
OPTIMAL DISTRIBUTED MICROPROCESSOR ARCHITECTURE

USING MULTI-PHASE PROCESSING TO PERFORM

A VECTOR, MATRIX MULTIPLICATION

By

LARRY GENE STOTTS
/;

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1972

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1977

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
July, 1979

(/1.~-~

1777~
s 865($)­
~.;z

OPTIMAL DISTRIBUTED MICROPROCESSOR ARCHITECTURE

USING MULTI-PHASE PROCESSING TO PERFORM

A VECTOR, MATRIX MULTIPLICATION

Thesis Approved:

Dean of the Graduate College

ii

ACKNm4LEDGMENTS

I would like to extend my appreciation to Dr. Edward Shreve, chairman

of my doctoral committe and my thesis adviser, for assistance throughout

the course of my graduate education. To the other members of my doctoral

committe, Or. Jack Allison, Or. Craig Sims, and Or. Richard Phillips, I

wish to thank them for their critical review of the manuscript and for

their contributions to my education.

Over the past two years, several persons in addition to the committe

members have given helpful comments and criticisms on the research des­

cribed in this thesis. Hopefully, no one has been omitted from the

following list: Or. Gary Poffenbarger, Mr. Steve Hudson, Or. Eugene

. Bailey.

Finally, I would like to thank my parents for their support and

encouragement through my education in school, sports, and life.

iii

Chapter

I.

TABLE OF CONTENTS

PROBLEM DEFINITION

Introduction
Problem and Approach

II. SURVEY OF DISTRIBUTED PROCESSOR SYSTEMS

The Unger Computer
The Holland Machine
The Comfort.Machine
The SOLOMON Machine
The Gonzalez Iterative Circuit
The ILLIAC IV Computer . .
The MCB Machine
Berkeley Array Processor .
The Cannon Computer . . . •
The General Electric Matrix Processor
Summary

III. DEFINITION OF DISTRIBUTED ARCHITECTURE AND PROCESSING

Introduction
SIMD Architecture•......
MIMD Architecture
Coupling
Definition of Time and Space Complexity .
Summary

IV. OPTIMIZATION OF DISTRIBUTED ARCHITECTURE ...

Introduction
Array Processing Limitations by Definition
Design Limits of Array Processor
Limits on Vector, Matrix Cycle Time

Page

l

l
2

7

7
9

10
11
13
14
16
16
17
20
20

23

23
23
27
28
29
33

34

34
35
36

Hardware Monolithic Multiplier Power and Size Problems
Technique for Reducing Multiplier Delays

40
42
47

Multiple Phase Processing
Optimal Design with Linear Programming
Optimal Two Phase Design
Summary

iv

. . .
. . . ' .

49
. . • • 51

54
61

Chapter Page

V. PROCESSING ELEMENT DESIGN 62

Introduction • 62
The Design of Processor Bus Structure for Vector,

Matrix Products 62
Design of Internal Processor Configuration 67
Look-Ahead Shift to Increase Floating Point Operations . 72
Circuit Configuration with Look-Ahead Shift • 77
Effects of Multiple Phase Operation on the Processing

Element Design 79
Summary . • 83

VI. APPLICATION OF DISTRIBUTED ARCHITECTURE TO LINEAR
RECURSIVE FILTER

Introduction
Full Order Kalman Filter
Kalman Filter Realization
Distributed Architecture Equation Format
Linear Program Formulation
Circuit Design of Kalman Filter Problem
Summary . •

VII. CONCLUSIONS AND RECOMMENDATIONS

Conclusions•.
Recommendations for Further Research

SELECTED BIBLIOGRAPHY .

APPENDIXES

APPENDIX A - MIXED INTEGER LINEAR PROGRAMMING

APPENDIX B - LINEAR EQUATION BOUNDARY PLOT PROGRAM .

APPENDIX C - KALMAN FILTER GAIN FINDING PROGRAM

APPENDIX D - MATRIX COMPUTATIONS OF Q MATRIX . .

APPENDIX E - DESIGN STEPS FOR MULTI-PHASE PROCESSOR

v

84

84
84
87
93
94
98

. 1 01

. • 103

. . 103
l 04

107

. . ll 0

. 111

• • 122

130

.. 135

139

LIST OF TABLES

Table

I. Limits on the Size of Algorithm

II. Effects of Tenfold Speed-Up ..

vi

Page

31

32

LIST OF FIGURES

Figure Page

1. Problem Flow Chart 4

2. Approach Flow Chart 5

3. The Unger Computer System 8

4. The SOLOMON Computer System 12

5. The ILLIAC IV Computer System 15

6. The Cannon Computer System 19

7. The General Electric Processor . 21

8. SIMD Architecture 24

9. MIMD Architecture 25

10. Heat Sink Dip for LSI Device 44

11. Eight Bit Multiply Algorithm 46

12. Time and Power Equations 58

13. Time and Area Equations 59

14. Integer Solutions of Problem 60

15. Multiply Table 64

16. Circuit for the Parallel Storage of Data with Least Bit Lines 68

17. Floating Point Multiplier 70

18. Floating Point Multiplier with Look-Ahead Unit 78

19. Processor Circuit with Two Processor Elements 80

20. Floating Point Multiplier with Interleaving Design 82

21. System Model Diagrams 85

vii

Figure

22. The Total Signal Generating t·1odel Diagram

23. Plot of the Equations for the Kalman Filter Circuit

24. Integer Solutions to Kalman Filter Circuit

25. Land and Diog Output Data

26. Data Flow for the Kalman Filter

27. Circuit for the Kalman Filter ..

28. Mixed Integer Programming Logic Diagram

29. Matrix Computations for the Q Matrix ..

30. Multi-Phase Processor Design Flow Chart

viii

Page

88

96

. . • • • 97

99

100

102

116

136

• 141

CHAPTER I

PROBLEM DEFINITION

Introduction

Significant alterations in engineering formulations and applications

have emanated from the evolution of the digital computer. This has insti­

tuted the development of expensive machines of a general purpose structure

capable of diverse operations. By nature, these instruments are large,

slow, exorbitant, and complex. In later evolution, computer design tech­

nology produced faster, more effic-ient systems, but the units remained

large and costly. The need for smaller, faster computers became apparent

early in the computer age. This need instigated the use of special pur­

pose computers, small in physical size, low in overall cost, and fast in

execution time. The drawback to such special machines was the initial

cost and limited application of the system. An example of a limited sys­

tem of this design is the digital differential analyzer.

Neither large-scale systems nor small special systems appear to be

suitable for real time applications such as vehicle navigation, signal

processing, and digital filtering. To meet the requirements necessary

to compute these algorithms efficiently, an alternative philosophy has

emerged that utilizes the particular mathematical structure of a given

class of problems to generate the computing system design. By designing

the computer to take advantage of the structure of the problem, classes

1

2

of problems possessing similar characteristics may be processed effi-

ciently in a special-purpose machine.

A group of problems whose mathematical structure can be used to gen­

erate the design criteria of the machine is the class of problems solved

with vector, matrix operations. This problem structure suggests an array

orientated machine capable of parallel operation. In the majority of de­

signs this organization has resulted in an array processor composed of

identical processing elements with an effective interconnecting structure.

Some examples of this class of problems are recursive linear filters,

vehicle nagivation, phased-array radar control computations, and sonar

receiving array data processing.

The design and implementation of such a computing apparatus will be

affected by the recent advances in integrated circuit technology~ The

development of large scale integrated circuit technology has prompted the

fabrication of complex digital processors on a single substrate. The

current advances in integrated circuits, as well as possible future ad­

vances, must be taken into account in the design of a computer system. In

the next chapter a survey of array structured systems research, as it

pertains to the design of special organized computers, is presented.

Prob 1 em and Approa.ch

The designs of special-purpose computer systems for the evaluation

of vector, matrix products have thus far been constructed using arrays of

identical processor elements functioning at a common cycle time. These

machines are composed of N2 processing units, interconnected by some type

of bus structure and manipulated by a controller. In the event that the

array to be processed is of dimension N2 or less, maximum throughput is

3

maintained. However, in situations resulting in an array of dimension
2 2 greater than N or less than N , the efficiency of machine operation is

reduced due to processor idle time. Processing elements may be added to

the array to meet larger array requirements or removed to match smaller

arrays, resulting in the dimensions of the data array and processor array

being made equal.

The primary restriction of this architecture is illustrated by plac-

ing a time, power, and size constraint on the system. As the dimension

of the data array is increased, the design quickly overruns the con­

straints. In this situation, if the number of processing elements is

made equal to the data array by an integer multiple, efficiency can again

be attained. This is true only if the processor operation time is fast

enough to perform all the computations in the required time frame. In

most cases it is impossible to provide a processor array related to the

data array by an integer multiple.

It is the concern of this research to obtain an optimal architecture

capable of computing vector, matrix operations. The architecture will be

optimized to cost and constrained to time, power, and circuit size. A

flow chart of the problem is shown in Figure 1. The approach will employ

the use of two or more processors that operate at different cycle times.

It is evident that processing speed is directly related to power and cost,

with an inverse relationship to circuit size. A design founded on these

relationships lends itself to linear integer programming optimization

techniques. Optimization based on cost of the array elements will result

in an efficiently designed computer capable of adhering to time, power,

and circuit requirements. The approach flow chart is shown in Figure 2.

The results of this study will produce an algorithm to follow in the

4

START

~ .,.
UL TILIZE:

--

DISTRIBUTED ARCHITECTURE

-~
,

DESIGN FOR VECTOR,MATRIX

PRODUCT TYPE PROBLEMS

~ ,.
OPTIMIZE EACH STAGE OF
TO COST,CONSTRAINED BY
TIME, POWER, AND SIZE

.... ,
APPLY TO LINEAR RECURSIVE

FILTERING PROBLEMS

Figure 1. Prob1em Flow Chart

5

START

+
CLASS OF PROBLEMS:
VECTOR, MATRIX PRODUCTS

~ ,.
STUDY ARRAY PROCESSING

DISTRIBUTED

ARCHITECRURE

~ ,.
DEFINE DESIGN CRITERIA
USING DEFINITIONS OF
ARRAY PROCESSING SYSTEMS

~ ,
OPTIMIZE DESIGN TO COST
PARAMETERS CONSTRAINED:
TIME, POWER, AND SIZE

• DESIGN PROCESSORS OF THE
ARRAY TO MEET THE DESIGN

CRITERIA OF THE SYSTEM

• APPLY STUDY TO KALMAN
FILTER TYPE PROBLEMS

Figure 2. Approach Flow Chart

6

design of computers to perform vector, matrix computations. This proce­

dure will yield an optimal structure capable of accomplishing the desired

computations in a specified time period, optimized to cost and constrained

to power, time, and circuit area. A second product of the work will gen­

erate the interconnecting circuits necessary to interleave the computed

data to the proper accumulators during the calculation process. In the

course of this research, two other conclusions will be reached. In the

area of floating point hardware, a maximum throughput structure will be

illustrated. Further, a design of the most efficient bus struriture of

transferring the required data will be analyzed. This work applies sys­

tem theory techniques to the heretofore "black magic 11 solution to the

design of digital systems.

CHAPTER II

SURVEY OF DISTRIBUTED PROCESSOR SYSTEMS

Introduction

A study of available literature on special computer systems produces

a number of distributed processor-based designs. Several pertinent com­

puter structures are discussed in the following sections.

The Unger Computer

One of the earliest examples of a distributed architecture computer

was proposed by Unger (1). This system used a stored program to handle

specific problems by directly processing information in planar form with­

out format conversion or scanning operations. The structure of the de­

vice lends itself to handling pattern detection problems.

The structure of the Unger system is illustrated in Figure 3. This

computer uses a master control unit and a rectangular array of processor

elements. Each processor element can communicate with the four adjacent

elements and receive commands from the master control. The controller

is composed of a random access memory to store instructions, decoding

circuits, and a clock. Commands from the controller are generated in

parallel to all processing elements, but individual processing elements

are not addressable. Programming is accomplished with 14 assembly lan­

guage instructions that are executed by the controller.

7

MASTER
CONTROL

MODULES OF ARRAY

PE --,

PE PE

PE PE

PE = PROCESSING ELEMENT

FiJure 3. The Unger Computer System

8

PE

Each processing element consists of a single bit accumulator, some

associated logic, and a small random access memory. Inputs to each pro­

cessing element consists of control lines from the system controller and

links to the accumulators of the adjacent elements.

A branch on accumulators equal zero is accomplished in the control

unit by using a logical adder to evaluate the inputs to the controller

from the accumulator of each processing element. This instruction func­

tions in the same way as the conditional transfer used in conventional

computers by causing the control unit to skip the next instruction when

zeros are detected in the accumulators. This transfer instruction com­

poses the only decision dependent command utilized by the machine.

9

The Holland Machine

A computer system organization has been described by Holland (2)

that places control at the processor element level in the system. This

system organization is in direct contrast to the central control concept

proposed by Unger.

The concept of the Holland machine provides a basis for investigation

of the theory of automata and computability. Holland's system consists of

a two-dimensional array of identical processing elements, with each ele­

ment containing a storage register, routing logic, and auxiliary regis­

ters. During any given machine cycle, a processor element is either

active or inactive. If the element is active, it decodes the contents of

its storage register as an instruction and proceeds to execute the opera­

tion. Following the execution of the instruction, the processor element

passes its active status to the next element, which may be any adjacent

processor element in the array. Using this concept, sequences of

10

instructions are scattered throughout the array of processor elements,

with an arbitrary number of instructions being executed at any given time.

There are three phases that compose the operating cycle of this sys­

tem. During the first, processor element storage registers may be set to

values introduced by external sources. In the next phase, all active

elements determine the address of their operands by logically enabling

data paths. The last phase consists of the execution of the instruction

in the storage register.

The disadvantage of this machine appears to be the difficulty of

programming in an efficient manner that will allow a large number of

processor elements to be active during a machine cycle. Also, it is

necessary to use a massive amount of hardware to solve a reasonable com­

putation problem.

The important contribution of this work is the development of an

array of locally controlled identical processing elements. The hinder­

ances of this approach are the extensive amount of hardware utilized and

the programming difficulty.

The Comfort Machine

The array-structured system based on the concept of local control

was further studied by Comfort (3). This study culminated in a modified

Holland machine with a fixed-size rectangular array of processing ele­

ments. Processor elements are composed of two relatively independent sec­

tions: the control section and its memory, and the communication section.

The arithmetic units are placed beside the array of processor elements in

this configuration and perform all mathematical and logic operations.

This computer contains no central control unit; therefore, each processor

element executes its own program once it is enabled. The execution of a

set of instructions causes the enabling and disabling of successive pro­

cessor elements.

Comfort's computer was designed to provide some improvements to the

Holland computer, which are listed below:

1. System is easier to program by several orders of magnitude.

2. Machine size is reduced by a factor of five.

3. Utilization of hardware is improved by a factor of three.

The drawback to Comfort's system is that only one program sequence

per arithmetic unit can be operated concurrently.

The SOLOMON Machine

11

The SOLOMON (Simultaneous Operation Linked Ordinal Modular Network)

system is a distributed architecture computer introduced by Slotnick,

Borck, and McReynolds in 1962 and later revised in 1966 (4). The archi­

tecture was conceived to satisfy a particular class of problems and adhere

to current needs in computing capabilities. The primary purpose of this

device was to implement matrix operations and computations. This class of

problems consists of linear systems analysis, matrix calculations, and

solutions to systems of ordinary and partial differential equations.

Figure 4 illustrates the construction of the machine and its three

major units. The network control unit (NCU) is first and provides the

central control of the machine. The NCU is composed of at least one arith­

metic and control unit, and is expandable to a multiple unit configuration.

An array of processing elements (PE) in a 32 x 32 structure makes up the

second major unit. The processor configuration is designed to allovv mod­

ules of 256 PE's with the associated memories for each to be added or

12

CENTRAL CONTROL PROGRAM

STORAGE

BRANCHING LEVELS

PE ----... PE -
. .---- PE _.... PE

, 1 , ,
~

PE .___... PE 1-- ____. PE r- _ .. PE

I

PE __.,._ PE 1- _. PE 1- ____.... PE

lr

~ .
PE .. PE PE PE

PE = PROCESSING ELEMENT

Figure 4. The SOLOMON Computer System

removed from the unit without design alterations. The third major unit

is the input-output unit (IOU) which is comprised of five modules of 32

data channels, with each channel acting as a separate input-output link.

13

The processing elements of the computer are identical and each pos­

sesses complete arithmetic capacity. An ind·ividual process·ing element

has associated with it two memories with 4096 bits of storage (expandable

to 16,384 bits) in each memory. A processing element can perform serial

logic and arithmetic operations and can communicate serial data to the

four adjacent elements in the array. The elemental conclusions of this

study reveal the adaptability of a machine that utilizes identical pro­

cessing cells under a central control and the capability of serial com­

munication with the four nearest adjacent elements.

The Gonzalez Iterative Computer

A multilayer iterative circuit computer (ICC) has been proposed by

Gonzales (5) and is an improvement on the work done by Unger and Holland.

The architecture of this computer provides the capability to solve prob­

lems involving spatial relationships between variables. The processing

elements in this architecture are placed in three stacked layers. The

layers are identical and consist of a program layer, a control layer, and

a computing layer. The data and instructions are stored in the program

layer; the control layer performs the decoding of instructions that are

executed by the computing layer. The programming sequence is similar to

the Holland computer in that each instruction specifies the processing

element that contains the next instruction. Pipelining allows the con­

trol and programming layers to work on the next two instructions during

the execution phase.

14

The elements in the three planes of M x N modules are identical and

are allowed to communicate by means of control lines. The internal archi­

tecture of the elements is composed of an accumulator, a register, a de­

coder, and a number of switching matrices used to interface the decoder

to the data and control lines. As with other computers of this type, the

programming is difficult and the hardware is inefficient. The major fea­

tures of the Gonzales design that are of further interest are

1. The path connecting method that retains the time access features

of a common bus computer, while allo\'Jing simultaneous operation of other

paths in the system.

2. The complete separation of control signals from the data flow.

3. Three-phase operation, with each phase active simultaneously on

each layer, but executing different instructions.

The ILLIAC IV Computer

A distributed architecture system called the ILLIAC IV was intro­

duced by Barnes, Brown, Kata, Kink, Stokes, and Slotnick (6). The com­

puter is a continuation of the work done on the SOLOMON computer and is

employed to implement matrix, vector computations.

The design of the ILLIAC IV system is illustrated in Figure 5. The

processing elements (PE) are placed in four arrays of 64 elements each

with one control unit for each array. The function of the control unit

is to decode instructions and control the 64 elements in array which it

is designed to manipulate. The operations of the four arrays can be com­

bined to perform multiprocessing or single processing operations, all

under control of one program. The system program is stored in a general­

purpose computer, a Burroughs 86500, that is responsible for loading the

--

PARALLEL
ACCESS
DISK

.-tl -.-tl -

-

-.. .,...

I I
I/0 SWITCH

...... -

;.,.. REAL TIME LINK

GENERAL
PURPOSE
COMPUTER

Figure 5. The ILLIAG Computer System

15

arrays and controlling the configuration of the system, and outputting

the data. Backup memory for the array is provided by disk in a parallel

access configuration that is directly attached to the ILLIAC IV system.

The architecture of the ILLIAC IV consists of four SOLOMON arrays

of 64 processors each to provide 256 processor elements. A processor

element in the system can perform 240 nanosecond addition and 400 nano­

second multiply operations on a 64-bit operand. The processors are each

constructed of 104 ECL gates and a memory vJith 240 nanosecond delay and

a 2K word configuration.

The like units of the ILLIAC IV are constructed to be interchange­

able, as are the power supply parts. Trouble-shooting is thus made eas­

ier and down-time is reduced.

The MCB Machine

The Modular Computer Breadboard (MCB) was introduced by the NASA

Electronics Research Center (7). The architecture is in the form of a

modular system that can be reconfigured to operate as a distributed net-

work of processors. The system can be laid out in the form of columns

16

of processor elements that may be unplugged if not required in the com­

putation. Each individual processor may be operated independently of the

others or in conjunction with others, if required.

Four modules compose the structure of the system: a memory, control

unit, arithmetic unit, and input-output unit. Alterations to the config­

uration are accomplished by the configuration control unit and the con­

figuration control switches. Prime importance to the configuration

capabilities is the use of triple-redundance to provide extra reliable

17

operation. The modules of this computer are constructed of LSI circuits

and emphasis is placed on plug-in type units.

Berkeley Array Processor

The Berkeley Array Processor was introduced in 1970 by Dere and Sak­

rison (8) to be used as a general-purpose system. The processor will

efficiently perform the operations of convolution, correlation, recursive

filtering, matrix multiplication, and fast Fourier transform.

Dere and Sakrison's system functions as an input-output device, oper~

ating in conjuction with an IBM 1800 computer. In this design, the pro­

gram and data are stored in the IBM 1800 and accessed under control of the

array processor. Arrays of data stored in the IBM 1800 are transferred to

the 104-word shift register memory of the array processor via a pseudo two

channel data link. The structure of the array processor consists of shift

register memory, an array index unit, arithmetic section, accumulator, and

necessary functional control logic. The clock period is 140 nanoseconds,

and the data paths and registers are constructed to accommodate 16-bit

words.

Instructions for the processor are composed of 17 operations capable

of handling complex data processing. The majority of the instructions

are utilized to control the arrays of data and to perform bookkeeping

operations on input and output information. The input-output operation

of this processor introduces the concept of storing data in a larger com­

puter and processing the data in a special central processing unit de­

signed specially for the purpose of array structured data. This system

uses only standard design techniques in its construction and provides

some significant logic innovations.

18

The Cannon Computer

Efficient performance of matrix operation was the main design con­

straint of the array processor proposed by Cannon (9). The system was

intended for use in implementing algorithms utilized in linear recursive

filters and to extend the designs of the SOLOMON and ILLIAC IV computers.

The structure of the system, shown in Figure 6, consists of a two­

dimensional square array of processor units and a global control unit.

Control of processing elements is maintained through the use of parallel

control lines to each of the identical processor elements. Besides the

control logic, the global controller has arithmetic hardware and a large

data storage capability. This design allows the control unit to not on·ly

decode and control execution of instructions, but further allows for data

processing to take place in the controller.

The processing elements are identical in structure and consist of

sixteen 32-bit words of memory, a floating point adder-subtracter, float­

ing point multiplier, and logic to control the data flow. The design

calls for all processing elements to receive identical control signals

and perform the same operations during each cycle of computation. The

matrix data is stored in the memory of the processor element array in the

same (i, j) element location that the data holds in the data array. Pro­

cessor elements in the array are interconnected by singular horizontal,

vertical, and diagonal data lines that allow special data transfer oper­

ations to be implemented. These special operations are broadcasting,

rotating, skewing, and transposing the data matrix.

The structure proposed in this design yields a significant reduction

in processing time over conventional machines due to its parallel processing

19

GLOBAL •
• COLUMN REGISTERS

CONTROL • -

0 0 • • • • a • • • e • •
,

-

D D· • • • D •
•
•

D D· D • • • •
ROW •

• REGISTERS • • • •
• • • • • • • • ARRAY • • • •

• • • •
• D D D • • • • •

Figure 6. The Cannon Computer System

capability. A disadvantage to this scheme is the need of N2 computing

elements to compute data in an N x N dimension array. The system can

handle efficiently an array that is of dimension N x N, but for larger

or smaller arrays, it appears to be less effective.

The General Electric Matrix Processor

20

This system is an implementation of the Cannon computer designed and

built by Moyer, Rice, and Fifolt in 1977. The controller used was a Z80

microprocessor and the processor element consists of hardware floating

poing units constructed in an 8 x 8 array. This architecture is shown in

Figure 7.

Real time linear recursive problems are the prime purpose of the

machine, and in particular the Kalman filter algorithm is easily handled

by the system. In its full operational state this unit requires one

processor element for each element in the data array. Increasing the

capability of the system requires the addition of more processor elements.

The techniques utilized in this system are of interest since the im­

plementation was realized using LSI circuits. There are 400 integrated

circuits making up the system, and it operates at a 60 watt power level.

The system is capable of computing all the matrix functions commonly

found in real time control and signal processing applications. Complex

matrix algorithms may be computed using the microprogram capability of

the system which allows it to function in time limits that cannot be met

by conventional computers.

Summary

The distributed architecture design techniques proposed over the

ROW
MEMORY

COLUMN

ARITHMETIC
ARRAY

VECTOR
GAINS

I
COLUMN

OUTPUT

f---1-o ROW
OUTPUT

MICRO·
COMPUTER Z 80

MEMORY SEQUENCER

Figure 7. The General Electric Processor

21

22

last 20 years have been presented, along with advantages and disadvantages

resulting in these systems. A growing need for small special-purpose com­

puters has also been discussed and various problems such as filtering and

navigation have been pointed out to have array structures. It has been

deemed advantageous to base the design of the hardware upon characteris­

tics of the problem to be solved in situations where a group of problems

have mathematical structural similarities. Research in this area is

being caried out in both industry and university environments with both

entities placing strict concern on advances in LSI technology. The ulti­

mate culmination of these studies will be algorithms capable of designing

fast, low cost, and efficient systems able to handle the myriad of prob­

lems that face the engineering community.

CHAPTER I II

DEFINITIONS OF DISTRIBUTED ARCHITECTURE

AND PROCESSING

Introduction

Distributed or parallel processing is defined as processing two or

more portions of an algorithm by two or more processing units during the

same interval of time (10). This processing takes place at the task,

subtask, instruction stream, or data set level. The result of this defi­

nition generates a multiple processor system organization in the hardware

(11). Once the hardware is defined as a multiple processor system, it is

further divided into two processing structures. These structures are

termed single instruction multiple data (SIMD), shown in Figure 8, and

multiple instruction data (MIMD) (12), shown in Figure 9.

A definition based on the organizaiton of the hardware processors

alone does not define the entire concept of distributed architecture (13).

The definition must consider the concepts under which the distributed pro­

cessors are allowed to communicate and share memory space. Further, the

programs to be executed by such a distributed system should make maximum

use of the parallel capabilities of the computer.

SIMD Architecture

This architecture is sometimes referred to as a parallel processing

system (14) that uses one control unit to fetch and decode the program

23

Data and
instructions

Figure 8.

• . .

Procenor-to-proceuor
i-"''llf---lc--1~ interconnection

Memory
bus

·networlc

To
input/output

SIMD Architecture

24

Shared
m~mories

Processors
with

private
memory
and 1/0

Fi gtire 9.

·•

. '

.P/M
intercorinection

·:network
·'

PEWO·
- inter"connectjon

~·. netwprk

MIMD Architecture

System bus
and assoCiated
interlace logic

, ... ·.•.

·Interrupt
signal ..

interconnection
. network

Input/output
channels

25

instructions. The instructions may be executed in the central control

unit or they may be sent directly to subordinate processors in the sys­

tem.

26

The SIMD systems are further divided into three subclasses of this

architecture and called array processors, processing ensembles, and asso­

ciated processors (10). The array processor is designed to allow the in­

structions to operate on vectors of data at the same time with the control

unit having only limited capabilities. To implement the processing en­

semble, the control unit must be a complete computer and the processing

units are only allowed to communicate by passing data through the control

unit. The last subclass is that of associative processors, which are

designed to allow subelement processors to access and operate on data

only by its content and not by storage locations (10, 11, 12).

Array processors are considered to be the most applicable subclass

o~ SIMD architecture from cost and throughput criteria (10). The need

for maximum throughput motivates the design of array processors since

their tremendous throughput is accomplished by simultaneous operation of

individual processors on different streams of data. Three criteria must

be met to allow an array processor its maximum parallel capabilities (10).

First, all calculations should be described by vector instructions which

cause large amounts of data to be manipulated simultaneously by one oper­

ation. Secondly, there must be high speed data paths between processor

elements; and last of all the block of data that is to be processed during

one time interval must also be fetched from memory in one time interval.

Failure to meet these criteria will result in the system tending toward

serial operation and a major reduction in throughput (10, 12, 13, 14).

27

MIMD Architecture

The vector operations of SIMD are not used in an MIMD system, where

parallelism is obtained by performing different operations on individual

data sets in a given time interval (10). The results of the separate

operations are combined to form an end result to the computations. The

primary criteria for efficiency of an MIMD system is the design of proper

synchronization of the individual subsystems and allocation of the pro­

cessing in an effort to balance the computational load on the system.

The SIMD system operation does not face the same synchronization problem

since each individual processor of like type is doing the same operation

concurrently. The r-HMD architecture may be divided into two subclasses,

which are called the multiprocessor system and distributed system (10,

12, 13). The multiprocessor system uses one controller as a master to

allocate the slave processors individual tasks as requests for these

tasks are required. The slave processors may or may not be capable of

all doing the same functions to the incoming data stream (12, 13, 14).

This multiprocessor system may be used in applications of general

purpose computations, with each slave processor performing general tasks.

As new task requirements are generated, an idle processor is used to

perform the operation or to pick up another processor's \<Jork if a fai 1 ure

occurs in some other subordinate unit {10). The system may be altered

to allow different processors to do separate tasks, but as new programs

of the same type are generated, they must wait for a specific processor

to become available. In certain environments 6nly a few of the slave

processors would be used while the remainder go idle (10, 13, 14).

28

MIMD architecture has a second subclass called a distributed system

(12) which is composed of multiple processors designed to do specific

functions in a partitioned system. With this architecture the subordinate

processor systems may be located in one area, or separ·ated by large dis­

tances and connected by communications networks. The algm~ithms to be

executed on such a system must be known prior to operation of the system

so that software may be segmented into dedicated programs to drive the

individual processors. Such a diverse system, however, reduces interac­

tion between sybsystems and makes debugging of individual systems less

complicated (10, 12).

Communication in distributed systems consists of messages sent be­

tween processors or blocks of data being transferred from one unit to

another by way of shared peripherals or serial communication channels.

A further specification of this subclass of architecture may be drawn

from the requirement that the memory of the system not be shared by any

of the sub-units (12). From these definitions it is evident that the

disadvantages of such an architecture are (a) load characteristics are

difficult to determine for general program usage, (b) poor parallel usage

of subprocessors, and (c) general difficulties in controlling the system

if expansion of the system is desired (10, 13, 14, 15).

Coupling

The MIMO subclass of multiprocessor systems has been further classi­

fied by the amount of memory shared between its subprocessors. Systems

are referred to as being tightly coupled or loosely coupled. A tightly

coupled system is designated as one that is subjected to a strict control

scheme implemented in self-contained hardware (16). Tightly coupled

29

systems have been defined by Bowra (11) to include processors which trans­

fer data through shared memory. However, this definition is not followed

by Weissberger (10), and Enslow (13) in their concepts of multiprocessor

systems.

Loosely coupled systems are considered to be systems that have no

interaction between processor programs but do allow memory to be shared

(10, 13). Systems of loosely coupled processors require adequate commu­

nication and memory sharing to reduce the ramifications of subsystem

failures. These results are obtained by alloweing dynamic reconfiguration

of the operating system in the event of subsystem failure. Communication

capabilities will also reduce the interaction of processors during simul­

taneous attempts to acquire data in shared locations. Such control is

accomplished by allowing a priority criteria to be established (10, 11,

13, 14).

Definition of Time and Space Complexity

Once an algorithm is in a form ready to be executed by a computer,

two questions must be answered concerning its complexity (17):

1. What is the extent of memory space necessary to execute the

algorithm?

2. What is the time required for execution of the algorithm?

To attempt to answer these two questions it is desirable to utilize

some algorithm evaluation criteria. The object is to determine the de­

pendence of the time or space required to solve the problem as it grows

in order and observation. It is necessary to associate with the algor­

ithm an integer, called the size of the problem, assumed to be a measure

of the input data and order of the system.

30

The time required for solution of an algorithm may be expressed as

a function of size of the problem, and called the time complexity (17).

The limiting behavior of the complexity as size increases is called asymp­

totic time complexity (18). An analogous definition can be made for space

complexity and asymptotic space complexity (18).

The asymptotic complexity of an algorithm is said to determine the

size of the system which can be solved by the algorithm. An algorithm

may process incoming data of size N in time TN2 for some constant T.

From this it is seen that time complexity of the algorithm is order N2.

A better definition (18) may be generated by stating that a function g(N)

is of order f(N) if there exists a constant C such that g(N) ~ Cf(N) for

all but some finite set of non-negative values for N.

It is suspected that increases in throughput of data brought about

with each new generation of digital computers would decrease the concern

over efficient algorithms or more efficient architecture. However, as

computers increase in throughput, and bigger problems can be solved, it

is still the complexity of the algorithm that limits the increase in

problem size that may be handled by a faster computer.

To further illustrate this time complexity definition, consider the

case of five algorithms to solve the same problem, where each has a dif­

ferent time complexity (19):

Algorithm Time Complexity

Al N

A2 N log N

A3 N2

A4 N3

A5 2N

31

The definition of time complexity used here is the number of time

units requried to process an input data set of size N. For example, one

unit of time equates to one millisecond; therefore, A1 may be processed

in one second with an input size of N = 1000 and A5 may be calculated in

one second, but the input size is N = 9. Calculating the size of N rela-

tive to one second, one minute, and one hour will give the values shown

in Table I (18).

TABLE I

LH1ITS ON THE SIZE OF ALGORITHMS

Time One One One
Algorithm Complexity. Second Minute Hour

Al N 1000 6 X 104 3.6 X 106

A2 N log N 140 4893 2.0 X 105

A3 N2 31 244 1897

A4 N3 10 39 153

A5 2N 9 15 21

As computer components become faster, and if a ten-fold increase in

calculation speed is assumed, it is possible to calculate another set of

results for Table I. Table II (18) gives the size of a problem which may

be processed as a result of a ten-fold increase in data processing speed.

TABLE II

EFFECTS OF TEN-FOLD SPEED-UP

Time Problem Order Problem Order
Algorithm Complexity Before Speed-Up After Speed-Up

Al N 11 10 ,,

A2 N log N 12 Approx. 10 12

A3 N2 13 3.16 13

A4 N3 14 2.15 14

A5 2N 15 15 + 3.3

The results of Table II illustrate, for example, that algorithm A3

may handle data 3.16 times larger with the ten-fold increase in computer

speed, but A5 is increased by only 3.3 added to its previous size.

32

It is now thought that the rate of increase in computational through­

put due to technology improvements is declining, which suggests that fur­

ther increases in throughput will only result from better algorithms or

systems architecture. Assuming that an algorithm. is fixed, the most

effective method of increasing the throughput is to use distributed arch-

itecture, or in other words, process the data in parallel whenever possi­

ble. Most conventional computers operate in a strict sequence with only

one operatinn taking place at a given time, called serial processing.

The distributed architecture approach replaces a computation requiring N

steps by m independent subcomputations occuring simultaneously. Not all

algorithms adapt well to parallel processing, so overall results of a

fixed parallel architecture as related to an open class of algorithms

is not thought possible (18).

Summary

33

The intent of this chapter has been to introduce the distributed

architecture configurations and tabulate some of their advantages and

deficiencies. The background literature on the dilemma of vector, matrix

structured computation has always been directed towards the use of single

instruction, single data path architecture. It is pointed out in this

chapter that the idiosyncrasies of array processing are far more appli­

cable to this research than the other possible configurations.

Having once analyzed the architecture definitions, the concept of

time complexity is viewed. This time complexity definition will serve

as a primary constraint to the optimization problem and provide a basis

of design for real time computations. The steps in computing a vector,

matrix product will provide a fixed algorithm to be used in solving the

problem. By fixing the algorithm, the architecture will be allowed to

vary in order to meet the time complexity and other constraint criteria.

CHAPTER IV

OPTIMIZATION OF DISTRIBUTED ARCHITECTURE

Introduction

In the interim of the initial research and conclusion of the litera-

ture survey, array processing for·mulas were employed to realize vector,

matrix multiplications and similar mathematical operations. In each in­

stance, the definition of array processing was closely followed and led

to a computing structure composed of elements exactly equal to the dimen-

sian of the problem array.

An example of a matrix, vector multiplication problem is:

yl

Xn x12 xl3 xl4 xl5 y2

x2l x22 x23 x24 x25
y3

x31 x32 x33 x34 x35
y4

y5

An array processor element configuration is:

PE(ll) PE(l2)

PE(21).

PE(3l).

. PE(l6)

PE(26)

PE(36)
CONTROL •---------[SYSTEM]---------

34

One processor
element (PE)
for each term
in the matrix

35

The solution of an MxN matrix, vector product requires (M·N) multi­

plications and M(N-1) additions. Verification of this conclusion is pro­

vided by Aho, Hopcroft, and Ullman (18) in a general theorem of matrix

multiplication algorithms. Their theorem illustrates that, in general,

there exists no procedures to diminish the aggregate multiplications and

additions fundamental to the solution of a vector, matrix product, such

as XA, where X is a matrix of order M x N and A is a vector of order N x 1.

M times N multiplications and M(N-l) additions represent closure of the

algorithm and approaches the assumption of a fixed procedure of lowest

order. With this assumption made, attention is then concentrated on

determination of an architecture, variable in structure, optimal in cost,

and constrained by time, power, and size.

The literature study centers around an array mechanism composed of

M x N operational units, interconnected to all ow each unit to compute one

partial product of the matrix, vector product. This design criteria

stipulates that as the dimension of the problem matrix increases or de­

creases, the dimension of the computing mechanism must alter to equate

to the order of the problem. The variations in array design are appli­

cable to machines of an unlimited category; however, if real time design

constraints are imposed on the structure, alterations must be generated

to correct the design.

Array Processing Limitations by Definition

The definition of SIMD processing stipulates that individual proces­

sors must manipulate divergent data streams simultaneously. A conjectur­

al criterion predicated by the Array Processor subcategory necessitates

the concurrent execution of the same sequence of instructions under one

direct controller unit. Further definition infers that the data paths

interconnecting the processing elements be of a high speed parallel

nature, that all data fetched in one time period be processed in one

36

time period and stored in one time period. A listing of the design para­

meters for an array processor is as follows~

1. Processors should process different data streams concurrently.

2. Processors should execute the same instruction concurrently

under one co~trol data stream.

3. All data paths should be high speed system.

4. Individual data blocks must be fetched in one interval T1, pro­

cessed in one interval T2, and stored in one interval T3.

5. The number of operations occurring simultaneously in individual

modules must be maximized.

Design Limits of Array Processor

If the criteria and structure of the array processor is utilized in

the presence of constraints such as time, power, cost, and circuit size,

system performance is seriously degraded. The imperfections pertinent to

the circuit design of array processors are best illustrated by attempting

to design a processor array for a constrained problem. Time, power, and

size restrictions must initially be designated and thereby provide limits

to the choice of hardware capable of performing to the specifications.

Array Processor Design Example 1

Design Specifications: Data Time--1 microsecond
System Power--10 watts
(Multipliers)
Circuit Size--20 square units

Processor Chosen for
Job (Specifications):

Array Design Data:

Cycle Time--600 nsec
Power Per Unit--1 watt
Area (Multiplier)--1.5 square units

10 Multipliers--10 watts power
Cycle time is less than 1 JlSec
System Area = (10 mply)·(l .5 sq units/mply)

= 15 sq units

*Maximum processor array size is 10 processing elements.

*Maximum number of matrix terms processed in one cycle is equal to
1 0.

X X X
X X X
X X X

X X X

X X X

X X X

X

X

X

y

y

y

y

y

y

y

Nine multipliers can be used to
process this vector, matrix pro­

duct in less than 1)lsec.

Ten multipliers will not process
this vector, matrix product in l

llsec since two terms cannot be
processed in this time period.

Upon selection of necessary hardware, the maximum number of units that

can be used to compose the machine and still ~eet the power and circuit

37

size constraints may be computed. At this point the capacity of the

machine has been effectively restricted by the constraints and efficiency

of operation can be determined. Assume the machine's largest acceptable

array configuration is N x N. If a matrix to be processed by this machine

is of dimension less than N, the solution is easily obtained, but some

processing elements will be idle during the process and still require

power. This degradation can be corrected by eliminating the idle units

or disabling them until needed (17).

As the dimension of the prob 1 em grows 1 arger than the N x .N array of

the machine, two cases develop. First the computer may be redesigned to

38

use an array of processors of the fastest available cycle time, or just

fast enough to compute the terms of the matrix in the required time with

each processor computing several terms.

Array Design Example 2

Specifications:

Process Hardware:
{Specifications)

Array Design Data:

X X X X

X X X X

X X X X

X X X X

Data Time--1 psec
System Power
{Multipliers)--10 watts
Circuit Size--20 square units

Cycle Time--450 nsec
System PovJer--1. 25 watts
Circuit Size--1 .75 square units

8 Multipliers--10 watts
Cycle time less than l/2 A psec
System Area= (8 mply) (1.75 sq units/mply)

= 14 sq units

y
8 multipliers ca.n process 16 matrix

y
terms in less than 1 psec if each

y
multiplier does two terms.

y

This case deviates from the array processor design criteria, since a one-

to-one correspondence of processors to terms is nonexistent. However, as

constrained, this design variation is a possible solution to the dilemma.

If the array in this machine is composed of N2 processing units, and the

matrix is composed of x2 terms, then it is easily verified that if I =

X/N, where I is an integer, the resulting efficiency of the system will

be 100 percent, on the basis of power consumption to work. This rela­

tionship is best seen by the following example; if N = 2, then the

machine array is composed of 4 processing units. A matrix of dimension

4 x 4 \'/i 11 be composed of 16 terms and the computation process is executed

in 4 cycles of the 4 processing elements with zero idle time. ~Jith X

and N not related by an integer I, there will exist idle states during

the problem execution time. For example, if N = 2 and X = 3, the pro-

cess wi 11 require 3 cycles of each of the 4 computing components, but

during the 3rd cycle only 1 processor will be used and 3 will be idle.

39

The second case exists if slower hardware that is physically smaller

and that requires less power is employed in the machine. The propagation

of these slower components must likewise surpass the cycle time con-

straint, but due to its size and power advantages,. a larger array is rea-

lizable. This scheme will also result in the capability of manipulating

a more comprehensive matrix, vector product. The boundary of the second

case design exists at the point where the machine dimension equals the

matrix dimension.

Array Processor Design Example 3

Design Specifications: Data Time--1 microsecond
System Power
(Multipliers)--10 watts
Circuit Size--20 square units

Process Specifications: Cycle Time--900 NS
Power Required--0.5 watts
Circuit Size--1.0 square units

Array Design Data: 20 Multipliers--10 watts
Cycle time less than l ~sec
System Area = 20 square units

X X X X y 16 slow processors can be used
X X X X y

to do the process in less time
X X X X y

than 1 11sec.
X X X X y

40

A final look at the two cases reveals that by utilization of accel­

erated components, multiple cycles processing can result in improved

performance, while retarded cycle time components similarly will result

in expanded capabilities. These two cases illustrate some limits to the

defined array processor design criteria and imply that efficiency is a

function of the relationship of the machine array to the problem array.

Limits on Vector, Matrix Cycle Time

The initial problem placed upon the design consists of an execution

time stipulation indicating when the results of the vector, matrix pro­

duct will be completed. In this specific situation MxN multiplications

and N(N-1) additions must be achieved. It has been established that tech­

niques for the reduction of the number of operations of addition and mul­

tiplication are nonexistent. The only logical approach capable of improv­

ing the overall precipitancy of the calculation is to reduce the time

delay of adder and multiplier components. Knowledge of the limitations

of addition and multiplication logic will surface to establish the impedi­

ments on the size of the problem acceptable to a hardware processor.

Winograd deduced the theoretical lower limits of the multiplier (19)

and addition (20) process. In doing so, an (r,d) circuit is utilized to

express the terms of the bound of a d-valued logic circuit possessing

elemental fan-in of at most r and having the capacity to compute any r

argument, d-valued logic function in a unit interval. The addition of

two N bit operands approaches lower limitation in the binary number sys­

tem in compliance with the equation

t ~ [logr 2N].

Winograd further illustrated that the theoretical lower limitation on

multiplication delay is consistent with or slightly swifter than the

addition limitation equation. The equation is of the form

t ~ [logr • (N- 2)].

41

Through the correlation of practical circuit delays with the theoretical

limitations, insight in practical design can be acquired. The most pre­

valent technique for the realization of addition is carry-look ahead with

a speed exemplified by

S = 4[logr N].

In multiplication, the fastest practical realization implements multi­

plier encoding techniques combined with a wallace tree interface of carry­

save adders and culminates in a speed of

s = 2[1og312 (N)] + 2[logr N].

A numerical illustration of the performance equations is produced

by letting r = 4 and N = 16 bits. With this assumption the 1 ow 1 imi ts of

addition and multiplication can be calculated to be 3 gate delays, where­

as the carry-look ahead adder realization possesses 8 gate delays in con­

trast to 18 gate delays for multiplication as seen in present designs.

Existing adder logic more closely approaches the theoretical limitation

than does multiplication due to the ideal implementation of addition in

the binary number system. The cardinal rule emanating from the investi­

gation of addition and multiplication limitations reveals that a data

medium that permits the lower bound of addition will disregard the lower

bound of multiplication and vice versa. This postulate is exemplified

by the slide rule•s capability to compute multiplication with logarithms

42

while being inept in addition. A similar example is the ROM look-up

table calculation media. The ROM system is an inefficient data represen­

tation for both multiplication and addition, and in practice it provides

comparable access time for both operations.

Hardware Monolithic Multiplier Power

and Size Problems

The three most critical features of a multiplier are speed of multi­

plication9 power .dissipation, and binary word length. Word length re­

quirements are of function of data accuracy requirements, stipulated by

the overall problem (21). In practical applications the number of bits

of accuracy implem~ted should correspond to common existing word lengths

of 4, 8, 12, 16, and 24 Bits. The word length indicates the bit length

of each operand and half the bit length of the product. If the number of

bits required exceeds the common \'Jord lengths, then cascaded configura­

tions of multiple multipliers will be interconnected to generate the

resultant product. This implies that a fluctuating word length creats

a direct alteration upon circuit size parameters in the circuit realiza­

tion capable of solving a given problem. A secondary concern generated

by the word length will result in the need of some knowledge as to the

interconnection capabilities of the hardware selected for the implementa­

tion of a large word length processor (22). Some monolithic units exhib­

it adequate speed and power characteristics but require numerous support

units to handle expanded word lengths. This will result in an unfavor­

able circuit size characteristic that violates the circuit area con­

straint.

43

The present power dissipation of monolithic mulitpliers ranges from

300 milliwatts on a 2 x 4 multiplier to 5 watts on a 16 x 16 multiplier.

At the 5 watt power dissipation level, induction cooling techniques are

employed since the wattage is well over practical upper bounds for a

monolithic substrate. The thermodynamic equation that indicates the

power capabilities of a monolithic circuit is

T(junction) = T(ambient) + 8jA(power).

T(junction) is the temperature of the silicone chip, T(ambient) is the

still-air ambient temperature, ejA is the thermal resistance of the

package, and the last term exemplifies power dissipation. Thermal re­

tardation is expressed as A°C per watt; this is stipulated as one watt

of heat energy being required to raise the temperature by A°C. A typical

thermal characteristic of a 40 pin chip is in the range of 30°C per watt.

If the ambient temperature, as specified by standard military require­

ments, is at a maximum of 125°C, and the limit on silicone junctions is

175°C, then the break point on power dissipation is calculated by

max power= (T(junction) - T(ambient))/ejA

max power= (175- 125)/30 = 1.6 watts.

This is a textbook solution to power dissipation limitations of a sili­

cone substrate and serves to show that one watt is approximately the

maximum power dissipation of an LSI device. To handle power dissipation

in the range of 5 watts per substrate, the dip must be constructed with

fins or other heat sinks to diminish thermal resistance to around l0°C

as shown in Figure 10. LSI manufacturers are constrained primarily by

cost and are reluctant to exceed the 1.6 watt power dissipation per chip

(23).

3.230/
3.170

x_7 1 x_s
X_g 2 X_ 5
x_9 3 x_4

x_10 4 61 x_3
x_11 s 60 x_2

CLK X 6 59 X_ 1
TAIL 7 58 XsGN
0-22 8 57 RND
0-:ll 9 56 CLK Y
o_20 10 55 v_ 11
o_ 19 11 54 v_10
o_18 12 53 v _ 9
o_17 1"3 52 v _ 8
o_16 14 51 Y _ 7
o_ 1 s 15 5o v_6
GND 16 49 .. vee
GND 17 48 .. vee
GND 18 47 Y_ 5

o_ 14 19 46 v _ 4
o_13 20 45 v _ 3
o_12 21 44 v _ 2
o_, 1 22 43 v _ 1
o_ 10 23 42 YsGN

ACC 24 41 OsGN
SUB 25 40 0_. 3

CLK P 26 39 0_.2
TRIM 27 38 0+1

O_g 28 37 0 0
o_8 29 36 o_1
0_] 30 35 0_2
0_6 31 34 0_3

-L-----0=-=-c.oS'--'3~2.,_ '~...LL_ll_!_!_.l..''--.l.LJJ>--' 3 3 0 -4

TOP VIEW I~- 0.800 __J ,-----------! 0.010~1

~~~g~~ ~ t 
llllUilllllUll~o! o.o1s ! 
r-===-1--t I 

----1~0.011 ! 0.001 0.060 . II - :! o.o1s 
END VIEW 

Figure 10. Heat Sink Dip for LSI Device 

44 



45 

High-speed multiplication requires special combinatorial algorithms 

that simultaneously form partial products and add them in one operation. 

Each sequential bit in the partial product is determined by an AND opera­

tion of successive multiplicand bits with a single multiplier bit. This 

is analogous to the add-and-shift technique, since a zero state bit mul­

tiplicand produces a zero partial product and a one state multiplier sim­

ply duplicates the multiplicand in the partial product. The equivalent 

shift operation in a logical multiplier is consummated by the intercon­

nections of the logical adders utilized to sum the partials (24). 

A practical procedure for measuring the speed of a multiplication 

unit is to evaluate the speed as a function of logic-gate propagation 

delay, while the power dissipation is a function of the total number of 

gates. Referring to Figure 11, the propagation delay of this 8 bit mul­

tiplier algorithm is affected by the delay from A1 to B7 to s15 . This 

route is composed of 14 adder units, \'lith 4 gate delays each, with another 

gate delay for the generation of partial products, resulting in a total of 

56 gates. The total gate count is composed of 64 AND gates for the gener­

ation of partial products and from 56 binary adders, individually realized 

from 10 logic gates. The total gate count for an 8 bit combinatorial mul­

tiplier system that implements this gate structure is 624 gates (25). 

A combinatorial multiplier is significantly faster than a sequential­

type system, but vast improvements are necessary to approach the theoreti­

cal lower bound of operation. For instance, the carry bits that are 

transferred between the adders impede the process, and an alternate scheme 

called carry-look-ahead will account for the bits without addition, and 

will improve the delay time. Improvement schemes of this nature compli­

cate the structure and increase the gate count as a byproduct to their 



MULTIPLICAND!.._ 
X, x. x. X. X, X2 X, X0 

MULTIPLIER- Y7 Y6 Y• Y4 Y3 Y2 Y, Y0 
~~~~~~~~~ 

[
S,. S,. S., S12 S, S, 0 S. S.

fiNAL PRODUCT

A7 A. A, ~ A3 A2 A, A0

86 80 84 83 82 B, 80

c. C4 C3 C2 C, C0

04 0 3 D, O, 0 0

E3 E2 E, E0

F, F, F0

G, G0

He

s, s. s. S4 S3 S2 S, S0

Figure 11. Eight Bit Multiply Algorithm

47

benefit of increased speed. The larger the gate count per processed bit,

the smaller the word length possible per chip, if typical power dissipa­

tion limits are upheld.

Techniques for Reducing Multiplier Delays

Alternative techniques have been aimed towards reduction of both

gate count and gate delay. One such implementation is designated as the

modified Wallace Tree, and succeeds in enhancing the alrogithm by saving

all carry bits and adding them in one step using triple input adders. A

circuit reduction of 24 gates obtained over the carry-look-ahead scheme

by using the modified vJa 11 ace Tree. The drawback to both methods is that

additional logic is necessary to handle signed numbers. Further research

has revealed techniques for accommodating the sign convention and reduc­

ing gate complexity through the assistance of encoding practices such as

the modified booths algorithm. In implementation, this algorithm re­

quires 675 gates to process an eight multiplier and multiplicand (26).

In the implementation of a multiplication algorithm, several tech­

niques can contribute to a reduction in power dissipation on the sub­

strate. First, computer-aided circuit design studies are employed to

determine noncritical data paths. These noncritical routes are accept­

ably realized with slower gates that dissipate less energy. Second, the

number of devices required for AND-OR-INVERT gates in the multiplexer sec­

tion of the circuit can be optimized. Logic functions in some cases can

be realized with single transistors, such as the equation C=A·B. This

particular equality is realizable utilizing the collector, base, and

emitter of one transistor. A subsequent enhancement scheme is to match

48

the input threshold voltages of sequential states to reduce the need for

translator circuits in the system.

Extensive research into LSI design is invoking higher speed of cir­

cuit operation at comparable power levels. These advances will escalate

the size of the problem solvable in the same time frame as before, but

the power constraints and size problem are constant. This is exemplified

by the latest experimental C-MOS and a new bipolar stepped electrode pro­

cess by Hasashino (Mippon T&T subsidiary) which demonstrates a 0.5 psec

propagation delay with a 0.1 pJ power delay product. This repercussion

constitutes an order of magnitude improvement in propagation delay over

D-MOS and V-MOS, while still maintaining the power delay product (27).

It has been implied that the end of the bounding improvements for

photo-mark-generated LSI circuits will occur as the point line width

approaches the visible light wave length. Before LSI densities can

mature further, techniques must be conceived which allows a line width

reduction to below 1 micron. Electron beam lithography (EBL) exemplifies

such a capacity by projecting integrated circuit patterns directly, with­

out the aid of masks and contact printing of the substrate. Recent ad­

vances in EBL have led to the concept that this technology will mature

rapidly within the next few years and overtake the present problems, par­

ticularly the constraint of high cost. EBL-generated transistors will

exhibit lower power densities, due to their smaller physical size. If

gate complexity is escalated tenfold and chip size by 4, the resulting

dimension of the substrate will reach 12mm x 12mm, and the one million

elements per chip level can.be approached .. The culmination to the rea­

lizable number of devices per chip will ultimately be limited by power

dissipation and the number of input and output lines required for

49

suitable applications. Generally speaking, as the logic function imple­

mented on a chip becomes more complex, it becomes more specialized, fewer

total devices are utilized, development costs inflate, and the task be­

comes uneconomical (28).

The conclusion reached by an analysis of monolithic multipliers can

be cataloged as follows:

1. The number of gates necessary to implement a multiplier algo­

rithm are semi-constant from one algorithm to the next.

2. If the gate requirements to implement an 8 bit multiplier unit

are assumed in the range of 650 gates, then primary consideration as to

the pO\tJer and speed of the unit is the type circuit technology utilized.

3. It can be stipulated that to increase speed, an increase in

power dissipation is required.

4. Regardless of recent innovations in technology, power, size, and

cost constraints are still applicable.

Multiple Phase Processing

As the technology develops and processors become less expensive,

faster, and less power-consuming, the design constraints of speed, power,

and circuit size will still exist. This has been evident throughout the

transition from tubes to transistors and transistors to LSI circuits.

With all the innovations in speed, power, and size over the last several

decades, problem sizes have increased, requiring further consideration

to the speed, power, and size dilemma.

In the realm of vector, matrix operations, the effects caused by

design constraints are functions of the problem's characteristics. If

a 3x3 matrix and a 3xl vector are multiplied together,9 multiplication

50

operations and 6 additions must be performed during the time prior to the

result being made available. The cycle time of a processor is the time

necessary to complete one computation, and the completion time is the

total time needed to complete the solution. The utilization of four pro­

cessors to compute the product of a 3 x 3 matrix and a 3 x 1 vector wi 11

result in three cycle time intervals of the processors, assuming that the

cycle time is one-third or less of the total computation time. In the

interim of the first cycle, four terms are computed and retained; during

the second cycle, four more terms are evaluated. The last cycle will

contribute only one term to the partial terms necessary to complete the

solution. During the closing iteration, all processors will be operating

but only one will be doing useful work.

An alternate scheme for evaluation of this vector, matrix product

will be to bring into operation two or more processors of dissimilar

cycle times and by so doing, alter the time, power, and size variables.

Such a processing unit will be designated as a multiple phased array pro­

cessor. This design will conform to the array processor design criteria

as each unit that is affiliated with a particular cycle time will be exe­

cuting the same instructions concurrently on different data streams. This

process is equivalent to operating several array processors of different

speeds in parallel to improve the performance of the computer and meet

the constraints of time, power, and size. Adopting this multiple phased

array concept in conjunction with the knov'l edge that power is directly

related to speed and inversely related to size, invokes a situation to

which optimization techniques can be applied. In the discussion of the

matrix, vector multiplication problem using a matrix of dimension 3 x 3,

a solution could have been obtained in the required time frame by

51

computing four terms with one fast processor concurrent with the computa-

tion of three terms using a slower processor unit. The remaining two

terms are evaluated in the same time frame by still another processor of

even slower speed that is capable of only two cycles in the time required

for the fastest processor to perform four complete operations. Through

the utilization of such a scheme of computing, the design problem can be

solved such that the cost is minimized and constrained by time, power,

and circuit size.

Optimal Design With Linear Programming

A linear program is defined as a mathematical model which is de-

signed to obtain a set of nonnegative numbers or variables which maximize

or minimize a linear equation or object function while satisfying a sys-

tern of linear constraints. It is apparent in this situation that the

linear formulation must consist of and result in an integer solution.

Utilizing matrix notation, an integer program is exemplified as

follows:

Minimize:

Subject to:

P. is an integer, i = l, 2, 3, .
1

c. ' 1
i = l ' 2, 3, is a cost

A.' i = l ' 2, 3, is an N x l
1

B.' i = l ' 2, 3, is an Nxl

term

vector

vector of
1 the right-hand side)

(4 .l)

(4.2)

constraints (or simply,

52

Pi' i = 1, 2, 3, . is anN vector of integers.

In this application the objective function (Equation (4.1)) is the total

cost of the array of processors used by the computer to process the

matrix. Equation (4.2) is composed of three or more constraint equations.

To evaluate the optimal design of the multiphase array processor,

certain data on each processor must be obtained.

1. Cost of each type of processor considered.

2. Time necessary to complete one computation.

3. Power (in watts) used to operate each type processor.

4. Number of packages that compose each processor and number of

pins used on each package.

Once the hardware is acquired, the linear program equations are sub-

sequently created. Let Ci =cost of processor Pi, i = 1, 2, 3, ...

. + C~,PN :: Z
I i I

C; ::: Ci+ l , i = 1 , 2, 3, . . . N.

Let T equal total time allowed for matrix computations and T . c pl

equal the cycle time of each processor Pi,

T1 =largest integer (Tc/Tpi)' i = 1, 2, 3, ...

The time equation will be in the following form:

Let Pi equal the aggregate of processors of type Pi necessary to compute

the problem if only type P1 processors are employed.

P' = (number of elements in matrix)/T1.

53

Let \~i equal the power in watts necessary to operate each unit Pi.

The power constraint equation is formed as follows:

where WT represents the cumulative power sanctioned for consumption by

the array hardware. WT possesses an upper and lower bound that are com­

puted using P!. The upper limit is obtained from the largest term of
l

the limit equation

H.P! = W!, i = 1, 2, 3, ..
1 1 1

The lower limit is the smallest value W~, as acquired from the calcula­

tions. These upper and lower boundaries will bracket the possible power

range that encompasses the choice of WT.

The area equation is attainable by scaling each processor as to the

quantity of square units it requires on the circuit board with allowance

made for the bus structure, power, and circuit board configuration. Let

u1 equal the necessary units for implementation of processor Pi. The

subsequent equation will be

The right-hand side, UT' is the total circuit realistate allocated for

the array structure hardware and bus system. The 1 imits on the range of

UT are obtained from the W~ terms generated from the equation

l~! = U.P., i = 1, 2, 3,
l 1 l

The largest and smallest terms of W~ provide the upper and lower limits

for the value of UT.

54

The resulting linear program is of the form:

Minimize:

Constraints:

T1P1 + T2P2 + T3P3 + + TNPN > Size

w1P1 + W2P2 + W3P3 + + WNPN ~ WT

u1P1 + U2P2 + U3P3 + + UNPN ~ UT.

The solution to the linear program will exist in a region bounded

above the time line and below the power and area lines. Prior to attempt­

ing to obtain the optimal solution, the solution region should be examined

to determine if it exists in such a state that will allow the existence of

a feasible solution. At this point a reduction or increase of the solu­

tion region is achieved by altering the values of WT and UT. This capa­

bility will facilitate the search for the integer linear program solution

by effectively reducing the search domain.

The solution to the integer linear program is generated by using

available computer software and computer systems. The technique is to

use a branch and bound algorithm based on the Land and Doig (32) method.

Details of the algorithm are covered in Appendix A. The end result of

the linear program will be a circuit of a practical nature in an optimal

form to solve a vector, matrix product computation.

Optimal Two Phase Design

A graphic illustration of the parameter characteristics of the de­

sign scheme is easily viewed in a two-dimensional problem. Assume the

55

matrix to be processed has 30 terms arranged in a 5x6 array. The vari-

able size will be equated with the number of terms composing the array.

Size = 30.

The total processing time for the array is set at one ~seconds.

This interpretation of Tc implies that the entire array will be processed

in 1 microsecond or less, with the system ready to undertake the next

operation. From the stipulations on T , the selection of adequate hard­
c

ware can be resolved. First, the cycle times of each of the two types

of processors must fall below the Tc value. Let the individual cycle

times of the two types of processor be specified as Tpl and Tp 2' which

results in time constraint parameters

Tl = largest integer (Tc/Tpl)

T2 = largest integer (Tc/TP2).

The consequence of the parameter values is depicted in the time con-

straint equation

The boundaries of the equation acquired in the form of Pl and P2 are

p• =
1 Size/T1

The variables Pl and P2 each represent the quantity of processor units

essential to compute the solution if only units of type P1 or P2 are

employed in the design. Pi and P2 subsequently introduce the limits on

the maximum number of computing components fundamental to the problem.

The power specification of processor P1 and P2 are, respectively,

w1 and w2. This results in the subsequent power equation

56

The limits on the power equation are generated by alternately zeroing

P1, then P2, and in each case computing the number of units necessary to

handle the problem. The limits are evaluated in terms of

w• = w p•
1 1 1

The 1 arger of the two va 1 ues w1 or t~ 2 represents the upper 1 imi t and the

other equates to the lower limit. Between these limits the design value

of WT is obtained. The boundaries stipulate the practical range of t4T

values that can be employed in a realizable design.

The circuit area constraint equation requires more in-depth consid-

eration prior to its evaluation. The appraisal of the circuit area is a

function of the circuit board construction technique employed, as well

as the bus structure utilized. The numerical quantities u1 and u2 are

i ndi ca.tive of the area required to fabricate one hardware unit of type

P1 and one of type P2. A prime consideration of the fabrication tech­

nique should be the cost function connected with the production of the

circuit. Once the formality of the circuit area requirements is deter-

mined, the area equation is generated in the form:

With the use of Pi and P~, the limit constraints on the equation are pro­

cured in a similar fashion as those of the power equation.

57

U' = U'P' 1 1 1

U' = U'P' 2 2 2

The values of Ul and u2 will produce the boundaries bracketing the selec­

tion of variable UT. The resulting problem equation is written in the

form:

Minimize:

c1P1 + C/2 ~ z

Constraints:

T1P1 + Tl2 > Size

Hl Pl + ~42P 2 ~ WT

UlPl + Ul2 ~ UT"

Assume processors of type

period Tc' while processors of

P1 are capable of two cycles in the time

type two can execute only one cycle. Also

allow the power and unit area needs of both processors to be equal. This

wi 11 impose constraint equations of the form:

2P1 + 1P2 > 30

1 pl + lP2 = X, 15 ;: X < 30

1 p 1 + 1P2 = y' 15 ;: y < 30.

Figure 12 shows the time equation plotted in contrast to the upper

and lower limits of the power equation and Figure 13 shows the time line

and limits of the area equation. Different constraints on both power and

area will produce lines on the plot parallel to the boundary lines, such

as the lines shown in Figure 14. With the capability of moving the power

40

30

V')
0:::
0
V')
V')
w
u 20 0
0:::
c...
w
c...
>-
1-

....-
c...

10

2 p1 + 1 p = 30
2

1 p1 + 1 p2 = 15///30

TIME
POWER (HIGH)
POWER (LOW)

10 20 30

P2 TYPE PROCESSORS

Figure 12. Time and Power Equations

58

40

40

30

(/)
a:
0
(/)
(/)
LJ.J
u
0 20 a:
D..

LJ.J
D..
>-
1-

....-
D..

10

2 p1 + 1 p = 30 2

1 p1 + 1 p2 = 15///30

TU1E
AREA (HIGH)
AREA (LOW)

10 20 30

P2 TYPE PROCESSORS

Figure 13. Time and Area Equations

59

40

60

40

30 POWER LINE

t/)
0:: TIME LINE 0
t/)
t/)
w
u
0 20 0::
c...
w INTEGER SOLUTIONS c...
>-
1-

,.....
c...

10

AREA LINE

10 20 30 40

P2 TYPE PROCESSORS

Figure 14. Integer Solutions of Problem

61

and area equation lines on the plot, it is possible to reduce the region

in which the solution will reside. Figure 14 illustrates a linear pro­

gram plot with the time, power, and area equations shown. The integer

solutions are also shown on the plot as they occur in the region above

the time line and below the power and area lines. The optimal solution

is obtained by testing each of the solutions in the cost equation and

determining which solution gives the minimum cost to the system. The

optimal solution can be computed ~ither graphically for small problems

or by using the computer program discussed in Appendix A. Prior to the

use of the optimal program, a program of the type shown in Appendix B

can be used to plot the linear equations or just check the boundaries of

the constraint equations to assure that it is possible to obtain a solu­

tion with the constraint values.

Summary

The design characteristics of an array processor can be altered to

produce a multi-phase form, capable of optimal operation. The concept

is to utilize array processor components of different cycle times and

effectively operate them in parallel in a SIMD environment. Using the

operating characteristics of available hardware, a designer can formu­

late a set of linear equations, solvable with standard linear programming

software, and generate a practical circuit configuration. The entire de­

sign package lends itself well to an interactive computer program. Soft­

ware of this nature would complement a designer's ability to make deci­

sions as to practical design capabilities of available hardware. A sum-

mary of the steps used to design the Multi-phase processor system and

a sequence flow chart are given in Appendix E.

CHAPTER V

PROCESSING ELEMENT DESIGN

Introduction

Solution of the optimal linear program marks the culmination of the

overall circuit configuration problem. Subsequent design problems are

approached ultilizing similarly defined constraints imposed on the overall

system. The SIMD definition stipulates that individual processors must

simultaneously operate on different data streams. In addition, the array

processor subclass definition further invoke that all processing ele­

ments are to perform identical operations concurrently on different data

streams under control of one instruction. Subsequently, high speed data

paths are imperative between processor units. The cardinal directive of

the subclass is that all data fetched in one time frame is processed in

one time frame and stored in one time frame. These and other stipula­

tions that categorize array processor design must translate into design

criteria of the individual processor units that compose the array system.

A relationsh.ip between the structure exhibited by the problem and the

concept of the hardware design should exist analogous to the constraints

placed on the origonal design concept.

The Design of Processor Bus Structure

For Vector, Matrix Products

If the hardware structure internal to the processing unit is based

62

63

on the algorithm used, a study should be conducted to coordinate certain

steps in the algorithm to the implementation of hardware. Initially,

determination of the sequence of the vector operation (multiplies and

additions) should be obtained in an effort to postulate the maximum num­

ber of concurrent operations that can co-exist in one time interval.

The operations fundamental to anN by (N+M) matrix will be the order of

N (N+M-1) additions. The dilemma is to determine in what order the

multiplications and additions should occur in order to maximize the array

capabilities of the system.

Certain ad hoc methods of studying the possible combinations of mul­

tiplications and addition schemes in a matrix, vector product will provide

insight into the complexity of a combined algorithm hardware solution.

These methods culminate in the realization that an overall analytical

procedure is imperative to deduce a practical solution. A technique sug­

gested by Torng and \!Jilhelm (29) to optimize interconnections of central

processor registers suggests that the maximum number of data lines is

best determined by using linear dynamic programming methods. The Torng

and Wilhelm technique is initiated by defining a transfer matrix consis­

ting of P x P elements, where each term of the matrix represents a transfer

from one register to another. The matrix assists in charting concurrent

and sequential operations between registers in a computer in order to

determine the minimum bus requirements and maximum data flow. This con­

cept is expandable to an array system to maximize data flow and minimize

the bus structure.

To utilize this technique on a distributed architecture system that

is capable of solving a vector, matrix product requires the formation of

two transfer matrices. The first matrix (Figure 15) is established to

64

VECTOR TERMS

xl X3 • • • • • • • • • • • • • • XN + N

V) AlN
::E
0:::
w
1-

X A2l
0:::
1-
.:::(
::E

A22

Figure 15. Multiply Table

65

study the addition schemes. This matrix is composed of columns designated

by the terms in the vector of the vector, matrix problem. If the order

of the problem matrix is N by (N+M), then the first transfer matrix will

haveN+ M columns and N (N+M) rows. A check mark placed at the inter­

section of a column and a row designates a required multiplication. This

table is constructed first since the multiplication must precede the

addition in the solution of the product.

Under the SIMD array processing criteria, all data values that are

processed in one interval must be fetched in one interval. It is evident

from the multiply table that if (N+M) elements of the vector are fetched

in one period, theN (N+M) multiplies could be accomplished in one time

interval. This is evident by scanning down the columns and noting the

total number of checks in each column that correspond to elements that

have been fetched. Note, that to fetch the (N+M) vector elements in one

interval requires (N+M) bus systems to provide data transport from their

storage locations. Furthermore, to accomplish the parallel processing of

theN (N+M) multipliers and N (N + M) additional bus paths to fetch the

elements of the matrix in one time interval. An examination of rows of

the multiply table shows that fetching any one element of the matrix will

result in only one possible operation. However, by looking down the col­

umns, it is evident that if one vector element is fetched, then N multi­

plies are concurrently realizable by fetching the one vector element and

N matrix elements.

The formation of the addition table is somewhat less routine as the

terms must be separated into two groups of relatively equal size and de­

posited on the extremities of the table with one group of terms on the

top and one group along the side. Check marks are placed on the grid

66

corresponding to terms that must be added, with the stipulation that

addition of a term occurs only once on the chart. From this matrix grid,

it is evident that only VAL number of additions may occur concurrently,

where

·VAL = largest integer [N (N+.M)/2].

There are N (N + M- l) additions necessary with (N + M- l) addition

terms occurring in each row that must take place in pairs. Therefore,

[VALl] designates the number of additions possible in one row in a single

time interval.

[VALl] = largest integer [N (N+M-l)/2].

The remainder (R) term of this integer division indicates an additional

adder interval requirement. From Figure 15, note that if column one of

the matrix is fetched, it will require N+ 1 bus paths, and theN products

consisting of terms produced by multiplying x1 times each of the column

terms are generated with N multipliers. The N partial terms are concur­

rently stored and then N more are produced and added to the stored terms

~nd so on across the row. This action constitutes a maximum parallel

operation of multiplication and addition with a minimum hardware require­

ment. This process reduces the need of tree configured circuits that re­

duce the parallel processing capability of the system. This result is in

agreement with Torng and Wilhelm (29), since they have pointed out that

the number of bus paths necessary is equal to the number of simultaneous

data transfers required.

This structure will require a multiply, add, and accumulate technique

for each element to be processed in parallel and N+ 1 bus paths used to

fetch data. Note that if the multiplier is fed from a magazine loader or

67

first-in-first-out buffer, that the control and bus path complexity is

significantly reduced. To adhere to the requirement of array processing,

the N results accumulated in the scheme will require N bus paths to re-

turn the data to memory concurrently as shown in Figure 16. This scheme

implements N+ 1 bus paths and the capabiility of storing theN new values

into memory synchronously. The memory realization is possible by utiliz­

ing shift registers as the memory for the z•s and v•z, since they need to

shift one value of Z. onto the input bus in a sequential action. This
1

action will open the required area in memory to allow the accumulated

terms to be stored at the completion of a cycle. The A and K memories

will operate in a similar manner and can be implemented with a shift reg-

ister system of memories.

Design of Internal Processor Configuration

The completion of the processor bus structure leads to the design of

the internal interconnections of the individual processor units. The

original design criteria carry over into the design of the internal hard­

ware of the processing elements. The concept is to maximize the through­

put in the processor unit by implementing the maximum parallel operation

and data flow.

Assuming the use of floating point two•s complement numbers, it is

necessary to first define the unit necessary to perform a multiply, add,

and accumulate process on two signed binary numbers. The mantissas must

be multiplied and the exponenets must be added to produce a floating

point product. This product must be shifted to the right or to the left,

and its exponent increased or decreased for each shift to make the expo-

nent match the exponent of the accumulated sum to which it will be added.

A & K A & K A & K A & K

Z and Y

~ ~ ~

, 1 1
,

+ 1 ~
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

I

Figure 16. Circuit for the Parallel Storage of Data with Least Bus Lines

The standard structure to perform these operations is of the form shown

in Figure 17.

69

Assuming the elements of the matrix are made available in normalized

two•s complement floating point format, prior to the calculations, a great

saving in design complexity can be obtained. The knowledge that all num­

bers will arrive at the processor input in the same format will allow the

renormalization and shifting of exponents to be accomplished in parallel

with the multiplication and thereby increase the throughput by not wait­

ing until the product is formed to check its exponent and shift the man­

tissa as required prior to addition. For example, a 32-bit floating

point number will have a 23-bit mantissa plus one sign bit and a 7-bit

exponent plus a sign bit. The multiplication of two 23-bit numbers will

typically require 250 ns, and the addition of two 8-bit numbers will re­

quire around 60 ns with present technology. Once the exponent of a new

product is formed, it is necessary to compare it to the accumulated expo­

nent to determine the number of right or left shifts necessary prior to

adding the new product to the accumulated sum. This will be done by sub­

tracting the new exponent and accumulated exponent and will require typ­

ically another 70 ns. At this point, the number of shifts of the mantissa

necessary prior to addition to the accumulated total is known and approx­

imately 120 ns remains before the next mantissa becomes available. Since

the numbers going into the multipliers are both nornalized, the results of

the multiplications will require at most one left shift to place it in

normalized form (17,. It is possible to determine if the product will

require shifting after multiplication by analyzing the multiplier and

multiplicand prior to the multiplication. Given prior knowledge of the

resulting position of the product, in terms of normalization, will allow

X DATA Y DATA X EXP Y EXP

MULTIPLIER/ I I ADDER///

lr

SHIFTER
NET\~ORK

INC or DEC

ADDER//// 1--

ACCUMULATOR

Figure 17. Floating Point Multiplier

70

71

the 120 ns remaining before the products are available can be used to set

a shift network of multiplexers such that the output of the multiplier

may be fed into the adder without further delay. This will preclude the

normal procedure of latching the product, and checking and shifting it,

prior to the add and accumulate process. A similar method must be used

to place the accumulated sum into normalized form prior to storing it in

memory for use in later computations. It is possible to process the accu-

mulated data in the last adder stage with the use of look-ahead-carry

techniques which will adjust a shift network that places the data on

the bus in normalized form.

Two problems remain to be faced in the processing units. First, the

size of the accumulator to hold the row products must be determined so

that an overflow of the accumulator will not occur. Second, the accumu-

lated element products must be rounded to the proper number of bits to

match the data bus and memory size.

The maximum size of any product term A· x1 is

N-2
20 + L 22N - 1 - K

K=O

and there are N+M products in a row to be accumulated. N equals the

number of bits in the multiplier or multiplicand, as well as to the size

of the data bus.

The maximum size of the accumulator is then

N-2 s = (N + M)(20 + L 22N- 1 - K) •
K=O

The number of bits in the second term will be 2N (where N = the number of

bits in one data word). Therefore, the required number of bits of the

72

accumulator wi 11 be 2N plus the number of bits necessary to express the

term (N+t~) in binary. For example, if there are 8 bits in a data word,

then there will be a maximum of 16 bits in the product, and if there are

5 elements in the matrix row, then (5 = 101) or 3 bits will be necessary

and maximum size of the accumulator will be 19 bits. The need for shift-

ing the accumulator after each addition of a new partial product can be

stopped by allowing enough bits in the accumulator register to stop over-

flow under the worst case conditions. Once the terms are added in the

accumulator, they may be rounded after they are normalized. There are

two possible normalization methods commonly used: one is to make the

lowest bit of the bits to be kept a one; the other is to add the MSB of

the bits to be discarded to the bits to be retained. The fastest method

to process the data will be to carry guard bits to allow only truncation

or rounding at the.interface to some other device which is driven by the

output of the computations.

Look-Ahead Shift to Increase Floating

Point Operations

Assuming that the input numbers to the floating point multiplier are

in two•s complement normalized form, the product will appear as

X0 Multiplicand

Y0 t~ultiplier.

By definition of normalization, X and Y will be equal to one and S and
n n x

S will be equal to zero for positive numbers. The largest product pos­
Y

sible from an N Bit Multiplicand and an N Bit Multiplier will be

73

N-2 2N- 1 - K Value max = 20 + I: 2
K=O

The form of this product is best illustrated by exar:1ples.

11 111 1111 11111
X 11 X 111 X llll X lllll
1001 110001 11100001 1111000001

The 2° bit is always set as well as the higher order N- 1 bits, where N

is the number of bits in the multiplier or multiplicand. Note that these

examples result in positive normalized products and do not require a left

shift in any of the cases. Furthermore, as long as the numbers are nor-

malized prior to multiplication, they will at most only require one shift

to the left as a consequence of the normalization, which is established

when the MSB and the sign bit are not equal. This normalization require-

ment is always true except for the binary numbers in the form: S.XXX =

1 . 1 000 ...

The question is how can knowledge of the shift or no shift situation

be obtained prior to the multiplication operation. There are four cases

that must be studied. Case 1 will consist of both X and Y being positive

normalized numbers with x1 and v1 equal to one by definition of normali­

zation.

If x2 and Y2 are both 1 and all lesser bits are zero, the product will be

of the form 22N- 2 + 22N- 4. This result will be the smallest product

value resulting from the multiplication of two N bit numbers having the

two ~~SB of each number set to one • s. The results show that a product of

two positive normal binary numbers with x1, x2, v1, v2 equal to one will

never need a shift in the product to normalize the result.

For Case 2, let x1 = v1 = l by definition of normalization and let

x2 and v2 = 0. Since the largest product possible under these circum­

stances will be of the form

S.l 0 1 1
xS.lOl l

74

it is well known that the product of two N bit numbers will produce at

most a 2N bit product. Also the product of 2N bit numbers (where N = 4),

which are in the form states in this case, will result in a 2N bit product

that will require normalization. A method must be determined to obtain

the shift information from the multiplier and multiplicand in this case.

This is accomplished by holding the multiplicand in the form

S.1 0 1 l 1 ... XN

and finding a multiplier of the form

that will just cause an overflow into the 22N bit position. The differ-

ence between these two numbers will be the range that must be tested by

addition in the limiting case. For example, two 6-bit numbers of the

form S.l 0 1 1 1.

s. 1 0 1 1 1 = 47
X s. 1 0 1 1 1 X 47

2209

These two 6-bit numbers will produce at most a 12-bit product.

B i ts 1 2 11 1 0 9 8 7 6 5 4 3 2 1
Max Value 2048 1024 512 256 128 64 32 16 8 4 2 1

Note that if no shift is required, the product will exceed 2048 (12th

bit position value). To find the shift value, the product must be less

than 2048. By holding the multiplicant at (S.l 0 l l l 1) = 47, and

finding a number of the form (S.l 0 X X X) that produces a product just

below 2048 will result in the determination of the shift limit. In this

75

case 43 will produce a product of 2021 and 44 will produce a product of

2068. The limiting number that will require a shift will be S.l 0 l l 0 2

= 43 and the difference in the multiplicand and the multiplier is 47-43 =

4. This indicates that the rest of the bits over the range of zero to

four will determine if the shift is or is not necessary. The test can be

made by addition and the test on the higher order bits x1, x2, and Y1, Y2

can be made by AND operations. Notice the form

S.lOllll
xS.lOllll

If x2 and Y2 are zero, then x3 and Y3 and x4 and Y4 must be l 's to create

a no shift condition. Bits x5 ,x6 and Y6 may change over a range of 4 and

result in a no shift situation. Any other change in the last two bits in

each number will result in a no shift condition.

S.lOllXX
x S.l 0 1 1 X X

12

Summary of Case 2 with x2 and Y2 equal to zero is

} ~hift possible; any other combination results
1n no shift possible.

xs x6

Ys v6

if sum > 4 + No shift;

if sum ~ 4 +Shift.

In Case 3, the form is

S.l 0 X X
x S.l 1 Y Y or S.l l X X

X S.l 0 y y

In this case, the shift limit is again 22N- 1 , and in the same 6-bit ex­

ample

S.l 0 0 0 0 0
X S.l 1 0 0 0 0

= 32
= X 48

76

By holding the 48 and adjusting the 32, the limit may be reached. For

Case 2 it is found that since the add limit of the two numbers is 90, the

multiply limit with 48 will be 42. To continue the same example with new

form:

s. 1 0 1 0 1 0
X S.l 1 0 0 0 0

= 42
= X 48

The base required form is S.l 0 and S.l 1 which correspond to 32 and 48,

which sum to 80. This implies that the last four bits of each number must

add to 10 or less to require a shift and if they are lareger than 10, no

shift is required.

The negative case may be studied in a similiar manner but the best

approach to the overall problem is to only consider positive cases. The

negative product obtained in a standard system is run through a two's

complementer to get a positive product, then shifted to normal form and

put back through the two's complementer to obtain a negative value in

77

normalized form. The tests may all be run with positive values; then,

knowing the shift results, a negative product may be shifted without

being two's complemented and tested. This result can be utilized with

the shift results of the exponents to gate the output of the multiplica­

tion into the accumulating adder with only a small gate delay from the

shift multiplexers.

Circuit Configuration with Look-Ahead Shift

The basic components of the floating point processor are the multi­

plier, exponent adder, accumulator adder, accumulator, and look-ahead

shift system. These components are shown in Figure 18.

If the binary numbers X and Y are to be multiplied with this scheme,

the mantissas and exponents are entered in the appropriate inputs. The

look-ahead shift system determines if the result of the multiplication

will require a shift for normalization and will complete its analysis long

before the product is available. The two exponents must be added in a

two's complement adder, and the result is compared with the exponent

stored in the accumulator. The accumulator and new product exponents must

match in magnitude before the addition and accumulation can take place.

The results of the exponent addition will be available prior to the prod­

uct of X andY. Ample time is available to allow the exponent adjust sys­

tem to adjust the shift multiplexer in coordination with the look-ahead

shifter to preset th~ shift multiplexer and gate the product of X and Y

into the adder in proper normalized form to allow addition and accumulation

of the results.

At the onset of a new cycle, the accumulator is set to zero and the

exponent adjust system is notified that a new cycle has begun. The first

X
-

LOOK
AHEAD
SHIFTER

y
r----

X y
- -

MULTIPLIER/ I I

SHIFT
NETWORK

ADDER UNIT

X EXP
-

ADDER////

EXP
ADJUST
SYSTEM

ZERO
DETECT
UNIT

ACCUMULATOR UNIT

Figure 18. Floating Point Multiplier with Look-Ahead Unit

78

product will be added to the zero accumulator after the normalization

shift requirement of the look-ahead shifter has been met. The remainder

of the input data products to be accumulated will undergo normalization

requirements generated by both the look-ahead shifter and exponent

shifter. The conclusion of a row of the matrix can be determined by

counting the number of inputs to the accumulators to determine if row

calculations have been completed. This accumulation counting technique

will be most acceptable to the system with the expansion to the optimal

structure of processors.

Effects of Multiple Phase Operation on the

Processing Element Design

The addition of faster or slower processing elements or individual

multiplier units to the array structure will serve to complicate the

problems of addition and accumulation of row terms in the process. This

situation arises since the individual terms of a row of the matrix and

the column of the vector, once multiplied, must all be summed to produce

a term in the resulting vector. The required addition of these terms

provides a problem area in the search for an efficient, inexpensive row

processing scheme. One possibility is to use an adder and accumulator

for each multiplier unit and therefore treat the design of all the pro­

cessing elements as a standard structure. The hindrance in this scheme

is that the accumulat2d data of the elements must further be added to

produce the correct row values as shown in Figure 19.

This approach will require the first two accumulated values to be

adjusted prior to addition to obtain the row value. Extra hardware is

required to accomplish these tasks and extra time will elapse during

79

80

I LOOK I I AHEAD MPLY i I ADDER _, I LOOK I I AHEAD MPLY ADDER I

~----~~ SHIFT INC/DEC I ~SHIFT INC/DEC I
f -'

lADDER/ :t-----' I ADDER/ I

ACCUMULATOR

SHIFTER////

ADDER

ACCUMULATOR ROW RESULT

Figure 19. Processor Circuit with Two Processor Elements

81

these steps. An alternate approach is to combine the second multiplier

into the first processing element while utilizing only one adder and accu­

mulator to sum the row values in a time share mode, as shown in Figure 20,

An efficient time use of the adder and accumulator is possible due to

the difference in operating speeds of the multipliers in the processing

elements. Variations of both these schemes can be used as the require­

ments of the optimal solution results in different processing element re­

quirements.

In the upper limiting case there exists one processor element for

each term in the array, and a tree structure of adders may be required to

compute the row values. As the requirements generated by the optimal

solution change, resulting in slower processors being added to structure,

it becomes conceivable to combine fast and slow processors in a given

processing element. With further alterations in the optimal solution, it

may not be possible to combine the results of a fast and slow multiplier

concurrent with the next multiply time and the need for addition adders

will result. The limiting factor in the process of combining more than

one multiplier and shift unit to operate in conjunction with one adder

and accumulator will be the number of additions that can be accomplished

during the multiply period. For example, if an entire row of processing

multipliers is used, one for each term in a row of the matrix, it may be

possible to use one adder and accumulator to combine the results of all

the elements using a time share data collection technique. This is accep­

table provided that all the data terms can be accumulated in one multiply

time.

82

t----...,-----------IADDER/

ACCU~ULATOR

Figure 20. Floating Point Multiplier with Interleaving Design

83

Summary

The initial problem in the processor structure design is to deter­

mine the most feasible plan of calculating the terms of the matrix, vec­

tor problem, considering the problem structure. Certain techniques exist

to facilitate the search for a practical solution to a minimal component

processor configuration. Once the decision on a hardware structure inter­

nal to the processing elements is culminated, a further study into possi­

ble alterations caused by variations in the optimal solution of the

processor configuration is of prime concern. The alterations generated

by changing parameters in the problem requirements will result in possible

complications or simplifications of the internal processor hardware.

In adherence with the design constraints of an array processor struc­

ture, certain improvements can be provided to a floating point hardware

structure to improve its parallel operation. Knowledge of the binary num­

ber format and the problem algorithm aid the removal of the binary number

normalization process from a serial configuration in hardware. The nor­

malization processes resulting from multiplication and from addition can

be preset concurrently with the multiplication of two terms at the start

of each new cycle.

With the design constraints implemented in the structure and possible

improvements to the circuitry generated, concern is shifted to the effects

of existing hardware and the problems that standard parts might impose on

the desired circuits. The effects of the multiple phase type structure

and possible advantages and disadvantages of hardware were next considered

and discussed. The final result of this chapter is that the design con­

straints and problem algorithm limitations have been carried through the

system design process down to the lowest unit of the system.

CHAPTER VI

APPLICATION OF DISTRIBUTED ARCHITECTURE

TO LINEAR RECURSIVE FILTERS

Introduction

One class of algotithm that employes a vector, matrix multiplication

is the linear recursive filter, which is composed of both full and sub­

optimal forms. This class of algorithm lends itself well to the proper­

ties of distributed architecture exhibited through the use of an optimal

hareware design and its subsequent flexible throughput capability. This

chapter will illustrate how a full order Kalman filter can be constructed

in an optimal distributed architecture system.

Full Order Kalman Filter

A common problem in data transfer systems is the recovery of a pulse

signal that has been corrupted by noise and has been distorted by being

passed through a linear network such as a transmission line. Let a(t) be

an input signal that has been corrupted by outside noise signals and sub­

sequently passed throuth a system having a transfer function of b/(S + b).

The output signal y(t) is further corrupted by measurement noise W(t),

resulting in a signal r{t) which is the observed output signal of the

modeled system. The transfer function of the transmission line is denoted

to include all influences caused by linear distortion acting upon the

input signal a(t).

84

85

The input signal a(t) will be a Manchester bi-phase pulse train of

the type shown in Figure 21. This signal will be approximated with a

Poisson-distributed-zero-crossing bi-level pulse train which has a well

known autocorrelation function of the form E~ e-2kiTI where Em is the

peak amplitude of the signal. The choice of the Poisson signal will

allow an analytical approach to deturmine the transfer function of a

linear system that will produce an approximation of the Manchester

bi-phase signal at its output when its input is white noise. The trans-

fer function of the signal generator and the transmission line are crit-

ical in the deturmination of the Kalman filter equations necessary to

U(t)

U(t)

GENERATOR

GENERATOR

a(t)

WAVE FORM OUTPUT

u1(t) w (t)

b
s+b

Figure 21. System Model Diagrams

process the Manchester bi-phase data. Figure 21 also illustrates the

system model to include the transfer of the transmission line and the

additive noise. The results of this system model will be a composit

signal called r(t) that will provide the input to the Kalman Filter.

The power density spectrum of the random bi-level signal is given

by

S (w) = a
where w = 2nf.

The required linear system can be obtained by setting Sa(w) equal to the

product of its complex conjugates

1 1
2K + jw 2K - jw

G+(jw) is defined by the equation:

The transfer function can be altered to arrive at a similar form

s ! a , by multipling Sa(w) by 4K2

4K2

Be defining G+(jw) as

2K
2K + jw '

which results in

the transfer function of the system can be determined. Utilizing this

equation, the input power spectral density is computed by:

sul (w) = [(2K) 2 + w2]
(2K) 2

=
2 E2

m
-K.

86

The random signal a(t) can be presented mathematically by the linear

model

U(t) -{ 2K
2K + S

87

The total system model takes on the form shown in Figure 22 and b/(S + b)

is the transfer function of the linear transmission media through which

the signal is transmitted.

Kalman Filter Realization

Kalman filtering is based on the assumption that any random process

can be modeled with a system which passes white noise through a linear

circuit. The filter equations can be solved in the discrete form and

values of the gain matrix can be generated for each sample time to be

used by the system until it reaches steady state. In systems with a fast

time period, the steady state values can be used to form the gain matrix

and reduce the normal memory requirement of the computer.

The state variable form of the system will be:

X = AX + BU(t)

z = ex+ w(t).

U(t} and W(t) are assumed to be white noise processes such that:

E[U(t)UT(T)] = Qo(t r)

E[W(t)WT(,)] = Ro(t r).

The state equations are determined to be:

W(t)

2k

Figure 22. The Total Signal Generating Molel Diagram

1----- r(t)

co co

.
x, -b b x, 0

= + u, (t) .
A

x2 0 -2K x2 2K

z = [1 -o] x + W(t)

2E2 No
Q = __!!!_ R = K 2

The solution can be obtained from the equation

. t

x<tl = ~<t- t 0 lx<tl + J(~<t - ,JB<,>D<,JdT .

to

For a discrete system

Therefore,

let t = tK+l

tK+l

X(tK+l) = ~(tK+l - tK)X(tk)+ 1 <P(tK+l- T)B(T)O(T)dT

tK

If a constant sampling rate ofT= tK+l - tK is assumed, then

where

The state transition matrix ¢(t) is found by letting

89

90

where

1 b
S + b (S + 2K){S +b)

[SI - Af 1 =

0
1

S + 2K

The transform of the (l ~2) term is found as follows:

A B
S + 2K + S + b

A 1 im b b = s + b = b - 2K
S -r -2K

B 1 im b = b = S + 2K 2K - b s -T -b

b [l]+ b [1] b - 2K S + 2K 2K - b S + b

b -2Kt b -bt
= b - 2K e + 2K - b e

Therefore, the state transition matrix is:

¢(t) =

-bt b e-2Kt + b -bt
e b - 2K 2K - b e

0
-2Kt e

The mean value of the white noise driver is

ftK+1

E[U(K)] = ¢(tK+l - T)BE[U(,)]dT = 0
tK

91

and the covariance is found as follows:

ftK+l

E[U(K)UT(K)] = E ¢(tK+l- t)BU(T)dT

tK

=

The matrix computations leading to the evaluation of the Q matrix can be

seen in Appendix D.

The discrete Kalman filter has a dynamic model of the form

X.+l =~X. + DU. with U. : N(O,Q.)
J J J J J

and the obseration model is

The algorithm for generating the discrete estimates for each sample time

T is

where

·xJ.+l IJ. = ~xJ. d x an 0 = 110 •

The gain values for each estimate are derived from the equation

T T]-1
Kj+l = pj+ljj H [H pj+l lj H + Rj+l '

where

The algorithm is altered to a form more applicable to the distributed

system by combining like terms to form:

92

93

The values of the gain at each update are computed in off line simulation

and stored in the system memory along with the terms of the Q matrix. In

some problems of this type the steady state gain values are used at each

update which allows less memory to be used to store data constants. The

gain values of the Kalman filter problem are listed in Appendix C and it

is evident that the gains reach a steady state value of KJ(l) = .215

and KJ(2) = 1.07. Further details of the program coding and format are

shown in Appendix C~

Distributed Architecture Equation Format

The matrix equation for implementing the Kalman filter problem is

the form:

A

xj+l(l) tPn ¢!12 xj (1) Kl

of

[l[~lr H2]
= + zj+l

A

xj+l(2) 1 "'2 ¢!21 ¢22 xj(2) K2

The value of the H vector is [l 0], indicating that this is a single

observer filter. The terms of the equation can be further reduced to form

the values of the constants to be stored in memory.

= +

and by combining the matrix equations into one matrix, vector multiplica-

tion) the proper form for implementation in hardware is reached.

xj+l(l)

=
xj+1(2)

If the steady state gain values are used in a problem, the required

memory for constants is reduced to the number of terms in the matrix.

Such situations ~t1ill further reduce the complexity of the design and

directly affect the size, power, and cost of the system. In problems

which to not lend themselves to this reduction process, a memory space

is required to store a new set of values for each term in the matrix at

each update calculation until steady state is reached.

Linear Program Formulation

The Kalman filter will be implemented with two types of processors,

each with different operating characteristics.

Processor 1

Processor 2

Cycle Time

450 nsec

800 nsec

Watts/Chip

5 watts

l watt

Units
Area/Chip

3 units

8 units

The time required for each update calculation is chosen to be one micro-

second. At this point, the linear program equations can be formed and

the boundaries set on power and size for the design by the following

steps:

Tc = l microsecond

T1 = largest integer (Tc/Tp1) = 1 11sec =
500 nsec· 2

94

95

T2 = largest integer (Tc/Tp1) = 1].lsec
= 1 900 nsec

I

pl = matrix e1ement/T1 = 6/2 = 3

I

p2 = matrix elements/T2 = 6/1 = 6

Watts max = Pl(WPl) = 3 • 5 = 15

Watts min = P~(WP2) = 6 • 1 ::: 6

Units max = P~(up 1) = 3 • 3 = 9

Units min = P~(UP2) = 6 • 8 = 48.

The constant equations are now generated in the form:

2P1 + 1P2 ~ 6 time equation

5P1 + 1P2 ~X, 14 > X > 6 power equation

3P1 + 8P 2 ~ X, 48 > X > 9 area equation.

With a design of a second order filter the linear conditions and limits

are easily plotted as shown in Figure 23. Figure 23 serves as a mapping

of the design limits of the system under the constraints chosen up to

this point and allows a more adequate choice of the power and unit area

constraints to further simplify the design. To illustrate this simpli­

fication, let the power limit be equal to 14watts and area limit equal

32 square units. Figure 27 shows the graph of this design, from which

the optimal solution to the design can be obtained from the area above

the time line and below both the power and unit area lines. The purpose

of this step in the design is to check the feasibility of the constraints

to determining if the design is possible prior to continuing the design

sequence. Alterations in the power and area limits will increase or

8

7 ~
\

6 \
V>
1-.......
z

5 ::::>

0::
0
V>
t/")

4 w
u
0
0::
0..

w 3
0..
>-
1-

.--
2 0..

----...
1 TIME LINE

I

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P2 TYPE PROCESSOR UNITS

Figure 23. Plot of the Equations for the Kalman Filter Circuit

(/')
4 ~ 1-

........
z

\ ::::>

0:::

\ 0
(/)
(/')
w
u 3 0
0:::
0..

w
0..
>-
1-

..-
0...

2 - --..

1 TIME LINE

1 2 3 4 5 6 7

P2 TYPE PROCESSOR UNITS

Figure 24. Integer Solutions to Kalman Filter Circuit

98

decrease the area from which the solution to the linear program can be

located. The solution to the integer linear program is generated using

a branch and bound technique and any reduction of the solution area will

result in a reduction of the computation time to reach a solution.

The cost equation of the integer linear program is generated by let­

ting c1 equal the cost of a processor of type P1 and c2 is set equal to

the cost of a type P2 processor. Let c1 = 200 and c2 =50. The result­

ing cost equation will then be

200 pl + 50 p2 = z.

The solution to the integer linear program may be obtained using the Land

and Doig method as discussed in AppendixA or in this case a graphical

solution is possible as seen in the plot in Figure 24. The results of

the computer solution using the Land and Doig method are shown in Figure

25. The two solutions as seen in Figure 24 are P1 = 2 and P2 = 2 or

P1 = 2 and P2 = 3. Using the cost equation of the program shows that the

solution P1 = 2 and P2 = 2 will result in the minimum cost solution to

the program with the constraint equations applied.

Circuit Design of Kalman Filter Problem

The results of the linear program solution are used in conjunction

with Chapter IV to determine the configuration of the processor array and

bus structure. In this problem, there will be two fast processors and

two slow processors. Since the cycle time of the fast processor is 450

nsec, and the cycle time of the slow processor is 800 nsec, it is feasi­

ble to team one fast and one slow processor together in the interleaving

design to compute one of the two rows of the matrix. Figure 26 shows a

TEST PROBLEM

PRINT CCNTPOL PARAMETERS
l 1

RO~S X COLUMNS AND NO. OF lNTEGER ~ARIABLES

-4 X 3 2

UPPER BOUND ON VARIABLE 1 TO N

0.~000+01 0.6000+01

CO~STRAINT TYPES IN ROW ORDER
1 -1 -1

~ATRIX FOR~AT CODE
0

INPUT TABLEAU ECHO, CONSTRAINT VALUE LEFT. BY ROW,

o.o 0.2000+03 o.suoo +02

C.6000+0l 0.2000+01 0.1000+01

0.1400+02 O.SOOQt-01 0.1000+01

0.3200+02 0.3000+01 O.tiOUO +01

INlT!AL WORKING TABLEAU
0 1 2

o.o 0.200000+03 0. 51)0 000 +02

0,600000+01 -0.20000D+vl -0.100000+01

-C.l4000D+02 0,500000+01 0.100000+01

-0.~20000+02 0.300000+01 O,ij0UOOD+01

CO~TJNUOUS SOLUTION COMPLETE

FINAL TABLEAU FOR CONTINUOUS SOLUTION
0 -3 -1

-0.353850+01 0.153850+00 0.230770+00

-(.430770+01 0.230770+00 0.284620+01

-0.123080+01 -0.769230-0l -0.615380+00

OBJECTIVE FUM:TION a 423.0769231 AT ITERATION

STRUCTURAL VARIABLES: Xlll

I ,. 1 z
O.l23Dt0l 0.3540+01

OBJECTIVE FUNCTION a 5vO,OOOOOOO AT ITERATION

STRUCTURAL VtRIABlES: XIII

t 2 1 2
o.:coo+Ol o.zooo+01

GP1TMALITY ESTABLISHED

END OF PROBLEM, ITERATION NO. 9

Figure 25. Land and Doig Output Data

99

z

8

[
X(l,l)
X(2,1)
X(3, l)

SLOW
PROCESSOR

x(l,2)•s

MEMORY

FAST
PROCESSOR

NEW

y3

INPUT

UP
DATA
v,

...._----+----...__----+-~... ACCUMULATOR

MEMORY MEMORY UP
X(2,z)•s DATA

X(2,l)•s AND y2
X(2,3)•s

t +
Y / S AND Y 3• S

SLOW FAST
PROCESSORS PROCESSORS

ACCUf~ULATOR

Figure 26. Data Flow for the Kalman Filter

100

possible circuit configuration based on this design. The slow processor

and its memory will handle one term of the matrix and vector product

during each cycle of the machine and the fast processor will handle two

products during approximately the same time period with the results of

both processors accumulated in one accumulation. Figure 27 illustrates

in more detail the interleaving circuit operation to couple the fast and

slow processor to compute a single row of the vector, matrix product.

Summary

101

This chapter has dealt with the formulation and design of a discrete

Kalman filter using distributed architecture and circuit optimization.

The system to be filtered was first modeled and the necessary calcula­

tions were performed to produce the Kalman filter equation and constants

required to filter the system model. Next the distributed design was

optimized to the design constraints and circuit block diagram were gener­

ated. This sequence of steps has served to illustrate the process of

implementing an optimal architecture design for a common class of filter­

ing problems.

102

MEMORY MEMORY
UP DATE

14--
MEMORY

+ • l f 1

LOOK l MPLY I EXP I LOOK l MPLY I I EXP
AHEAD- SLOW AHEAD- FAST

+
!__,.. SHIFT H INC l SHIFT INC

t-_

NETWORK DEC NETWORK DEC

y- LATCH I GATE I

+ I
ADDER I ACCUMULATOR ,_

Figure 27. Circuit for the Kalman Filter

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

An algorithm for the design of special purpose distributed architec­

ture computer optimized to cost and constrained by time, power, and cir­

cuit size has been described and implemented in this thesis.

A technique of using more than one processor to compute data during

one time interval has become known as distributed processing and the

structure of such systems is referred to as distributed architecture.

With the reduction in size and cost of computing devices, special consid­

eration is being given to design methods for computers that are based on

the mathematical structure of a special class of problems. By designing

the computer to take advantage of the structure of the problem classes of

problems having common characteristics can be computed efficiently in a

special-purpose machine. For a class of problems such as recursive linear

filters, vehicle navigation, and sonar receiving, the common mathematical

structure is the vector, matrix multiplication algorithm. The structure

of vector, matrix problem has led to a distributed architecture known as

array processing and specific criteria defining this class of data pro­

cessing has been generating.

The desing of array processing machines in the past has been based on

maximum throughput of data technically possible at the time of design. An

103

104

alternate concept has been presented in this thesis based on the optimiza~

tion of the computing system with respect to cost and constrained by time,

power, and circuit size. One of the fundamental questions in design is

whether or not the system is capable of meeting the specifications of the

design for a particular application. Optimization methods have been shown

helpful in reducing the design of an array processor to obtain the best

trade-off of speed, power, and circuit size with special emphasis placed

on overall cost. From the concept of optimizing an array processor, has

come a multi-phase processor design that utilizes different speed pro­

cessors in a common circuit to better meet the overall design requirements.

The basic criteria for the design has been generated from the definition

of array processing and these rules of design can be followed through each

phase of the design process as shown in Chapters IV and V.

Finally, the design algorithm has been put to use in Chapter VI to

produce a multi-phased array processor to implement a Kalman filter. This

same algorithm can be employed to generate a circuit structure for any

similar structured problem that requires vector, matrix multiplications.

It is felt that the design of computers should, in certain classes

of problems, be based on the problem strucutre or problem algorithm as

well as the hardware present to construct the system. The entire system

should be optimized with available optimization techniques to reduce the

hardware structure to the best possible state.

Recommendations for Further Research

Within the design framevwrk established by this thesis, several addi ..

tional areas of research arise for the application of the proposed optimi­

zation design algorithm. The problems are for the most part concerned

105

with increasing the design to take into account all the parameters in the

problem algorithm, the architecture structure, and the hardware compo­

nents.

Various techniques for optimizat~on and component reduction are pres­

ent in the literature and with some modification these tools can be em­

ployed to aid in future system designs. The problems of cost, speed,

power and size are being studied at the chip design level but little has

been done to meet these problems at the system level. System design with

the aid of computers is a fast growing area and large programs of an

interactive nature are needed to speed the design of systems and take into

account all the aspects of the problem at one time. There presently

exists several software packages to do optimization problems as well as

software to do some of the other steps in total system design and simu­

lation. These software packages can be integrated together to form one

design package capable of assisting a designer in producing a practical

circuit to solve a problem.

The further changes in hardware can continue to affect the design

considerations and processes. Floating point units are all but present

today and their production will cause changes to the design of array

processor systems as well as all other types of computing circuits. The

interconnection of these future special-purpose chips will be of concern

to design engineers in the future and better ways of using and keeping

up with the new hardware must be found.

As the computer area and digital design area mature, more comples

mathematical techniqes for the processing of data in real time applica­

tions will come into use. These methods will enhance the data processing

capability of the future provided adequate means can be provided to design

106

and implement computers to perform these tasks. The primary area of con­

cern for the design of these systems will still be speed, power, size, and

cost of the system. Regardless of the new algorithms made available, the

new chip produced, and the new problem to be solved, the constraints of

cost, speed, power, and size are forever present.

SELECTED BIBLIOGRAPHY

1. Unger, S. H. "A Computer Oriented Towards Spatial Problems." IRE
Proceedings, Vol. 36, October, 1958, pp. 1744-1750.

2. Holland, J. H. "A Universal Computer Capable of Executing an Arbi­
trary Number of Sub-Programs Simultaneously.~~ Proceedings of
the Eastern Joint Computer Conference, 1959, pp. 108-113.

3. Comfort, W. T. "A r~odified Holland Machine." Proceedings, Fall
Joint Computer Conference,l963, pp. 481-488.

4. Slotnick, D. L. "The SOLOMON Computer. 11 Proceedings, Fall Joint
Computer Conference, 1962, pp. 97-107.

5. Gonzales, R. A. "A Multi-Layer Iterative Circuit Computer. 11 IEEE
Transactions on Electronic Computers, Vol. 12, December, 1963,
pp. 781-790.

6. Barnes, G. H. "The ILLIAC IV Computer." IEEE Transactions Q.Q_ Compu­
ters, Vol. 17, August, 1968, pp. 746-757.

7. Pariser, J. J. and Maurer, H. E. 11 Implementation of the NASA ~1odular
Computer with LSI Functional Characters." AFIPS Conference Pro­
ceedings, Fall Joint Computer Conference, 1969, pp. 231-245.

8. Oere, W. Y. and Sakrison, D. J. 11 The Berkeley Array Processor." IEEE
Transactions on Computers, Vol. C-19, No. 5, May, 1970, pp. 444-
447.

9. Cannon, L. E. 11 A Cellular Computer to Implement the Kalman Filter
Algorithm." Ph.D. Thesis, Montana State University, August,
1969.

10. Weissberger, A. "Analysis of Multiple-Microprocessor System Architec­
ture." IEEE Transactions on Computers, Vol. C-26, No. 5, June,
1977' pp. 151-163.

11. Bowra, J. W. and Torng, H. C. "The ~1odeling and Design of r~ultiple
Function-Units Processors. 11 IEEE Transactions on Computers, Vol.
C-23, No. 4, March, 1976, pp. 210-221.

12. Flynn, f>'l. J. 11 Some Computer Organizations and Their Effectiveness."
IEEE Transactions on Computers, Vol. C-21, No. 9, September,
1972, pp. 948-960.

107

108

13. Enslow, P. H. Nultiprocessors and Parallel Processing. New York:
Wiley-Interscience, 1974.

14. Stone, A. L. 11 Parallel Computers. 11 Introduction to Computer Archi­
tecture, SRA, 1975, pp. 318-374.

15. Lipovski, G. J. and Doty, K. L. 11 Developments and Directions in
Computer Architecture. 11 Computer, August, 1978, pp. 54-67.

16. Tang, C. K. 11 Cache System Design in the Tightly Coupled Multipro-
cessor System. 11 Proceedings of the National Computer Confer­
ence, 1976, pp. 749-753.

17. Hayes, J. P. Computer Architecture and Organization. New York:
McGraw-Hill Book Company, 1978.

18. Aho, A. V., Hopcroft, J. E. and Ullman, J. D. The Design and Analy­
sis of Computer Algorithms. Mass.: Addison-Wesley, 1974.

19. Stratonovich, R. L. 11 Conditional Markov Processes. 11 Theory of Prob­
ability and its Applications, Vol. 5, No. 2, 1960, pp. 156-178.

20. Storenson, H. W. and Stubberud, A. R. Linear Estimation Theory.
National Technical Information Service, U. S. Department of
Commerce, 1970, pp. 3-41.

21. Fenwick, P.M. 11 Binary Multiplication with Overlapped Addition
Cycles. 11 IEEE Transactions on Computers, Vol. C-21, No.6,
January, 1969, pp. 71-74.

22. McDonald, T. G. and Guha, R. K. 11 The Two 1s Complement Quasi-Serial
Multiplier_.~ IEEE Transactions on Computers, Vol. C-22, No. 4,
December, 1975, pp. 1233-1235.

23. Waser, S. and Peterson, A. 11 Real-Time Processing Gains Ground with
Fast Digital Multipliers.~~ Electronics, September, 1977, pp.
93-99.

24. Wallace, C. S. 11 A Suggestion for a Fast Multiplier. 11 IEEE Trans­
actions on Electronic Computers, February, 1964, pp.-=!4-17.

25. MacSorley, 0. L. 11 High Speed Arithmetic in Binary Computers. 11 Pro-
ceedings of the IRE, January, 1961, pp. 67-91. -

26. Parasuraman, B. 11 1-lardware Multi p 1 i cation Techniques for f>1icropro­
cessor Systems. 11 Computer Design, April, 1977, pp. 75-82.

27. Geist, D. J. 11 MOS Processors Pick-up Speed with Bipolar t~ultipli­
ers_.1 Electronics, July, 1977, pp, 113-115.

28. Pritchard, R. L.
Technology.

Trends j__Q_ Integrated Electronics_ and ~iicroprocessor
General Electric Report No. 77CRD070, May, 1977.

109

29. Torng, H. C. and Wilhelm, N, C. 11 The Optimal Interconnection of Cir­
cuit Modules in Microprocessor and Digital System Design.~~ IEEE
Transactions on Computers, Vol. C-26, No, 5, May, 1977.

APPENDIXES

110

APPENDIX A

Mixed INTEGER LINEAR PROGRAM

Purpose

This programs finds the minimum of a multivariable, linear function

subject to linear constraints, ih which some or all of the variables may

be restricted to integer values:

Minimize F=c1x1+c2x2+ ... +CNlXNl+CNlyNl+l+ ... +CNYN

Subject to A .. x.+A.kYk ,=,B. i=l, ... ,m
1 J J 1 1

j=l, ,Nl

k=Nl+l, ... ,N

Xj are each integer and subject to an upper bound

xj, v k o.

He thad

The algorithm is based on the Lan& and Doig method. A dual simplex

algorithm is imbedded in the program to obtain the starting, continuous

solution and evaluate each integer trail. The specified integer variables
•

are tested one at a time in paired values to establish direction and value.

The algorithm is as follows:

1. The algorithm employs a dual simplex linear programming algorithm

(not product form) hereinafter referred to as the LP. The tableau

111

112

is carried in compact Tucker form: the initial number of rows

equals the number of problem constraints plus one; the initial

number of columns equals the number of true variables plus one.

Whenever a zero~constrained slack variable becomes non-basic, it

is removed from the problem, resulting in a reduction by one of

the number of columns in the tableau. Zero-constrained slack

variables arise from two sources: equality constraints in the

initial tableau; constraining a basic integer variable to an

integer value (see 4 below). The number of rows in the tableau

remains constant throughout.

2. Carry out an LP on the initial tableau. Print the solution.

Check to see if all integer variables are integer valued. If so~

the problem is terminated; if not, set the initial tolerance for

the problem. (Tolerance is defined as the value below which the

objective function must stay in order for a continuation of the

current sequence of integer-constrained integer variables to be

considered as a candidate for the mixed integer solution. Note

that the objective function value at the continuous solution

represents an absolute lower bound for the mixed integer solu­

tion.) Set to l the index of the integer variable being con­

strained.

3. Choose from those integer variables which are non-basic in the

current tableau the one with highest coefficient in the objective

function (shadow price). (The program makes use of the fact that

the shadow price represents an underestimate of the increase in

the objective function associated with constraining the non-basic

integer vari~ble to 1.) If no non-basic integer variable exists,

113

go to 4. Otherwise, store the current tableau and constrain the

variable chosen to zero. This is done simply by removing the

corresponding column from the tableau. (A non-basic variable is

constrained to a non-zero integer value by adding the product to

this value with each element in the corresponding column in the

constant column of the tableau. The corresponding column is then

removed from the tableau.) Go to 6.

4. Store the current tableau. Consider all integer variables X;

which are basic in the current tableau (there must be at least

one) with value X~. For each X; determine the absolute differ­

ence between the increase in the objective function associated

with the initial LP pivot step when x1 is constrained to [X~]
f and when x. is constrained to [X.]+ 1. Choose as the integer

1 1

variable to be constrained that X; for which this difference is

a maximum and constrain it to the value yielding the smaller

increase. The actual constraining is accomplished by adding the

integer value to the constant column of the row corresponding to

to variable, and then stipulating that the row corresponds to a

zero-constrained slack variable. Carry out an LP. If the objec-

tive function stays within the tolerance go to 6; otherwise go to

5.

5. If the current integer variable was constrained to [X!], record
1

the fact that constraining it to values cxfJ- k (k = 1' 2, ...)

within its range need not be considered. Conversely, if x. was
1

set to [xfJ + l, make note that values [X~]+ 1 +kneed not be

considered. Go to 9.

114

6. Test the constrained variable index, If it is equal to Nl, the

number of integer variables in the problem, go to 9. Otherwise

increase it by one and go to 3.

7. Decrease the constrained variable index by one and test it.

8. If it is zero go to 11. Otherwise go to 9.

9. Determine for the integer variable corresponding to the current

value of the index whether its range has been exhausted (explic­

itly or implicitly) on neither, on one or on both sides of its

current value. If it has been exhausted on both sides, go to 7.

If the variable to be constrained has been exhausted on one side,

constrain it to the unexhausted integer value closest to its cur­

rent value in the proper direction. If the range is unexhausted

on either side, determine in which direction to go using the

method employed in 4, and proceed as for only that side open.

(Note that the range of an integer variable which was non-basic

when constrained is immediately exhausted from below.) Carry

out an LP. If the objective function stays within the tolerance

go to 6. Otherwise, note that the range of the current variable

is exhausted in the direction in which its current value lies

from its original value (see 5). Go to 9.

10. A better feasible mixed integer solution has beenobtained. Print

the solution. Replace the tolerance by the objective function

value. Go to 8.

11. For the current tolerance, all ranges of all the integer vari­

ables have been exhausted. If at least one feasible mixed inte­

ger solution has been obtained, the last printed solution is an

optimal solution to the mixed integer problem and the problem is

115

terminated. Otherwise, the tolerance is increased, the con-

tinuous solution tableau is restored, the index of constrained

integer variables is set to one, and control goes to 3.

If the program is terminated abnormally, the last printed feasible

mixed integer solution (if any) is the best obtained. A flow diagram

illustrating the above procedure is shown in Figure 28.

Program Description

1. Usage:

The program consists of a main program only. Program size, sol­

ution estimate, and tableau coefficients along with control

parameters are read in. The objective function to be minimized

is the first row of the tableau.

2. Subroutines Required:

None.

3. Description of Parameters:

!SIZE Intermediate storage area= NZRlVR*(2*N-NZRlVR+l)/2 or

as large as possible.

NMRUNS Number of runs or problems to be solved.

IOUT2 Print control for initial working tableau:

0 = No print

IOUT3

I PACK

1 = Print tableau.

Pri~t control for continuous solution tableau:

o = No print

1 = Print tableau.

Matrix format:

0 = Unpacked, read all coefficients

Read Control
Parameters and ~--------------~

Problem

Define Row, Column
and Tableau

Pointers

Per.form Dual
Simplex to Obtain

Optimum Non­
Integer Solution

Set Limiting
Tolerance as
Function of

Objective Value

Calculate Objective
Function (Dual

Simplex) for Each
[x.) and Each
~[x.) + 1

Select X. Causing
Largest Difference

in Objective Function
and Value Causing
Smallest Increase

A.dd [x. J + B .•
~ ~

Set Slack Index
to

Figure 28. Mixed Integer Linear Programming Logic Diagram

116

Select Variable
With Largest
Objective

Coef.ficient

Save Current
Tableau

Drop Selected
Variable Column

From Working
Tableau

~------15

Perform Dual
Simplex

No

Increase X.
l.

Index by 1

Replace Tolerance
With Objective

Value

5

Figure 28. (Continued)

No

Set lndex on X.
1

to Specify Constrained
in One or Both

Directions

Yes

Decrease X.
- l.

Index by 1

No

Increase Tolerance,
Restore Tableau,

Set X. Index
l.

to 1

2

117

118

1 ~ Packed, read non-zero coefficients only,

SOLMIN Estimate of objective function if known, zero otherwise.

PCTTOL Tolerance as fraction of objective function for contin­

uous solution (may be left at zero).

M Total number of rows.

N Total number of columns equals sum of X and Y variables

plus 1 for constraints.

NMl DO loop parameters: NMl = N- 1.

NZRlVR Number of integer variables.

UPBND Vector of integer variable's upper bounds; size= N- l.

IROW Vector of constraint types; size= M- 1:

+1 b.
1

0 = b.
1

-1 b;.

ITEMP Column of coefficients being read in row i including

objective row.

VAL Coefficient value of columns specified by ITEMP for

row i.

ATAB Initial working tableau, N x M array.

NI Card reader unit number.

NO Printer unit number.

4. DIMENSION Requirements:

The COMMON* and DOUBLE PRECISION statements in the main program

should be modified according to the requirements of the largest

problem in the set being run. The parameters included in the

following statements conform to the Input Parameter definitions

119

above: COMMON IROW(M), ITBROW(M), ICOL(N), ITBCOL(N), IVAR(N),

ISVROW(M,NZRlVR), ISVRCL{NZRlVR), ICORR(NZRlVR), ISVN(NZRlVR),

KSVN(NZRlVR+l), DOUBLE PRECISION ATAB(M+l,N), UPBND(N+l),

TPVAL(NZRlVR+l), BTMVL(NZRlVR+l), VAL(NZRlVR+l), TBSAV(M,N),

SAVTAB(M+l,NZR1VR*(2N-NZR1VR+l)/2), T(N).

5. Input Formats:

CARD TYPE FORMAT CONTENTS

l (20I4) ISIZE, NMRUNS

{Appears only once per program execution.)

2 (55H) Problem title, identification

3

4

5

6

7

8

{Put 1 in card column 1 for printer page control.)

(20I4)

(7El0.0)

(20I4)

(7El0.0)

IOUT2, IOUT3, IPACK

. SOLMIN, PCTTOL

M, N, NZRlVR

(UPBND(I), I=l, NMl)

{If NZRlVR exceeds 7, additional CARD TYPE 6's

required.)

(20I4) (IROW(I), I=2,M)

(If M exceeds 20, additional TYPE 7's required.)

If IPACK = 1

{7(!3, E7.0)) (ITEMP(K), VAL(K), K=l, 7)

(If more than 7 non-zero coefficients exist, addi­

tional TYPE 8's required. Last TYPE 8 card must

end with zero field. If last card full, insert

blank card.)

9 If IPACK = 0

(7ElO.O) (ATAB(I,J), J=l, N)

120

(one TYPE 9 per row including objective fct. If

N exceeds 7, additional TYPE 9's per row required.)

6. Output:

The main program prints out the problem title supplied, print

control parameters, problem size and number of integer variables,

bounds on the integer bariables, codes for the constraint types,

and the matrix format type code as part of the initial data.

The coefficient tableau is printed as raw data for checking

purposes.

If IOUT2 = 1, the initial working tableau (as input to the

first dual simplex solution) is printed in the Tucker form as

used.

If IOUT3 = l, the tableau from the continuous solution is

printed.

The objective function value and values of each variable are

printed for the continuous solution and for each feasible integer

solution along with the present iteration number.

Error messages are printed for abnormal terminations sugges­

ting the reason and giving the iteration number.

7. Summary of User Requirements:

a) Determine values for each problem set for SOLMIN, PCTTOL~ M,

N, NZRlVR, UPBND, IROW, NMRUNS, NI, and NO.

b) Calculate intermediate storage area for ISIZE.

c) Define code for matrix type for each problem.

d) Specify print control criteria for IOUT2, IOUT3.

e) Adjust COMMON size statements as needed to hold largest prob­

lem or satisfy machine limits.

121

f) Adjust FORMAT statements as necessary,

The FORTRAN program contained in this section is based on Branch and

Boun..9_Mixed Integer Programming, described on page242of 11 Catalog of Pro­

grams for IBM System 360 Models 25 and Above, 11 GC 20-1619-S;_program num­

ber 3600-15.2.005. Used by permission of International Business Machines

Corporation.

APPENDIX B

LINEAR EQUATION BOUNDRY PLOT PROGRAM

As discussed in Chapter 4, the following program was used to plot

ans study the design parameters for a Multi-phase array processor circuit.

The intent of the plotted data is to show the area in which the solution

of the linear integer program is contained. This is done in such a way

that alterations to the design can be introduced with ease. The program

is written in Fortran and was executed on the IBM 370/158.

122

$JOB TH-IEs tO
l DIMENSION DATA11!531oDATA2151l,lSYMBI31
2 INTEGER M,N,SPE~D1,SP:E02,PDWtR1,POWER2,UN!TS1,UNITS2,TC

3 INTEGER SlZE,DELAY,INTER,JNTER2,L!M!Tl,L!MITZ,POWl,POW2,UNl,UNZ

4
5
6
7
a
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2B

29
30
31
32
33
34
35
36
31
38
39
40
41
42
43
44
45

46
47
48
49
50

C~****••••**•*********•**~•••••••••••*******************
C DATA SECTIO~ FOR PARAMETERS OF LINEAR EQUATIONS
c

c
c
c

20

21
c
c
c

30
25

DATA ISYMI:li'T','P 1 , 1 A'/
ZERO 0.0
M ,. 15
N ,. 20
SPfED1 SOO
SPFED2 1000
POW~Rl : 45
POWERZ~ 15
UN!TSl " 2
UNIT 52= 6
TC = 1000
INTER TC I SPEEOl
SIZE = H * N
DELAY = SPEED2 I SPEEDl
INTER2 INTER I DELAY
LIM!Tl = SIZE I INTER
liMIT2 SIZE I INTER2
PllWl L !Ml T l * POWERl
POW2 L1MIT2 * POWER2
UNl LIH!Tl * UNITSl
UN2 LIM!T2 * UNITS2
AGDON FLDATCIAI:lSIP~~l - POW21141
ADDUM FLOATIIAdSIUNl - UN2l/41
~ATTS FLJATIPO~ll

AREA FLOATIUNU

CALCULAT~ THE OATA POINTS FOR THE EQUATIONS

O'J 60 1<=1,4
POINT flDATILIHITll/51.0
POINT2 = li.O
D::J 20 J=l.51

O~TA2lJI = POINT2
TP2 = lFLuATISll.El - OATA21JI *FLOAT(INTER! l/FLOAHINTER2)
DATAHJI = Tl'2
kP2 = (wATTS - DATA21JI * FLOATIPOWERllliFLOATIPOWER21
lF(WP2.LT.lEROIWP2 = 0,0
D6.TA115l+JI = WP2
UP2 = !AReA- DATA21JI • FLOATIUNITSliiiFLOATlUNITSZI
IFIUP2.LT.lcRDIUP2 0.0
DATAlllli2+JI = UP2
POINT2 = PO!NT2 +POINT

CONTINUE
1;<1.(1[(6,211
FORHATI1Hio3X.6HX-AXES,4X,6HY-TIME,4X,7HY-POWER,3X,6HY-AREA,/)

P~INT THE OATA POINTS OF X AND Y

00 30 I~l. 51
W'< I TE I 6, 2 5 J D AT A2 I l J , DATA II I l , 0 AT A 1 t I+ 5 11 , DATA 11 I +1 0 21
CC'NT lNUE
FC' R I' AT I 4 F 1 0. 31
WR IT E I 6, lll NT E R, INTER 2, SIZE

"123

51
52
53

54

55

56
57
58
59
60
61
62
63

64
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

65

66
c
c
c

67
68
69
70
71

c
c
c

12
73
74
75
76
77
78
79
80

wRJTEI6,2JPOwEKloPOnER2oWATTS
WR I 1E I 6 , 31 UN I T S l , UNIT S 2 , ARE A
FORMATilHl,lO,,~HTIHEI,4X,I3,2X,2HP1,2XolH+,2X,J3,2X,2HP2,2X,lH•,2

1 X, I 61
2 FOR~ATilH ,lUX,&rlPOWERI,3Xoi3,2X,2HP1,2XolH+,2X,I3,2X,2HP2,2X,lH•,

1Fl0.3l
3 FOQMATilH ,lJX,SHAREAI,4X,I3,2X,2HP1,2X,lH+,2Xo13r2Xr2HP2,2X,lH•,2

lXo FlO. 3,//1
CALL YPLCT ISl, 5l,Sl,UATA2,0ATA1,3, I SYHB 1 6l
WATTS = WATTS - AIJOUN .
ARE~ • AREA • ADDUH

tO CONTINUE
hP.ITEib,SvOI

500 FORMATilHU
STOP
E'IIO

SUBROUTINe YPLOTIIX,IY,NPNTS,X,Y,NCRVS,ISYHB,IOUTJ

THIS IS A Y=FIXJ PLOT ROUTINE THAT FEATURES:
1. VARIA~LE HEI~HT AND WIDTH OF PLOTS
2. AUTOMATIC SCALING
3. HORILJNTAL X AXIS AND VERTICAL Y AXIS
4, MULTIPLE CuRVES IN A SINGLE PLOT

INPUT PARAI'IETERS

IX NUM!;ER JF COLUMNS IN PLOT
IY NUMBER JF RJWS IN PLOT
NPNTS i~UM!Jt:R OF DATA POINTS PER SET
X VcCTOil. OF X VALUES
y VE:CTOR OF y VALUES
NCRVS NUMtlER OF CURVES TO BE PLOTTED
ISYHB Vt:CTOR OF ALPHANUM~RIC SYMBOLS TO BE
lOUT LOGICAL UNIT NU~BER FOR OUTPUT DEVICE

USED IN PLOTS

DIMENSIIJN I~RPHilOO,lOOI,XSCALllOOirYSCALilOOI,ISYMBillo
* X('OPNTS/,Yill

DATA lBLII/K,IPLUS,MINUS/ 1 '•'+','-'/
INITIALIZE ARRAY TV tiLANK

DO 150 1=1 .IX
DIJ 1 00 J =1 ,1 Y
IGRPHI J,JI =18LNK

lOO CO'IT!NUE
150 CONTINUE

DETERMINE MINIMUM AND MAX!HUH X AND Y VALUES

XMAX=XI 1)
XHIN=XIlJ
YMH=YI U
Y~IN=YI 11
DO 200 1=2,NPNJS
IF lXII I.GT.XMAXI XHAX=XIII
IF I XI I I.LT .Mil Nl XI'HN=X([I

200 CONTINUE
NYPTS=NCRVS*NPNTS

124

Bl
82
83
84

85
86
87
88
89
90

91
9Z
93
94
95
96
97
98
99

100
101
102
103
104
1 OS

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

300
c
c
c

250
c
c
c

1000
2000

c
c
c

3000

3050
c
c
c

4000

5000

l
2
3
4

DO 300 I=loNYPTS
IF I Y I I I • G T • Y KA X I YMH~YIII
IFIY!li.LT.Y~INI Yli!N=Yill
CONTINUE

TEST FOil. FLAT LINE

IFI Y~AX ,N[;.YMI Nl GO TO 250
\'HALF= YMAX/2, 0
IF!YHALF.EU.O.O) tHALF=l.O
YMA X= 'Oo A X. YHA L F
Y'IIN=Y~I N-tHALF
CONTINUE

RECORD PLOT DATA IN ARRAY

00 2000 J=l,NCRVS
JCR.V=NCP.VS-J•1
00 1000 l=1.NPNTS
ISURX=IFIXI!XIIl-XMINl/IXHAX-X~INI~FLOATIIX-11+,4991+1
11=1 +IJCRv-11 *llPNTS
IS UB Y= I F I..; I I Y I Ill -'Oil N l II YMA X- YH I Nl '*F LOA Tl I Y-11 +. 4991 +1
!GRPHI!SUdAoiS~8YI=ISYH8!JCRVI

CONTINUE
CONTINUE

COMPUTE SCALED VALUES FOR X AND Y

DO 3000 l=l,IX
XSCALI!I=FLJATII-11/FLOATIIX-ll*IXHAX-XMINI+XHIN
CONTINUE
00 3050 1=1,IY
YSCAL11l=FL04TII-ll/FLOATIIY-1l*IYHAX-YMINI+YMIN
CONTINUE

PRINT OR DISPLAY A~RAY OF PLOTTED DATA

DO 4000 l=lolY
LINE=IY-1+-1
K=LINE-1
lFIKIS*S.EO.KI~~ITEIIOUTo21YSCALILINEI,(JGRPH(J,LINEl,J~l,IXI
!F(K/5*5.NE.KI "Rl TEIIOUT,ll I IGRPHIJ,LINEI ,J=l,lXI
CONTINUE
DO 5000 I=l.IX
I G R PH I I , ll = H I NUS
lFI(l-llli.v•lO.E;),l-11 IGRPHII,ll=lPLUS
CONTINUE
WRITEIIOUT,31 IJ(;RPH(J,li,J=l,IXI
WRITEilOUf,4j IXSCALIJI,J=1r1XrlOI
R'=TUllN
FORHATIIBX,' I' olUOAlJ
FORMAT(8X,El0.4r'+' .lOOAll
FORMATil9X,lOOAII
FORMA1116X.lOif6.lo'tXII
END

CH BSYS

SFNTRY

125

126

X-AXES Y-TIME Y-PDwER Y-AREA

o.ooo 300.000 451J.UOO 50.000
2.9.1;1 294.117 441.176 49.020
5.882 2!!8.235 432.353 411.039
a. a 24 282.353 42.3.529 47.059

ll.H:S 276.470 -4l<t.7ub 46.078
14. 7C6 270.588 40'>.1HI2 45.098
17.6-47 264.706 397.059 44. 118
20.588 258.823 3 88.2:15 43.137
23.529 252.<J41 379.'-12 42.157
26.4 71 247.059 370.588 41.176
29.412 241.177 3&1.7<:.5 40.196
32.3 53 235.294 35.<.941 39.216
35.294 229.412 344.118 38.235
38.235 223.530 335.294 37.255
41.176 217.647 3 26. 't1l 3&.275
44.118 211. HS 317.b47 .35.294
47.059 205.883 3011.824 34.314
so. 000 200.000 30u.ouo 33.333
~2.S41 l<J4.ll8 291.177 32.353
55.882 188.236 282.353 31.373
58.823 182.353 273.530 30. 39Z
tl.1f4 176.471 264.71J7 29. 412
64. 7C6 170.589 255.883 28.431
67.t47 164.706 247 ,Ubu 2.1. 451
10.5ea 158.824 238.236 26. 4 71
73. ~ 29 152.942 22'1.413 25.4<JO
7£o.4 70 147.059 22u.589 24.510
79.411 141.177 211.766 d. 530
82.353 135.295 2 02. 9'<2 22.549
f5.294 129.412 19'<.ll9 21.569
88.235 123.530 185.2.'15 20. 588
91.116 117.648 176.472 19. 608
S4, 111 111.765 167.6'<8 18. 6 28
'17.058 105.883 151:1.b25 17.647

lCO,OOO 100.001 150.001 16.667
102.941 94.118 14i.l78 15.686
105.882 88.236 132.35ft 14. 706
108.823 82.354 123.531 13.726
111. H4 76.472 114.707 12.745
114.705 70,589 1 OS .BB'< 11. 7 65
117.647 64.707 97.060 lll.784
120.588 58.825 Se.237 9.804
123.529 52.942 79.4H 8.824
126.4 70 47.060 7u."i91) 7.843
129.411 41.178 61.766 6.863
132.3~2 35.295 52.94 3 5. 883
135.2'J4 29.413 44. 12 0 4.902
138.235 23.531 35.2 96 3. <J22
141.176 17.648 26.473 2.941
")44.117 11.766 11.649 1. 961
147.058 5.884 8.&26 0.981

TJ ME I
POwER I
AREAl·

0.4500E 03+P
I
I
I
I

0.4051E 03+
I
I
I
I

0.3602E 03+
I
I
I
I

0.3153E 03+
I

p

ITT
I
I

0.2704E 03+
I
I
I
I

0,2255E 03+
I
I
I
I

O.l806E 03+
I
I
I
I

O.l357E 03 ..
I
I
I
I

0.9C7BE 02+
I
I
I
I

2 Pl +
45 Pl *

2 Pl *

p
p

p
p

p
p

p
p

p

T
TT

T
TT

T
TT

C,4588E 02+AAAAAAAAA

p
p

p

T
TT

1 P2
15 P2

f> P2

p
p

p
p

p
p

T
TT

TT
T

p
p

p
p

p

TT
T

TT

300
67 50.000

300.000

p
p

p
pp

p
p

p
p

T p
TT

T
TT

T
TT

T

p
p

TT

I AAAAAAAAA
I AUAAAAAAA
I AA.AI.AAAAA
I

0.9806E 00+

p
p

p
p

p
T p

TT p
T p

TT p
T p
TTP

TTP
TP

AAAAAA.AAA. TT
AAAA.A

+---------+---------·---------·---------+---------+
o.o 29.4 58.8 88.2 117.6 14 7.1

127

128

X-AXES \'-TIME Y-POWER Y-AREA

o. 0 00 300.000 4ll.533 112.500
2.CJ41 294.117 403.7J9 !11.57.0
5. 8 82 288,235 394,{)86 110.539
8.824 282.353 3Bu,Oo3 109.559

11.765 276.470 377.239 lOtJ,578
14.706 270.588 368.416 107.596
17.647 264.706 359.:>92 lOb, 616
20.588 258.823 35ll.7o8 10~.637

23.5 29 252.941 341.945 104.657
26.411 247.059 333.122 103.676
29.412 241.177 32 ... 298 11)2,691>
32.353 235.294 315.475 101.716
35.2CJ4 229.412 301:>.651 10ll.735
38.235 223.530 297.s:a 99.755
lo1.11c 217.647 28':1.U04 98.775
44.118 211.765 280.181 97.794
47.0~9 205.883 271.357 96.814
50.000 200.000 262.514 95.833
~2.941 194.118 253. 7Lu 'i4. 8 53
~5.8E2 188.236 244.81J7 93.873
58.8 23 182.353 236.0<>3 9l..89l
l:l. 764 l 76 ,471 227.240 91.912
l4.7C6 170.589 2l<l.'tl6 90.931
(;7,647 164.706 2 09. ~9 3 89. 9 51
70.588 158.824 20J.1b9 88, 971
73.529 152.942 191.9't6 b7.990
16.410 147.059 183.122 H7. 010
79." ll 141.177 l74.2'J9 tlo. 029
82.353 135.295 16:>.475 85.0'•9
f5.2'i4 129.412 156.652 !l4. 069
88.235 123.530 147.1>29 83.088
91.176 117.6.48 139.0u5 IJ2,10S
<;4.117 1ll.H5 130.182 81. 128
c; 7. c 58 105.883 121.358 80.147

JCO,OOO 100.001 112.~35 79. 167
102.941 94.118 1 o.;. 111 71l. 186
1C5.882 88.236 94.8&6 77. 201>
lCB,823 82.354 86.()64 7o.221J
lll.H4 76.472 77.241 75.245
114.705 70.589 6tl.417 74.265
117.647 64.707 5':1.594 73. 2 84
120.588 58.825 su.no 72.304
123.529 52.942 4l. 94 7 71.324
126.470 47.060 33.123 70.343
129.411 41.178 24.300 69.363
132.3~2 35.295 15.47b 68.383
135.294 29.413 6.653 67.402
138.235 23.531 o.oou b6.422
141.176 17.6 48 u.ouo 6>.441
144.117 11.7 66 O.OJO 64.461
1lo7.058 5.884 u.uoo 63.481

TIME I
POWER I
AREA(

0.4125E 03+P
I
I
I
I

0. 37l3E 03+
I
I
I
I

0.3300E 03+
I
I
I

p

ITT
0.2888E 03+

I
I
I
I

0.2415E 03+
I
I
I
I

0. 2C63E 03+
I
I
I
I

O.l650E 03+
I
I
I
I

O.l238E 03+
IAA
I
I
I

O.S251E 02+
I
I
I
I

0.4125E 02 +
I
I
I
I

O.OOOOE 00+

2 Pl +
45 p 1 ..

2 Pl +

p
p

p
p

p
p

p
p

p

T
TT

T
T

TT
T

p

TT

AAAAA.AAA.

p
p

T
T

1 P2
15 P2

6 P2

p
p

p
p

p
p

TT
T
IT

T

AAAAAAAA

p
p

p
p

T
TT

T

p

300
6188.000

675.000

p
p

p
p

TT p
T p

T p
TT p

T p

TT p
T

T
AAAAAAAAA

AAAAAAAA

p

TT
T

AAATTAAAA
PT AAAAAAA

PT
PTT
P T

P TT
p T

p T
p TT

PPPP
·---------·---------+---------+---------+---------+
o.o 2 9 .it 58.8 88.2 117.6 147.1

129

APPENDIX C

KALMAN FILTER GAIN FINDING PROGRAM

Tnis program simulates the Kalman Filter designed in Chapter 6 and ,

is used to obtain the gain values at each up date point. These gain

values will be ultilized in the memory of the Multi-phase array processor'

in on line operation.

130

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44
45
46
47
48
49
50

XJlJ(21oKHl2o2loR
EEEI 501 ,lllo/11(501

S JOB T I '"IE., 10
DOUBLE
D:JUBLE
DOUIJL~

DOUBLE
OOUBL f
DOUBLE
DOUBLE
DOUeLE
DOUBLE

PRECIS I ON
PRECIS I LN
PRECISION
PRcCI !> 1 ON
PReCIS! ON
PRcL!SIUN
PRECIS I Ut<
Ptl.EC.lSluN
PRU.l SIGN

X XI. I 2 I , F E I 2, 2 I , X J I 2 I , FE P I 2, 2 I , P J I 2, 21
P J 1 J 12, 2 I , 01 2 .Z l , HP I 21 , HPR, KJ I 2 I , lll 2 51 t Z, HI 2)

X J PI I lOO I , XJ P 21 100 I , K J P l(100 lo K J P2 (100)
XJlJDlllOOI,XJlJP2(1001
"'t T I B ,oo
6.,C,o,E,F,G
YYri50I,RRRI501

(~*******•*~*~*••*•*•*•******~*~************************
C OAT A SECT I ON
c

DATA R/l.ODO/
DATA XJ/O.ODu,O.ODO/
06TA PJ/1.00~,J.UDU,U.ODO,l.000/

C***********••••••~••••••••••••*************************
C !;~PUT DATA FROM HODEL
c

Zllll 0.300
lZ (2) 0.4~00

ll 131 o. 500
Zll4) o. 5500
ZZI51 o. 5900
ZZI6 l 0,60U
ll (7) O.oS;)O
ZZI8l o. 700
lZI91 o. 7400
Zl(10 I u.739DO
Zlllll o. 73cl<i00
Zll12l 0. 731> 800
zz (131 u. 736660()
Zl (141 :Q, 732500
ZZI15 I <1.734:.01)
ZZI161 u.t4soo
lZ 1171 u.74900
ZZI18l ,. U.75DO
ll ll9J = u.7SllDO
ZZI20l :Q, 74600
ZZI2ll u.7SDO
ZZI22l 0.751100
lll221 " u.7DO
ZZI231 0.6500
ZZI241 u.ssou
lll25l O.!>DO

c
c•••••••••••~***~*~*******~****************~************
C F!NO THE FEE A~O Q MATRICES

8 30.000
K 27.000
T 0,00100
00 = l.ODO
A I B I I B - 2.000 * K
C ll.OD<J- DEXPI -4.000
D (B/12.000 * K - 8 l
E (l.OOv- OEXP{-(2,000 * K + 81 * T
F 2. ODD * K + B
G (2,00<1 * K**2 * 0**2 * 11.000 - DEXP(-2.000 * 6
011.11:(IK*A,**2 * Cl + (8.000 *K**2 * ~ * 0 * EI/F
0!1,21= (IK. • A * :1 + (4,000 * K**2 * 0 * Ell F I

*TIIl/8
+ G I * OQ
*OQ

131

51
52
53
54
55
56

57
58
59
60

61
62
63

64
65

66
67
68
69
70
71
72
73

74
75

76
77

78
79
80
81

82
83
84
85
86

012.11 • Ollo21
012,21 • IK * C I * OQ
FE (1, 11 = De XI' 1-6 * T I
Hllo21 =lA * DE:XPI-2.000 * K *Til .. 10 * DEXPI-6 * Tl I
FE12oll = v.ODU
F=12,21 = DEXPI-2.000 * K * Tl

c•••••••••••••*•••••~•••••******************************
c
C W~lTE: THE FEE AND 0 MATRICES

50

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

WR. I T E I 6, 50 lUI 1 , 11 , 1J I 1 , 2 I , 0 I 2 , 1 I , Q I 2 , 2 I
WR. I T E I 6, 50 l f- E I l, 11 , FE I 1 , 2 l , FE I 2 , 1 l , FE I 2, 2 I
FC RMH! 40.2o.lb I
I " 1

COMPUTE THE GAINS AND DATA POINTS

00 200 J=l,SO
z "lllll

IFIJ.GT.25ll 0.000

XJlJill
XJ1JI21

F I ND X I J t- 1 I J I

fEllo11 * XHll .. FE{l,21 * XJI21
FE I 2 , 1 l * X J I 11 + f E I 2, 21 * XJ I 21

F I NO P I J + 1 I J I

FEPil,ll
F!:Pil,Zl
F~PI2oll

FEP(2,21
PJlJil.tl
PJ1J(l,21
PJlJI2.ll
PJ1JI2,21

FECloll * PJiloll .. FEilo21 * PJI2,1)
Ftll.ll * PJC1,21 r F!"!l,2l * PJ!2,2l
FEIZ.ll * PJil.tl .. FEC2,21 * PJIZ,ll
FEI2,1J * PJ(l,21 + F':l2o2l * PJI2,2J

IFEPI1.1J * FEll.ll i- FEPI1,21 * FE(l,21 I+ Qll,ll
lfEPIJ.,U * FE12.ll .. FEPI1,21 * FEI2,21 I .. 011,21
I Fl:P!2tll * FEiltll + FEPI2,2l * FEI1,21 I ~ Ql2 1 lt
I FEI'I.:O.ll * FE12oll .. FEP!2,2l * FEI2,21 I+ 0(2,2)

KJ I 11
KJI21

XJ Ill
XJI21

PJ{l,ll
PJ 11,21
PJI2tll
PJI2,2J

FIND GAIN VALUES

PJlJ(l,ll I (PJlJiloll + Rl
PJlJt2tll I tPJlJil.ll + Rl

KALMA~ FJLTER EQUATIONS

XJlJI 1 I + KJI 1) * (Z - XJlJ(11)
XJ1J12l + KJ12l * (l- XJlJ(l)J

FIND PIJ+ll FOR NEXT UP DATE

11.000- ~J(lJJ * PJlJil,lJ
I l. 0 DCI - ~J I 111 * P J 1 J I 1, 2 I
-KJI2l * PJlJ!l,ll + PJlJI2oll
-KJ!2l * PJ1J(l,21 + PJ1J(2,21

(***************~*•******~•********************~********
C PLAC.[THE OAT A I~ ARFAYS FOR PRINTING
c

XJPHJI
XJP21Jl
KJPliJI
KJP2(JJ
XJlJPliJI

XJI 1J
XJI2t
KJ (l I
KJI21
= XJlJ(lJ

132

87 XJIJP21JI = XJ1JI21
88 YYYIJI PJil.ll
89 RRRIJI z PJI1,21
90 WWW(J) = PJI2,21
91 EEEIJI = PJI2, .. U
92 I = I + 1
93 IFII.GT.Z!>l I= 1
94 200 CONTINUE

95
9b
97
98
99

100
101
102
103
104
105
lOb
107
108
109
110
111
112
113
114

c~•**************~*********************'****************
C P~lNT SECTION
c

500

100
300

bOO

110
400

801
700
803

WRITEI6,500l
FO RMI>T I 1 Hl_ .1 J)(.I X J I u ' • 2 2X I I XJ I 2 I ', 2 2 X'. KJ I 11 I I 2 2 X. I KJ I 2) I, I/)
DO 300 J=l.~O

WRITEib,lOOJXJP11JI,XJP2(JliKJPl!JliKJP21J)
FQRMAT(4026.l6l
CCNT INUE
wR I T E I 6, 600 I
FORM AT I 1 Hi , i.l.l X • 1 X J lJ I 11 1 1 20X, 1 XJ 1 J 12) 1 ,//)

DO 400 J=l,50
WRITEI6,llJJXJlJPliJI,XJlJP21Jl

F 0 R MAT I 2 02 6. l b I
CO~TINUE

h~ITE(6,8031

00 700 J=i.50
\.RITE I 6, 80 l J rY Yl J J , RR R I J I , EE E (Jl , WWW(J t
FOK.MAT(4D26.lbl
CONTINUE
FORMAT I lHll
STOP
END

CHBSYS

stNTRY

133

134

KJ(lt KJI2J

0.48544148845483140 00 0.35141232514324130-01
0.31646519Y5372664D 00 0.11830723604873170 00
0.23690407470461910 00 0.23969771249048480 00
0.19615139612466800 00 0.38760287923121600 00
0.17718526847508310 00 0.54784017550617940 00
0.17189515946394690 00 0.70476248318071230 00
0.17505012956368770 00 0.84389230697120460 00
0.18265203376158440 00 0.95507182639296370 00
0.19166240567097340 00 0.10343889518874460 01
0.20005920670443990 00 0.10838636531276760 01
0.20679421325753130 00 D.ll09363l09i378700 01
0.21157699654696260 00 0.11180757148310860 Ol
0.21458401412901250 00 0.11166180152565790 01
0.21620182352405880 00 0.11101045607930600 01
0.21685404480059400 DO 0.11019790472339620 01
0.21690989085533670 00 0.10942575542405060 01
0.2166503589&000150 00 0.10879093106550700 01
0.21626738239732970 00 0.10832228556211600 01
0.21587815032797500 00 0.10800971400173130 01
0.21554399931680890 00 0.10782473111427990 01
0.21528843145524190 00 0.10773363759080510 01
0.21511193609356530 00 0.10770501794739000 01
0.21500300582725690 00 0.10771327097227380 01
0.21494560126727290 00 0.10773959216763190 01
0.21492369775800240 00 0.10777149235427220 01
0.21492365309027540 00 . 0.10780162131213850 01
0.21493509164122830 00 0.10782639808142480 Ol
0.21495088286287350 00 0.10784473979721430 01
0.21496664920317980 00 0.10785702863888820 01
0.21498010079227260 00 0.10786435560698360 Ol
0.21499037826955320 00 0.10786802077435940 01
0.21499749742767560 DO 0.10786924147494450 01
0.21500192947560360 00 0.10786901225408550 01
0.21500431438508730 00 0.10786806473993580 01
0.2150D52862021413D 00 0.10786688556841610 01
0.215005382670&6280 00 0.10786576192372980 01
0.21500501223291700 00 0.10786483473733250 01
0.21500445585389040 00 0.10786414801136870 01
0.21500388675028640 00 0.10786368883041710 Ol
0.21500339655056480 00 0.10786341660687040 01
0.21500302095070010 uo 0.10786328239452740 01
0.21500276132276060 00 0.10786324017397650 01
0.21500260102623170 00 O.l076632522886f020 Ol
0.21500251655235690 00 0.10786329103164810 01
0.21500248433227260 00 0.10786333799415690 01
0.21500248426220210 00 0.10766338234591750 01
0.21500250112681780 00 0.10786341881470400 01
0.2150025243712S760 00 0.10786344580901510 Ol
0.21500254757506910 00 0.10786346389380850 01
0.21500256737039120 00 0.10786347467621200 01

APPENDIX D

MATRIX COMPUTATIONS OF Q MATRIX

The evaluation of the terms of the Q matrix started in Chapter 6 are

continued in the following appendix. The solution begins with the matrix

operations shown in figure 29 and is followed by a term by term integration

of the matrix parts leading to the solution of the Q matrix .

. 135

Ae-2K(t- ·r) +Be -b(t- T)] [0 l [a
e-2K(t--r) 2J

J [
-b (t- T) 2K e

Ae-2K(t- -r) + Be-b(t- -r)

= q / [0
0 0

[

4K2 Ae-2K(t--r)+Be-b(t--r) 2

4K2e-2(t- T) Ae-2K(t- T) + Be-b(t- T)

4 K2 e- 2 K (t - T) Ae- 2 K (t - -r) + Be-b (t - T) l
2 -4K(t--r)

4K e

Figure 29. Matrix Computations for the Q Matrix

d-r •

Evaluating the first term of the Q matrix gives

where

Part 1:

Part 2:

Part 3:

A = b
b - 2K

and b B = 2k - b •

T
= q BK2ABe-(2K + b)T)(0 (2K + b)< dT

0

= 8K2AB (l _ -(2K + b)T)
2K + b . e

Terms q12 = q21 and is evaluated by the equation

137

T
q12 = q 14K2e-2K(t-T)(Ae-2K(t-T)+Be-b(t-T))dT.

0

Part 1:

T
q 4K2Ae-4KT 1 e4K'dT = 4~~A (l _ e-4KT) = KA(l _ e-4KT)

0

Part 2:

T
4K2B -(2K +b)T 1 (2K + b)Td q e e T =

0 .

4K2B (l- -(2K+b)T)
q 2K + b e ·

Term q22 is determined to be

T
= q 4K2 -4KT1 4KTd = q22 e e T

0

The calculations result in the evaluation of the matrix covariance func-
' tion of the white noise process which drives the system model. This is

referred to as the Q matrix and is a nonnegative definite matrix of the

form:

(e.:.4KT) L = 1

J = (l e-(2K + b)T)

y = (1 e-2bT)

Q = q
2

KAL + ~IL J
2K + b

A = b/(b - 2K)

B = b/(2K - b)

2
KAL + _115_!L J

2K + b

KL

138

APPENDIX E

DESIGN STEPS FOR MULTI-PHASE PROCESSOR

To evaluate the optimal design of the multi-phase array processor,

certain data on each processor must be obtained.

1. Cost of.each type of processor considered.

2. Time necessary to complete one computation.

3. Power (in watts) used to operate each type processor.

4. Number of packages that compose each processor and number of

pins used on each package.

Once the hardware is acquired, the linear program equations are sub­

sequently created. Let Ci = cost of processor Pi, i = 1, 2, 3, ...

c. > c.+1, i = 1, 2, 3, ... N.
1 -- l

Let Tc equal total time allowed for matrix computations and Tpi

equal the cycle time of each processor Pi.

T1• = largest integer (T /T .), i = 1, 2, 3, .•. . c p1

The time equation will be in the following form:

+ TNPN ~ (number of terms in
matrix).

Let Pi equal the aggregate of processors of type P; necessary to compute

the problem if only type Pi processors are employed.

139

140

P' (number of elements in matrix)/T1.

The resulting linear program is of the form:

Minimize:

< z

Constraints:

The solution to the linear program will exist in a region bounded

above the time line and below the power and area lines. Prior to attempt­

ing to obtain the optimal solution, the solution region should be examined

to determine if it exists in such a state that will allow the existence of

a feasible solution. At this point a reduction or increase of the solu­

tion region is achieved by altering the values of WT and UT. This capa­

bility will facilitate the search for the integer linear program solution

by effectively reducing the search domain.

The solution to the integer linear program is generated by using

available computer software and computer systems. The technique is to

use a branch and bound algorithm based on the Land and Doig (32) method.

Details of the algorithm are covered in Appendix A. The end result of

the linear program will be a circuit of a practical nature in an optimal

form to solve a vector, matrix product computation. Figure 30 illustrates

the steps in the design sequence of the Multi-phased array processor.

OBTAIN DATA:
l. COST OF EACH TYPE OF PROCESSOR
2. CYCLE TIME OF EACH PROCESSOR
3. POWER(IN WATTS) USED BY EACH PROCESSOR
4. NU~1BER OF PACKAGES THAT COMPOSE PROCESSORS

t
LET Tc = TOTAL TIME TO DATA OUTPUT

t
COMPUTE THE PARAMETERS OF CONSTRAINT EQUATIONS

+
COMPUTE THE UPPER AND LOWER LIMITS OF THE
POWER AND SIZE EQUATIONS TO BE UL TILIZED

t
PLOT LINEAR EQUATIONS IF POSSIBLE AND ATTEMPT
TO REDUCE THE SOLUTION AREA IF POSSIBLE

t
OBTAIN THE OPTIMAL SOLUTION (APPENDIX B)

t
DESIGN THE CIRCUITS USING THE RESULTS OF
CHAPTER 5 AND THE OPTIMAL SOLUTION DATA

Figure 30. Multi-phased Processor Design Flow
Chart

141

VITA 2---

Larry Gene Stotts

Candidate for the Degree of

Doctor of Philosophy

Thesis: OPTIMAL DISTRIBUTED MICROPROCESSOR ARCHITECTURE USING MULTI­
PHASE PROCESSING TO PERFORM A VECTOR, HATRIX MULTIPLICATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Pawhuska, Oklahoma, September 7, 1949, the
son of Mr. and Mrs. E. E. Stotts.

Education: Graduated from Ponca City High School, Ponca City, Okla­
homa, in May, 1967; received the Bachelor of Science degree in
Electrical Engineering From Oklahoma State University, Still­
water, Oklahoma, in May, 1972; received the Master of Science
degree in Electrical Engineering from Oklahoma State University,
Stillwater, Oklaho~a, in May, 1977; completed requirements for
the Doctor of Philosophy degree at Oklahoma State University,
Stillwater, Oklahoma, in July, 1979.

Professional Experience: Communication officer, U.S. Army Signal
Corps, May, 1972, to May, 1976; Instructor, Electrical Engin­
eering, Oklahoma State University, Stillwater, Oklahoma, 1978-
1979.

Professional Organizations: Member of the Institute of Electrical
and Electronic Engineers.

'-.

