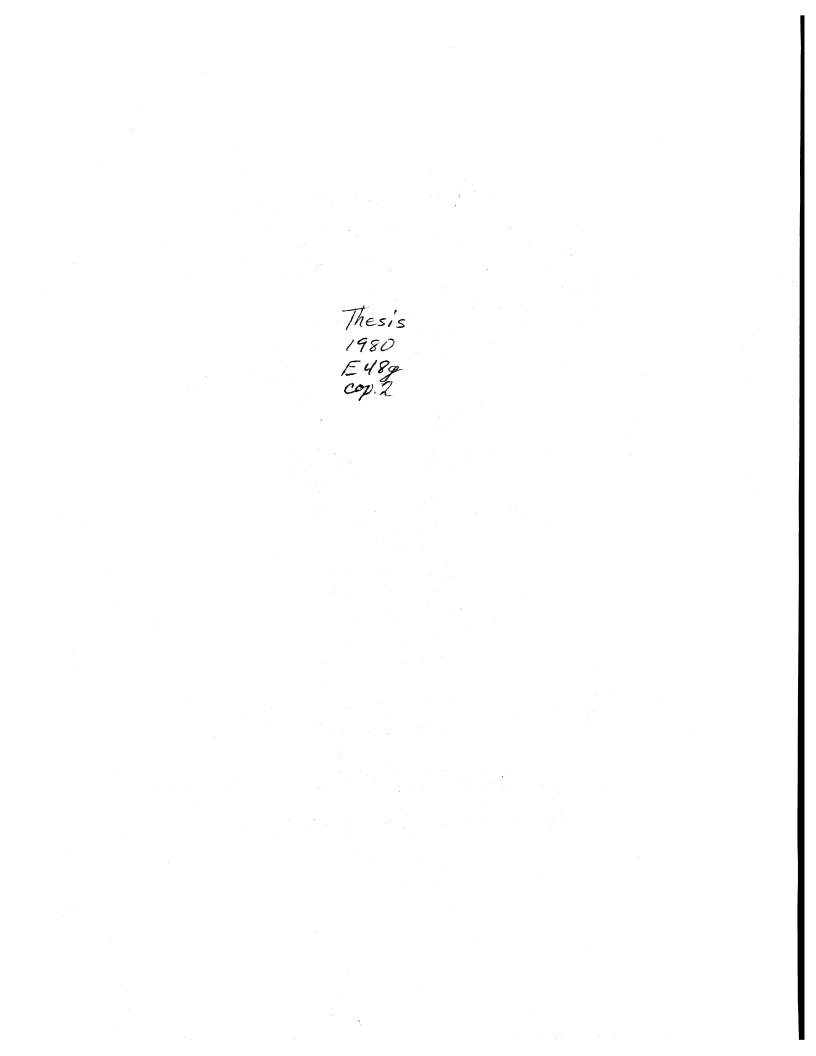
A GEOCHEMICAL AND PETROGRAPHIC SURVEY OF THE WELLINGTON FORMATION, NORTH-CENTRAL OKLAHOMA


By

DENNIS DEAN ELROD

Bachelor of Science University of Missouri-Columbia Columbia, Missouri 1974

Bachelor of Arts University of Missouri-Columbia Columbia, Missouri 1974

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1980

A GEOCHEMICAL AND PETROGRAPHIC SURVEY OF THE WELLINGTON FORMATION, NORTH-CENTRAL OKLAHOMA

Thesis Approved:

Zuhan al-Shaich Thesis Adviser John H Shelton Cary J. Seway the Graduate College Dean ot

PREFACE

This study deals primarily with the delineation of occurrences of copper mineralization in the subsurface Wellington Formation of northcentral Oklahoma. In order to accomplish this objective the lithostratigraphy, geochemistry, and petrography of well cuttings from the Wellington Formation were examined in some detail.

The writer thanks Dr. Zuhair Al-Shaieb, thesis adviser, for suggesting the problem and providing assistance and guidance throughout the study. Dr. John Shelton and Dr. Gary Stewart, thesis committee members, offered invaluable assistance on many occasions. Thanks is also due to Dr. Richard Thomas and Dr. Hobart E. Stocking for critically reviewing the manuscript.

Mr. Eldon Cox, of the Oklahoma Geological Survey Core and Sample Library, provided assistance which was greatly appreciated. Dr. William Warde gave advice on the use of the Statistical Analysis System. Dr. John Comer graciously made available the microprobe analysis facilities of the University of Tulsa.

Finally, the writer expresses special thanks to his mother and father for their encouragement and support throughout.

iii

TABLE OF CONTENTS

Chapte	r P	age
Ι.	INTRODUCTION	1
	Purpose	1 2 2
II.	METHODS	7
	Sample Selection and Logging	7 8 8
III.	GEOLOGIC SETTING	10
IV.	Stratigraphy	10 12 13 14 14 17 18 19 20 23 24 26 27
	Interpretation of Geochemical Maps and Correlation Sections	27 32
۷.	ORE PETROGRAPHY	40
VI.	THE NATURE AND ORIGIN OF COPPER MINERALIZATION IN THE UPPER WELLINGTON FORMATION	44
	The Permian Stratiform Copper Province of Texas, Oklahoma, and Kansas	44 46

Chapter

.

Page

Genetic Models for Copper Mineralization in	
the Wellington Formation	48 48
Syngenetic Model	49 51
VII. CONCLUSIONS	54
BIBLIOGRAPHY	57
APPENDICES	66
APPENDIX A - KEY TO BEDS IN RAASCH'S MEASURED SECTION	67
APPENDIX B - LOCATIONS OF THE WELLS SAMPLED	69
APPENDIX C - CHEMICAL ANALYSES OF THE WELL CUTTING SAMPLES	71
APPENDIX D - MEANS OF THE ELEMENT CONCENTRATIONS BY WELL FROM THE UPPER WELLINGTON FORMATION	99

LIST OF TABLES

lable		Page
I.	Correlation of Subsurface Sequence of Colors With Raasch's Measured Section	21
II.	Analysis of Lithology/Color Segregated Samples (PPM)	31
III.	Modal Analyses of Element Concentration (PPM)	33
IV.	Microprobe Analysis of Pyrite, Anilite, and Djurleite	42

÷

LIST OF FIGURES

Figu	re	Page
1.	Index map of the area showing the regional setting	3
2.	Location copper and barite deposits in Oklahoma	4
3.	Correlation chart of Pennsylvanian-Permian stratigraphy	11
4.	Structural contour map on the Herington Limestone	16
5.	Subsurface copper isoconcentration map of a stratigraphic interval in the upper Wellington Formation	30
6.	Frequency distribution histograms of PPM concentrations for copper, lead, zinc, manganese, and barium	35
7.	Cumulative frequency plots of PPM concentrations for copper, lead, zinc, manganese, and barium	37
8.	Djurleite-anilite replacing pyrite	41

LIST OF PLATES

Plate

In Pocket

- 1. Correlation Raasch's Measured Section & Shelton's Measured Section.
- 2. Surface geochemical map of Noble County.
- 3. Correlation section A A'.
- 4. Correlation section B B'.
- 5. Correlation section C C'.
- 6. Correlation section D D'

CHAPTER I

INTRODUCTION

Lower and Middle Permian strata cropping out along a belt from north-central Texas to south-central Kansas, have been the object of considerable investigation in recent years for potential economic concentrations of copper. The discovery of the Creta copper deposit in Jackson County, Oklahoma, in 1963 and the opening there of the only profitable mining venture in the region by Eagle-Pitcher Industries, sparked interest in exploration. The present investigation studies a geologically similar, stratigraphically-controlled occurrence of copper mineralization in the Wellington Formation of north-central Oklahoma.

Renfro (1974), Jacobsen (1975), and Rose (1976) have used the region as an example in their models for sedimentary copper deposits.

Purpose

The purposes of this investigation were sixfold: (1) subsurface delineation of cupriferous strata in the study area; (2) correlation of subsurface data with surface and subsurface data by Raasch (1946) and Shelton (1979); (3) study of the relationship of the copper concentration to those of lead, zinc, manganese, barium, silver, cadmium, and cobalt; (4) correlation of element concentraion, lithology, color, and sedimentary structures; (5) examination of sulfide phase using grainmounted thin sections of selected cuttings, and the determination of

paragenetic relationships; and finally (6) study of the relationship between copper mineralization and depositional environment of the host rocks, and comparison with various genetic models.

Area of Investigation

The study is restricted to strata of the Wellington Formation and base of the Garber Sandstone, of the Sumner Group which crop out in Noble, eastern Garfield and Kingfisher Counties, and western Payne County (Fig. 1). In the subsurface the Sumner Group is a wedge-shaped unit that thickens to 2400 feet at the western boundary of the area of investigation.

Geographically the subsurface area is bounded by the northern boundaries of Noble and Garfield Counties (T. 24N.), the western boundary of Garfield County (R. 8W.) and T. 18N. in northern Payne, Lincoln, and Kingfisher Counties.

Numerous deposits of copper in the Permian beds have been reported in the literature. South and west of the Wichita uplift the belt of copper-bearing Permian strata crops out in Cotton, Tillman, Jackson, Greer, and Kiowa Counties, along a trend of approximately N. 20W. north of the Wichitas the beds are present in a north-south belt from Garvin County in the south, through McClain, Cleveland, Oklahoma, Logan, Kingfisher, Payne, and Noble Counties, to Kay and Grant Counties along the Kansas border (Fig. 2).

Previous Work

Haworth and Bennett (1901) first reported copper within the area in a water well near Hillsdale in the northwestern part of T. 24N. R.

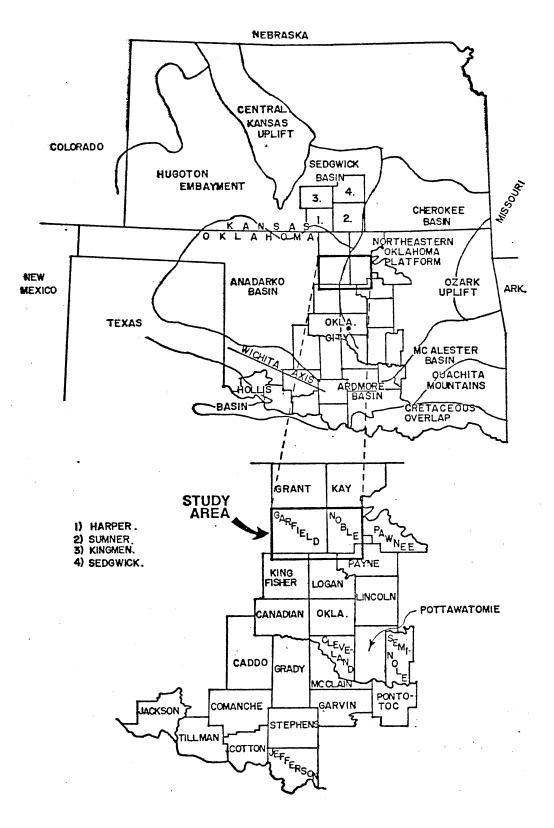


Figure 1.--Index map of the area showing the regional setting.

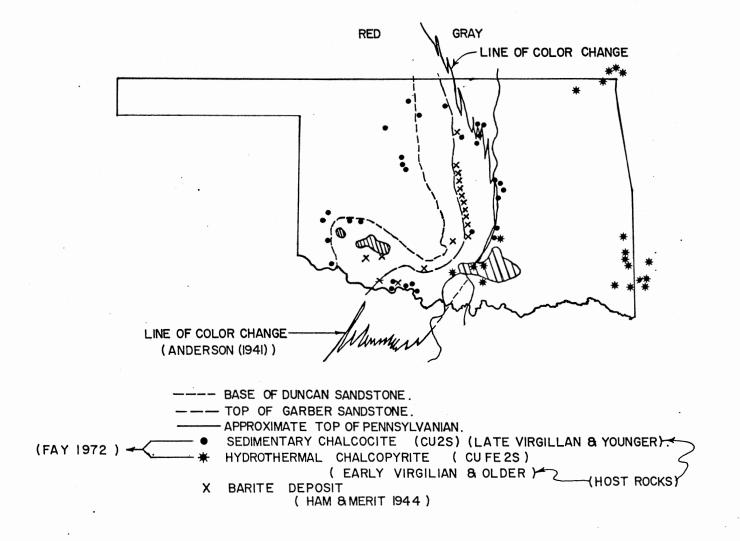


Figure 2.--Location copper and barite deposits in Oklahoma.

8W., Garfield County. Native copper occurred as thin foil-like plates in a six-inch seam on red clay of what is now mapped as the Hennessey Shale. Reiter (1920) reported that native copper was found in at least three shafts dug in the Hillsdale area. Tarr (1910) reported briefly on chalcocite (Cu₂S) and chalcopyrite (CuFeS) replacing fossilized wood in a sandstone, north of Stillwater. Rogers (1916) made polished sections from these beds and discussed the paragenesis of the minerals. Merritt (1940) reviewed the known occurrences of copper in Oklahoma after visiting the various localities. Stroud and others (1971) summarized the copper-production potential of Texas, Oklahoma, and Kansas. Shockey and others (1974) described the small copper-silver deposit near Paoli in T. 4N. R. 1W. from which several wagonloads of ore were removed at the turn of the century. Ham and Merritt (1944) described the distribution of barite nodules in the Garber and Wellington Formations. Heine (1975) classified the copper-bearing deposits of southwestern Pawnee, northern Payne, and southeastern Noble Counties on the basis litho-The Noble County Surveyor (Shelton, 1979) has inforfacies. mally recorded occurrences of barite, malachite, and galena in that county. North (1939), Swineford (1955), Hill (1967), Long and Angino (1975), and Waugh and Brady (1976) reported on copper in the Sumner Group of south-central Kansas.

Aurin and others (1926) established the stratigraphic names for divisions of the Leonardian Series presently in use. Clark and Cooper (1927) summarized the stratigraphy of the area. Page (1955) and Talley (1955) correlated the subsurface of the eastern part of the area by electric logs and sample cuttings. Billings (1956) mapped the surface geology of eastern Noble County. Raasch (1946) made detailed measured sections of the upper Wellington Formation and studied the famous "insect beds" of western Noble County. Paleontological studies of the unusual assemblage of fossils in the Wellington Formation which include discussions of a stratigraphy and sedimentology have been made by Olson (1967), Carlson (1968), Tasch (1961, 1962, 1964), and Tasch, Kidson, and Johnson (1969). Shelton (1979) mapped and synthesized the surface and subsurface geology of Noble County including an areal geologic map, measured section, correlation of the surface with the subsurface, a shallow structural contour map, and a discussion of the depositional environment. Ross (1972) and Garden (1973) extended this work southward into central and western Payne County.

CHAPTER II

METHODS

Sample Selection and Logging

The Oklahoma Geological Survey made available well cuttings from its well log library. Samples from 29 wells were logged from the surface or from the first collected sample through the Herington Limestone. Lithological Percentage logs (Maher, 1964) were made rather than interpretive logs, because a more objective treatment would be more useful in statistical comparison of the chemical analyses for each sample with its actual lithological composition. Three east-west cross sections were prepared: from T. 24N. R. 8W. to T. 24N. T. 1W.; from T. 22N. R. 5W. to T. 22N. R. 1W.; and from T. 20N. R. 8W. to T. 20N. R. 1W.

The lithology on the percentage logs is divided into six categories: sandstone, siltstone, shale, limstone, marlstone, and gypsum; the color is divided into seven categories: white, brown, maroon, red, gray, green, and black. In addition the predominant lithology of mudstone was characterized as lumpy (massive), fissile, desiccated, or interbedded (shale and siltstone). Fossils and sulfide minerals were recorded.

Preparation of Samples and Analytical Procedures

A cut of sample was generally taken at 20-foot intervals for chemical analysis. However, more closely spaced samples were taken from the upper Wellington Formation. Unfortunately, during the drilling, cuttings were not collected regularly at shallow depths; a practice that results in gaps in several logs.

Each sample was ground to -80 mesh. One gram was digested in 20 milliliters of hot aqua regia (one part concentrated HNO₃ and three parts concentrated HCl). Sample solutions were filtered and diluted to 50 milliliters.

More than 900 samples were analyzed for copper, lead, zinc, and manganese using a Perkin-Elmer Model 403 Atomic Absorption Spectrophotometer. Approximately 25% of the samples were analyzed for silver, cadmium, and cobalt. The samples of wells on the southern cross section (C-C') were also analyzed for barium. All samples were analyzed according to standard procedures listed in the Perkin-Elmer Analytical Methods Manual.

Data Display and Sources of Error

The Statistical Analysis System package program generated plots of depth versus common logarithms of the concentration values of copper, lead, zinc, manganese, and barium. The plots of copper, lead, and zinc were drafted with the electric logs and percentage lithologic logs to produce composite logs to a scale of 1 inch equals 100 feet (Pl. 3-6). Four cross sections, using the composite logs, show a cupriferous zone in the upper Wellington Formation.

A shallow structure map of the area was contoured on the top of the Herington Limestone. A copper isoconcentration map to the same scale as the structure map contours the copper content of the cupriferous zone in the subsurface Wellington Formation.

The collection of the samples faithfully at the recorded intervals is a matter up to the discretion of the driller and roughnecks. This is a problem, particularly at shallow depths which drill quickly and are of little interest in exploration for petroleum. As mentioned above, the shallow samples were, in many cases, erratically collected leaving gaps in the record.

Metallic contamination from scalings off the drill bit or the interior of the drill pipe was also occasionally a problem. Passing a magnet over each sample removed most of the metal contamination. Three samples that were heavily contaminated with steel were separated into two groups--magnetics removed and magnetics unremoved. The removal had the effect of reducing the zinc content of the samples by an average of 38% but did not affect the copper, lead, manganese, cobalt, cadmium, or silver content of these samples. These results are consistent with the conclusion that galvanized (zinc-plated) steel may have contaminated some of the samples. The effect of this contamination, however, was minimized by the use of a magnet.

CHAPTER III

GEOLOGIC SETTING

Stratigraphy

Permian beds in the cupriferous belt of Texas, Oklahoma, and Kansas are divided into three groups (Fig. 3):

the Chase Group of the Wolfcampian Series;

2. the Sumner Group of the Leonardian Series; and

3. the El Reno Group of the Leonardian Series.

The Oklahoma Geological Survey (Havens, 1977) has recently proposed a new stratigraphic system in which the lower Permian Wolfcampian Series is supplanted by the upper Pennsylvanian Gearyan Series (Fig. 2). The Herington Limestone is proposed to be the uppermost formation of the Pennsylvanian.

For the purposes of this study, the stratigraphic nomenclature of Dunbar (1960) and McKee (1967) is used. The Chase, Sumner, and El Reno Groups all contain beds which are anomalously cupriferous. The Chase Group was studied by Heine (1975). The El Reno Group, which crops out to the west of the study area, is stratigraphically equivalent to the copper deposits of southwestern Oklahoma and north-central Texas, but contains little unoxidized sedimentary rock favorable to the concentration of copper (Fay, 1957).

		١	MOORE, et. al. (1951) KANSAS	McKEE (1967)				HAVENS (1977)			
		HARPER		N-C OKLAHOMA HENNESSEY SHALE				HENNESSEY GROUP			
PERMIAN	LEONARDIAN	SUMNER GROUP	STONE CORRAL DOLOMITE NINNESCAH SHALE WELLINGTON SHALE	SUMNER GROUP	SAI WE	ARBER NDSTONE LLINGTON DRMATION	PERMIAN	CIMARRONIAN	SUMNER GROUP	WELLINGTON GARBER FORMATION FORMATION	
	z		NOLAN LS		HERI	NGTON LS.					
		ODELL SHALE WINFIELD LS.			WINF				OSCAR		
1	MPI	L	ARNESTON LS.			YLE SH. RILEY LS.					
	WOLFCAMPIAN	VOLFCA		ATFIELD SHALE			FIELD SH.	7		6	ROUP
				WREFORD LS.			FORD LS.	A			
	>		GROVE GROUP	GI	NCL. RVS. GP.		PENNSYLVANIAN	YAN			
					ADMIRE GROUP		sΥ	GEAR YAN			
.	Z	VANOSS GROUP		GROUP		NN	GE	VANOSS GROUP			
PENN.	VIRGILIAN					PE					

Figure 3.--Correlation chart of Pennsylvanian-Permian stratigraphy.

Chase Group

The upper formations of the Chase Group are easily identifiable marker beds because of their lithology and distinctive character on electric logs. They consist of a series of three thin, laterally persistent, limestones separated by two shales. The lowermost limestone is the Fort Riley Limestone. It is overlain by the Doyle Shale, the Winfield Limestone, the Enterprise Shale, and the Herington Limestone. The limestones are thin and become more dolomitic and more impure southward (Shelton, 1979).

The Fort Riley Limestone is a 30- to 40-foot thick unit composed of five thin limestone beds. In southern Noble County the formation has been mapped as the base of a sandstone in the overlying Doyle Shale (Shelton, 1979).

The Winfield Limestone is 120 to 140 feet above the Fort Riley Limestone. It grades form a thinkly-bedded, 2-foot thick, fossiliferous grainstone in northern Noble County, to a calcitic sandstone, 6- to 8feet thick, in T. 22N. R. 2E., to a 1-foot thick nodular limestone in T. 21N. R. 2E. in southern Noble County (Shelton, 1979).

The Herington Limestone, about 70 feet above the Winfield Limestone, records the last normal marine period of deposition in the region. It grades from a fossiliferous grainstone and packstone less than 8-feet thick in northern Noble County to a red, dolomitic, brecciated, nodular micrite with interbedded sandstone in the southern part of the county (Shelton, 1979).

Wellington Formation

At the type section of the Wellington Formation in south-central Kansas the unit consists predominantly of greenish-gray mudstone interbedded with reddish-brown, maroon, and gray mudstone. It contrasts sharply in color with the overlying red-colored Ninnescah Shale. The Milan Dolomite is the uppermost member of the Wellington Formation in Kansas (Ver Weibe, 1937). It contains some barite and malachite mineralization (Swineford, 1955).

In Oklahoma the Garber-Wellington contact is less distinct since the upper beds of the Wellington become gradually more reddish and sandy similar to the overlying Garber Sandstone at about the latitude of southern Noble County (Shelton, 1979).

Patterson (1933) divided the Wellington in Logan and Lincoln Counties into an upper Fallis Sandstone Member and a lower Iconium Shale Member. Neither Raasch nor Shelton found this classification useful in Noble County. Raasch divided the Wellington into six members, with a total thickness of 820 feet. They are from the base up: (1) the basal sandstone sequence, 15 feet; (2) the anhydrite sequence, 195 feet; (3) the Otoe Sandstone member, 115 feet; (4) the Midco member, 225 feet; (5) the Billings Pool member, 52 feet; and (6) the Antelope Flats member, 190 feet. Shelton measured a composite thickness of 850 feet in the Wellington Formation and divided the formation into four unnamed units divided by three key sandstone beds. Plate 1 correlates a lithologic profile plotted from Raasch's measured section with profile from Shelton (1979).

Garber Sandstone

The Garber Sandstone was named (Clark and Cooper, 1927) after exposures near Garber in eastern Garfield County. It consists of red clay shales, red sandy clays, and red sandstones. Clark and Cooper (1927) divided the Garber into a lower Lucien Shale Member, 250 feet thick, and an upper Hayward Sandstone Member, 350 feet thick. Shelton (1979) reported that sandstones in the upper Wellington were not lithologically distinct from those of the lower Garber. Raasch (1946) considered the base of the Garber Sandstone to be the first "heavy" sandstone unit. However, the Wellington-Garber contact on his measured section is distinguished principally by the change in color from maroon in the Wellington "Antelope Flats" member to bright red in the Garber Sandstone.

In Logan, Oklahoma, and Cleveland Counties immediately south of the study area barite rosettes occur near the base of the Garber Sandstone (Ham and Merritt, 1944).

No detailed study of the Garber Sandstone of north-central Oklahoma has been made.

Structural Framework

The Nemaha Ridge, the main structural element of the region, separates the Anadarko Basin to the west and southwest from the northeastern Oklahoma Platform (Fig. 1). To the north of an east-west hinge line the Anadarko Basin is characterized by shelf-type sedimentary rocks. Southward from the hinge line the strata thicken greatly to form a geosyncline. The Anadarko Basin was an area of continuous subsidence and deposition during Pennsylvania-Permian time when up to 27,000 feet of sediment was deposited in what is now the deepest part of the basin (Ham and Wilson, 1967).

The Upper Pennsylvania Virgilian Series, deposited during the last major phase of tectonism affecting the Arbuckle and Wichita uplifts to the south, marks the beginning of a regressive phase of deposition. The rate of subsidence in the basin slowed, and the shoreline retreated to the south and west. Continuous deposition of the Late Pennsylvanian Virgilian Series and Early Permian Wolfcampian Series was characterized by typical transgressive-regressive depositional cycles. The Middle Permian Leonardian and Guadalupaian Series of continental red beds and evaporites are characterized by desiccation cycles. They represent the final phase of filling of the basin after downwarping had ceased (Rascoe, 1962).

Fig. 4 shows the structure of the area based on deformation of the Permian Herington Limestone. It is quite similar to the interpretation of structure of the Middle Pennsylvania strata of Oklahoma by Fritz (1978), and Shelton's (1979) structure map, also on the Herington Limestone in Noble County.

The Nemaha Ridge is a narrow belt of high angle faulting that was exposed as a highlands during Early and Middle Pennsylvanian time (Bale, 1955). Faulting and folding along this lineament produced many structures favorable for the entrapment of petroleum. In fact, some of the more prolific fields in the Mid Continent Region are found along this lineament. In the study area the Lovell, Lucien, Garber, Breckenridge, Antelope, Billings, and Tonkawa fields are located along structures related to the Nemaha Ridge (Bale, 1955). The structural contour map (Fig. 4) indicates that the effect of the ridge changes at

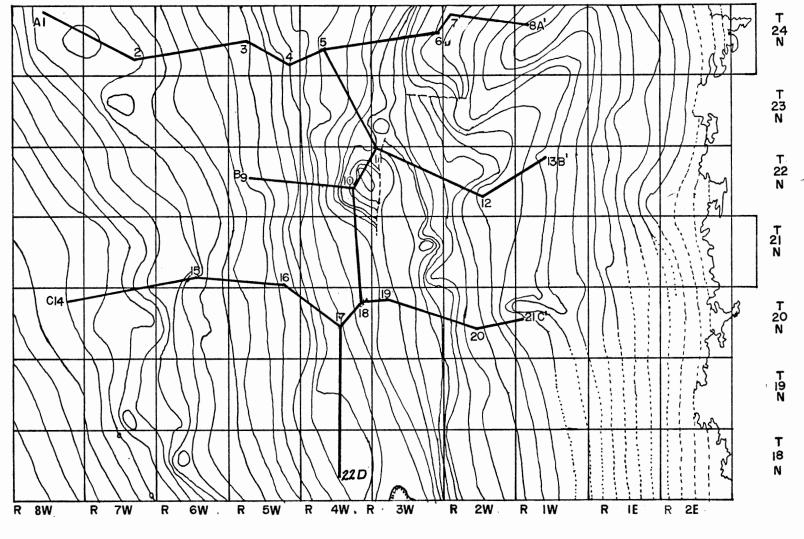


Figure 4.--Structural contour map on the Herington Limestone. Scale: 1/500,000. Anomalies shown superposed on westerly dip. Contour interval, 50 feet. Surface exposure indicated to the east. Lack of data indicated by dashed lines.

about the Lovell Dome in T. 19N. R. 4W. South of the Lovell Dome the ridge results from a high angle fault, with the downthrown block on the west in the Pennsylvanian (Fritz, 1978). At that position it has about 200 to 500 feet of displacement and the fault trends N10^oW. North of the Lovell Dome the ridge is composed of a series of domes, half-horsts, and horsts widening to the north and bounded on the east flank by faults trending N25^oE (Fig. 4).

The tectonics and sedimentation of the Northeastern Oklahoma Platform are similar to that of the Northwestern Oklahoma Shelf because the Nemaha Ridge was submerged after Middle Desmoinesian time (Fambrough, 1963).

Depositional Framework

The lithology of Wellington Formation of the study area is a predominantly mudstone sequence sand-rich to the south and carbonate-rich to the north, which forms the eastern rim of an evaporite basin. The depositional environment of the Wellington Formation was an arid tidal flat, which produced a varied and complexly interrelated suite of subenvironments. The Wellington is distinct from the underlying Chase Group by the absence of marine limestones. The Hollenberg Limestone Member is found in the Wellington of Kansas, however. Each of the limstones of the Chase Group thins out to the north of the next underlying limestone (Shelton, 1979). The overlying Garber Sandstone is distinct from the Wellington in being a completely continental deposit (Raasch, 1946; Olson, 1967).

Evaporites

No evaporites crop out in the Wellington Formation in the study area. Raasch's (1946) anhydrite sequence, however, thickens markedly in the subsurface to become the predominant lithology of the formation along the western boundary of the area. Using electric logs, Shelton (1979) delineated the eastern limit of gypsum/resistive dolomite facies in the lower Wellington with a north-northwest trend from T. 20N. R. 2W. to T. 24N. R. 1E. The lack of variety of the anhydrite sequence compared with the beds above and below suggests relatively rapid, uniform depositional processes.

Until recently it was widely held that evaporites were deposited in large standing bodies of water, such as lakes or lagoons, when they evaporated to the point of precipitation of evaporite minerals. However, modern analogues to deposition of ancient evaporites is now considered to be salt-encrusted desert flats called sabkhas. The sabkhas are inland and above high tide and are occasionally flooded during high winds. They are generally landward of algal mats which develop in the intertidal zone (Bathurst, 1975). Rapid evaporation of the pools of flood water causes saline groundwater to be drawn up by capillary action through the underlying porous and unconsolidated sediments. Gypsum precipitates in the substrata causing the magnesium: calcium ratio to increase so that the associated algal mat in the intertidal zone are altered to dolomite (Bathurst, 1975).

Sedimentary structures diagnostic of a sabkha environment are found in the Wellington evaporites. "Chicken-wire" texture according to Butler (1969) is caused by extreme compaction of the gypsum compaction to produce anhydrite nodules with enterolithic folds. This

"chicken-wire" texture was present throughout the gypsum samples from the well cuttings.

At approximately the western limit of the study area salt becomes a significant proportion of the evaporites. According to Jordan and Vosberg (1963) the Champlin #1 Boehm test contains about 50% salt between depths of about 1200 and 1600 feet (the Anhydrite sequence). No salt was noted in the samples described immediately east of this well, however. This discrepance is probably caused by dissolution of the salt by the drilling fluid. West of the study area Adkison (1960) constructed cross-sections from Barber County, Kansas, to Caddo County, Oklahoma. They show the presence of salt but in considerably smaller proportions to the anhydrite than indicated by Jordan and Vosberg.

Jordan and Vosberg estimated the Wellington of western Oklahoma to have 15,500 square miles of salt deposits with an average thickness of 225 feet, although they did not actually delineate the limits of the Wellington salt. The Wellington salt extends into Kansas where it is equivalent to the thinner, shallower Hutchinson Salt Member of the Wellington Formation of central Kansas.

Sandstones

To the south of the study area the Wellington-Garber Formations contain multistoried and multilateral sandstone bodies that represent a deltaic complex at about the Oklahoma City area. Lobes of deltaic and interdeltaic sands extend northward into Logan and Lincoln Counties. To the north of the area the number and thickness of carbonate units greatly increase and the sandstones are almost absent (Ver Weibe, 1937). The sandstones also tend to pinch out westward into the subsurface.

The following summarizes the conclusions of Shelton (1979) who mapped and described eight sandstone units in the Wellington of Noble County. A unit generally occurs as a disconnected series of lenses at an approximately consistent stratigraphic interval. Shelton distinguished two types of genetic units. Those with undulatory bases initial dip, and small-scale cross bedding that showed much variation in paleocurrent direction were considered to be tidal creek deposits. Stream deposits were considered as those with medium-scale cross bedding, which showed a more consistent paleocurrent direction. The paleocurrents indicate that depositional strike was N60^OE to N70^OE and the depositional slope was north-northwest.

Based on the paleocurrent data, Shelton concluded that the source of terrigenous classics was from streams coming from the southeast, i.e., the Ouachitas.

Mudstones

Two major types of mudstone are present in the Wellington: (1) lumpy claystone which tends to be red or a reddish color, but which also may be shades of purple, maroon, gray-green, and gray; and (2) fissle, laminated shale, which is green, gray, black, olive, or brown. The lumpy and fissile varieties commonly are interstratified. A third variety is the intraformational conglomerate composed of clay pebbles, generally carbonate-rich, in a carbonate-rich matrix.

The Wellington-Garber mudstones show a regular sequence of color changes which are distinctive to most of the study area. The red color, however, persists to a stratigraphically lower in the section in a southward direction. From Raasch's measured sections and the present

subsurface work a general color sequence is suggested in Table I for stratigraphic interval studied.

•

TABLE I

CORRELATION OF SUBSURFACE SEQUENCE OF COLORS WITH RAASCH'S MEASURED SECTION

	Color	Stratigraphic Unit (Lithology)
(1)	RED, red-orange, light green	LOWER GARBER (lumpy claytone)
(2)	PURPLE, MAROON, gray-green	ANTELOPE FLATS MEMBER (lumpy claystone
(3)	YELLOW, BROWN, maroon, gray-green	BILLINGS POOL MEMBER (siltstone silty sandstone, lumpy and fissile mudstone)
(4)	DARK GREEN, DARY GRAY black, maroon	MIDCO MEMBER (fissile shale interstratified siltstone and fissile shale, lumpy mudstone)
(5)	BROWN, REDDISH-BROWN, GRAY	OTOE MEMBER (very fine sandstone, siltstone fissile and lumpy mudstone)
(6)	REDDISH-BROWN, GRAY	ANHYDRITE SEQUENCE (subfissile shale, gypsiferous shale)
(7)	RED, GRAY-GREEN, BROWN black, maroon, yellow	ENTERPRISE SHALE (fissile and subfissile shale, lumpy mud- stone, interstratification, siltstone)

Since the colors are determined by the depositional environment, not stratigraphic position, the colors correspond to the stratigraphic units only within the area of Noble County where Raasch made his measured section.

In the subsurface the complete sequence of colors is sometimes not found, particularly towards the south (Well #22). In some wells the color changes from red to maroon to gray without the intermediate stages. If the dark green, yellow, and gray-black beds are taken to be indicative of brackish-to-fresh water conditions, their omission may be taken to represent an uninterrupted change from normal marine to subaerial conditions at that location.

The sequences of beds both above and below the anhydrite sequence are to varying degrees repetitious in the distribution of lithology, colors, structures, and fossils.

Raasch and Tasch (1964) have both constructed models for the upper Wellington cyclic sedimentation. The salient difference between the sequence above the anhydrite from that below the anhydrite is the absence of marine limestones in the upper Wellington Formation.

The coloration of mudstone is principally a function of the mixing of red hematite, green illite and chlorite, and black organic matter and iron sulfide. Swineford (1955) supported the conclusion that the Permian red beds of Kansas were formed from transport of detrital red clay from an oxidized tropical soil. It is widely held today, however, that red pigmentation originates, in place, from the aging and dehydration of iron hydroxides (Van Houten, 1972) or by oxidation of ferromagnesian silicates (Walker, 1967). McBride (1974) reported that red, maroon, and purple pigments are post-depositional and produced by reddening of sediments in the soil zone in a sub-humid to semi-arid tropical climate having wet and dry seasons. Purple and maroon are

produced by a thicker coating of hematite stain or coarser hematite crystals. McBride found that green beds are produced by bleaching of red or photo-red beds by interstratal percolation of reducing water derived from fluvial channels overlying the green beds. He also concluded that brown beds are generally siltstones where the amount of hematite is insufficient to coat the grains evenly; cyclic varicolored sediments are coastal lacustrine; and maroon-purple beds are the result of generation of a more mature soil profile than red beds.

Shelton (1979) reports that x-ray diffractograms of 14 mudrock samples by the Oklahoma Geological Survey indicate illite, chlorite, and kaolinite to be the principal clay minerals in the Wellington formation. In the upper middle member (Midco member), however, kaolinite is absent while vermiculite is present.

Carbonates

Dolomitic, light gray, argillic, platey-to-laminited algal boundstones or stromatolites occur in thin units in the upper middle Wellington Formation (Midco member). These include the "saltcast" bed, the "lower mudcrack" bed, the "insect" bed, and the "upper mudrack" described by Raasch (1946), and the "new insect" bed described by Tasch (1962). The algal boundstone beds are quantitatively a minor proportion of the upper Wellington Formation, but have been studied in detail by Raasch (1946), Tasch and Zimmerman (1964), and Tasch, Kidson, and Johnson (1969) for their rich and unusual fossil assemblage and complex, repetitious depositional sequence.

The laminated structure is caused by the trapping of fine-grained particles in the algal mat which form alternating salt-rich (light) and

organic-rich (dark) layers (Tasch, Kidson, and Johnson, 1969). About half of the algal boundstones have mudcracks on their upper surfaces indicating subaerial exposure (Raasch, 1946). The saltcast bed has hopper halite casts on its upper surface (Raasch, 1946). Chalococite, cuprite, and malachite were noted by Raasch in the "insect" bed near the top of the upper Midco member at E_2 sec. 3, T. 21N. R. 1W. (Pl. 2).

Algal-mat boundstones may be confused with cornstones which they resemble (Steel, 1974). McBride's (1974) paleosoil interpretation of the origin of red and purple mudstone and the presence of lungfish burrows are consistent with a paleosoil origin of several, thin, nonfossiliferous, silty to argillic carbonates within the red and maroon beds of the Garber Sandstone and Antelope Flats member of the Wellington Formation. They were not correlatable between wells. Most are about 50% carbonate and contain a framework of siltstone or very fine-grained sanstone. The color is light gray and contains fine specks of organic matter or iron sulfide. According to Steel (1974) the carbonates, originally called cornstones are analogous to caliches forming in modern soil profils of semi-arid regions. The cornstones are most prevalent in non-marine, cyclic sequences. Authigenic calcite progressively fills in and displaces detrital grains of the host sediment by evaporation and precipitation from vadose water. The mechanism is similar to that of gypsum formation in sabkhas but is indicative of less arid seasonal wet-and-dry conditions than are required for the formation of gypsum.

Paleontology

The fossil assemblage of the upper Wellington is dominantly

vertebrates and arthropods. The single most abundant fossil is <u>Cyzicus</u>, a conchostran branchiopod which flourishes in fresh-to-brackish water. Tasch (1964) found <u>Cyzicus</u> at regular intervals in the algal-mat boundstones. He interpreted the recurrence as being part of a paleolimnological cycle.

The most notable invertebrates are the famous insect beds studied by Raasch (1946) and Tasch (1962) in the Midco member and containing at least 12 insect orders. The insect beds occur at four sites in Noble County (P1. 2) and one site in Kay County. Thousands of specimens are concentrated in these few small sites which Tasch (1962, 1964) has interpreted as being evaporated fresh water ponds formed in shallow depressions along the shoreline.

Other invertebrates found in the upper Wellington are the eurypterid, <u>Eurypterus</u>, (Decker, 1938) in a sandstone of the Otoe member (lower middle unit); the horseshoe crab, <u>Anacontium</u>, in the Midco member (upper middle unit) (Raymond, 1944); and <u>Lingula</u> (Hall, 1966), in the Midco member (upper middle unit).

The upper Wellington also contains abundant plant remains particularly in the Antelope Flats member (upper unit), Billings Pool and upper Midco member (upper middle unit) (Raasch, 1946; Shelton, 1979).

Olson (1967) and Carlson (1968) studied the vertebrate fauna of the Wellington and Garber, consisting of fish, amphibians, and reptiles (Pl. 2). The lungish <u>Gnahoriza</u> is found in estivation burrows of fresh water ponds indicating a paleoclimate of alternating wet and dry seasons. In sharp contrast to the terrestrial fauna of the Garber sandstone and Wellington fresh and brackish water fossil assemblage is the normal marine fauna of the underlying Herington and Winfield limestones which contain brachoopods, bryozoans, molluses, and fusilinids (Raasch, unpublished; Shelton, 1979).

Summary

In summary the Wellington Formation was deposited as a regressive depositional sequence characterized by desiccation cycles. The overall depositional environment was a tidal flat with an arid climate characterized by a variety of subenvironments: tidal mudflats, which formed lumpy, massive mudstones; intertidal flats and paralic ponds and small lakes, in which laminated, dolomitic algal-mat boundstones and shaley dolomitic mudstones interstratified with siltstone and thin sandstone layers were deposited; tidal creeks and tidal channels which deposited the sandstone units; and sabkhas, in which gypsum developed as a result of early diagenetic processes.

CHAPTER IV

INTERPRETATION OF GEOCHEMICAL DATA

Interpretation of the geochemical data obtained during this study first requires a brief description of the geochemistry of copper.

The geochemical behavior of copper has been classified as chalcophilic ("sulfur loving") by Goldschmidt (1954) showing virtually no lithophilic ("rock-forming") and little siderophilic ("native-metal forming") tendencies. Surficial weathering readily oxidizes the sulfides to oxy-salts and oxides.

The average crustal abundance of copper is 50 ppm (Levinson, 1974). In sedimentary rocks copper has an average content of 45 ppm in shales, less than 1 ppm in sandstones, 4 ppm in carbonates (Turekian and Wedepohl, 1961), and 20 ppm in evaporites (Rickard, 1974).

Copper is an element of intermediate mobility in the surficial environment. It, therefore, lends itself to geochemical exploration by the sampling of soils and stream sediments (Dall'Aglio, 1972).

Interpretation of Geochemical Maps and Correlation Sections

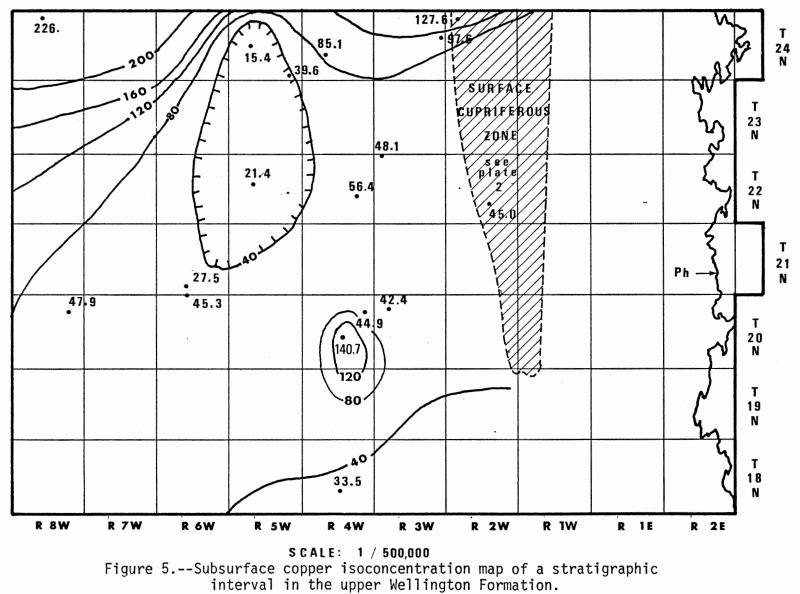
The surface geochemical map of Noble County (Pl. 2) was produced by the students of an exploration geochemistry class at Oklahoma State University in 1975. Stream sediment samples were taken at a density of one per square mile. The bulk of the samples had copper concentrations

of less than 20 ppm. Three anomalous values of greater than 40 ppm were found in the northwest part of the county at the following locations: SW_4 sec. 9, 23N. 1W.; NE $\frac{1}{4}$ sec. 32, 23N. 2W.; and NE $\frac{1}{4}$ sec. 12, 22N. 1W.

These anomalous copper values are located within the outcrop area of non-red mudstones, siltstones, and algal-mat boundstones of the Upper Wellington Formation. These are the Midco, Billings Pool, and Antelope Flats members of Raasch's (1936) measured section (Pl. 1).

Locations where surface occurrences of galena, barite, and copper minerals have been reported are also plotted on Pl. 2. These are all found near the upper Midco member - lower Billings Pool member contact with the exception of some malachite found by Shelton (1979) just above the Herington Limestone near the eastern edge of the county.

It is interesting to note that in terms of their stratigraphic position, the barite rosettes which occur at the base of the Garber Sandstone in Cleveland and Oklahoma Counties (Fig. 2), and the barite and malachite-bearing Milan Dolomite in south-central Kansas, are located just above the cupriferous horizon in the upper Wellington Formation.


The correlation sections (P1. 3-6) extend correlation of the cupriferous horizons in the upper Wellington Formation into the subsurface by combining the log plots of copper, lead, and zinc concentrations (ppm) from well cuttings with lithological percentage logs and electric logs. As with surface samples, the high concentrations correspond to the zone of non-red, relatively less oxidized strata, which comprise grey-green, maroon, black, and gray shaley mudstones and siltstones and algal-mat boundstones.

The subsurface geochemical data from the 15 wells analyzed that penetrated the upper Wellington Formation, is further summarized by a copper isoconcentration map (Fig. 5). The ppm values used in Fig. 5 are the means for the copper concentrations obtained from samples within a stratigraphic interval which sometimes contain cupriferous strata and is correlated to be the upper Midco member, the Billings Pool member and the base of the Antelope Flats member of the Wellington Formation. This interval ranges from 180 to 300 feet in thickness. Additional data relevant to Fig. 5 including the depths of the intervals averaged, the number observations, and the ppm values for copper, lead, zinc, manganese, and barium are tabulated in Appendix D.

The highest mean copper values for this interval are 226.0 ppm for Well #1 (sec. 4 to 24 N. R. 8W.) and 140.7 ppm for Well #17 (NW4, sec. 22, to 20N. R. 4W.). The value for copper in Well #17 was considerably reduced by the selective removal of sulfide grains for thin section mounting (see Chapter V). Fig. 5 clearly shows that the overall trend of copper values increase in a northward direction with the exception of Well #17.

Since each of the samples analyzed consisted of assortments of rock chips of heterogenous lithology, the actual element concentrations of the respective lithologies are not known with certainty. Therefore, four groups of samples composed of chips typical of two distinctive lithologies were segregated by hand and analyzed. The segregated lithologies were gray mudstone and red mudstone, cornstone and red claystone, limestone and mudstone, and gypsum and mudstone. The results are shown in Table II.

The test showed that copper is about 50% higher in the gray

ЗО

mudstone than the red mudstone while the cornstone has 500% more copper than red claystone from the same sample. The limestone sample (the Herington Limestone, Well #12, Pl. 4) contained an anomalous copper concentration of 699 ppm. However, no copper mineralization was detected visually.

	Cu	Pb	Zn	Mn	Ba	Ag	Cd	Со
Gray Mudstone	14	10	43	880		2.5	2.0	48
Red Mudstone	9	7	45	280		2.0	1.0	35
Cornstone	21	0	15	250	848	1.0	0.5	30
Red Claystone	3.5	15	25	685	200	0.5	0.5	40
Limestone	699	60	28	1830	470	2.5	2.0	80
Mudstone	15	30	42	1770	280	1.0	1.0	60
Gypsum	. 7	15	28	7		3.2	2.5	25
Mudstone	24	20	45	420		2.8	2.2	14

TABLE II

ANALYSES OF LITHOLOGY/COLOR SEGREGATED SAMPLES (PPM)

Zinc and lead values are not significantly different in the red and gray mudstone samples, and these elements are only slightly more concentrated in red claystone over cornstone and mudstone over gypsum.

Manganese concentrations in gray mudstone are more than 200% greater than those from mudstone. Gypsum, an orthochemical precipitate, contains lower concentrations of all of the five major elements analyzed, especially manganese which is virtually absent in gypsum. Manganese concentrations are low in cornstones segregated from red claystone, but manganese values from limestone and mudstone segregates are similar.

Barium, like copper, is concentrated in cornstone over red claystone and limestone over mudstone.

Interpretation of Statistical Data

The number of observations, mean, median, minimum value, maximum value, standard deviation and coefficient of variation of the samples analyzed during this study are listed in Table III.

The sample mean, \overline{X} , describes the central tendency or average of the sample population. It is calculated as

$$\overline{\mathbf{X}} = \frac{\Sigma \mathbf{x};}{\mathbf{n}}$$

where Σx refers to the sum of a given set of values and n is the number of values.

The standard deviation, s, describes the dispersion about the mean. It is calculated from the sample variance, s^2 , as

$$s = + \sqrt{s^2}$$

where the sample variance is calculated as

$$s^{2} = \frac{\Sigma(x; -\overline{X})^{2}}{(n - 1)}$$

where Σx refers to the sum of a given set of values and n is number of values.

TAE	BLE	II	I

Element	Ν.	Mean	Median	Min. Value	Max. Value	Standard Dev.	Coef. of Var.
Cu	884	32.26	16.5	2	1000	72.68	2.253
РЬ	886	33.29	20	0	2580	118.58	3.562
Zn	886	52.13	40	10	950	51.79	.9934
Mn	757	615.12	495	3	4120	459.54	.7471
Ba	290	249.95		21	4428	297.29	1.193
Ag	294	2.41		0.2	12.0	1.35	.560
Cd	294	2.04		0.0	8.0	1.19	.5833
Со	283	36.32		5	760	45.46	1.252

MODAL ANALYSES OF ELEMENT CONCENTRATIONS (PPM)

The coefficient of variability is an indication of the degree of skewness of the population. It is calculated as

$$C = \frac{x}{X}$$

The coefficient of variation is greater than one for the lead, (3.562), copper (2.253), and barium (1.193) concentrations. These high coefficient of variation values are the result of the positive skewness of the population caused by the presence of a mineralized population. The higher value for lead than copper is caused by two extreme values of 2580 ppm and 2350 ppm.

The distribution of trace elements in the earth's crust tends to be log-normally rather than normally distributed (Ahrens, 1965). This means that when the population is plotted on frequency distribution histograms they will appear positively skewed on an arithmetic scale and approximately normally distributed when plotted on a logarithmic scale (Ahrens, 1965).

Grouped frequency distributions for the elements copper, lead, zinc, manganese, and barium are plotted on a histogram with a log₁₀ scale (Fig. 6).

Fig. 6 indicates that the copper analyses contain two populations. The grouped mode of the larger population (15-20 ppm) corresponds to the values of the red mudstone and gypsum-rich samples. The smaller peak at 50-63 ppm corresponds to the values for the non-red, lessoxidized Wellington strata.

The lead population (Fig. 6) is less dispersed than that for copper and approaches a log-normal distribution with a grouped modal peak of 20-25 ppm. Small negative peaks for both copper and lead are caused by

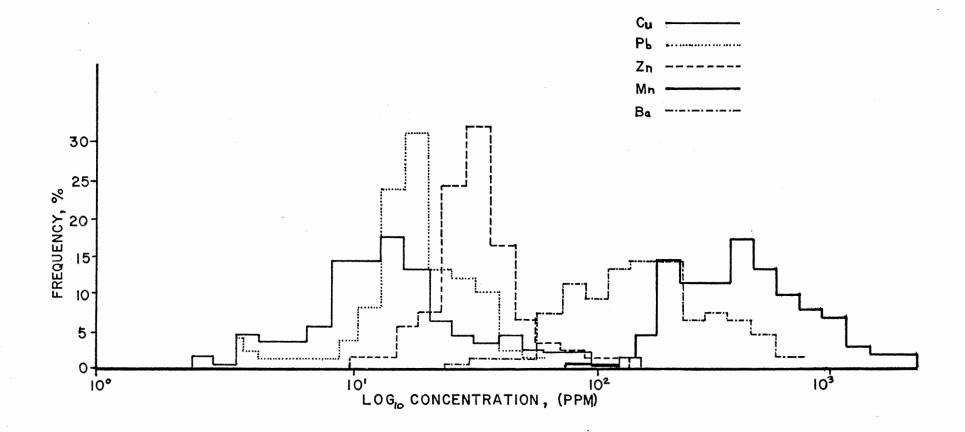


Figure 6.--Frequency distribution histograms of PPM concentrations for copper, lead, zinc, manganese, and barium.

З£

the lack of resolution of the instrument at low values near the limit of detection.

Zinc (Fig. 6) exhibits the most narrow dispersion of the five elements analyzed with a modal peak of 36-45 ppm.

Manganese shows a bimodal distribution with a grouped modal peak at 447-562 and a secondary peak at 224-282 ppm. The low-manganese population represents the samples diluted with manganese-poor gypsum. High manganese values are associated with sandstones and siltstones particularly the Garber Sandstone and the sandy facies of the Wellington towards the south.

The histogram for barium (Fig. 6), like lead, is affected by the low sensitivity of the atomic absorption spectrophotometer at element values close to its detection limits. Barium shows a modal peak ranging between 178 ppm and 282 ppm. The secondary peaks, 89 ppm to 112 ppm and 447 ppm to 562 ppm, are partly created by rounding errors. Barium, to a lesser degree than manganese, is characterized by concentration in the arenaceous samples and dilution in gypsiferous samples.

Determination of the threshold value or dividing line between the background population and the anomalous population is not possible if the overlap is too great (Brooks, 1972). The most accurate means of determining the threshold value is to plot cumulative frequency on probability paper (Tennant and White, 1959). Each population should be represented by a straight line if the population is log-normally distributed and a log-normal scale is used for the abscissa. The break in slope is taken as a threshold value.

The cumulative frequency plot for copper (Fig. 7) indicates the presence of three populations segregated by breaks in the slope of the

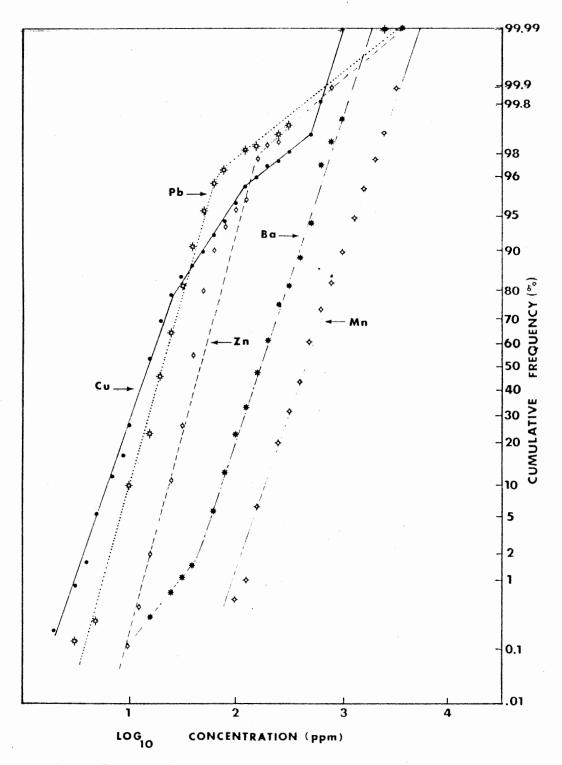


Figure 7.--Cumulative frequency plots of PPM concentrations for copper, lead, zinc, manganese, and barium.

line at 25 ppm and 125 ppm. The less-than-25 ppm population consists of copper-poor, red mudstone and gypsum-bearing samples. The 25 ppm to 125 ppm population consists of the unmineralized, non-red mudstone and carbonate-bearing samples which would have a higher background content of copper. The samples greater than 125 ppm are the mineralized population.

Two analyzed wells (#1 and #17), which contain prominent visible copper mineralization, are the only wells with values above the threshold for the interval averaged for the copper isoconcentration map (Fig. 5). Minor copper anomalies are also associated with the Herington Limestone interval.

Lead and zinc (Fig. 7) show breaks in the cumulative frequency plots at 60 ppm and 75 ppm, respectively (Fig. 7). Lead and zinc show smaller anomalous populations than copper. The high lead and zinc values are usually found below the cupriferous zone in the Wellington Formation. Lead anomalies are more erratic than zinc anomalies. Two very high lead anomalies occur 2580 ppm (Well #17 at 190 feet in Garber Sanstone, 250 feet above copper anomalies with visible mineralization in the upper Wellington Formation) and 2350 ppm (Well #10 at 520 feet, associated with high zinc values and below a copper zone at 380-500 feet), but lead mineralization was not visible in either sample. Zinc anomalies are more subdued than lead but in a zone 20-300 feet beneath the copper anomalies.

Barium and manganese (Fig. 7) lack a break-in-slope indicative of an anomalous population. Both elements had, however, minor breaks-inslope at the low-concentration end of the scale caused by the trace element-poor, gypsum-rich samples.

Cadmium, silver, and cobalt determinations were run for selected samples. No significant anomalies were detected. Cadmium values correlated best with zinc while silver correlated best with copper. Cobalt values are very narrowly dispersed. There a single anomalous cobalt value (760 ppm) associated with a high barium (4480 ppm) and high copper (680 ppm) concentration.

CHAPTER V

ORE PETROGRAPHY

Twelve thin sections representing a zone of mineralization in the upper Wellington Formation, from Well #17 section 22, T. 20N. R. 4W., were made of selected grain mounted chips. These sections show pyritic replacement of wood fragments, spores, and disseminated organic matter in calcareous siltstone and algal-bound, argillic dolomite. In some grains the sulfides occur as nodules impregnating very fine grained sandstone. The wood fragments and spores, which were not completely replaced, have also undergone some coalification.

Fig. 8 shows the polished grain of chalcocite-anilite replacing pyrite which was analyzed by microprobe analysis. The mineral composition of this grain as determined by microbe analysis is given in Table IV. The analysis used the Magic IV-Colby computer program on the AMX Model ARL Microprobe Spectrometer.

The microprobe analysis indicates that the copper sulfide mineral is not true chalcocite but a mixture of djurleite ($Cu_{1.96}S$) and anilite ($Cu_{1.75}S$). Anilite, a newly discovered mineral (Morimoto and Koto, 1969), has not previously been reported in North America. However, the anilite-djurleite mixture, which is the only form in which anilite is known to occur, has probably been reported as digenite ($Cu_{1.8}S$) (Morimoto and Koto, 1970). Anilite-djurleite mixtures occur in the CuS-CuS₂ system and are associated with covellite (CuS) (Morimoto and Gyobu (1971).

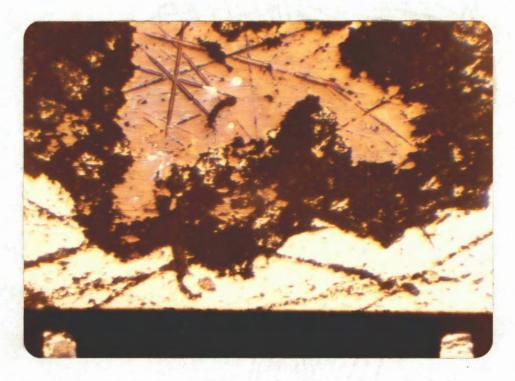


Figure 8.--Djurleite-anilite replacing pyrite. Dark areas are caused by pitting. Polished section, X100.

TABLE IV

	Weight %					
Mineral	Cu	Fe	Zn	S	Total %	Calculated Composition
Pyrite	.53	43.80		55.67	101.53	^{Fe} (903) ^{Cu} (.01) ^S
Pyrite	.79	45.40		53.81	100.00	^{Fe} (.968) ^{Cu} (.01) ^S
Pyrite	.67	46.20		55.13	100.00	^{Fe} (.998) ^{Cu} (.01) ^S
Anilite	75.26	.44	.18	24.13	100.01	^{Cu} (1.574) ^{Cu} (.01) ^S
Djurleite	79.08	.58		20.31	99.97	^{Cu} (1.96) ^{Fe} (.02) ^S

MICROPROBE ANALYSIS OF PYRITE, ANILITE AND DJURLEITE

. <u>-</u> ·

The calculated analysis for anilite of $Cu_{1.574}$ S is below the acceptable range $Cu_{1.70-1.77}$ S for anilite. The variance might be caused by the presence of covellite. Positive identification of anilite in the slide would require x-ray diffraction.

Morimoto and Koto (1970) report that anilite is the stable phase at room temperature, while above $70^{\circ}\pm3^{\circ}$ C anilite breaks down to high digenite and covellite. Clark and Sillitoe (1971) report that anilite from the Mina Estrella, Atacama, Chile, breaks down at 58° C to a digenite-type solid solution series. The presence of anilite in the slide, however, does not necessarily indicate a formation temperature of less than 58° C, since digenite is metastable at room temperatures and breaks down to form an anilite-digenite mixture unless a sufficient amount of iron is present in the crystal (Morimoto and Gyobu, 1971). Visible copper mineralization in Wells #1 and #2 differ from that of Well #17 in that the host rock is relatively free of sand and siltsized particles. The host rocks are light gray, algal-bound dolomicrites that occur as thin units interbedded with gray, shaley mudstone. The carbonate has undergone some recrystallization along vein and fracture fillings. The chalcocite occurs with quartz and pyrite as fillings of vugs and veinlets in the micrite and as very fine-grained disseminations in the micrite.

CHAPTER VI

THE NATURE AND ORIGIN OF COPPER MINERALIZATION IN THE UPPER WELLINGTON FORMATION

The Permian Stratiform Copper Province of Texas, Oklahoma, and Kansas

The overall characteristics of the Wellington Formation and the copper mineralization it contains exhibit similarities to a number of stratiform "red bed" copper deposits from around the world. In particular the Wellington is a part of cupriferous province in the Permian strata of Texas, Oklahoma, and Kansas.

Stroud and others (1970) grouped the Permian copper deposits of Texas into three zones: (1) channel scour deposits, (2) alluvial fan or deltaic deposits, and (3) lagoonal (basinal) deposits. Copper in the sandstones was found to be concentrated in fossilized wood, other plant material, and sometimes gypsum, at or near, the base of sandstone beds underlain by impermeable beds of mudstone or shale (Stroud and others, 1970). They found the sandstone-type deposits to be of more limited lateral extent than the shale-type deposits although the sandstone-type may have higher ore grades.

Smith (1974) reevaluated the sedimentological interpretation of Stroud and others (1970). He considered the "lagoonal" deposits to be tidal flat, algal-bound shale beds; the "alluvial channel scour" deposits to be tidal channel deposits; and the "alluvial fan or deltaic"

deposits to be a combination of basal tidal channel fill, delta frontdistributary bar, and tidal sandflat sandstone beds. Smith (1974) found mineralization to occur as chalcocite replacing pyrite with minor covellite replacing chalcocite.

At the Creta deposit in southwestern Oklahoma, copper mineralization in the Flowerpot Shale is confined to 6- to 18-inch, gray, silty shale capped by a thin gypsum bed and enclosed in a "red bed" sequence (Johnson, 1976). A tidal flat with an arid climate was probably the depositional environment, although Johnson (1976) postualtes the Flowerpot Shale was deposited under brackish-to-marine conditions. Mineralization occurs as digenite ($Cu_{1.8}S$) and true chalcocite replacing pyrite, with minor replacement of chalcocite-digente by covellite (Hagni and Gann, 1976). A limited occurence of chalcopyrite is found a few feet above principal chalcocite zone and rare galena occurs 6 feet above chalcocite zone (Kidwell and Bower, 1976). The Magnum deposit, 15 miles north of Creta, is stratgraphically several feet higher in the Flowerpot Shale. It contains malachite rather than chalcocite as the principal ore mineral. It is considered an oxidized analogue of the Creta deposit (Lockwood, 1972).

A copper-silver deposit occurs in sandstone paleochannels in the Wellington/Garber Formations at Paoli in Garvin County, Central Oklahoma (Shockey and others, 1970; Stroud and others, 1970). Mineralization occurs as a solution front at an oxidation-reduction interface which is virtually identical to uranium roll fronts in sandstones (Shockey and others, 1970). Chalcocite and native silver are the ore minerals (Shockey and others, 1974). A similar copper-silver deposit in sandstone occurs nearby in Byers in McClain County. Barite occurs as a

gangue mineral at this deposit (Stroud and others, 1970).

Heine (1975) followed a classification similar to Stroud and others (1970) in describing deposits of the Wolfcampian Series of Payne and southeastern Noble Counties of Oklahoma. He found most of these small deposits to be of the "deltaic-interdeltaic" type hosted by sandstones. The ore mineral was malachite (Heine, 1975).

Copper occurrences in the Permian of south-central Kansas are concentrated in two stratigraphic horizons, - the Milan Dolomite, the uppermost member of the Wellington Shale (Long and Angino, 1975; Waugh and Brady, 1976); and Runnymede Sandstone Member of the Ninnescah Shale (Waugh and Brady, 1976). Host rocks are argillic dolomitic in the Milan Dolomite (Long and Angino, 1975), and gray or gray-green shale or siltstone in the Runnymede Sandstone (Waugh and Brady, 1976). Long and Angino (1975) found the principal ore minerals to be chalcocite and covellite with malachite as an oxidation product. Only malachite and azurite were found by Waugh and Brady (1976).

Some of the copper mineralization studied here, in the Wellington Formation, is associated with sand-rich facies in the south. However, most of the mineralization was found in the north occurring in algalbound, shaley dolomites similar to the occurrences in Kansas.

> Significant Characteristics of Copper Mineralization in the Wellington

Formation

Interpretation of the lithostratigraphic, geochemical and petrographic data indicates that the occurrences of copper mineralization in the upper Wellington Formation exhibit the following significant characteristics:

- Copper mineralization occurs in a relatively less oxidized stratigraphic interval than the overlying "red beds" and the underlying evaporite beds;
- Copper mineralization is hosted by laminated, clay-rich, algal-mat dolomites green, gray, and black dolomitic shaley mudstones with thin interstratified, fine-grained sandstone layers;
- The mean copper content in the mineralized stratigraphic interval increases in a northward direction.
- Increase in copper content is related to a decrease in coarse clastics and a concurrent development of organic-rich algalmat dolomites and non-red, less oxidized mudstones.
- 5. Comparison of the copper isoconcentration map (Fig. 5) with the structural contour map (Fig. 4) fails to show any spatial relationship between copper content and structural elements in the area such as faults or flanks of anticlines.
- 6. No alteration of the host rock has been noted and no gangue minerals are associated with the copper zone (although barite is common in the area).
- A poorly defined zonation of lead and zinc content occurs in the strata beneath the copper-rich zone.
- 8. Copper mineralization is localized by organic-rich material such as plant debris and the organic-rich layers of algalbound or stromatolitic dolomites, and also by sharp permeability changes along the contact between mudstone and thin, interbedded sandstone layers.
- 9. In thin section the copper sulfides are seen to replace pyrite

crystals and coalified spores and wood fragments.

10. The copper sulfides were tentatively identified as anilite and djurleite mixtures, low temperature varieties of the chalcocite family.

Genetic Models for Copper Mineralization in the Wellington Formation

Several postulated genetic models for stratiform "red bed" copper mineralization were compared with copper mineralization in the Wellington Formation. Each model was evaluated by determining which best predicts the data collected in this study. The models can be grouped into three categories: epigenetic, syngenetic, and diagenetic.

Epigenetic Model

Evidence for an epigenetic origin of mineralization could be inferred from localization or enrichment of deposits along favorable sites such as faults, or the flanks of anticlines according to the model of Davidson (1965). Such structural control would indicate that the mineralization post-dated lithification and deformation of the host rock. Germanov (1971) and Feostakov (1973) report that the Dzhezkazgan deposits of southeastern Russia occur on the flanks of anticlines.

No correlation was found, however, between structural features and copper content in the area studied (see characteristic 5 above). For example, Wells #10 and 11 on the flank of a faulted anticline in T. 22N. R. 3-4W. show relatively little mineralization. On the other hand wells with visible copper mineralization are not located near any tectonic structures. Facies, rather than structural control of mineralization; lack of evidence of an igneous intrusion at depth or hydrothermal alteration; and the low temperature variety of chalcocite (anilite-djurleite) tentatively identified by microprobe analysis, all argue against an epigenetic origin for the copper mineralization in the upper Wellington Formation.

Syngenetic Model

The similar stratiform geometry, lithostratigraphy and depositional environments for the host rocks of "red bed" copper deposits throughout the world have led workers to conclude that the "Corocoro" of Bolivia (Entwistle and Goin, 1955; Ljunggren and Meyer, 1964) and "Kupferschiefer" of central Europe (Wedepohl, 1964), and the Zambian "Copperbelt" (Mendelsohn, 1961) cupriferous provinces were formed syngenetically.

There is a close resemblance between the lithostratigraphy of the Wellington Formation and that of these three provinces. One significant difference, however, is that in the "Corocoro", "Kupferschiefer", and "Copperbelt" thick evaporites overly the copper zone. This is the reverse of the regressive sequence of the Wellington Formation.

A stratigraphic zonation of copper succeeded upwards by lead and then zinc occurs in the "Kupferschiefer" according to Wedepohl (1964), and in the "Copperbelt" according to Mendelsohn (1961). These workers concluded that the metal zonation was created by deposition in marine environments successively further from the shorline.

From 80% to 90% of the copper in present day fresh water systems is deposited at or near the fresh water/salt water interface according to Rickard (1974). He found a considerable enrichment of the copper/ transition metal ratio in the near shore sediments compared to their ratios in nearby freshwater streams from which the sediments were deposited. A zonation of copper, lead, and zinc is found in modern nearshored sediments with copper being most enriched nearest to shore (Rickard, 1974).

Since the Wellington Formation is a regressive sequence then the sequence of copper-lead-zinc zonation should be reversed if the zonation was syngenetically formed. Chemical analysis of the well cuttings (Appendix C) indicates that the lead and zinc are zoned beneath copper (although the data is more consistent for zinc than for lead). However, a diagenetic or epigenetic model could explain the reversal in the order of metal zonation as the result of a reversal in the direction of movement of mineralizing fluids which probably emanate from the associated evaporite beds (Rose, 1976; Davidson, 1965; Brown, 1974). Therefore, this evidence in favor of the syngenetic model is inconclusive.

The syngenetic model provides a mechanism for a relative increase in copper through changes in depositional facies, but it does not explain the concentration of ore grade copper mineralization.

Rickard (1973) attempted to extend the model of Berner (1964) on the formation of syngenetic pyrite at the sediment/water interface to the formation of syngenetic non-ferrous sulfides. He concluded that the only source for increasing the non-ferrous metal supply above the concentration found in normal sea water is vulcanism contemporaneous with the formation of the sulphides. Although vulcanism is associated with most of the important red bed copper deposits in the world, there is no evidence for the presence of vulcanism in the Permian System of the Midcontinent.

Therefore, with the possible exception of low level anomalies in which no mineralization was detected, the syngenetic model cannot account for the high copper contents in the Wellington Formation.

Diagenetic Models

Formation of copper mineralization by diagenesis involves only the operation of the normal processes of lithification of the sediments without invoking a volcanic, magmatic, or unusual synsedimentary event as the mechanism for copper concentration.

The replacement textures (characteristics 9 and 10 above) seen under the microscope are clearly diagenetic. Similar replacement of syngenetic or early digenetic pyrite by diagenetic chalcocite has been reported from most stratiform copper deposits around the world including the Creta Mine of southwestern Oklahoma (Hagni and Gann, 1976), and the San Angelo Formation of north Texas (Smith, 1974).

The major copper reservoir in the Earth's hydrosphere is subsurface water which averages about 13 ppb copper (Rickard, 1974). While making up only 13% of the hydrosphere, subsurface water contains about 58% of the mass of the hydrosphere's copper (Richard, 1974). Furthermore, subsurface water of the Na-Ca-Cl type characteristic of oilfield brines contains copper concentrations averaging 250 ppb (Richard, 1974). Carpenter and others (1974) found that oilfield brines associated with the Louann Salt of Mississippi have had extremely high concentrations of lead and zinc capable of producing Mississippi Valley-type lead-zinc deposits.

Stability studies by Helgeson (1969) have shown the copper chloride complexes become increasingly stable with increasing temperature and chlorinity. Rose (1976) concluded that copper chloride complexes $(CuCl_3^{-2} \text{ and } CuCl_2^{-1})$ could produce solubilities of 100/ppm copper at 75°C and 0.5^M Cl. Such a chloride brine, similar to oilfield brines

but more oxidized, would be in equilibrium with hematite and could precipitate copper upon encountering reducing conditions. Dewatering of statigraphically associated evaporites could be the source of chlorine in the brines. The oxidation of iron in the sediments to form hematite could release copper, thus providing a source of copper to be leached by the chloride brines.

Rose (1976) emphasizes the importance of the stratigraphic association of copper mineralization with evaporites. In the southern part of the study area Well #17 contains visible copper mineralization in the upper Wellington Formation which is not present in the surrounding wells studied. It likewise contains a thicker sequence of gypsum beds developed beneath the copper mineralized zone than the surrounding wells.

Renfro (1974) suggested that the early diagenetic processes by which coastal sabkhas are formed is a mechanism by which copper mineralization occurs in stratiform deposits associated with evaporties. In the arid sabkha environment saline, landward-flowing, oxidized, metalrich ground water would pass through the algal-mat facies underlying the sabkha to reach the surface. The algal-mat facies is generally saturated with hydrogen sulfide generated by bacteria. Smith (1974) found this model best explained the facies-controlled mineralization in the Permian San Angelo Formation of north Texas.

The environment of deposition postulated by Smith (1974) for the San Angelo Formation of north Texas is striking in similarity to Shelton's (1974) interpretation of the depositional environment of the Wellington Formation in Noble County. Both formations were deposited upon a tidal flat with an arid climate and consist of a number of subfacies with mudrich, sand-rich, gypsiferous and dolomitic lithologies. It is likely

that reexamination of the sedimentology of other stratiform copper deposits may lend support to the sabkha diagenetic model.

Diagenetic models best account for the data on copper mineralization in the Wellington Formation. Two diagenetic models have been reviewed, the sabkha diagenetic model of Renfro (1974) and Smith (1974), and the chloride brine-late diagenetic model of Rose (1976). Several lines of evidence favor the chloride brine-late diagenetic model for copper mineralization in the upper Wellington Formation:

- The replacement of sizable pyrite and coalified wood fragments and spores is probably a late diagenetic event;
- Subsurface chlorite brines can leach copper from the sediments through which they migrate and carry more copper in solution than less saline, near surface waters flowing through sabkhas;
- 3. The sabkha model is too specialized, It only accounts for the mineralization of the algal-mat facies in the tidal flat environment.

CHAPTER VII

CONCLUSIONS

The principal conclusions of this study are as follows:

- 1. The Wellington Formation in the subsurface of Noble and Garfield Counties is a part of a regressive sequence in which deposition occurred in a tidal flat environment with an arid climate, transitional from marine to terrestrial, and which includes a number of subenvironments with sandrich, mud-rich, gypsiferous, and dolomitic lithologies. The Wellington tidal flats were more sand rich to the south and more mud-rich and dolomitic to the north. Regressive desiccation cycles produced rapidly deposited, evaporite sequences during their saline phases in sabkhas, which thicken greatly in a westward direction.
- 2. Copper mineralization occurs in the upper Midco, Billings Pool, and lower Antelope Flats members of the Wellington Formation, which are relatively less oxidized than the overlying "red beds" and the underlying evaporites. It is hosted by laminated, clay-rich, algal-bound dolomites, and green, gray and black, dolomitic shaley-mudstones with thin interstratified sandstone.
- 3. The mean copper content of the mineralized stratigraphic interval increases in a northwards direction. It is related

to a decrease in the volume of coarse clastics, the concurrent development of organic-rich dolomitic algal-mat boundstones and non-red, less oxidized mudstones.

- No correlation was found between structural features and copper content in the area studied.
- 5. The cumulative frequency distribution of the chemical analyses of well cuttings indicated that copper was distributed into three populations in the strata examined: low-copper red mudstone and gypsiferous strata, 0-25 ppm; non-red mudstone and carbonate strata, 25-125 ppm; and mineralized strata, greater than 125 ppm.
- High lead and zinc values usually occur below the cupriferous zone in the Wellington strata. However, lead anomalies are more erratic than zinc anomalies.
- 7. Only one barium anomaly and no manganese anomalies were detected. Both barium and manganese had high concentrations in sand-rich lithologies and low concentrations in gypsum-rich lithologies.
- Mineralization is localized by organic material such as wood fragments, spores, and other plant debris, which have been partly coalified, and the dark layers of algal-bound dolomites.
- The copper minerals present are apparently djurleite and anilite, low temperature members of the chalcocite sulfie family.
- 10. The origin of copper mineralization is best accounted for by a diagenetic model proposed by Rose (1976) in which copperrich chloride brines emanating from the underlying evaporite

beds precipitated copper upon encountering reducing conditions in organic-rich beds in the upper Wellington Formation.

.

BIBLIOGRAPHY

- Adkison, W. L., 1960, Subsurface cross-section of Paleozoic rocks from Barber County, Kansas, to Caddo County, Oklahoma: U. S. G. S. Oil and Gas Inventory Chart ^{OC} 61, 2 sheets.
- Ahrens, L. H., 1965, Distribution of the elements in our planet: New York, McGraw-Hill, 110 p.
- Al-Shaieb, Zuhair and others, 1977, Evaluation of uranium potential in selected Pennsylvanian and Permian units and igneous rocks in southwestern and southern Oklahoma: Report for Bendix Field Engineering Corporation Subcontract 76-024-E.
- Anderson, G. E., 1941, Origin of the line of color change in red bed deposition: G. S. A. Bull., v. 52, p. 211-218.
- Annels, A. E., 1974, Some aspects of the stratiform ore deposits of the Zambian Copperbelt and their genetic significance: in Bartholome, P. (ed.), Gisements Stratiforms et Provinces, Cupriferes, Liege, Soc. Geol. de Belgique, p. 235-254.
- Aurin, R. L. and others, 1926, The subdivisions of the Enid Formation: A. A. P. G. Bull., v. 10, p. 786-799.
- Bale, H. E. and G. C. Williams, 1955, The granite ridge of Oklahoma: Shale Shaker, v. I-V, p. 34-35.
- Bathurst, R., 1975, Carbonate sediments and their diagenesis, 2nd ed.: Amsterdam, Elsevier, 658 p.
- Barton, P. B., Jr., 1967, Possible role of organic matter in the precipitation of Mississippi Valley ores: Brown, J. S. (ed.) Genesis of Stratiform Lead-Zinc-Barite-Fluroite Deposits, a symposium, Econ. Geol. Monograph 3, p. 371-378.
- Bass, N. W., 1929, Structure and limits of salt beds in Kansas: Kansas Geol. Survey, Bull. 12, 203 p.
- Berner, R. A., 1964, Iron sulfides formed from aqueous solution at low temperature and atmospheric pressure: Jour. of Geol., v. 72, p. 293-306.

, 1964a, The synthesis of framboidal pyrite: Econ. Geol., v. 64, p. 383-384.

- Billings, R. L., 1956, Geology of eastern Noble County: unpub. M. S. thesis, University of Oklahoma.
- Bogdanov, Y. V., 1967, The role of sedimentation water in the formation of stratified copper deposits: Doklady Akad. Nauk SSSR, v. 176, p. 70-72.
- Brooks, R. R., 1972, Geobotany and Biogeochemistry in mineral exploration: New York, Harper, 290 p.
- Brongersma-Saunders, M., 1969, Permian wind and the occurrences of fish and metals in the Kupferschiefer and Marl Slate: in James, C. H. (ed.), Sedimentary ores, ancient and modern (revised), Proc. of the 15th Interuniversity Geol. Conf., Spec. Paper, No. 1, Dept. of Geol., Univ. of Leichester, p. 61-72.
- Brown, A. C., 1971, Zoning in the White Pine copper deposit, Ontonagon County, Michigan: Econ. Geol., v. 66, p. 543-573.
- Brown, A. C., 1974, An epigenetic origin for the stratiform Cu-Pb-Zn sulfides in the lower Nonsuch Shale, White Pine Michigan: Econ. Geol., v. 69, p. 274-271.
- Butler, G. P., 1969, Modern Evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf: Jour. of Sed. Pet., v. 39, p. 70-89.
- Carlson, K. J., 1968, The skull, morphology and estivation burrows of the Permian lungfish, Gnathorhiza Serrata: Jour. Geol., v. 76, p. 641-663.
- Carpenter, A. B., M. L. Trout, and E. Pickett, 1974, Preliminary report on the origin and chemical evolution of lead and zinc rich oil field brines in Central Mississippi: Econ. Geol., v. 69, p. 1191-1206.
- Chuckhrov, F. V., 1973, On mineralogical and geochemical criteria for the genesis of red beds: Chem. Geol., v. 12, p. 67-75.
- Clark, G. C. and C. L. Cooper, 1927, Kay, Grant, Garfield and Noble Counties: in Oil and Gas in Oklahoma, Okla. Geol. Survey Bull. 40, v. 2, p. 67-104.
- Clark, A. H. and R. H. Sillitoe, 1971, Supergene anilite from Mina Estrella (Slado) Atacama, Chile: Neues Jahr. Min. Mh., v. 5, p. 515-523.
- Dall'Aglio, M., 1972, Planning and interpretation procedure in hydrogeochemical prospecting for uranium: in Bowie, S. H. (ed.) Uranium prospecting handbook, London, Inst. of Min. and Met., p. 121-133.
- Davis, J. C., 1973, Statistical analysis in geology: New York, John Wiley, 550 p.

Davidson, C. F., 1965, A possible mode of origin of stratabound copper ores: Econ. Geol., v. 60, p. 942-954.

- Decker, C. E., 1938, A Permian eurypterid from Oklahoma: Jour. of Paleon., v. 12, p. 396-397.
- Dingess, P. R., 1976, Geology and mining operations at the Creta copper deposit of Eagle-Pitcher Industries, Inc.: in Johnson K. and R. L. Croy, (eds.), Strataform copper deposits of the Midcontinent region, a symposium, Okla. Geol. Survey Circ. 77, p. 15-24.
- Donovan, R. N. and A. J. Hall, 1978, Origin of complex sulfide nodules related to diagenesis of Lacustrine Sediments of Middle Devonian Age from Shetland Islands, Scotland: Scot. Jour. of Geol., v. 14, p. 289-299.
- Dunbar, C. O. and others, 1960, Correlation of the Permian formations of North America: G. S. A. Bull., v. 71, p. 1763-1806.
- Dunham, K. C., 1964, Neptunist concepts in ore genesis: Econ. Geol., v. 59, p. 1-21.
- Entwistle, L. P. and L. O. Goin, 1955, The chalcocite deposits at Corocoro Bolivia: Econ. Geol., v. 50, p. 555-570.
- Fambrough, J. W., 1963, Isopach and lithofacies study of the Virgilian and Missourian series of north-central Oklahoma: Shale Shaker, v. 13, n. 5, p. 2-23.
- Fath, A. E., 1915, Copper deposits in the "red beds" of southwestern Oklahoma: Econ. Geol., v. 10, p. 140-150.

_____, 1916, An anticlinal fold near Billings, Noble County, Oklahoma: U. S. G. S. Bull. 641, p. 121-138.

Fay, R. O., 1964, The Blaine and related formations of northwestern Oklahoma and southern Kansas: Okla. Geol. Survey Bull. 98, 238 p.

_____, 1975, A possible origin for copper in Oklahoma: Okla. Geology Notes, v. 35, p. 151-153.

- Feokistov, V. P. and G. G. Kochin, 1973, Certain distinctions in localization of stratified deposits of Cu: in translation, Inter. Geol. Rev., v. 14, p. 1138-1146.
- Fischer, R. P., 1937, Sedimentary deposits of copper-vanadium-silver in the southwestern United States: Econ. Geol., v. 32, p. 906-951.

and J. H. Stewart, 1961, Copper, vanadium and uranium deposits in sandstone--the distribution and geochemical cycles: Econ. Geol., v. 56, p. 509-520.

- Frezon, S. E. and G. H. Dixon, 1967, Texas Panhandle and Oklahoma: in McKee, E. D. and others. Paleotectonic investigations of the Pennsylvanian System in the United States, U. S. G. S. Prof. Paper 515, p. 174-195.
- Fritz, R. D., 1978, Structural contour map of Oklahoma along the Wampanucka Limestone, Oswego Limestone, base of the Hoxbar Group and Checkerboard Limestone: unpub. M. S. thesis, Oklahoma State University.
- Garden, A. J., 1973, Geology of western Payne County: unpub. M. S. thesis, Oklahoma State University.
- Germanov, A. T. and others, 1971, Certain aspects of geochemistry in Dzhezkazgan: Inter. Geol. Rev., v. 13, p. 1492-1500.
- Goldschmidt, V. M., 1958, Geochemistry, 2nd ed.: London, Oxford, Univ. Press, 730 p.
- Hagni, R. E. and E. E. Gann, 1976, Microscopy of copper ore at the Creta mine, southwestern Oklahoma: <u>in</u> Johnson, K. S. and R. L. Croy (eds.), Stratiform copper deposits in the Midcontinent Region a symposium, Okla. Geol. Survey Circ. 77, p. 40-50.
- Hall, S. A., 1966, <u>Lingula</u> in the Wellington Formation (Permian) of Oklahoma, Okla. Geol. Notes, v. 26, p. 258-259.
- Ham, W. E. and K. S. Johnson, 1965, Copper in the Flowerpot Shale (Permian) of the Creta area, Jackson County, Oklahoma: Okla. Geol. Survey Circ. 64, 32 p.

and C. H. Merritt, 1944, Barite in Oklahoma: Okla. Geol. Survey Circ. 23, 42 p.

and J. L. Wilson, 1967, Paleozoic epierogeny and orogeny in the central U. S.: Am. Jour. Sci., v. 265, p. 332-407.

- Harris, S. A., 1975, Hydrocarbon accumulation in the "Meremac-Osage" Mississippian rocks, Sooner Trend northwest-central Oklahoma: A. A. P. G. Bull., v. 59, p. 633-664.
- Havens, J. S., 1977, Reconnaissance of the water resources of the Lawton Quadrangle, southwestern Oklahoma: Okla. Geol. Survey hydrogeologic atlas.
- Haworth, E. and J. Bennett, 1901, Native copper near Enid, Oklahoma: G. S. A. Bull., v. 12, p. 2-4.

Heine, R. R., 1975, Geochemistry and mineralogy of the Permian red beds and related copper deposits, Payne, Pawnee and Noble Counties, Oklahoma: unpub. M. S. thesis, Oklahoma State University.

Helgeson, H. C., 1969, Thermodynamics of hydrothermal systems at elevated temperatures: Amer. Jour. Sci., v. 267, p. 729-804.

- Hill, W. E., 1967, Copper in the red beds of south-central Kansas: Bull. of Kans. Geol. Survey, p. 13-14.
- Jacobsen, J. B. E., 1975, Copper deposits in space and time: Minerals Sci. Engng., v. 7, p. 337-371.
- Johnson, K. S., 1976, Permian copper shales of the southwestern Oklahoma: <u>in</u> Johnson, K. S. and R. L. Croy (eds.), Stratiform copper deposits in the Midcontinent region, a symposium, Okla. Geol. Survey Circ. 77, p. 15-24.
- Jordan, L. and D. L. Vosberg, 1963, Permian salt in the Anadarko Basin Oklahoma and Texas: Okla. Geol. Survey Bull. 102, 76 p.
- Kharkar, D. P., K. K. Turekian, and K. K. Bertine, 1968, Stream supply of dissolved Ag, Mo, Sb, Se, Cr, Co, Rb, Cs to the oceans: Geochim. et Cosmochim Acta, v. 32, p. 285-298.
- Kidwell, A. L. and R. R. Bower, 1976, Mineralogy and microtextures of sulfides in the Flowerpot Shale: <u>in</u> Johnson, K. S. and R. L. Croy (eds.), Stratiform copper deposits in the Midcontinent region, a symposium, Okla. Geol. Survey Circ. 77, p. 51-60.
- Kustad, R. O., P. Fairchild, and D. McGregor, 1956, Gypsum in Kansas, Kans. Geol. Survey Bull. 113, 110 p.
- LaPoint, D. J., 1976, A comparison of selected sandstone copper deposits in New Mexico: <u>in</u> Johnson, K. S. and R. L. Croy (eds.), Stratiform copper deposits of the Midcontinent region, a symposium, Okla. Geol. Surv. Circ. 77, p. 86-96.
- Levinson, A. A., 1974, Introduction to exploration geochemistry: Wilmette, Ill., Applied Publishing, 612 p.
- Livingstone, D. A., 1963, Chemical composition of rivers and lakes: <u>in</u> Data of geochemistry, U. S. G. S. Prof. Paper 440-G, 64 p.
- Ljunggren, P. and H. C. Meyer, 1964, The copper mineralization in the Corocoro Basin, Bolivia: Econ. Geol., v. 59, p. 110-125.
- Lockwood, R. P., 1972, Geochemistry and petrology of some red bed copper occurrences: unpub. Ph.D. dissertation, University of Oklahoma.
- Long, D. T. and E. E. Angino, 1975, Occurrence of copper sulfides in the (Permian Age) Milan Dolomite, south-central Kansas: Econ. Geol., v. 71, p. 656-661.
- McBride, E. E., 1974, Significance of color in red, green, purple, olive, brown, and grey beds of Difunta Group, northeastern Mexico: Jour. Sed. Pet., v. 44, p. 760-773.

Maher, J. C., 1964, Logging drill cuttings: Okla. Geol. Survey Guide Book XIV, 48 p.

- Mendelsohn, F. (ed.), 1961, The geology of the Northern Rhodesian Copperbelt: London, Macdonald, 523 p.
- Merritt, C. A., 1940, Copper in the "red beds" of Oklahoma: Okla. Geol. Survey Mineral Report, n. 8, 15 p.

and J. W. Minton, 1930, The dolomites of the Stillwater, Wellington, Garber, Hennessey and Duncan Formations: Okla. Acad. Sci., v. 10, p. 69-72.

Morimoto, N. and A. Gyobu, 1971, The composition and stability of digenite: Am. Min., v. 56, p. 1889-1909.

and K. Koto, 1970, Phase relations of the Cu-S system at low temperature: stability of anilite: Am. Min., v. 55, p. 106-117.

_____, K. Koto, and Y. Shimazaki, 1969, Anilite, Cu₇S₄, a new mineral: Am. Min., v. 54, p. 1256-1268.

- Moore, R. C. and others, 1951, The Kansas Rock Column: Kansas Geol. Survey Bull. 89, 132 p.
- Norton, G. H., 1939, Permian red beds of Kansas: A. A. P. G. Bull., v. 23, p. 1751-1819.
- Olson, E. C., 1967, Early Permian vertebrates of Oklahoma: Okla. Geol. Survey Circ. 74, 111p.

Page, P. G., 1955, The subsurface geology of southern Noble County, Oklahoma: unpub. M. S. thesis.

Parker, R. L., 1967, Composition of the Earth's crust: in Data of geochemistry, U. S. G. S. Prof. Paper 440-D, 17 p.

Patterson, J. M., 1933, Permian of Logan and Lincoln Counties, Oklahoma: A. A. P. G. Bull., v. 17, p. 241-256.

- Perkins-Elmer, 1971, Analytical methods for atomic absorption spectrophotometry.
- Pettijohn, F. J., 1963, Data of geochemistry, composition of sandstone and arkoses: U. S. G. S. Prof. Paper 440-S, 19 p.
- Pownell, L. D., 1957, Surface geology of northwestern Lincoln County, Oklahoma: unpub. M. S. thesis, University of Oklahoma.

K Raasch, G. O., 1946, The Wellington Formation in Oklahoma: unpub. Ph.D. dissertation, University of Wisconsin.

- Rascoe, B., 1962, Regional stratigraphic analysis of Pennsylvanian and Permian rocks in the west Midcontinent: Colorado, Kansas, Oklahoma, Texas: A. A. P. G. Bull., v. 46, p. 1345-1370.
- Raymond, P. E., 1944, Late Paleozoic Xiphosurans: Museum of Comparative Zoology Bull., v. 94, p. 466-497.
- Reiter, A. F., 1920, Present status of Cu-mining in Garfield County, Oklahoma: Okla. Acad. of Sci., v. 1, p. 67.
- Renfro, A. R., 1974, Genesis of evaporite associated stratiform metaliferous deposits--a sabkha model: Econ. Geol., v. 69, p. 33-45.
- Rentzsch, J., 1974, The "Kupferschiefer" in comparison with the deposits of the Zambian Copperbelt: <u>in</u> Bartholome, P. (ed.), Gisements stratiformes et provinces cupriferes, Liege, Soc. Geol. Belgique, p. 403-426.
- Rickard, D. T., 1973, Limiting conditions for synsedimentary sulfide ore formation: Econ. Geol., v. 68, p. 605-617.

, 1974, Low temperature copper geochemistry: gitological aspects: in Bartholome, P. (ed.), Gisements stratiformes et provinces cupriferes: Liege, Soc. Geol. Beligique, p. 1-34.

- Rittenhouse, G. and others, 1969, Minor elements in oilfield waters: Chem. Geol., v. 4, p. 189-210.
- Rogers, A. F., 1916, Origin of the copper ores of the "red bed" type: Econ. Geol., v. 2, p. 366-380.
- Ronov, A. B. and A. T. Ermishkina, 1959, Distribution of manganese in sedimentary rocks: trans. in Geochemistry, v. 3, p. 254-278.
- Rose, A. W., 1976, The effect of cuprous chloride complexes in the origin of red-bed copper and related deposits: Econ. Geol., v. 71, p. 1036-1048.
- Ross, J. S., 1970, Geology of central Payne County, Oklahoma: unpub. M. S. thesis, Oklahoma State University.
- Service, J., 1972, A user's guide to the statistical analysis system: Raleigh, North Carolina University Press, 260 p.
- Shelton, J., 1979, The geology and mineral resources of Noble County: Okla. Geol. Survey Bull. 128, 66 p.

Shockey, P. N. and others, 1974, Copper-silver solution fronts at Paoli, Oklahoma: Econ. Geol., v. 69, p. 266-268.

/

Smith, G. E., 1974, Depositional systems, San Angelo Formation (Permian) North Texas--facies control of red-bed copper mineralization: Texas Bur. of Econ. Geol., Rep. of Inv., No. 80, 57 p.

- Steel, R. J., 1974, Cornstone (fossil caliche), its origin, stratigraphic and sedimentological importance in the New Red Sandstone, Western Scotland: Jour. of Geol., v. 82, p. 351-369.
- Stewart, F. H., 1963, Data of geochemistry, 6th ed., Marine evaporites: U. S. G. S. Prof. Paper 440Y, 52 p.
- Stroud, R. R. and others, 1970, Production potential of copper deposits associated with Permian red bed formations in Texas, Oklahoma, and Kansas: U. S. Bur. Mines, Rep. of Inv. 7422, 103 p.
- Swineford, A., 1955, Petrography of upper Permian rocks in south-central Kansas: Kans. Geol. Survey Bull. 11, 179 p.
- Talley, J., 1955, The subsurface Geology of northeastern Noble County, 1955: unpub. M. S. thesis, University of Oklahoma.
- Tanner, W. F., 1959, Permo-Pennsylvanian paleogeography of part of Oklahoma: Jour. of Sed. Pet., v. 29, p. 326-335.
- Tarr, W. A., 1910, Copper in the red bed of Oklahoma: Econ. Geol., v. 5, p. 271-226.
- Tasch, P., 1961, Data on some new Leonardian conchostrocans with observations on the taxonomy of family Vertexidae: Jour. of Paleont., v. 35, p. 1121-1129.

V

, 1962, Taxonomic and evolutionary significance of two new conchostracan genera from the Midcontinent Wellington Formation: Jour. of Paleon., v. 36, p. 817-821.

, 1964, Periodicity in the Wellington Formation of Kansas and Oklahoma: <u>in</u> Symposium on cyclic sedimentation, Kans. Geol. Survey Bull., v. 2, p. 481-496.

and J. R. Zimmerman, 1962, The Asthenohynen-Delopterum bed - a new Leonardian insect horizon in the Wellington Formation of Kansas and Oklahoma: Jour. of Paleon., v. 36, p. 1319-1333.

, E. Kidson, and J. H. Johnson, 1969, Lower Permian algal stromatolites from Kansas and Oklahoma: University of Kansas Paleon. Cont. Paper 43, 19 p.

Tennant, C. B. and M. L. White, 1959, Study of the distribution of some geochemical data: Econ. Geol., v. 59, p. 1281-1290.

Tourtelot, E. B. and J. D. Vine, 1975, Geology and resources of copper deposits: U. S. G. S. Prof. Paper 907-907-C, 34 p.

Trudinger, P. A., I. B. Lambert, and G. W. Skyring, 1972, Biogenic sulfide ores: a feasibility study: Econ. Geol., v. 67, p. 1114-1127. Turekian, K. K. and K. H. Wedepohl, 1961, Distribution of the elements in the earth's crust: G. S. A. Bull., v. 72, p. 175-192.

- Van Houten, F. B., 1973, Origin of red beds--a review: 1961-72: Ann. Rev. Earth and Planetary Sciences, v. 1, p. 39-61.
- Ver Weibe, W. A., 1937, The Wellington Formation of central Kansas: Muni. Univ. of Wichita Bull., v. 12, p. 1-18.
- Walker, T. R., 1967, Formation of red beds in modern and ancient deserts: G. S. A. Bull., v. 78, p. 353-368.
- Waugh, T. C. and L. L. Brady, 1976, Copper occurrences associated with Permian rocks in south-central Kansas: <u>in</u> Johnson, K. S. and R. L. Croy (eds.), Stratiform copper deposits of the Mid-Continent Region, a symposium, Okla. Geol. Survey, Circ. 77, p. 76-79.
- Wedepohl, K. H., 1971, "Kupferschiefer" as a prototype of syngenetic, sedimentary ore deposits: Soc. Mining Geol. Japan, Spec. Issue 3, p. 268-273 (Proc. IMA-IAGOD Meeting 1970 Volume).
- White, D. E. and others, 1963, Chemical composition of subsurface waters: U. S. G. S. Prof. Paper, 440-F, 67 p.
- White, W. S., 1971, A paleohydrogeologic model for mineralization of the White Pine copper deposit, northern Michigan: Econ. Geol., v. 66, p. 1-13.

Woodward, L. A. and others, 1974, Strata-bound copper deposits in Triassic sandstone of Sierra Nacimiento, New Mexico: Econ. Geol., v. 69, p. 108-120.

APPENDICES

APPENDIX A

KEY TO BEDS IN RAASCH'S MEASURED SECTION

Number	Note
1	"UPPER POLO" BED
2	"TRACK" BED
3	"RACKET" MUDSTONE
4	"LOWER" POLO BED
5	"FERN" BED
6	"OHIO STATE" BED
7	"WHITE ROCK" BED
8	BASAL"ANTELOPE FLATS" SANDSTONE
9	RIBBON BANDED MUDSTONE
10	BASAL "BILLINGS POOL" SANDSTONE
11	"ESTHERIA" SANDSTONE
12	UPPER MUDCRACK BED
13	ESTHERIA BLACK SHALE
14	"INSECT" BED
15	"LOWER MUDRACK" BED
16	"SALT CAST" BED
17	"FALSE INSECT" BED

.

.

APPENDIX B

.LOCATIONS OF THE WELLS SAMPLED

AND ANALYZED

Operator	Lea	se	Location
Champlin Amerada Berry Gulf Fain Gypsy Stanolind Continental ITIC Ohio Cities Service Stanolind Blair Deardorff Lewis	#1 #12 #11#11 #11# #11# #11# #11# #11#	Mackey Zaloudek Johndrow Hendric Schnackenberg Dickman Compton Manny Kitchens Smythe iner Devore Rolling Gungoll Clark	Location Sec 4, T. 24N., R. 8W. SW4 Sec. 17, T. 24N., R. 5W. NW4 Sec. 36, T. 24N., R. 5W. SW4 Sec. 21, T. 24N., R. 5W. Sw4 Sec. 21, T. 24N., R. 4W. Sec. 21, T. 24N., R. 4W. NE4 Sec. 13, T. 24N., R. 3W. SE4 Sec. 6, T. 24N., R. 3W. SW4 Sec. 8, T. 24N., R. 3W. SW4 Sec. 8, T. 24N., R. 1W. NE4 Sec. 17, T. 22N., R. 1W. NW4 Sec. 23, T. 22N., R. 4W. NW4 Sec. 23, T. 22N., R. 3W. NW4 Sec. 9, T. 22N., R. 1W. NW4 Sec. 9, T. 22N., R. 1W. NE4 Sec. 11, T. 20N., R. 8W. Sec. 3, T. 21N., R. 6W. NW4 Sec. 22, T. 20N., R. 4W.
Gulf Watchorn Champlin Ohio	#1 #1 #1 #1	Decker Kaiser Graves Hubbartt	NW ¹ / ₄ Sec. 12, T. 20N., R. 4W. NW ¹ / ₄ Sec. 8, T. 20N., R. 3W. SE ¹ / ₄ Sec. 21, T. 20N., R. 2W. SE ¹ / ₄ Sec. 18, T. 20N., R. 1W. Sec. 27, T. 18N., R. 4W.
	Champlin Amerada Berry Gulf Fain Gypsy Stanolind Continental ITIC Ohio Cities Service Stanolind Blair Deardorff Lewis Delaney Gulf Watchorn Champlin	Champlin #1 Amerada #1 Berry #2 Gulf #1 Fain #1 Gypsy #1 Stanolind #1E Continental #1 ITIC #1 Ohio #1 Cities Service Mar Stanolind #7 Blair #1 Deardorff #1 Lewis #1 Delaney #1 Gulf #1 Watchorn #1 Champlin #1 Ohio #1	Champlin #1 Mackey Amerada #1 Zaloudek Berry #2 Johndrow Gulf #1 Hendric Fain #1 Schnackenberg Gypsy #1 Dickman Stanolind #1E Compton Continental #1 Manny ITIC #1 Kitchens Ohio #1 Smythe Cities Service Mariner Stanolind #7 Devore Blair #1 Rolling Deardorff #1 Gungoll Lewis #1 Clark Delaney #1 Roberts Gulf #1 Decker Watchorn #1 Kaiser Champlin #1 Graves Ohio #1 Hubbartt

APPENDIX C

CHEMICAL ANALYSES OF THE WELL

CUTTING SAMPLES

	LOCATION=	1. CHAMP	LIN #1	MACKEN		SEC.4,	T.24N,	R8W	
OB S	DEPTH	CU	PB	ZN	MN	BA	AG	CD	cn
1 2 3 4 5 6 7 8 9 10 11 12	200 220 300 520 540 560 580 600 620 640 660	12 67756555555235	25 25 20 15 25 20 15 20 15 20 15 20	39 47 52 45 30 37 36 37 38 36 35	455 540 500 610 260 260 275 210 305 1215 1010		1.0	2.0	23
13 14 15 16 17 18 20 21 223 24 25 26	720 720 740 760 780 800 820 840 840 880 900 920 920 940 940 960	5 6 12 8 7 6 5 7 6 7 11 25 1000 910	20 20 20 20 20 20 20 20 20 20 20 20 20 2	53 454 50 51 51 41 48 59 46 59 46 57	270 1350 425 720 745 540 975 530 595 660 515 535 515		0.5 1.0 1.5 1.0	0.5 0.5 1.5 1.5	23 30 30 35 20
27 28 29 30 31 32	980 1000 1020 1040 1060 1080	27 14 14 16 13 20	20 35 25 35 35 20	49 43 46 44 65 44	490 530 625 420 525 355		1.0 1.5 1.0	1.0 1.0 1.0	20 25 25
333333444444444555555	1100 1120 1140 1200 1220 1240 1260 1300 1320 1340 1400 1420 1440 1440 1440 1480 1520 1540 1580	13 12 14 10 8 10 14 13 12 55 12 14 13 10 63 11 14 12	35 30 25 25 25 25 25 25 25 25 25 35 30 35 30 30 30 30 30	50 462 55 668 438 57 57 487 45 69 447 458 69 447	450 385 320 255 255 255 255 255 250 250 250 250 2		1.5 1.0 1.5 1.0 0.5 1.0 1.0 1.0 1.0 1.0	1.0 2.5 0.0 0.5 0.0 1.0 1.0 1.5 1.0 1.5	38 40 25 20 25 25 25 25 25 25

1

,

.

OPES DEPTH CU PB ZN MN BA AG CD C^1 1 200 12 25 39 455 1.0 2.0 23 2 220 6 25 47 540 33 300 7 25 52 500 4 400 7 20 45 610 5 50		LCCATION=	1. CHAMP	LIN #1	MACKEN		SEC.4,	T.24N,	R8W	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OB S	DEPTH	CU	ÞB	ZN	MN	ВA	٨G	CD	Cn
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	200	12	25	39	455		1.0	2.0	23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2									
4 400 7 20 45 610 5 520 50 260 5 30 260 6 540 6 15 30 160 7 560 5 15 37 260 8 580 5 25 36 275 9 600 5 20 35 1010 11 640 23 20 36 1215 12 660 5 20 35 1010 13 700 5 20 43 270 14 720 6 25 54 1350 15 14 700 12 20 43 425 16 760 8 20 50 720 17 780 7 20 51 745 18 800 6 25 51 540 10 0.5 30 22 23 900 1.0 1.0 1.5 1.5 30 23 23 900 11 20 56 65 515 1.0 1.5 1.5 <td></td>										
	4	400		20	45	610				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	520				260				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	760	8	20	50	720				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.5	0.5	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		980		20	49	490	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000	14	35	43	530		1.5	1.0	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1020			46			1.0	1.0	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) 5	1 0	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				25					1.0	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1260	14	35	4 38	255		1.0	1.0	25
43 1320 12 80 57 250 1.0 1.0 25 44 1340 55 35 57 270 0.5 1.5 25 45 1400 12 25 48 280 0.5 1.5 25 46 1420 14 25 47 250 0.5 1.5 25 47 1440 13 35 49 240 48 1460 10 35 45 250 50 50 1500 63 100 50 260 50 1500 63 100 50 260 51 1520 11 35 69 240 44 300 44 300 44 300 30										
44 1340 55 35 57 270 0.5 1.5 25 45 1400 12 25 48 280 280 280 46 1420 14 25 47 250 250 240 240 47 1440 13 35 49 240 240 240 240 240 240 240 240 250 250 250 250 250 250 250 250 250 250 250 250 250 250 260 260 260 260 260 250 250 250 250 250 250 260										
45 1400 12 25 48 280 46 1420 14 25 47 250 47 1440 13 35 49 240 48 1460 10 35 45 250 49 1480 10 30 48 260 50 1500 63 100 50 260 51 1520 11 35 69 240 52 1540 14 30 44 300										
46 1420 1425 47250 47 1440 1335 49240 48 1460 1035 45250 49 1480 1030 48260 50 1500 63100 50260 51 1520 1135 66240 52 1540 1430 44300								0.5	1.5	25
4714401335492404814601035452504914801030482605015006310050260511520113569240521540143044300										
4814601035452504914801030482605015006310050260511520113569240521540143044300										
4914801030482605015006310050260511520113569240521540143044300										
50 1500 63 100 50 260 51 1520 11 35 69 240 52 1540 14 30 44 300										
52 1540 14 30 44 300	50	1500				260				
53 1580 12 30 47 280										
	53	1580	12	30	47	280				

.

-

•

	LOCATION=1	. CHAMPL	.IN #1	MACKEN		SEC.4,	T.24N,	R8W	
OB S	DEPTH	CU	PB	ZN	MN	ΒA	AG	CD	co
1	200	12	25	39	455		1.0	2.0	23
2	220	6	25	47	540				
3	300	7	25	52	500				
3 4	400	7	20	45	610				
5	520	5	20	30	260				
6	540	6	15	30	160				
7	560	5	15	37	260				
8	580	5	25	36	275				
9	600	5	20	37	210				
10	620	5	15	38	305				
11	640	23	20	36	1215				
12	660	5	20	35	1010				
13	700	5	20	43	270				
14	720	6	25	54	1350				
15	740	12	20	43	485				
16 17	760 780	8 7	20	50	720 745				
18	800	6	20 25	51 51	540	·.			
19	820	5	20	. 43	975				
20	840	7	25	41	975				
21	860	6	20	48	530				
22	880	7	20	48	595		0.5	0.5	23
23	900	11	20	59	660		1.0	0.5	30
24	920	25	20	54	515		1.0	0.5	30
25	940	1000	25	46	535		1.5	1.5	35
26	960	910	25	57	515		1.0	1.5	20
27	980	27	20	49	490		1.0	1.0	20
28	1000	14	35	43	530		1.5	1.0	25
29	1020	14	25	46	625		1.0	1.0	25
30	1040	16	35	44	420				
31	1060	13	35	65	525				
32	1080	20	20	44	355				-
33	1100	13	35	50	450		1.5	1.0	38
34	1120	12	30	46	385		1.0	2.5	
35 36	1140 1160	14 16	35 25	82 55	330 320		1.5 1.5	0.0 0.5	40 25
37	1200	10	25	55 66 ·	255		1.0	0.5	20
38	1220	8	20	48	185		0.5	0.0	25
39	1240	10	25	48	275		1.0	1.0	25
40	1260	14	35	4 38	255		1.0	1.0	25
41	1280	13	25	58	285		1.0	1.5	20
42	1300	13	100	75	295		1.0	1.0	25
43	1320	12	80	57	250		1.0	1.0	25
44	1340	55	35	57	270		0.5	1.5	25
45	1400	12	25	48	280				
46	1420	14	25	47	250				
47	1440	13	35	49	240				
48	1460	10	35	45	250				
49	1480	10	30	48	260				
50 51	1500 1520	63 11	100 35	50 69	260 240				
. 52	1520	14	30	69 44	300				
53	1580	12	30	44	280				
	2200		50		200				

	LDCATION=1.	CHAMP	LIN #1	MACKE	E N	SEC.4,	T.24N,	RBW	
DBS	DEPTH	CU	PB	ΖN	MN	BA	AG	CD	00
54 55 56 57	1620 1640	10 13 13 12	30 30 5 5	47 51 40 42	270 315 280 250				
58 59 60	1680 1700	18 17 12	30 30 30	48 42 38	260 330 265				
61 62 63	1760 1780	12 15 24	20 30 35	34 37 46	250 250 235				
64 65 66 67	1820 1840	12 14 14 12	25 30 25 20	3.3 3 2 3 8 4 2	245 260 235 245				
68 69 70	1880 1900	11 16 11	25 35 35	42 34 36	280 255 250				
71 72 73	2000 2020	11 10 10	35 20 20	41 54 36	260 270 245			•	
74 79 76 77 78	2060 2080 2100	12 11 12 12 12	25 20 25 25 30	55 62 41 53 38	280 265 265 270 280				
79	2160	12	.25	43	285				

.

.

÷.

- 100	ATION=3.	AMERADA	#1	ZALDJDEK	NE S₩	SEC.	17, T.24N,	R.5W	
OB S	DEPTH	CU	PB	ZN	MN	BA	AG	CD	co
1	340	5	20	36	37.0				
2	410	4	15	31	210				
2 3	-440	5	20	29	405		0.5	0.5	28
4	530	15	40	53	930				
5	560	5	20	33	310		0.5	1.0	28
6	590	5	20	31	235				
7	620	5	20	37	305				
8	650	8	20	37	210				
9	680	6	20	39	590				
10	710	5	20	33	505				
11	740	14	30	54	460		1.0	1.0	30
12	770	5	15	37	335		0.5	0.5	25
13	800	6	10	47	535				
14	830	15	15	48	470				
15	860	17	30	54	520				
16	890	17	20	52	510				
17	\$20	16	30	43	455				
18	950	19	15	,39	395				25
19	980	11	25		395		1.0	1.0	35
20	1010	16	25	62	445				
21	1040	12	30	71	385				
22	1070	15	20	56	415				
23	1100	14	20	59	405				
24	1130	12	15	48	290				
25	1160	8	15	50	215				
26	1190	13	20	53	345				25
27	1220	27	15	71	495		0.5	0.5	25
28	1250	16	20	43	265				
29	1280	14	15	49	305				
30	1310	15	20	4 4	370				

	LOCATION=4	. BER	RY #2	JOHND ROW		SEC.	36, T.24M	N,R.5W	
OBS	DEPTH	CU	ΡB	ZN	MN	BA,	AG	CD	° co
1 2	410 430	8 11	20 25	2 7 30	1300 1115		1.0	0.5	18 25
3 4	460 480	7 7	15 10	34 34	1080 795				
5	500	16	10	38	660				
6	520	9	10	41	395		2 0		2.0
7 8	540 570	9 52	15 25	52 45	575 610		2.0	1.5 1.0	30 45
9	590	43 71	25	51	655		1.5	0.5	45
10	610			58	590		1.0	1.5	35
11 12	630 650	97 21	25 20	56 53	650 600		1.0	2.0 0.5	25
13	670	15	25	44	425		1.0	1.0	20
14	690	25	30	154	555		1.5	1.5	30
15 16	710 730	24 16	25 25	60 55	580 490			1.5	
17	750	32	25	45	450				
18	770	18	25	58	525				
19	790	18	25	60	510				
20 21	810 830	21 22	25 25	63 52	450 580				
22	850	15	15	42	595				
23	890	18	17	52	595				
24 25	910 930	32 18	1.5 1.3	46 41	495 315				
26	950	18	25	47	470				
27	970	19	20	46	490				
28	990	14	15	47	500				
29 30	1010 1020	11 32	10 15	44 62	685 255				
31	1050	12	15	46	225				
32	1070	13	25 25	39 42	520 255				
33 34	1090 1110	13	15	33	330				
35	1130	19	30	59	335 .		1.0	0.5	25
36	1150	36	15	47	265		0.5	0.5	28
37 38	1170 1190	13 16	30 35	42 42	205 215		3.5	1.0	25
39	1210	16	30	40	205				
40	1230	17	30	40	185				
41	1250	13	25	38	230				
42 43	1270 1290	18 19	20 30	54 39	185 215				
44	1350	12	25	39	240		·		
45	1370	12	30	30	200				
46 47	1390 1410	14 35	25 30	1 24 57	185 220				
48	1430	15	20	47	170				
49	1510	34	25	190	295		1.0	3.5	35

•

	LOCATION=5.	FAIN	#1 SCH	NACK ENB	IRG	SEC	•21 , T • 2	4N.R.4W	
DBS	DEPTH	CU	PB	ΖN	MN	BA	AG	CD	CO
1	160	16	43	40					
2	200	21	38	25					
3	250	8	23	31					
4	300	8	28	24					
5	350	20	28	25					
6	400	8	28	21					
7	420	10	23	51					
8	440	15	28	24					
9	460	8	23	24					
10	490	7	28	35					
11	500	11	20	50					
12	510	8	23	31					
13	520	7	23	25			-		
14	540	7	23	25	685		1.0	2.0	
15	550	473	28	33	700		3.0	2.5	25
16	560	8	20	27	435		1.5	1.5	25
17	570	13	30	33	420	,	1.5	2.0	30
18	580	68	23	28	455		1.5	2.0	25
19	590	133	28	28	740		2.5	2.0	35
20	600	96	35	35	730		3.0	2.5	40
21	620	6	20	22	505		1.5	2.0	15
22	640	105	38	42	700	`	2.5	2.0	25
23	660	64	35	39	690		2.5	2.5	30
24	680	63	35	36	7-10		3.0	2.0	20
25	700	27	43	16 5	585		3.5	4.0	
26	710	26	50	63					
27	720	24	38	40					
28	740	24	35	28					
29	760	22	65	42 5					
30	790	28	58	26					
31	800	18	38	38					

- LOCA	TION=5.	GULF	#1	HENDRI	с w:	SW	SW	SEC	21, T. 24N,	R.4W	
OBS	DEPTH	CU		PB	ZN	MN	N	BA	AG	CD	CC
1 2 3 4 5	608 620 650 670 690	17 24 33 23 23		50 58 60 55 43	51 47 61 34 44						
6 7	710 730	20 13		50 43	34 37						
8 9 10	760 780 800	18 23 24		38 38 38	40 39 38						
11 12 13	820 840 860	22 20		35 38 43	36 39 34						
14 15 16	880 910 930	19 23 36		43 38 43	38 41 48			,			
17 18 19	950 970 990	18 19 19		43 43	40 60						
20 21	1000 1020	75 19		38 38	40 45 51						
22 23 24	1040 1060 1080	18 20 19		45 43 50	32 37 40						
25 26 27 28	1100 1120 1140 1160	16 15 16 18		38 43 45 43	35 31 33 33						
29 30 31	1180 1200 1220	16 17 17		45 50 45	46 36 32						
32 33 34	1240 1260 1280	18 14 18		50 23 35	35 31 35						

.

.

•

.

	LOCATION=6.	GYPSY	#1 DICK	MANNI	SW NE	SEC.	13	T.24N	R.3W	
DBS	DEPTH	CU	PB	ZN	MN	BA		AG	CD	co
1	100	294	35	87	930			4.0	2.0	35
2 3	120	540	35	37	890			4.5	2.5	30
3	140	37	30	39	585			3.5	1.5	25
4	160	19	23	40	570			3.5	1.5	30
5	200	17	35	46						
6	220	18	35	58						
7	240	58	43	58						
8	270	51 30	50 35	54 52						
9 10	300 320	19	38	47						
11	340	13	35	67	670			3.5	2.5	40
12	360	51	43	70	540			3.5	1.5	43
13	400	82	70	50	490			2.5	1.5	45
14	460	97	30	41						
15	480	73	50	72						
16	500	66	58	64					,	
17	510	13	70	45						
18	520	43	145	36	275			2.5	2.0	25
19	540	22	30	36						
20	560	29	30	54						
21	570	-41	30	96				2 0	2 5	25
22 23	590 600	53 102	38 30	26 40	440 265			3.0 2.5	2.5 2.5	25 30
23	640 -	27 .	20	35	205			2.0	2.5	50
25	660	31	35	42						
26	680	16	13	1 65	310			3.0	3.0	25
27	700	21	7	60						
28	710	67	20	25						
.29	730	20	13	30						
30	780	31	23	26						
31	800	50	38	25						
32	820	26	35	50						
33	830	40	38	56						
34	860	46	65 43	38						
35 36	880 900	18 30	38	28 51						
37	920	34	20	50						
38	940	103	28	23	325			2.5	2.0	35
39	960	63	30	24	325			2.5	1.5	30
40	990	189	35	65	270			3.0	2.5	35
41	1010	50	23	30						
42	1030	185	23	50	515			3.5	2.5	10
43	1050	85	43	1 80	365			4.5	5.0	35
44	1070	15	23	30						
45	1090	107	30	45	520			3.5	4.0	15
46	1100	33	13 45	25	125			2.0	1.5	15 13
-47	1130	51		48	360 310			4.5 4.0	3.5 3.5	20
48 49	1150 1170	23 61	38 60	115 170	310			4.0	3.J 4.0	20
47	11/0	01	00	110	100			v	4.0	20

-

LO(CATION=7.	STANCE	IND #1E	CO MPT I	IN SW SW	SE SEC	.6.T.2	4N,R.2W	
OBS	DEPTH	CU	PB	ZN	MN	BA	AG	CD	co
1 2 3 4 5 6	1 20 40	123 128 62	23 30 68	29 45 50	620 740 945		3.0 3.0 4.0	2.0	30 25 30
4 5	60 80	168 33	53 20	66 46	750 600		4.0 3.0	4.0 2.0	53 20
é	120	40	30	53	545		5.0	2.0	40
7	140	85	23	50	540		3.5	1.5	30
8	160	15	35	54	560		3.5	1.5	25
9	180	22	38	80	750		3.5	2.5	20
10	200	600	43	41	700		5.0	2.5	40
11	220 240	16 29	30	40 42					
12 13	240	29 19	20 38	4 2 3 6					
14	280	23	23	40					
15	300	57	30	65	1010		3.0	2.0	25
16	320	26	30	35					
17	360	9	15	39					
18	380	23	28	40					
19	400	23	45	108	655		3.0	2.0	25
20	420	35	38	81	885		3.5	2.5	20
21	440	15	38	44					
22 23	460 480	8 15	23 38	35					
23	480 500	31	23	33					
25	520	19	5	37					
26	560	24	7	38					
27	580	16	7	17 1	265		2.5	2.0	25
28	600	73	13	29	255		3.0	2.0	25
29	620	14	15	17	215		3.5	2.5	20
30	640	15	15	19					
31	660	14	15	42					
32 33	680 700	18	13 23	27 38					
35 34	720	18 18	13	38					
35	740	13	23	22 5	175		3.0	2.5	20
36	760	14	15	33	1.1		2.0	213	20
37	780	15	28	43					
38	810	11	30	29					
39	830	9	23	23					
40	850	15	20	26					
41	870	18	23	57					
42	890	14	20	23					
43	930	7	23	22	166		2 5	2.0	12
-44 45	980 1020	10 174	23 20	50 25	155 205		2.5 2.0	2.0 1.5	13 20

.

.

- LOCA	TION=8.	CONT IN	ENTAL	#1 MANN	NW NW	SW SEC.	8,T24	N,R.1W	
OBS	DEPTH	CU	PB	ZN	MN	₿A:	AG	CD	co
1	230	10	15	43					
1 2 3	250	73	20	50					
	270	13	20	-4 4					
4	290	11	13	40					
5	310	25	20	40					
6	330	22	35	44					
7	350	17	38	50					
8	370	30	75	62					
9	390	20	15	13 3	395		4.0	3.5	35
10	410	20	15	35					
11	430	19	23	32					
12	450	12	20	33					
13	470	16	38	57					
14	490	16	50	71					
15	510	19	35	32					
16	530	17	35	18 C	425		4.0	3.0	40
17	550	59	13	35	325		2.5	2.0	25
18	570	14	13	29					
19	590	9	15	50					
20	610	9	8	37					
21	630	24	35	55					
22	650	11	20	30		•			

.

82

	LOCATION=9.	ITIO	#1 KI	TCHENS	NINE SE	c. 17,	T. 22N,	R.5W	
OBS	DEPTH	Cυ	PB	ZN	MN	ΒA	AG	CD	CO
1	300	15	40	50	450		4.0	2.0	40
2	320	18	50	2 05	620		3.0	2.0	50
3	340	10	30	39	440				
4	360	19	33	34	1228				
5 6	380 420	14	40	84	830				
7	480	14	40	84	780		4.0	1.0	60
8	540	10	33		320			100	00
Š	580	ĩŏ	40	45 33	185				
10	600	22	40	28	1340		4.5	1.0	60
11	620	16	40	40	560		3.0	2.0	80
12	660	11	10 5	38 39	820 500		3.0	1.0	80 35
13 14	720 7 50	17 10	10	-39 -42	300		2.5 1.5	1.0	55 70
15	790	10	5	40	500				
16	810	14	0	39	480				
17	840	14	5	43	880		2.5	2.0	48
18	841	9	7	45 .	280		2.0	1.0	35
19 20	870 910	65	18 18	48 41	245 390				
20	930	16 12	23	41	250				
22	980	15	15	42	350	•			
23	1020	16	18	43	350		3.0	2.5	50
24	1040	14	28	45	240				
25	1060	18	20	48	300				
26 27	1160	15 18	23 18	49 82	250 220				
28	1090 1200	14	20	-44	265		•		
29	1220	29	18	50	280				
30	1230	28	20	-42	280				
31	1240	35	15	39	260				
32		15	20	42	240				
32	1328	28	ŦB	鹄	229				
35	1450	19	28	50	250				
36	1470	20	35	50	270				
37	1480	17	25	5 5	270				
38	1490	16	25	55	260				
39	1520	18	38	53	250				
40 41	1550 1570	16 16	45 28	5) 49	300 235				
42	1590	15	43	55	290				
43	1620	27	35	50	265				
44	1640	16	33	53	285				
45	1690	16	28	48	290				
46 47	1700	17 16	10 15	47 48	270		2.5	2.0	50
47	1710 1730	21	18	160	315		2.0	3.0	50
49	1740	19	23	58	265				
50	1750	25	28	45	295				
51	1770	24	35	42	240				
52	1790	15	3	37					

.

.

CHEMICAL ANALYSES OF THE WELLINGT (N-GARBER IN PARTS PER MILLION

· •

	LOCATION=	10. онто	#1 SMY1	THE NE	NE SW SEC	23,	T.22N,	R.4W	
OB S	DEPTH	CU	ΡB	ZN	۳N	BA	AG	CD	CO
1	156	12	20	33	1430		3.5	2.0	45
2	160	13	30	36	1430		3.5	3.0	40
2 3	180	14	20	38	1390		3.0	2.5	45
4	200	37	10	48	1000		2.0	1.0	35
5	380	238	15	-47	830		2.5	1.5	35
6	440	20	13	55	515		2.5	1.6	35
7	480	40	20	60	645		3.0	2.0	40
8	490	29	315	145	720		4.0	4.5	50
9	500	68	35	1 43	625		3.5	3.5	45
10	520	31	2350	1 43	740		4.5	4.0	50
11	540	34	25	55	500		2.5	1.5	30
12	580	33	43	75	755				
13	600	34	45	44	940 690				
14	620	13	15	50					
15	650	26	18	50	395				
16	660	54	33	44	570				
17	680	11	28	46	460				
18	700	13	15	45	525				
19	720	17	23	68	520				
20	730	54	50	43	915				
21	740	34	63	45	910			2 E	26
22	800	17	30	45	305		2.5	2.5	25
23	801	6	25	15	13		3.0 1.5	2.0	13
24	820	21	15	54 58	380 285		1.5	1.5	25
25	840 860	35 30	20	28 48	285				
26 27	880	27	15	55	.275		2.5	2.0	20
28	920	28	18	100	300		2.5	2.5	20
29	940	28	18	39	480		2.5	2.0	25
30	941	10	õ	44	3		3.0	3.0	13
31	960	28	20	50	475		3.0	2.5	25
32	961	6	13	26	5		3.5	2.5	18
33	980	27	15	45	330				
34	1090	33	20	70	185		1.5	1.5	25
35	1000	25	20	1 58	355		3.0	3.5	35
36	1020	20	25	2 03	255		3.0	3.0	40
37	1060	44	28	70 -	245		2.0	2.0	35
38	1070	39	30	1 50	285		4.0	4.0	40

LDCAT	IОN=11.	CITIES	SERVICE	MARINI	R NW NE	NW S	EC. 6,	T.22N.R	.3W -
OBS	DEPTH	CU	PB	ΖN	MN	BA	AG	CD	CD
1	170	10	35	61	650		4.0	2.0	40 (
2	190	10	30	76	2380	١	4.0	3.0	50
3	220	25	30	78	505	1	4.0	2.0	50
4	230	10	20	59	320				
5	250	15	15	71	145				
6	270	10	28	48	410				
7	300	9	20	44	850		2.0	1.5	25
8	340	13	20	45	550		1.5	1.0	15
9	380	10	28	46	415		2.0	1.5	35
10	410	17	23	44	495		1.5	1.0	35
11	440	115	20	49	715		2.5	1.5	45
12	470	107	25	55	735		2.5	1.0	45
13	490	27	20	58	450				
14 15	500 510	27 20	25 30	56 63	450 675				
15	540	20	28	13 3	435				
17	570	25	28	42	480				
18	600	31	28	62	510				
19	630	40	35	40	460		2.5	1.0	40
20	660	26	28	44	475				40
21	690	30	28	45	490				
22	720	17	15	47	430				
23	760	24		40	580		2.0	1.0	
24	790	20	40	42	510		2.0	1.0	45
25	820	19	28	36	540		2.0	. 0.5	45
26	850	26	25	53	540				
- 27	880	28	25	32	485				
28	920	30	18	50	340				
29	950	25	38	50	385				
30	980	18	23	39	320				
31	990	24	45	45	270				
32	1020	20	38	36	215				
33	1050	12	28	34	295				
34	1080	23	58	36	300			2 6	
35 36	1090 1100	22 20	50	950 36	270		2.5	3.5	40
37	1130	20	38 40	50 41	385 415				
38	1160	18	28	37	385				
39	1180	23	20	32	380				
40	1190	20	28	33	400				
40	1200	45	38	33	400				
42	1220	11	28	32	370				
43	1250	14	28	32	365				
10	44.20	• 7	20	26	505				

	LOCATION=	12. STA	NOLIND	#7 DE V0	DRINE SW	NW SE	C.23,T.2	2N,R.2W	
OB S	DEPTH	CU	PB	ZN	MN	BA	AG	CD	co
1	20 60	10 10	20 20	48 33	185 187		3.0 1.0	3.0 2.0	60 30
23	90	41	46	62	3252		3.0	3.0	46
5	100	113	40	71	2150		4.0	5.0	60
5	125	20	50	63	1385		3.0	3.0	50
6	203	29	500	2 85	980		4.0	7.0	50
7	220	22	28	1 10	810				
8	240	15	15	88	875				
9	290	50	110	74	2000				
10	350	10	40	92	4120				
11	370	10	33	65	1340				
12	400	12	33	55	685				•
13	430	16	25	87	1195				
14	470	12	15	72	2270				
15	490	12	20	49	765				
16	510	22	45	62	1220				
17	560	13	25	27					
18	600	20	50	39	1460		4.0	4.5	70
19	630	26	10	6 6	875		2.5	3.0	80
20	640	20	10	29	92		1.5	2.0	60
21	658	14	10	46	840		7.0	2.0	60
22	680	28 15	70	1 05 1 35	2170		4.0	3.0	70
23 24	690 710	15	40	42	308 1770		1.0 3.0	1.0 4.0	70 60
25	701	699	60	28	1830		2.5	2.0	80
26	740	23	110	172	1430		10.0	8.0	100
27	750	18	60	170	755		5.5	4.0	60
28	770	10	10	52	555		2.02		
29	780	15	20	53	620		3.0	1.0	50
30	800	18	28	59	705				
31	810	125	60	54	1110				
32	830	15	30	78	705		4.0	2.0	70
33	870	20	28	75	1205				
34	880	22	20	60	830				
35	920	10	100	90	400		2.5	1.0	50
36	939	15	28	7 8	560				
37	949	29	10	83	. 1300				
38	971	13	28	68	715				
39	1000	10	5	90	190		2.5	1.0	50

	LOCATION=13	BLAIR	¥ 1	ROLLING	IE NE NW	SEC.	9, T.22N	,R.1W -	
OBS	DEPTH	CU	ΡB	ZN	MN	B۵	AG	CD	CC
1	200	12	35	78	655	410	3.5	2.5	40
2 3	220 240	20 38	20 25	35 37	580 850	210 240	2.5	1.5	30
4	250	25	25	55	530	240	2	** 5	20
5	280	10	20	45	970		•		
	300	10	15	45	855				
6 7	420	10	20	61	1375				
8 9	460	16	40	48	1260				
	480	10	20	53	510				
10	500	13	30	45	1285	440	3.0	2.0	40
11	520	12	28	51	785				
12	540	13	20	44	775				
13	388	13	33	29	1399				
134 15 16	610 660	10 20 37	34355 34335	39 51 32 22	1085	360	3.0	3.0	50
17	680	26	40	-44	970	660	5.0	3.0	40
18	720	60	20	33	695	210	3.0	2.0	60
19	730	15	35	4 6	675	790	3.0	3.0	50
20	750	15	33	62	720				
21	790	20	20	170	885				

1

CHEMICAL ANALYSES OF THE WELLINGT (N-GARBER IN PARTS PER MILLION

•

	LOCATION=14.	DEARD	ORF #1	GUN	GOLISW	NE SEC.	11, T.20	N, R.84	
OBS	DEPTH	CU	PB	ZN	MN	BA	AG	CD	co
1 2	600 640	6 8	5	27 26	635 1241	237 528			
3	660	17	15	21	3275	396	2.0	2.0	-40
4	680	4	15	24	545	-484	4.0	2.0	30
5	700	4	10	26	515	490	12.0	2.0	25
6	720	6	10	25	360	536			
7	740	3	10	23	465	270			
8	760	4	10	22	640	396			
9	780	8	15	35	370	391			
10	800	7	30	28	630	490			
11	840	10	20	25	720	506			
12	880	3	15	19	2140	253			
13	920	2	15	23	1135	446			
14	960	4	20	27	1025	204			
15 16	1000 1040	3 93	15 40	27 24	500 310	143 220	1 5	1 0	20
17	1040	15	4 0 5	23	270	352	1.5 1.5	1.0	30 15
18	1080	36	10	28	285	418	1	1.0	17
19	1100	8	20	29	550	352			
20	1120	13	10	34	450	231			
21	1140	6	20	33	680	369			
22	1160	21	10	34	590	138			
23	1180	48	10	39	730	143			
24	1200	37	18	64	440	198			
25	1220	84	15	41	400	187	0.5	1.0	25
26		165	35	36	495	176	2.5	1.5	35
27 28	1300 1340	26 19	60 30	41 63	480	150 100	3.0 3.0	2.0	20 30
29	1400	20	35	-60	470	190	-4.0	3.0	25
30	1420	13	30	55	455	100	3.0	2.0	25
31	1460	21	40	44	520				
32	1480	16	30	64	465	110	3.5	.3.0	30
33	1520	16	30	48	380				
34	1560	13	25	44	395				
35	1600	12	25	61	375				
36 37	1640	25	25 25	57 44	345 410				
38	1680 1720	12 21	25	51	340				
39	1740	13	20	51	330				
40	1760	19	25	57	290				
41	1780	21	28	43	270				
42	1800	19	18	47	365				
43	1820	13	20	47	370	110	3.0	1.5	30
44	1860		20	53	330	45	3.0	2.0	25
45	1880	17	25	60	285				
46	1920	15	15	45	185				
47 48	1960 1980	18 22	18 25	82 46	225 220				
49	2020	15	20	50	220				
50	2040	19	20	43	220				
51	2060	15	20	47	270				
52	2080	21	20	39	220				
53	2110	16	25	36	285	-			

- LOC	ATION=14.	DEARD	ORF #1	G UN GC	DLISW	NE SEC.	11, 7.2	ON, R.	8W -
OBS	DEPTH	CU	РЗ	Z٧	MN	BA	AG	CD	CD
54 55 56	2120 2140 2160	11 12 12	25 18 15	43 35 36	285 195 185				
57 58	2180 2200	14 13	18 15	41 45	290 385	155	3.0	2	30
59 60	2220 2230	13 26	15 20	40 59	275 255	180 120	2.5 3.5	3 2	35 45

á

DBS DEPTH CU PB ZN MN BA AG CD CO 1 375 9 10 21 1200 682 2.0 2 40 2 395 7 10 15 1335 55 1.5 2 15 3 425 2 5 10 295 451 4 5 645 5 30 35 850 319 6 765 10 20 36 580 374 7 815 4 15 26 375 616 6 6 6 6 20 31 425 572 6 616 6 22 1.5 2 25 15 2 25 16 9 80 6 20 31 425 572 10 1.5 2 25 15 12 90 1.5 2 25 1.5 2 25		LOCA	TION=15.	LEWIS	#1 CI	LIRK SEC.	3 T.21	N, 6W -		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DBS	DEPTH	cu	PB	ΖN	MN	ΒA	AG	CD	co
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2							1.5	2	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1.5	2	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								2.0	2	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1100	27	20	47	300	198			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1120	17	20	40	355	253			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1140	31	25	77	395	215	2.0	2	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1180	13	20	22	440	176			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1280	17	10	41	335	187			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1402	33	20						
26 1580 25 15 42 235 110 27 1600 22 20 40 235 77 28 1640 20 15 48 245 193 29 1680 14 20 35 265 132 30 1700 21 20 42 265 149 31 1720 18 20 33 245 154 32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 290 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 27 20 38 335 83 39 <td></td>										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
28 1640 20 15 48 245 193 29 1680 14 20 35 265 132 30 1700 21 20 42 265 149 31 1720 18 20 33 245 154 32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 290 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 1.5 2 30 36 1830 17 23 35 330 105 33 105 39 1880 27 20 38 335 83 83										
29 1680 14 20 35 265 132 30 1700 21 20 42 265 149 31 1720 18 20 33 245 154 32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 29C 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 30C 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83 83					-					
30 1700 21 20 42 265 149 31 1720 18 20 33 245 154 32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 290 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83 83										
31 1720 18 20 33 245 154 32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 29C 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 30C 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83 83										
32 1740 18 24 43 274 215 33 1760 20 25 38 265 182 34 1800 76 25 37 290 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 27 20 38 335 83										
33 1760 20 25 38 265 182 34 1800 76 25 37 290 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83										
34 1800 76 25 37 29C 99 1.5 2 20 35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83										
35 1810 90 20 37 300 99 1.5 2 30 36 1830 17 20 33 300 105 37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83								15	2	20
3618301720333001053718501725403009938186017233533010539188027203833583										
37 1850 17 25 40 300 99 38 1860 17 23 35 330 105 39 1880 27 20 38 335 83								1.7	2	20
38 1860 17 23 35 330 105 39 1880 27 20 38 335 83										
39 1880 27 20 38 335 83										
			-							
	40	1900	60	20	45	330	143	2.0	2	25

,

•

'n.

/

	LOCATION	=17. DE	LANEY #1	ROBERTS	NE SE	NW SEC.	22 1.20	N.R.4W	
OBS	DEPTH	CU	PB	ZN	MN	BA	AG	CD	co
1	185	9	10	23	325	264			
2	220	8	10	21	590	253			
3	260	19	5	52	660	264			
4 5	290 320	44 8	2580 15	1 12 13	410	286	1.5	0.5	60
6	340	7	15	15	1160 1035	246 127			
7	360	11	10	15	1210	413			
8	380	9	55	19	1390	330			
9	400	8	10	15	850	413			
10	42.0	10	10	20	705	501			
11	430	10	10	19	505	650			
12	450	11	10	13	810	677			
13	460	8	10	17	1390	231			
14 15	470 480	6 7	10	12	640	230			
			10	15	620 660	259 237	2 0	1.0	-
19	518	ş	1 8	ł9	488	440	2.0 1.5	3.0 3.5	5 5
18	520	680	60	25	355	4428	2.5	3.0	760
19	530	6	5	15	90	132	200		100
20	540	35	10 20	15	305	127			
21	550	162		48	465	644	1.5	2.0	30
22	560	63	.15	37	500	750	1.5	1.0	40
23 24	570	50	10	35	510	143	1.5	1.0	18
25	580 590	57 56	5 20	33	530	40	1.5	1.5	25
26	600	350	20	2 22 38	180 935	506	2 r	2.0	25
27	610	42.0	40	36	990	418 121	2.5 4.0	2.0 2.0	25 50
28	620	73	20	33	645	330	2.0	1.0	30
29	640	115	20	37	1240	341	2.5	1.5	30
30	650	115	20	44	1270	1249	2.5	2.0	35
31	660	23	35	46	1115	237			
32	670	18	30	45	955	264			
33 34	680 690	15 225	30 40	43 52	1120	171	• •		
35	700	225	25	41	1060	181	2.0	2.0	80
36	720	76	55	300	825 1000	259 264	3.5	6.0	50
37	730	31	20	68	1185	253	3.5	5.0	20
38	740	18	20	69	500	154	5.5		20
39	770	18	35	42	590	110			
40	800	24	20	41	830	209			
41	820	45	25	35	380	94			
42	840	17	20	41	740	132			
43	860	19	15	35	720	198			
44 45	880 900	20 14	20 25	39 59	689	132			
46	920	17	20		610 390	237 66			
47	940	5	15	35	905	66 88			
48	970	10	15	38	970	154			
49	990	15	ió	35	545	105			
50	1030	16	10	38	545	121			
51	1969	5	1025	45 36	650	183			
52 53	1100 1120	26	25 15	55 6i	510				
.,	1127	10	1.2	or	385	55			

.

•

	LOCATION	=17. DE	ANEY #1	ROBERTS	NE SE	NW SEC.	22 T.20	N.R.4W	
OBS	DEPTH	CU	ΡB	ZN	MN	BA	AG	CD	co
1	185	9	10	23	325	264			
2 3	220 260	8 19	10 5	21 52	590 660	253 264			
5 4	290	.44	2580	1 12	410	286	1.5	0.5	60
5	320	8	15	13	1160	246	142	•••	•••
é	340	7	15	15	1035	127			
7	360	11	10	15	1210	413			
8	380	9	55	19	1390	330			
9	400	8	10	15	850	413			
10	420	10	10	20	705	501			
11	430	10	10	19	505	650			
12	450	11 8	10 10	13 17	810 1390	677 231			
13 14	460 470	6	10	12	640	230			
15	480	7	10	16	620	259			
		ž				237	2.0	3.0	5
19		8	1 8	19	9 88	440	1.5	3.5	5
18	520	680	60	25	355	4428	2.5	3.0	760
19	530	6	5	15	90	132			
20	540	35	10 20	15 -48	305	127			
21	550	162			-465	644	1.5	2.0	30
22	560	63	15	39	500	750	1.5	1.0	40
23	570	50	10	35	510	143	1.5	1.0	18
24 25	580 590	57 56	5 20	33 2 22	530 180	40 506	1.5	1.5	25
26	600	350	20	38	935	418	2.5	2.0	25
27	610	420	40	35	990	121	4.0	2.0	50
28	620	73	20	33	645	330	2.0	1.0	30
29	640	115	20	37	1240	341	2.5	1.5	30
30	650	115	20	-44	1270	1249	2.5	2.0	35
31	660	23	35	45	1115	237			
32	670	18	30	45	955	264			
33	680	15	30	-43	1120	171		~ ~	~ ~
34	690	225 29	40	52	1060	1 ⁸ 1 259	2.0	2.0	80
35 36	700 720	29 76	25 55	41 3 00	825 1000	259	3.5	6.0	50
37	720	31	20	68	1185	253	3.5	5.0	20
38	740	18	20	63	1500	154	5.5	9.0	20
39	770	18	35	42	590	110			
40	800	24	20	41	830	209			•
41	820	45	25	35	380	94			
42	840	17	20	41	740	132			
43	860	19	15	35	720	198			
44	880	20	20	39	689	132			
45	900	14	25	59	610	237			
46 47	920 940	10 5	20	-42 35	390 905	66 88			
41 48	940	10	15	38	905	· 154			
49	990	15	10	35	545	105			
50	1030	16	10	36	545	121			
51	1060	5	1025	45 36	650	110			
52	1100	26			510	105			
53	1120	16	15	61	385	55			

LOC	CATION=17.	DELANEY	1 #1	RO BE RT S	NE SE	NW SEC.	22 T.2	ON, R. 4W	
DBS	DEPTH	CU	PB	ZN	MN	BA	AG	CD	CO
54	1140	25	25	43	375	72			
55 56	1170 1200	10 53	20 15	53 36	540 315	-61 88			
-57	1220	14	20	26	360	134			
58 59	1250 1270	7 25	13 70	20 55	175 245	64 98	1.0	1.5	15
60	1290	16	30	50	430	162			
61 62	1300 1320	55	25 15	30	505 310	225 69	2.5	0.5	35
63	1340	508	60	12 0	450	181	6.0	4.0	22
64 65	1360 1380	18 11	30 20	40 30	295 420	142 215			
66	1400	16	18	30	555	161			
67 68	1420 1440	13 31	35 30	30 30	465 500	103 118			
69	1460	32	25	30	615	132			
70 71	1480 1500	12 79	25 25	30 35	545 510	108 157			
72	1520	27	25	30	475	220			
73 74	1540 1560	38 54	50 25	30 35	675 470	137 157			

-

	LOCATION	=18. GULF	#1	DECKER	SW JSW/NW	SEC.12,	T.20N,	R.4W	
D ^B S	DEPTH	CU	ΡB	ZN	MN	BA	AG	CD	CD
1	380	10	15	40	940	205			
.2	400	18	20	34	675	310			
3	460	8	15	37	695	235			
4	480	11	15	63	1680	705			
5	500	12	20	67	720	325	1.5	1.0	25
6	520	10	10	67	1125	360	2.0	1.0	30
7	54C	52	20	78	1215	450	2.0	1.0	30
8	560	6	15	43	685	190	2.0	1.5	30
9	580	120	20	85	2350	250	3.0	3.0	40
10	590	65	20	43	2080	345	2.5	2.0	35
11	600	98	30	42	2165	190	2.5	2.0	20
12	620	35	35	49	1540	160	2.5	2.5	30
13	630	41	25	62	1575	295	2.5	2.0	30
14	640	11	30	84	1000	175	2.0	1.5	40
15	660	11	30	70	915	125	2.5	2.0	30
16	680	10	20	68	910	125	2.5	2.5	35
17	700	18	35	58	775	210	2.5	2.5	35
18	720	19	50	63	850	240	2.5	3.0	30
19	740	. 23	30	50	560	175	2.0	2.5	20
20 21	760 780	26 22	25 35	49 165	829	98 11			
22	800	25	40	1 5 0	910	75	2.5	3.5	35
23	820	42	90	142	940	85	2.0	5.0	30
24	840	31	50	111	1410	210	2.0	3.0	40
25	860	59	30	1 10	540	110	2.0	1.5	25
26	880	92	15	57	905	115	2.0	3.0	30
27	900	13	15	57	530	195	2.0	1.5	30
28	920	13	15	68	935	140	1.5	1.5	30
29	940	6	20	59	660	150	1.5	1.5	30
30	960	9	30	53	890	150	2.0	2.0	30
31	980	198	40	1 03	625	195	4.0	3.0	50
32	1020	48	25	53	465	85	1.5	1.5	25
33	1040	111	35	189	670	85	2.0	3.0	40
34	1060	76	45	79	1075	60	2.5	3.0	.45
35	1080	30	30	59	665	110	2.0	3.0	40
36	1100	18	22	59 94	682	66	2.5	3.0	20
37	1120	13	20	94	580	95	2.0	3.0	30
38 39	$1140 \\ 1160$	57 18	20 20	55 63	520 465	40 80	3.0 2.5	4.0 4.0	35
39 40	1180	102	30	1 24	465 570	80 25	2.5		30
40	1200	139	45	82	575	110	2.5	4.0 3.0	20
41	1200	65	40	02 97	495	75	3.0	4.0	40
72	1500	00	40	97	475		5.0	4 • 0	40

	LOCATION=	19. WAT	CHORN I	#1 KAISI	R NE/NW	SEC .8	T.20N	R.3W	
OB S	DEPTH	CU	PB	ZN	MN	BA	AG	CD	CD
1	390	.4	15	25	685	200	0.5	1.0	30
2	391	21	0	15	250	818	0.5	0.5	40
3	410	5	25	35	1645	127			
4	430	6	20	35	690	225			
5	450	5	15	25	500	171			
6	470	9	15	35	1425	284			
7	490	8	20	30	1000	421			
8 9	510	16 5	15	25	1060	490			
10	520 540	5 6	15 10	40 90	1240 550	240 83			
11	550	57	10	35	525	167			
12	570	57	10	35	690	108			
13	590	55	20	35	800	122			
14	610	14	30	4 C	1060	132			
15	650	24	45	45	455	98			
16	670	103	40	45	410	59			
17	690	24	100	85	1265	176	3.0	4.0	25
18	720	11	45	80	740	216			
19	750	45	30	55	715	157			
20	780	34	55	35	1155	88			
21	810	21	40	35	535	113			
22	840	36	60	40	1210	124			
23 24	870 890	6 3	15 5	40 20	240 140	.103 21			
	910	13	30	70	540	21 144			
25 26	910	13	30 15	40	640	144			
27	950	7	10	40	505	103			
28	970	6	17	45	1040	81			
29	990	6	20	35	235	176			
30	1010	16	20	35	235	88			
31	1030	17	42	42	375	273			
32	1050	14	15	40	215	77			
33	1070	16	15	45	500	72			
34	1090	11	20	25	415	94			
35	1110	19	15	35	535	99			
36	1130	18	20	35	520	88			
37	1150	16	25	35	290	88			
38	1190	21	35	5 C 5 2	510	33			
39	1210	14	21		216	272			
40	1230	15	30	65	525	242	2.5	2.0	18
41	1240	36	45	10 0	510	566	2.5	2.5	20

1	DCATION=20.	CHAMP	LIN #1	GR AV E	S NE/SE	SEC. 21.	т.20	0N•R•2₩	
OBS	DEPTH	CU	PB	ΖN	MN	BA	AG	CD	co
1	100	18	40	65	705	523	5	6	40
2 3	185	6	25	55	1110	270			
3	205	7	20	30	1590	478			
4	225	12	25	35	2300	226			
5	380	23	25	35	630	160			
6	400	14	20	55	1140	83			
7	420	10	20	40	1125	154			
8 9	440	9	15	45	635	171			
	460	83	15	35	320	270			
10	490	67	20	40	740	149			
11	510	5	20	50	855 230	105 204			
12	520	19	20	40		_			
13	540	58	20	45	380	369			
14	560	37	20	35	1110	215			
15	580	18	20	40	420	198	~		~ ~
16	600	74	20	40	470	330	•5	1	23
17	620	16	20	45 45	300 750	160			
18	640	12	15			484			
19	660	13	15	40	970	209			
20	680	5	20	45	1600	517			
21	700	163	15	25 35	275	193			
22	720	14	25		290	130			
23	740	10	20	40	1425	630			
24	760	27	20	35	395	65			
25	780	5	25	40	855	175			
26	. 800	8	20	40	815	265			
27	820	16	20	50	870	170			
28	830	33	20	50	740	150			
.29	840	56	35	50	1785	240			

	LOCATION=21.	онго	#1 HU	JBBART T	N 1/SW/SE	SEC. 18,	T.20N,	R.1W	
OB S	DEPTH	CU	PB	ΖŇ	MN	BA	AG	CD	CO
1	220	8	30	56	2520	649	2.0	2.0	30
2 3	280	12	50	33	950	358	3.0	3.0	35
3	240	5	30	45	2100	187	1.0	1.0	25
4	260	35	20	33	1710	149	1.0	1.0	25
5	290	5	25	43	3000	253	0.2		
67	310	6	35	40	1605	396	1.5	1.5	30
7	330	8	50	52	740	110			
8	350	5	35	43	390	347			
9	380	3	15	34	245	319			
10	400	4	20	47	305	187			
11	420	19	20	43	1405	622	1.0	1.0	30
12	440	15	25	55	1510	215			
13	460	51	43	53	1250	380			
14	480	19	45	33	505	132			
15	500	7	40	37	2750	308			
16	520	6	35	35	1950	275			
17	540	7	75	- 37	2590	561			
18	560	5	30	44	415	198			
19	580	10	75	33	1425	94	2.0	1.5	35
20	600	7	80	38	940	165			
21	640	13	25	54	870		1.0	1.0	70
22	680	18	20	53	1310		2.0	2.0	30
23		200	15	50	1320		6.0	2.0	
24	780	80	185	75 5	3450		-4.0	7.0	
25	840	18	15	68	740		1.0	2.0	
26	860	16	15	59	750		1.0	2.0	
27	880	18	12	60	770		2.0	2.0	25
28	940	16	10		680		1.0	2.0	20

	LOCATION	=22. ELI	I SON	#1 STRA	GE SEC.	27 T.	18N,	R. 4₩	
DBS	DEPTH	cu	PB	ΖN	MN	BA	AG	CD	co
1	200	7	25	18	1590		2.0	2.0	30
2	380	11	30	37	930		2.0	0.5	40
3	400	7	30	28	2650		1.5	1.0	25
4	500	8	35	27	1080		1.5	1.0	20
5	660	8	20	29	660				
6	680	8	30	32	470				
7	700	6	45	34	890				
8	720	7	35	34	395				
9	740	5	25	22	690		0.5	0.5	20
10 11	760 780	6	30 35	33 27	54C 540		1.0	0.5	20
12	800	104 99	20	32	835		1.5	1.0	25 30
13	820	23	15	39	415		0.5	0.5	30
14	840	16	13	39	735		1.0	0.5	23
15	860	7	15	44	565		1.0	0.5	25
16	880	20	20	42	940		1.0	0.5	35
17	900	10	10	36	555		1.0	0.5	30
18	920	22	25	39	630		1.0	0.0	40
19	940	10	10	12 4	710		0.5	1.0	20
20	980	24	35	40	1025				
21	1020	11	10	47	590				
22	1040	9	10	38	405				
23	1060	8	10	35	370		0.5	1.0	25
24	1080	9	15	40	910				
25	1100	8	10	37	465				
26	1120	8	15	39	870				
27	1140	7	15	36	565				
28	1160	13	15	40	625				
29	1180	10	10	45	415				
30 31	1200	10 16	15	39 37	590 595				
32	1220 1240	12	20 15	57 41	320				
33	1240	20	10	32	340				
34	1280	18	20	37	475				
35	1300	21	10	38	270				
36	1320	21	10	44	670				
37	1340	12	15	35	350				
38	1360	12	10	35	370				
39	1380	9	10	32	34C				
40	1400	12	15	44	340				
41	1420	22	8	34	350				

APPENDIX D

ļ

MEANS OF THE ELEMENT CONCENTRATIONS BY WELL FROM THE UPPER WELLINGTON FORMATION

Well No.	Depth Interval	No. Obs.	Cu	Pb	Zn	Mn	Ba
1	970-1160	12	226.0	26.7	52.7	432.8	
3	740-980	10	15.1	21.1	57.8	410.0	-
4	570-750	9	39.6	24.0	62.7	550.0	-
5	550-720	12	85.0	32.5	45.5	606.0	_
6	100-500	8	91.6	40.3	55.1	667.9	-
7	0-200	9	127.6	36.3	51.4	670.0	_
9	870-1160	8	21.4	20.3	44.7	296.8	-
10	280-580	14	56.4	287.1	81.5	727.0	-
11	330-540	9	48.1	26.5	62.0	557.5	-
12	0-220	6	45.0	132.8	118.2	1715.4	-
14	1040-1260	10	47.9	17.5	35.0	427.7	235.1
15	920-1140	9	45.3	44.0	46.6	397.0	242.8
17	520-720	19	106.3	24.1	65.6	823.9	347.9
18	550-780	13	44.9	24.5	62.4	1443.5	230.5
19	550-780	9	42.4	38.5	49.0	781.5	132.3
22	780-980	15	35.5	19.8	42.2	695.0	-

,

Dennis Dean Elrod

Candidate for the Degree of

Master of Science

Thesis: A GEOCHEMICAL AND PETROGRAPHIC SURVEY OF THE WELLINGTON FORMATION, NORTH-CENTRAL OKLAHOMA

Major Field: Geology

Biographical:

- Personal Data: Born in Indianapolis, Indiana, May 25, 1952, the son of Mr. and Mrs. Philip R. Elrod.
- Education: Graduated from Southwest High School, St. Louis, Missouri, in May, 1970; received Bachelor of Science degree in Geology and Bachelor of Arts degree in Zoology from University of Missouri-Columbia in May, 1974; completed requirements for the Master of Science degree at Oklahoma State University in July, 1980, with a major in Geology.
- Professional Experience: Geologist, Rickelson Oil and Gas Company, Wichita, Kansas, 1974-1975; Research Assistant, Oklahoma State University, 1976; Geochemist, Ghana Geological Survey Department, 1977-1980.

.