0.006098
159	30	<u>د</u>		100	1.03537	1.81402	0.021341	0.320122	0.124220	0.012195
160	30	0	0.0	200	2.46646	2.43902	0.027439	0.390244	0.396141	-0.000.098
101	33	2	0.5	25	3.33557	3.33.88	0.0304#8	0.375000	3.38.146	-0.003145
104	30	D	0.5	50	0.46341	0.45732	0.006098	0.457317	0.45.268	0.003044

÷.

ANALYS IS FOR TRAPEZOICAL CHANNELS

						OF STOPPOOL				
ra s -	SHAPF	RET	SLOPE	FLOW	VCAL	VNCH	V_DIFF	DCAL	DNOM	D_DIFF
1	10	٨	0.4	100	C.26829	0.35061	-0.08212			
2	10	A	2.0	100	0.59451	0.62500	-0.03049	•	•	•
	10	A	8.0	100	1.12500	1. 6610	0.11890		• •	•
	10	^ ^	0.4	500	G.71951	0. 832 32	-0.11280			:
	10		2.5	500	1.45122	1.46341	-0.01220	•		
2	10		H.0	500	2.58841	2.40854	0.17988		•	
A	ič	Ä	2.0	1000	0.57780	1.115.85	-0.12805	•	•	• .
9	10	Ä	8.0	1000	3 30415	1 \$ 55427	-0.02439	•	· · •	•
10	20		2.4	1000	0.16306	1.112.00	0.27134	•	1. •	•
11	20	Ā	2.0	100	5 83040	3 61 6 70	-0.04268	•	•	•
12	20	Â.	8.0	100	0.05122	0.01529	0.01720	• .	•	•
13	20	A	0.4	500	0.7.1122	0 77744	0.10671	•	•	•
14	20	A	2.2	900	1. 36 720	1. 3 49 76	~0.07744	•	· .•	•
15	20	۸	8.0	500	2.42073	2.15512	0.22561	•	•	.•
16	20	Α	0.4	1000	C. 97256	1.05793	-0-08537	•	· · · · ·	•
17	20	Α	2.7	1000	1.60110	1. 245 65	0.01924		•	.
18	- 25	. A	8.0	1000	3.25000	3.00305	0.24695	:		
1.7	30	A	0.4	100	0.22256	0.25915	-0.03659		· . •	•
20	10	A	2.0	100	0.46341	0.45732	0.00610	•		
22	10	-	8.5	100	0.77878	0.74085	0.05793	•		
23	10		0.4	500	C.67683	0. 731 71	-0.05488	•	•	
24	3.0	~		700	1.30488	1.28963	0.01574	0.783537	0.786585	-0.003049
25	10	~	8.0	500	2.22561	2.07317	0.15244	0.518293	3.521341	-0.003049
26	10	ñ	2.0	1,120	6.455122	1.021 34	-0.07012	•	•	
"	13	Â	6.)	1000	1.11098	1.79878	0.01220	•	•	•
23	40		0.4	100	0 20122	2 90244	0.17378	•	•	•
24	40	٨	2.3	1.00	3.40540	3.44307	-0.02744	•	•	•
3-)	4.3	Α	8.3	100	6. 48263	0.4707	-0.0.0.79	•	•	•
31	4 C	٨	0.4	500	0.64329	0. (16.83	-0.01720	•	•	•
· • 7	40	A	2. 3	500	1.21951	1.21.037	0.00015	A		•
3.5	40	Α	8.0	500	2.03659	1.56646	0.07012	0.663616	0.713415	-0.006098
34	40	۸	0.4	1 000	0.92378	0.98171	-0.05793	0.403419	0.40.9512	-0.000098
35	40	Α	2.0	1000	1.72866	1.73783	-0.00215	•	•	•
16	41)	Α	8.0	1000	2.84720	2.86488	0.08232	:	•	•
37	40	^	2.0	20	0.1798B	0.179 88	0.00000	0.231707	0.2378.35	-0-006304
14	10	P	0.4	20	C.15744	0.182 53	-C.03049	0.567073	0.56/073	0.000000
4.2	18		2.0	20	0.32622	0.23537	-0.00915	0.341463	0.347561	-0-006.048
41	12	н	9.0	20	0.60061	3. 524 39	0.07677	0.216463	2.234756	-0.018293
47	10	0	0.4	100	C.45122	0. : 33 54	-0.08232	0.801829	0.820122	-0-018243
41	13		2.0	1.00	0.73291	0.94512	-0.01220	0.503044	0.509146	-0.006098
44	1.5			100	1.68578	1.50915	0.17683	0.332317	0.329264	0.003049
4.5	1.5	15	2.0	500	1.024 19	1.12865	-0.10366	•	•	•
46	1.5	ř	8.0	500	1.441/1	1.98783	-0.00610	•		
47	10	'n	0.4	1000	1 33637	4. 201 22	0.24695	•	•	•
14.38	12	8	2.0	1000	2 54740	1.44707	-0.10671	•	•	•
49	10	P	8.0	1000	4.37865	6 ((6 2)	-0.03610	•	•	•
50		15	0.4	20	0.13110	0.14320	-0.01220	· · · · · · · · ·		•
51	27	8	2.)	23	2.25610	7. 25915	-0.00770	0.200/00	0.481737	0.003 34 4
5.7	2.7	в	F.)	20	0.4190.	0.41463	0.02639	0.170470	0.11(0.20	-0.006048
5.4	20	6	0.4	100	0.41463	0 . 457 32	-0.04268	0.673780	3 474920	0.003049
54	20	fi fi	2.0	100	C.81402	0. 81058	0.00305	0.408537	3-414634	-0.001049
1.5	20	P	8.0	100	1.39939	1.301 63	0.09756	0.265264	0.265246	0.000000
54	20	8	0.4	500	0.99390	1.051.83	-0.05793		0.201244	0.000000
57	20	н	2.0	503	1.88720	1. 459 76	0.32744	0.719512	0.71051	0.000000
.58	? 0	0	8.0	500	3.20732	2.5.8780	0.21951	0.487805	0.675610	0.0000000
. 49	23	e	3.4	1000	1.31402	1.38720	-0.07317		0.473910	0.012195
60	20	μ	2.0	1000	2.46551	2. 44512	0.02439		•	•
61	20	P	8.0	1000	4.18293	3. 502.44	C.28049			•
64	10	n n	0.4	20	0.11585	0.112.80	0.00305	0.426829	3.435976	-0-009146
	1.)		2.0	20	C. 21037	C. 2 C1 22	0.00915	0.256098	0.259146	-0.003049
65	30		8.9	20	0.34146	0.33537	0.004.10	0.164634	0.1 554 88	0.009146
66	11	9	2.0	105	6.37195	J. 3 96 34	-0.02439	0.597561	0.597561	0.0000000
1.7	30	i i i i i i i i i i i i i i i i i i i	8-0	100	C. 70127	0.76732	-0.00610	0.356707	0.159756	-0.003049
1,0	22	8	6.4	500	0.05122	1.13770	0.02744	0.231707	0.2317)/	0.000000
47	30	0	2.0	500	1.74820	0.11011	-0.04573		•	•
7 1	30	ő	8. 0	500	2.91600	2 82317	0.00915	0-621951	0.628049	-0.005098
71	10	0	0 - 4	1000	1. 28040	1. 129 27	-0.011280	0.414634	0.411585	1.003041
72	30	B	2.0	1000	2.36890	2 34144	-0.07183	· · · · · ·		•
12	30	B	H. J	1000	1.94207	3.75.000	0.19207	0.047561	0.847561	0.000000
14	40	9	0.4	20	C. 10366	0.10061	0.00305	0.375000	0.004024	0.009144
75	40	8	8.0	23	0.28659	0.304 88	-0.01829	0.152410	0.163303	-0.027439
16	40	B	0.4	100	G. 33941	0.365 85	-0.37144	0.545732	0.545732	0.000000
11	40	. P	2.0	100	0.61290	0. 14024	-0.02744	0.329268	0.32426A	0.000000
10	40	0	5.0	100	0.79085	1.036 59	-0.04573	0.213415	0.20731/	0.006098
80	40	H	0.4	500	C. 90244	0. 54512	-0.04268	0.896341	0.902439	-0.00609#
	40		·.0	500	1.64634	1.46768	=0.02136			

ANALYSIS FOR TRAPEZOICAL CHANNELS

CHS	SHAPE	RET	SLOPE	FLOW	VCAL	VNCP		05.41	0	
*1	45	B	8.0	500	2.68598	2 . 6 73 78	0.01220	O SERORA	UNUM	C_DIFT
A7	40	P	0.4	1000	1.23780	1.28049	-0.04268	0.949074	0.302034	0.000000
83	40	- H	2.0	1000	2.25610	7 . 256 10	0.00000	0 783040	0 74 31 08	••••••
84	40	N	8.0	1000	3.67707	3.55756	0.09451	0.503049	0. 503040	-0.009146
	10	Ċ	0.4	20	0.214 39	G. 32012	-0.04573	0.387195	0.365854	0 -0 21 34 1
85	10	C	2.0	20	0.54878	0.57317	-0.02439	0.231707	3.228659	0.003044
	10	C	8.3	20	C. 56 14 1	0. 25939	0.06402	0.149390	0.161585	-0.012195
89	10	1 <u>2</u>	0.4	100	G.71646	0.75878	-0.08232	0.597561	0.600610	-0.003044
9.5	10		2.0	100	1. 19129	1.40854	-0.01524	0.381098	0.381098	0.000000
91	10	i i i	3.0	100	2.39939	2.21744	0.12195	0.256098	0.259144	-0.003044
42	10		2 0		1.18115	1.49190	-0.11280	•	•	•
03	13	č	9.0	800	6 61180	2 . 67 8 05	-0.0.1154	0.731707	3.131707	0.000000
04	10	č.	3.4	1 3 2 2	1.77171	1. 442.60	0.24085	0.521341	0.496951	0.024 390
.75	10	č	2.0	1000	3.22541	3 34830	-0.14110	•	•	•
6.6	20	Ċ.	2.4	2.3	0.22286	0 234 14	-0.04268		• • • • • • • • • • • • • • • • • • • •	•
.)7	7)	C	2.0	20	6.41463	0.41159	0.001775	0.314024	0.301829	0.012195
• 1	20	٢	8.0	20	0.68293	0.68598	~0.00305	0.189024	0.185976	0.003049
	°C	c	3.4	100	6.64739	0.676 83	-0 -02744	0.121451	0.131099	-0.009146
100	20	C.	2.0	100	1.20427	1.15512	0-00915	0. 204740	0 206 712	0.01/195
101	°C	c	8.0	103	1.79045	1 .923 73	0.07012	0.105122	1 - 2 - 2 - 1 - 1 2	0.001049
107	20	с	0.4	500	1.33#41	1. 39329	-0.05488		3.704768	-0.034146
1.5 1	2.1	ç	2.0	500	2.460 ?/	2.4-427	0.00610	0.594512	0.585366	0.000144
114	20	c	9.0	400	4.00941	3 . 702 44	0.18598	0.435488	0.399393	0.004145
1.14	20	C	0.4	1000	1.65 #17	1. 77744	-0.07927			0.000076
107	. 20	c	2.0	1000	2.12195	3.14024	-0.01829	0.823171	3.H2926A	-0.005098
1.79	20	Ś	A. 0	1000		•	•	0.5/3171	3.564024	0.009144
1.0				. ?0	C.19251	C.11253	0.00000	0.296585	0.265244	0 -0 21 34 1
11.5	2)	ž		20	0.32927	0.326 22	0.00305	0.170732	0.164634	0.006098
111	10	÷		- 20	C. 92744	0. 5 24 39	0.00305	0.109756	0.112805	-0.003049
112	1.			100	C. 57622	C. 55451	-0.018293	0.420732	0.402439	0.01 82 93
11.1		ć		100	1.03657	1.082 32	-0.045732	0.256098	3.251049	0.033047
114	13	ć	0.4	600	1 31344	1.00/08	0.303049	0.167683	0.173780	- 0. 00 60 48
114	10	č	2.1	50.3	2 20103	1.30103	-0.024390	0.798780	0.195132	0.00 30 47
115	1)	č	9:0	500	3 74366	2 . 501 85	0.000000	J. 506098	2.500000	0.006098
117	3.)	č	0.4	1000	1.64930	1.463(7	-0.062317	0.118415	0.341463	- 0. 00 30 49
119	1)	r	2.5	1305	7.28476	2.08780	-0.047681		• • • • • • • •	•
110	23	С	R.0	1000		2.00000	-0.003044	0./3/31/	0.713415	- 0. 106074
120	4 C	r	0.4	2)	0.14244	0.13415	0.018201	0.481707	0.484756	-0.003049
1.74	40	C		20	0.26A20	0.24101	0.126301	0 1805 17	0.253347	0.012195
122	41	r	8.0	20	C. 47378	C. 346 34	0.027449	1.103659	0.104701	0.00 1041
123	4 (*	c	3.4	100	3.51524	0.51829	-0.003049	0.181.000	0 364 1.17	-0.00 3044
123	40	C .	2. 3	100	C. 9C744	3.92371	-0 -018293	0.231707	0.225610	J. J2 4 591
125	4)	ſ	3.3	100	1.47578	1.47866	-0.042683	0.149340	0.158517	-0.000000
126	4 3	С).4	507	1.21037	1.21951	-0.004145	0.710366	0.698171	0.012105
1.27	4)	С	2.0	500	7.14120	2.14937	-0.006048	0.445122	0.439024	0.00600
12.4	. 40	ſ	1.0	500	2.41291	3.42980	0.003049	0.295732	0.298/80	-0.031069
111	4 7	Ċ,	1.4	1000	1.59451	1.615 95	-0.071341	•	•	
1 2 1	45		2.7	1000	2.83441	2. 15061	-0.012195	0.625000	U.628049	-0.00 30 49
10	1		n.0	1000	4.57977	4. 42744	0.051820	0.470132	J. 42787A	- 0. 009146
111	15		2.3	. 20	C. 17405	0.40744	-0.024390	0.307927	0.298780	0.009140
1 14	1.5	, r		20	9.70732	0.71646	-0.009146	0.1920/3	0.185976	0.004098
115	15	č	0.4	100	6 78040	1.14939	0.347683	3.12500.)	0.129040	- 0. 00 3044
114	12	č	2.0	100	1.815.24	0. 215(0	-0.094512	0.551829	0.567773	-0.015244
1.17	10	ñ	8.0	100	2.54970	2.45717	-0.018293	0.359756	0.356107	0.033049
1.48	1.0	С	0.4	-500	1.40244	1 . 4 76 44	- 0.091463	0.246951	0.241702	3.00 10 40
139	10	n	2.0	500	2.59146	2 . 606 71	-0.0167/0	· · · · · · · · ·	• • • • • • • •	•
14)	1)	0	A. 3	500	4.362.80	4 . 164 / 3	0.194171	0.734790	0.731707	3. 33 30 47
144	10	0	0.4	1000	1.71646	1 1058	-0.094512	0.924340	0.446451	0.02744
142	10	Ċ	2.0	1000	3.16463	3 . 1 82 93	-0.018293	•	•	•
143	2)	n	0.4	20	C. 11402	C. 32527	-0.015244	0.237805	0 228414	
144	20	C	2.0	20	0.55489	0.97927	-0.024390	0.146341	0.140244	0.012195
145	20	0	9.0	20	C.P#720	0.89939	-0.012195	0.094512	0.140744	0.000000
146	2)	C	2.4	100	C.77780	C. 743 50	-0.006098	0.439024	0.432021	0.00304
147	2)	D	2.0	130	1.33232	1.31707	0.015744	0.274393	0.271 141	0.111046
140		n n	6.2	100	2.16159	2.10361	0.360 976	0.182927	0.189024	- 0.00 40 40
150	2.1	0	7.4	500	1.36280	1.756 34	-0.033537	•	•	•
151	20	c		507	2.47.756	2.46951	0.003049	J.594512	0.585366	0. 039140
155	20		0.4	1.000	4.07012	1. 526 73	0.149390	0.408537	0.399320	0.009140
151	25	'n	2.0	1000	1+58907	1.74350	-0.054978	•	•	•
154	20	Ċ	8.0	1000	3.07117	1.064 32	0.309146	0.832317	0.82926H	3.00 3349
1.5	30	ő	2.4	2.3	0.26221	2.25015		0.579268	0.564.024	0.015244
150	37	ñ	2.0	20	C. 45427	0.44051	0.001049	0.210366	0.192073	0. 01 82 93
157	30	D	A.3	20	0.71017	0. 141 60	-0.0334744	0.128049	0.118902	0.009146
158	30	C	.) .4	1 00	0.66769	0.67071	-0.03040	0.082317	0.085 366	-0.03 3049
159	20	D	2.3	100	1.16768	1.17178	~0.006.00	0.375000	0.359756	0. 31 52 44
11.5	3 C	0	8.0	100	1.85671	1.85024	-0.01161/	0.270079	0.155510	0.003049
								V. 1 22 4 14	0.17873/	-0.036099

ANALYSIS FOR TRAPEZOIDAL CHANNELS SIDE SLOPE=611

nns	SHAPE	REP	SLOPE	FLCW	VCAL	VNCM	V_DIFF.	DCAL	DNOM	0.0164
151	30	D	3.4	500	1.30793	1 . 32012	-0.012105			
162	30	C	2.0	500	2. 326 22	2. 334 32	-0.312195	0.703537	0.795732	-0.012195
163	30	D	8.0	5 30	3-75612	1.71081	0.000000	0.500000	0.500000	0.000000
164	30	0	0.4	1000	1.64636	1 . 6 70 73	-0.034300	0.338415	0.341463	-0.003049
165	30	D	2.0	1000	2.94817	2.985 69	-0.024 100		•	•
16.6	30	C	8.0	1000			0.012195	0.716463	0.713415	0.00 3049
167	40	Ö Ö	3.4	20	0.22284			0.496751	0.484750	0.012195
168	4.7	n	2.0	20	6 39110	0.21141	0.009146	0.189024	0.170/32	0.018293
169	40	13	8.0	2.0	0.50110	0. 481 10	0.000000	0.115854	0.106707	0.037146
170	40	Ď	0.4	100	0.40041	0.02.00	-0.030488	0.016220	0.076220	0. 00 00 00
171	40	Č.	2.0	100	0.00001	0.00365	-0.003049	0.317317	0.317073	0.015244
172	40	ñ		100	1.03963	1.02753	-0.018293	0.204268	0.1981/1	0.006098
173	40	Ď.	0.4	500	1.02005	1.689.02	-0.060976	0.134146	0.137195	-0.034049
174	40	Č	2.0	500.	1.24097	1.24350	0.003049	0.695122	0.698171	-0.003042
175	40	ő	ê	500	2.17588	2.12558	-0.006098	0.439024	0.439024	0.000000
176	40		0.4	1000	2. 4/276	3.496 95	-0.324390	0.292683	0.298780	- 0- 006008
1 7 7	40	0		1000	1. 99451	1. 551.46	0.003049	•	•	
178	40	ő		1000	2.481402	7.78963	0.024390	0.631098	0.628049	0.033049
179	10			1000	4. 521 34	4 .4 96 75	0.024370	0.423780	0.429878	- 0.006000
180	1.5	- <u>-</u>		20	C.54768	0.51317	-0.030488	0.234756	0.225610	0
181	10			20	0.77561	1.021 34	-0.045737	0.146341	0.140244	0.006004
14.2	10		P.0	20	1.60671	1. 675 (0	-0.018293	0.097561	0.097561	0.000000
193	15	1	1.4	100	1.05707	1.115.65	~0.048780	0.457317	0.469512	-0.012105
1 11 4	10		2.0	100	1.56037	1.550 65	-0.030488	0.278780	0.295732	0.001040
106	10		8.0	150	3.25000	3.13415	0.115854	0.234268	0.204268	0.003049
104	10	!	3.4	500	1.76829	1.05976	-0.391463	-		0.000000
107	17	L.	2.0	500	3.24629	3.231 71	0.036585	0.634146	0.631000	
100	10		9.0	500	•	•		0.451220	A 432021	0.003044
100	15	F	2.4	1000	2.16463	2.25610	-0.391463		0	0.018/93
189	10	F	2.0	1000	3.96951	3. 56751	0.000000		•	•
1.15	20	F	3.4	20	0.45122	0.45732	-0.006008	0.174700	· · · · · · · · ·	
141	20	r	2.0	20	C. 77744	0.74878	~0-021341	0.100754	0.104034	0. 00 91 46
1.95	20	E	8.0	20	1.21951	1.26049	-0.060974	0.109790	0.103659	0.006099
103	20	1	2.4	100	0.96551	0.96341	0.036009	0.070122	0.0/11/1	-0.031049
174	20	(2.0	100	1.71341	1. 76732	0.006098	0.103079	0.344512	0.034146
195	20	£	9.0	100	2.73780	2.73780	0.000000	0.272561	0.216463	0.006098
175	20	F.	0.4	530	1.72256	1.753.05	-0.033488	0.149390	0.149190	0. 000000
197	.")	ł	2.0	4C0	3.05451	3. 07927	-0.0353444	0.768293	0.786586	-0.018293
108	20	F	8.0	500			0.019744	0.703049	0.496951	0.006098
100	20	F	2.4	1000	2.12195	2, 170 22	- 0 04 0 7 0 0	0.344712	0.338415	0.006098
20.1	20	E	2.0	1305	3. 83232	3. 81068	-0.048780	• • • • • • •	•	•
201	20	r	٩.0	1000			0.021.341	0. /1 341 5	0.716463	-0.033049
2)2	13	£	0.4	20	6.38415	145.85		J.4939J2	0.484756	0.009146
203	40	£ .	2.0	20	1.4636	1 476 43	0.014/93	0.146341	0.134146	0.012195
204	30	F	8.0	20	1.00000	1 646.69	-0.010484	0.071463	0.042 31 7	0. 009146
205	3.0	F	0.4	100	C 44000	1.000.00	-0.060975	0.057927	0.042684	0.015744
226	30	F	2.0	100	1 50 100	0. 275 /6	0.007146	0.29878C	0.780488	0.01 82 93
237	33	r	3.0	100	1.10.000	1.76715	-0.309146	J.182927	0.176829	0. 006098
205	30	i i	0.6	500	ו 170/1	7. 473 18	-0.067073	0.121951	0.125000	-0.033049
2.77	30	ŕ	2.0	500	1 +0 4034	1 .040 24	0.006098	0.658537	0.664634	-0.006048
210	10	r	8.0	400	2. 11. 1. 2. 4	7 . E /5 00	0.015244	0.420132	0.417683	0.00 1049
211	1.		0.4	1000	4.02803	4. 47317	C. 054878	0.283537	0.283537	0.000000
212	43	È	2 0	10.00	7.05793	2.07317	-0.015244			
213	30			1000	1.09340	1.62805	0.027439	0.606707	0.603659	0.00 1044
214	40		3.4	1000		•	•	0.411585	0.411585	6.010000
215	40		2 0	20	0.11212	0.32012	0.317195	0.131098	0.115454	0.015244
21.6	40	2	(· · · ·	20	C. 5548A	0. 15/93	-0.003049	0.079268	0.0/31/1	0.00000
217	40		1.9	20	0.65671	7.1179 39	-0.042683	0.351829	0.039634	0.012105
21.4	4.)		0. 4	100	C. /8650	0.762 70	0.024370	0.262195	9.243902	0.018203
210	40	. L	7.0	ICO	1.73577	1.34796	-0.012195	0.161585	0.152434	0.009144
223	40		4.0	1:00	7.07622	7.15854	-0.082317	0.106707	0.091441	0.016244
663	40	· · ·	C.4	500	1.56098	1. 13659	0.024390	0.579268	0.505344	-0.019/44
2.24	40	. 1	2.0	100	2.70122	2.452.67	0.009144	0 346084	0.00000	-0.000098
222	4.0	r	4.0	500	4.26829	4 .2 5049	-0.012105	0.307874	0.101854	0.000000
223	40	C	3.4	1000	1.98476	1.96951	0.017199	0.243402	0.255049	-0.039146
274	40	ŧ	2.0	1000	3.472=6	3.44444	0.004000	0.829268	0.847561	- 0.018293
225	4 C	F	9.0	1 333			0.000048	0.530488	0.530488	0.000000
									1. 1. 7 10.	-0.01/000

.

ANALYSIS FOR TRAPEZOI DAL CHANNELS

					51	OF STONIAL				
(BS	SHAPE	RET	SLOPE	FLOW	VCAL	VNCM	V_DIFF	DCAL	DNCM	
1	10	۵	0.4	1.00	0.36651	0-439.02	-0.00451			0_1111
2	10	A	2.0	100	0.73171	0. 11764	-0.04573	•	•	•
3	10	A	8.0	100	1.33537	1.271.34	0.06402	•	•	•
2	10	A	0.4	500	0.89671	1.00610	-0.14939		•	•
2	10	A	2.0	500	1.68253	1. 16929	-0.08537		:	•
7	10	A	8.0	500	2.95122	2.85061	0.10061	•	•	
8	iž	~	2.0	1000	1.14034	1.29573	-0.14939	•	•	•
G	10	Å	8.0	1000	2.20477	7.71134	-0.06767	•	•	•
10	50	A	0.4	100	C.31098	0.35061	-0.13963	•	•	•
11	20	Α	2.0	1.70	0.61890	0. (69 16	0.00915	:	•	•
12	20	۸	3.4	5 00	0.82317	0.899 30	-0.01622	:	:	•
1,	20	<u>^</u>	2.0	•00	1.58232	1. 18537	-0.00305	•		•
15	2.0	A .	8.0	500	2.67.17	7.56402	0.13110	•	•	
16	20	Ā	2.0	1000	2.12800	1.70732	-0.08537	•	•	
17	20	۸	8.0	1000	3-60366	3-42071	0.10203	•	•	•
LA	20	٨	0.4	100	0.77437	0.28963	-0.01526	•	•	•
19	۹()	4	2.0	100	0.924 19	0. *0915	0.01524	:	•	•
25	25	<u>^</u>	9.0	100	0.87195	0.844 51	0.07144			•
22	3.)	<u>^</u>	2.4	.00	C. 78C49	C. 82317	-0.04268		•	
21	3.0	Â		500	1.41732	1.44207	0.01524	0.789634	J. 7774 34	0.0121951
24	10	Â	0.4	1000	1.08737	6.34140	0.07427	0.521341	0.524390	- 0.003 J4BH
25	10	٨	2.0	1000	2 .0 12 20	2.000.00	0.01220	•	• •	•
26	• 3	Α	H. 0	1000	3.34756	3.231 71	0.11585	•	•	•
21	40	Δ .	0.4	100	0.24085	C. 2"3(5	-0.01220		•	•
20	40	A	2.0	100	0.44512	3.42988	0.01524		:	
55	40	~	4.5	100	C. 72864	6. 722 56	0.00610	• . •	•	
31	40	Â	2.0	6.0.0	1.33837	0.16720	-0.03049	• • • • • • • • •	•	•
32	4)	٨	0.0	• 00	2.17683	7.14744	0.03430	0.704268	0.701220	0.0030488
33	40	۸	0.4	1000	1.03963	1 -07012	-0-03049	0.403417	0.472561	-0.0091463
14	4)	^	2.0	1000	1.89329	1.89634	-0.00.305	•	•	•
14	4.5	A	4.0	1 10:0	3.09746	3. 654 FB	0.04268	•		
17	10	р (Д		2.)	0.19707	0.22866	-0.03659	0.560976	0.551829	0.0091463
19	10		· · · ·	20	C. 19024	6. 402 44	-0.01220	0.329268	0.332317	-0.0030488
419	10	6	2.4	100	0.03902	6.4349	0.03354	0.210366	0.210366	0.000.0000
4)	i	ŋ	2.0	100	1.79156	1.1(62)	-0.00915	0.820122	0.817073	0.3013448
41	10	h	3.0	1.12	1.91764	1.77439	0.14129	0.135366	0.105048	0.0030488
4.7	1)	р	:). 4	500	1.17584	1.295 /3	-0.11585		•	0.0000000
44	10	р 0	2.0	500	2.25000	2.21144	-0.02144		•	
45	1	6	1.4	1000	3.85671	3.65854	0.19817	•	•	•
41.	1.0	p.		1007	2.85671	2.66110	-0.11280	•	•	•
41	1.2	н	9.0	1.07	4.96990	4 . 5 7 3 1 7	0.20573	•	•	•
18	.,1	n).4	20	C.15244	C. 17073	-0.014/9	0.460366	0.460366	0.00000
40		15	2.0	2.1	0.28659	0.31398	-0.02439	0.271341	0.271441	0.0000000
51			P)	20	0.47561	0.51829	-0.0476A	0.176829	0.167683	0.0091463
	23	15	1.4	1.00	3.48476	0.51820	-9.03154	0.664634	0.661585	J. 0 13 34 9
•. •	2			100	0.91465	6. 514 63	0.00000	0.402439	0.405488	-0.003049
54	2;	11	7.4	500	1.13110	1.15854	-0.22766	0.259146	0.259144	0.000000
57,	23	P.	· • 0	• 60	2.09156	2. (5755	C. 00000	0. 76300 3	0 1336.41	
56		**	1.0	40.1	1.49390	3.36890	0.12500	0.500000	0.4878.35	0.021341
6.8	23	11	7.4	1000	1.47866	1.54573	-0.31.707	•	•	
55			8.0	1000	2.73787	2.71951	0.01829	•	• 5	•
5)	1)	Ä).4	20	0.12503	9 . 13 730 71	0.21037			•
61	3)	н	2.0	20	3.22256	C. 22866	-0.00610	0.411585	J . 42 37 80	-0.012195
42	3 C	H	8.0	23	3.35976	0.38110	-0.02134	3.250000	0.74 19 02	0.005098
	3.3	0	0.4	100	C. 42073	C. 426 E3	-0.00610	0.588415	1.585144	0.012195
64	10	н	2.0	100	C. 76 52 4	0.77744	-0.01723	0.350610	0.353659	-0.003349
66	30	11	4.0	100	1.23476	1.243 90	-0.00915	0.228659	0.225610	0.003049
67	10		2.0	500	1.02.402	1.05756	-0.03354	•	•	•
4.9	37	P	A.0	500	3.13110	1.103.44	-0.00335	0.631098	0.628049	3.003349
1.9	37	. 6	0.4	1000	1.47378	1.45732	-0.03354	0.417683	0.417683	0.000000
"	30	8	2.0	1000	2.54732	2.57012	0.01220		•	•
		ŗ	A.0	1000	4.72256	4.10366	0.11890			
11	4.)	r r	0.4	20	0.10976	0.15817	-0.08841	0.381098	0.393293	-0.012195
74	4)	R	2.0	20	0.18907	0.182 93	0.00610	0.231707	0.222561	0.009146
7 5	40	μ	1.4	100	0.36890	0.30110	-0.01/20	0.149390	0.137195	0.012195
15	40	R	2.7	100	C.64739	0.676 83	-0.01776	0.323171	0.533537	-3.303049
17	40	P	8.0	100	1.03763	1 . (#2 32	-0.04268	0.210366	0.201220	0.006098
78	40	A	0.4	5 30	0.79300	1.01574	-0.02134	0.899390	0.890244	0.009146
80	4.0	н р	8.0	500	1.76524	1. 601 83	-0.03657	0.557927	0.554878	J.003049
			,		2.02027	7.86415	-0.05793	0.365854	0.368902	-1.001349

. ,

ANALYSIS FOR TRAPEZCIDAL CHANNELS SIDE SLOPE=411

SUC	STAPE	PET	SLOPE	FLOW	VCAL	VNOP	V_DIFF	DCAL	DNCH	E 016E
82	40	÷ 6	• 0.4	1000	1.35976	1.381 10	-0.02134			0_01//
	40		2.0	1000	2.42379	2.42928	-0.00610	0.765244	0.762105	2 2022010
94	10	n .	8.0	1000	3.90549	3.90244	0.00305	0.509146	0.515744	3 .00 50 49
85	10	ç		20	0.32317	0.365 65	-0.04268	0.381098	0.362805	-0,000098
86	13	č	2.0	20	0.62465	0. 64024	-0.01220	0.228659	0.234756	-0.0010793
97	10		7.0	20	1.06402	1.03659	0.32744	0.146341	0.155488	-0.009144
88	1.0	ž		100	C.82527	C. 859 99	-0.07012	0.618702	0.603659	0.015744
19	iž	è	2.0	100	1.56707	1.57622	-0.00915	0.390244	0.390244	0.000.000
90	10	č	2.0	100	2.64024	2 . 533 54	0.10671	0.262195	0.262195	0.000000
91	10	č	2 3	500	1.55183	1.6 .2 44	-0.10061	•		0.000000
92	10	č.		500	2.48414	2.00244	-0.01829	0.792683	0.786585	0.006.098
63	10	č	3.4	1000	4. 65 100	4. 00166	0.25000	0.554878	0.527439	0-027439
94	10	č	2.0	1000	1.4;249	2.04265	-C.10976	• •	•	
25	20	č	2.4	20	6 38000	3.762 12	-0.00915	•	•	
96	20	č	2.0	. 2.5	2 44 417	0.25915	-0.00915	0.310976	0.292683	0.018293
97	. 20	č	8.0	21	C 71081	0.45/52	-0.00915	J.185976	0.189024	-0.003049
58	20	r	0.4	101	0 77841	0. 731 71	-0.01220	3.118902	0.128040	-0.009146
00	20	С	2.0	1.22	1.33480	0.73171	-C.00610	0.484756	0.466463	0.018293
100	27	c	9.0	1.00	2-10471	2 6 61 64	0.06407	0.298780	0.301829	-0.003049
101	27	c	6.4	5.00	1 63171		0.01 524	0.195122	0.201220	-0.006098
1.7	,,	Ċ.	2.0	*C0	2.47000	1	-0.027439		•	•
1 33	2.3	ć	8.0	500	4 37435	7.70108	0.012195	0.615854	0.618902	-0.0030488
104	23	č	0.4	10.0	1.8/805	4.24340	0.134146	0.417683	0.423732	-0.0033488
1.05	2 C	ĉ	2.0	1000	3.40.084	1. 9/68 9	-C. C487RO	•	•	• 1
1-0-6	رە	с	0.4	21	0.19817		- 0. 006048	•	•	•
107	1)	c	2.0	20	0. 34 4 1	0.3368.7	0.039146	0.277439	0.262195	J.0152439
1 С М	10	С,	8.0	20	0.54268	0.54878	0.009146	0.167683	0.1707 12	-J.0030488
100	10	с	0.4	100	0.6311.0	3.6189.3	-0.00604	3.139756	0.112835	-0.0033488
110	3.3	с	2.0	100	1.09756	0.53261	6 144434	0.417683	3.417643	0.0000000
111	30	c	8.0	100	1 .73790	1.75105	-3 (15344	0.253049	0.259146	-0.0060976
+ 12	30	c	C.4	500	1. 12729	1.35325	6 000000	0.107683	0.170732	-0.0333488
113	٦٢	с	2.0	500	2.45722	2.44551	-0.010100	0.817073	0.804878	0.0171951
114	20	с	8.0	5 3 3	3.92589	1.01201	-0.012145	J. 117244	0.518291	-0.003 34 88
115	3.3	c	0.4	1000	1. E048E	1. 80793	-0.001040	J-341403	0.347561	-0.JJ63476
116	a.)	¢	2.0	1000	3.20712	3.21341	-0.005049	· • • • • • • •		•
117	30	с	e. J	1.00			-0.0000	0.731707	0.737805	-0.0360976
118	10	с	0.4	500	1.40854	1.40244	C. 004000	0.443902	3.493937	0.0000000
110	40	с	3.4	20	2.16443	0.14024	024300	0.810976	0.804878	0.0060976
125	4.3	с	2.0	20	0.28649	0.25305	6.027430	0.1506195	0.2439.32	0.0182927
121	43	с	8.0	2.)	0.43902	0.42693	C. C1 21 95	1.103660	0.158537	3.0000000
177	4	С	0.4	100	J.54878	3.5487 B	0.000000	1 376304	3.106707	-J.0J1J488
123	47	c	2.0	100	0.54512	0. 54512	C. C00000	1.228450	0.330/3/	3.0182927
174	a C	ſ	8.0	100	1.47066	1.52439	-3-045732	0.149300	0.270079	0.000000
127	40	c	3.4	500	1.30143	1 .2 865 9	0.015244	0.727541	0.177448	-0.060976
1.00	4.)	<u> </u>	5.2	500	2.25515	2.74825	-0.009146	0.4481 71	0 451320	0.0241902
1	* 5	C	8.3	500	3.56402	3.59756	-0.033537	3.295732	0 101420	-0.0030488
125	4)	c	C.4	1000	1.72256	1.70732	0.015244		0.301474	-0.000 1976
122		c	2.0	1000	3.00715	3.01270	- C. C0 3049	0.637195	0.440244	-0.001.24.00
1 21		Ċ,	R. 3	1000	•	•	•	0.426929	0.432027	-0.0050488
1.2.2	10	C C	0.4	20	0.42378	C. 45332	-C.033537	0.314024	0.795732	-0.0000976
1 7 7		0	2.0	20	0.78049	G . 7 . 87 8	-0.018293	0.189024	0.192074	-0.00102927
14	1.0		8.)	2.5	1.28354	1.27439	0.039146	0.125300	3.131008	-0.0030488
1 25	12	Š.	0.4	100	0 4	C. 55122	-0.C42683	0.592317	0.585366	-1.0030488
. 14	10		2.5	100	1.66768	1.68293	-0.015244	0.375000	0.378069	-1.0.110485
,	12	ő	P.J	100	2.75915	2. 6840 2	C.073122	0.253049	0.25 10 44	0.0000000
1 2 4	10	5	3.4	50.0	1.5484	1.63110	-0.076720			
1.30	. 11	0	2.0	500	7.85366	2.86585	-0.012195	0.795732	U. 1865A5	0.0001463
140	ić	ě	0.0	500	4.16829	4. 5731 7	0.195122	3.560976	0.536585	0 -024 1902
. 41	. 1.	ő	2.4	1000	1.89917	1 . SE7# 0	-J.088415	•		
147	21	ő	<i>.</i> ,	1033	4 4 4 76	3 . 9 661 .)	-0.021341	•	•	
143	21	0	2.3	20	0.71841	0.34146	-0.003349	0.237805	0.228559	3.3.341463
144	25	ó	8.0	20	0.799,77	0.60976	-0.024340	0.146341	0.1524 39	-3.0060976
145		ň		122	0.51758	3. 96951	-0.051829	0.094517	0.100610	-0.0060976
146	25	ň	2.0	100	0.00/91	0.11058	- C. 003049	3.445122	0.435976	0.0091463
1 47	2)	Ċ	8.0	100	3 34 834	1.42683	-3.03439A	0.277439	J.280498	-J.001J488
144	20	Ď	0.4	50.0	1.40.200	7.71035	-C. 071 141	0.182927	0.1840/4	-0.0060976
140	73	D	2.3	5.0.0	2.66760	2 64 74 8	-0.015744	•	•	
150	27	D	8.0	500	4.73841	4.24475	0.000000	0.618972	0.618902	0.0000000
151	21	D	0.4	1000	1.56041		0.070122	0.420732	0.414634	0.2060976
1.52	20	Ď	2.2	1600	3.33.04	1. 23 23 4	-0.045732	•	•	•
152	3.5	ő	0.4	1000	0.27430		0.000000		•	•
154	30	ŋ	2.0	20	0.44444	0.46385	0.000700	3.204268	3.231220	0.0030488
. 15	30	D	9.)	20	0.77541	3.78460	-0.021341	0.125000	0.131098	-0.0060976
156	?)	0	0.4	100	0. 710.37	1.1647 7	-0.060976	0.082317	0.085366	- J. 0010488
157	30	0	2.0	100	1.22254	1.74686	0.006098	0.371951	0.369902	0.0010485
159	20	ŋ	8. 3	1.20	1.71463	1.04171	-0.067277	0.231707	0.237805	-2.3050975
1.50	36	D	2.0	500	2.46646	2. 44951	-0.007017	0.152439	0.158537	- 3.0.63476
140	20	C	8.0	500	3. 22 / 43	3.95122	-0.034300	0.912195	9.718293	-3.3060976
							0.07 4 3 10	0.341463	0.347561	-0.0060976

ANALYSIS FOR TRAPEZOIGAL CHANNELS SIDE SLOPE+4:1

.18 5	SHADE		\$1.00E				- `u			0.0155
	56471		SLUPP	FLOW	VCAL	VNUH	V_DIFF	DC AL	DNOM	D_DIFF
161	30	D	0.4	1000	1.78354	1.78659	-0.003049			
167	30	0	2.0	1000	3.17244	3.14434	0.006095	0. 790854	0./3/805	0.0030488
101	10	0	8.0	1000				0.500000	0.443402	0.0001443
104	40		0.4	20	0.21476	0.21341	0.021341	0.189024	0.119878	-0.0091467
10.5	40	0	2.00	20	0.39379	0.41403	-0.021341	0.074230	0.110907	-0.0030486
100	40		8.5	20	0.00.000	0.10.00	-0.000978	0.070720	0.373171	0.0000000
107	40		0.4	100	0.03413	1 07117	0.024340	0.357517	0.310344	-0.004.3076
1/0	40	0	2.0	100	1 46769	1 33347	-0.070122	0.136166	0 140244	-0.0060976
1.70	40	i i i i i i i i i i i i i i i i i i i	. 8.0	100	1. 120 27	1. 76473	0.033537	0 710344	0.140744	0 0121061
1 71	40	5		500	2 24354	2 7 8 4 8 6	-0.013044	0.445122	0 451220	-0.0060976
1 72	4.2		8.0	500	3 60146	1 /4120	-0.051820	0.295732	0.301820	-1.0060976
173	4.0	5	0.6	1000	1 71 017	1.68508	0.024390	0.771132	0.501	
174	~ ~	č	3 3	1000	2 61284	2 05 23 2	0.015264	0. 646441	0.660266	0.0060976
1 75	4.5	6	2.0	1000	6. 116.00			() 432927	0.432927	0.0000000
1 76	10	Ĕ	0.4	1000	0 50146	0 50451	-0.003040	0.240854	0.231737	0.0091463
1 77	15	5	2.0	20	1.05488	1. 01183	0.003049	0.146361	0.152439	-0.0060976
1.78	10	i.	8.0	20	1 40817	1 67673	0.027439	0.097561	0.100610	-0-0030488
1 70	15	ŕ	0.6	100	1.1/088	1.18902	-0.019146	0.481707	0.484756	-0.0030488
100	11	È	2.0	100	2, 13110	2.05156	0.034537	0.310476	0.314024	-0.0033488
1.01	10	F	8.0	1.00	3.47866	3.35976	0.118202	0.210366	3.210366	0.00000000
192	10	Ĕ	C. 4	500	1.56646	1.95695	-0.030488			
1.63	iõ	F	2.0	500	3.57622	3.50410	0.070122	0.682 927	0.682324	-0.0060976
1 14	13	ř	8.3	500				0.478659	2.463415	0.0152439
185	25	F	6.4	20	3. 47561	0.47256	C.003049	0.176829	0.170732	0.0060914
116	20	F	2.0	20	0.80488	0. 67527	- 0. 024390	0.106707	0.112805	-0.0060975
1.87	20	, F	8.0	2.1	1.74695	1.32622	-0-279266	2.070122	0.073171	-0.0030488
IRA	20	F	0.4	100	1. (3967	1.03455	0.003049	0.362805	0.356707	0.0060976
149	23	F	2.0	100	1.75878	1.80773	-0.009146	0.225610	0.228657	-0.0033488
100	20	Г	8.0	100	2. 64146	2 . AB 72 0	-0.045732	0.149370	0.152439	-0.0030488
191	20	ŕ	0.4	500	1.55427	1. 22577	C. 125000			
192	23	ŕ	3.4	50.3	1 .87195	1.88110	-0-007146	0.810976	0.804878	0.0060476
193	23 .	Ē	2.0	500	3.31402	3.25268	0.021341	0.521341	0.521341	0.0000000
154	23	F	8.0	500				0.353659	0.350610	0.0030488
105	20	ŕ	2. 3	1000				0.753049	0.756098	-0.0030488
196	23	ŗ	8.0	1000				0.515244	0.509146	0-0060976
157	30	È	0.4	20	0.29634	0.3 811 0	0.015244	0.146341	0.146341	0.0000000
108	25	ŕ	2.)	20	0.65854	0.67683	-0.018293	0.071463	0.094512	-0.0030488
100	13	F	8.0	20	1.(1829	1.68232	-C. 064024	0.060976	0.060976	0.0000000
200	30	ř	0.4	1 3 3	0.91768	0.88415	0.033537	0.298780	0.295/32	0.0030488
2.11	3.0		2.1	100	1.55183	1. 44767	-0-01524	0.185976	0.192073	-0.0050975
272	11	÷	1.0	1.1.1	2.41159	2.51524	-0.12366	0.121951	0.131098	-0.0091463
233			2.4	500	1.75515	1. 13 1+0	0.02134	0.679878	0.673780	0.0060976
174	30	i	2.0	500	1.04269	1.03354	0.03915	3.429878	4.435976	- 2.0050976
205	3 7			50.2				0.286585	2.292683	-0.0060976
204	1.1	ŕ	2.0	1000	•	•		0.625000	0.634146	-0.0091463
20.7	30		R.0	1603	•			0.420732	0.426829	-0-4463976
10 A	4)	4			C. 34146	2, 120 12	0.02134	0.131048	0-134146	-0.0030488
220	4.)	i	2.2	20	0.56402	0. 544 62	0.00000	0.0/9268	0.088415	-0.0091463
21.1	4.3	i.	9.0	23	0.86585	0.89939	-0.03354	0.051829	0.054878	-0.0010488
.11	4)	E	.1.4	10)	C. 817C7	C. 11744	0.03963	7.262195	0.767195	0.00000000
212	43	ŕ	2.0	100	1.36505	1.371 55	-0.00610	J. 161585	0.167683	-0.0050476
21.2	4.0	i	2.4	5.30	1.64934	1.615.05	0.23354	9.591463	2.582317	0.0091463
214	40	r	2.0	500	2.86753	2.75478	0.00915	0. 368702	0.375000	-0.0060916
215	4.0	ſ	9.0	5 00	4.14)24	4.466.46	-0.07622	0.243702	0.753049	-0.0041463
214	40	f	3.4	1000	2-11240	2.06707	0.04573	0.856707	0.844512	0.0121951
117	40	i	2.0	1000	3.64024	3. (4329	-0.00305	0.542683	0.5457 37	-0.0033488
21.8	40	Ē	4.0	100)		•	•	0.362805	0.368902	-0.0060976

t .

VITA '

James Edward Peter Green Candidate for the Degree of

Master of Science

Thesis: IMPROVED DESIGN PROCEDURES FOR VEGETATION LINED CHANNELS

Major Field: Agricultural Engineering

Biographical:

- Personal Data: Born in Durban, Natal, Republic of South Africa, on February 12, 1940, to Rev. Frank and Malcy Green; married to Jannette Maryann in 1969; son, Jeremy James, born in 1973; son, Trevor Frederick, born in 1975; daughter, Cindy May, born in 1979.
- Education: Graduated from Durban High School, Durban, Republic of South Africa, in 1957; received Bachelor of Science in Engineering degree from the University of Natal, Pietermaritzburg, Republic of South Africa, in 1967; completed requirements for the Master of Science degree at Oklahoma State University in July, 1980.
- Professional Experience: College Engineer, Elsenburg Agricultural College, Republic of South Africa, March, 1968, to September, 1969; Assistant Construction Engineer, Division of Agricultural Engineering, Clocolan, Republic of South Africa, October, 1969, to March, 1970; Utilities Development Engineer, Agricultural Experiment Stations, Stellenbosch, Republic of South Africa, April, 1970, to June, 1972; Lecturer, Department of Agricultural Engineering, University of Natal, Pietermaritzburg, Republic of South Africa, July, 1972, to June, 1979; Graduate Research Assistant, Oklahoma State University, July, 1979, to July, 1980.
- Professional Organizations: Professional Engineer; Fellow, South African Institute for Agricultural Engineers; Fellow (Founder Member) of the South African Irrigation Institute.