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PREFACE

This study was concerned with the analysis of a hybrid
“fluid mechanical problem. That is, the steady state
achieved by the fluid flow was strongly dependent wupon an
interaction with the confining structure. The tube walls
moved in response to the fluid flow forces. Although the
apparent emphasis in this manuscript is wupon a fluid
mechanical reSult, the bulk of ‘the work actually
concentrated on a finite element structural description of
the tube where two major stumbling blocks were encountered.
The first, which was a singularity of the unconstrained
stiffness matrix, has been observed by a colleague working
on a similar problem. This difficulty suggests that the
cbllapsing cylindrical shape needs to be guided or
constrained in the proper directioﬁ. The second difficulty
arose when the wall deflections became very large and was
due to inter-element discontinuity. The cure for this
ailment was found in a redefinition of the -element
displacements.

| Regarding the organization of this document, the view
was adopted that most readers are generally familiar with
these methods. The bulk of the derivations and matrix

manipulations are given in the appendices. Annotated deck
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lisﬁings are furnished in order to encourage the further use
and development of these computational ﬁethods.
Furthermore, it was felt that the readability of the
manuscript would be enhanced if the literature review was
integrated with the appropriate chapters. That 1is, the
review of previous experimental work is presented in Chapter
‘If; while the review of previous analytical work 1is
presented in Chapter III,
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NOMENCLATURE

List of SYmbols

The list of symbols has been extended to include compu-
tational variables from the COMMON block of the subroutines

in the appendices.

(Bl
(B*]
[cl
[ccl
cI

)
(D]
DIA
DMAX
DP, DU, DPSI
DPDX
DRO

DXIN, DXOUT

coefficient of the displacement polyno-
mial, also called the generalized
coordinate

Area (cm2)"

proportionality of de¢ to dq
proportionality of de to da
proportionality of q to a or dq to da
matrix of constraint coefficients

same as [C]-]

tube diameter (cm)

Hookean elasticity proportionality matrix
tube undeformed diameter (cm)

the computed maximum node position change
convergence parameters

fluid pressure gradient

initial cross-section ellipticity
parameter, 1/2(major axis length - minor

axis length)

lengths of the tube mounting fixtures



(H]
hd
HX, HY
IELEM

IFORCE
“IIN, IOUT
INFLAG

(Ky]

(K, ]
(K, ]

.
LASTEL

LASTJ

Young's modulus of elasticity (dynes/cmz)
linear strain (dimensionless)

general numerical convérgence criteria
surface traction force (dynes/cmz)
force (dynes)

Poisson's ratio

shear strain (dimensionless)
proportionélity of dq to ¢q

thickness (cm)

proportionaiity of dq to a

hydraulic diameter (cm)

grid spacing distances (cm)

stores three nodes which comprise an
element :

a flag to bypass the fluid model
logical input/output unit assignments

a flag signalling the completion of
initialization

change in reciprocal radiu? of curvature
from an initial value (cm™)

stiffness matrix containing linear and
geometrically nonlinear parts

tangential stiffness matrix

initial stress or geometric matrix
length (cm)

the number of the last element in the
structure, including the rigid mount

approximations

the index of the next-to-last X location

xi



LASTND |

NNODES
NTUBE

NTUBEX, NTUBEY
NUMBC

NX, NNY
NY
X
P1
P2

PE
PSI

the number of the last node in the
structure, including the rigid mount
approximations

wetted perimeter (cm)

Lagrange multipliers

bending moment per unit area (dyne-cm/cm2)

matrix of stress values

slope of the linear fluid pressure
approximation

fluid dynamic viscosity (poise)
outward directed unit normal
fluid kinematic viscosity (stokes)

stores the numbers of the constrained
degrees of freedom

the number of finite elements in the tube

the number of grid increments which lie
under the inlet mount approximation

the number of nodes in the tube

-the index of the last X-location which

lies under the flexible tube
finite element subdivision of the tube

the total number of constrained degrees
of freedom

number of X-Y grid increments
number of grid points in the Y direction

static fluid pressure
(in. H,0, mm Hg, dynes/cm2)

the inlet pressure (dynes/cm2)
the outlet pressure (dynes/cm?2)
the collapsing pressure (dynes/cm?2)

same as Y, the equilibrium index
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Y equilibrium index (dynes)

PTEST an internal variable used to store the
maximum change in pressure at a location
computed on a step

PXB fluid static pressure gradient in the

axial direction (dynes/cm?)

q ‘ displacement evaluated at a finite
element node

Q flowrate (cm3/sec = ml/sec)

R adjustable orifice fluid resistance

r Poisson's ratio

RC radius of curvature (cm)

Re Reynolds number (dimensionless)

REY Reynolds number (dimensionless)

RHO fluid density (gm/cm3)

p | fluid density

RL tube length (cm)

RLP same as lp, the wetted perimeter (cm)

RLS circumference of the tube cross

section (cm)

RMU , fluid dynamic viscosity (poise)

RNU fluid kinematic viscosity (stokes)

S scale factor

SCALE sets the maximum allowable compu-

‘ tational step

SIGMA stores the initial global stress in the
elements

SIGXO initial global prestress in the axial

v direction

STIFF augmented tangential stiffness matrix
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STRAIN
p

t

[T]

T
~dr

6

A6

THK

TR

TWX, TWY, TWZ
TX

TXO

u, v, w
u, v, W
UTEST

< <

VoL

X, ¥, 2
X, Y, Z
Xc, YC

same as &, the element strains
stress (dynes/cm?2)
time (sec)

transformation matrix of global to
local coordinates

shear stress (dynes/cm?2)

volume increment

structural orientation (radians)
rotational deflection (radians)

the thickness of the elements (cm)
same as [T], the axes transformation
fluid wall shear forces (dynes/cm?)

slope of the structural surface (radians)

initial slope of the structural surface
(radians)

internal work (dyne-cm)

deflections in local coordinates (cm)
deflections in global coordinates (cm)
an internal variable to store the maximum
change in average velocity at a location
computed on a step

average fluid axial velocity (cm/sec)
fluid velocity vector (cm/sec)

element volume (cm3)

same as V

external work (dyne-cm)

local coordinates (cm)

global coordinates (cm)

local coordinates of the element

centroid (cm)

xiv



XNODE, YNODE,
ZNODE

X0, YO, 20
YMAX

ZMAX

(4]

> Q

Jr k, 1

X, ¥, 2

global position of the finite element
nodes (cm)

initial global position of the finite
element nodes (cm)

maximum Y dimension of the tube cross-
section at a given X location (cm)

maximum Z dimension of the tube at a
given X-Y location (cm)

Subsecripts

inlet

outlet

atmospheric

downstream

exterior

global

hoopwise (circumferential)
internal

nodes of a finite element
local

generalized node number
generalized element number
initial

predicted

measured or reading
ubstream

interior tube wall

in direction of local x, y, or z

axes

Xv



= >

[A]
dA
AA
(arl
A"
[al’

in direction of global X, Y, or 2
axes

Notation

overbar indicates average value
underwave indicates a vector
brackets indicate a matrix
indicates first variation
indicates difference; i.e., Al- A2
indicates the inverse of matrix [A]

is A at computation step n

indicates the transpose of [A]

xvi



CHAPTER I
INTRODUCTION
Overview

The problem of predicting fluid flow variables in a
collapsible tube appears to be most often encountered in a
physiological setting. | A variety of spontaneous as well as
forced physiologic fluid flow situations exhibit
complications which suggest that tube collapse exerts a
significant modulating effect on the fluid flow. It has
also been suggested that a thorough wunderstanding of the
mechanics of this problem may 1lead to exploitation in fluid
bower control circuitry and other engineering applications.
This 1later observation is underscored by the choice of
experimental apparatus which is typically used in
iﬁvestigation of the problem. In this study, as in previous
investigations, a non-physiologic experimental idealization
was used to define the tube/fluid mechanical response to
collapsing pressure and to provide a basis of comparison for
a new analytical model of the mechanics. Nevertheless, the
importance of the problem at this time stéms primafily from
physiologic reasons and particularly from venous blood flow

prediction difficulties.



The important role of the veins as a return for blood
flow to the heart has %_received scant attention in
theoretical circulatory analisis. It would appear that the
more regular geometry of the arteries has prompted numerous
analytical studies of arterial blood flowrate, pressure,

_phase velocity, etc., thus diverting attention from equaliy
v‘iﬁbortant venous blood flow problems. By way of
complication, the thin-walled, low pressure, highly flexible
venous tubes are especially susceptible to states of
collapse at any time due to excessive eiternal pressure. In
addition, the collapse condition entails complex geometries
and, hence, difficult analyses. Morelimportantly, venous
blood flow must be addressed in any study of the complete
circulation. 1In fact, an overall circulatory regulation may
occur due to the fluid flowrate modulation caused By the

collapsing veins (1).
Historical Perspective

| Physiologists have 1long recognized the occurrence and
iﬁportance of collapsed tube flows. Perhaps one of the
earliest descriptions of the natural occurrence of the
phenomenon was offered by Bayliss (2) in 1895 in a
discussion of the cerebrél circulation. 1In 1912, Starling
(3) presented a controllable hydraulic resistor based on

this principle which was designed to'vary the load on an

isolated mammalian heart. In recognition of his



achievements, physiologists now widely describe collapsed
tube flows as "Starling resistors." Important spontaneous
occurrences of the phenomenon have been recognized in the
following physiologic tube systems: veins, arteries,
pulmonary circulation, pulmonary airways, urethra,
eustachian tubes, and vocal cords (4). Tube collapsibility
ié also 1important in the following clinical practiceé:
positive pressure lung ventilation, 1listening for Korotkoff
sounds, vascular diagnosis with pressurized cuffs,
intra-Aortic balloon counterpulsation, artificial heart
pumping, heart assist by external leg counterpulsation, and
blood withdrawal with vein cannulaéion. An important
difference between these two groups is that the flows in the
second group are controlled by external forcing. Thus, the
clinician creates a forced response. Clearly, a deeper
understanding of the mechanics of cause and effect could
improve the effectiveness of these procedures and perhaps
indicate new ones as yet undiscovered.

| The principal interest of this study was the
relationship of Stérling resistor effects to the design and
control of positive pressure lung ventilation equipment. It
has been suggested that venous portions of the circulation
act 1like Starling resistors during this type of 1lung
ventilation (5). This description is in excellent agreement
with contemporary concepts of hemodynamics (6-10). Thus,

positive pressure lung ventilation creates elevated



pulmonary pressures which apparently operate to modulate the
net cardiac output. Consequently, this type of ventilation
éreates an undesirable mechanical effect (reduction of blood
flowrate) as well as a desirable chemical effect (increased
blood oxygenation), and 1leads to an important tradeoff in
order to optimize controlled gaseous exchange.

| Motivation for this study of the collapsible tube is not
limited to physiologic situations, however. Exploitation of
collapsible tube flows has been described in the design of
the following engineering devices: oscillators, amplifiers,

switches, logic devices, and resistors (4).
Scope

Any fluid mechanical study of the venous collapse
problem is initially complicated by inherent measurement
difficulties. The simultaneous measurement of pressure and

flowrate in veins in situ has been termed a "difficult and

unreliable art" (11,k p. 333). Thus, for the most part,
analytical and experimental findings to date have been
derived from a laboratory apparatus which is used as a
physical idealization of venous mechanics. The classical
experimental apparatus is shown in Figure 1a. This device
is composed of a thin-walled 1latex tube, often Penrose
surgical drain tubing, freely suspended in air between rigid
circular mounts. Liquid flow through the device can be
modulated by the adjustable orifices (R; and R,), or the

collapsing pressure, P..






pressure, P,, (Q and P, labelled inward pointing arrows) and
gives Py as its.output. At the inlet side of the system,
Ehé flowrate through the upstream orifice resbonds to
pressure inputs, P, and P,. The inputs to the collapsible

-]

tube are the collapsing pressure, P the downstream

e!
pressure, P,, and the system flowrate, Q. The collapsible
’tube outputs are the upstream pressure, P; , and the
cross-sectional area, A, which varies along the tube axis.
Measurements méde with the classical apparatus of Figure
1 have introduced some confusion regarding the fluid
mechanical behavior of the collapsible section. This

confusion stems from a failure to dlstinguish between a

characteristic response and the in-circuit performance (11).

A characteristic response is observed when a circuit element
15 isolated from interacting elements while input versus
‘dﬁtput relationships are determined. On the other hand,
clrcuit performance is composed of the responses of the
interacting elements. The element characteristic responses
can be used to predict circuit performance, but the
characteristic response may not be récoverable from the
éircuit per formance data.

| Isolation of  the collapsible tube in order to measure
iés characteristic can be achieved in several ways. One way
is to eliminate both the orifices of Figure 1 and wuse a
pressure drop to force the fluid through the tube (e.g.,

Figure 2a). This approach requires that P, (P;), P and Pe

2’
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all be independently controlled variables (i.e., inputs).
Shapiro (13), Griffiths (14), and Lambert and Wilson (15)

all used pressure forcing of the collapsible tube. However,
the characteristic that colncides with the classical

experiment results from flowrate forcing. That 1is, the

flowrate, Q, 1is an input to the collapsible tube. In both

- cases, as shown in Figure 2, P, and P, are independent

variables.

Fe A
PZ ' P
COLLAPSIBLE
TUBE
e
Q Q
(a)
Pe A

COLLAPSIBLE
TUBE

(b)

Figure 2. Input-Output Variables in a Collapsible Tube
(a) Pressure Forcing, (b) Flowrate Forcing



It was assumed that the input-output causality of
Figures 1 and 2b corresponds to the venous case. The
experimental apparatus was designed to 1isolate the
characteristic with this causality, but the apparatus was
not intended as a rigorous physical venous model.

The analytical goal was to predict the pressure drop
vérsus " flowrate characteristic given knowledge of
fundamental tube and fluid properties. In this approach, it
was assumed that flowrate, collapsing pressure, and outlet
pressure are Kknown while inlet pressure is to be calculated.
The analysis was restricted to the steady-flow case.

The object of this study was thus twofold: to
eXperimentally clarify the pressure drop-flowrate
stéady-flow fluid response to a collapsible tube as a
function of external collapsing pressure, and to develop an
analytical model capable of describing the observed fluid
flow behavior through the collapsed tube.

The organization of this study 1is into five chapters:
the first 1is introductory} the "second discusses past and
present experimental approaches; the third presents previous
anélytical attempts which 1lead to a‘new, more fundamental
model; the fourth shows experimental results and compares
aﬁélysis to experiment; the last summariies and gives some
copclusions and recommendations. The'body of this thesis is
intended to highlight the approach and, consequently, much
theoretical and analytical detail is relegated to the

appendices.



CHAPTER 1II
EXPERIMENT

The early experimental investigators made measurements
with the apparatus shown 1in Figure 1 (12,16). They
suggested that the performance curves obtained were
"characteristic" curves, yet they also obéerved that the
value of the downstream resistance had a strong effect on
the results. Therefore, in the 1light of the introductory
remarks, these results were really a representation of
in-circuit.performanee rather than the ¢true characteristic
fluid flow response to the collapsible tube. More recently,
investigators have realized the necessity to isolate the
collapsible tube 1in order to determine 1its characteristic
17). Consequently, the following 1literature survey is
divided into two sections, a section on in-circuit

performance and a section on the characteristic response.
Literature Survey

In-Circuit Performance

A summary of experimental results from the early
investigations is shown in Figure 3. At a fixed value of

collapsing pressure, P a single highly nonlinear

e?

pressure-flow relationship exists, as shown in Figure 3a.
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‘Furthermore, a family of nonlinear pressure-flow curves can
be generated, each curve corresponding to a different value
6f collapsing pressure as shown in Figu}e 3b. Figures 3a
ahd 3b were generated with the same circuitry (e.g., Figure
1) with different settings of Ry for each figure.
Mechanicallcoupling between tube and fluid dictates that the
tube assume certain shapes, which are shown in Figure 3¢ and
are correlated to the pressure~flow relationship of Figure
3a. The geometries of Figure 3¢ occurred with a flow
direction of 1left-to-right. Photographs taken by Conrad
(16) show the constriction (shape II) formed closer to the
qownstream end than +that shown in Figure 3ec. However,
édmparison of these data was not possible owing ¢to
nén-standardization of experimental paraméters (e.g., tube
pretension and length, R, and R, settings, supply pressure
seéting, etc.). Oscillatory tube behavior has been observed
and several recordings of this are shown in Figure 3d. Katz
ef al. (12) suggested that the value of R, was important to
oscillation onset.

Qualitatively, the mechanics passed through four
,qistinct regimes. These regimes can be separated by the
rélative magnitudes of the three controlling pressures: the
inlet pressure, Pl’ the outlet pressure, P,, and the
collapsing pressure, Pe.

1. P1>P,>P, The tube is inflated and the

: flowrate Q is determined by P; ands Zimwith

only a weak P, dependence. This 1 ilar
to the arterial flow case (3).:
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2. P1>Ps >Py Here, part of the tube is inflated
while part is collapsed. This condition has
received no apparent discussion in the
literature.

3. Pe>Py>P,  Now the tube 1is collapsed to
varying degrees along its entire length. An
oscillation has been observed with this
pressure arrangement and frequencies have
been measured (16,18). Conrad (16) has
described this behavior as a relaxation
oscillation which builds up to a limit cycle,

- while Rodbard (18) has described it as an
interrupted series of jets with production of
audible sound.

Prediction of the steady flow observed in
this regime was of primary interest to this
study. ‘

y, Pe>>P Ultimately in the physiologic case,
Pe wiil reach a value, commonly known as the
Critical Closing Pressure, which prohibits
fluid flow ¢through the tube (19).
Observation of critical closing has not been
documented in previous collapsible tube
experiments.

The Charactertistic Response

The need to iéoiate the collapsible tube in order to
measure the fluid pressure-flow characteristic was perhaps
first recognized by Brower (17). His analytical work showed
thét the tube charactéristic could be extracted from
previously’reported circuit performance data. He conducted
confirming experiments of this concept and the results are

shown in Figure 4.
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8P = B -B, (cm HO)

Q (ml/sec)

Figure 4, The Pressure Drop-Flowrate Characteristic of
a Collapsible Tube, from Brower and
Noordergraaf (11, p. 338)

Experimental Approach

The goal of the present experimentation was to clarify
the fluid pressure-flowrate characteristic response to a
collapsible tube. Two types of experimental studies were

conducted in these experiments: The effect of tube axial
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prestrain on the characteristic was studied, and the axial
distributionAof tube internal fluid pressure was measured.

The effect of prestrain on the characteristic appears to
have been ignored by previous investigators. For example,
Brower and Noordergraaf (11) used a prestrain in excess of
15%, Conrad (16) attempted a strain-free experiment, while
| kaﬁz et al. (12), and Lambert and Wilson (15) did not report
the prestrain value.

In order to determine the role of prestrain, two sets of
inlet pressure versus flowrate measurements were made: a
set at an initial tube axial strain near 10% and a set at an
initial tube axial strain near 1%. The two cases were
somewhat arbitrarily denoted as high and 1low prestrain
cases, respectively. The axial strain was estimated by
placing marks on the tube and measuring their separation

before and after mounting. That is,

€y = (1 - lo)/lo (1)

where €x 1s the axial strain, 1 is the stretched length, and
1, is the unstressed 1ength.

| Figure 5a shows a schematic of the experimental
apparatus. Here, the supply pressure was set at a value
iarge enough (10 ft HZO) to ensure that the upstream
orifice, Ry, functioned as a flowrate source which. was

nearly independent of its downstream pressure, P,. In

éddition, the downstream resistance, R,, was eliminated so
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that the pressure, P,, downstream of the tube was véry
nearly equal to the back pressure created in the outlet
chamber. Thus, the tube waS isolated in order to generate
~the characteristic pressure-flowrate fluid response.
»Cbntfary to previous experiments, the tube was immersed in
wéter in order to minimize bouyancy effegts.

- Water flowrate through the flexible tube was measured
with a Fisher-Porter flowmeter (No. 1/2-21-G-10/20).

In Figure 5b, the collapsible tube is shown connected to
the manometers. This configuration was used to measure the
distribution of interior fluid pressure, which is indicated
on the manometers in the figure. The water level in the
test chamber was adjusﬁable through +the interchangeable
‘Séétions of pipe shown in the right foreground of the
figure. The outlet pressure, P,, was maintained at a
‘constant value of 3.10 in H,0 above the centerline of the
collapsible tube. The free 1length between the collapsible
tube supports was adjustable between 9 and 11 cm,
| Samples of 1/2 inch Penrose surgical drain tubing (latex
rubber) were used as the flexible tube (E = 1.9 x 107
dynes/cmz, thickness = 0.028 cm, Poissoh's ratio = 0.5).
The measurement of axial pressure drop was done with a piece
of‘ this ¢tubing suspended between the circular mounts;
However, it was necessary to affix manometer connecting
tubes to the main Penrose tube in order to measure the

distribution of 1interior pressure. This modification 1is
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shown 1in Figure 6. Conrad (16) has observed that the
initial elliptic cross-section of the tube predetermines its
circumferential collapsed shape. That is, the long axis of
the 1initial cross-section remains the_ long axis of the
collapsed cross-section. This fact made it possible to
locate the manometer connecting tubes a priori so that they
cbntinue to meésure the fluid pressure in the side channel
formed during extreme collapse (condition I in Figure 3c¢).

Thus, small holes (0.5 mm) were made in the Penrose tube
wall along a lengthwise extension of the major axis of
1n;tia1 cross-section. The manometer conhecting tubes were
glued to the penrose tube over the holes. The wall tap
spacing (1 cm) was somewhat arbitrarily selecﬁed based on a
éfédeoff between minimizing the interference with the solid
méchanics of collapse and maximizing the number of fluid

pressure sampling points.






CHAPTER III
ANALYSIS

The major analytic difficulty experienced by previous
investigators has been the treatment of tube structural
mechanics. The fluid mechaniecs has been ﬁniformlyvtreated
as one-dimensional. In order to assess the accuracy of

predicted variables, a relative error was used

error = (xp - xr)/xr (2)

In Equation 2, and throughout ¢this study, the standard of
comparison is the measured (reéding) valué which is-

represented by x,.; Xp represents the predicted value.
Literature Survey

Rodbard (18,20,21) and Holt (22,23) were among the first
to discuss flowrate predicfion in collapsib1e  tubes. As
physiologists, they attempted to use the simplest fluid flow
model available, a linear Hagen-Poiseplle relationship.
This 1linear ‘pressure drop~flowrate model has repeatedly
abpeared in analyses of collapsible tube flows; however, the
" nonlinear haturé of the characteristic previously discussed
' (e;g., Figure 4) would seem to preclude accurate prediction

by so simple a fluid model.
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Conrad (16) was among the first to study both the steady
and oscillatory behavior of the flow through the tube. His
fluid models were used to explain the experimental data and
a prediction of the data was not attemptéd. His
experimental apparatﬁs was the clasical apparatus shown in
Figure 1, so that 1isolation of the tube in order to
" determine its characteristic was not accomplished.

Almost simultaneously with Conrad, Katz et al. (12)
attempted a study of the collapsible tube.‘ They measured
experimental collapsed tube shapes and correlated them to a |
fluid energy loss coefficient for the tube. This model of
the flow through a collapsible tube waé utilized in a fluid
mechanical analysis of the classical apparatus ;(Figure 1).
Thus, Katz et al. attempted to pred;ct the in-circuit
performance of the tube. Their resuits are pbesented_in
Figure 7. The large error (56%) in predicted pressure drop
ai a given flowrate was attributed to slight errors in the
measurement of cross-sectional area and the

accompanying
underestimation of the viscous losses.,

In a milestone study, Brower and Noordergraaf (11)
presénted the first characteristic data for a collapsible
tube. The analysis that they qonducted was'based'oﬁ a best
fit to the experimental data. An important study conclusion

was that the analysis should be developed from basic

physical principles.
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Figure 7. Comparison of Data for a Semi-Empirical
Model, from Katz (12, p. 1273)

In 1972, Lambert and Wilson (15) proposed an inviscid,
irrotational model of the fluid flow coupled to a
theoretically derived model of the tube mechanics. In this
model, the tube was assumed to possess hoopwise bending

rigidity only. Two aspects of this model are important.
First, the model was fully predictive. That is, given the

basiec properties of the fluid “and tube, a flowrate was



22

'predicted,.albeit inaccurately. Secondly, the large erfbrs
manifest in the results were attributed by the authors to
the neglected fluid viscous effects.

In a later study, Wild et al. (24) presented a model
specifically addressed to steady flow at 1low Reynolds
numbers. The model was derived from a lubrication theory
solution. The lubricatidn theory is wuseful when the
Reynolds number is small (e.g., order 1) and the tube radius
is very small compared to the length. Wild deified the
basic lubrication theory to account for an elliptic tube
cross-section, with ellipse parémeters which vary in the
agial’direction. This model is 1mportaht in that it was one
df the first to utilize a distributed geometric shape as a
tube descfiption. However, noteworthy shortcomings of the
model inclﬁde its requirement for an elliptic tube cross-
section, and the constraint to low Reynolds number flow.

| In 1977, Shapiro (13) published his approach to ﬁhe
problem, He offered a one-dimensional fluid model and
emphasized the importance of coupling the mechanics of the
flow to the mechanics of the tube. His model of the tube
was an empiricai one and fluid frictional effects were
.lumped into a coefficient of friction. Shapiro emphasized
the importance of the tube-support ihteraction at the
dbwnstream, exiting end of the tube on the fluid mechanics.
He also suggested that these end effects may limit the

usefulness of the apparatus as a rigorous venous quel.
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Shapiro presented a general theory of flow in collapsible
tubes, but perhaps the greatest 1limitation of his theory
rests in his assumption that the fluid pressure distribution
and viscous wall shear distribution are known quantities.
in the light of 1nhérent measurement difficulties discussed

previously (11), this would seem to be an unjustifiable

assumption at the present time.
Analytical Approach

‘The goal of the present analysis was to predict the
fluid flow characteristic pressure drop-flowrate response to
the collapsible tube. In this approach it was assumed that
flowrate, outlet pressure, and collapsing pressure are known
'thle inlet pressure is to be calculated. A finite~element
model of the flexible tube was assembled and coupled ¢to a
one-dimensional fluid mechanical model. The nonlinear
combined model was programmed for iterative solution on a
digital computer. The solution algorithm was composed of a
set of task-oriented subroutines which are highlighted in
the following sections and discussed in detail in Appendices
| A through F,.

Analysis inputs were Sseparated into four types:
geometric, material, initial value, and numerical
pérameters. " The inputs are summarized in Table I. These
fifteen inputs are all that was fequired for the analysis
and thus fuifill the scope requirement for an input list of

fundamental parameters.
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TABLE I
ANALYSIS INPUTS

Type Tube Fluid

GEOMETRIC
Thickness
Circumference
Length
Ellipticity

MATERIAL

Poisson's Ratio Kinematic Viscosity
Young's Modulus Density

INITIAL VALUE
Stress Levels Flowrate

Downstream Pressure

Collapsing Pressure
NUMERICAL

Global Axes
Subdivision
Finite Element o
Distribution .
Convergence
Parameters

" The Tube Model

The tube was viewed as a shell structure which shows
membrane stiffness in the axial direction and bending
rigidity in the hoop direction. Katz et al. (12) showed the
importance.of accurate tube shape prediction to the coupled
fluid mechanical prediction. Lambert and Wilson (15) have
shown. the importance of hoopwise_béndiﬁg in the tube, but

they ignored effects in the axial direction. Shapiro (13)
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suggested that the short length of the tube would also make
axial membrane stresses important to tube shape prediction;
but he observed that such a distributed tube model could be
forbiddingly complex. ‘Nevetheless, such a model was the
next logical step and it was employed for this study..

The observed collapse shapes (Figure 3) show that the
énalysis must account for wall deflections which are very
large with respect to wall thickness (e.g., 20 times).
These large deflections give rise to a form of "geometric"
nonlinearity which may be best treated with a finite element
approach (25). Furthermore, the deflections occurred in
such a way that the thin plate assumptiéns which are usually
used in a shell analysis became invalid.

Finite elements which possess inter-element
diécontinuities in position or slope havé often been used in
the analysis of shell problems, such elements are usually
termed non-conforming (25). In the present study, a variety
of non-conforming triangular elements were examined, none of
which achieved donsistent numerical convergence. That is,
ét sufficiently large displacement, all the non-conforming
elements that were examined produced.a singular stiffness
matrix. The cure for this ailment 'was‘ found 1in a
redefinition of the displacement functions. In éontrast tb
a classical finite element analysis, the linear deflections
(u, v, W) were associated with a pure membrane finite

element, while the element rotational orientation (8) was
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interpreted as a mean ~value fqr‘the‘ slope of the cqéving
structure.  Thus, ﬁddéljrotatidnal ‘deflections (AB) were
defined independehtly of thé linear deflections, and the‘two
‘typeﬁ of defiections were related through an intuitive
geometric relationship which was enforced by the use of
Lagrange multipliers. This scheme permitted’ position
continuity in order to predictvmembrane'effects as well'as
slope continuity in order to predict bending effects.
Following the finite element method, the structure was

subdivided into an interconnected set of small but finite
structural elements. Planar triangulér elements were
defined such that they ~stretch in4p1ahe in order to show
’ hembrane action. Hoop bending forces were calculated from
the nodal rotational deflections. The élement linear U, V,
W deflections are associated with the gIObali coordinate
directions X, Y, and Z, as shown in Figure 8; 4A9x is the
rotational deflection of a 1line tangent to the strbcture
about the global X-axis defined in a right-handed manner.
For example, at node £ in Figure 8, the structural
orientation, 6y, arises due to a deflection, Aex; from the
initial orientation, 6,, .

Two coordinate systems were needed for the analyﬁiﬁ.
The local coordinate system'was used to take advantage of
. ;he structure modelling assumptions (e.g., the “shallowv
Shell" assumptions which are discussed in 'follbwing

paragraphs), while the global coordinates were used as a
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reference for the assembled structure and the fluid
mechanics. In order to facilitate the analysis, x and X
must be chosen to be colinear. If this'is not done, a more

complete set of rotations would be required.

Figure 8. The Tube and a Finite Element in the Initial
Configuration with Corresponding Deflection
Directions

A "tangential stiffness" approach was used to analyze‘
thé anticipated non-linear loéd-deflectidn curve, The
analysis used an incremental tangential stiffness to
represent the stiffness of an elemeﬁt's dégrees of freedom

to the applied nodal loads. The degrees of freedom occur at
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the element cbrners (nodes) and are specified in Figure 9.
The elemental matrices were assembled into a single "global"
stiffness matrix which répresents the incremental stiffness
behavior of the entire structure as a set of coupied linear

algebraic equations.

~ uj “
vj ,
wj a
28yj €
uk E
=4 % | STIFFNESS
Wi a aF;
T (@) q
'/ ] s
Wp w’
| 06,0 | |
Qg
DEFLECTION
< vk > < vl }
Vlk wye
80 06,y|

Figure 9. A Finite Element, the Deflection Vector, and
the Load-Deflection Curve

The analysis was based on a set of shallow shell

assumptions:
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Due to the thinness of the shell, the
displacements, expressed in local coordinates
(u, v, w, 46,), were assumed independent of
the coordinate normal to the initial local
surface (z-direction). Thus, a complete
first-order two-dimensional polynomial was
used to represent the displacements.

U = ay +.axx + agy (3)
V. = 8y + agx + agy : (Q)
W= 287 + agx + agy (5)

Aex = ajqpg + ajix + aqoy (6)

The incompatibility of the 1linear and
rotational deflections was compensated by an
intuitive geometric relationship. That is,
in terms of the coordinates of the nodes

6 = (8, +A8,,)
+ (B, +A0,) (7)
Sin8 = (Z,, + W) - (2, + W) /4, (8)

Here, the finite element orientation, 0 ’

-shown in Figure 8, was treated as an average

of the two hoopwise structural rotations at
nodes j and f. This geometric relationship
was implemented through Lagrangian constraint
of the displacements (see Appendix A). In
other words, a Lagrangian constraint of the
stiffness matrix was applied to enforce
Equation 8 during all computed position
increments. '

The effects of initial curvature were slight
and were disregarded. This "shallowness"
assumption permitted the use of the large
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deflection strain expressions sometimes
called Green's Strain Tensor (25):

g, = w.1 (Qn 2»+(91)2+(?-‘1)27 (9)
N 2 2 x ox ox |
2‘14-.1_ (g.ll)2+(2\_’.)2+(.a_ﬂ)2 ' (10)
y oy 2 oy oy oy

2u, 2, 2udu, 3oV, dwoaw “n

Xy oy ox ox dy ox oy ox oy

E

™
"

Furthermore, the strain in the hoop
direction, €, , was constrained in order to
prevent the elements from carrying the load
through hoopwise membrane compression. Ifr
membrane compression were to occur, then this
would be characterized numerically by a
singular stiffness matrix. However, this
behavior 1is not observed physically and
should not be allowed to occur numerically.
Proper choice of local axes gave &4 = €, SO
that a second constraint equation was
introduced:

€y = 0 (12)

A straight line normal to the initial surface
remained straight and normal to the deflected
surface. This assumption is very much like
the Love-Kirchoff approximation where it is
assumed that transverse shear strains (7,
Yyz) are negligible (26). Yet, in contrast,
here the thickness was allowed to change.

A state of plane stress was assumed. A
change in internal energy associated with the
transverse normal strain, €, , was zero since
the transverse normal stress, o, , was zero.
This means that effects due to a change in
thickness can be ignored in a state of plane
stress. Furthermore, the assumption of a
state of plane stress automatically gave a
zero volume strain for Poisson's ratio of
0.5.

Out-of-plane distortion of the initial cross-
section has negligible effect on the hoopwise
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radius of curvature (RC). Thus, the change
in hoopwise reciprocal curvature becomes

X = aAex (13)
Oy
In addition to these shell assumptions,  the
following boundary behavior assumption was
adopted:
7. The effect of stretching the tube over the
circular mountings on the initial stress-
strain state of the tube was neglected. The
mountings were assumed to be in the same
shape as the undeformed cross-section of the
tube. ;
The relationships above were interpreted on a Lagrangian
frame of reference. That 1is, once the local axes were
specified, they remained fixed and all displacements and
straihs were referred to thé original axes positions.

Given these assumptions, a tangential global stiffness
matrix [K,] was formulated, a task which is discussed in
Appendix A. The applied loads were thus used to compute a
step in incremental displacement. This, in turn, 1led to a
new wall position and a corresponding new stiffness matrix.
Essential to this stepping process was an evaluation of the
applied loads. These applied loads were due to an imbalance

of the force of hydrostatic collapsing pressure and the

forces exerted by the flowing liquid.
The Fluid Mechanical Model

In the fluid mechanics analysis, the fluid volume was

divided into a series of finite incremental regions
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separated by successive X = c¢ planes. A schematic of the
volume division 1is shown in Figure 10. Starting a£ the
downstream end, the fluid pressure and velocity were
calculated to satisfy a momentum and continuity balance for
each successive region. When the inlet was reached, an

estimate of the internal distribution of fluid variables was

dbtained.

DOWNSTREAM

X-'-C*AXV / 24

RN
UPSTREAM \\\\ —

'/

l N
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\\\\\\\\\.

Az p AAd: Vg Py

<

- Figure 10. Division of the Fluid Volume into Finite
Regions

The governing equations included mass continuity:

Q = AV ) ‘ (14)
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where V is the continuity averaged axial fluid velocity, A
is the tube cross-sectional area, and Q is the fluid volume
flowrate. Equation 1u‘shows that, given the tube shape, the
continuity averaged fluid veiocity can be calculated at each
location along the tube. |

In addition, the integral form of momentum balance was

satisfied over each region:

[

st J oevar = -f V(e¥et)dA + f fda - [ PAdA (15)
In this approach, the fluid mechanics was assumed to be

dominated by changes in the axial, X-direction. This allows

simplification of the general momentum equation to

- 2 =2 _
0 = Pvu —de + PUAU - PdAd
+ fydA - ‘PdA - 16
| "I': X fw X ( )

For this steady flow analysis, the time-derivative term has
been discarded. The fyxy 1integral term represents the
contribution of the wall shear force. This term was
estimated via a hydraulic diameter modification of the
classic pipe Hagen-Poiseuille shear force caleulation (27).

That is,

erdA = 8uV4A,/hd an

with the hydraulic diameter given by

hd = 4A,/1p _ . - (18)
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Here, Vﬁ and Ay are downstream velocity and cross-sectional
area which are used to include some account of taper, and 1lp
is the wetted perimeter of the flui¢ region. Noticevthat
since the hoop strains were constrained to be zero, 1lp is
‘constant.

The procedural difficulty in evaluating Equation 16 |
entered in the integration of the pressure over the wall
surface; that is, the difficulty entered in coupling the
one-dimensional fluid model to the three-dimensional tube
model. Here, the fluid pressure, P, was assumed to be a
linear function of X within a given region.  This linear
relationship, in conjunction with Equation 16, forms two
ééuations in the three unknowns, Pu, Pd, and axial rate of
pressure change, m. Thus, the downstream pressure was
assumed known, the last term_in Equation 16 was numerically
integrated, and the upstream pressure was caiculated from a
closed form of Equatibn 16. This technique was stepwise
applied beginning at the outlet end of the ¢tube and
proceeding upstream until the inlet was reached in order to
ébtain an estimate for the axial fluid pressure
distributioh. These calculations weré made by subroutine:
FLOW1D which is discussed in Appendix B.

i Subsequent' to the calculation of the fiuid pressure
exerted on the = interior wall surface was the estimation 6£
the loads on the tube. Here, it was assumed that the fluid

pressure forces were dominant,' so that fluid viscous forces



35
on the tube could be neglected. The subroutine which
calculates the external forces on the tube and reduces them

to an equivalent set of nodal forces is called subroutine

FORCES and is discussed in Appendix C.
Solution Algorithm

The solution began with the definition of én_equilibrium'

index, ¥,
93 = 'E'i -Ee (19)

. The internal forces, F were related to the amount of

i,
strain the tube experienced and the elasticity of the tube
material. The external forces, F,, were calculated from the
fluid hydrostatic and flow pressure loads.

Computingvthe first variation of Equation 19, with the

external forées held constant, yields

dW = [K.] dg | (20)

The global tangential stiffness matrix [K,;] represents
the stiffness of the structure to an incremental change in

position, dgq. Conversely,
dg = (K 17 ay 1)

was used to calculate an .incremental change in position due

to a small change in load, dW. Thus, at computational step



36
N+1 N N+1 '
n, d¥ = ¢ -y, In addition, W = 0 was used to guide

thé solution toward equilibrium. Then,
L L o (22)

was used to compute an incremental correction to the
position. Here, the stiffness matrix [K,] was augmented to
account for the two constraint equations previously

introduced (see Appendix A):

: -1
dq" [K 17 [cciT n 1T

= - , : _ (23)
A" [ccin [0] 0

~ . ~

where [CC] 1is a matrix of thé constraint coefficients and A
is the Lagrange multipliers. Subroutine STEP applied the
boundary conditions, computed the invefsion of the augmented
stiffness matrix, and tested for convergence based, in part,
on the smallness of the correctional step, dq . The details
of subroutine STEP are discussed in Appendix D.

It is now possible to establish the algorithm flowchart
as in Figure 11, Two subroutines are shown which have not
been previously discussed, INIT and MESH. Subroutine INIT
was the solution initializer which defined the finite
elements as well as various constants (Appendix E). MESH
defined the global cartesian mesh contained in the interior

volume of the tube plus rigid supports (Appendix F).
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JASKS

SET LOCAL AXES.
DEFINE THE FINITE ELEMENTS.
INITIALIZE CONSTANTS. '

BN

INIT I
, 1. ESTABLISH THE GLOBAL CARTESIAN
MESH  MESH.
| 2. INITIALIZE THE FLUID VARIABLES.
1. COMPUTE THE EXTERNAL FORCE
~——|  FORCES | VECTOR, Fs, FROM R, AND THE
, FLUID VARIABLES.
’ 1. COMPUTE THE GLOBAL TANGENTIAL
KMATRI STIFFNESS MATRIX [Ky1?
2. COMPUTE THE EQUILIBRIUM
VECTOR Y7

1. COMPUTE THE INCREMENTAL WALL
STEP POSITION ADJUSTMENT. gq“

MESH 1. SET THE NEW MESH.
1. COMPUTE THE FLUID VARIABLES OF
- FLOW1D, AVERAGE PRESSURE AND VELOCITY.

Figure 11. The Algorithm Flowchart
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The solution algorithm used a modified Neuton-Raphson,
‘technique which followed the path shown in Figure 12,
Although the figure only shows the path for a single degree
of freedom, it is indicative of the overall process. The
first step 1-2 is a simple ihversion of the stiffness-matrix.
with scaling of the step to ensure its smallness. The sfep
‘must not be allowed to become excessive, otherwisék the
assumption of constant extérnal force during a step may lead
to a non-physical solution. Nevertheless, due to‘
non-linearity, the internal stresses may not prodﬁce the
expected value of W at step 2. Thus tﬁe true W occurs at
point 3. Subsequently, the tangential stiffness is
recomputed and another step is taken from 3-4. This process
is continued until convergence at step 6 is achieved.

The apparent WY=0 point changed on each step'as shown in
Figure 12. This occurred since the pressure loads created a
changing nodal force vector for the elements as they changed
orientation. This presented no problem as long as the step

size was kept small.
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Figure 12. The Solution Path on a Load-Deflection Plot
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CHAPTER IV
RESULTS AND DISCUSSION

" In this chapter, the experimental and analytical fluid
pressure-flowrate characteristic of a collapsible tube 1is

presented. The role of pretension was investigated as well

as the demarcation of the oscillatory regime and the

definition of the axial pressure distribution. The

reference height for the measurement of all pressures was

the axis of the collapsible tube.

Experimental Results

The Pressure Drop-Flowrate

Characteristic

Figure 13 shows the experimental characteristic fluid

pressure response to tube collapse due to flowrate and

collapsing pressure variatiqn. The downstream pressure, P,
was held at 3.10 in HZO. Each curve represents a different
value of collapsing pressure, P,- The prestrain was set at

about 1%. Imprecision of the prestrain occurred due to the
difficulty of achieving a uniform mounting of the tube on

the experimental apparatus.

R
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Qualitatively, the tube characteristic response lwas
similar to that presented by Brower and Noordergraaf (Figure
4), but differences in tube length and pretension exclude a
‘rigorous comparison to their experimental data. The fluid
mechanics underlying Figure 13 are perhaps best described byv

observing the dependent inlet section pressure response, Pl,

“as flowrate was increased with constant Pe:

1. At extremely low flowrate (less than 3
ml/sec) two side channels were created and
the tube was in a state of extreme collapse
(I in Figure 3). Due to the low flowrate,
however, the fluid forces were small and,
consequently, the upstream pressure was small
at all values of collapsing pressure.

2. At moderate flowrates (3-9 ml/sec), the tube
began to open due to increasing upstream
pressure. This increase in upstream pressure
was due to the increase in fluid viscous
forces which accompanied the increased
flowrate. Now the tube appeared to be mostly
open at the upstream end and c¢losed, or
collapsed, at middle and downstream
locations. '

3. As the flowrate was increased still further
(greater than 9 ml/sec), the upstream
pressure approached the collapsing pressure
in magnitude. At these flowrates, the tube
shape took on the character described by
previous investigators as "pinched" (12,16).
That is, a small but complete collapse dimple
was formed at the downstream end. '

y, At some critical value of flowrate, the tube
and flow began to oscillate. These data
points have been given an identifying symbol
in Figure 13. The tube wall oscillation
might be best characterized as a 1large
amplitude (of the magnitude of the tube
radius) and 1low frequency (1-2 Hz)
oscillation.
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Effect of Pretension

Figure 14 shows the effect of pretension on the flow
¢haracteristic at three levels of collapsing pressure.

The high level of collapsing pressure (P, - P, = 6.0 in
HZO) shows only a slight response to pretension. Here,
- flowrates less than 7 ml/sec provided a slightly increased
upstream pressure, otherwise the characterisﬁic was affécted
very little. |

The moderate level of collapsing pressure (P, - P, = 4,0
in HZO) shows a uniformly lower upstream pressure. This
response was attributed to the increased tension associated
with high prestrain holding the tube more open.v Thus, the
fluid channel was widened so that the fluid forces were
reduced, as was the upstream pressure..

| At the low collapsing pressure (P, = Py = 2.6 in HZO)’
‘the effect of pretension was most pronounced: All flowrates
p;oduced a smaller upstream pressure.

Table II shows the effect of pretension on the
oscillation onset. The flowrate valueS which are shown were
the first at which oscillation was observed,b all other
conditions held constant. No overall pattern emerged from
this data. Nevertheless, two points are of interest:

1. At a very low collapsing pressure (P, -‘Pz =
1.0 in H;0) and a high prestrain, contact of
opposite walls did not occur. Neither did
oscillation. The occurrence of this case
suggests that oscillation and collapse with

contact of opposite walls are closely
related.
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2. With a high prestrain and a high collapsing
pressure (P - P2 = 6.0 in H70), a very high
frequency, low amplitude (radius/10)
oscillation began at about 15.5 ml/sec. This
high frequency oscillation persisted until
the flowrate reached 23.5 ml/sec when the
large amplitude oscillation began as in other
cases.

TABLE 1II
FLOWRATE (ML/SEC) AT ONSET OF
OSCILLATION
(P, - Py)

(in, Water) 1% Prestrain @ 10% Prestrain
6.0 11.5 15.5/23.5
5.0 11.0 12.5
4.0 11.0 11.0
3.0 14.5 10.0
2.0 13.5 15.5
1.0 13.5 none
(Downstream pressure = 3.10 in H,0)

Axial Pressure Distribution

The  four figures which follow show the axial
distribution of fluid pressure as measured by the tube wall
taps, and the corresponding}shape assumed by the collapsed

tube. In all éases,‘ the flow direction was left-to-right.
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The prestraih was set at thé low value. - The intent was'to
demonstrate the developmént of the axial ﬁreSsure
distribution as the flowrate .was increased. Consequently,
the collapsing pressure was held constant, (Pe - P2 = M.Q in

HZO)’ as was the downstream pressure (3.10 in H,0), while

the flowrate was increased and the fluid wall pressure

méasured for each successive case. In all cases, contact of
opposite walls was indicated by the flat area down the

center of the tube. The pressure distribution demonstrates
the interplay of the two major opposing fluid reactions: An

upstream pressure rise due to viscous effects, and a

downstream static pressure drop due to a venturi effect.

In the final figure of the series, Figure 18, the tube
has assumed the "pinched off" shape described by previous
investigators (12,16). Complete collapse was confined to a

- small region in the downstream end of the tube. The
.interior fluid pressure was very nearly equal to the
collapsing pressure over the entire upstream half of the

tube. At this high flowrate, oscillation was imminent.

It was observed that a slight increase in flowrate above

that in Figure 18 caused the tube to open completely due to

the further 1increase in upstream pressure. This opening

motion caused an increase in the cross-sectional area at the

constriction with. large reduction in viscous effects.

Subsequently, the loss of viscous effects made the interior

,distending pressure less than the exterior collapsing
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pressure, which encouraged recollapse of the tube. The
cycle was completedb Qhen recollapse caused a rise in
upStream pressure. In this scheme, the limits of the cycle
were determined by the tube maéhanics; That iS, the opening
motion was limited by the increase in stiffness associated‘
with -the fully inflated tube cross-section, while the
 ‘ciosing motion was limited by‘ contact.of' opposite tube

walls.
Analytical Results

In the remaining portion of this chapter the
computational results are examined. . These results are
separated into two groups: a high pressure group with

collapsing pressure greater than 6.5 in H,0, and a low

pressure group with collapsing pressure less than 6.5 in
‘H20. This approach was adopted for three reasons: First,
for' clarity of presentation; second, since the 1low
collépsing pressures are more 1likely to occur in the
physiology, more attention was focuséd on them; aﬁd'lastly,
less computétional data was geherated for the high pressure
group since it was extremely expensive to do so. This last
consideration was a concession to the finite size of both

the computing storage capacity and the project budget.

Configurations and Cost

Nonlinear finite element methods have been‘traditidnélly"
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recognized as being computationally time | consuming

(25,29,30). This occurs partly because the stiffness matrix
is dependent on position and, therefore, must be
reformulated on each computational step, and partly because
of the inversion cost of the large stiffness matrix. In the
present study, the introduction of constraint equatiohs,
created an augmented> stiffness matrix which no longer
possessed the banded matrix structure df the stiffhess
matrix alone. This presented an even greater computational
burden on the stiffness matrix storage and inversion
techniques. In addition, the routines in this study were
written for understanding and debugging versatility, rather
than program efficiency. " However, as a concession to
optimization, an optimizing compiler (FORTRAN, 1level G
‘compiler) was used. Nevertﬁeless, accurate solutions were
qﬁéained at high cost.

At the outset of the computation, it was assumed that
seven equidistant circumferential nodes would be adequate to
predict hoopwisé bending effects. It was felt that fewer
nodes would be inadequate to- accurately predict the extreme
coilapsed condition and more nodes would be wasteful. In
aécordance with this assumption, only the finehess of the
tube lengthwise subdivision was varied in order to study
qonvergence; Two axes of symmetry were used to minimize

computations.
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Figure 19 shows a-coarse finité elementA arrangement.
Here, U8 elements were used to predict wall position; the
arrangement was denoted Mu8. Similarly, M72 was a
configuration with 72 elements. Both configuratipns had six

equal hoopwise increments.

Y

Figure 19. The MU8 Finite-Element Configuration with
Underlying Grid

| Table III shows a comparison of the computational
requirements of the two element densities for an IBM 370/158
digital computer. The 1larger stiffness matrix 'was
acompanied by a twaold increase in storage and a nearly
threefold 1increase in the execution time. Fortunately,
these increased costs were offset somewhat by an increase in

accuracy.
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TABLE 1III

ELEMENT DENSITY VERSUS COMPUTATIONAL
PARAMETERS

Augmented Stiffness Matrix
Storage Requirement Upper

Single Step 1/2 Only--Double Precision
Execution Time Words
M8 26.7 sec 13k
M72 1 min 8.4 sec - 27k

Prediction and Measurement Comparison

Figure 20 shows the experimental and predicted inlet
pressure for low axial tube prestrain. The experimental and
analytical cases had the outlet  pressure, Pz, constant at
3.i0 in HyO0. The U48-element distribution was used to
pfedict P; at all the experimental vélues of collapsing
bressure shown. The maximum error for the MU8 pressure
predictions was about 13% of the measured value at the same
‘flowrate (e.g., Equation 2), and it occurred at the
mid-range of collapsing pressure and flowrate of the points
examined. The maximum M72 error in predicted pressures was
about 9% comparéd to measured pressures at the same
flowrate. Predicéed pressures tended to be high at the low
flowrates and low at the high flowrates. The improvement in

accuracy shown by the M72 predicted pressure at high
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flowrates occurred due to an increase in structural
flexibility associated with the greater element density.
That is, the increase in element density gave rise ¢to a
decrease in predicted structural 'stiffness. This deerease
in stiffness resulted in a decrease of cross-sectionai.area
and a corresponding rise in  upstream preesure through
increased visceus forces. This effect was demonstrated at
all flowrates examined.

Figure 21 shows the correlation between predicted and
measured inlet pressure for the high prestrain case. Here,
the MU8 values demonstrated much 1larger errors in predicted
pressures than the M72 results (24% maximum error versus 8%
maximum error). This further suggests that the improvement
in‘accuracy of the M72 configuration was due, 1in part, ¢to
the ability of the 72-element model to accurately predict
the membrane forces since these had more effect on
displacement in the high prestrain case.

Two important shortcomings of the model are evidenced in
Figure 22. First, an excessive fluid pressure minimum was
predicted. This suggests that the fluid viscous forces were
somewhat under-estimated, while the wall structural model
abpeared to be overly flexible. Compared to the physical
case, this combination would lead to a smaller
.crgss-sectional area at collapse and a‘corresponding hiﬁher
fluid velocity at the minimum croes-section. Thus; the

fluid inertial effects would assume too important a role and
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cause_ﬁhe excessive pressure depression which was predicted._
Secondly, the predicted pressure minimum was 1located
upStream of the ﬁinimum in the experimental data.

Comparison between predicted and observed tube shapes showed

that the predicted wall shape had a tendency to form a

minimum in area which was too closé to the mid-iine (x = 4.5
 cﬁ)  of the tube. This would cause the predicted pfessure
'minimum to occur further wupstream than was observed
experimentally. Névertheléss, care must be exercised in

these comparisons. The fluid flow in the inlet and outlet

regions to the collapsed portion of the tube was
three-dimensional. Thus, comparison of measured wall‘
bfessure data to predictions from a one-dimensional fluid

model may be suspect.
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CHAPTER V
SUMMARY AND RECOMMENDATIONS

The goal of this study was to measure and predict the
steady-state pressure drop-flowfate characteristic’ of a
’coliapsible tube. Previous investigators ' have emphasized
the need for an analysis which is constructed solely upon
basic physical principles. The present study Qas intended
to fill this need. | | |

Experimental data was presented in order to clarify and
“augment previously presented results. New pressure
drop-flowraﬁe data Qas presented which shows the importance
of tube axial pretension, particularly in cases of loﬁ
co;lapsing pressﬁre. The data also shows that tube/fluid
oécillation occurs at sufficiently high flowrates
independently of 1nteracting circuit elements. Another set
of new data uaS'presented which showed the fluid wall static
pressure distributioh as a function of flowrate. These
measurements raise the quéstion of the suitability of using
fluid wall static pressure measurements to validate a
éné-dimensional fluid model in the present casé. More
sophisticated fluid experiments need to be conducted to

answer this question.
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A finite element structural model of the .tube wasv
presented which balanced axial membrane stresses plus
hoopwise bending stresses against the applied fluid pressure
loads. The finite element tube wall approximation was
coupled to a onefdimensional fluid model in order to predict
the tube inlet fluid pressure as a function of tube
collapsing pressure and fluid flowrate. .
Analytical results showed that the approach yielded
considerable'improvement'in accuracy over that demonstrated
by other methods. Previous investigators have complained of
errbrs in predicted fluid pressure as 1large as 56% of
measured values at the same flowrate. In the present study,

at low pretension, the maximum error in predicted pressufe

was near 13% of measured values with a coarse finite element
arfay,’ and near 9% with a fine element array. With a high
~pretension, the maximum error was 24% with the coarse array
and 8% with the fine array. This improvement in accuracy.
can be attributed to an analytical foundation in first
physical principles.

In general, the analytical predictions agrée reasonably
wéll with the experimental data, yet a consistent error
pattern emerged. ‘'The predictions were too» high at 1low
flowrates and too low a£ high flowrates. A variation in
finite element size did not alter this pattern. The error

pattern was attributed to an incorrectly flexing modei and

possibly an underestimation of fluid viscous forces.
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Consequently, the first priority for further work on these
’hethods should be to include a more complete state of
bending while retaining the one-dimensional fluid mechanics.
A review of the results of such a study should indicate the
necessity for attempting a more detailed two- or
three-dimensional fluid mechanical analysis.

o As Brower and Noordergraaf (11) have demonstrated, the
predicted fluid flow characteristic can be used to evaluate
circuit performance where a section of collapsible tubing is
present. The characteristic in the present Study had fluid
flowrate forcing, but an important companion case has
pfessure forcing of the fluid through the tube (Figure 2a).
Inv order to predict general circuit performance it is
Eequired to be able to predict both the pressure and
flowrate forced characteristics. Consequently, a worthwhile

goal of subsequent research would be to extend the
techniques presented here to include the case

of pressure
forcing of the fluid.

The analysis methods of this study ére applicable to
engineering' design as well as physiologic analysis of
coilapsible tube flows. Engiheering devices which function
as'resistdrs, oscillators, amplifiers, and switches have
béen discussed. in addition to these, a collapsible tube
may vprovide a useful means of signal interfacing;' for
example, between hydraulic and pneumatic circuitry. This

is, after all, the role that the veins in the thorax appear
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to play during positive pressure lung ventilétion. The
analytical difficulty associated with physiologic collapsed
tube flows appears to be primarily due to complications in
the tube mechanics. Thus, the power of the finite element
ﬁethbd of analysis used in this study becomes important. In
. fact, the finite element method can model the complex tube
~materials and environments which are often encountered in

the physiology.
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APPENDIX A
SUBROUTINE KMATRI

The task of this subroutine was to assemble the pverall

structural stiffness matrix referred to a global axes

coordinate system,

Preliminary Considerations

The analysis requires two sets of displacements, as
discussed in Chapter I11; these are the global
displacements, q;, and the local displacements, q;. The two

displacement sets are related by a coordinate rotation:
S,L = [T] S.G (24)

Once the initial éonfiguration is established, this
kelationship remains constant. In the following
derivations, the subScripts are omitted and local
éoordinates'aré understood unless otherwise stated.

Basic to the analysis is the _formulation of element
stiffnesses in local coordinates in order to take advantage
of the simplifying shell assumptions. The transformation of
the "local" stiffness into a "global" ptiffneSs is

accomplished via Equation 24, The structural globél
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stiffness emerges once the elemental contributions are
summed in the proper manner.

The analysis first requires a relationship between the
displacements, dq, and the generalized coordinates, da; this
»relationship comes from the first variation of. the
polynomial expressions for the displacements (Equations

3-6). That is,

dg = [C] da . (25)
or, in expanded form:

{ ,duj\‘ [ X;¥50 0 0 0 0 0 0 0 0 ] [da, \
va 0 0‘ 0 1 xJ yJ O 0 0 0 0 0 Qaz
‘dwj 60O n 0 O .0 1 xj yj n o0 O da3

dAe, . 0 00 0O O 0 N 0 0 1 Xy 5 da,
| duk 1 X Vi 0 0O 0 0 n o0 0 920 Qas
dvy » L 0 0 1 %y, 00 00 0 0 dag

< dw, o o 0o 0o 0 o0 1 X, ¥, 0 0 0 1 da, }

dae 000 0 00 0 0 0 1 X, ¥y dag
du, 1 x; 9,0 0 0 0 0 0 0 0 0 dag
dv, 0 0 0 1 x y'1-~ 0O 0 0 0 0 O da,,
»dwl 0000 O0O0 1 x,y,0 00 da,
\déexlj 0000000000 1%y \daiz

Notice that the [C] matrix is a constant matrix regardless
of the polynomials chosen for the deflections. Moreover, in

general, the deflections are known while the‘corresponding



69

generalized coordinates need to be found. Hence; the

inverse relationship is needed:

da = [c1°7 dq - (26)

‘'The  analysis also requires a relationship between

strains and displacements:
dg = [B] dq (27)

To find the [B] matrix, the displacement polynomials are

substituted into Equations 9-11, 13:

€y = a, + % (a22 + a52 + a82) ’ (28)
1 2 2 2

cy - a6 + .2. (33 + 86 + 39 ) (29)
Yy = a3+ ag + apaz + agag + agag | (30)
« = ap, (31

Taking the first variation of these equations yields:
d €, = (1 + a2)‘d32 + agdag + agdag . (32)
d sy = a3da3 + (1 + a6) da6 + agda9 : ',. (33)
d7xy =. azda + (1 +‘a2) dag + (1 + ag) dag (34)

+ 39d38 + aBda9 |
dK = da12 | (35)

- which is, in matrix notation,

dg [B*] da (36)
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with [B*] equal to

0 (l+ay) 0 0 1 0O 0ag0 0 0 O]
0 0 ag 0 0 (1+4ag) 00 ag 0 0 O
0 asg (1+a5) 0 (1+ag) * ag 0 ag ag 0 0 0
0 0 0 0 O 0 00 0 0 0 1
This means thét
dg = [B*1[c1~" dq (37)
and
[(B] = ([B*1[c)l=1 (38)

Since [B*] depends on the values of a, it is thus position
dependent. In fact, the position dependency of [B*] leads
to the position dependency of the stiffness matrix, soon to

be- developed.

7 The strains can also be related to the stresses through

an Hookean elasticity matrixﬁ

dg = [D] dg (39)
In this scheme,
{40, ) 1 or 0 o] fae,
1 | (1-r®) (1+r) 0 { d
_ | |
dM 0 0 0 h kdx
\ Y J > ’ -T%




71

The Principle of Virtual Work

The stresses and strains produced by the external
loading = are represented by a set of equivalent external:

forces, Fg, which act at the finite element nodes. The

virtual work done by the external nodal forces is:

dWw = dqT F. (41)

~

This work done must equal the structnral internal work
(e.g., the principle of virtual work). The internal work is
calculated by integration of the stress-strain product over

the volume of the element:

dUi = jdeTg dr (42)
Orr‘using Equation 27:

YJUi = ds? J [BiTg dy | | (43)

and, equating the external and internal work:
da’F, = dqT f [(BITgar S (uW)

Finally, given an arbitrary value of dq,. the multipliers

must be equal. Or,

Fo = S BiTgar | | (45)
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Solution Method

If the right-hand side of Equation 45 is thought of as a
vector of the internal nodal forces, Fi then Equation U5

can be rewritten in terms of an equilibrium index, W,

Taking the first variation of this equation, holding the

external forces constant, gives:

o = f1aB1Tgar + ST dgar (47)

Using Equations 27 and 39,

W = franTga + [f181TDIBY ar] o ()
sq that
@ = (K] dg | (ug)
where
(Kl = [Kgl + [Kyl | (50)
[Kg] dg = J [dB]ngr (51)
[Kyl = f [BIT[D][B] dr (52)

Here, ([K,] is known as the initial stress matrix, or the

geometric matrix, - while [K;] 1is known as the tangential.

stiffness matrix.
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Calculation of the Stiffness Matrix

Entries

The Zienkiewicz (25) procedure was used to find [K,].

This method begins with a definition:

[ 2u/2x)
ov/ox
| Ow/2x : _
{ | ¢ 6Glq (53)
du/9%y ~
ov/oy
\ 2w/ 2y
substituting Equations 3 to 6:
f2u/2x) [0 1 0 0 0 0000 0 0 0
dv/dx ©o 0 001 00 O O0CODO O
aw/ax} O 0 00O O O 1 0 0 0 0
‘ - v a (54)
du/oy| O 0 1 0 0 0 0 0 OO0 0 O
v/y o o o 0o 0 1t o o 0 0 0 0
\ 0w/ 2y Lo 00000 00 10 0 0]
= [H] a
and, using Equation 26:
[(Hla = [HICI"! g (55)

so that

(61 = (HI[CI™] (56
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and the well-known form of the geometric matrix can be used

(25)

(K,1 = SI16ITIMIIGT dr (57)

where [M] is a matrix of the stress values:

o, 0 0 7, 0 0 7
0 o, 0 0 vy ©
(M] = S0 % ° Txy (58)
‘rxy 0 0 Oy 0
0 Txy 0 0 Oy 0
| 0 0 fxy 0 ] oy ]

In addition to the formulation of the tangential
stiffness matrix, this subroutine computes the Lagrangian

constraint equations. From Chapter III, the two constraint

equations are:

sin@ = (z,, + W) - (Z,, + W) /l (8)

cy = 0 (12)

To apply the Lagrangian constraint method, the first

variation of these equations must be computed (28):

(dayq + 1l,day5/2) Cosa; = dag v - (59)

y

a3da3 + (1 + ag) dag + agdag = 0 (60)
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Equations 59 and 60 can be written in matrix form and

appended to [K,] with Lagrange multipliers, so that

(K] tccit dq dw | (61)
| [0] A " o

[ccl

Equation 61 is the fundamental equation in the solution.
In the following deck listing, the step-by-step procedure in
the formulation is given.

A more compact formulation for the stiffness matrix

could have been obtained if ¢the internal energy were

expressed directly 1in terms of the ‘averaged 'rotational
coordinates. A subsequent energy minimization would then
yield a stiffness matrix which does not require the

computation of the additional Lagrange multipliers.



SUBROYTIND #MATRI

°. 30035 -
€ THIS SUBRIUTINT TalTUT HESS MATRIX I GLOSAL cooam::n::csocm 7 P IN GLOBAL COSRDINATES.
¢ 5 [
c 53000859 :
COMMON D(:,4),PSIf 241%(300,2),C7(12,12),5(5,12),V0L 59606060 Z .

. COMMON STIFF{Zz213} 50099377 By XODELD) - XD(D)
CoMMOon V'J(ZB),?(23),!”(23).?):3(233 330303 = i‘iODE(I) - YO(I)
COMMON XNODE {2203 ,YMODZ (2955 ,INIDE(200), IZLEM(3090,3) 2009¢ s INGDE(T) - ZO(D)
CCMHMON F(403), !m\x‘ 23,IMAX{23, 10) 20323130 oo TX(I) - TXO(I)

COMMON x9(339,,YO(H:) 20{125),TR(300, 10),SIGMA(330,4),NDOF(200) 00000110 s XNGDE(J) - XO(J)
COMMON TX{200;,TXG{250) 00090120 e YNODE{J) - YO(J)
COMMON DXIX, oxaﬁ,m( aL3,FMU,E,P1,P2, PE, 1IN, IOUT 00000123 3 ZNODE(J) - 200J)
COMMON 7, RHO, L, 524, 3, D2DX, REY, RMU, RNY, RO 00050140 5 TY) - TXS(S)
COMMON UTEST,FTEST, mu,}?,nu DPSI.SCALE 00002150 = ¥NIDE(K) - ED(X)
COMMON LA\SLEL L15THS, NELEM, KNODES, HIX, NTUBE, LASTJ, INFLAG 0000C 16D B YHADE(K)Y - YO(X)
COMMON MX, MNY,NTUSEX, NTUSEY, 3K, HY, NUMBC 00085173 B MODE(XS - 2C(K)
COMMON IFORCE,TdX, Ta¥,TdZ,515X3, XE,YC 00000180 > TX{K) - TXO(X)
DOUBLE PRECISION 5,P3I,STRAIN,CI,H,VOL,STIFF 000021535 I
[+ 000605290 c DEFLECTIONS TD LOCAL COD®DINATES.
DIMENSION DUM1(12,123,T3%2(12,12),DUM3(12),D0ML(123 00003215 24 = 1,12
DIMENSION DF7<12,125,4{12} RM{S, 6),00(2, 12} ,C00(2, 12) 00000229 JuMa(d) = 2.0
DIMENSION BSTAR(E, 12},E(4,12),04H(i12, 12),5:5%1.(") RK(12,12) 20002230 BO 1582 X = 1,12
DOUBLE PRECISION D!.W‘l DiM2, BU'!B,DU“‘I DPT,A 00590280 1532 DUYSE{J) = DUMH(J) « TPT(s,K)*DUM3(X)
DOUBLE PRECISION BSTAR,B,SISMAL,HMH,RK,RM,CC,CON 00000259 -
c £5200262 C  CIMPSTE THE GENERALIZED COURDINATES FOR THE LOCAL SYSTEM
YPRIME = Y3/2.0 00990279 33 1753 4 = 1,12
C INITIALIZE THE PSI VECTOR, -PSI IS ACTUALLY COMPUTED HERE. 00000280 ald} = 2.0
LAST = 4®4NODTS o (HTUBEY-1}®NTUBEY®2 20600299 53 1730 £ = 1,12
. DD 1502 J = 1,iAST 02000300 ALJ) = ALJ) & CI(J,K)*DUME(K)
1502 PSI(J) = F{(I 00000310 1750 CONTINUZ
c 00000320 c
c . 00003330 COREEERERETERERECOMPUTE SOTARNFNREREUEIENRNERRURRNERRSFIRESEREERIRS
C INITIALIZE THE STIFFNESS VATRIX 00090349 ¢ FILL BSTAR
C  THE STIFFNESS MATRIX IS STORED COLUMN-WISE 00090359 D3 1520 J = 1,4
[ 0000036C D3 1530 K = 1,12
KCOL = ¥®NNODES 00000372 BZTAR(J,K) = 0.0
. ISTOP = LAST®{LASTe1)/2 00000380 1530  CONTINUZ
DO 1510 J = 1,1ISTOP 03000399 c
1510 STIFF(J) = 0.0 50000400 T CAL LATL THE DERIVATIVE TERMS.
c » 00000410 DX = A(3)
C THE MEXT LOOP CONSIDIRS THE MATRICIZS ELEMENT-BY-ELEMENT. 00000420 au;xz = YWDX¥OWDX/2.0
DO 1500 M = 1,NELZM 00000430 ONZY = A(3)
c 00000442 DWDY2 = DWDY®DWDY/2.0
C BUILD THE ROTATION MATRIX. 00000450 DADXY = DWDX®DWDY
DO 1505 J = 1,12 Q0000460 THETAX = (DUMH(4) + DUM4(12))/2.0
DD 1505 X = 1,12 00000479 c
1505 DPT(J,K) = B.D : 000004E0 33TAR{1,2) = 1.0 + A(2)
00000495 2STAR(1,5) = A(5)
La0 . 00000500 3STAR(1,8) = A(8)
DO 1506 J = 1,2 00000510 BSTAR(2,3) = A(3)
DO 1506 X = 1,3 : 00000520 BSTAR(2,6) = 1.0 + A(6)
L=z Let 60000530 BSTAR(Z,9) = A(9)
DPT(J,K) = TR(M,L) 00000540 BSTAR(3,2) = A(3)

DPT(JoM, Ket) = BPTLI,K) 00000559 - B8STAR(3,3) = 1.0 + A(2)

DPT(J+B8.Ke3) = DPT(J,X) 00000560 BSTAR(3,5) = 1.0 + A(6)
1506 CONTINUE 00000570 BSTAR(3,6) = A(5)

DPT(N,8) = TR(M,10) 00000580 BSTAR(2,8) = A(9)

DPT(%,8) = TR(M,19) . 00000599 BSTAR(3,9) = (3)



BSTAR(I,KI*CI(X,d)

C
<
C'

C CALCULATE THE INCREMENTAL STRAIN FROM THE INITIAL POSITIOH
€ IN LOTAL CODRDINATES.

1560 STRAIN(M, 1) = A(2) + A(2)%A(237/2.0 « A(5)%*A(5)/2.0 + DddX2
STRAIN(M,2) = A(6) + A(3)®A{3)/2.0 + A(6)%A(6)/2.0 + 2dDY2
STRAIN(M, 33 = A(3) « A(5) + A(2)®A(3) + A(5)™A(6) + JW5IKY

TRAIN(M,4) = A(12)
c
C CALCULATE THE LOCAL STRESSES
D9 1531 J = 1,
SIG!AL(J) = SIGHA(H J3)
DO 1531 K = 1,4
SIGHAL(J) SIGMAL(J) + D(J,K)®STRAIN(M,K)
1531 CONTINUE

c
C CALCULATE THE INTERNAL FORCES, BT'SIGHAL, IN LOCAL COORDINATES.
1715 DO 1630 J = 1,12
DUM3I(J) = O. 0
30 1530 K = 1,
DUM3(J) = DU‘3(J) + B(X, J)'SIG*AL(K)
1630 CONTINUE

C ROTATE THE FORCES INTO THE GLOBAL SYSTEM
Do 1735 J = 1,12
DUMR(J) = 0.0
D0 1735 K = 1,12
DUMA{J) = DUMA(J) + DPT(K,J)*DUM3(K)
1735 CONTINUE
c
c
€ BUILD THE PSI VECTOR
DD 1650 L = 1,3
N = IELEH(H,L)
J = asy
K = &L
PSI(J-3) = PSI(J-3) - DUMK(K-3)%VOL
PSI(J-2) = PSI(J-2) - DUMA(K-2)*VOL
PSI(J-1) = PSI(J-1) - DUMH(K-1)®VOL
PSI(J) = PSI(J) - DUMM(K)®VOL
1550 CONTINUE

[
[
c
c
c .

IF(M.GT.(WELEM-NTUBEY)) GO TO 1651

MROW = (M-1)/NTUBEY
TIALT = (=1)®%MROW

P0SEONENNNEORRINNSSET AND STORE THE HOOP CONSTRAIHTSASsssssasssss

20201200
3C00i219
033501220

I«lllll.lllllllll!llllllc,“_cu[_‘rg STRESSES AND srRAIqb|lllllllllllll!ligggo‘3;0

50001320
G3001330
00031340
30651350
52001350
500313790
20551380
20091396
00001400
009001810
0C001420
00001430
20001440
00001450
00001460
©0001470
00001880
00001890
00001500
50031510
00001520
60601530
00901540
90091550
00001560
00001570
00001580
00001590
00001600
00901610
00051620
60001630
30001640
03001650
00001660
00001670
00001680
00001690
00001700
00001710

00001720 -

00001730
00001740
00001750
00001760
00001770
00001780
00901790

IF(IALT.GT.0) 50 TO 1651

¢ SET THE HOOP STRAIX CONSTRAINT ENTRIES IN IERMS OF THE
¢ GENERALIZED COORDINATES.
DO 3000 21,12
€C(1,£) = 8.0
3000 €C(2,K) = BSTAR(2,X)

C
C SET THE THETA-SHAPE CONSTRAINT IN TERMS OF THE
C GENERALIZED COORDINATES.

cc(1,9) = -1.0

CC(1,10)= COS{THETAX)

€C(1,12)= YPRIME®COS(THETAX)

c
C COMPUTE THE COWSTRAINT ENTRIES iN TERMS JF DISPLACEMENTS
D5 301G L=1,2
D5.3010 K = 1,12
DUMI(L,K) = 0.0
D0 3018 J = 1,12
3010 DUMI(L,K) = -DUMI(L,K) «

CO(L,9)%CI{], X2

.
c
C ROTATE THE CONSTRAINT ENTRIES INTO THE 3LOBAL REFERENCE SYSTEM.
59 320 L=1,2
DO 3020 X = 1,12
CON(L,K) = 0.0
DO 3020 J=1,12
CON(L,K) = CON(L,K) + DUM1(L, J)®DPT(J,X}
3020 CONTINUE .
c
c
C HUMERICAL CONDITIONING OF THE CONSTRAINTS.
DO 1790 L=1,2
BIG = 0.0
50 3030 J=1,12
ACON = DABS{COHN(L,J))
IF(ACON.GT.BIG) BIG = ACON
3030 CONTINUE

c .
C SCALE THE LARGEST ENTRY TO 10%%%
SCALEK = 1,0E06/BIG
DO 3040 J=1,12
COM(L,J) = SCALEK®CON(L,J)
3040 CONTINUE

c
C STORE THE ROW INTO THE GLOBAL STIFFNESS MATRIX.

KCON = O
XCOL = XCOLe!
DD 1790 I =

1,3
KROW = US(IELEM(M,I) - 1)
DO 1790 X = 1,4
KROW = KROW + 1
XCOK = KCON + 1
N = KRO4 + KCOL®(KCOL-1)/2
STIFF(N) = STIFF(N) + CON(L,KCON)
1790 CONTINUE
c

c
COSRERSSNARRSRESRGRNRANCALCULATE AND ASSEMBLE THE SIFFNESS®#sssess
c

0001800
00001321%
00001€20
0CO01E%D
203613475
00051350
GU00185C
0000187C
00001E£30

© 09901390

00001936
00001510
00001520
90901525
60091539
20201952
CC001556C
90001575
39921929
20091930
05032907
58902019
00352322
20002533
29392943
90002550
90002552
70002070
06202350
00392999
2000239
00002112
0000212¢
93112120
0000214C
20002150
00062160
00202170
20002130
03902169
00002205
00002219
00002229
03002230
00002230
03002250
00002269
00022270
20962220
06002235
60002300
79002319
00002329
00002330
00902340
90002350
00642360
00002379
50002389
00002390

LL



€ SET THE RM

1651 DO 1532

DO 1532

1522 RM(J,K)
c

lxwt-t

RM(1,1)
RM(2,2)
RM(3,3)
RM(A,4)
RN(5,5)
RM(6,6)
RM(1,8)
RM(2,5)
RM(3,6)
RMCEH, 1)
m(s5,2)
RM(S,3)

WHHOHEHAEN RN

c
C MULTIPLY M%H

DO 1770 J=

AATRIX
= 1,6
=1, 5
0.0

SISMALQY)
SIGMAL(1)
SIGMAL(1)
SIGMAL(2)
SIGMAL(2)
SIGMAL(2)
SIGMAL(3)
SIGMAL(3)
SIGMAL(3)
SIGMAL(3)
SIGMAL(3)
SIGMAL(3)

1,6

DO 1770 K=1,12

DUN1(J,K)

z 0.0

DO 1770 L=1,6

DUM1(J,K)
1770 CONTINUE

=z DUM1(J,X) « RM(J,L)®H(L,K)

c

C CALCULATE HMH = HT®DUMI
DO 1780 J=z1,12
DO 1780 K=1,12

6
HMH(J,K) = HHH(J K) « H(L,J37%DUMI(L,X)

1780 COHTIIUE
c
c

€ THE FOLLOWING TWO LOOPS DEFINE THE GMG MATRIX
C MULTIPLY HMHOCI

DO 1540 I
DO 1580 J
DuUM2(I,Jd)
DO 1540 K
puM2(L,J)
1540 CONTINUE
[

s 1,12
= 1,12
z 0.0
= 1
=

, 12
DUM2(I,J) « HMH(I K)®CI(X,J)

C SET GMG = DUM1 = CITSDUNM2

DO 1541 I
DO 1541 J
DUM1I(I,J)
DO 1541 K
DUMI(I,J)
1541 CONTINUE

c C
C THE FOLLOWJING TWO LOOPS DEFINE RK, THE ELEMENT STIFFNESS MATRIX.

= 1,12
= 1,12
= 0.0
= 1,12
z DUNI(I,J) « CI(K,I)®*DUM2(K,J)

C MULTIPLY BT®*D

1542 DO 1535 1
DO 1535 J
buM2(1,J)
DO 1535 K
‘DUM2(I, J)

1535 CONTINUE

WHEHN
CET- T

2(1,J) « B(X,1)*D(K,J)

00062400
00002410
00052420
000902430
00302440
20002450
£0002460
06002570
00002480
30002430
50002530
20002519
90002520
30002530
00002540
00002550
00002560
00602570
00002580
00002530
00002600
00002610
00052620
00002630C
00002640
0C002650
00002650
00002670
00002680

100002690

00002700
00002710
00002729
00002730
00002740
00002750
00002760
00002770
00002780
20002790
00002800
00002810
00002820
00002830
00002880
00002850
00002860
00002870
00002880
00002890
00002930
00002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990

10y

50 1545
R, 4)
1535 CONTINUE
c

|lmllm;4

E APPLY THI CONGRUENT AXIS TRANSFORMATION.
53 1557 J = 1,12
o 1551 X =.1,12

omzdl, X) - 0.0
1,12
1 DUM2(J,K) + RK(J,LI®DPT(L,X)
¢
DY 552 J = 1,12
22 1552 K = 1,12

AX(J,X) = 0.0
02 1832 L = 1,
R¥(J,K) = RK(J K) «+ DPT{L,J)*DUM2(L,K)
1552 £ONTINIE
-

D3 15362

o0 1552 , 12

RK(J,K) = RK(J Ky®yoL
1562 CONTINUE

e

1,12

"

[ ,

T STIRE THE STIFFNESS TERMS
2% 1553 J = 1,3
D2 158 =3,3
JK = (IELEH(H J)-1)e4
KK = (I‘L-H(H K)-1)%4
KSAVE KK
XSY™ =
IF(JK. EQ KK) KSYM =z 1
JR = (J-1)%4
KR = (K-1)%4
IF(JK.GT.KSAVE) GO TO 1555

GO TS 1557
1555 XK = JX

JK = KSave

JR = (X-1)%4

XR = (J-1)%4
1557 DO 1563 Lt = 1,4

JK = JK+1

JR = JR+1

XS = «R

X8 = XK

DD 1564 L2 = 1,4

XS = KSet

X8 = KB+l

IF(JR.GT.KS .AND, KSYM.EQ.1) GO TO 1564
N = JK + KB*(KB-~1)/2
STIFF(N) = RK(JR,KS) + STIFF(N)

1564 CONTINUE

1563. CONTINUE

<
1500 CONTINUE

“SOJOJO

,“10311”
“340313'

30283320
.9-43‘330
36033460
25553350
25393360

25003370
330313382
50303390
5553303
3GJQ<410

03633&73
20393500
30903510
30203520
800623530
90803540
<3323550
52093560
00003570
20003530
20053590

8L




aaOn

c

RETURN
END

CONDITION THE STIFFNESS MATRIX
DO 4000 J
DO 4000 K
' N=J+ (K-1)¥K/2
IF(DABS(STIFF(N)).LT.0.1) STIFF(N) = 0.0
4000 CONTINUE

1,LAST
J,LAST

00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003680
00003690
00003700

6L



APPENDIX B
SUBROUTINE FLOW1D

The object of this subroutine was to calculate the fluid

variables of pressure and velocity on the interibr of the

tube. In order to accomplish this, the fluid region'wés

subdivided into a connected set of finite fluid regions

divided by a successive constant X planes and enclosed by

the tube wall (Figure 10 and Figure 23).

ELEMENT n

Figure 23. Wall Surface Approximation in a Fluid
Integral Region

80
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Given the tube shape, it is a straightforward task to

apply continuity and determine the average velocity; v,

everywhere within the tube. The equation used is
V = Q/A | -~ (62)

Here, A is the cross-sectional area and Q is the flowrate
fhrough the tube. The trapezoidal method of integration is
used to find the cross-sectional areas based upon the
cartesian mesh values as determined by subroutine MESH.

As discussed in Chapter III, the term of interest in the

momentum equation is

Here, Pw is the average wall pressure and wa is the
x-component of wall surface area of the tube in the region
of interest. To obtain these values, the surface is

approximated by a set of flat triangles. The surface

approximation is shown in Figure 23. Notiée that the
surface triangles must be defined so that they enclose the
volume between the X-plane boundaries. This means that the
finite elements cannot be directly‘ used since they are not,
in éeneral, related to the underlying cartesian grid. The

computation 1is done by assuming a linear variation of

pressure in the region.

Pd = mx + Pu » ' (6“)



82
For this assumed linear variation in P and a planar triangle

for a wall approximation, the average becomes:

where P;, P,, P, are pressures at the corners of the

triangle, which are either P, or P; in magnitude. The

iécomponent of the wall area, wa, is found by computing the

area vector for each surface triangle. For element n in

Figure 23:

T
AwX
Man = Aoy n (66)
AwZ n

Summation of all the surface element area contributions

produces the value of wa for the region.



SUBROUTIKE FLOW1D

<
C THIS SUBROUTINE CALCULATES THE FLUIZ VARIABLES OF PRESSURE AND

C AVERAGE VELOCITY.
c

COMMON D(4,4),PSI(450), Sl?lIV(SJJ 3),8I(12,12),H(6,12),V0L

COMMON STIFF(SZZI?
COMMON VU(23),P(23),NY{23,PXB(23)

COMMON XlODE(zOO),YHODE{ZOO).L%?D:(299),IELEH(300,3)

COMMON F(A05),YMAX(23),IMAX{23,15)

COMMON X0(135),Y0(135),22(135),72{302,15),SIGMA(300, 4),NDOF(200)

COMMON TX(200),TXC(20G)

COMMON DXIN,DXOUT,THK,RLS,FMU,E,7
COMMON R, RHO Ri., DIA 2, D’DX REY
COMMON UTEST PTEST anx,u? oY, 0F
COMNON LASTEL LAS'HD NELEM, 4-5
COMMOK NX,NHY,HTUBEX XTUBEY, HX, HY,NU HB~
COMMON IFORCE,TWX,TdY,TwWZ,SZ uXO X

DOUBLE PRE"XS'O“ D PS...APi.V --,‘ VJL,ST FF

?1,22,PL, 1IN, I0UT
y,%NY,DRC -
S-AL_

c
C . THE FOLLOWING ARE PROGRAM SPECIFIC VARIABLES.

DIMENSION YZAREA(23),XGC{a9,35,Y50(45,3),26GC(49,3),SEC(23)
DIMENSION SMOOTH(23), “11(23) SMsyM(23), AXBAR(?B) SUHBAR(ZB)
DOUBLE PRECISION 121,!21,221.13|.!31.Z31,AX,AY,AZ,SAREA

DOUBLE PRECISION XGC,YGC,IGC

C
C FIRST, CALCULATE THE CROSSECTIONAL AREAS AND AVERAGE VELOCITIES.

C TRAPEZOIDAL INTEGRATICN IS USED.
JSTART = 1
JSTOP = LASTe1
UTEST = O
DO 1000 J:JSTA!T JsToP
SU¥ = 0.0
LASTK = NY(J)=1
DO 1010 K=2,LASTK
ZBAR = (ZMAX(J,K)eZWAX(J,Ke1))/2.0
SuM. = SUM+ZBARHY
1010 COMTINUE
c

MY = NY(J)
LAST = NY(J)
Y = RNY®HY
AINC = (YMAX(J)-Y)®ZMAX(J,LASTK)72.0
YZAREA(J) = N.QP(SUMAINC) -
1000 CONTINUE

[
C SMOOTH THE CROSSECTIONAL AREA'S IN THE X DIRECTION.

C THIS IS NECESSARY DUE TO THE COARSENESS OF THE WALL MODEL.

NDIM = NTUBE - NIN
JSTART = NINel
JSTOP = NTUBE
DOJ‘O?O J=JSTART, JSTOP
LzJ-N
EC(L) : TZAREA(J)

1020 CONTIN

c

CALL SE13(SEC,SMOOTH,NDINM, IER)

C SUBROUTINE SE13 IS AN SSP SUBROUTINE WHICH SMOOTHS BY INTERPOLATING
€ A SECOND ORDER FUNCTION WHICH IS A LEAST-SQUARE-ERROR FIT TO THE

k’k ,NTU3E,LASTJ,

00000010
00000020
00900030
00200040
20000050
00000065
000060790
000006080
00000090
00000100
00000110
00000120
00000130
00000149
00000150
00000165
000900170
00000180
00000190
00000200
00000210
90000220
00000232
00000240
00000250
0000026C
00000270

- 00000280

00000299
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
09000380
00000390
00000400
00000410
00000420
00000430
00000430
00000450
00000460
00000470
00000480
00000490
00000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590

¢ WIISHBIRING DATA POINTS.

; START, JSTOP
SMOOTH(L)

1330

¢ cALcBLETE TS AVERAGE VELOCITIES.

JSTOF = LASTJel

DO 1080 Jj=1,JSTOP

VBAR = G/YZAREA(J)

1 = VU(J)-VBAR
VBAR

7.9.0) UDELT = -UDELT
LT.GT.UTEST) UTEST=UDELT
vs “oe

(3]

.
c VEXT REQUIRES THAT THE FLEXIRBLE SURFACE BE
c SET OF 7RI LES RELATED TO THE
C -A‘E SYSTEM.
=
HIN
oF 1’355¢|

521105 N = NSTART,NSTOP

MEL = 2

J = HSTARTNSTOP-N

JH1 = J-)

LASTK = HY{J)
IFINTOIMILLT.NY(J)) LASTK=HY (JMY)

quJ-(
X = RJIMX
XJ¥ = X-HX

c

C DEFINE THE ELEMENT CORNERS IN GLOBAL COORDIKATES,

€ 1IN A COUNTER-CLOCKWISE FASHION.
DO 1200 X =3,LASTK
RK = K-2
¥ = 83y

_ K¥1 = X-1

YXM1 = Y-HY

c
MEL = MEL+?
XGC{MEL, 1} = XJM1
YGC(MEL,1) = YKM1
ZGCIMEL, 1) = ZMAX(JIM1,KM1)
YGC(MEL,2) = X
YGC({VEL,2) = YKM1
ZGS(MEL,2) = ZMAX(J,KM1)
GC(MEL,3) = XJIM1
YGC(MEL,3) = Y
2ZGC(MEL,3) = ZMAX(JM1,K)

c
MEL = MELe1
XGC(MEL, 1) = XJIM1
YGC(MEL,1) = Y
ZGC(MEL, 1) = IMAX(JM1,K)
XGC(MEL,2) = X
YGC(MEL,2) = YKM1

USI5 FOR CONVERGENCE TESTING BY SUBROUTINE STEP.

00339637

0000815
00000620
00099633
GO0DTET
§00300633
000990657
00900670
00065550
00000853
90096709
00300712
00022725
050007320
00090745
00080755
00003762
0005077
000007::
0009072
Ll
Q0803212
0000932%
000G0835
200008573
00062433¢
200GL383
02009375
20000330

0520080
00000%2C
00550530
000380340
00050658
00000962
00000979
00000932
00330535
00201204
06331013
000012z
0000133%
00001043
00001350
00001062
000210792
20051280
30090103¢C
00001100
00001110
00601120
00001133
00001140
00001132
00001160
00001170
00001180
00001190

€8



ZGC(MEL,2) = ZMAX{J,Xv1)
XGC(MEL,3) = X
YGC({MEL,3) = ¥
ZGC{MEL,3) = ZI¥RY{J.X}

c
1200 CONTINYE

C
C AN EXTRA ELZMENT WAY 3E NECESSARY IF THE TUBE WALL IS ANGLED.

€ THE FOLLOWING LOGIC DEFINES IT.

RK = LASTK-2

Y = RX®HY

YU = Y

D =Y

U = IMAX(JIVI,LASTK)

ZD = ZMAX(J,LASTK) )
IF(NY(J).EQ.NY(JM1}} GC TO 1300
MEL = MEL+Y

IF(NY(J).GT.NY(JIM1)) GO TO 1250

¢ THE FOLCAING SECTIOR IS FOR NY(J).LT.KY(JM1)
XGC(MEL, 1) = XJM1
YGC(MEL, 1) Y
ZGC(MEL, V)
XGC(MEL,2>
YGC(MEL,2)
ZGC(MEL,2)
XGC(MEL, 3)
YGC(MEL,3)
2GC(MEL,3)
YU = Y + HY
‘YD = ¥
IU = IMAX(JM1,LASTK«1)
ZD = ZMAX(J,LASTK)
GO TO 1300

ZRAX(JH1,LASTK)
x

b4
IMAX{J,LASTK)
X1 )

Y+4Y
ZMAX(JM1,LASTK+1)

WY H NN

[
C THIS LOGIC IS FOR KY(J).GT.HY(JM1)
1250 XGC(MEL,1) = lJH
YGC(MEL,1) =
ZGC(MEL,1) = ZNIX(JHI,LASTK)
_ XGC(MEL,2) =
YGC(MEL,2) =
ZGC(MEL;2) =
XGC(MEL,3) =
YGC(MEL,3) =
IGC(MEL,3) =
YU =2 Y .
z YoHY
ZU = ZMAX(JIM1,LASTK)
= ZMAX(J, LASTX+1)

ZHAX(J,LASTK)

OH'
IMAX{J,LASTK+1)

C .
C THE FOLLOWING LOGIC DEFINES THE LAST TWO ELEMENTS.
1300 MEL = MEL+1

XGC(MEL,1) = XJM1
YGC(MEL,1) = YU
ZGC(MEL,1) = IV
XGC(MEL,2) = X
YGC(MEL,2) = YD
ZGC(MEL,2) = 2D
XGC(MEL,3) = XJM1
YGC(MEL.,3) = YMAX(JN1)
=

ZGC(MEL,3) = 0.0

50951202
00951210
$00023222
305912390
000G 128%
G000125T
00061260
00251279
00001280
20001253
03001300
09501310
00001320
80801330
00021340
000601229
00C01360

00051370

20301380
00001390
00060 140C
00901410
000014290
03001330
00001480
003801450
020012560
90001470
00001480
00001890
20521500
00051510
00001520
00001530
90001540
00001550
00001560
00001570
00001580
00001590
00001600
00001610
656001620
00001630
00001640
02001650
00001660
00001670
00001680
00001690
00001700
00001710
00001720
00001730
00001740
00001750
09001760
00001770
00001780
00001790

%]

XJaM1
YHMAX(JMT)

0.0

X

YD

D

ZG’(* y 1)
XSC(“L 2)
YGC(HEL,Z)
ZGC(MEL, 2)
XGC(MEL, 3)
YGC(MEL, 3)
IGC{¥EL,3)

X
YMAX(J)
9.0

[ O T TR TR TR TR T )

[z Xz 2]

HEXT, COMPUTE THE ELEMENT AREAS AND CORNER LOCATIONE
- SMAX(J-NIN) = 3.0
SMSUM{J-NIN) = 0.0
20 1400 L = 1,MEL
X31 X5C(L, 2)-XGC(L, 1)
R &3] YGC(L,3)-¥YG0(L,1)
T3t IGC(L, 3)-2GC(L, 1)
X21 XGC(L, 2)-XGC(L, 1)
Y21 YGC(L,2)-YGC(L, 1)
121 2GC(L,2)-2GC(L, 1}
AREA IS /2 R21 CROSS R21
AX = (¥21%231-Z21%Y31)/2.0
AY = (Z21%X31 - X21%221)/2.0
AZ = (X21%Y31 - ¥218X213/2.0
SAREA = DSQRT(AX®AX + AY®AY + AZ®AZ)

[T T )

(al

DY¥3AR = (X21 + X31)/3.0 - HX
SHSUM(J-NIN) = SMSUM(J-NIN) + AX®DXBAR/HX
C SMSUM IS A TERM IN THE MOMENTUM BALANCE EQUATION.
SMAX(J-NIN) = SMAX(J-NIN) + SAREA
C SMAX STORES THE INCREMENTAL WALL AREA BETWEEN SUCCESSIVE X=C PLANES.
<
<

1860 CONTINUE

SMSUM(J-NIN) = 4, 0%SMSUM(J-NIN)
SMAX(J-NIN) = 4.0%SMAX(J-NIN)

1130 CONTINUE

c
C -SMOOTH THE INTEGRAL VALUES
C THE TERMS ARE TREATED AS FUNCTIONS OF X AND MUST BE S¥OO0THED IN
C ORDER TO REDUCE COMPUTATIONAL IRREGULARITIES.
NDIM = NTUBE-NIN+1
CALL SE13(SMAX,AXBAR,HDIM,IER)
CALL SE13{SMSUM,SUMBAR,NDIM,IER)

eJ1”C

00001952

93002052
00002273
500020323
0002332
0000215
00002775
00092123
00002135
0000214C
00002155
90002160
90002172
00902129
00002135
00002239
00002215
00002222
00002233
000022L
00002252
00002265
00002273
0002237

c 0
CHCRERCERERRSERRURNERCOMPUTE THE FLUID VARIABLESW#SSRSNGHARRERSEIRIRERNNRI0]002295

PTEST=0.0
DO 1600 N=MSTART,NSTOP
J=NSTART+NSTOP-N

J1=J-1
C SET THE DOWNSTREAM PRESSURE.
PD = P(J)

c

C SET THE VISCOUS FORCES
ABAR = YZAREA(J)
VBAR = VU(J)

0000232%
20002312
00002322
00002332
00002343
00002352
00002362
00002373
20002389
00002352

h8



HD = 4,0%ABAR/RLS
TAU = 8.0%RMU¥*VBAR/HD

CALCULATE THE UPSTREAM PRESSURE FROM THE MOMENTUM BALANCE EQN.
PU = PD + (RHO®*Q¥*(VU(J)-VU(JM1)) + TAU¥*AXBAR(J-NIN))
$ /(YZAREA(JW1)+SUMBAR(J—NIN))

QAo

CALCULATE THE SLOPE OF THE PRESSURE DISTRIBUTION.

(PD-PU)/HX
CALCULATE THE PRESSURE CHANGE FOR THE CONVERGENCE TESTING.

PDELT = PU - P(JM1)

O O OO0

,STORE THE PRESSURE VALUES
P(JM1) = PU
PXB(JM1) = A

(X g

SET THE CONVERGENCE‘TEST VALUE
IF(PDELT.LT.0.0) PDELT=-PDELT - -
IF(PDELT.GT.PTEST) PTEST=PDELT

C

1600 CONTINUE

C

RETURN

END

00002400
00002410
00002420
00002430
00002440
00002450
00002460

00002470

00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
00002590
00002600

100002610

00002620
00002630

68



APPENDIX C
SUBROUTINE FORCES

The purpose of this.subroutiné "was to calculate the
equivalent nodal forces exerted on the structure by ~the
loads. Inputs were the hydrostatic collapsing pressure, Pe,
and the internal fluid pressure, P. It was assumed that the
fluid ' viscous forces on the wall are negiigible.’ - The

effects of curvature were not 1included in the external

loading  calculations. The surface average internal

pressure, P;, is used 1in the analysis. For arbitrary

element n this is
- A (67)
in 1 'L Pd
A

n

Pin = (P1 + P2 + P3)n/3 . (68)

Thus, the magnitude of the outward directed net force acting

onvthe element is

F = (P, -P)A (69)
e in e n :

This force is distributed wuniformly at the nodes. To
compute the total force vector, the forces are vectorily.

added at the three nodes, in turn. When contributions from

86
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all of the elements are summed, the total external force

vector, Fg, is obtained.



SUBROUTINE FORIES

PURPOSE OF THIS ROUTINE IS
HODAL FORCES.

OMmua o

COMMON D(M,H4),PSI(450),STRAIN(390,4),CI{12,122,815,12:,ViL
COMMON ST!FF(8221‘)

coMueN Vu(23),P(23),8Y(23), PXB(23)

COMMON X“OD'(ZOO) YHODE(ZOO) NODE(293),IZLEM{30D,3°

COMMON F(NOS),YHAX(23).ZMAX(23.13)

COMMON %3(135),Y0(135),20(135),TR(3090, 10),SIG¥A{370,4),%02F(230)
COMMON TX(200),TX0(200)

CO4MON DXI N,CXO¢A,;dﬂ)RLS.FMU,E,P’,PZ,?E
£OMMON R, RY4O,RL,DIA,Q, DPDX, REY, RMU, RRYU, IF
COMMON UTEST.?TEST.DVAX,DP,DU,DPSI.u,A"
COMMON LASTEL,LASTND, HELEM,NNODES, NIN,NT
COMMON NX,SNY,HTUSEX,HTUBEY.HX.H],NUHBC
COMMCN IFORCE,TdX,TWY,TdZ,SIGX0,XC,YC
OJUBLE PRECISION D,PSI,STRAIN,CI,H,VOL,STIFF

[¢X 3}

THE FOLLCWING ARE PROGRAM SPECIFIC VARIABLES.
DIMENSION XB(32%,3),¥3(30¢,3?,23{300,3)
DOUBLE" PRECISION 121 21,221, X3l ¥31,233
DOUBLE PRECISION AX, AY AZ AREA

-
€ INITIALIZE THE FORCES
""LAST = USNNODES « (NTUBEX-1)®NTUBEY®2
1201 DO 1200 MY = 1,LAST
F(MM) = 0.0
1200 ZONTINUE

THE FOLLOWING LOOP IS THE yONTROLLING LOCP, EACH ILEMENT MUST SZ
LOJKED AT IN TURN.
D0 1210 M = 1,MELEM

RECOVER THE ELEMENT AODES I} THE CORRECT ORDER.
IT IS IMPORTANT TO OBTAIN THE OUTWARD POINTEC DIRECTION, HENIE
THE NODES WERE STORED IN A COUNTER-CLOCK4ISE FASHION.
1210 NODE1 = IELEM(M,1)
NODE2 = IELEM(M,3)
NIDE3 = IELEX(NM,2)
1311 XB(M,1) = XNODE(WODEi)
YB(M, 1) = YNODE(NODE1)
Z8(M,1) = ZNODE(NCDE1)
X8(M,2) = XNODE(NODE2)
YB(M,2) = YHODE(NODE2)
ZB(M,2) = ZHODE(NODE2)
XB(M,3) = XNODE(NODE3)
z
b3

GO0 annn

¥3(M,3) = YNODE(NODE3)
I8(M,3) = ZNODE(NODE3)

= XB(M,2) - XB(M,1)
= YB(M,2) - YB(M,1)
21 = IB(M,2) - IB(M,1)
z -
= -

«“

XB(M,3) - XB(M,1)
YB(M,3) - YB(M,1)

000093335
00000620
30200027
30003042
20500053
£2009063
592000070
20000080
900060099
29000123
06000112
20200120
33000130
30030145
50205155
90003160
9908017C
©0000180
5000019C
050000200
40000210
00020220
3900090238
36000240
£$0000250
00000250
00000270
00000280
20000299
30500305
00000310
00000320
30200330
00000340
00000350
00000360
00000379
00200380
095009390
006000400
00000410
00000429
00000430
00000449

-20000450

00000460
20600479
25000436
90000490
20000500
00000510
00000520
00000530
00000540
00000550
00000560
00000570
00000580
20000590

[3X%)

Ao

FZ
CO“STRJCT
N = 4%50DEY - 2
F(fl) = F(H) + FX
F

TEST FCR THE
IF{IFURCE.
55 75 2039
XGC = (K’(# 1) « X2B{Y,
RYE = RL»DX;J‘,K U

SUM-= SUM « P(J) « PEPIE2TV T3

SNTINUE

Pd = SU%/3.0

C THE FO?PES ARE
1250 AREAX = AX

(H+1)

F{N+2) = F(1¢2
N = 4%0DE2 - 3
FLH) = F%-) + FX

F(le1) =
F(Ne2)
qo= uRy
F(l) =
F(N+1) =
F(Ne2) =

<

1210 CONTINUE
c
<

RETURN
N

tn

SUM = T,
o0 3029
J = XB(M
d = Jel
RI = J-1
PY = PX

7200283
00200817
300“359

05000%3L
202507CT
OOOJG?’J

3”3J077-
09“94..

000037

°J001ﬂ5u
000015595

90001272

VULITLEC
00001127
030511 .¢C
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APPENDIX D
SUBROUTINE STEP

The goal of this subroutine was to compute the vector of
incremental displacements. This included application of the
boundary conditions, inversion of the stiffness matrix, and
comparison of variables to the convergence criteria.

Two planes of symmetry were assumed in ordei to reduce
computations, these being the x-z and'xéy planes as shown in
Figure 24, Here, the y = b edge must be restrained from y
motion and rotation (v, A@, = 0), while the z = 0 edge must
be restrained from z motion and rotation (w, A6, =0). In
addition, the ends‘of the flexible tube were fastened to
rigid supports; consequently, the ends are assumed to be
simply supported (u, v, w = 0) and held in the hdop_
direction, AO®, = 0.

Given the formulation of the augmented stiffness matrix
discussed in Chapter III, the problem was to evaluate:

: | ,
da" ] kr1®  recl™ ? p"

~

- (23)
A" [cci®  [o0] 0

~
~

at computation step n,

89
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Figure 24. Cutaway View of the Tube Showing
: Nomenclature of the Boundary Conditions

The boundary conditions are enforced by zeroing out'the
appropriate row and column of the stiffness matrix,
excluding the diagonal. The appropriate row of the Wvector
is also zerped. Thus, an incremental step, .dq = O,_ is
computed for all constraihed degrees of freedom.

In order to ensure convergence to an accurate
prediction, the step size, dq, must bé kept "small." If'aq
is allowed to become excessive, then the approximation of
constant external forces during ﬁhe‘step becomes a poor one.
Furthermore, the nonlinearities may lead to convergence at a

" non-physical prediction. One way to ensure the smallness of
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dqg is to test the maximum in the vector against some

smallness criteria, eps. If the criteria is exceeded, then

the entire vector 1is scaled so that the maximum

is
acceptable. That is, if
max IqQI > eps (70)
" then,
max Sldql < eps (71)

The net effect‘ of this process is the same as if a
smaller force were originally applied to produce the smaller
displacement associated with eps.

- A mini-maximum in the global Z position of the nodes is
used to determine the smallness criteria. The structure is
separated into a set of hoopwise rings. For each ring, the
maximum Z coordinate of all nodes on the ring is calculated.

The maximum allowable step is then determined to be a preset

fraction of the smallest Z-maximum. Thus, the maximum step

adjusts to the changing shape of the tube: it shrinks as
the tube collapses. '

Contact of opposite walls occurs when z = 0 occurs at an
un¢onstrained node. In this scheme, z < 0 is tested for on
each step. When this condition is detected, the dq vector
is scaled so that z = 0 is established. The appropriate

degrees of freedom (dW and AOy) are then constrained from

further motion in the same manner as the boundary»conditions

are enforced.



92

Numerical convergence is assessed in three ways
simultaneously based on changes in pressure, velocity, and
wall position. The problem of numerical convergence becomes
acute when very small cross-sectiopal areas are encountered
at extreme collapse conditions. At this point, very small

changes in wall position will produce large changes in the
v'fluid pressure gradient through fluid viscous forces.
Hence, at this time a pressure 'criteria is suitable}for
convergence testing. Conversely, at oﬁly slightly collapsed
shapes, viscous effects afe minimal and a wall position
criterion may be best. At intermediate times, a combination
‘of‘these or a velocity criteria may be best. To simply
enforce a very small wall position criteria at all times

would be computationally wasteful; hence, a multiple

criteria is advantageously used.
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[3Xs Xz ¥s])

o0 ©

SUBRCUTINE STZP{LOUT)

1SION OF TH- AUGMENTED STI FFN‘SJ WAT

CONVERGENCE. TdAZ PAXAMETER LOUT INDICATES CU
CALLING PROGRAM,

LOUT

LOuUT

1 IS A CONVERGED SOLUTISH
0 IS AN UNCONVERGED SCLUTION

COMMON D(4,4),PSI(850),STRAIN(C2D0,4),C1(12,12),5
COMMON STIFF(82215)

COMMON VU(23),P(23),NY(23),PXB(23)

COMMON XNODEZ (2€9),YHODE(200),ZNODE(200),ITLIM(273,3)
COMMON F(405),YMAX(23),ZMAX(23.18)

COMMON X”(13>) ¥0(1235),20(135),TR{305,10),8IG%2{372,5),%D5F

COMMON TX(299), TXO(ZDO)

COMMON DXIN, DXDUT THX,RLS,FMY,E,P1,P2,PE, 1IN, IC
COMMOK R, RHO RL,DIA,Q, DPDX R‘Y R!U RNU, DR
coMMON UTEST,PT ST,DVAX dP, DU, DPSY SCALZ
COMMON LASTEL,LASTND, NELEM, N“ODES H;H KTUSE,LASTJ, INFLAS
COMMON X, NiY,NTUBEX, NTUBEY EX, KY, HuMBC

COMMON IFORCE,THX,THY,THZ,SIGKO,XC,!C

DOU3LE PRECISION D,PSI,STRAIN,CI,H,VOL,STIFF

THE FOLLOWING ARE PROGRAM SPECIFIC VARIABLES.
DIMEHSICH AUX(404),RO(450)
DOUBLE PRECISION AUX,SCALEF

LAST = U4®NNODES + (NTUBEX-1)¥®NTUBEY®2
LASTP = 4®NNODES

APPLY THE CONSTRAINED DEGREES OF FREEDO4 TO PSI.
DD 1890 M = 1,NUMBC
J = NDOF(M)
PSI(J) = 0.0
1890 CONTINUE

APPLY THE CONSTRAINTS TO STIFF
1689 00 1590 M = 1,NUMBC
J = NDOF (M)
K=J
ISTART = K+l
IF(ISTART.GT.LAST) GO TO 1576
DI 1575 XL = ISTART,LAST
¥ = J « KL®(KL-1)/2
STIFF(N) = 0.0
1575 CONTINUE
1576 ISTOP = J-1
IF(ISTOP.LT.1) GO TO 1590
DO 1585 JL = 1,ISTOP
H =z JL + K¥(K-1)72
STIFF(il) = 0.0
1535 CONTINUE

1550 CONTINUE

22230010
50666020
00000930
€0020040
00339050
00000060
23000070
0000935
23060090
02000100
20000110
060200120
20000130
30000140
00033159
00000162
30000170
0G000018¢C
00090150
09000220
50900210
000002290
50000230
05000240
02000250
00000260
0000027C

. 00000280

00000260
50000300
000CC310
00000320
00000330
00000340
30000350
00000360
00900370
00000389
00000390
60000400
00000410
700004290
00000430
20000440
00009450
00000460
00000470
32000480
00900499
00000500
00000510
00000520
00000539
00000540
00000550
00000560
00000570
00000580
00000590

C SEEEEREERRTNVERCION OF THI

€ ' SSP ROUTINE TD FIND DEFL
TS
13,351
2 , 1511
1517 TORMAT(14 ,3X,6

HIER = ,I13,2%84,-" I 2 SINGULAR K MATRIX )
STOP

iF
200 CONTINUE
IF(ZRBIG.LT.SHMALL > Swall
100 CONTINUE

C CALCULATE THE MAXIMUM ALLOWARLT 3TEF.
ALLOd = SMALL®SCALE
c
c
C COVPUTE THE SCALE FACTOR FOR THE DISPLACEMINT INCREMENTS.
- 8IG.z 0.0
DO 1805 J=1,LASTP
IF(PSI(J).61.BI5) RIZ = PSILJ)
IF{(PSI(J).LT.-BI5) 3I3 = -PSI%J}
1809 CONTINUE
IF(BIG.GT.ALLJW) SCALEF = ALLI/2IG
IF(BIG.LE.ALLOW) SCALEF = 1.5
c :
C TEST FOR THE COMTACT OF OPPOSITE WALLS.
JFLAG = 0
. 1571 J=1,BHODES
IF((PSI(4%;521)#SCALIF«INODELJ}3 LT, 2.0) 39 TO 1577
50 TO 1571
1577 SCALEF = -ZNODE(J)/PSI{4#j=1)
JFLAG
1571 COTINUE
C UPON EXIT FROM THIS LOOP, SCALEF I3 THE SALLEST SCALE FACTOR,
C THE ONE #HICH PERMITS ONLY GNE 4ODZ AT MOST TO CONTACT.
c
C SCALE THE DISPLACEMENT INCREMENTS.

DD 1760 J = 1,LASTP
RO(J) = SCALEF®PSI(J)
1769 CONTINUE

Cc
C COMPUTE THE MEW NODE POSITIONS
1597 D9 1570 J = 1,NNODES
XNODE(J) XHODE(J) + RO(48J-3)
YHODE(J) YNODE(J) + RC(4®J-2)
ZNﬁDE(J) = ZNODEZ(J) « RO(L%®J-1)
TX(J) TX(J) « RO(4%J)
IF(J.NE, JFLAG) GO TO 1570
ZNODE(J) = 0.0
NUMBC = HUMBC + 1

50030530
00003061C
20002522
00520628
9906252
00009£50
000095690
00000€79
00000532

20006533
00600373GC
00090719
00002723

30300745
0620758
00000753
00000773
00009750
0000572

90909535
50005215
00C00322

03033370
00027333
90002253
20009933
00003610
00033,23

OUOUJykv
03030950
060%u51
00003774

22C1iey
0300133¢
00001053
00001332
0000126¢C
00001C7C
900010530
00061932
00001190
00001110
00001122
000911390
00001140
20001158
00001163
00001179
00001180
00001199
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NDOF (HUMBC) = §%J -1 ' 00001200

C CONTACT OF OPPOSITE WALLS MEANS THAT THE SLOPE IS ZERO TOD. 00001210
TX(J) = 0.0 | 00001220

NUMEC = NUMBC + 1 00061230

NDOF (NUMBC) = 4%J | 00051240

1570 CONTINUE 00001250
C**ill**!!l*lli*l!***&**CONVERGF‘NCE TESTIN **i**********************!***QOOO‘]260
1910 ICOHV = 0 00001270
IF(UTEST.GT.DU) GO TO 1655 - » 00001280
IF(PTEST.GT.DP) GO TO 1655 00001299

| ICONV = 1 00001300
c 00001310
C FIND THE MAXIMUM RO VALUE 00001320
1655 DMAX = 0.0 | 90001330
DO 1660 L = 1,LASTP 00001340

TESTP = ABS(RO(L)) | : 00001350
IF(TESTP.LE.DMAY) 30 TO 1660 00001360

DMAX = TESTP | 0000137C

~ ROOUT = RO(L) . | 00001380
1660 CONTINUE | 00001390
WRITE(IOUT, 1656) UTEST,PTEST, ROOUT 00001400

1656 FORMAT(1H ,2X,84DUMAX = ,E12.5,94 DPMAX = ,E12.5,10H ROMAX = , 00001410

~ $E12.5) 20001420
IF(DMAX.GT.DPSI .OR. JFLAG.GT.0) GO TO 1568 g 00001430
IF(ICONV) 1598,1598, 1665 00001440

C » | 00001450
C THE ONLY WAY TO ACHIEVE LOUT=1 IS FOR ALL PARTS TO CONVERGE. | 00001460
C SET CONVERGEHCE FLAG FOR THE SOLUTION. N 00001470
1665 LOUT = 1 | | 00001480
c | - | | 00001490
C S 00001500
1598 RETURN | 00001510

END , ‘ | 00001520

6
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APPENDIX E

SUBROUTINE INIT

purpose of this subroutine was to establish the

initial database prior to the iterative solution process.

V,This goal is accomplished via the following tasks:

Establish the initial node locations.

Set the 1initial constrained degrees of
freedom according to the boundary conditions.

Make the nodal connections which define the
finite elements. This also sets the
direction of the local axes.

Build the constant matrices:

[c1
[c1]
[H]
[ TR]

Define other necessary constants.

95
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€ THIS SU2IDUTINE
€ MECHANIC
<

C THE
c

SU3RDUTINT

INITIZLI2ES THE SHAPE OF THE TUBE AND FLUID
AL PIRAMETIRS PRIOR IC THE ACTUAL SOLUTION ITERATION.

COMVGCY D{2, 2),PSI{250),STRAIN(3D09,8),
CoWMOu STIFT(8£2215)

COMMON ¥3{23),2(23),%Y(23),PX3(23)
covvCx '%93‘\700) '1605(200) INODE (200),IELER(300,3)
COMMON ‘(19>}.!!l‘(23) Z!A!(Z} 18)

€1¢12,1:2},8(6,12),V0L

COMMON 19{335).!G(?35)i10(135),TR(300,10),SIG!A(390.E),NDOF(250)

COMMON TX{293),TX0(200

COM¥ON SYIW, DXOUT,THZ, RLS,FMU,E,P1,P2,PE, IIX,IOUT

COwMON ®,B43,BL,3I,Q,DPDX,REY,RMY, RRU,DRD
UTZST,PTIST,DMAX,DP, DU, DPSI,SCALE

CoumMon LASTND, RKELEM, XNODES, KIK, NTUBE,LASTJ, INFLAG
COMMON NTUSEX, NTUBEY, HX, HY, NUMBC
COMMOK i

DOUBLE PRECiSION S,PSE,S?BAIK,C!,H,VOL.STIFF
FOLLOZING VARTABLES ARE USED INTERNAL TO THIS ROUTIHE ONLY.

DIMEESID® X3{3200,3),¥8(300,3),ZB(302,3)

DIMENSION %IN{3),MOUT(8),C(124),DU%3(12),DUME(12)
DINENSION HOL(IZ).HOH(IZ),YEDGE(12)

DIMENSION SISaG(3),dM1(3,3),DuM2(3,3),STRESS(3,3)
DIMEMSION DPI(12, l2)

35550580
33535052
23335159
53350110
30399120
83330132
003551«35
00020122
5335160
i el gl
§2055130
208208120
20300200
00096219
500008220
955302320
200022480
20009253
006900262
DO0DB270

DOUBLE PRECISION X21,Y21,Z21,X31,Y31,231,AX,AY,AZ,AREA, DTHK, DIST2100000280

DOUBLE PRECISION STGHIG DﬂHl DUHZ STRESS
DOUSLE PXICISION DUHS,C,DPT,DET,DUHH

FOLLOWINS CALCULATIONS ARE FOR THE INITIAL, ELLIPTIC SHAPE.
R = R+DRO

B = R-DRD

ASQ = A%a

8SQ = B*B
YEDGE(1) = 0.0
YEDGE(2) = 0.1651
YEBGE(3) = 2.330¢
YEDGE(N) = 9.%35D
YEDGE(5) = 3.6312
YEDSE(5) = 8.7430
YEDGE(T) = 0.7938

DIA = SQRT(%4%A*B)

c
C CALCULATE THE FLUID MECHANICAL PARAMETERS.

185
150
152
151
153

MU = RNUSRHO

REY = &.3%3/RNU/DIA/3.1216

IF(IFCRCE) 145,150,145

DPDX = =M, 0'(15« + 5)0)'RHU'QI(A'ASQ'B‘BSQ'3 1816)
P1 = P2 - DPDX®(DXIN+RL+DXOUT)

WRITE(IOUT, 152) DIA

FORMAT (131,5X, 31HTHE INLET HYDRAULIC DIAMETER IS ,F7.2,8H CM.)
RL

WRITE(IOUT, 151)
FORMAT(14 ,5X, 1>4THE LENGTH IS
HIITE(IOUT 153)
FORMAT (4 .SX ZﬂHTHE DOJNSTREAM PRESSURE IS

, F7.2,8H CM.)

$)

00003253
28556308
00520218
00306320
000900330
00900340
00900350
00000350
20000370
00000380
909035393
30000400
00900%10
00009K2D
000C0#430
90000440
50000450
00000450
00000470
D0000K352
90000490
00000590
00300519
00000520
00000530
000005%0
00000550
00000560
09000579

,F9.2, 120 DYHES/SQCM.00000580

00000590

[$Xx X2l

c

55 TORMAT(13

1129

11}
SET

1
TH

1118

2000
2100

ARITE(ICSUT,155) Q
FORMAT(3i4 ,5X, 15HTHE FLCWRATE IS, F7.2,108 C
Hl!TE(IOUT,lSl) REY
TORMAT (14 ,5X,2SHTHE INLET REYNOLDS KUM
-ARITE{IOYUT, 153) P1
,5X%, 834THE INITIAL ESTIMATE OF
stan DYH:SIaQCH )

ILL D, THE MATERIAL STRESS-STRAIN RELATIONSHIP MATZIX
DG 1100 J = 1,4
DO 1100 X = 1.n

D(J,K) = 0.0

%3 = E/(1.0-FMUTFMY)

D(1,1) = RD

3(1.2) = RD*FMY

D{2,1) = RD*FMU

0{2,2) = RD 00075755

D(3,3) = RD/2.0%{1.D-FYi) 2060577C

D2 %) = RDSTHK*THK/12.0 00900730
00070735

srsEsTersssE#BOUNDARY DEFINITION AND TUBE INITIALIZATIONSESESREERRE0005)2)D

THE PARAMETERS FOR THE AUTOMATIC TUBE DEFINITIO! 90209515

NTY = NTUBEX « 1 00059¢29

NTY = NTUBEY + 1 5530

RNTY = NTUBEX
RYTY = NTUBEY :
052008580

= RL/RNTX
DTHETA = 3.1%8153265/2.0/RRTY C2062287C
RUODES = O
HELEM = O
NUMBC = O
JSTOP = NTX 3903C513
KSTOP = NTY ODDuCC’D

NITIALIZE TUSE SHAPE

IS SECTION DEFINES THE TUBE ITSELF WITH PROPER CONSTRAINTS.

DO 1110 J = 1,JSTOP z 5
RS = J -1 00033363
X = DXIN + RJ®DX 0209997

MELEM = (J-2)*2%NTUBEY
DO 1110 X = 1,KSTOP
K = K-1
seresass®8DEFIKE THE INITIAL POSITIONS OF THE MODES#sssmsasss
THETA = RK*DTHETA
Y = YEDGE(K)

Z = BESQRT(1.0-Y¥*Y/ASQ) 00921243
NNODES = NNODES + 1 0000:23<
IF(J.EQ.1) MIN(K) = NNODES 0€00105¢C
IF(J.EQ.JSTOP) MOUT(K) = NNODES 0009100
XNODE(NNODES) = X 0C0C1557
YNODE (NNODES) = Y 0099019067
ZNODE(NHODES) = 000011C0
DENOM = SQRT(ASQ-Y'Y) cuNo11T2
IF(DENOM.GT.0.00001) GO TO 2000 00331123
THETAX = -THETA 000601132
GO TO 2100 00001143
THETAX = ATAH(-B'Y/A/DENOH) 00001350
XO(NKODES) = 00001160
YO(NNODES) = Y 00001372
ZO(NNODES) = 7 00001180
TXO(HNODES) = THETAX 00001159
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TX(HNODES) = TXO(ANODES) . 60501290 DX = TEADUT/RUTK

IF(K.LT.XSTOP) GO TC 310% 50961210 <
ZNODE(NNODES) = 2.0 30061220 C tEsgsssarasany FIZID OUTLET MOUNTING FIXTURE . SEFsssasesnse
ZO(NNCDES) = 0.0 00001230 5o 1120 :

OF FRIEDOMSsRses®x 00001260

C RERREREINIRRRBIILENTIFY THE CONSTRA

1104 IF(J.EQ.1.0R.J.EQ.JSTOP) GO 10 39001258
59 16 1107 00001260
1106 NUMBC = NUMBC + 1 20001270 RE = X1
N =z 4ENNODES-3 20001280
NDOF{NUMBC) = N ) 03031299
HUMBC = HUMBC+1 20001200
N = N®NNODES - 2 00001310
NDOF (NUMBC) = N 00001320
NUMBC = HUMBC « 1 . 20031330
N.=z 4®NNODES - 1 00001340 S0DN1547
NDOF{HUMBC) = N 90001350 00551358
NUMBC = NUMBC + 1 50551269 20041555
N = 4%NNODES 00001370 5963157 5
HOOF(NUMBC) =z X 00001380 20001987
GO TO 1115 : 00001350 125 09901590
1107 IF(K. EQ n GO TO 1103 90001200 59502875
. 50710 : 00091410 oMY = -s-. 23392310
1108 NUMBC = wnsc « 1 ‘ 50001420 99002920
N = UENNODES - 2 00001439 3032200
NDOF (NUMBC) = ¥ Q0001440 733002042
NUMBC = NUMBC+1i 20001450 99002985
N = N®NNODES . 00001460 1L H 3 £5002067
NDOF (NUMBC) = ¥ 00001470 IELEM(LASTEL,2) LASTHE G2002C70
GO TO 1115 00001482 LASTEL = LAt
1109 IF(X.EQ.XSTOP) GO T0 1111 00001490 IZLEM(LAS N
GO TO 1115 00001500 ITLEM(LASTEL,2)
1111 NUMBC = NUMBC + 1 60001510 IELEM(LASTEL, S
§ = WRNNODES-1 . 00001520 1120 CONTINUE
NDOF (NUMBC) = N 00001530 c
NUMBC = NUMBC+1 02001540 C ®eResssEREsESSDETINT THE RIGID INLET MOUNTING FIXTURE #essssssaass 202
Nz N®NNODES 00001550 DX = DXIN/RNTIX Jo002152
NDOF (MUMBC) = N . © 00001560 DO 11508 J = 1,NTX 0002160
C SESSSRERRRCRRBECONNECT THE NODES TO MAKE THE ELEMENTSHESSERzReasnss 52001570 Rd = 4 00002174
1115 IF(J.EQ.1 .OR, K.EQ.1) GO TO 1110 00601580 X = DXIN - TX®RJ 0%JC71EC
HELEM = NELEH + 1 00001590 DO 1150 ¥ = 1,NTY 09522197
"M = NELEM 00001690 RK = Ke1 000G22:0
IELEM(M, 1) = NNODES-NTY 00001610 THETA - RK#DTHETA 200072 5
IELEM(M,2) = NNODES 00001620 DR = DRO¥COS{2.0®THITA) 3 2ec
IELEM(M,3) = NNODES-NTY~-1 00001630 y = (R-DR)I®*SIN{T: 3903222
c 00001640 = (R-DR)®COS{TH 2090z24¢
M = WRELEM + NTUBEY 00001650 LASTHD = LASTND « 1 59002255
IELEM(M,1) = NNODES-1 00001660 XNODE(LASTND) = ¥ $96%2265
IELEM(¥,2) = NNODES-NTY-1 : : 00001670 yqogE(L--*qp\ = ¢ : i 2005527
IELEM(M,3) = NNODES 00001680 ZNODE (LASTHD) = 2 - 3020224
. 1110 CONTINUE 00001650 IF{K.LT. HTY 50 I3 1155 00022263
NELEM = 2%NTUBEX®NTUBEY . 00001700 YNODE(LASTND) = R+DRO 07002302
c ) 00001710 ZNODE(LASTHD) = 0.0 . 200023°C
C A SET OF CONTROLLING PARAMETERS MUST BE DEFINED FOR THE INLET 00001720 1155 IF(K.EQ.1) GO TO 1150 26922375
C AND OUTLET MOUNTING TUBES IN ORDER TO DISTINGUISH THEM FROM THE 00001730 C PATCH INLET TO THE FLEXIBLE TUBE 000323%9
C FLEXIBLE TUBE. 00001740 N = LASTND - NTY 00002345
LASTEL = NELEM 00001750 NM1 = N-1 90302350
LASTUD = NNODES . 00001760 IF(J.EQ.1) H = MIN(X) 50092340
HTX = 2 00001770 IF(J.EQ. 1) NMY = MIN(K-1) . . 9N002379
RNTX = HTX 00001780 1160 LASTEL = LASTEL « 1 . . €0002380
c . 00001790 TELEM(LASTEL,1) = LASTUD - 1 N 00002363
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N4

TELEM{LASTEL, 2

IELEM(LASTEL, 3) = LASIND
LASTEL = LASTEL < °
TELEM{LASTEL, 1) = Li3TRD
IELE!(LAST;-,Z/ = XM1
TELEM(LASTEL,3) = %

- 1150 CONTINUEZ

2 ExX3]

SET FLAG TO SIGNAL SUSRGUTINE MESH THAT INITIALIZATION WAS RUN.

INFLAG = 1

CALCULATE ROTATICNS TO GLOBAL COCRDINATES FOR ALL ELEMENTS
THAT ARE PART OF THE FLEXIBLE TUBE.
D0 1120 ¥ = 1, NEZLEM
NODE?Y = IELEWM{¥%, %)

X8(M,1) = XO(NODEY]
YB(M,1) = YO(NODE1)
2B(M, 1) = ZC{NOBEY}

NODE2 = IELEM{%,2)

X3(¥%,2) = X0{u0DE2)
Y8(M,2) = YO(NODE2)
ZB(M,2) = ZO(NDDE2)
NODE3 = IELEM{NM,3)

YB(K,3) = YO(NODE3)
ZB(M,3) = ZO(NCODE3)

XB(M,3) = XO(NODE3)
X21 = XB(M,2) - XB(M;1)
Y21 = YB(M,2) - ¥3{¥,1)
721 = 2B(M,2) - ZB(M,1)
X31 = XB(M,3) - XB{N,1}
Y31 = Y8(M,3) - YB(®,1)
231 = ZB(M,3) - 28(M, 1)

CALCULATE THE NORMAL FAOM THE AREA VECTOR
AREA = 1/2(R21 CROSS R31)

AX = (Y21%231 -~ 221%Y31)/2.0

AY = (Z21%X31 - X21%8231)/2.0

AZ = (X21%Y31 - Y21%X31)/2,0

AREA = DSORT{AXSAX+AY¥AY+AZ®AZ)

XN = AX/AREA

IN = AY/AREA

ZN = AZ/ARER

THE LOCAL X-AXIS IS R21
DIST21 = DSQRT(X21%A21+Y21¥Y21+221%221)
XX = X21/bIST2?
XY = Y21/DIST21
XZ = Z21/DIST21
TR(M, 1) = XX
TR(M,2) = XY
TR(M,3) = XZ

THE LOCAL Y-AXIS IS Z CROSS X
TR(M,4) = YN®XZ - ZH®XY
TR(M,5) = ZN®XX - XN®XZ
TR(M,6) = XN®XY - YN®XX

THE NOIHAL IS THE LOCAL Z-AXIS
TR(M,T) = XN
TR(H,B) = YN

23002400
50002413

G052425
00302420
00502440
000G2450
60002453
00052470
05002480
050002850
0092500
00002510
00002520
90052539
000062540
20302550
33502560
23062575
0605258¢C
95002590
080002600
20002610
20002629
00002630
00062640
00002650
30002660
00802670
00002688
00002630
00052700
00002710
00002720
00002730
09002740
00002750
00002760
00002770
00002780
20002799
00002800
62002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00062900
09002910
00002920
00002930
00002940
00002950
00002960
00002970
00002980
00002990

5]

[ X3)

OO0

(3N X4]

(s Xx Xs]

TR(M,9)

I3
THE TRrﬂSFORHATION FOR THE ANGLULAR DEFLECTION.

TR(M,3) = XX

SOILD THE ROTATION MATRIX.
D2 3505 J = 1,12
DD 1505 K = 1,12

1505 DPT(J,K) = 9.0

L=0

20 1506 J = 1,3
DO 1506 K = 1,3
L = Let
JPT(J,X) = TR(M

R(M,L
DPT{J+4,K+8) = DPT(J,K)
DPT{J+8,K+8) = DPT(J,K)

1556 CONTINUE

SPTI4,4) = XX
BPT(3,8) = XX
577{12,12) = XX

SS .VECTCR

SIT THE INITIAL STRC
SIGMA(M, 1) = SIGKD
SIGUA(¥,2) = 0.0

IGMA(M,3) = 0.0
SIGHA(M, &) = 0.0

1140 CONTINUE

£YTR
HE QRI’IH IS ALWAYS AT NODE 1.
IELEW(NELEW 1)

J = IELEM(NELEM,2)
K = IELEM(HELEM,3)
DUM3I(1) = 0.0
DUM3(2) = 0.0
DUM3(3) = 0.0
DUM3(4) = 0.0
SUM3(5) = X0(J) - XO(I)
DUM3(6) = YO(J) - YO(I)
DUMI(T) = 20(J) - ZO(I)
DUM3I(8) = 0.0
DUM3(9) = XO(K) - XO(I)
DUM3(10)= YO(K) - YO(I)
TuM3(11)= 20(K) - ZO(I)
DUM3(12)= 0.0 -
ROTATE .THE LOCATIONS TO LOCAL COORDINATES.

DO 1507 J = 1,12
DUME(J) = 0.0
DO 1507 K = 1,12

1507 DUMA4(J) = DUME(J) + DPT(J,K)*DUM3(K)

SOMPUTE THE ELEMENT CENTROID, NOTICE THAT THE ELEMENTS ARE ALL
THE SAME SIZE, THUS THE CENTROID IS AT THE SAME LOCATION FOR ALL.

XC = (DUMH{1)+DUMH(5)+DUME(9))/3.0
= (DUMH(2)+DUMU(6)+DUMU(10))/3.0

CT THE LOCATIONS OF THE ELEMENT CORNERS IN GLOSAL COORDIMATES.

02903500

00&35084
36533090
50363160
TAL82110
34333120

340203270
53253280
55853290
K 3390

32203320
30003333
13053340
33303350
00063350
22093370
55233380
20393350

GoI3LDY

F03C3340
03003550
00003569

0033570
30903589
00093590
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c III’I‘IIIII!l'l'IIIIIilIInTiIALIZE c‘.IlillllIll‘.lll.ll‘lillllllll
Do 1515 J o= 1,148

515 C(J 0.0
: FILL T E C MATRIX
2{1) = 1.0
C(5) = 1.9
€(9) = 1.0
c(13) = DUMi(1)
C{17) = DUM(5)
£(21) = DUMu(9)
C€{(25) = DUMN(2)
C(29) = DUMA(6)
€(33) = DUMN{10)
€(38) = 1.0
c{82) = 1.0
Clug) = 1,0
C(50) = DUML(1)
£{54) = DUMA(S)
£(58) = DUMA(9)
€(62) = DUME(2}
C(66) = DUMN(6)
C(70) = DUMN(10)
c(75) = 1.0
c(73) = 1.0
€(83) = 1.0
C(8T) = DuUMa(1)
C(91) = DUMU(5)
C(95) = DUMA(9)
C€(99) = DUM&(2)
C(103)= DUMU(E)
C(107)= DUMA{10)
€(112)= 1,0
C(116)=2 1.0
c{120)= 1.0
C(124)= DUME(1)
C(128)=z DUMA(5)
c(132)= DuMa(9)
C(136)x DUMN(2)
C(180)= DUMM(6)
c(14a)z DUM4(10)

< .
C COMPUTE THE IMVERSE OF C. SUBROUTINE DINV IS AN SSP SUBROUTINE
C WHICY COMPUTES THE INVERSE IN DOUBLE PRECISION.
CALL DINV(C,12,DET,MOL,MOM)
IF(DET) 1517,1516,1517
1516 WRITE(IOUT, 1531)
1581 FORMAT(1H1,5X, 25HTHE C MATRIX IS SINGULAR. )

STOP
1517 DO 1580 K = 1,12
DO 1530 J = 1,12
Bz (K=1)"12 « J
CI(J,K) = C(N)
1580 CONTINUE

c .I_.‘..."..'.'.SET THE H "ATRIX..I"l.'.'lI.IQ’I..‘.I'II!II.I_‘I

DO 1600 J=1,6
DO 1600 Ks1, 12
1600 H(J,K) = 0.0

H(1,2) = 1.0

00003600
60003610
90003620
000236320
00003645
00003650
26003660
0000367<
00003680
00003690
26003700
003003710
09003720
00003730
00003740
00033750

-00003760

50003770
00203780
080003790
00003800
20003810
00003820
30003830
00003840
00003850
30003860
09003870
20003880
20003890
£0003900
00003910
00003920
00003930
00003940

00003950

00003960
00003970
00002980
00003990
00004000
00004010
00004020
00004030
00004040
00004050
00004060
00004070
20004080
00004090
00004100
00004110
00004120
00004130
00004140
00004150
00004160
00004170
00004180
00004190

(3 Xz X2}

H(2,5)
H(3,8}
H(4,2)
4(5,6)
H(6,9)

COMPUTE THE VOLUME OF THE ELSMENTS.

DTHX = THK
VOL = AREA®DTHK

CALCULATE THE CARTESIAN
LASTJ = NX
KNX = HX
RNY =NNY
HX =
HY = R/RNY
HIN = DXIN/HX » 1.0
IF(NIN.LT.2) NIR = 2

(RL + DXIN « DXU

MESH SPACING.

uT 27 RHX

NTUBE = (DXIN « RL)/HX « 1.0

INITIALIZE THE FLUID PRESSURE
I

AST = LASTJ«1

N P{LAST) = P2
DO 2150 J=1,lASTJ
M = LAST-d

P(M) = P(Me1) ~ DPDX®HX
2150 CONTINUE
-~

“2200 RETURYN

END

00004200
20004210
90004220
00904230
009¢u240
00004250
00008260
909904270
00004220
00004290
000034300
00004310
00004320
00004330
30004340
00004350
00208360
00004370
Q0004320
00304353
00004400
00004410
00004420
20004430
30004 k40
00004450
00004460
000045870
C0004480
00004490
20604500
00004510
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APPENDIX F
SUBROUTINE MESH

The goal of this routine was to define the variables
necessary to describe the cartesian mesh which 1is enclosed
by the tube and its rigid end mountings. This procedure was
greatly simplified by the planar nature of the finite
elements since it means that linear interpolation can be

used when needed to locate the tube wall. Conceptually, the

approach iS to establish an x-y grid under the finite
element wall approximation. The algorithm then moves

through this grid and calculates the 2z distance to the

finite element surface.

100



[xXzX2Xgl

ann

c
[
c

o000

SUBROUTINE MESH

THIS SUBRCUTINE CIMPY THE PARAMETERS NECESSARY TO SPECIFY THE

CARTESIAN MESH WHICH

COMMON D(4,8),PSI(450},STRAIN(30C,4),C1(12,12),:(5,12),V0L
COMMON STI‘:\GZZl:

COMMON Vi(23),P(232),NY(23),PXB(23)

COMMCN XﬂGDE(ZO%),YNODE!ZOO),ZHODE(ZOO),IELEH(300.3)
COMMON F(405),Y¥aX(23),ZMAX(23,18)

CCMMON X0(135),Y2{135),20{135),
COMMON TX(2090),7X2{200)

COMMON DXZIN,DXOUT,THK,RLS,FMU,E,P1,P2,PE,IIN,IOQUT

COMMON R, RHO,RL,DIA,G, DPDX, REY, AMU, RLU, DRC

COMMOXR UTESI P‘--;,SHAX,DP,DU,DPSX.SCALE

COMMCH LASTEL,LASTND,NELEM, NNODES,NIN,NTUBE,LASTS, INFLAG
COMMON XX, NNY,NTUBEX, NTUBEY, HX, HY, NUMBC

COMMON IFORCE, TWX,TWY,TWZ,SIGXO,XC,YC

DOUBLE PRECISICN Z,PSI,STRAIN,CI,H,VOL,STIFF

THE FOLLGAING ARE ROUTINE SPECIFIC VARIABLES.
DIMENSION YEDGE(5J),ZEDGE(60)
DIMENSION XB{292G,3),YB(300,3),28(300,3)

INITIALIZE THE LCOP PARAMETERS
JSTART = 2
JSTOP = LASTJ
MSTOP = LASTEL
IF THE INITIALIZATION HAS JUST BEEN RUN, THE ENTIRE INTERIOR MUST
BE ANALYZED, OTHERWISE ONLY THE VOLUME UNDER THE FLEXIBLE TUBE
NEED BE ANALYZED.,
IF(INFLAG.EC.1) 50 70 240
JSTART = NIN
JSTOP = NTUBE + 1

REFORMAT THE NODE DEFINITIONS.
280 D) 332 M = 1,9STOP
ID = IELEM{M,1)

XB(M, 1) = XNODE(ID)
YB(M,1) = YNODE(ID)
ZB(M,1) = ZNODE(ID)

ID = IELEM(N,2)
XB(M,2) = XNODE(ID)
. Y8(M,2) = YNODE(ID)
ZB(M,2) = ZNODE(ID)
ID = IELEM(M,3)
XB(M,3) = XNODE(ID)
¥B(M,3) = YHODE(ID)
. ZB(M,3) = ZNODE(ID)
330 COITIIUE

ARRANGE THE X,Y,Z VALUES OF THE NODES BY X ORDER IN EACH ELEMENT.

DO 230 H =1,MSTOP

IBIG =

IF(XB(H 2).GE.XB(M,1) .AND. XB(M,2).GE.XB(M,3)) IBIG = 2
IF(XB(M,3) .GE.XB(M,1) .AND. XB(M,3).GE.XB(M,2)) IBIG = 3

ZNCLOSED BY THE TUBE AND MOUNTING FIXTURES.

TR(300, 1G),SIGMA(300,4) ,HDOF (20G)

50000815
203200320
0G260030
55900080
£098355%
€32038060
25090070
99009080
000000590
20600100
85322110
30005123
00000130
20002140
0G000150
00905160
©00GG1790
20900180
40000190
05090200
05000213
30000223
00030230
00330240
08500250
00000260
9009¢270
00000280
30000299
00090300
00000310
20000320
00900332
00C0934C
00000350
00000360
00000370
€0000380
00000390
90050400
00000410
00000420
00000430
000500440
20000450
00000460
00000470
00000480
0C000492
00000500
00000510
00000520
02000530
00000540
00000550
00000560
00000570
00000580

- 00000590

[ XsXsNeXy)

© ¢

C

IF(XB(M,1).GE.XB(M,2) .AND. XB(M,1).GE.XB(M,3)) IBIG =
IF(I8IG.EQ.1) GO TO 220
XSAVE = X3(M,1)

YSAVE = YB(M,1)

ISAVE = 23(¥,1)

X8(M,1) = XB(M,IBIG)
YB(M, 1) = Y5(M,IBIG)
ZB(M,1) = ZB(M,IBIG)
XB(M,IBIG) = XSAVE
YB(M,IBIG) = YSAVE
Z8(M,IBIG) = ZSAVE

. 220 IF(KB(N 2).GE.XB(M,3)) GC TO 230

XSAVE = XB(M,2)
YSAVE = ¥38(M,2)
2ZSAVE = IB(M,2)

X8(M,2) = XS(! 3)
YB(M,2) = YB(M,3)
I8(M,2) = ZB(M,2)
¥3(K,3) = XSAVE
13{¥,3) = YSAVE
ZB(M,3) = ISAVE

235 COHTINUE

THE FOLLOWING LOOP CALCULATES THE Y,Z COORDINATES FOR EACH
INTERSECTION OF AN X=C LINE WITH AN ELEMENT EDSE.

DI 410 J =
RI=J -1
X = RI#X
THE NEXT LOOP CALCULATES THE ELIGIBLE ELEMENTS AND THE Y,Z
LINEAR INTERPOLATION IS USED.
ICOUNT = 0
22 520 M = 1,MSTOP
IF(XB(M,1).LT.X .OR. XB(M,3).GE.X) GO TO 520
ICOUNT = ICOUNT + !
YEDGE (ICOUNT) = YB(M,3) ¢ (X-XB(M,3))®(YB(M,1)-YB(N,3))
" $/(XB(M, 1)-XB(M,3))
ZEDGE(ICOUNT) = IZB(M,3) « (X-XB(M,3))%(ZB(M,1)-2ZB(M,3))
$/(XB(M, 1)-XB(M, 3))
ICOUNT = ICOUNT + 1
IF(X.NE.XB(M,2)) GO TO 540
YEDSE (ICOUNT) = YB(M,2)
ZEDSE(ICOUNT) = ZB(M,2)
GO TO 520
540 IF(X.LT.XB(M,2)) GO T0 530
YEDGE(ICOUNT) = YB(M,2) + (X-XB(M,2))®(YB(M,1)-YB(M,2))
$/(XB(M, 1)-XB(M,2))
ZEDGF(ICOUHT) = ZB(M,2) + (X-XB(M,2))*(ZB(M,1)-2Z3(M,2))
$/(XB(M, 1)-XB(H 2))
G0 TO 5
530 YEDGE(ICOUNT) = YB(M,3) «+ (X-XB(H 3))#(YB(M,2)-Y3(¥,3))
$/(XB(M,2)-XB(M,3))
ZEDoE(ICOUNT) = ZB(M,3) + (X-XB(M,3))*(ZB(M,2)-ZB(M,3))
$/(XB(M,2)-XB(M,3))
520 CONTIHUE

SORT THE PAIRS INTO ASCENDING Y ORDER.
LAST = ICOUNT = 1
DO 610 M = 1,LAST -

JSTART, JSTOP

PAIRS.

000035600
0003C210
002029520
20228230

DUEOC333
20036550
90043570
00200680
000092590
00005735
00560715
05033729
jlobsbeiakach]
30000743
UDDOC'DG

plies 5-

UDDOOSZ'

03JL0538
C03C35-3
000359850
0000968¢C
D°°°U9Tv

QJDL‘Q“
20501922
03821933
000213s3
000010358
000012630
90003772
0002123C
000012635
00001120
00001112
00001120
0000113C
00001142
000C1153
00001160
00001173
00001130
006001153
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YEDGE (M) : 00051200 s SET OUTLET PARAMETERS, 0000180C

SMALL =
YSAVE = YEDGE(M) 20001210 YMAX(LASTJ+1) = YMAX(LASTJ) 00001815
ZSAVE = ZEDGE(M) 00001220 NY(LASTJ+1) = NY(LASTJ) 00001823
upt = M M 1 20301230 KEND = WY(LASTJ) 20001¢
MSA;g Z 20N - up1, LCOUNT : gggg:f;g $2 750 X = Z,KEND 60012
= 2 MAX{LASTJe1 = ZMAX(LASTS, S . &53
TF(YEDSE(H).GE.SMALL) GO TO 620 ~ s0o01280 ¢ o0t K X(Lastd, oaaoies
!SAVE = “ED(' ) 030012;0 c 00901573
SMALL = YEDGE(XN) 20001280 s RESET T INITIALIZAIIOYN 3 5
€20 CONTINUE 50001290 EFiaE DOTIALIZATICY FLAG : SrrEatets
IF(MSAVE.EQ.M) GO TO 610 20091300 ¢ 00001535
ZEDSE(M) = ZEDGE(MSAVE) . 09501310 155 RETURH 00001575
YEDGE(M) = YEDGE(MSAVE) 90001320 £4D ) 00001325
‘YEDGE {MSAVE) = YSAVE ) 93001330 ’
ZEDGE (MSAVE) = ZSAVE i 53901340
£15 CONTINUE 30901350
ITOTAL = ICOUNT 05001369
! 00251370
|I|llllllll!ll!ll.IIIISET THE MESH PARAMETERS-lllI|llI!llllllll 0000}3&0
: 20001399
CALCULATE THE MAXIMUM Y COGRDINATE (YMAX) AND THE NUMBER OF Y £5001400
INCREMENTS (NY). 00301410
NY(J) = YEDGEZ(ITOTAL)/iY « 2.0 26021420
YMAX(J) = YEDGE(ITOTAL) . 30001430 -
60001440
CALCULATE THE MAXIMUYM 2 COORDINATE (ZMAX) 60001450
IMAX(J,2) = ZEDGE(1) 20001460 -
- IF(IMAX(J,2).LT.0.0) ZMAX(J,2) = 0.0 26001470
705 LASTY = NY(J) 20001480
D2 733 M = 3,LASTY 00001499
RM = M-2 . 20001500
TESTY = RH‘HY 20001510
NSAVE = 00001520 :
D0 710 | = 2,ITOTAL 96001530
IF(YEDGE (H).LE.TESTY) GO TO 710 00001540
IF(YEDJE(N) EQ.YEDGE(N-1)) GO TO 706 20001550
NSAVE = N 00001560
GO TO 720 00001570
706 . IMAX(J,M) = zrDcE(N) 90001580
GO 10 725 000015990
710 CONTINUE 60001600 .
ZHAX(J,N) = ZEDGE(ITOTAL) 00001610
S TO 725 00001620
720 IK = NSAVE - 1 20001630
IMAX(J,M) = ZEDGE(IK) + (ZEDGE(NSAVE) ZEDGE (IK))®(TESTY~-YEDGE(IK))00001640
$/(YEDGE (NSAVE)-YEDGE (1K)) 00001650
725 IF(ZMAX(J,M).LT.0.0) ZMAX(J,M) = 0.0 00001660
730 CONTINUE 00001670
ZMAX(J, 1) = ZMAX(J,3) 09001680
: 00001690
%10 CONTINUE : 00001700
. 00001710
00001720
SET PARAMETERS FOR THE INLET PLANE. 00001730
IF(INFLAG.EQ.0) GO TO 755 . 00001740
YMAX(1) = YMAX(2) 00001750
KY(1) = RY(2) 00001760
LASTK = NY(2) . : 00001770
DO 745 K = 2,LASTK - 00001780
TS ZMAX(1,K) = ZMAX(2,K) - 00001790
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