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PREFACE 

This study was concerned with the analysis of a hybrid 

fluid mechanical problem. That is, the steady state 

achieved by the fluid flow was strongly dependent upon an 

interaction with the confining structure, The tube walls 

moved in response to the fluid flow forces. Although the 

apparent emphasis in this manuscript is upon a fluid 

mechanical result, the bulk of the work actually 

concentrated on a finite element structural description of 

the tube where two major stumbling blocks were encountered. 

The first, which was a singularity of the unconstrained 

stiffness matrix, has been observed by a colleague working 

on a similar problem. This difficulty suggests that the 

collapsing cylindrical shape needs to be guided or 

constrained in the proper direction. The second difficulty 

arose when the wall deflections became very large and was 

due to inter-element discontinuity. The cure for this 

ailment was found in a redefinition of the element 

displacements. 

Regarding the organization of this document, the view 

was adopted that most readers are generally familiar with 

these methods. The bulk of the derivations and matrix 

manipulations are given in the appendices. Annotated deck 
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listings are furnished in order to encourage the further use 

and development of these computational methods. 

Furthermore, it was felt that the readability of the 

manuscript would be enhanced if the literature review was 

integrated with the appropriate chapters. That is, the 

review of previous experimental work is presented in Chapter 

!I, while the review of previous analytical work is 

presented in Chapter III. 
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NOMENCLATURE 

List of Symbols 

The list of symbols has been extended to include compu
tational variables from the COMMON block of the subroutines 
in the appendices. 
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matrix of constraint coefficients 
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tube diameter (em) 

Hookean elasticity proportionality matrix 

tube undeformed diameter (em) 
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fluid pressure gradient 
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axis length) 
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Young's modulus of elasticity (dynes/cm2) 

linear strain (dimensionless) 

general numerical convergence criteria 
2 surface traction force (dynes/em ) 

force ( d yn e s ) 

Poisson's ratio 

shear strain (dimensionless) 

proportionality of dq to q 

thickness (em) 

proportionality of dq to a 

hydraulic diameter (em) 

grid spacing distances (em) 

stores three nodes which comprise an 
element 

a flag to bypass the fluid model 

logical input/output unit assignments 

a flag signalling the completion of 
initialization 

change in reciprocal radiur of curvature 
from an initial value (em- ) 

stiffness matrix containing linear and 
geometrically nonlinear parts 

tangential stiffness matrix 

initial stress or geometric matrix 

length (em) 

the number of the last element in the 
structure, including the rigid mount 
approximations 

the index of the next-to-last X location 
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NUMBC 

NX, NNY 

NY 
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P2 
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PSI 

the number of the last node in the 
structure, including the rigid mount 
approximations 

wetted perimeter (em) 

Lagrange multipliers 

bending moment per unit area (dyne-cm/cm2) 

matrix of stress values 

slope of the linear fluid pressure 
approximation 

fluid dynamio viscosity (poise) 

outward directed unit normal 

fluid kinematic viscosity (stokes) 

stores the numbers of the constrained 
degrees of freedom 

the number of finite'elements in the tube 

the number of grid increments which lie 
under the inlet mount approximation 

the number of nodes in the tube 

·the index of the last X-location which 
lies under the flexible tube 

finite element subdivision of the tube 

the total number of constrained degrees 
of freedom 

number of X-Y grid increments 

number of grid points in the Y direction 

static fluid pressure 
(in. H20, mm Hg, dynes/cm2) 

the inlet pressure (dynes/cm2) 

the outlet pressure (dynes/cm2) 

the collapsing pressure (dynes/ em 2) 

same as ~. the equilibrium index 
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PTEST 

PXB 

q 

Q 

R 

r 

RC 

Re 

REY 

RHO 

p 

RL 

R.LP 

RLS 

RMU 

RNU 

s 

SCALE 

SIGMA 

SIGXO 

STIFF 

equilibrium index (dynes) 

an internal variable used to store the 
maximum change in pressure at a location 
computed on a step 

fluid static pressure gradient in the 
axial direction (dynes/cm2) 

displacement evaluated at a finite 
element node 

flowrate (cm3/seo = ml/sec) 

adjustable orifice fluid resistance 

Poisson's ratio 

radius of curvature (em) 

Reynolds number (dimensionless) 

Reynolds number (dime~sionless) 

fluid density (gm/cm3) 

fluid density 

tube length (em) 

same as lp, the wetted perimeter (em) 

circumference of the tube cross 
section (em) 

fluid dynamic viscosity (poise) 

fluid kinematic viscosity (stokes) 

scale factor 

sets the maximum allowable compu
tational step 

stores the initial global stress in the 
elements 

initial global prestress in the axial 
direction 

augmented tangential stiffness matrix 
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ul 

u, v, w 

u, v, w 

UTEST 
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v ..... 

VOL 

vu 

w 

x, y, z 

X, Y, z 
XC, YC 

same as £, the element strains 

stress (dynes/cm2) 

time (sec) 

transformation matrix of global to 
local coordinates 

shear stress (dynes/ em 2> 

volume increment 

structural orientation (radians) 

rotational deflection (radians) 

the thickness of the elements (em) 

same as [TJ, the axes transformation 

fluid wall shear forces (dynes/cm 2) 

slope of the structural surface (radians) 

initial slope of the structural surface 
(radians) 

internal work (dyne-em) 

deflections in local coordinates (em) 

deflections in global coordinates (em) 

an internal variable to store the maximum 
change in average velocity at a location 
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fluid velocity vector (em/sec) 
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Subscripts 
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downstream 
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global 
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interior tube wall 
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CHAPTER I 

INTRODUCTION 

Overview 

The problem of predicting fluid flow variables in a 

collapsible tube appears to be most often encountered in a 

physiological setting. A variety of spontaneous as well as 

forced physiologic fluid flow situations exhibit 

complications which suggest that tube collapse exerts a 

significant modulating effect on the fluid flow. It has 

also been suggested that a thorough understanding of the 

mechanics of this problem may lead to exploitation in fluid 

power control circuitry and other engineering applications. 

This later observation is underscored by the choice of. 

experimental apparatus which is typically used in 

investigation of the problem. In this study, as in previous 

investigations, a non-physiologic experimental idealization 

was used to define the tube/fluid mechanical response to 

collapsing pressure and to provide a basis of comparison for 

a new analytical model of the mechanics. Nevertheless, the 

importance of the problem at this time stems primarily from 

physiologic reasons and particularly from venous blood flow 

prediction difficulties. 
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The important role of the veins as a return for blood 

flow to the heart has received scant attention in 

theoretical circulatory analysis. It would appear that the 

more regular geometry of the arteries has prompted numerous 

analytical studies of arterial blood flowrate, pressure, 

phase velocity, etc., thus diverting attention from equally 

important venous blood flow problems. By way of 

complication, the thin-walled, low pressure, highly flexible 

venous tubes are especially susceptible to states of 

collapse at any time due to excessive external pressure. In 

addition, the collapse condition entails complex geometries 

and, hence, difficult analyses. More'importantly, venous 

blood flow must be addressed in any study of the complete 

circulation. In fact, an overall circulatory regulation may 

occur due to the fluid flowrate modulation caused by the 

collapsing veins (1). 

Historical Perspective 

Physiologists have long recognized the occurrence and 

importance of collapsed tube flows. Perhaps one of the 

earliest descriptions of the natural occurrence of the 

phenomenon was offered by Bayliss (2) in 1895 in a 

discussion of the cerebral circulation. In 1912, Starling 

(3) presented a controllable hydraulic resistor based on 
' this principle which was designed to vary the load on an 

isolated mammalian heart. In recognition of his 
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achievements, physiologists now widely describe collapsed 

tube flows as "Starling resistors." Important spontaneous 

ooourrences of the phenomenon have been recognized in the 

following physiologic tube systems: veins, arteries, 

pulmonary circulation, pulmonary airways, urethra, 

eustachian tubes, and vocal cords (4). Tube collapsibility 

is also important in the following clinical practices: 

positive pressure lung ventilation, listening for Korotkoff 

sounds, vascular diagnosis with pressurized cuffs, 

intra-Aortic balloon counterpulsation, artificial heart 

pumping, heart assist by external leg counterpulsation, and 

' blood withdrawal with vein cannulation. An important 

difference between these two groups is that the flows in the 

second group are controlled by external forcing. Thus, the 

clinician creates a forced response. Clearly, a deeper 

understanding of the mechanics of cause and effect could 

improve the effectiveness of these procedures and perhaps 

indicate new ones as yet undiscovered. 

The principal interest of this study was the 

relationship of Starling resistor effects to the design and 

control of positive pressure lung ventilation equipment. It 

has been suggested that venous portions of the circulation 

act like Starling resistors during this type of lung 

ventilation (5). This description is in excellent agreement 

with contemporary concepts of hemodynamics (6-10). Thus, 

positive pressure luna ventilation creates elevated 
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pulmonary pressures which apparently operate to modulate the 

net cardiac output. Consequently, this type of ventilation 

creates an undesirable mechanical effect (reduction of blood 

flowrate) as well as a desirable chemical effect (increased 

blood oxygenation), and leads to an important tradeoff in 

order to optimize controlled gaseous exchange. 

Motivation for this study of the collapsible tube is not 

limited to physiologic situations, however. Exploitation of 

collapsible tube flows has been described in the design of 

the following engineering devices: oscillators, amplifiers, 

switches, logic devices, and resistors (4). 

Scope 

Any fluid mechanical study of the venous collapse 

problem is initially complicated by inherent measurement 

difficulties. The simultaneous measurement of pressure and 

flowrate in veins in situ has been termed a "difficult and 

unreliable art" (11, p. 333). Thus, for the most part, 

analytical and experimental findings to date have been 

derived from a laboratory apparatus which is used as a 

physical idealization of venous mechanics. The classical 

experimental apparatus is shown in Figure 1a. This device 

is composed of a thin-walled latex tube, often Penrose 

surgical drain tubing, freely suspended in air between rigid 

circular mounts. Liquid flow through the device can be 

modulated by the adjustable orifices (R1 and R2>, 
collapsing pressure, Pe• 

or the 
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Figure 1. Classical Apparatus for the Study of Flow in 
Collapsible Tubes (a) Apparatus, from 
Katz (12, p. 1263), (b) Block Diagram 
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'P, 

Q 

A block diagram of the classical hydraulic system is 

shown in Figure 1b. This block diagram portrays the 

interdependence of the collapsible tube and the remaining 

circuit elements. Thus, the steady-state operation of the 

system is represented by the constant flowrate, Q, between 

all blocks, each block representing a circuit element. Each 

element, in turn, responds to its input variables in order 

to produce one or more outputs. For example, the downstream 

orifice responds to inputs of flowrate, Q, and outlet 
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pressure, Pa, (Q and Pa labelled inward pointing arrows) and 

gives P2 as its output. At the inlet side of the system, 

the flowrate through the upstream orifice responds to 

pressure inputs, P8 and P1• The inputs to the collapsible 

tube are the collapsing pressure, p e' 

pressure, P2 , and the system flowrate, Q. 

tube outputs are the upstream pressure, 

the downstream 

The collapsible 

and the 

cross-sectional area, A, which varies along the tube axis. 

Measurements made with the classical apparatus of Figure 

1 have introduced some confusion regarding the fluid 

mechanical behavior of the collapsible section. This 
I . 

confusion stems from a failure to distinguish between a 

characteristic response and the in-circuit performance (11). 

A characteristic response is observed when a circuit element 

is isolated from interacting elements while input versus 

output relationships are determined. On the other hand, 

circuit performance is composed of the responses of the 

interacting elements. The element characteristic responses 

can be used to predict circuit performance, but the 

characteristic response may not be recoverable from the 

circuit performance data. 

Isolation of the collapsible tube in order to measure 

its characteristic can be achieved in several ways. One way 

is to eliminate both the orifices of Figure 1 and use a 

pressure drop to force the fluid through the tube (e.g., 

Figure 2a). This approach requires that P8 CP 1), P2, and Pe 
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all be independently controlled variables (i.e., inputs). 

Shapiro (13), Griffiths (14), and Lambert and Wilson (15) 

~11 used pressure forcing of the collapsible tube. However, 

the characteristic that coincides with the classical 

experiment results from flowrate forcing. That is, the 

flowrate, Q, is an input to the collapsible tube. In both 

eases, as shown in Figure 2, Pe and P2 are independent 

variables. 

Figure 2. 

Pe ~A 

0 

~2 - - Ps 
~ 

COLLAPSIBLE -
- TUBE .. - -Q Q 

(a) 

Pe ·~A 

·~ p2 - ft 
COLLAPSIBLE 

~ 

TUBE -
Q$ - Q s 

(b) 

Input-Output Variables in a Collapsible Tube 
(a) Pr~ssure Forcing, (b) Flowrate Forcing 
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It was assumed that the input-output causality of 

Figures 1 and 2b corresponds to the venous case. The 

experimental apparatus was designed to isolate the 

characteristic with this causality, but the apparatus was 

not intended as a rigorous physical venous model. 

The analytical goal was to predict the pressure drop 

versus flowrate characteristic given knowledge of 

fundamental tube and fluid properties. In this approach, it 

was assumed that flowrate, collapsing pressure, and outlet 

pressure are known while inlet pressure is to be calculated. 

The analysis was restricted to the steady-flow case. 

The object of this study was 'thus twofold: to 

experimentally clarify the pressure drop-flowrate 

steady-flow fluid response to a collapsible tube as a 

function of external collapsing pressure~ and to develop an 

analytical model capable of describing the observed fluid 

flow behavior through the collapsed tube. 

The organization of this study is into five chapters: 

the first is introductory; the ·second discusses past and 

present experimental approaches; the third presents previous 

analytical attempts which lead to a new, more fundamental 

model; the fourth shows experimental results and compares 

analysis to experiment; the last summarizes and gives some 

conclusions and recommendations. The body of this thesis is 

intended to highlight the approach and, consequently, much 

theoretical and analytical detail is relegated to the 

appendices. 



CHAPTER II 

EXPERIMENT 

The early experimental investigators 

with the apparatus shown in Figure 1 

suggested that the performance curves 

made measurements 

(12,16). 

obtained 

They 

were 

"characteristic" curves, yet they also observed that the 

value of the downstream resistance had a strong effect on 

the results. Therefore, in the light of the introductory 

remarks, these results were really a representation of 

in-circuit performance rather than the true characteristic 

fluid flow response to the collapsible tube. More recently, 

investigators have realized the necessity to isolate the 

collapsible tube in order to determine its characteristic 

( 17) • 

divided 

Consequently, 

into two 

the following literature survey is 

sections, a section on in-circuit 

performance and a section on the characteristic response. 

Literature Survey 

In-Circuit Performance 

A summary of experimental results from the early 

investigations is shown in Figure 3. At a fixed value of 

collapsing pressure, Pe, a single highly nonlinear 

pressure-flow relationship exists, as shown in Figure 3a. 

9 
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Figure 3. Experimental Data for a Collapsible Tube in a 
Hydraulic Circuit (a) from Conrad· (16, p. 
288), (b) from Katz (12, p. 1267), (c) from 
Katz (12, p. 1272), (d) from Conrad (16, 
p. 291) 
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Furthermore, a family of nonlinear pressure-flow curves can 

be generated, each curve corresponding to a different value 

ot collapsing pressure as shown in Figure 3b. Figures 3a 

and 3b were generated with the same circuitry (e.g., Figure 

1) with different settings of R2 for each figure. 

Mechanical coupling between tube and fluid dictates that the 

tube assume certain shapes, which are shown in Figure 3c and 

are correlated to the pressure-flow relationship of Figure 

3a. The geometries of Figure 3c occurred with a flow 

direction of left-to-right. Photographs taken by Conrad 

(16) show the constriction (shape II) formed closer to the 

downstream end than that shown in Figure 3c. However, 

comparison of these data was not possible owing to 

non-standardization of experimental parameters (e.g., tube 

pretension and length, R1 and R2 settings, supply pressure 

setting, etc.). Oscillatory tube behavior has been observed 

and several recordings of this are shown in Figure 3d. Katz 

et al. (12) suggested that the value of R2 was important to 

oscillation onset. 

the mechanics passed through four Qualitatively, 

, distinct regimes. These regimes can be separated by the 

relative magnitudes of the three controlling pressures: the 

inlet pressure, P1 , the outlet pressure, 

collapsing pressure, P • 
e 

P2, and the 

1. P1>P2 >Pe The tube is inflated and the 
flowrate Q is determined by P1 and P2 with 
only a weak P~ dependence. This is similar 
to the arterial flow case (3). · 



2. 

3. 

!J. 

P1 >Pe >P2 Here, part of the tube is inflated 
while part is collapsed. This condition has 
received no apparent discussion in the 
literature. 

Pe>P1 >P 2 Now the tube is collapsed to 
varying degrees along its entire length. An 
oscillation has been observed with this 
pressure arrangement and frequencies have 
been measured (16,18). Conrad (16} has 
described this behavior as a relaxation 
oscillation which builds up to a limit cycle, 
while Rodbard (18) has described it as an 
interrupted series of jets with production of 
audible sound. 

Prediction of the steady flow observed in 
this regime was of primary interest to this 
study. 

Pe>>Pl Ultimately in the physiologic case, 
Pe wi 1 reach a value, commonly known as the 
Critical Closing Pressure, which prohibits 
fluid ·flow through the tube (19). 
Observation of critical closing has not been 
documented in previous collapsible tube 
experiments. 

The Charactertistic Response 

12 

The need to isolate the collapsible tube in order to 

measure the fluid pressure-flow characteristic was perhaps 

first recognized by Brower (17). His analytical work showed 

that the tube characteristic could be extracted from 

previously reported circuit performance data. He conducted 

confirming experiments of this concept and the results are 

shown in Figure IJ. 
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Figure q. The Pressure Drop-Flowrate Characteristic of 
a Collapsible Tube, from Brower and 
Noordergraaf (11, p. 338) 

Experimental Approach 

13 

The goal of the present experimentation was to clarify 

the fluid pressure-flowrate characteristic response to a 

collapsible tube. Two types of experimental studies were 

conducted in these experiments: The effect of tube axial 
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prestrain on the characteristic was studied, and the axial 

distribution of tube internal fluid pressure was measured. 

The effect of prestrain on the characteristic appears to 

have been ignored by previous investigators. For example, 

Brower and Noordergraaf (11) used a prestrain in excess of 

15%, Conrad (16) attempted a strain-free experiment, while 

Katz et al. (12), and Lambert and Wilson (15) did not report 

the prestrain value. 

In order to determine the role ot prestrain, two sets of 

inlet pressure versus flo~rate measurements were made: a 

set at an initial tube axial strain near 101 and a set at an 

initial tube axial strain near 1%. The two cases were 

somewhat arbitrarily 

cases, respectively. 

denoted as high and 

The axial strain was 

low prestrain 

estimated by 

placing marks on the tube and measuring their separation 

before and after mounting. That is, 

= ( 1 ) 

~here Ex is the axial strain, 1 is the stretched length, and 

10 is the unstressed length. 

Figure 5a shows a schematic of the experimental 

apparatus. Here, the supply pressure was set at a value 

large enough (10 ft H20) to ensure that the upstream 

orifice, R1 , functioned as a flowrate source ~hich was 

nearly independent of its downstream pressure, P1 • In 

addition, the downstream resistance, R2, was eliminated so 
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that the pressure, P2 , downstream of the tube was very 

nearly equal to the back pressure created in the outlet 

chamber. Thus, the tube was isolated in order to generate 

the characteristic pressure-flowrate fluid response. 

Contrary to previous experiments, the tube was immersed in 

water in order to minimize bouyancy effects. 

Water flowrate through the flexible tube was measured 

with a Fisher-Porter flowmeter (No. 1/2-21-G-10/20). 

In Figure 5b, the collapsible tube is shown connected to 

the manometers. This configuration was used to measure the 

distribution of interior fluid pressure, which is indicated 

on the manometers in the figure. The water level in the 

test chamber was adjustable through the interchangeable 

sections of pipe shown in the right foreground of the 

figure. The outlet pressure, P2, was maintained at a 

constant value of 3.10 in H20 above the centerline of the 

collapsible tube. The free length between the collapsible 

tube supports was adjustable between 9 and 11 em. 

Samples of 1/2 inch Penrose surgical drain tubing (latex 

rubber) were used as the flexible tube (E = 1.9 x 107 

dynes/cm2, thickness = 0.028 em, Poisson's ratio = 0.5). 

The measurement of axial pressure drop wa~ done with a piece 

of this tubing suspended between the circular mounts. 

However, it was necessary to affix manometer connecting 

tubes to the main Penrose tube in order to measure the 

distribution of interior pressure. This modification is 
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shown in Figure 6. Conrad (16) has observed that the 

initial elliptic cro~s-section of the tube predetermines its 

circumferential collapsed shape. That is, the long axis of 

the initial cross-section remains the long axis of the 

collapsed cross-section. This fact made it possible to 

locate the manometer connecting tubes ~ priori so that they 

continue to measure the fluid pressure in the side channel 

formed during extreme collapse (condition I in Figure 3c). 

Thus, small holes (0.5 mm) were made in the Penrose tube 

wall along a lengthwise extension of the major axis of 

initial cross-section. The manometer connecting tubes were 

glued to the penrose tube over the holes. The wall tap 

spacing (1 em) was somewhat arbitrarily selected based on a 

tradeoff between minimizing the interference with the solid 

mechanics of collapse and maximizing the number of fluid 

pressure sampling points. 
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Figure 6. Modification of a Section of the Flexible 
Tube for Interior Wall Pressure Measurement 
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CHAPTER III 

ANALYSIS 

The major analytic difficulty experienced by previous 

investigators has been the treatment of tube structural 

mechanics. The fluid mechanics has been uniformly treated 

as one-dimensional. In order to assess the accuracy of 

predicted variables, a relative error was used 

error = (x - x )/x 
p r r 

(2) 

In Equation 2, and throughout this study, the standard of 

comparison is the measured (reading) value which is· 

represented by xr; Xp represents the predicted value. 

Literature Survey 

Rodbard (18,20,21) and Holt (22,23) were among the first 

to discuss flowrate prediction in collapsible tubes. As 

physiologists, they attempted to use the simplest fluid flow 

model available, a linear Hagen-Poiseulle relationship. 

This linear pressure drop-flowrate model has repeatedly 

appeared in analyses of collapsible tube flows; however, the 

nonlinear nature of the characteristic previously discussed 

(e.g., Figure q) would seem to preclude accurate prediction 

by so simple a fluid model. 

19 
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Conrad (16) was among the first to study both the steady 

and oscillatory behavior of the flow th$ough the tube. His 

fluid models were used to explain the experimen'tal data and ........... _ 

a prediction of the data was not attempted. His 

experimental apparatus was the clasical apparatus shown in 

Figure 1, so that isolation of the tube in order to 

determine its characteris.tic was not accomplished. 

Almost simultaneously with Conrad, Katz et al. (12) 

attempted a study of the collapsible tube. They measured 

experimental collapsed tube shapes and correlated them to a 

fluid energy loss coefficient for the tube. This model of 

the flow through a collapsible tube was utilized in a fluid 

mechanical analysis of the classical apparatus (Figure 1). 

Thus, Katz et al. attempted to predict the in-circuit 

.performance of the tube. Their results are presented .in 

Figure 7. The large error (56S) in predicted pressure drop 

at a given flowrate was attributed to slight errors in the 

measurement of cross-sectional area and the accompanying 

underestimation or the viscous losses. 

In a milestone study, Brower and Noordergraaf (11) 

presented the first characteristic data for a collapsible 

tube. The analysis that they conducted was based on a best 

fit to the experimental data. An important study conclusion 

was that the analysis should be developed from basic 

physical principles. 
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Figure 7. Comparison of Data for a Semi-Empirical 
Model, from Katz (12, p. 1273) 
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In 1972, Lambert and Wilson (15) proposed an inviscid, 

irrotational model of the fluid flow coupled to a 

theoretically derived model of the tube mechanics. In this 

model, the tube was assumed to possess hoopwise bending 

rigidity only. Two aspects of this model are important • 

. First, the model was fully predictive. That is, given the 

basic properties of the fluid and tube, a flowrate was 
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predicted, albeit inaccurately. Secondly, the large errors 

manifest in the results were attributed by the authors to 

the neglected fluid viscous effects. 

In a later study, Wild et al. (24) presented a model 

specifically addressed to steady flow at low Reynolds 

numbers. The model was derived from a lubrication theory 

solution. The lubrication theory is useful when the 

Reynolds number is small (e.g., order 1) and the tube radius 

is very small compared to the length. Wild modified the 

basic lubrication theory to account for an elliptic tube 

¢ross-section, with ell ipse parameters which vary. in the 

axial ·direction. This model is important in that it was one 

of the first to utilize a distributed geometric shape as a 

tube description. However, noteworthy shortcomings of the 

model include its requirement for an elliptic tube cross

section, and the constraint to low Reynolds number flow. 

In 1977, Shapiro (13) published his approach to the 

problem. He offered a one-dimensional fluid model and 

emphasized the importance of coupling the mechanics of the 

flow to the mechanics of the tube. His model of the tube 

was an empirical one and fluid fFictional effects were 

lumped into a coefficient of friction. Shapiro emphasized 

the importance of the tube-support interaction at the 

downstream, exiting end of the tube on the fluid mechanics. 

He also suggested that these end effects may limit the 

usefulness of the apparatus as a rigorous venous model. 
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Shapiro presented a general theory of flow in collapsible 

tubes, but perhaps the greatest limitation of his theory 

rests in his assumption that the fluid pressure distribution 

and viscous wall shear distribution are known quantities. 

In the light of inherent measurement difficulties discussed 

previously (11), this would seem to be an unjustifiable 
·:,._ 

assumption at the present time. 

Analytical Approach 

The goal of the present analysis was to predict the 

fluid flow characteristic pressure drop-flowrate response to 

the collapsible tube. In this approach it was assumed that 

flowrate, outlet pressure, and collapsing pressure are known 

while inlet pressure is to be calculated. A finite-element 

model of the flexible tube was assembled and coupled to a 

one-dimensional fluid mechanical model. The nonlinear 

combined model was programmed for iterative solution on a 

digital computer. The solution algorithm was composed of a 

set of task-oriented subroutines which are highlighted in 

the following sections and d.iscussed in detail in Appendices 

A through F. 

Analysis inputs were separated into four types: 

geometric, material, initial value, and numerical 

parameters. The inputs are summarized in Table I. These 

fifteen inputs are all that was required for the analysis 

and thus fulfill the scope requirement for an input list of 

fundamental parameters. 



Type 

GEOMETRIC 

MATERIAL 

INITIAL VALUE 

NUMERICAL 

TABLE I 

ANALYSIS INPUTS 

Tube 

Thickness 
Circumference 
Length 
Ellipticity 

Poisson's Ratio 
Young's Modulus 

Stress Levels 

Global Axes 
Subdivision 

Finite Element 
Distribution 

Convergence 
Parameters 

The Tube Model 
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Fluid 

Kinematic Viscosity 
Density 

Flowrate 
Downstream Pressure 
Collapsing Pressure 

:. 

The tube was viewed as a shell structure which shows 

membrane stiffness in the axial direction and bending 

rigidity in the hoop direction. Katz et al. (12) showed the 

importance of accurate tube shape prediction to the coupled 

fluid mechanical prediction. Lambert and Wilson (15) have 

shown. the importance of hoopwise bending in the tube, but 

they ignored effects in the axial direction. Shapiro (13) 
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suggested that the short length of the tube would also make 

axial membrane stresses important to tube shape prediction, 

but he observed that such a distributed tube model could be 

forbiddingly complex. Nevetheless, such a model was the 

next logical step and it was employed for this study. 

The observed collapse shapes (Figure 3) show that the 

analysis must account for wall deflections which 

large with respect to wall thickness (e.g., 20 

are very 

times). 

These large deflections give rise to a form of "geometric" 

nonlinearity which may be best treated with a finite element 

approach (25). Furthermore, th~ deflections occurred in 

such a way that the thin plate assumptions which are usually 

used in a shell analysis became invalid. 

Finite elements which possess inter-element 

discontinuities in position or slope have often been used in 

the analysis of shell problems, such elements are usually 

termed non-conforming (25). In the present study, a variety 

of non-conforming triangular elements wer~ examined, none of 

which achieved consistent numerical convergence. That is, 

at sufficiently large displacement, all the non-conforming 

elements that 

matrix. The 

were examined produced a 

cure for this ailment 

singular stiffness 

was found in a 

redefinition of the displacement functions. In contrast to 

a classical finite element analysis, the linear deflections 

(u, v, w) were associated with a pure membrane finite 

element, while the element rotational orientation <i> was 
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interpreted as a mean . value for the slope of the curving 

structure. Thus, nodal rotational deflections (48') were 

defined independently of the linear deflections, and the two 

types of deflections were related through an intuitive 

geometric relationship which was enforced by the use of 

Lagrange multipliers. This scheme permitted position 

continuity in order to predict membrane effects as well as 

slope continuity in order to predict bending effects. 

Following the finite element method, the structure was 

subdivided into an interconnected set of small but finite 

structural elements. Planar triangular elements were 

defined such that they stretch in-plane in order to show 

membrane action. Hoop bending forces were calculated from 

the nodal rotational deflections. The element linear u, V, 

W deflections are associated with the global coordinate 

directions X, Y, and Z, as shown in Figure 8; 48x is the 

rotational deflection of a line tangent to the structure 

about the global X-axis defined in a right-handed manner. 

For example, at node £ in Figure 8, the structural 

orientation, 9x, arises due to a deflection, 48x, from the 

initial orientation, 9x0 • 

Two coordinate systems were needed for the analysis. 

The local coordinate system was used to take advantage of 

the structure modelling assumptions (e.g., the "shallow 

shell" assumptions which are discussed in following 

paragraphs), while the global coordinates were used as a 
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reference for the assembled structure and the fluid 

mechanics. In order to facilitate the analysis, x and X 

must be chosen to be colinear~ If this is not done, a more 

complete set of rotations would be required. 

Figure 8. 

z,w 

The Tube and a Finite Element in the Initial 
Configuration with Corresponding Defle~tion 
Directions 

A "tangential stiffness" approach was used to analyze 

the anticipated non-linear load-deflection curve. The 

analysis used an incremental tangential stiffness to 

represent the stiffness of an element's degrees of freedom 

to the applied nodal loads. The degree~· of freedom occur at 
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the element corners (nodes) and are specified in Figure 9. 

The elemental matrices were assembled into a single "global" 

stiffness matrix which reprasents the incremental stiffness 

behavior of the entire structure as a set of coupled linear 

algebraic equations. 

Uj 
V) 
Wj 

~E!I!J 
uk 
Vk 
wk 

Aexk ·u,-· 
Vf 
w.a 
aexl 

Cl) 
LIJ 
u 
0:: 

~ 
.J g 
0 
~ ... 
"-

STIFFNESS 
c)F· 

- .=.L. - c)qm 

<lm• 
DEFLECTION 

Figure 9. A Finite Element, the Deflection Vector, and 
the Load-Deflection Curve 

The analysis was based on a set of shallow shell 

assumptions: 



1. Due to the thinness of the shell, the 
displacements, expressed in local coordinates 
(u, v, w, A8x>, were assumed independent of 
the coordinate normal to the initial local 
surface (z-direction). Thus, a complete 
first-order two-dimensional polynomial was 
used to represent the displacements. 

u = a, + a2x + a3y 

v = a4 + asx + a6y 

w = a7 + aax + agy 

A8x = a 10 + a 11 x + a12Y 

The incompatibility of the linear and 
rotational deflections was compensated by an 
intuitive geometric relationship. That is, 
in terms of the coordinates of the nodes 

8 = (8XJo +A8xJ> 

+ (8XLo + A8XL) 

Sin8 = 

Here, the finite element orientation, 8 , 
shown in Figure 8, was treated as an average 
of the two hoopwise structural rotations at 
nodes j and £. This geometric relationship 
was implemented through Lagrangian constraint 
of the displacements (see Appendix A). In 
other words, a Lagrangian constraint of the 
stiffness matrix was applied to enforce 
Equation 8 during all computed position 
increments. 

2. The effects of initial curvature were slight 
and were disregarded. This "shallowness" 
assumption permitted the use of the large 
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(3) 

(4) 

(5) 

(6) 

(7) 

(8) 



deflection strain expressions sometimes 
called Green's Strain Tensor (25): 

= 

= 

'Yxy = 

~ { ( ~ ) 2 + ( :: ) 2 + ( :: ) 2 } 

+ ( :; ) 2 + ( :; ) 2 } 

au + av + au au + av av + aw aw 
ay ax ax ay ax ay ax ay 

3. Furthermore, the strain in the hoop 
direction, £H , was constrained in order to 
prevent the elements from carrying the load 
through hoopwise membrane compression. If 
membrane compression were to occur, then this 
would be characterized numerically by a 
singular stiffness matrix. However, this 
behavior is not observed physically and 
should not be allowed to occur numerically. 
Proper choice of local axes gave £H = &y so 
that a second constraint equation was 
introduced: 

= 0 

4. A straight line normal to the initial surface 
remained straight and normal to the deflected 
surface. This assumption is very much like 
the Love:..Kirchoff approximation where it is 
assumed that transverse shear strains ('Yxz• 
'Yvz> are negligible (26). Yet, in contrast, 
here the thickness was allowed to change. 

5. A state of plane stress was assumed. A 
change in internal energy associated with the 
transverse normal strain, Ez , was zero since 
the transverse normal stress, Oz , was zero. 
This means that effects due to a change in 
thickness can be ignored in a state of plane 
stress. Furthermore, the assumption of a 
state of plane stress automatically gave a 
zero volume strain for Poisson's ratio of· 
0.5. 

6. Out-of-plane distortion of the initial cross
section has negligible effect on the hoopwise 
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(9) 

(10) 

( 11) 

( 12) 



radius of curvature (RC). Thus, the change 
in hoopwise reciprocal curvature becomes 

K = 

In addition to these shell assumptions, the 
following boundary behavior assumption was 
adopted: 

1. The effect of stretching the tube over the 
circular mountings on the initial stress
strain state of the tube was neglected. The 
mountings ~ere assumed to be in the same 
shape as the undeformed cross-section of the 
tube. 
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(13) 

The relationships above were interpreted on a Lagrangian 

frame of reference. That is, once the local axes were 

specified, they remained fixed and all displacements and 

strains were referred to the original axes positions. 

Given these assumptions, a tangential global stiffness 

matrix [Kr] was formulated, a task which is discussed in 

Appendix A. The applied loads were thus used to compute a 

step in incremental displacement. This, in turn, led to a 

new wall position and a corresponding new stiffness matrix. 

Essential to this stepping process was an evaluation of the 

applied loads. These applied loads were due to an imbalance 

of the force of hydrostatic collapsing pressure and the 

forces exerted by the flowing liquid. 

The Fluid Mechanical Model 

In the fluid mechanics analysis, the fluid volume was 

divided into a series of finite incremental regions 
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separated by successive X = c planes. A schematic of the 

volume division is shown in Figure 10. Starting at the 

downstream end, the fluid pressure and velocity were 

calculated to satisfy a momentum and continuity balance for 

each successive region. When the inlet was reached, an 

estimate of the internal distribution of fluid variables was 

obtained. 

y 

X=C 
UPSTREAM 

Figure 10. Division of the Fluid Volume into Finite 
Regions 

The governing equations included mass continuity: 

Q = AV (14) 
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where V is the continuity averaged axial fluid velocity, A 

is the tube cross-sectional area, and Q is the fluid volume 

flowrate. Equation 14 shows that, given the tube shape, the 

continuity averaged fluid velocity can be calculated at each 

location along the tube. 

In addition, the integral form of momentum balance was 

satisfied over each region: 

(15) 

In this approach, the fluid mechanics was assumed to be 

dominated by changes in the axial, X-direction. This allows 

simplification of the general momentum equation to 

+ (16) 

For this steady flow analysis, the time-derivative term has 

been discarded. The fx integral term represents the 

contribution of the wall shear force. This term was 

estimated via a hydraulic diameter modification of the 

classic pipe Hagen-Poiseuille shear force calculation (27). 

That is, 

frxdA 
w 

= (17) 

with the hydraulic diameter given by 

(18) 



Here, ~ and Ad are downstream velocity and oross-sectional 

area which are used to include some account of taper, and lp 

is the wetted perimeter of the fluid re(ion. Notice that 

since the hoop strains were constrained to be zero, lp is 

constant. 

The procedural difficulty in evaluating Equation 16 

entered in the integration of the pressure over the wall 

surface; that is, the difficulty entered in coupling the 

one-dimensional fluid model to the three-dimensional tube 

model. Here, 

linear function 

relationship, 

the fluid pressure, P, was assumed to be a 

of X within a given region. This linear 

in conjunction with Equation 16, forms two 

equations in the three unknowns, Pu, Pd, and axial rate of 

pressure change, m. Thus, the downstream pressure was 

assumed known, the last term in Equation 16 was numerically 

integrated, and the upstream pressure was calculated from a 

closed form of Equation 16. This technique was stepwise 

applied beginning at the outlet end of the tube and 

proceeding upstream until the inlet was reached in order to 

obtain an estimate for the axial 

distribution. These calculations were 

FLOW1D which is discussed in Appendix B. 

fluid 

made by 

pressure 

subroutine 

Subsequent to the calculation of the fluid pressure 

exerted on the interior wall surface was the estimation of 

the loads on the tube. Here, it was assumed that the fluid 

pressure forces were dominant, so that fluid viscous forces 



35 

on the tube could be neglected. The subroutine which 

calculates the external forces on the tube and reduces them 

to an equivalent set of nodal forces is called subroutine· 

FORCES and is discussed in Appendix C. 

Solution Algorithm 

The solution began with the definition of an equilibrium . 

index, 'P, 

'P = F. - F 
""1 ""'e (19) 

The internal forces, Fi, were related to the amount of 

strain the tube experienced and the elasticity of the tube 

material. The external forces, Fe, were calculated from the 

fluid hydrostatic and flow pressure loads. 

Computing the first variation of Equation 19, with the 

external forces held constant, yields 

(20) 

The global tangential stiffness matrix [K,J represents 

the stiffness of the structure to an incremental change in 

position, dq. Conversely, 

(21) 

~as used to calculate an incremental change in position due 

to a small change in load, d\11. Thus, at computational step 



36 

N+l N N+l 
n, d4J = 4J - 'II • In addition, 'II = 0 was used to guide 

the solution toward equilibrium. Then, 

= (22) 

was used to compute an incremental correction to the 

position. Here, the stiffness matrix [K,l was augmented to 

account for the two constraint equations previously 

introduced (see Appendix A): 

di"l rK l" [CC]T n l -1 

!~" [C:]n 
= (23) 

A" (0] ,....., 

where [CC] is a matrix of the constrai11t coefficients and A -
is the Lagrange multipliers. Subroutine STEP applied the 

boundary conditions, computed the inversion of the augmented 

stiffness matrix, and tested for convergence based, in part, 

on.the smallness of the correctional step, dq • The details 

of subroutine STEP are discussed in Appendix D. 

It i~ now possible to establish the algorithm flowchart 

as in Figure 11. Two subroutines are shown which have not 

been previously discussed, !NIT and MESH. Subroutine !NIT 

was the solution initializer which defined the finite 

elements as well as various constants (Appendix E). MESH 

defined the global cartesian mesh contained in the interior 

volume of the tube plus rigid supports (Appendix F). 



INIT 

MESH 

FORCES 

KMATRl 

STEP 

MESH 

FLOWlD 

TASKS 

1. SET LOCAL AXES. 
2. DEFINE THE FINITE ELEMENTS. 
3. INITIALIZE CONSTANTS. 

1. ESTABLISH THE GLOBAL CARTESIAN 
MESH. 

2. INITIALIZE THE FLUID VARIABLES. 

1. COMPUTE THE EXTERNAL FORCE 
VECTOR. ~, FROM 1\ AND THE 
FLUID VARIABLES. 
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1. COMPUTE THE GLOBAL TANGENTIAL 
STIFFNESS MATRIX [Krl~ 

2. COMPUTE THE EQUILIBRIUM 

VECTOR "'~ -
1. COMPUTE THE INCREMENTAL WALL 

POSITION ADJUSTMENT. dq," -

1. SET THE NEW MESH. 

1. COMPUTE THE FLUID VARIABLES OF 
AVERAGE PRESSURE AND VELOCITY. 

Figure 11. The Algorithm Flowchart 
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The solution algorithm used a modified Newton-Raphson 

technique which followed the path shown in Figure 12. 

Although the figure only shows the path for a single degree 

of freedom, it is indicative of the overall process. The 

first step 1-2 is a simple inversion of the stiffness-matrix 

with scaling of the step to ensure its smallness. The step 

must not be allowed to become excessive, otherwise the 

assumption of constant external force during a step may lead 

to a non-physical solution. Nevertheless, due to 

non-linearity, the internal stresses may not produce the 

expected value of 'II at step 2. Thus the true 'II occurs at 

point 3. Subsequently, the tangential stiffness is 

recomputed and another step is taken from 3-4. This process 

is continued until convergence at step 6 is achieved. 

The apparent '11=0 point changed on each step as shown in 

Figure 12. This occurred since the pressure loads created a 

changing nodal force vector for the elements as they changed 

orientation. This presented no problem as long as the step 

size was kept small. 
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Figure 12. The Solution Path on a Load-Deflection Plot 
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CHAPTER IV 

RESULTS AND DISCUSSION 

In this chapter, the experimental and analytical fluid 

pressure-flowrate characteristic of a collapsible tube is 

presented. The role of pretension was investigated as well 

as the demarcation of the oscillatory regime and the 

definition of the axial pressure 

reference height for the measurement 

the axis of the collapsible tube. 

distribution. The 

of all pressures was 

Experimental Results 

The Pressure Drop-Flowrate 

Characteristic 

Figure 13 shows the experimental characteristic fluid 

pressure response to tube collapse due to flowrate and 

collapsing pressure variation. The downstream pressure, P2 , 

was held at 3.10 in H2o. Each curve represents a different 

value of collapsing pressure, Pe. The prestrain was set at 

about 1S. Imprecision of the prestrain occurred due to the 

difficulty of achie~ing a uniform mounting of the tube on 

the experimental apparatus. 
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Figure 13. The Experimental Steady Flow Pressure Drop-Flowrate Charac
teristic of a Collapsible Tube 
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Qualitatively, the tube characteristic response was 

similar to that presented by Drower and Noordergraaf (Figure 

~), but differences in tube length and pretension exclude a 

rigorous comparison to their experimental data. The fluid 

mechanics underlying Figure 13 are perhaps best described by 

observing the dependent inlet section pressure response, P1 , 

~g flowrate was increased with constant P : e 

1. At extremely low flowrate (less than 3 
ml/sec) two side channels were created and 
the tube was in a state of extreme collapse 
(I in Figure 3). Due to the low flowrate, 
however, the fluid forces were small and, 
consequently, the upstream pressure was small 
at all values of collapsing pressure. 

2. At moderate flowrates (3~9 ml/sec), the tube 
began to open due to increasing upstream 
pressure. This increase in upstream pressure 
was due to the increase in fluid viscous 
forces which accompanied the increased 
flowrate. Now the tube appeared to be mostly 
open at the upstream end and closed, or 
collapsed, at middle and downstream 
locations. 

3. As the flowrate was increased still further 
(greater than 9 ml/sec), the upstream 
pressure approached the collapsing pressure 
in magnitude. At these flowrates, the tube 
shape took on the character described by 
previous investigators as "pinched" (12,16). 
That is, a small but complete collapse dimpl~ 
was formed at the downstream end. 

4. At some critical value of flowrate, the tube 
and flow began to oscillate. These data 
points have been given an identifying symbol 
in Figure 13. The tube wall oscillation 
might be best characterized as a large 
amplitude (of the magnitude of the tube 
radius) and low frequency (1-2 Hz) 
oscillation. 



Effect of Pretension 

Figure 14 shows the effect of pretension on the flow 

ch$racteristic at three levels of collapsing pressure. 

The high level of collapsing pressure (Pe - P2 = 6.0 in 

H20) shows only a slight response to pretension. Here, 

flowrates less than 7 ml/sec provided a slightly increased 

upstream pressure, otherwise the characteristic was affected 

very little. 

The moderate level of collapsing pressure (Pe - P2 = 4.0 

in H20) shows a uniformly lower upstream pressure. This 

response was attributed to the increased tension associated 

with high prestrain holding the tube more open. Thus, the 

fluid channel was widened so that the fluid forces were 

reduced, as was the upstream pressure. 

At the low collapsing pressure (Pe - P2 = 2.0 in H20), 

the effect of pretension was most pronounced: All flowrates 

produced a smaller upstream pressure. 

Table II shows the effect of pretension on the 

oscillation onset. The flowrate values which are shown were 

the first at which oscillation was observed, all other 

conditions held constant. No overall pattern emerged from 

this data. Nevertheless, two points are of interest: 

1. At a very low collapsing pressure (Pe - P2 = 
1.0 in H20) and a high prestrain, contact of 
opposite walls did not occur. Neither did 
oscillation. The occurrence of this case 
suggests that oscillation and collapse with 
contact of opposite walls are closely 
related. 
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2. With a high prestrain and a high collapsing 
pressure (Pe - P2 = 6.0 in H20), a very high 
frequency, low amplitude (radius/10) 
oscillation began at about 15.5 ml/sec~ This 
high frequency oscillation persisted until 
the flowrate reached 23.5 ml/sec when the 
large amplitude oscillation began as in other 
cases. 

TABLE II 

FLOWRATE (ML/SEC) AT ONSET OF 
OSCILLATION 

(Pe -Pz) 
(in. Water) 1 ~ Prestrain 10~ Prestrain 

6.0 
5.0 
4.0 
3.0 
2.0 
1. 0 

11.5 
11.0 
11.0 
14.5 
13.5 
13.5 

(Downstream pressure= 3.10 in H20) 

Axial Pressure Distribution 

The four figures which follow 

15.5/23.5 
12.5 
11.0 
10.0 
15.5 
none 

show the 
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axial 

distribution of fluid pressure as measured by the tube wall 

taps, and the corresponding shape assumed by the collapsed 

tube. In all cases, the flow direction was left-to-right. 
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The prestrain was set at the low value. 

demonstrate the development of the 

The intent was to 

axial pressure 

distribution as the flowrate was increased. Consequently, 

the collapsing pressure was held constant, (Pe - P2 = 4.0 in 

H20), as was the downstream pressure (3.10 in H2o>, while 

the flowrate was increased and the fluid wall pressure 

measured for each successive case. In all cases, contact of 

opposite walls was indicated by the flat area down the 

center of the tube. The pressure distribution demonstrates 

the interplay of the two major opposing fluid reactions: An 

upstream pressure rise due to viscous effects, and a 

downstream static pressure drop due to a venturi effect. 

In the final figure of the series, Figure 18, the tube 

has assumed the "pinched off" shape described by previous 

investigators (12,16). Complete collapse was confined to a 

small region in the downstream end of the tube. The 

. interior fluid pressure was very nearly equal to the 

collapsing pressure over the entire upstream half of the 

tube. At this high flowrate, oscillation was imminent. 

It was observed that a slight increase in flowrate above 

that in Figure 18 caused the tube to open completely due to 

the further increase in upstream pressure. This opening 

motion caused an increase in the cross-sectional area at the 

constriction with large reduction in viscous effects. 

Subsequently, the loss of viscous effects made the interior 

distending pressure less than the exterior collapsing 
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pressure, which encouraged recollapse of the tube. The 

cycle was completed when recollapse caused a rise in 

u~~tream pressure. In this- scheme, the limits of the cycle 

were determined by the tube machanics. That is, the opening 

motion was limited by the increase in stiffness associated 

with ·the fully inflated tube cross-section, while the 

closing motion was limited by contact of opposite tube 

walls. 

Analytical Results 

In the remaining portion of this chapter the 

computational results are examined. These results are 

separated into two groups: a high pressure group with 

collapsing pressure greater than 6.5 in H2o, and a low 

pressure group with collapsing pressure less than 6.5 in 

HzO. This approach was adopted for three reasons: First, 

for clarity of presentation; second, since the low 

collapsing pressures are more likely to occur in the 

physiology, more attention was focused on them; and lastly, 

less computational data was generated for the high pressure 

group since it was extremely expensive to do so. This last 

consideration was a concession to the finite size of both 

the computing storage capacity and the project budget. 

Configurations and Cost 

Nonlinear finite element methods have been traditionally 
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recognized as being computationally time consuming 

(25,29,10). This occurs partly because the stiffness matrix 

is dependent on position and, therefore, must be 

reformulated on each computational step, and partly because 

of the inversion cost of the large stiffness matrix. In the 

pr~sent study, the introduction of constraint equations 

created an augmented stiffness matrix which no longer 

possessed the banded matrix structure of the stiffness 

matrix alone. This presented an even greater computational 

burden on the stiffness matrix storage and inversion 

techniques. In addition, the routines in this study were 

written for understanding and debugging versatility, rather 

than program efficiency. However, as a concession to 

optimization, an optimizing compiler (FORTRAN, level G 

compiler) was used. Nevertheless, accurate solutions were 

obtained at high cost. 

At the outset of the computation, it was assumed that 

seven equidistant circumferential nodes would be adequate to 

predict hoopwise bending effects. It was felt that fewer 

nodes would be inadequate to accurately predict the extreme 

collapsed condition and more nodes would be wasteful. In 

accordance with this assumption, only the fineness of the 

tube lengthwise subdivision was varied in order to study 

convergence. Two axes of symmetry were used to minimize 

computations. 
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Figure 19 shows a coarse finite element arrangement. 

Here, 48 elements were used to predict wall position; the 

arrangement was denoted M48. Similarly, M72 was a 

configuration with 72 elements. Both configurations had six 

equal hoopwise increment~. 

Figure 19. The M48 Finite-Element Configuration with 
Underlying Grid 

Table III shows a comparison of the computational 

requirements of the two element densities for an IBM 370/158 

digital computer. The larger stiffness matrix was 

acompanied by a twofold increase in storage and a nearly 

threefold increase in the execution time. Fortunately, 

these increased costs were offset somewhat by an increase in 

accuracy. 



M48 
M72 

TABLE III 

ELEMENT DENSITY VERSUS COMPUTATIONAL 
PARAMETERS 

Single Step 
Execution Time 

26.7 sec 
1 min 8.4 sec 

Augmented Stiffness Matrix 
Storage Requirement Upper 
1/2 Only--Double Precision 

Words 

13k 
27k 

Prediction and Measurement Comparison 

Figure 20 shows the experimental and predicted inlet 

pressure for low axial tube prestrain. The experimental and 

analytical cases had the outlet pressure, P2 , constant at 

The 48-element distribution was used to 

predict P1 at all the experimental values of collapsing 

pressure shown. The maximum error for the M48 pressure 

predictions was about 13~ of the measured value at the same 

flowrate (e.g., Equation 2), and it occurred at the 

mid-range of collapsing pressure and flowrate of the points 

examined. The maximum M72 error in predicted pressures was 

about 9% compared to measured pressures at the same 
. 

flowrate. Predicted pressures tended to be high at the low 

flowrates and low at the high flowrates. The improvement in 

accuracy shown by the M72 predicted pressure at high 
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flowrates occurred due to an increase in structural 

flexibility associated with the greater element density. 

That .is, the increase in element density gave rise to a 

decrease in predicted structural stiffness. This decrease 

in stiffness resulted in a decrease of cross-sectional area 

and a corresponding rise 

increased viscous forces. 

all flowrates examined. 

in 

This 

upstream pressure through 

effect was demonstrated at 

Figure 21 shows the correlation between predicted and 

measured inlet pressure for the high prestrain case. Here, 

the M48 values demonstrated much larger errors in predicted 

pressures than the M72 results (24~ maximum error versus 8S 

maximum error). This further suggests that the improvement 

in accuracy of the M72 configuration was due, in part, to 

the ability of the 72-element model to accurately predict 

the membrane forces since these had more effect on 

displacement in the high prestrain case. 

Two important shortcomings of the model are evidenced in 

Figure 22. First, an excessive fluid pressure minimum was 

predicted. This suggests that the fluid viscous forces were 

somewhat under-estimated, while the wall structural model 

appeared to be overly flexible. Compared to the physical 

case, this combination would lead to a smaller 

cross-sectional area at collapse and a corresponding higher 

fluid velocity at the minimum cross-section. Thus, the 

fluid inertial effects would assume too important a role and 
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cause the excessive pressure depression which was predicted. 

Secondly, the predicted pressure minimum was located 

u~stream of the minimum in the experimental data. 

Comparison between predicted and observed tube shapes showed 

that the predicted wall shape had a tendency to form a 

minimum in area which was too close to the mid-line (x = 4.5 

em) of the tube. This would cause the predicted pre~sure 

minimum to occur further upstream than was observed 

experimentally. 

these comparisons. 

regions to the 

Nevertheless, care must be exercised in 

The fluid flow in the inlet and outlet 

collapsed 

three-dimensional. Thus, 

pressure data to predictions 

model may be suspect. 

portion of the tube was 

comparison of measured wall 

from a one-dimensional fluid 
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

The goal of this study was to measure and predict the 

steady-state pressure drop-flowrate characteristic of a 

collapsible tube. Previous investigators have emphasized 

the need for an analysis which is constructed solely upon 

basic physical principles. The present study was intended 

to fill this need. 

Experimental data was presented in order to clarify and 

augment previously presented results. New pressure 

drop-flowrate data was presented which shows the importance 

of tube axial pretension, particularly in cases of low 

collapsing pressure. The data also shows that tube/fluid 

oscillation occurs at sufficiently high flowrates 

independently of interacting circuit elements. Another set 

of new data was presented which showed the fluid wall static 

pressure distribution as a function of flowrate. These 

measurements raise the question of the suitability of using 

fluid wall static pressure measurements to validate ·a 

one-dimensional fluid model in the present case. More 

sophisticated fluid experiments need to be conducted to 

answer this question. 
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A finite element structural model of the .tube was 

presented which balanced axial membrane stresses plus 

hoopwise bending stresses against the applied fluid pressure 

loads. The finite element tube wall approximation was 

coupled to a one-dimensional fluid model in order to predict 

the tube inlet fluid pressure as a function of tube 

collapsing pressure and fluid flowrate. 

Analytical results showed that the approach yielded 

considerable improvement in accuracy over that demonstrated 

by other methods. Previous investigators have complained of 

errors in predicted fluid pressure as large as 561 of 

measured values at the same flowrate. In the present study, 

at low pretension, the maximum error in predicted pressure 

was near 13% of measured values with a coarse finite element 

array, and near 9~ with a fine element array. With a high 

pretension, the maximum error was 24S with the coarse array 

and 8% with the fine array. This improvement in accuracy 

can be attributed to an analytical foundation in first 

physical principles. 

In general, the analytical predictions agree reasonably 

well with the experimental data, yet a consistent error 

pattern emerged. The predictions were too high at low 

flowrates and too low at high flowrates. A variation in 

finite element size did not alter this pattern. The error 

pattern was attributed to an incorrectly flexing model and 

possibly an underestimation of fluid viscous forces. 
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Consequently, the first priority for further work on these 

methods should be to include a more complete state of 

bending while retaining the one-dimensional fluid mechanics. 

A review of the results of such a study should indicate the 

necessity for attempting a more detailed two- or 

three-dimensional fluid mechanical analysis. 

As Brower and Noordergraaf (11) have demonstrated, the 

predicted fluid flow characteristic can be used to evaluate 

circuit performance where a section of collapsible tubing is 

present. The characteristic in the present study had fluid 

flowrate forcing, but an important companion case has 

pressure forcing of the fluid through the tube {Figure 2a)~ 

In order to predict general circuit performance it is 

required to be able to predict both the pressure and 

flowrate forced characteristics. Consequently, a worthwhile 

goal of subsequent research would be to extend the 

techniques presented here to include the case of pressure 

forcing of the fluid. 

The analysis methods of this study are applicable to 

engineering design as well . as physiologic analysis of 

collapsible tube flows. Engineering devices which function 

as resistors, oscillators, amplifiers, and switches have 

been discussed. In addition to these, a collapsible tube 

may provide a useful means of signal interfacing; for 

example, between hydraulic and pneumatic circuitry. This 

is, after all, the role that the veins in the thorax appear 
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to play during positive pressure lung ventilation. The 

analytical difficulty associated with physiologic collapsed 

tube flows appears to be primarily due to complications in 

the tube mechanics. Thus, the power of the finite element 

method of analysis used in this study becomes important. In 

f~ct, the finite element method can model the complex tube 

materials and environments which are often encountered in 

the physiology. 
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APPENDIX A 

SUBROUTINE KHATRI 

The task of this subroutine was to assemble the overall 

structural stiffness matrix referred to a global axes 

coordinate system. 

Preliminary Considerations 

The analysis requires 

discussed in Chapter 

two sets or displacements, as 

III; these are the global 

displacements, qG, and the local displacements, qL. The two 

displacement sets are related by a coordinate rotation: 

= [T] ~ 

Once the initial configuration is established, this 

relationship remains constant. In the following 

derivations, the subscripts are omitted and local 

coordinates are understood unless otherwise stated. 

Basic to the analysis is the formulation of element 

stiffnesses in local coordinates in order to take advantage 

of the simplifying shell assumptions. The transformation of 

the "local" stiffness into a "global" stiffness is 

accomplished via Equation 24. The structural global 
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stiffness emerges once the elemental contributions are 

summed in the proper manner. 

The analysis first requires a relationship between the 

displacements, dq, and the generalized coordinates, da; this 

relationship comes from the first variation of the 

polynomial expressions for the displacements (Equations 

3-6). That is, 

or, in expanded form: 

du. 
J 

dvj 

dw . 
.l 

d~8xj 

duk 

dvk 

dwk 

d~8xk 

du1 

dv1 

dw1 

d~8xl 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

dq = [ C] da 
...... 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

o n 

0 0 

... 
\ J 

0 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 

X. y. 
J J 

') 0 

0 0 

0 0 

0 0 

0 0 

(25) 

da 1 

da2 

da 3 

da 1~ 

da5 

da 6 

da7 

da 8 

da9 

da10 

d a11 

da12 

Notice that the [C] matrix is a constant matrix regardless 

of the polynomials chosen for the deflections. Moreover, in 

general, the deflections are known while the corresponding 



generalized coordinates need to be found. 

inverse relationship is needed: 

da = [cJ-1 dq 
"" "" 
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Hence, the 

(26) 

The analysis also requires a relationship between 

strains and displacements: 

dt = [B] dq (27) ,..... 

To find the [Bl matrix, the displacement polynomials are 

substituted into Equations 9-11, 13: 

tx = a2 + 
1 (a 2 + a 2 + as2> (28) - 2 5 2 

ty a6 
1 (a 2 + a 2 + a 2) (29) = +- 3 6 9 2 

"'~xy = a3 + a5 + a2a3 + a5a6 + aaag (30) 

K = a12 
(31) 

Taking the first variation of these equations yields: 

d tx = ( 1 + a2) da2 + a5da5 + a ad as (32) 

d ty = a 3da 3 + ( 1 + a6) da6 + a9da9 (33) 

d"Y xy = a 3da2 + ( 1 + a2) da 3 + ( 1 + a6) da5 (34) 

+ a9da8 + aadag 

dK = da12 (35) 

which is, in matrix notation, 

dt = [B*] da (36) ,.,. -



with rs*l equal to 

0 

0 

0 

0 

This means that 

and 

0 0 1 

a3 0 0 

( 1+a2 ) 0 (1+a6) 
0 0 0 

0 0 aa 0 0 
(1+a6) 0 0 a9 0 

as 0 ag aa 0 
0 0 0 0 0 

d& = [B*][C]-1 dq 

[8] = [B*][C]-1 

0 

0 

0 

0 

0 

0 

0 

1 
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(37) 

(38) 

Since [B*] depends on the values of a,· it is thus position 
I"J 

dependent. In fact, the position dependency of [B*] leads 

to the position dependency of the stiffness matrix, soon to 

be developed. 

The strains can also be related to the stresses through 

an Hookean elasticity matrix: 

do = [D] d& (19) 
I"J -

In this scheme, 

dox l r 0 0 

do = E r 1 0 0 
y 

( 1-r2 ) (1+r) 
dTxy 0 0 2 0 

(~0) 

dMY 0 0 0 h2 
~ 
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The Principle of Virtual Work 

The stresses and strains produced by the external 

loading are represented by a set of equivalent external 

forces, Fe, which act at the finite element nodes. The 

virtual work done by the external nodal forces is: 

dW = (41) 

This work done must equal the structural internal work 

(e.g., the principle of virtual work). The internal work is 

calculated by integration of the stress-strain product over 

the volume of the element: 

= (42) 

Or, using Equation 27: 

(43) 

and, equating the external and internal work: 

dqTF 
""',..,.e = [B]TCJdT - (44) 

Finally, given an arbitrary value of dq, the multipliers 

must be equal. Or, 

= (45) 
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Solution Method 

If the right-hand side of Equation 45 is thought of as a 

vector of the internal nodal forces, Fi, then Equation 45 

can be rewritten in terms of an equilibrium index,~' 

(46) 

Taking the first variation of this equation, holding the 

external forces constant, gives: 

d'll = f [dB]T~dT + (47) 

Using Equations 27 and 39, 

d'll = j [dB]T OdT + ..... dq (48) -
so that 

(49) 

where 

[KT] = [Ku] + [KN] (50) 

[Ku] dq = J [dB]T OdT (51) -
[KN] = f [B]T[D)[B] dT (52) 

Here, [KuJ is known as the initial stress matrix, or the 

geometric matrix, while [K,J is known as the tangential 

stiffness matrix. 
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Calculation of the Stiffness Matrix 

Entries 

The Zienkiewicz (25) procedure was used to find [KC11. 

This method begins with a definition: 

()u/()x 

()v/()x 

aw/ax 
t [G) q (53) 

()u/C>y 

()v/C>y 

aw/()y 

substituting Equations 3 to 6: 

au/ax 0 1 0 0 0 0 0 0 0 0 0 0 

C>v/()x ·o 0 0 0 1 0 0 0 0 0 0 0 

aw/C>x 0 0 0 0 0 0 0 1 0 0 0 0 

= a (514) 
()u/C>y 0 0 1 0 0 0 0 0 0 0 0 0 

....., 

av/C>y 0 0 0 0 0 1 0 0 0 0 0 0 

aw/C>y 0 0 0 0 0 0 0 0 1 0 0 0 

= [H] a ,..., 

and, using Equation 26: 

[H] a = ruHcJ- 1 .9. (5r;) -
so that 

[G] = (H][CJ- 1 (56) 
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and the well-known form of the geometric matrix can be used 

(25) 

f [G]T[M][G] dr (57) 

where [M] is a matrix of the stress values: 

Ox 0 0 T 0 0 xy 

0 ax 0 0 .,xy 0 

0 0 ax 0 0 "xy 
[M] = (58) 

.,xy 0 0 ay 0 0 

0 .,xy 0 0 ay 0 

0 0 ., 
xy 0 0 ay 

In addition to the formulation of the tangential 

stiffness matrix, this subroutine computes the Lagrangian 

constraint equations. From Chapter III, the two constraint 

equations are: 

Sin8 = (Zlo + WL) - ( Z Jo + WJ) liv (8) 

= 0 (12) 

To apply the Lagrangian constraint method, the first 

variation of these equations must be computed (28): 

= (59) 

= 0 (60) 
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Equations 59 and 60 can be written in matrix form and 

appended to [K 1 ] with Lagrange multipliers, so that 

[CC]T l 
[0] 

d'IJ {61) dq -
= 0 A -

Equation 61 is the fundamental equation in the solution. 

In the following deck listing, the step-by-step procedure in 

the formulation is given. 

A more compact formulation for the stiffness matrix 

could have been obtained if the internal energy were 

expressed directly in terms of the averaged rotational 

coordinates. A subsequent energy minimization would then 

yield a stiffness matrix which does not require the 

computation of the additional Lagrange multipliers. 



00DDO:Ji0 
OO<Bcnc 

COIJRDI:U TES0000003o 

c 

c 

COMMOll 
COMMO!I 
COliMOll 
COliMO!I 
CO:'.MO!l 
COMMO!I 
COMMON 
COMMON 
COli!! ON 
COMMON 
COliMO:I 
CO!IMO~ 
COMMOII 
DOUBLE 

n<.;.;. :.::) • !=Is: (.:.5:: ~sT~~P~ c;:w, 2:\ >,ere 12, 12), H(-5, 12). vot 
S7!FFC2213: 
V~ {23), ?123), NY 123), PY.3{23l 
XN00£1Ze~),!~DD!I2~~l,ZGJ05(2UOI,IELEM(3DD,3l 
F{405) ,!!4AX(2!) I !~AX~23, 10) 
X0(135),Y0{135l,ZU(135l,TR(300,10),SIGMA(300,4),NDOf(200) 
!X(2iluJ, !XG(2GOl . 
DX-IN, DXOiJ"T' THK, 5:L3,n1U, ::, P1 J P2, PE. I!N I lOUT 
n, !UiO, RL., D:A, ~. t:?!>X, R::.Y, R~u. Rrm, DRO 
U!ES!,f!£57,~AX,~~.DU,DPSI,SCALE 
LAS!£L, L~S'r~':;, ~:~LEM, XliOOES, UIN, NTUBE, LAST J ,lrJFLAG 
UX,NNY,X!U3EX,~7~3ET,HX,HY,NU~BC 
!fORC~. !.4'X, Ttil I TJ!,S!~X-:i, XC I YC 
PRECISIO!~ D, ?3:; S!RAI~I, ':I, ii, VOL, STIFF 

DIMEKSlON D~M1(12,12),~J~2(12,12),DUM3(12l,DJM~(12) 
DI~ENS!OM D;i~12,12;,A:12:,RM!5,6).CC(2,12l,COUC2,12) 
DIMENSIC!l BSTAR {~, 12) ,i:( 4, 12) ,lt"lH( 12, 12) ,SIGMAL(4 l, RK( 12, 12 l 
DOUBLE P~EC!S!OX DU!!1,il:J'42,DU'I3,DU'I.Q,DPT,A 
DOUBLE ?REC!5I':l'l l!ST!R, B,S!::"lAL, HMH, RK, Ill!, CC, CO!I 

!PRIME : "(312.0 
C INITIALIZE T!IE PSI V!:CT~~, -PSI !S ACTUALLY C~PIJ!!';C ~ERE. 

c 
c 
c 
c 
c 

c 
c 

c 

LAST :: tt•!l!I~~~S • f•f!\JSEX-1 )•!ITU9EY•2 
~" 1502 J : l,L~ST 

1502 PSI(J) : F(Jl 

INITIALIZE THE S7H'Fli::SS ~A!RIX 
T~£ STIFFIESS MATRIX :s ST03ED COLUMH-oiSE 

ICCOL : li•N!iODES 
. IS!OP o LAST•(LAST+1l/2 

DO 1510 J : 1,ISTOP 
1510 STIFF(J) • 0.0 

THE !IEXT LO'lP COliS!;J!';!S TH~ !U.TRIC!::S ELEfiE!iT-BY-ELEME9T. 
DO 1500 M • 1,NELE'! 

C BUILD THE RC!ATIO!i liATRIX. 

c 

DO 1505 J • 1,12 
DO 1505 K: 1,12 

1505 DPT(J,K) • 0.0 

L•O 
DO 1506 J • 1,3 
DO 1506 !C • 1 , 3 
L • L+1 
DPTIJ,Kl • TR(M,Ll 
DPT(J+li,K+ll) • DPT(J,l() 
DPT(J+8,K+3) • ~PT(J,l) 

1506 CONTnUE 
DPT(ll,lll • TR(!I,1Q) 
DPT(S,~l • TRCM,10) 

-D:·2J'J·')4-C 
0.J00005Q 
00000060 
!j{;Q{)!i~"?'j 
JJODJ03': 
000')'3090 
J03JJ1JD 
OOC0011D 
OODJ0120 
0000013:l 
000001~0 
OJOO!ll50 
OOOOC15J 
oooccno 
00000180 
OOO!l01~:, 
000002?J 
OOOOJ210 
000()0220 
JOOOJ230 
OOOJ02QO 
00000250 
OOJ!).{)26(! 
00!)00270 
00000280 
J0fJ0023J 
00000300 
()!)000310 
00000320 
0000\1330 
000003-J 
00000350 
00i10036C 
00000370 
00000380 
0000039~ 
ooooo•oo 
00900410 
00000420 
00000430 
00000~~0 
00000450 
00000ij60 
00000470 
00000480 
00000~90 
00000500 
00000510 
00000520 
00000530 
00000540 
00000550 
00000560 
00000570• 
00000580 
00000590 

::.~~::-:;:£ ::E :~J:;C.: :i~FL::'.:T!O!~S IU GLOBAL :OC?mi~;ATES. 
: : :::;..::·H~. ~) 

; • :!~~'~''1.2) 
!< = :~::.=:~·H.!~, 3> 
:;J!':;!1) X:lO!l~{I)- XOI:l 
:U~3(2) YYDDE!Il - YD(Il 
:::;~~C)) ZGODE(!") - ZO(I) 
Dj~)(•J Tl(l) - TXO(I) 
::,J~3('i; X!IODE(J) - XO(J) 
:l:J'l3!5) YliODE(J) - YO(J) 
DJ':.I!:!\"7 ~ :ZUODE(J) - ZO{J) 
~J~::{3} : iY.{J) - TXQ(J) 
:::;·::~3\3) X~l:tDE(K) - 1.100 
~~Y;t11): Y~l~)E(K) - Y~!K) 

)~~~~,1): !~~OE(Kl - ZO(K) 
:y.;~3(12)= TX{i() - TXO(X) 

t; ~D:'AT£ !:iE 
i;J i52.2 
D~"l~(J J 
llO 15~? 

I::Z:;:"LECTIJ!!S TO LOC.;L CO.J~DHIATE:S .. 
J = 1,12 

o.o 
;{ = 1,12 

15~2 :ru~.~;t.:} DU~~(J) + ~?T(J,Kl 0D~M3(K) 

: ::::/~PJI£ THE GE:~JE:lALIZEt; :;oon:>::l:,7ES FOri 7:-iE LDCAL SY37E'.~ 
JJ 175~ J = 1,12 

~J 1?50' = 1,12 
~(J) = A(J) + CI(J,K)•D~~~(K) 

175C C~!H!~WE 

" :•••••••••••••••cOMPUTE 3STAR******* 1 •********111*1 *** 1 *'*111111111 

~ F!U. BSTAP. 

c 

!l::J 1530 J = 1,4 
DO 1530 K: 1,12 
e:rA~IJ,Kl = o.o 

153'J ~ON!I!W~ 

~-ALC'JV!E Tl!E DERIVATIVE TERM~. 
~'"JDX ~(~) 
;r.;;;xz Joox•:>'.r:>X/2. o 
:y.;:y A!9) 
DoDY2 !Y~DY 0Dc~DY/2.C 
!lollXY : DoDX 0 0'oDY 
THETAX : (DUMij(ij) + DUH4(12))/2.0 

3S7A~(1,2) 1 .o + A(2) 
::STAJ\{1 1 5) A(5) 
3STAR( 1, 8) A(8) 
BSTAR(2,3l A(3) 
BSTAR(2,6) 1. 0 + A(6) 
BSTAR(2,9) = A(9) 
BSTAR(3,2) A(3l 
9S!~R(3, 3) 1.0 + A(2) 
BSTAR(3,5l 1.0 + A(6l 
BS!AR(3,6) A(5) 
BSTAH(3,8l • A( 9) 
BSTAR(3,9l n(3) 

-. .:. ~ 

~;;;:;-:_,-:,~ ~. 

.:·':.iT.~·~-0: ~-~ 

.... ,..,.. ... '7. 
-.I ...I ... ·-··- -

")C):~-:-

J_.CJ:J:>"?: 
... ·.:c.-~:::::.: 

-....... "' .... ---- -
L.~:..;-1~ -
c:;:;~~=~: 
J::c··o~~ 
:;_'J':' J:.: ... -: 
·"!J~.:.o;::: 

:JOOC'.3~: 
on:~:;..,: 

o.:.·;:r.;~: 

C':l:J:3;~: 
~JOD"::. 
):;:.-:·- ~.' 

:J::,-:,:-
·-'- ....... _;,.-

G:>>:-·--· 
J:J:··:~: 
:JOD~1),:';j 

3.:-1:. ~- :.: 
.JC:D01:;. 
ooo:nc~ 
OJJ-J11-:: 
Jo:.-~, 1£.: 
OC•OO 1 ~ ~: 
J·JO:,;-: ;;~
::::J:J115: 
:,';;)')~~~t: 

JOC011 :: 
~.;.)0,15: 

OOIJ'Ji-~ ~:; 



~ FOR~ 5 : 5S7,R•CI 
!);; 1553 ! = 1,
J() 1550 J = 1,12 
3~:.:: = '.l.~ 

c 

!)-D 155J 'l{ · = 1, 12 
~·:.J~ = 5~!.Jl + BST~R(l.K)•C!(K,J) 

155 ':! :-:;~r-;;: ~HJ~ 

(10001200 
aC0012Hl 
Oil:l01220 
'"'0\)123') 
:;';,'J12!&:: 
r~:::-::'250 
ODJ-:'126.C 
:;:·J0-:!.27J 
:l£10J12e) 
~D~Gl2;:J 
;)'l~~,.;~o 

c••••••••••••••••••••••••CALCULATE STRESSES ANO 
c 

stBAnts•••••••••••••••••ooo01310 

C C.lLCULA!E THE I~CREHEMUL STRAIN FROl4 THE IIHTIU POSIT!Oll. 
C I!i l.OC.ll CO!lRlliliATES. 

c 
c 

1560 STRAIN(M,1l A(2) + 
S!ftAIN(~,2l % &(6) + 
STRl!Y(H, 3) : A(3) + 
ST!AI~(H,•l : A(12) 

A(2)0&(2)/2.0 + A(5) 0 A(5)/2.0 + ~-DX2 
A(3)"A(3l/2.0 + A(6) 0 A(6)/2.0 + J•DY2 
A(5) + A(2) 0 A(3) + A(5) 0 A(6) + J~:~ 

CALCULATE THE LOCAL STRESSES 
·oo 1531 J. 1,4 
SIG'IALCJl : SIG!!A(H,Jl 
00 1531 It s 1,11 

1531 
c 

SIGHAL(J) = SIGHAL(J) + D(J,K) 0STRAIH(!!,l0 
CD!I!UUE 

C CALCULATE THE INTERNAL FORCES, BT 0 SIGMAL, IN LOCAL COORDINATES. 

c 
c 

1715 DO 1630 J • 1,12 
DUM3(J) : !l.O 
!Y.l 1630 K: 1,. 
DUM3(J) s ~U'I3(J) + B(K,Jl•SIG~AL(K) 

1630 COITIIIUE 

ft~TATE THE FORCES INTO THE GLOBAL SYSTEM 
DO 1735 J • 1, 12 
DIII!II(J) • 0.0 
DO 1735 K • I, 12 

1735 
c 

DIII!II(J) s DUMl(J) + DPT(K,Jl 0DUM3(K) 
COIITIHUE 

c 
c 

s PSI(J-3) - DUM,(It-3) 0VOL 
: PSI(J-2) - DUMl(K-2)•VOL 
• PSI(J-1) - DUH4(K-ll 0VOL 
I'Sl(J) - DUH-(It)AVOL 

COIISTIAIIITS••••••••••••• 

GO!J01]20 
00il01330 
OJQ31340 
J(){i:J1350 
03001360 
~0001370 
)0;}01380 
JOO!l1390 
00001'00 
{)0001.10 
0Cil01,20 
00001430 
00001'"0 
00001450 
00001460 
OOOOH70 
oooonso 
001)011190 
01}001500 
000~1510 
00001520 
00001530 
00!3015110 
00001550 
00001560 
00001570 
00001580 
03001590 
00001600 
00001610 
00001620 
00001630 
000016~0 
00001650 
00001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
000017QO 
00001750 
00001760 
00001770 
00001780 
00.001790 

If(IALT.GT.Ol GO 70 1651 

SET THE HO:JP STRAIN CONSTRAINT E!IT?.!ES l~l f!:E'IS Of THE 
~ENSR,'\LIZED ':O:lRDHJATES. 

DJ 3000 K=1,12 
CC(1,i0 = C.O 

3000 CC(2,Kl = BSTAR(2,Kl 
c 
C SET THE THETA-SHAPE COliSTRAI!IT a TER~S :lF THE 
C GE!IERALIZED ;;oo~D!!IATES. 

c 

CC(1,9) = -1.0 
CC(1,10)= COS(THETAX) 
CC( 1,12)= YPRIME°COS(THETAXl 

C CO'IP"JTE THE CO!iSTRAI~i E'liRlES Ill JER!IS ·JF DISPLACE'1EtiTS 
DO 3010 L:1,2 
DO 3010 K 1,12 
DU!!T!L,!O 0.0 
00 301D J 1,12 

3D1D DUl41(L,Kl DUMHL,K) + C:(t,JJ0C:O,Kl 
c 
c 
c ROTATE THE CO'ISTRAI!IT 

DO 3020 L:1, 2 
E!ITRIES :no TEE -.t:lBA!. liEFEliE!ICE SYSTE!!. 

3020 
c 

D!l 3020 l< : 1,.12 
. CD!I(L,Kl : 0.0 

D!l 3020 :=1, 12 
COH(L,K) = COUIL,K) 
CQHTINUE 

+ DUM1(L,J)•DPT(J,K) 

c 
c NU:-!ERICAL CO~DITIOHiliG !lF TilE CONSTRH!I!S. 

3030 
c 

DO 179D L:1,2 
BIG : 0.0 
!iO 3030 J:1,12 
ACOM = DABS(CON(L,J)) 
IF(ACON.GT.BIGl BIG: ACON 
COIITIICUE 

c SCALE THE LARGEST E!ITRY TO 10°0 6 
SCALEK = 1.0E06/BIG 

3040 
c 

DO 30QO J=1, 12 
C!l~(L,J) = SCALEK•COU(L,J) 
CO!ITINUE 

c STORE TilE ROll INTO THE GLOBAL STIFFtiESS ~ATR!X. 
KCON s 0 
!I: COL : Y.COL+ 1 
DO 1790 I = 1, 3 
KROo = q•(IELEM(M,I) - 1) 
DO 1790 K : 1, 4 
KRO"~ • KRO"l + 1 
KCON = KCO!I + 1 

1790 
c 

H: KRO. + KCOL 0(KCOL-1)/2 
STlff(N) • STIFF(ll) + COli(L, KCON} 
CONTI!IUE 

c c••••••••••••••••••••••cALCULATE 
c 

AND ASSEMBLE THE SIFFNESS•••••••• 

00301800 
ooooToto 
OOOJ1e20 
OGJOt83:; 
)0J01 ~4~ 
00001 d50 
00001850 
00()01~?C 

oooo1 t3o 
00001390 
00001930 
00001910 
OOO:J1S20 
00 1i0l'.f!0 
OOOIJ1;:.;o 
00:01950 
CZi001950 
00v01S7') 
0000193:l 
300')1990 
OOOJ20C') 
oooo2u1o 
OOJ02n:' 
JOOil203v 
OOJ020~J 
;)0002050 
00002:l50 
00002070 
00;}02000 
00~020,0 
:Jlll2 i 0·J 
()0002110 
0000212~ 
:JO:l-021'30 
000021~C 
00002150 
OOOC2160 
00002170 
:~002180 
03002190 
00002?00 
000022;;) 
ooooi~2o 
OJ002230 
OC0022'<0 
OJ0!!2250 
00002260 
000')2=??0 
00002200 
00002290 
00002300 
00002j10 
OU002320 
00002330 
000023QO 
00002350 
00002360 
00002370 
()0002380 
00002390 



C SET THE RM ~ATRIX 
1651 DO 1532 J : 1,6 

DO 1532 K : 1, 6 
1532 R~(J,K) 0.0 

c 

c 

RM(1,1l 
1!1(2,2) 
RM(3, 3) 
1!1(11,11) 
11!1(5,5) 
IH(6;6l 
Rll(1,-l 
11!1(2,5) 
RM(3 ,6 J 
IIH(ll, 1l 
1!1(5,2) 
11!1(6,3) 

S!!;~AL{1) 
SIG>UL{l) 

• SIGMAL(1) 
• S!Gl'IAL(2) 
• SIG!U!.(2) 
• SIG!!AL{2) 

S!GliAL(3) 
• SIGliAL(3) 

SIGMAL{3l 
• SIG!IAL<3) 
• SIGl1AL(3) 
• SIGMAL(3) 

C MULTIPLY M0 H 

c 

DO 1170 .1:1,6 
DO 1770 IC:1,12 
DUliHJ,I) • 0.0 
DO 1710 Lz1, 6 
DUM1(J,I) • 0Uli1(J,Kl + Rli(J,!.l 0 H(L,K) 

1770 COKTIKUE 

C CALCULATE HMH : HT•DU~ 1 
DO 1780 Jz1,12 
DO 1780 1C: 1, 12 
HMH(J 110 • 0,0 
DO 17tsD lz1,6 
H!IH(J ,I) z H!IH(J, () + !Hl., J)*llU!!l(L,IC l 

1780 CONTINUE 
c 
c 
C THE FOLLOVI!IG TVO LOOPS DEFilE &HE G!IG MATRIX 
C MULTIPLY HKH•CI 

c 

DO 15'0 I • 1,1.2 
DO 15110 .I • 1, 12 
DUM2(I,J) • 0.0 
DO 15110 I • 1,12 
DUM2(l,J) • DUK2(l,J) + ~!IH(l,JC)•CI(K,JJ 

15110 COIITIKUE 

C SET GMG • DUM1 • CIT•DUM2 
DO 15111 I • 1,12 
DO 15111 J 1,12 
DUli1CI,JJ a 0.0 
DO 15-1 I • 1, 12 
DaM1(l,JJ • DUll1(l,Jl + CI(IC,IJ*DUM2(K,J) 

15111 CONTINUE 
c 
C THE FOLLO~ING TWO LOOPS DEFI~£ II, THE ELEMENT STIFFNESS !lATRIX. 
C MULTIPLY BT•D 

15-2 DO 1535 I • 1,12 
DO 1535 J • 1, II 
DUM2U,Jl • 0.0 
DO 1535 It • 1,11 
·DUII2(I,Jl • OU!I2(I,Jl + 8(1C,Il 0 D(K,J) 

1535 COITIIIUE 

00002400 
0000241() 
00002420 
00002430 
00002U() 
)0002•53 
C0002460 
00002470 
00002~80 
00002Q9:l 
00002500 
00002510 
00002520 
00002530 
00:)02540 
00002550 
00002560 
00002570 
00002580 
00002590 
00002£00 
00002610 
00002620 
00002630 
000026-0 
00002650 
00002660 
00002670 
00002680 

·oooo2690 
00002700 
00002710 
00002720 
00002730 
000027110 
00002750 
00002760 
00002710 
00002780 
:>0002790 
00002800 
00002810 
00002820 
00002830 
000028qO 
00002850 
00002860 
00002870 
00002880 
00002890 
00002900 
00002910 
00002920 
00002930 
000029.0 
00002950 
00002960 
00002970 
00002980 
00002990 

: 
C ~J~!:?L! ~~~2•B AHD ADD !O GM~{DUM1) 

)(" i 5'5 = 1, 12 
:10 ":5l;5 = 1 t 12 
o~::,Jl ~UM1(I,Jl 
~J 15•5 K = 1,4. 
RK(!,J) RIC(I,J) + DUH2(!,K) 0 B(K,J) 

15~5 CO~ITl!iUE 

C APPLY i!!E CO~GRUE'IT AXIS TRANSFOR!!ATIOII. 

c 

c 

":J 1551 J = 1,12 
u~ 1551 K = 1,12 

OJ!!2(J, !0 = 0. 0 
Dl ~551- L = 1,12 

::i:i'!2(J,!O : DUl12(J,K) + RK(J,L)*DPT(L,!O 
1551 c:-~r::s:::: 

l)•) ~552 J : 1,12 
!l1 1552 K = 1,12 

U(J,O : 0.0 
~~ 1552 l = 1,12 

'!(J,K) : RK(J,K) + DPT(l,J)•DU~2(L,K) 
1552 :o~!I!I'J~ 

~',) 1552 J = 1,12 
DO 15~2 r = 1, 12 
iK(J,Kl = RK(J,K) 0 YOL 

15~2 COITiliUE 
c 
: s;:tE THE ST!FfNF.SS TERMS 

!)':) 1553 J = 1,3 

c 

llO 1553 K : J,3 
JK: (IELEM{M,J)-1)*4 

- !CK = (IEL£l'!(M,K)-1)*ll 
KSUE : KlC 
KSYl! : 0 
IF(JK.EQ.~K) KSYM z 1 
JR : (J-1)*Q 
KR = (K-1 )•~ 
!FCJlC.G!.KSAYE) GO TO 1555 
G.Q_TO 1557 

1555 I(K z J!( 
JK : KSAVE 
JR = (!C-l)*Q 
!CR : (J-1)•ij 

1557 ll:l 1563 L1 1,
JK • JK+1 
Jft : JE+1 
KS : KR 
!CB : !CK 
DO 1564 L2: 1,
KS = KS+1 
!CS : !CB+1 
!F(JR.G!.KS .AND. KSYM.EQ,1) GO TO 156-
W: JK + KB*(KB-1)/2 
STIFFC!Il = RIC(JR,KS) + STIFF(N) 

156ij CON'!Il;UE 
1563 CONTINUE 

1500 CONTINUE 
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::~003370 
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)a:l0339' 
~:i':.jJ-.-j.J 

!)1JJ03Q10 
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:;;')~34~0 

JO·J0~~50 
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:~J~j!:70 
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::~003550 
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ooo::ns·so 
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c 
c 
C CONDITION THE STIFFNESS MATRIX 

DO 4000 J = l,LAST 

c 

DO 4000 K = J,LAST 
N : J + (K-l)*K/2 
IF(DABS(STIFF(N)).LT.O.l) STIFF(N) = 0.0 

4000 CONTINUE 

RETURN 
END 
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APPENDIX B 

SUBROUTINE FLOWlD 

The object of this subroutine was to calculate the fluid 

variables of pressure and velocity on the interior of the 

tube. In order to accomplish this, the fluid region was 

subdivided into a connected set of finite fluid regions 

divided by a successive constant X planes and enclosed by 

the tube wall (Figure 10 and Figure 23)~ 

Figure 23. Wall Surface Approximation in a Fluid 
Integral Region 
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Given the tube shape, it is a straightforward task to 

apply continuity and determine the average velocity, v . 
f 

everywhere within the tube. The equation used is 

V : Q/A (62) 

Here, A is the cross-sectional area and Q is the flowrate 

through the tube. The trapezoidal method of integration is 

used to find the cross-sectional areas based upon the 

cartesian mesh values as determined by subroutine MESH. 

As discussed in Chapter III, the term of interest in the 

momentum equation is 

= p A X w w (63) 

Here, Pw is the average wall pressure and A x is the w . 

x-component of wall surface area of the tube in the region 

of interest. To obtain these values, the surface is 

approximated by a set of flat triangles. The surface 

approximation is shown in Figure 23. Notice that the 

surface triangles must be defined so that they enolose the 

volume between the X-plane boundaries. This means that the 

finite elements cannot be directly used since they are not, 

in general, related to the underlying cartesian grid. The 

computation is done by assuming a linear variation of 

pressure in the region. 

Pd = mX + Pu (64) 
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For this assumed linear variation in P and a planar triangle 

for a wall approximation, the average becomes: 

p 
w = (65) 

where P1 , P2 , P3 are pressures at the corners of the 

triangle, which are either Pu or Pd in magnitude. The 

x-component of the wall area, Awx' is found by computing the 

area vector for each surface triangle. 

Figure 23: 

T 

~wn = 

n 

For element n in 

A 

n (66) 

Summation of all the surface element area contributions 

prQduces the value of Awx for the region. 



SUBROUTINE FLDolD 
c 
C TYIS SlJBROU'l'IHE CALCULAiES ::;£ ?"::;:: ·;A!:BLES OF PRESSURE A!ID 
C AVERAGE VELOCITY. 
c 

COMMOII D(4 ,li), PSH*50) ,STP.HlH3C>J, -'il,CI(l2, 12), !H5, 12), VOL 
COMMOI STIFF{82215) 
CSMMON VU(23),P(23l,M!{23l,PXB(23l 
COMMON XMODE(200l,YMODEl200),Z~OD£(200l,IELEM(300,3l 
COMHOI F(405l,YHAI(23),ZHAX(23;15) 
COMMOM 10( 135), YO( 135) ,Zl(135J, 7~{300, 1;)),S!GMA(300, ij),IIDOF(200) 
COMMON TX(200l,TX0(200) 
COMMON DXIN,DXOU!,THl,RLS,fH",E,?1,P2,P£,!IN,IOUT 
COMHOII R,RHO,RL,DIA,Q,DPDX,REY,oHu,~MU,DRO 
COMMON UTEST,PTEST,DMAI,~P.~U.~PS!,S~ALE 
Ci>HMON LASTEL, LAS!Nl>,IELEM,IiiliJ::lES, SlN, !ln:IE, LASTJ ,lNI"LAG 
COMMON NX,HKY,K!UBEX,X!U:IEY,nX,HY,KUHiC 
COMMON !FORCE,TWX,T•Y,T•Z,S~uXO,IC,JC 
DOUBLE PRE~IS!OS D, PS!, S!.fi:l!!C,·C: ~!i, VOL, STIFF 

c 
C THE FOLLOWIIG ARE P~OORAII SPEC:Ifl: VAIGAB!..ES. 

c 

DIMEISIOI JZAREA(23),1GC{~?,3~,!~C(~~.3l,ZGC(~0,3),SEC(23l 
DIMENSION SMOOTH!23J,S~AX(23),SMSU~(2]),AXBAR(23J,SUMBAR(23) 
DOUIILE PIECISIO!I 121,121, Z2,, X31, !31,Z31,AX,AY, AZ, SAREA 
DOUBLE PRECISION IGC,JGC,ZGC 

C FIRST, CALCULATE THE CIOSSEC7IOHAL AIEAS AMD AVERAGE VELOCITIES. 
C TRAPEZOIDAL INTEGRATIOI IS USED. 

JSTAIT " 1 
JSTOP a LASTJ+1 
UTEST : O·.O 
DO 1000 JaJSTAI!,JSTOP 
SU'1 " 0.0 
LASTIC : IJ(Jl-1 
DO 1010 K•2,LASTK 
~~R,.·s~:::!~'~:•ZIIAI(J,l+1))/2.0 

1010 cour.uE 
c 

an • IY<Jl 
UST • NY(J) 
f • UY•HJ 
AIIC : (YMAI(J )-YJ•ZHAX(J, LASTK)/2.0 
JZAREA(J) • 4.0•(SUM+AIIC) 

1000 CONTINUE 
c 
C SMOOTH THE CROSSECTIONAL AREA'S Ill THE X DIRECTION. 
C THIS IS NECESSARY DUE TO THE COARSENESS Of" THE WALL HODEL. 

MDIM • NTUBE - III 
JSTAIT " IIIK+1 
JSTOP • IITUBE 
DO 1020 J oJSTUT 0 JSTOP 
L•J-IU 

. SEC(L) • TZAIEA(J) 
1020 CONTINUE 

c 
CALL SE1](SEC,SMOOTH,NDIM,IUl 

C SUBROUTINE SEll IS AN SSP SUBROUTINE WHICH SMOOTHS BY INTERPOLATING 
C A SECOMD ORDER FUHCTIOI WHICH IS A LEAST-5QUARE-ERROR FIT. TO THE 

00000010 
00000020 
00000030 
000000-0 
J0000050 
00000060 
00000070 
00000080 
00000090 
0000010() 
0~000110 
00000120 
00000130 
01000140 
00000150 
00000160 
00000170 
00000180 
00000190 
00000200 
00000210 
00000220 
0000023.0 
ooooozqo 
00000250 
00000260 
00000270 
00000280 
00000290 
00000300 
00000310 
00000320 
00000330 
000003'0 
00000350 
00000360 
00000370 
00000380 
00000390 
00000400 
00000-10 
00000420 
00000"30 
0000Qijli0 
oooooqso 
00000460 
00000470 
00000480 
00000490 
00000500 
00000510 
00000520 
00000530 
000005'0 
00000550 
00000560 
00000570 
00000580 
000_00590 

c 

DO ~030 J:.JSTART,JSTOP 
:.. = ,;"-~,=~· 
"lZJ.iiEA(J) = S!IOOTH(!..) 

1J 30 :::o~-:-:11u:: 

C CA!.·ClJt.!!E !!IE AVERAGE VELOCITIES. 
JSTOP : tASTJ+1 
DO 1040 J:l,JSTOP 
V3A; : ~/!ZAREA(J) 
~l)£L! : VU(JJ-VBAH 
V'J{J) : VBA! 
Ifi~DEL!.LT.O.Ol UDELT : -UDELT 
:::f(UD~LT.G!.UTEST) !JTEST=UDELT 

C U!£57 :s es::;:; FOR CO!IVERGE!IC£ TESTING BY SUBROUTINE ST~P. 
1fik0 ':1!lT:~;:£ 

c 
C T!!E A';I:YS!S !IEXT REQUIRES THAT THE F!..EXBLE SURI'ACE BE 
C ~.??~":!:~.;:::: A!:~ A SET OF TR::::•,t;GLE~ ~EL!,TED TO THE 

c 

~;,.:-'5~1.. :::a:::!iA!E SYS7E~. 

:.;s:.~:.:: = Hi!~•' 
!IS':':P : :.I~U9E+1 
:;.Q 11013 M : liS !ART, HSTOP 
!!EL = :l 
J : !IS7ART+KSTOP-N 
JM1 = J-1 
LASTl = !iYCJ l 
!1'\H!JM1) .L!. !IY(J J) LASTK::IY(JM 1J 
:IJ:::J-., 
I = RJ•!IX 
XJI'!, : X-HX 

C DEF!n THE ELE~EliT CORNERS IH GLOBAL COORDI!lATES, 
C IH A COU~TER-CLOCKWISE FASHION. 

c 

c 

DO 1200 t =3,LASTK 
~K : K-2 
T = FK•!IJ 
!('41 __ : !t-1 
JlCH1 = !-!IT 

MEL : !4EL+1 
X~C(~EL,~) 
JGCO!EL, 1 l 
ZGC~!!EL,1) 
X'J~Oo!EL, 2) 
YGCOI!E!.., 2) 
ZG:(~EL, 2) 
XGC(I!El,3l 
TGC(MEL, 3l 
ZGC(~EL,3l 

!!EL = l!EL+, 

XJ!!l 
TKH1 
ZMU(JMl,K!!l) 
X 
YKHl 
Z~AX(J, K!! 1 l 
XJM1 

• y 
: ZMAX(JM1,Kl 

XGC(MEL,1) • IJM1 
TGC(MEL, 1) : J 
ZGC(HEL,Il : ZMAX(JM1,Kl 
XGC(MEL,2) X 
YGC(KEL,2l YKM1 

OOJOOe:c 
OOD;JC£ L: 
DDC006~c 
()()0Q'J5:;: 
0;)03~~~~ 

0031JJ65:: 
00()0:l~5S 
00000670 
00000553 
00003'-i>J 
OOO!lu700 
0000071:l 
0000ll12f. 
00000730 
0001~?i.:S 
00ll0075'i 
oooo:n5: 
OOIJOD77J 
OOO\l07f:j 
OOOOIJ7?: 
QJO:JG'"-:'C'':; 
ooo~·:n1:. 
OO;JiJ:J32~ 
OOO-DQ83:fl 
DOilOOf•~ 
oooooa:;~ 
~ODCD3~: 
OJODD31•: 
:JOQDo~~ 
l)()Q"J~!;: 

JuJoo;:: 
00000~~: 
00000920 
OOOO'OS3C 
oo.ooo;~: 

OCOC095:J 
00000960 
0000097) 
<300009.3~ 
ooooc;;;~: 

00')01~0() 

000:11013 
OO!l!l10;<) 
oooo1)3c 
oooo104c 
00001J5D 
0000106~ 
00001070 
jooo1oe:i 
0000109" 
oooo11 oa 
0000111il 
00001120 
0000113:) 
00001140 
00001150 
00001160 
00001170 
00001180 
00001190 

co 
w 



c 

ZGC(MEL,2) : ZMAX~~.~1) 
XGC(MEL;3l X 
YGC(!IEL,3l •! 
ZG:(l1EL,3l Z"!U;J,!O 

1200 CO!iTlliUE 
c 
C All EXTRA ELE~ENT !lAY liE ~!lCESSARY IF THE TUBE WALL IS AIIGLED. 
C THE FOLLOWING LOG!C DEFINES IT. 

ftl • LASTIC-2 
Y • RK•HY 
YU • Y 
YD z Y 
ZU = ZMAXCJ~1,LAS!K) 
ZD = ZMAX(J,LlSTK) 
If(NY(Jl.EQ.IY(JM1)) ~C TO 1300 
MEL : MEL+l 
If(KY(Jl.GT.MY(JIIlll GO TO 1250 

C THE. FOLO.IKG SECTIOG IS FOR IYCJl.LT.NY(JM1) 
XGC(MEL,ll • XJ!Il 

c 

YGC(MEL, 1) : ! 
ZGC(!IEL., 1) • Z!IAl((J!!1,USIIO 
XGC(MEL,2) • X 
JGC(!IEL, 2) : Y 
ZGC(MEL,2l Z!IAX(J,USTK) 
XGC(KEL,)) : XJ!I1 
JGC(MEL,3) = Y+~J 
ZGC(HEL,3) • ZMAX(JIIl,USTK+l) 
YU : J + HY 
YD • J 
ZU • ZMAX(Jl11,LAS!K+1) 
ZD • ZMAX(J ,LASTIO 
GO TO 1]00 

C THIS LOGIC IS FOR NY(Jl.GT.NY(JM1) 

c 

1250 XGCCMEL,ll • XJM1 
JGC(MEL,l) • J 
ZGC(!IEL,1l: ZMAX(JM1,LASTK) 
XGC(MEL,2l X 
JGC(MEL, 2) : Y 
ZGCCMEL;2) • ZMAI(J,LASTK) 
XGC(KEL, 3.) • X 
YGCCMEL,3) • Y+HY 
ZGC(MEL,3l • i11Al(J,LAS!K+1) 
YU • J 
YD • Y.HY 
ZU • ZMAl(JMI,LASTK) 
ZD = Z)!AX(J·,USU+1l 

C THE FOLLOWING LOGIC DEfiNES THE LAST TWO ELEMENTS. 
1300 MEL • .!IEL+1 

XGCCMEL,1) • XJH1 
YGCCMEL,l) • YU 
ZGCCNEL,1> • ZU 
XGC(!IEL,2) • X 
YGCCMEL,2l • YD 
ZGCCMEL,2l • ZD 
IGC(MEL,3) • XJ~1 
YGCCMEL,]) • YMAXCJMtl 
ZGC!NEL,3) • 0.0 

00001200 
O{)()D 121ll 
0003122~ 
OUDJ1230 
00:1J"::24:f; 
0()!)0125~ 
0000121)0 
00()01270 
00001280 
;)0001291) 
O:l001300 
000~1310 
00001320 
00iJ01330 
3()0J13-0 
OOD01!.Sll 
OOC01360 
00031370 
:lOJ0136ll 
00001390 
0000140C 
00001~10 
nooo;42o 
OrJ001ll3!l 
oooo,.•o 
ooou••5o 
00001~SO 
00001Q7l) 
00001480 
000011190 
30001500 
00001510 
00001520 
00001530 
00001540 
00001550 
00001560 
00001570 
00001580 
00001590 
00001600 
00001610 
00001620 
~0001630 
00001640 
00001650 
00001660 
()0001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
000017~0 
00001750 
00001760 
00001770 
00001780 
00001790 

c 
c 

~Ei.. : ~"1£1..+ 1 
X~CO'.EL, 1) 
IS:( !!EL, 1) 
!GC(MEL 7 1) 

x:;c(!1~L.2> 
YG':(HEL,2) 
z:;C(HEL,2) 
XGC(H£~,3) 
YGC(!IEL, 3) 
ZGC(I'.EL,3l 

XJ!!1 
Y'UX(JH1l 
0.0 
X 
YO 
ZD 
X 
YNAX(Jl 
0.0 

00Jil15:: 
ODDO~O~;~ 

J000"l52: 
00~3~:::: 
J;j~)''::, ::.:.. :. 
DDC~1~?.:. 
oooo-. ::..:. 
DGJDi~7:, 
ooo::~3J 
00001.:·;: 
OOOC1l;!'; 
OO~':·i;,:, 

00(10'i2: 
C liEX7, CO"'?UTE THE ELEHE!IT AREAS A!ID COSNER LOCAT!~~S In LO:AL 

!"'IX(J-NI!l = D.O 
co:>RDs.oco:-~;3:: 

QODJ,;~: 
00~,,;::.: S)!SUM(J-M!'ll : D.O 

~0 1•00 L : 1,!!EL 
X31 X~C(l,3)-XGC{L, 1) 
Y3l YGC(L,3)-YG~(L,1l 
Z31 ZGC{L,3l-ZGC(L,1) 
X21 XGC(L,2)-XGC(L, 1) 
!21 YGC(L,2)-YGC(L,1) 
Z21 ZGCCL,2l-ZGC(L,1) 

C AR~A IS 1/2 R21 CROSS R;1 
AX= (Y2t•Z31-Z21•Y31l/2.0 
AY • (Z21"X31 - X21"Z31l/2.0 
AI= CX21•Y31 - Y21°l31)/2.0 

OO~<;lljo: 
~co:,, ;:r:. 
0~0019~: 
~0001~;, 
)0J02J~J 

aonn~~: 
00%2uo:: 
ooonn;:: 
000023~: 

:1000205: 
:JJ002o5: 

SAREA : DSQRT(AX•AX + AY•AY + AZ•AZl 00002:l7J 
D00020S:; 
'O:J~2~1_;: 

t 
DY.3AR = (121 • 131)13.0 - MX 
5!1SUM(J-IiiN) : S~SUM(J-ti!N) + AX•DXBAR/HX OOJnl:J 

oooo21 ~-c 
0000212J 

C SMSUM IS A TERM IN THE liOl!EliTUM BALANCE EQUATION. 
SMAX(J-NII) : SMAX(J-HIN) • SAREA 

c 
c 

S!!AX STORES THE IIICREl!ENTAL WALL AREA BEiiiEEH SUCCESS:VE X:C PLAIIES. 0000213: 

1400 CO!lTINUE 
c 

:: 
noo 

c 

SMSUM(J-HIU) : ~.O•SHSUM(J-UIN) 
SMAX(J-NIN) : 4.0•SMAX(J-NIN) 

CO!UlNUE 

c S)!O'JTH THE IIITEGRAL VALUES 

000021"C 
ouo0215; 
00002150 
0000211~ 
00002130 
000021;:; 
000022:c 
OJ002214 

c 
c 

THE TERMS ARE TREATED AS FU!ICTIOIIS OF X AHD 'lUST 
ORDER TO REDUCE CO:-!PUTATIOIIAL IRREGULARITIES. 

liE s:lOOT!IED Ill 
0000222;) 
0000223: 
000~22.L.: 

!IDI!I : NTUBE-NIN•1 
CALL SE13(SHAX,AXBAR,IIDI!I,IERl 
CALL SE13(Sl!SUM,.SU)!8AR,NDIH,IER) 

c 
c•••••••••••••••••••co~PUTE THE 

PTEST:O. 0 
DO 1600 II :!!START, IISTOP 
J=NSTART+NSTOP-H 
J)!l:J-1 

C SET THE oo•NSTREAH PRESSURE. 
PD : P(J) 

c 
C SET THE VISCOUS FORCES 

ABAR : YZAREA(J) 
VBAR • VU(J) 

F'LUID 

0000225: 
0000226:; 
0000227J 
000022~: 

VAR!ABLEs•••••••••••••••••••••••••0000229~ 
000023)" 
o:o023i: 
0000232) 
000023;: 
000023~0 
OC00235: 
00002360 
0000237J 
00002380 
0000239J 



HD = 4.0*ABAR/RLS 
TAU = 8.0*RHU*VBAR/HD 

c 
C CALCULATE THE UPSTREAM PRESSURE FROM THE MOMENTUM BALANCE EQN. 

PU : PO+ (RHO*Q*(VU(J)-VU(JM1)) + TAU*AXBAR(J-NIN)) 
$ /(YZAREA(JM1)+SUMBAR(J-NIN)) 

c 
C CALCULATE THE SLOPE OF THE PRESSURE DISTRIBUTION. 

A = (PD-PU)/HX 
C CALCULATE THE PRESSURE CHANGE FOR THE CONVERGENCE TESTING. 

PDELT = PU - P(JM1) 
c 

· C STORE THE PRESSURE VALUES 
P(JM1) : PU 
PXB(JMl) = A 

c 
C SET THE CONVERGENCE TEST VALUE 

IF(PDELT.LT.O.O) PDELT:-PDELT 
IF(PDELT.GT.PTEST) PTEST:PDELT 

c 
1600 CONTINUE 

c 
RETURN 
END 

00002400 
00002410 
00002420 
00002430 
00002440 
00002450 
00002460 
00002470 
00002480 
00002490 
00002500 
00002510 
00002520 
00002530 
00002540 
00002550 
00002560 
00002570 
00002580 
00002590 
00002600 

"00002610 
00002620 
00002630 
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APPENDIX C 

SUBROUTINE FORCES 

The purpose of this. subroutine was to calculate the 

equivalent nodal forces exerted on the structure by the 

loads. Inputs were the hydrostatic collapsing pressure, pe' 

and the internal fluid pressure, P. It was assumed that the 

fluid viscous forces on the wall are negligible. The 

effects of curvature were not included in the external 

loading calculations. The sur face average internal 

press u r e , Pi , is used in the analysis. For arbitrary 

element n this is 

P. = _1 J,. PdA 
ln 

(67) 

A n 

P. = (Pl + p2 + P1)n/3 ln 
(6R) 

Thus, the magnitude of the outward directed net force actirig 

on the element is 

F 
e = (69) 

This force is distributed uniformly at the nodes. To 

compute the total force vector, the forces are vectorily 

added at the three nodes. in turn. When contributions from 

86 
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all of the elements are summed, the total external force 

vector, Fe, is obtained. 
---



c 

c 
= 

c 

St:BRDUTI!IE f"O?.::ES 

!~~ PURPOSE ~F THIS 
0!' !l!l!lAL roF.CES. 

C0~'40!1 D(,, q), P3ICq50) .~TRHIH300, q), CI( 12, 12; ,li!5, :2;, ·;::. 
CO~MOH STIFF(82215l 
C0~"10:1 VU(23l ,P(23l,IIY(23l,PXB(23l 
CJ,.!'!Ctl X'IODE(200), YNODE(200) ,z:lODE(20ill, E~E"!(3G:l, 3: 
C0"1'40N r(qQ5l,Y"AX(23l,Z~AX(23,18l 
C':>"1MON XJ( 135), YO( 135 l ,ZO( 135), TR(300, 10), S!:;~A: 3::, "), ~;;-;F(:'~'l l 
C0'4Mml 7X(200l, TX0(20Q) 
C0'-1~-t:O~ DX!!i, ~·XI'JU'T, THt:·, RLS,f:iU, E, P~, P2, ?::, ::~:. :J::: 
COM!!Oll R, R90, ~L, D!A, Q, DPDX, REY, R~iU, RN'J, i;ilO 
C0!1!1011 ~TEST, PTEST ,ll'lAX, DP,DU, DPSI, ScALE 
C'!'<IIMON LASTEL, LASTHD, llEL::M, HNODES, UIN, N'!tr:.~, :..AS: .J, I:~:=-i..~:i 
COI'Il!OII !IX, liMY, :ITUSEX, !ITUBEY, HX, HY, NU'-13C 
CO,.MOl. !FORCE, T:.IX, TWY, TtiZ, S!GXO, XC, YC 
&)JUSLE PK£CIS!J!: D,?:SI,STRAI!J,CI,H, V3L,ST:FF 

C THE FOLLCaiNu ARE PRO~RAM SPECIFIC VARIABLES. 
Di"EASIOU XB(33G,3),19(300,!l,Z3130D,]l 
DOUBLE PRECISIO!l X21,Y21,Z2.1,X31,Y31,Z31 
ilOUBLE PREC ISIO!I AX, AY, AZ, AREA . 

C IliiTIALIZE THE FORCES 
l.AST : ~•!fUODES • OITUB£X-1 )•NTUBEY•2 

12~1 DQ 1200 H~ : 1,LAST 
f(l1!1) • c. 0 

,_2{)0 :CU!I t:UE 

C THE FOLLOliiliG LOOP !S THE COHTROLLI!IG LOOP, EAC?. ~l.E"!E"T '!UST 5~ 
C LO:lKED AT Ill TURII. 

c 
c 

DO 1210 '4: 1,HEL£M 

C RECOVER THE ELEl!ENT ~lODES Ill THE CORRE:T CRDEH. 
C IT IS IMPORTAIIT TO OBTAI!I THE OUTloiARD POI!ITH DIREC!!2!i, !l£!;::: 
C T!fE !lODES liERE STORED I'l A CQU!ITER-CLOCKliiSE FASH!'J!I. 

131a 10DE1 : IELEH(H,1} 

c 

NOD£2 : IELEM(M,3l 
NJDE3 : IELE:H M, 2) 

1311 XB(H,1) : XNODE(!IODE1) 
Y8(M,1l • YNODE(NOD£1) 
Z!l(M,1) z:IODE!:ICD£1) 
XB(M,2l : X~ODE(NOD£2) 
YB(M,2l YIIODE(!IODE2l 
ZB(M,2l : ZUODE(MODE2l 
XB(M,3) • XNODE(UODE3l 
Y3(H,3l • YNODE(NODE3l 
ZBCM,3l • ZNODE(UODEll 

X21 • X8(H,2) - XB(M,l) 
Y21 • YB(M,2l - YB(M,1) 
Z21 • ZB(M,2l - Z8(M, 1) 
X31 • XB(M,]) - XB(M,1) 
Y]1 : YB(M,3l -t8(H,1) 

OOOOJJ<~ 

00000020 
J~JDOO!'": 
;}Qf.iOG-Q!I:) 

OOJ0005') 
0J~OJ060 
09000070 
)0000083 
aoooo390 
:,:!00!)01[;~ 

000001 1·J 
001)00120 
jCiOOC130 
JOOJ:J1UC; 
JDD0~15J 
•)000Ci, 50 
~0000170 
C00001EO 
00000190 
00000200 
f.IOOO:J2,G 
00000220 
;){)000230 
30000240 
00000250 
OOOOC25~ 
00000270 
OG000280 
C0000290 
OUOO:J30J 
00000310 
00000320 
00000330 
000003~0 
00000350 
00000360 
00000370 
00000380 
00000390 
oooooqoo 
oooooq1o 
00000420 
00000430 
00000~40 

00000450 
00000450 
OOG00470 
00000480 
00000490 
00000500 
00000510 
00000520 
00000530 
00000540 
00000550 
00000560 
00000570 
00000580 
00000590 

Z31 = Z~f~. ~; - Z?~~·. ·.; 
1.. CALCUL\7!: J~Z .G.R::.:. A~l~ ::>..;:-·.\ . .:.?.: ?-:·:~~:-::: ~i'J?:'.l!AL. 

AS~~= ~~~~:~;,::~~~,=?;~: _2 .: 
AY = c:?";*X3, - xz~•z:::~/~.-: 

JU = (Y.21•Yj1 - :"2'!•1;':12:..: 
ARE.~ :.:; :.:=t :- (AX• :..x-;., !·•.; ·:· ~-~;:• -~Z} 

c 
C TEST FCE ~HE ~?~C!F~E: ?:3::: ::5::7:J~. 

GJ 7:. :;'J10 
1215 XGC: !X3!~~1!.;:~3!~!z~ • ~~=~.3;j/3.0 

~X : R~·~X~.i~~X~Jl-X~~ 
PN : P2 - jX•:?cX 
~o ro 125o 

3~10 SU"'l : "'"_,_') 
JO 3020 !:1,3 
J = X3(H,I)/HX 
J • J+l 
RJ : J-1 
PX ~ PX9(J) 
SU'-! : SU"'1 + ?{J) + ?Y..•··x.3~v~::'-~.;•::Y..) 

302Q C~NTINUE 
P"J = SU'!13.0 

C THE FORCES A~E AP.EA•3!BESSES, ~!S:?!BUTE~ E~~ALLY. 
1250 AREAX ·; AX 

~REAY : H 
AREA: = U 
FX : (P~-PE)•AR~;X/3.0 + iX•A~~; ~-~ 

~y : (P.N-PE)•AREA!/3.0• T Y•-~?~A/ • .J 

FZ : (?~-?~)•hRE,Z/3.C + ~:•Ai~~ ~-~ 
: COUSTRUCT !HE FORCE V£CTJR 

II : 4•~:CDE1 - 3 
F(l) : r(ll) + FX 
f(U+l) = F(~+1l + fY 
r(~+2) : F(N+2) + FZ 
N : ~•riODE2 - 3 
F-{:~) = F'{~·) + FX 
f(N+1) = F(:l+1} + ~~ 
F(n+2) : F{N+2) + FZ 
~J = .u•:;c-~::3 - 3 
F(~) : ~(U) + FX 
r(U+ll = FIN•1l + FY 
f(~+2) = r(~+2l + FZ 

1210 cour:::~E 

RETURU 
E"Hl 

-:J:.~::5 
o:JoJ: 
JOQG3~ 
).:;:.):: 

_, .... -- _:.:,. 
:OJCJ06~-
00C::r.7: 
030YJ6E.J 
0000~6;-;.. 
J0:>:JD7':-~ 
00~0071) 

oooocr?:· 
000)07:;: 
;;:;;};c~: 

JC-'J0075: 
000:JJ7£.J 
J:.r:;:n-y-:: 
JODC)~:·_ 

J:>oc-·n;: 
oco~ca:c 
~OCJ'Ji;",. 

~ao:w :~D 
JOGtJ::dJ 
~o:-;:,:)~o+: 

')0J';';:,3:'! 
c:;~J:n:-; 

OOOJ•J6~1 
:JIJ·:jDS~'3 

"J-' ... --=--'-
1~)=·~::-. 

oo:;:)'i:': 
G:JOcJS7 
oo~~-j9:. 

ococ;s:; 
J:)': J; ;:· 
O:J'jJi•:.1 
uco:;~:;2 

•JtJ'J.: i .... ;; 
~oa:::1::.:. 
G~001D5 
0000 1.;5 
ooc~; -:~ 

COO:llJ~ 
;;(J::,J~:..~ 

0000110 
O.JO:J, i. 

00 
00 



APPENDIX D 

SUBROUTINE STEP 

The goal of this subroutine was to compute the vector of 

incremental displacements. This included application of the 

boundary conditions, inversion of the stiffness matrix, and 

comparison of variables to the convergence criteria. 

Two planes of symmetry were assumed in order to reduce 

computations, these being the x-z and x~y planes as shown in 

Figure 24. Here, the y = 0 edge must be restrained from y 

motion and rotation (v, .A9x = 0), while the z = 0 edge must 

be restrained from z motion and rotation ( w, .A9x = 0). In 

addition, the ends of the flexible tube were fastened to 

rigid supports; consequently, the ends are assumed to be 

simply supported (u, 

direction, .A9x = 0. 

v, w = 0) and held in the hoop 

Given the formulation of the augmented stiffness matrix 

discussed in Chapter III, the problem was to evaluate: 

[CC]T 

n l -1 I ~n [ [KT]n "'n -
= (23) 

A" [CC]n (0] 0 

at computation step n. 
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Y,V 

Figure 24. Cutaway View of the Tube Showing 
Nomenclature of the Boundary Conditions 

The boundary conditions are enforced by zeroing out the 

appropriate row and column of the stiffness matrix, 

excluding the diagonal. The appropriate row of the \~~vector 

is also zeroed. Thus, an incremental step, dq = 0, is 

computed for all constrained degrees of freedom. 

In order to ensure convergence to an accurate 

prediction, the step size, dq, must be kept "small." If dq 

is allowed to become excessive, then the approximation of 

constant external forces during the step becomes a poor one. 

Furthermore, the nonlinearities may lead to convergence at a 

non-physical prediction. One way to ensure the smallness of 
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dq is to test the maximum in the vector against some 

smallness criteria, eps. If the criteria is exceeded, then 

the entire vector is scaled so that the maximum is 

acceptable. That is, if 

max I dq I > eps (70) ,..., 

then, 

max Sldql ~ eps (71) 

The net effect of this process is the same as if a 

smaller force were originally applied to produce the smaller 

displacement associated with eps. 

A mini-maximum in the global Z position of the nodes is 

used to determine the smallness criteria. The structure is 

separated into a set of hoopwise rings. For each ring, the 

maximum Z coordinate of all nodes on the ring is calculated. 

The maximum allowable step is then determined to be a preset 

fraction of the smallest Z-maximum. Thus, the maximum step 

adjusts to the changing shape of the tube: it shrinks as 

the tube collapses. 

Contact of opposite walls occurs when z = n occurs at an 

unconstrained node. In this scheme, z < 0 is tested for on 

each step. When this condition is detected, the dq vector 

is scaled so that z = 0 is established. The ·appropriate 

degrees of freedom ( dW and A9x> are then constrained from 

further motion in the same manner as the boundary conditions 

are en forced. 
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Numerical convergence is assessed in three ways 

simultaneously based on cha·nges in pressure, velocity, and· 

wall position. The problem of numerical convergence becomes 

acute when very small cross-sectional areas are encountered 

at extreme collapse conditions. At this point, very small 

changes in wall position will produce large changes in the 

fluid pressure gradient through fluid viscous forces. 

Hence, at this time a pressure criteria is suitable for 

convergence testing. Conversely, at only slightly collapsed 

shapes, viscous effects are minimal and a wall position 

criterion may be best. At intermediate times, a combination 

of these or a velocity criteria may tie best. To simply 

enforce a very small wall position criteria at all time·s 

would be computationally wasteful; hence, a multiple 

criteria is advantageously used. 



S';;3iWUT.I~lE STE?{i...JU!) 

7~IS SUBROUTI~E APPLIES THE BOU~~~RI CCUDIIJONS, Ct•FJ!~S !~E 
D~VEESI~~~ J!=' TH.E AU:i~EN"!'ED ST!FFtlE$3 ~AT~:X, ;.!;:, 7"£:::s ?::3 
C~NYE:tGE~lCE. TriE P.\~MtETER LOU7 D:DICATES C:•;:v:::::~£~~::: :.~ 7:.:£ 

: CAtLIN~ PROGRAM, 
~ LOUT = 1 IS A COliV£RGEO .S·)tUTlJ!: 
l: LOUT : 0 IS AN Ut1COHV£RGED SOLU7: ~~ 

C:!)~MOll 0(4, 4) ,PSI (450) ,S!~ADH300,.!l) .Cl{12, 12) .~·:'5i 12}, Y'JL 
CO"'MOll ST!f!'(32215) 
CO~MOH VU(23J,P(23),NY(23l,rXBI23l 
CO~!IO:I X!IOD!:(2CJ l, Y!IODE (200) ,ZNDDH200), EE~(3~·J, }) 
'=0~'10!1 F(405), Y~AX(23l ,ZMAX!23, 18) 
C'J~~0:1 X~·( 135), Y".)( 135) ,ZO( 135), 7F.{3:JG, 10) ,S:G"'.;~ ~::.. ;;) ~ ~;2lJ~C2:YJ) 
::J'1HO:I TX(200),TX0(200) 
':0'4111!0li DX:!:,tX'J!JT, THK, RLS,F~U, E, Pl, P2, ?:::, !I!I, :')J7 
CO:i~O!i R, RHO, P.~,DH, Q, DPDX, REY, RMU, R!lU, DilO 
CO~~OH UTES7,PTES!,D~AX,DP,DU,DPSI,SCAL~ 
C~MMmJ LAST~l, LAST!iD, !.IELE!4 1 ;mODES, UIU, N'IU5£, L!.ST J, ::~FL,\:; 
co,.Ho~J :Jx, ma, ~IT;JBEX, N7L!BEY, ~x. HY, :IUMBC 
CO~MON IFORCE,TIX,TIY,TWZ,SIGXO,XC,YC 
OOU3LE PRECISIDfi D,PSI,STRA!N,C!,H~VOL,STlff 

c 
t THE FOLLOlll!IG ARE PRO:i~A:-1 SPECIFIC VARIABLES. 

ililiEliSIOii AUX(404) ,RO(q50i 

c 

c 

DOUBLE PRECISIOII AUX,SCALEF 

LAST : 4•!1l;ODES + (HTUBEX-1) 0 !HUBEY 0 2 
LASTP : ijOti'IO:>ES 

C APPLY THE CO~STRAINED DEGREES OF nEE:>O:~ TO PSI. 
DO 1890 ll : 1, !IU)IBC 
J : ~DOf( M) 
PSI(J) = 0.0 

1890 COliTIIIU!: 
c 
c 
C APP'LY THE CONSTRAitiTS TO STifF 
168~ !lO 1590 'I : 1, NU'IBC 

J : tiDOF(I!) 
K = J 
!START • K+1 
IF(ISTART.GT.LAST) GO T.O 1576 
DO 1575 KL • ISTART,LAST 
I • J + KL•(KL-1)/2 
STIFF(~) : 0.0 . 

1575 :O!ITIIIUE 
1576 ISTOP • J-1 

IF(ISTOP.LT.1) GO TO 1590 
DO 1585 JL : 1,ISTOP 
H • JL + K•(K-1)/2 
STIFF(!I) s 0.0 

1535 COUTI!IUE 
c 

1590 CONTINUE 
c 
c 

J~OJ'JV1J 
IJ000002G 
00000~30 
COOoJ0040 
OOJJD05J 
00000060 
00000070 
OOOG003G 
ryJQ00090 
00000100 
00000110 
00000120 
00000130 
)J0001ij0 
OOOJ015J 
0000016J 
00000170 
ooooo1oc 
00000190 
000002:>0 
0J000210 
00000220 
00000230 
000002il0 
OJ000250 
00000260 
00000270 
00000280 
00000290 
10000300 
00008310 
00000320 
00000330 
00000340 
J0000350 
00000360 
00000370 
00000380 
00000390 
00000400 
00000410 
00000420 
00000430 
00000440 
00000450 
00000460 
00000470 
.JQ000480 
ooooo•go 
00000500 
00000510 
00000520 
00000530 
ooooo5qo 
00000550 
00000560 
00000570 
00000580 
00000590 

C ••••••••••:NVER~IO~ 8F T~E AJ3~E~!~D ~L13!~ STIFFNESS ~ATRIX.******* 
C SSP ROUTI:~E 1') FI~!D DEFLE::::ms, ?S: STORES THE D~~ECTIOt:S Of: RETURN 

1595 C4.lL D~ELS{PSl,ST:?:""~!..1oST~ 1 ,1.')£-.iS,:SR,~UX) 

c 

:F~~S~) ,S13. ":SL?. 15,:: 
1513 ~Ri!E~:OC7,1511} :E? 
1511 ~OR~AT{1'3 ,5X,6~IER ,:?.25~,-· :3 A Si~G~L~R K MATRIX 

STOP 

C FDJO !!iE ~!!11-"!hX 
1312 :1:0 

S~ALL = P.-~R!l 
JliX = !iTUBE"X+ 1 
!IT'! = !fTU3£Y .. 1 
~Q 1JG L = 1,~7X 
ZBI~ ::: l'J.O 

:~ 200 K = 1,UlY 

If{ ZUOJE C~) .. GI. Z3 :G) Z3:Ci=Z :;.Jr.=: {:J J 
200 corn.:t:u£ 

If(ZBl~.LT.SU.ALL~ S~AL~ ::: :3I3 
100 CCJHHIUE 

C CALC!JLATE T!~E ~AXI~U~ ALLJftA=:.::. 3!EF. 
ALLOo : S~ALL 0SCALE 

c 
c 
C CO!'I:PUTE !HE SCALE fA'C!0~ FOR TH£ ~'!:SP:..A-:E~£!JT HlCREME!ITS. 

c 

BIG-= 0.0 
DG 11!00 J:1,LAS.1'P 
!!='(PSI(J).G'I.B:~l ?:~: PS:~J) 
IF(PSI(J}.LT.-BI~) S!~ = -PS:'J) 

1801 CO liT! !lllE 
!F(BIG.GT.ALlJWl SCALEr = AlLJo/=IG 
IF( BIG. LE •. \LL0'.4} SC!,.L£~ = L ~ 

C !EST FOR ·-rnE CO!J!ACT OF C~P0.3IT£ loi.t.U .. S. 
J!'lAG : 0 

- 1571 J:1,~~00ES. 
IFCCPSI(I•J-1)•SCALEF+Z~OO::(J)) .LT. J.O) :;~TO 1577 
GO TO 1571 

15TT SCALEr: -Z~DDE(J)/?SII••J-1) 
JFLAG : J 

1571 co::rr;~~E 
C UPON EXH FRG;t THIS LJOP, SC?.LEF :z :'~E S'!ALLEST SCALE FACTOR, 
: THE DUE ~H!CH PERMITS GULY C~E ~O:E ;y ~OST TO COHTACT. 
c 
C SCALE THE DISPLACE:"'E!l'! I:;CF!E"4Et;TS. 

c 

DO 1750 J = 1,LASTP 
R~(J) : ~~ALEF 0PS!(J) 

176~ CONTIIIUE 

C CQ)!PUTE nE :IE\1 !I~DE POSITIONS 
1597 01 1570 J = 1, IHIODES 

XNO~E(J) : XliODE(J) + R0(4°J-3) 
Y~ODE(J) = IIIOO!(J) • ~0(4•J-2) 
ZHODE(J) : ZUODE(J) + R0(4•J-1) 
TX(J) : TX(J) + R0(4•J) 

IFIJ.NE.JFLAGl GO TO 157~ 
ZIIODE(J) : 0,0 
NU'IBC : liU)!!IC + 1 

DOC:J05'JJ 
00000510 
'JO:JO'J62'J 
OC;J~j63: 
000C:5L.') 
OOQ00550 
00003560 
00000670 
00000530 
:J00005·:1J 
0~0007JG 
00000710 
00000720 
00000730 
oo:,oo74:J 
GGQJ075J 
D000075ei 
OOOOC77J 
000007% 
OOOOG?·;,J 
0000050'0 
ooooc.~ 1 :,. 
OCH}OC52' 
ooo·J0~3J 
oooooa~o 
00010~5') 
~OJC''J85'J 
00000370 
COOC1e30 
')000'139J 
J00009:J 
OOOQJg1Q 
OOOOJ92J 
OOUJJS3J 
0000094:) 
OJ000:150 
oooov.-;:1 
OOOO'lSo7~ 
00000~00 
ooooo;,·,: 
000010,;:) 
00001G:;; 
c.)~C·i :£:'.,~ 

OJOO 1 J3~' 
OOOOiQ<;J 
00001050 
00001060 
00001Q7C 
·JOOO 1 J1C 
0000109J 
00001100 
00001110 
00001120 
00001130 
000011qG 
00001150 
0000116~ 
00001170 
00001180 
0000119~ 



NDOF(NUMBC) = 4*J-1 00001200 
C CONTACT OF OPPOSITE ~ALLS MEANS THAT THE SLOPE IS ZERO 

TX(J) = 0.0 
00001210 
00001220 
00001230 
OOOG1240 
00001250 

NUMBC = NUMBC + 1 
UDaF(NUMBC) : 4*J 

1570 CONTINUE 
C***********************CONVERGENCE 

c 

1 9 1 0 I COil V = 0 
IF(UTEST.GT.DU) GO TO 1655 
IF(PTEST.GT.DP) GO TO 1655 
ICONV = 1 

C FIND THE MAXIMUM RO VALUE 
1655 D~AX = O.C 

DO 1660 l = 1,LASTP 
TESTP = ABS(RO(L)) 
IF(TESTP.LE.DMAl) GO TO 1~60 
D!-1AX = TESTP 
ROOUT = RO(L) 

1660 CO!~TINUE 

TESTING*****************************P0001260 
00001270 
00001280 
0000129~ 
00001300 
00001310 
00001320 
00001330 
00001340 
00001350 
00001360 
00001370 
00001380 

WRITE(IOUT,1656) UTEST,PTEST,ROOUT 
00001390 
00001400 
00001410 
000('1420 
00001430 
00001440 
00001450 
00001460 

c 

1656 FORMAT(1H ,2X,8HDUMAX = ,E12.5,9H DPMAX = ,E12.5,10H 
$E12.5) 

IF(DMAX.GT.DPSI .OR. JFLAG.GT.O) GO TO 1598 
IF(ICONV) 1598,1598,1665 

ROMAX : 

C THE ONLY WAY TO ACHIEVE LOUT:1 IS FOR ALL PARTS TO CONVERGE. 
C SET CONVERGENCE FLAG FOR THE SOLUTION. 

1665 LOUT = 1 
c 
c 

1598 RETURN 
END 

.00001470 
00001480 
00001490 
00001500 
00001510 
00001520 



APPENDIX E 

SUBROUTINE !NIT 

The purpose of this subroutine was to establish the 

initial database prior to the iterative solution process. 

This goal is accomplished via the following tasks: 

1. Establish the initial node locations. 

2. Set the initial constrained degrees of 
freedom according to the boun~ary conditions. 

3. Make the nodal connections which define the 
finite elements. This also sets the 
direction of the local axes. 

4. Build the constant matrices: 

[Cl 

[CI] 

[H) 

· [TR] 

5. Define other necessary constants. 
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c 
c 
c 
c 

c 

THIS Sc330~T:M£ INITI~~IZES THE SHAPE ~F THE TUBE AHD FLaiD 
~ECBA1i!':.l:t PABA'tE::E.RS ?iH~i 7G T~E ACTUAL SOLU!IOii IIERATICU. 

!:?'I~~ 
CG.'ti!Oli 
t~'~~::>!l 
C!)'!~C~~ 

tO'!~O!I 
t~JI 
C!l!IKO!I 
CO!'!'!!lll 
C0\!~0!1 
C!)M!!\lll 

COMMOII 
COK
CO!!IIOI 
DOOBL!:: 

~{.,&),?51(,50),STBAIN(300,Q},CI(l2, 12),H(6,12),VOL 
ST:F!'{82?15) 
Y~f23},?(23),UI(23),PX3{23) 
!~?~~(200),!KODE(200),ZNODE(200),IELEM(300,3) 
f(•05l,~AX(23l,ZMAI(23,l8) 
I0~<35l,Y0(135l,Z0(135),TR(300,10),SIG~A(300,~).~DOF(200) 
rx:2?Dl,TI0!200) 
Dr:•~DIOUT,7Hl,RlS,fMU,E,Pl,P2,PE,IIX,IOUT 
B,£5J,Bl,,IA,O,DPDX,REY,RMU,P.HU,DRO 
UTES!,P!EST,~!X,DP,DU,DPSI,SCALE 
LASI~~.~IST~D.~£~EM,K.ODES,J!K,ITUBE,LASIJ,IVFLAG 
•x,K~!,N!U3EX,ITUBEY,HX,HY,KU~BC 
IFOiCE,2.1,TJT,TWZ,SIUXO,XC,YC 
?i£CI5IO~ D,PSI,STRAI~,£I,H,YOL,SI~Fi 

CJJcJOl: 
:l'JOJ~l2il 
i)~,:.~J033 
x::-:-.:·J.;.c 

C THE F!li.l.ITo'liG YAI!UBLt:S AlE. USED I liTER !IlL TO THIS ROUTI~E •)lilY. 
c 

D~::;~:;>-:)~:,: 

::;ooa:a,;a 
J;JOOJ:l7:: 
)-0JD.OV8.0 
O$C~09J 
J .J}·!Hi 1 i)O 
v:r)ji;ll!) 
~<;J'l!ll?O 
Q--J-))(;,5) 

ODJ:i01..0:J 
OOO.)'J15J 
&0•)0tl160 
000;)0170 
n~o.Jotao 
a())'():QiyO 

OG00!>2DO 
000002Hl 
G000022D 

DIKE;S:~~ X3{30C,3},JB{30D,3),ZB(3C0,3) 0~00230 
DIMEISIJ¥ ~li{S),KOUT{8),C(14-},DUM3(12),DUK4(12) 0~0::;2•a 
DIKEISIOI KOl{12),K~(12),YEDGE(12) 000002SO 
DlKE»SI~ SlS~IG(3),DUH1(3,3),DUK2(3,3),SIRESS(3,3) OGQ00260 
DI!«EIS1Dll l>PI( 12,12) il0000270 
DOUBLE PRECISIDI I21,121,Z21,131,J31,Z31,AX,AI,AZ,AREA,OTHK,DIST2190&00280 
DOUBLE P'~CISIOV S!GWAG,DUM1,DUH2,STRESS 00000290 
!JOOBLE Pli~CIS!OI 00lt3,C,DPT,DET,DUKII JQ~:;Q300 

c 
C THE FOl.lOlii!IG 

1 z ll·~•o 
8 = !1-llll') 

CALCUlATIOIS ARE FOil THE IKITIAL, ELLIPTIC SHAPE. 
OO';,J031C 
00000320 
00000330 

c 

ASO = &•& 
BSO = B•B 
lEDGE( 1) O. 0 
IEDGE(2) 0.1651 
YE~£!3) ~.33a2 
YEDGE(4) ~.-390 
JEDGE(5) J.6312 
YEDGE(5) 0. HJO 
YEDG£{7) 0.7933 
D!A : SQiT(~•&•B) 

C CALCULA1E THE fLUI:l l'IECiiAIICAL PARAMETERS. 

c 

IMD = HIU•IIHO 
iiEI = 4.0•;/P.~ilt:>IA/3.1-16 
lF(lFOR=E> 145,150,145 

145 DPDI = -4.0•(£SQ + 3SQ)•RMU•~t(A•ASQ•B•BSQ•3.1-16) 
150 P1 = P2 - DPDX•(DIII+IL+DXOUT) 

INLET HYDRAULIC DIAMETER IS ,F7.2,4H CK.) 

LE!IGTH IS , F7.2,11H CM.) 

00ll00340 
00000350 
00000361) 
00000370 
00000380 
OOllOG39:l 
()0()00400 
00000~10 
000{)0420 
0()000430 
00000400 
00000450 
00000460 
00000-70 
000001180 
00000490 
00000500 
00000510 
00000520 
00000530 
000005~0 
00000550 
00000560 
OOIJ:l0570 

WRITE(IOUT,152) 'IA 
152 FOII!AT(1H1,5X,31HT~E 

WRITE(!OUT,151) RL 
151 FORMAT(!~ ,51,15~THE 

WRITE{IOUT,153) P2 
153 FOIK&T(19 ,51,28HTHE 

$) 
DO~NSTREAM PRESSURE IS ,F9.2,12H DYHES/SQCM.D0000580 

00000590 

FLOWRATE !S, F7.2,10H CU:H/5£:.~ 

!~LET REY:~OLDS K:.iMBE? .::: • r?' .. ·_ 1 

:. : ')_.- ~ 

JO~JGf: 
CJO: :o 
OCJ:~o 

~RI!E{I0U7,155) Q 
156 FORI!AT(i~ ,5I,15HTHE 

WR!TE(IOUT,154) nEY 
154 ~~R~AT,1H ,5X,29HTHE 

iliHTE{HWT,!55} P1 
155. FOR:-!AT{l:-1 ,5X, 43HTHE 

$12H DYHES/SQCM.) 
naTIAL ES7I11AIE of TnE :s:...::~ ?3.t:.ssoR£ , :=-:,.1, o~J006~: 

000J06~C' 
c 'J:;oo:;~7:,; 

C FILL D, THE ~t\TERIAL STRESS-STitAIII i'tELA!IOJISiHP ~;-;::.:£:X J~!1iJD6~-: 
00 1100 J = 1,4 O:J:i0C::r9: 
DO 1100 JC : 1,~ )');;:;:"T::. 

11JlJ D:{J,IO : 0.0 \JO(;J(.j'lf; 
Ji:i : E/( 1._0-F~U•FMU) :.J00:J72G 
D(1,1) RD DODJ:•!: 
j){ 1 ,2) RD•F~.U CJC·007 ~::. 
IH2, 1) RD*FMU 0000~75:.' 
D{2,2) RD 000~075" 
D{3,3) RD/2.0°{1.0-f~U) JOOOG77C 
0(4,,) RD•THK•THK/12.0 OOJ0073v 

c OfJ:11o7 :;o 
c•••••••••••••••••BOU1CDARI DEFINITIOH AND ?USE DE!I.Al.:Z~T:J!t•••••••••••tJOObO~-):; 
: SE'!' THE P:\liL~METERS FOR T:iE AUTOMA"!'!C TUBC: DEfi!H7I:~~. 00~00b1.:. 

!ITX = MTUBEX + 1 OOO!ln2'l 
9TT = MTUBEY + 1 00000530 
R'ITX = )ITUBEX 000003~·' 
R!i!Y : lfTUBEY J~O'JC'35~·. 
DX = RL/RNTX O~JOC3S::. 
DTHETA = 3.1-159265/2.0/RNTY O"OOJ87C 
IIIIODES = 0 OJOOO 'OS~ 
MELE:4 0 -;:;:;.}-;3;:, 
IUMBC = 0 OOJ00S:: 
JSTOP = YTX JDO :lC. 9 -~ ~ 
KSTOP = ITY 00000~20 

C INITIALIZE TU!lE SHAPE JoJ:.~,_;: 
:: THIS SECTIOII DEFIIIES THE TUBE ITSELF A'IB PROPER CC!S7R.U:ITS. OC~JQ~:: 

00 1110 J = l,JSTOP :000095G 
RJ = J -1 OOOOJ96J 
X : !JXIK + RJ•DX OJOvil97i: 
JIELEM = (J-2) 0 2•NTUBEY GOv0:98: 
DO 1110 K = 1 ,KSTOP OO~Ju;?C 
HK ~ K-1 UDD~1J~: 

C •••••••••••••i>EFINE THE INITIAL POSITIOUS Of THE lWD::s•••••••••• 
THETA = RK 0DT~ETA 
Y = TED:;E(K) 
Z = 9°SQRT(l.O-Y•Y/ASQ) 
!INODES = NIIOOES + 1 
IF(J.EQ.l) MIN(K) = NIIODES 
IF(J.EQ.JSTOP) MOUT(K) = liNODES 

1118 XNODE(NNODES) = X 
JNODE(NHODES) = Y 
ZNO!JE(IHIODES) = Z 
DENOM = SQR!(ASQ-Y•Y) 
IF(DENO~.GT.0.00001) GO TO 2000 
THETAX = -THETA 
GO TO 2100 

2000 THETAX = ATAH(-B•Y/A/DENOM) 
2100 IO(NNODES) = X 

JO(NIIODES) = Y 
ZO(~~ODES) = ~ 
TXOOI~ODES) = THETAX 

JCJO ·-o ) 
0:>-:-~-"::]2(: 

oooJ103o 
000-J 1 J~:; 
0000 'J:O. 
00001 C5C• 
0000 1:·. D 
OCOC1'JS:, 
GOOOi!l9: 
000011 CD 
CU0011~J 
OCJJ11?J 
000011jJ 
000~1 1~:: 

00001150 
00001160 
0000117:' 
oooo11Su 
00001190 



TX(HNOOESI = TXO(~NDDESl 
If(K.LT.KST~P) GO TO 110• 

ZNODE(~llODES) : D.O 
ZC(NN~DES) = a.O 

C ••••••••••••111 IDEfiTIFY THE ~OUST!iA:~.:::.: ::~~R:::::.s ·)i' FR~EJJ~••••••••• 
1104 !F(J.EQ.1.0R.J.EQ.JSTOP) GO TO 11·)~ 

<:iO TO 1107 
1106 HU~BC : NUMBC + 

!I : 4°1HOllES-3 
NDOF(~U!IBC) • ~ 
tiU"lSC : ~UKBC+ 1 
N : QOff:lODES • 2 
NDOF(HU'!SC) : N 
NUMBC : HUHBC + 1 
H = ···~ODES - 1 
NO :IF (:l1J"'BC) • N 
NUMBC : MUMBC + 
N : 4••WODES 
NDOF(NUMBC) • N 
GO ro 1115 

1107 IF(K.EQ.1) GO TO 110o 
:;o TO 1109 

1108 NUPIBC : IIUMBC + 1 
!I • 4 °!1NODES • 2 
IDOF(NU!IBC) • il 
NUMBC • IIUMBC+l 
N • l!OJJIODES 
NDOF(NU!!BCl • N 
GO TO 1115 

1109 IF(K.EQ.KSTOPl GO TO 1111 
GO TO 1115 

1111 NU!IBC • IIUMBC + 
N : 4°H!IODES-1 
IIDOF(NU!!BCl • H 
IUMBC • !IUKBC+1 
N • li0 NIODES 
NDO!'(NUKBCl • N 

C •••~•••••••••••conNECT THE HODES TQ ~AKE T!-!E ELE~E:JTS1111111111111 

c 

c 

1115 IF(J.EQ.1 .Oft. K.EQ.1) GO TO 1110 
!IELE"' • HELEM + 1 
M • HELE·I! 
IELEM(H,ll NHODES-NTY 
IELEM(M,2l •·NNODES 
IELEM(M,3) • NNODES-NTY-1 

M • NELEM + NTUBEY 
IELEM(M,1) • HNODES-1 
IELEH(M,2) = NHODES-!ITY-1 
IELEM(H,3l • NNODES 

1110 CONTIIIUE 
HELEM : 2•llTUBEX 0 !1TUBEY 

C A SET OF CONTROLLING PARAMETERS MUST BE DEFI!IE!l FOR THE INLET 
C AND OUTLET MOUNTING TUBES IN ORDER TO DISTINGUISH THEM FROM THE 
C FLEXIBLE TUBE. 

c 

LASTEL • NELEM 
LASTUD • fi!IODES 
!ITX • 2 
RMTX : !ITX 

00001200 
00001210 
30001220 
CIOOO'l230 
JCOCi1240 
00001250 
00001260 
·J000'270· 
00001280 
OJ001290 
'30001 300 
000(11; 10 
00001320 
0000133~ 
OD0013J;J 
00001350 
JOC01350 
0·~001370 
00001380 
00001390 
00001"00 
00001~10 

00001~20 

00001430 
OD0014ij0 
00001450 
00001460 
00001470 
00001480 
00001490 
00001500 
00001510 
00001520 
00001530 
00001540 
00001550 
00001560 
O·J001570 
00001580 
00001590 
00001600 
00001610 
00001620 
00001630 
000016~0 
00001650 
00001660 
00001670 
00001680 
00001690 
00001700 
00001710 
00001720 
00001730 
00001740 
00001750 
00001760 
00001710 
00001780 
00001790 

c 
1:: ••••••••••••••:::::~~:: :~:: ?!'SID OlJTlET ~CU~iTIN::i fiXTURE.••••••••••••• 

DC 112: ; ·,!~::< 

RJ = J 
X : ?~ 1)I • ~~ • JXI~ 
D~ i; ?.C 'K : ·, !i:_y 
RK : K-1 
THE1'~ = ;K•Zi:~=:!A 
DR : DRG•c-~.S{2.01'!!-:::!A) 
I = {R-Di) 1 ~:~t!~~JA) 
Z : fR-D!: 1 :JS(7HE7A) 
LASTND : ~~~:~~: • , 
Xlt8D£(LkS7~;:; = 
YH~D!(LASi~:J = ! 
ZNOD~(LAST~£) = : 
!F(K.LT.~:y; 30 :~ '<25 

YHQJE(L!S7~:l P+~~O 
ZKODE(LAS7~:, :.0 

1125 !F(K.EC.~) ~0 TG ~120 
N = LAST~D-SH 
~J'\f 1 = !'i- ~ 
!~(J.~~.1) ~: ~:~:(K} 
IF{J.EQ.'t) ,;v~ = "!G"i!(K-~) 

1130 LASTEL : ~hSTE~ • 
!ELE\Il{l..A.S7:::..,n ~~~1 
lELE'l(LASTEL,2l ;.ASTHD - 1 
U:LEli(LAS7EL, :!) :.~S!~D 
LlSTEL : LA~7EL + 
I~LS"'l(i.ASTEL. '!:- !i~~ 
IELE'"!(!...AS7£L, 2) ?-lST~W 

IELE!'I(USi"EL,3, 
1120 co::TI!IUE 

c 
C ••••••••••••••D£~!!i!: :;,E RIG!D !I~LET MOUUTIUG F!XTURE. 1111*••••••• 

01 = DXI!i/RWTX 
DO 1150 J • 1,NTX 
RJ = J 
X : DXIN - :X 0 RJ 
DO 1150' • 1,NTY 
RK ·: !t-1 
THETA_ : RK•~T~~TA 
DR : DRO•COS(2.C•!H£1A) 
Y = (R-DR)•3IN~T~E7A) 
Z = (R-DRl"COS(7~ETAl 
LASTtll) • LASTND + 1 
XNODE(LAST~:J • Y. 
YNODE(L~ST~Dl = ! 
ZNODE (LAST:tD) : Z 
IF(K.LT.NTYJ GO :J 1155 

Y~ODE(LASTNDl : R+JRO 
ZliODE(LASTNDl : 0.0 

1155 IF(K .EQ.1) .GO TO 1150 
C PATCH !liLE! p THE FLEX:9LE TUBE 

N : LASTND - ~IT! 
N~1 • !1-1 
IF(J.EQ.I) U = !'1!~(1) 
IF(J.EQ.l) :;~1 • Y.IN(K-1) 

1160 LASTEL • LAST'L + 1 
IELEM(LASTEL, 1l • LAST!ID -

'JO'JO i 3L·: 
:iOODt?t~ 
tlJC:J~~~::: 
:n: :1 ;:: 
:...:t-'.; ..... 
f::·~(.;l e.~
:;:'".~~~=~: 
3G·:::·i37L 
o.:·r;":;i;;:_. 
:~oo1e;~ 
Jut.Jc] ·;j.;: 
000~! j, ~ 
~~v:~:;?:: 

:,o::~;3:: 
aoo~l1 ~.14( 

OO:J(; 1 15C 
'JCo··· i 9-s·: 
()O'JJ .197: 
~00:119&:. 
O:J00199C 
_')J(I02~:::: 
~~J')2j10 

O~Ob.C02'2 
Joo:2o::: 
CJJ0020U~ 
J~0020;''1 
t.GO:l206J 
iiJ00.2C70 
:J::~.?.:a: 

'::JJO~ ~ ·_, -. 
"'-1G:':l.?i i:,. 
00002"'2: 
oco:;~1:; ... 
O •. K:021 !.tC 
.)j00:?15J 
0JOv21fO 
000".)2~7C, 

OO'JC218~ 

00Jl:~19:' 
~OC02~.:.:r:J 
ooo:F . .? : 
-JYJ:22C:U 
J'J:,>J22;r. 
J~'J0~2~C 

~'JOD~2?::r 
IJOC'i?.26C 
::»>oo ;-~·r ~ 
·")'J~0-2£:,;'J 

OCOJ229J 
010023S~ 

ooryo23~: 
:ooo~:;:~o 
000323:<0 
000023•:; 
ryo:J02350 
030023~0 
O~On37:> 
C000238~ 
0000239J 



1150 
c 

IE~E~Cl..ASTEL,2) 
IEI.EMCLASTEL, 3l 
LASTEL = LASTEL 
IELEH{LASTEL,') 
IELE!!(LASTEL, 2) 
IELE~(LASTEL,3l 
CONTINUE 

+ 1 
:.;5:1;) 
~'11 

= ' 

c SET FLAG TO SIG!IAL SU3RC.;;!IM£ MESH THAT INITIALIZATION liAS auu. 
IMFLAG : 1 

c 
c 
C CALCULATE ROTATIO~S 70 ~~OBAL COORDINAT~S FOR ALL ELEMENTS 
C THAT ARE PART OF T~! F~EXIBLE TUBE. 

c 

DO 1140 M • 1,1£LE~ 
HODE, : I£LE~(~,,) 
XB(M,ll : XOOI'JD£1) 
T8(M,1): YQ(liODEll 
ZB(M,1l: ZC(~0~£1) 
IIODE2 = IELElH'1,2l 
X!I(M,2) : XO{:IOil£2) 
YB(~,2) = YO(MODE2l 
ZB(K,2l = ZO(~OD£2) 
NOOE3 • IELE11(M,3l 
YI(M,3l • YO(~JD£3) 
ZB(M,]l : ZO(IODE3l 
18(11,3) : XO(NOnE3l 

X21 : XB(M,2)- XB(M,Il 
Y21 • YB!M,2l- !3(~,1) 
Z21: ZI(M,2l- ZBCM,1l 
X31 • XI(M,3l - X8(M,1l 
Y31 = YB(M,3l- !8(11,1) 
Z31 = ZB(M,]l- ZB(M,l) 

C CALCULATE THE NOIMAL FROM THE AREA VECTOI 
C AREA • 1/2(ft21 CROSS !31) 

c 
c 

AX • (!21•Z31 - Z21•!31l/2.0 
AY • (Z21•X31 - X21•Z31l/2.0 
AZ • (X21•Y31 - Y21•X31)/2.0 
AREA • DSQKT(AX•AX•AY•AY+AZ•AZl 
XN • AX/AREA 
YN • AYIAIEA 
ZN • AZIARU 

C THE LOCAL X-AXIS IS !21 
DIST21 : DSQRT(X21•X21+Y21•Y21+Z21•Z21) 
XX • X21/0IST21 
XY • Y21 /DIST21 
Xl • Z21/DIST21 
TI(M,l) • XX 
TK(M,2) • XY 
TR"(M, 3) • XZ 

C THE LOCAL Y-AXIS IS l ClOSS X 
TR(M, Q) • tu•xz - u•n 
TI(M,5l = ZM•XX - XN•Xz 
TR(M,6) • XI•XY - YR•XX 

C THE NOIMAL IS THE LOCAL Z-AXIS 
TR(M, Tl • XI 
TR(M,Sl • !I 

JOC02~JV 
DfJ002o:;1J 
00002420 
00002<30 
00002li40 
OOOG2•50 
oooo2•oo 
OO()il2470 
C~II02-8!l 
00002Q90 
OOO'.l2500 
00002510 
OOOJ2520 
00002530 
OOCC'254J 
~0~02550 

;l}'Ji125~0 
~:100257~ 
00002581: 
()'.)002590 
00002600 
00032610 
()0002620 
00002630 
000026QO 
00002650 
l)0002660 
00002670 
00002680 
00002690 
00002700 
0000271() 
00002720 
00002730 
ooon740 
00002750 
00002760 
00002170 
00002780 
00002790 
00002800 
C.~002810 
00002820 
00002830 
000028~0 
00002850 
00002860 
00002870 
0000283~ 
00002890 
00002900 
00002910 
00002920 
00002930 
000029ijO 
00002950 
00002960 
00002970 
00002980 
00002.990 

TR(!!,9l : ZH 
T!iE TRANSFORMATION FOR THE ANGLULAR :JEFLECTI0li. 

!R(M, 11) = XX 

3c:~ll T~E ROTATHlll 'lATRIX. 
no ;505 J = 1,12 
DO 1505 K = 1, 12 

1505 DPT(J,K) : 0,0 
L:O 
~0 1506 J = 1 • 3 
DO 1506 K = 1,3 
L = L+1 
:JPT(J, K) : TR(H,Ll 
DPT(J+ij,K+~l : DPT(J,Kl 
DP~{J+S,K+8) : DP!(J,K) 

~5:05 ::Jti':I!iUE 
i;?F4,4) : XX 
DP7<3,8l : XY. 
::>?: ( 12, 12 l : XX 

C 5~7 r~:: I!JlTIAL STR~SS V::CTGR 

c 

S~J"'1HM, ~) 
Si~'!A(!-1,2) 
SI~!!A(!!, 3l 
S:G"4A(M,~) 

; 140 C'JHTINUE 

S!GXJ 
0.0 
o.o 
0.0 

: EY.:"HCT THE L'lCATIONS OF T!IE ELE~ENT COR!IERS l!l ::iLO!lAL C~RDIHAT!:S. 
C THE JRIGIII IS ALWAYS AT :lODE 1. 

c 

! = !ELEM(NELEM,1) 
J = I!:LEM!~ELE~,2) 
K = IELEM(~ELEM,J) 
DUI'I3(1) • 0.0 
DUM3(2) 0.0 
DUM3(3) 0.0 
:lU~3(4) 0.0 
~UM3(5) XO(J) - XO(Il 
D1.1lt3(6) YO(J) -YO(!) 
DJM3(7) ZO(J) - ZO(I) 
DUM3(8) 0. 0 
DUM3(9) XO(K) - XO(I l 
DUM3(10): YO(K) - YO(I) 
~"M3(11): ZO(K) - ZO(I) 
DUH3(12): 0.0 

C ROTATE THE 
DO 1507 
DU!Iij(J) 
DO 150"1 

LOCATIO!IS 
J = 1,12 

o.o 
K • ·1, 12 
: DUM4(J) 

TO LOCAL COORDIIlATES. 

1507 DU!I~(J l 
c 

+ DPT(J,KJ•DUM3(K) 

~ ~O!IPUTE THE ELEMENT CENTROID. NOTICE THAT THE ELE~ENTS ARE ALL 
C THE SAME SIZE, THUS THE CENTROID IS AT THE SAME LOCATIO~ FOR ALL, 

XC • (DUM4(1l+DUM4(5)+DUM4(9))/J.O 
!C : (OUM4(2)+DUM4(6)+DUM4(10))/3.0 

c 

0~~03000 
t:l003010 
0)003020 
::-:-:n.J3c: 
: :-:::;::~.o 
:.~·J-:3350 
:.:::·::j.:~;; 
):':;:;•)3070 
'.l0033~8-
~C'JCi3090 
.'.)(J)ii31ll0 
"":;.tJ:CcC:!i 10 
).)()3120 
:::;:;;130 
:;~)Jj:iliO 

:;:;::J3150 
-::.:r~!160 
~::13170 
::":J·:n:1a~ 
:;~~0:-!'li) 

=~:J32J) 
v:· .-.--~;? 1 .) 
: >::3220 
~~Cc3.23:J 
:lG0032ll0 
~~~1)3250 
~:J·)C;2~J 
:1!)~03270 
GJ~~328~ 
~'JO!J329J 
~:0:;33:30 
D')J~3310 
J'3J03320 
:>D~0333~ 
:tJCi03~40 
)j0:Jj:350 
ilOO!J33DO 
:ICOG3370 
0~)~3380 
oCJ~33390 
'Jr.~~3i<J,:, 
)3;)::0~-~~ 
o~:n; ... _2j 
JiiC·~343~ 
o,;:~ltJliO 
;)0')1)~4&50 
~.:;:·:;3.:.50 

JO~C.!"-70 
oz .. ~;"' 3:J 
0~:..:;3490 
JJO'J3500 
~0003511 
:-nns2:1 
),003530 
0(1~03'5 .. 0 
0:1003550 
00003550 
oovns1o 
JoooJsea 
00()03590 



C ••••••••••••••••••••••1 IUTIIALIZE c.••••••••••••••••••••1 *11111111 

DO 1515 J : 1,144 

c 

1515 C(J) : 0.0 
FILL THE C MATRIX 

~( 1) = 1.0 
C(5l • 1. 0 
C(9l = 1.0 
C(13) DUH4(1) 
C(11l : DUM4(5l 
C(21) • DUK4(9) 
C(25l DUM'!2l 
C(29l • DU!411(6) 
CC33l DUKII{IO) 
C(38l • 1.0 
C(42) 1.0 
C{Q6) 1.0 
C(50) llU?!U(1) 
C(54) • DUHq(5l 
C(58l • DU!14(9l 
C(62) • DU!44(2) 
C(66) DU!111(6) 
C(70l • DUH.(10) 
C<75) 1.0 
C<Hl • 1.0 
C(83l • 1.0 
ccan DUH4C1) 
C(91) • DU!I4(5) 
C(95l • DU!14(9) 
C(99) • DU!14(2) 
C(103l• DUM4(6) 
C(107)• DUM-(10) 
C(112l= 1.0 
C(116): 1.0 
C(120)s 1.0 
C(12• l• DUKII( 1) 
C( 128): DUMII(5) 
C( 132ls DUM.(9) 
C(136)s DUM'!2) 
C(1110)• DUM-(6) 
C(11111)s DUM4(10) 

C COliPUTE THE IliVERSE OF C. SUBROUTIIIE DINV IS Alf SSP SU!IROUTIIIE 
C VHIC:l COMPUTES tHE I!IVEISE I!l DOUBLE PRECISION. 

CALL DINV(C,12,DET,MOL,MOll) 
IF.(D!t) 1517,1516,1517 

1516 WRITE(IOUT,1581l 
1581 f0Rl!AT(1H1,5X,25HTHE C MATRIX IS SIIIGULAR. ) 

STOP 
1517 oo· 1580. K • 1,12 

DO 1530 J • 1,12 
H s (K-1) 0 12 + J 
CI(J,K) • C(N) 

1580 CONTINUE 
c 
C lttoottttttttotsET THE H HATRIX.ttottttttoooootooo••••••••••••• 

DO 1600 Jo1,6 
DO 1600 Ko1, 12 

1600 H(J,K) s 0,0 
c 

HC1,2) c 1.0 

00003600 
00003610 
00003620 
00003630 
000036~0 
00003650 
00003660 
0000367.:; 
00003680 
00003690 
00003700 
00003710 
00003720 
00003730 
00~037~0 
DOOJ3750 
00003760 
00003770 
ll0003760 
00003790 
00003800 
~0003810 
00003820 
J0003830 
00003840 
00003850 
00003860 
00003870 
)0003680 
00003890 
00003900 
00003910 
00003920 
00003930 
00003940 
00003950 
00003960 
00003970 
00003960 
00003990 
00004000 
00004010 
00004020 
00004030 
00004040 
00004050 
00004060 
00004070 
00004060 
00004090 
00004100 
00004110 
00004120 
00004130 
00004140 
00004150 
00004160 
00004170 
000011180 
0000ll190 

c 
c 

HC2,Sl 1.0 
H(3,8) 1.0 
!H~,!l 1.0 
~(5,6) 1.0 
!1(6, 9l 1. D 

C CO~PUTE THE VOLU~E ~F THE EtE~E~TS. 
l>THK • THK 
VOL = AREA 0 DTHK 

c 
c 
C CALCULATE THE CARTESI~H !IES3 SPACIIG. 

LASTJ = ~X 
RNX = !IY. 
H!IY :N!IY 
HX = (R!.. + DXIM • DY.0..il')IR~X 
liY = R/RIIY 
UIN = DXI~/HX + 1.0 
IF(HIN.LT.2) IIIN = 2 
IITUBE s (DXIII + RL)/HX + 1.0 

c 
C INITIALIZE THE FLUID PRESSU~E 

L~AsT = LAST J + 1 

c 

P(LASTJ = P2 
DO 2150 J:1,LASTJ 
!! = LAST-J 
P(M) : P(H+1) - !)PDX'!!X 

2150 CO!ITI!IUE 

2200 RET•JR !I 
E11D 

00004200 
00004210 
00004220 
00004230 
oooouzqo 
00004250 
00004260 
00004270 
00004280 
00004290 
00004300 
00004310 
0000~320 
00004330 
00004340 
00004350 
ooo~q360 
00004370 
00004330 
00004390 
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APPENDIX F 

SUBROUTINE MESH 

The goal of this routine was to define the variables 

necessary to describe the cartesian mesh which is enclosed 

by the tube and its rigid end mountings. This procedure was 

greatly simplified by the planar nature of the finite 

elements since it means that linear interpolation can be 

used when needed to locate the tube wall. Conceptually, the 

approach is to establish an x-y grid under the finite 

element wall approximation. The algorithm then moves 

through this grid and calculates the z distance to the 

finite element surface. 
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SVSiOUT!!i! "!LS:i 
c 
C !HIS SUBROU7:ME CJ'!PU7::S THE PARAMETERS IIE:CESSARY TO SPECIFY THE 
C CARTESIA~ MESH liHI:~ :s E:!ICLOSEI; BY THE TUBE ANil ~OuNTiNG FIXTURES. 

CO~MO~ J(4,a),PSI(C50l,STRAIN(300,~l,CI(12,12),H(5,12l,VOL 
CQI!!'!OH STIFF(o2215) 
C~HMOM Vc(23),P(23l,,Y(23l,PXB(23) 
COMMCJ XHCOE(200), TNO!I£(200) ,Z!IODE (200), IELEH(300, 3) 
COMMO!I F{-05), '/'!H(23) ,ZliAX(23, 18) 
CO'IHOll X0(135), I:l! 135) ,ZO.( 1351, TR(300, 10) ,SIG~A(300, 4),N!l:lf(20il l 
COMMON TX(200l,!X0(200l 
COMMON OXIH,DXOUT,!~K,RLS,FMU,E,P1,P2,PE,IIN,!OUT 
CO~MOM R, RHO, RL, D!A, Q,l>PDX, REY, RliU, RllU, DRO 
COHMOH UT£ST,P7ES!,~AX,DP,DU,DPSI,SCALE 
COMMC!i LAST!:L, L-S':'!I!D, !lEl£M, NNODES, NHi, NTUBE, LAST J, I!if'LAG 
COMMON NX, NIY, STUBEX,IITU!lEY, HX, HY ,IIUMBC 
COMMON IFORCE,!¥X,TWY,TWZ,SIGXO,XC,YC 
DOUBLE l'UClS:CX ~.PS!,STRAI!I,CI,H,VOL,ST!FF 

c 
C THE FOLLOliiNG ARE ROUTINE SPECIFIC VARIABLES. 

DIMENSIO~ YEDG£(50l,ZEDG£(60) 
DIMEIISION lBO~G, 3), Y8(300, 3), ZB( 300,31 

c 
C INITIALIZE !~E L~JP PARAMETERS 

JSTART • 2 
JSTOP • LASTJ 
HSTOP • LASTEL 

C IF THE IHITIALIZATDN HAS JUST BEEN RUN, THE EIITIRE IUTERIOR MUST 
C BE ANALYZED, OTHE~liiSE OWLY !KE VOLUME UKDER THE FLEXIBLE TUBE 
C NEED BE AliALYlEt. 

c 
c 

IFCINFLAG.£0.1) ~0 !0 2•0 
JSTAIT = :i:ll 
JSTOP z ~:1'U3£ + 

C IEFOI!!AT THE !lODE DEFIHITIO!IS. 

c 
c 

2-0 DO 33' H • 1,~STOP 
ID • lELEH(H,1) 
XB(M,ll • XUODE(IDl 
YB(M,1l = !IODE(ID) 
ZB(M,1) • ZNODE(IDl 
ID • IELE!I(H,2l 
XB(H,2) = XNOD£(1Dl 
YB(M,2l • YNOOE(IJ) 
ZB(M,2) • ZNODE!ID) 
ID • IELEM(M,]l 
XB(M, 3) • XIIODE(ID) 
YB(M,3l • YUODE(IDl 
ZB(H,3l • ZIIODE(ID) 

330 COITIIIUE 

C AIIAMGE THE X, Y ,Z VALUES OF THE NODES BY X ORDER Ill EACH ELEMENT, 
c 

DO 230M z1,MSTOP 
IlliG • 0 
IF(l8(M,2).GE.XB(!!,1) .AND. XB(M,2).GE.XB(M,3ll IBIG • 2 
IF(XII(M,]l.GE.IB(M,ll .AND. XB(M,3l.GE.XB(M,2ll IBIG • 3 

~00\.iOO,J 

00000020 
000?0030 
{)j0000-'0 
:JnO!J~5: 
CJ~OC060 
'J:l000070 
3')()0')080 
00000090 
;)0000103 
1JJ')'J:·110 
JJ00Jj2J 
30000130 
:1{)00314!) 
00000150 
00()00160 
000001?0 
i!OOOC18:J 
uoooo190 
00lhl0200 
OODOD21C 
:10000220 
000::0;)230 
ooono2qo 
OOOOD250 
00000260 
000!10270 
00000280 
0000029(1 
000()0300 
00000310 
')0000320 
00000330 
000003-0 
00000350 
00000360 
00000370 
00000360 
00000390 
ooooo•oo 
00000410 
00000420 
00000430 
000004~0 
oooooqso 
00000~60 
00000470 
OOOQ0480 
000001;90 
00000500 
00000510 
00000520 
00000530 
000005"0 
00000550 
00000560 
00000570 
00000580 
00000590 

:F(XB(H,1).GE.XB(M,2l .AND. XB(M,1).GE.XB(K,3ll !B:•: 1 
IF!ISIG.EQ.1l GO TO 220 
XSAVE : X3(H,ll 
!SAVE : YBCH,1) 
ZSAVE = ZS(M;1) 
XB(M,1): XB(H,ISIGl 
YBCM,1) = Y5(M,IBIG) 
ZBCH,1j = ZS(H,IBIG) 
XB(H,IBIG) : XSAVE 
YB(H,IBIG) : YSAVE 
ZB(M,I3IG) : ZSAVE 

220 IF(XB(M,2).GE.XB(H,3l) GO TO 230 
XSAVE : XB(M,2l 
YSAVE = Y9(!1,2) 
ZSAVE = ZB(M,2) 
XB(M,2) XS(M,3l 
YB(H,2) YB(M,3l 
ZS(~,2l ZE(~,3l 
I'I(M, 31 XSAVE 
Y3(1'!, 31 !SAVE 
ZB(1!,3l !SAVE 

230 COl:TINUE 

!!!E FOtLOliitiG LO:lP CALCULATES THE T,Z COORDINATES FOR EACH 
!!ITERSECTIO!I OF .~?; X:~ LI!IE \liTH AU ELE!'IE!lT ED:;E. 

DO 410 J = JSTART,JSTOP 
RJ : J - 1 
X = RJ•!IX 

: THE NEXT LOOP :ALCULATES THE Ellu!BLE ELEME!ITS All!l 7HE Y,Z PAIRS. 
C L!!IEAR INTERPOLATION IS USED. 

c 

ICOUIIT : 0 
~~ 520 M • 1,MSTOP 
IF(XBCM,1l.LT.X .OR. XBCM,3l.GE.Xl GO TO 520 
ICOUNT • !COUNT + 1 
YEDGE(ICOUNT) • YB(M,3) • (X-XB(M,3ll•(Y8(M,1l-TB(M,3ll 

$/(X8(M,1l-XB(M,3ll 
ZEDGE(ICOUNT) = ZB(M,3l • (X-XB(M,3ll•CZB(M,1l-ZB(H,3ll 

$/(XS(M,1l-XBCM,3ll 
IC.OUIIT = ICOUriT + 1 
!F(X.NE.XB(M,2)) GO TO 540 
YED~E(ICOUNT) • YB(M,2l 
ZED~E(ICOUNTl = ZB(M,2) 
GO TO 520 

540 IF(X.LT.XB(M,2)) GO TO 530 
YEDGE(ICOUNT): YB(M,2l + (X-XB(M,~ll•(YB(M,1l-YB(M,2)) 

$/(XB(H,1)-XB(M,2ll . 
ZEDGE(ICOUIITl : ZB(M,2) + (X-XB(M,2))•(Z9(!1,1l-Z9(M,2ll 

S/(XB(M,1l-XBCH,2)) 
GO TO 520 

530 YEDGE(ICOUNT) • YB(M,3l + (X-XB(H,3ll•(YB(M,2)-Y9(M,3ll 
$/(XB(M,2l-XB(M,3ll 

!ED::;E(ICOUNT) • ZBCM,3) + (X-XB(H,3JJ•(ZBCM,2l-ZB(M,3ll 
S/(XB(H,2)-XB(M,3ll 

520 CONTitlUE 

C SORT THE PAIRS INTO ASCEJIDUG Y ORD£11, 
LAST : !COUNT - 1 
DO 610 M: !,LAST 

ODOO!l600 
OJDJC510 
OOJ!!0620 
JOJ:>:lo3o 
oc:J:;s~J 

!):J~~~55'J 
llODJG~50 
0~0£.~070 
00!!00680 
0000~590 
OODOHui: 
OO!lll0710 
iJC:J:JJ720 
O~::JO':r"!J 
voo~~;aJ 

OCOOC75J 
O~OC~75·~ 
J01J~:7?C 
oooor;n: 
00:)~:.-r;: 

ooc:;:J~J:> 
CrlDD£)97~ 
OJ.1J')ti32: 
ODJC;j':3C 
:l;j'):~:.-:: 

00·~0:-:;:) 

•.) .. -'"'"":.-:: ~ 
o~:·j.c37~ 
oc:c;;:::~ 
~~3'6:~9') 
~c.:::::: 
JODC:~·~ 
oc:;c:;2J 
OJJ::...o;;q 
oo~c:~-J. 
OODOil950 
00JO:IS6C 
OOGOC97G 
000ll09!J 
::l:/~0~~~: 
ODOC1:.::: 
:l:)DC1~1~ 

,0001')2: 
OQ,QJ~Jl.1 

CD0~1)~.:. 
oooo:osc 
000il1~60 
OOOD1':"'~ 

000~1:3~ 
00001·:SJ 
000~1100 
0000'11~ 
0000! 120 
0000113;; 
0000114: 
00001153 
oaao116a 
0000117J 
()0001130 
0000119J 



S~ALL YEDGE(M) UD001200 
!SAVE YEDGE(M) ~0001210 
ZSAVE ZEDGE(!Il 00001220 
!IP1 = ~ + 1 J0~01230 
!!SAVE !I 'J000124C 

D'.l 620 N : !'.P1,lCOUNT 00:101250 
IF(JEDGE(Nl.GE.SMALL) GO TO 620 G030125G 
~SAVE = ll 00001270 
S~ALL = YEDGEOO !l!l0012SO 

1020 COM'!IN!JE 00001290 
l!'(!ISAVE.EC.~l GO TO 610 1!0001300 
Z£~E(!I) = ZEDGE(MSAYE) 00001310 
JEDGEOI) = YEDGE(HSAVEl 00001320 
YEDGEl!!SAVEJ = .YSAVE v0001330 
Z£DGE{~SAV£) =· ZSAVE OJD013~0 

51-J :O!l'!HiUE ~:l!:IQ1350 
!T·JTAL • :counr oooonoo 

OO'J!l13n 
••••••••••••••••••••••SET THE !1£S!i P~RAMETERs.••••••••••••••••• 00001380 

00001390 
CAL:::Jl.ATE THE MAXIl'UM Y COORDINATE (YMAX) AND T!iE !W'!:SEE OF Y 00001400 
IliCREMEM!S (liY). 00001410 

Nt(J) • YEDGE(ITOTALJ/iiY + 2.0 l>CO·J142o 
Y~X(Jl : YEDuE(lTOTAL) 00001430 

c 000~14~0 

C C~L:ULATE THE MAXIMU~ Z COORDINA!£ (ZMAX) 00001~50 
Zli&X(J ,2) : ZEDGE(1) 00001460 
!F<ZMAX(J,2).LT.O,Ol ZMAX(J,2l • 0,0 ~0001~70 

705 LASTY • MY(J) 00001480 
!l:l 730 M = 3,LASTY 00001490 
RM : M-2 00001500 
TESTY : RM•HY 00001510 
NSAVE : 0 00001520 
00 710 I • 2, ITOTAL 00001530 

IF(YEDG£(!1) .LE. TESTY> GO TO 110 00001540 
lF(YED3E(M).EQ.YEDGE(N-1ll GO TO 706 00001550 
HSAVE • N 00001560 
GO TO 720 00001570 

706 ZMAX(J,M) • ZEDGE(N) 00001580 
GO TO 725 00001590 

710 CONTINUE 00001600 
ZMAX(J,H) : ZEDGE(ITOTAL) G0001610 
GOTO 725 00001620 

720 !K : NSAVE - 1 00001630 
ZMAX(J,M) • ZEDGE(IKl + (ZEDGE(NSAVEl-ZEDGE(!K))•(TESTY-YE::>:;E(lK)J00001640 

S/(YEDGE (NSAVE)-YEDGE(lK)) 00001650 
725 !F(ZMAX(J,Ml.LT.O.Ol ZHAX(J,Ml = 0.0 00001660 
730 CoNTINUE 00001670 

Z!IAX(J,1) • ZMAX(J,3) 00001680 
c 00001690 

'10 COHT!MUE 00001700 
c 00001710 
c 00001720 
C SET PARAMETERS FOR THE INLET PLAHE. 00001730 

IF(INFLAG,EQ,O) GO TO 755 00001740 
YMAX(1) • TMAX(2) 00001750 
llY(l) • NY(2) 00001760 
LASTK • !IY(2) 00001770 
DO 745 K • 2,LASTK 00001780 

7•5 ZHAX(1,Kl • ZMAX(2,K) 00001790 

c 

SET OUTL£7 PARA~ETERS. 
Y~AX{LASTJ+l) = Y~AX(LASTJ) 
~IYC.ASTJ+1 l = MY(LASTJJ 
KE'iD = ~lY (LAST J) 
CJ 750 K = 2,KEH~ 

753 Z~AX(LAS7J•1,Kl = ZMAX(LASIJ,l: 

RESET THE :N!TIEiz.n;:;;:• "LAG 
I:IFLAG = 0 

755 RETURN 

0000180C 
00001810 
0000182::: 
oooo1a3:; 
OOOOlo":; 
000.0123: 
C0001i;6) 
oooo1a1J 
0000158~ 
OOO·J 1830 
00001!;0C 
000019'~ 
0000192>:: 
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