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CHAPTER I 

INTRODUCTION 

Biological stabilization of waste from industrial and domestic 

sources is used extensively to degrade complex organic material into 

simpler compounds. Ideally, the organic material should be converted 

to volatile compounds which are returned to the atmosphere--co2 in 

aerobic treatment and methane and co2 in anaerobic treatment. The 

treated effluent can then be introduced into bodies of water with mini-
1 

mal effect on the ecology of the receiving body of water. Producing a 

minimal effect on the receiving body of water is the primary goal of 

wastewater treatment. There are three commonly used methods of aerobic 

biological treatment: the trickling filter, the oxidation pond, and the 

sludge process. 

The activated sludge process was developed in England by Adern and 

Lockett (1914). It is the most versatile of the biological treatment 

processes. The main advantages of the activated sludge process, in addi­

tion to its versatility, include the rapid removal of organics and the 

ease of separating purified water from the biological solids. The acti-

vated sludge process is rather simple. A sludge can be developed by 

merely aerating a biodegradable waste for a period of time until a large 

mass of settleable solids forms. The masses of settleable solids or 

biological floes are formed as a result of the growth of microorganisms, 

using the organic waste products as substrates for energy and growth, 
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in the presence of dissolved oxygen. The settleable solids or biologi­

cal floc is actually the activated sludge. 

A schematic diagram of the activated sludge process is presented 

in Figure 1. The wastewater, separately or after mixing with return 

sludge, enters the aeration tank. As the wastewater flows along the 

aeration tank, it is aerated and mixed. In newer, 11 Completely mixed 11 

aerators, incoming waste and sludge are immediately dispersed through­

out the aerator by vigorous aeration. The microorganisms aerobically 

stabilize the organics in the aeration tank. The overflow from the 

aerator is channeled into the secondary sedimentation tank. In the 

sedimentation tank, the biological floes are allowed to settle. This 

results in the separation of the biological floes from the purified 

effluent. The efficiency of removal of solids is generally above 90 

percent. A portion of the settled sludge is returned to the incoming 

wastewater. The excess sludge is further treated, usually by anaerobic 

digestion, before final disposal. 

One major modification that has been developed for the activated 

sludge process is the extended aeration or total oxidation process. 

The extended aeration process differs from the basic activated sludge 

process in that it is operated without wasting sludge. This is accom­

plished by recycling all of the sludge to the aeration tank. The 

extended aeration process is represented by the heavy lines in Figure 1. 

A longer detention time provides for autooxidation of biological solids. 

Porges et al. (1953) theorized that total oxidation was possible under 

appropriate conditions. The idea of total oxidation has been a subject 

of controversy. Several researchers, Kountz and Fourney (1959), 

Symons and McKinney (1958), Busch and Myrick (1960), and Washington and 



Figure 1. Representation of the Activated Sludge Process. 
The heavy lines represent the extended aeration 
process with total sludge recycle. 
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Symons (1962) concluded that total oxidation was theoretically impos~ 

sible. The concern of the above researchers was the accumulation of 

11 inert 11 materials. They pointed out that extracellular polysaccharides 

often accumulate as waste products of metabolism. These polysacchar­

ides, since they are waste products, would be expected to be nonbio­

degradable. Gaudy et al. (1970) conducted long-term studies in which 

return of all biological solids was ensured by centrifugation of the 

effluent. Based on this 3-year study, it was proved that total oxida­

tion was theoretically sound and that solids would not build up contin­

ually in an extended aeration-total oxidation unit. One of the most 

expensive parts of the activated sludge process, the disposal of excess 

sludge, therefore theoretically can be eliminated. Gaudy and Gaudy 

(1971) presented a detailed discussion of the biological concepts invol­

ved in the design and operation of the activated sludge process. 

The ecology of the activated sludge process has not been studied 

extensively. The activated sludge ecosystem is dynamic, with ever­

changing populations of microorganisms. These populations aan be best 

described as heterogeneous. The interaction between the various popu­

lations is very important, as are the growth characteristics of the 

various species. The rate of waste conversion is related directly both 

to the growth characteristics of the biomass and to the design and 

operation of the system. Growth characteristics of the biomass have 

been an area of great interest since the pioneer work of Monod (1950). 

The work of Monad and the theory of continuous culture have been applied 

to a wide array of fields of research, including activated sludge. 

The activated sludge process is actually a continuous mixed culture 

composed of heterogeneous populations that are continually stabilizing 
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organic waste. The heterogeneous nature of the populations allows for 

adaptation of the process for the treatment of a wide array of organic 

wastes. Also, this characteristic allows for adaptation to distur­

bances commonly called 11 shock loads. 11 The ecosystem, due to its heter­

ogeneous nature, also has the capability of producing undesirable 

effects, for example, the production of a poorly settling floc by fila­

mentous organisms such as ~phaerotilus natans (Pipes, 1967). Additional 

studies in the areas of identification of the types of microorganisms 

present, their interrelationships, growth kinetics, and responses to 

various environmental changes are needed on a wide variety of plants. 

The bacteria are responsible for the degradation of the majority 

of the organic material in the activated sludge process. Most of the 

research has been directed toward the aerobic heterotrophs, since this 

group.appears to be of the greatest importance in the stabilization of 

waste. It is impossible to cultivate many of the bacteria normally 

found in activated sludge on ordinary culture media. Many different 

types of media have been used; therefore, the reported organisms and 

the numbers present will vary. Also, the composition of the waste­

water being purified will be an important factor in determining what 

species are present. 

Allen (1944) recommended using nutrient agar for isolating bac­

teria from activated sludge. He found that most of the bacteria in 

sludge were Gram-negative rods belonging to the genera Pseudomonas, 

Flavobacterium, and Achromobacter. Fecal bacteria and sporeformers 

were found in small numbers. Allen (1944) also reported viable counts 

of 108 - 1010 per ml of homogenized sludge from a plant treating domes­

tic waste. Jasewicz and Porges (1956) investigated activated sludge 
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treating dairy waste and i~olated strain'$,(>n nutrient agar plus skim 
> ' .·-.' ':-<·.•· 

) ';:- '::'' 

milk in the following propo;·tions: 26p~rcent Alcaligenes, 34 percent 

Flavobacterium, 14 percent Micrococcus and 16 percent Pseudomonas. van 

Gils (1964), using tryptone glucose agar for isolation, reported that 

activated sludge grown on sewage of domestic origin belonged primarily 

to the family Achromobacteraceae. In addition, members of the Pseudo­

monadaceae and Corynebacteriaceae were found to occur. These results 

generally agree with those of Allen (1944) and Jasewicz and Porges 

(1956). van Gils (1964) also found, in an activated sludge produced in 

a laboratory plant fed with mineral medium with glucose and ammonium 

sulfate, many strains belonging to the Achromobacteraceae. About half 

of these strains belonged to the genus Flavobacterium; the other half 
i 

were of the genus Achromobacter~ Representative~ of the genera 

Alcaligenes and Lophomonas were only a small portion of the population; 

the majority of the strains isolated from the laboratory sludge con-

sisted of coccoid strains. The coccoid strains included Micrococcaceae 

but the majority were unidentifiable Gram-negative, capsulated egg-

shaped bacteria. A few filamentous organisms were also isolated. One 

of the filamentous bacteria was identified as Nocardia. 

van Gils (1964) reported viable counts on ammonium sulfate glucose 

agar and on tryptone glucose agar to be 108 bacteria per ml from homo­

genized laboratory sludge fed with glucose-ammonium sulfate mineral 

medium and 108 using tryptone glucose agar for homogenized activated 

sludge produced on waste from domestic origin. These counts for domes­

tic waste sludge are comparable with those of Allen (1944). 

Pioneering work in the isolation of bacteria from activated sludge 

was conducted by Butterfield (1935); he isolated Zoogloea ramigera. It 



was accepted for many years that Zoogloea ramigera was the bacterium 

responsible for both the stabilization of the organic matter and the 

formation of floes. McKinney and Weichlein (1953), using nutrient 

agar, isolated 72 bacterial strains, in addition to Zoogloea ramigera, 

which were capable of floc production. Dias and Bhat {1964) isolated 

over 300 bacterial strains from seven different sources by plating on 

sewage extract agar. Gram-negative bacteria of the genera Zoogloea 
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and Comamonas predominated. A large number required either vitamins or 

amino acids, or both, for growth. Coliforms were rarely isolated. 

These results are quite different from those of Allen (1944) and van 

Gils (1964). These differences are probably due to the types of media 

used, source of sludge, and variations in technique. Prakasam and 

Dondero (1967a) compared several media and stated that activated sludge 

extract agar gave higher viable counts than did nutrient agar, iron­

peptone agar, sewage agar, basal medium, Taylor•s medium, or casitone­

yeast extract autolysate medium. Only half of the total number of the 

developed colonies could be subcultured on richer standard media. 

Pipes (1966), in a review of the taxonomic work on activated 

sludge, stated that the following aerobic heterotrophs are found in 

activated sludge: Achromobacter, Alcaligenes, Bacillus, Bacterium, 

Comomonas, Flavobacterium, Microbacterium, Pseudomonas, and Zoogloea. 

Benedict and Carlson (1971) isolated Acinetobacter, Alcaligenes, Brevi­

bacterium1 Caulobacter, Comomonas, Cytophaga, Flavobacterium, Hypho­

microbium, Microbacterium, Pseudomonas and Sphaerotilus in studies 

utilizing raw sewage agar and glutamate-urea agar and activated sludge 

from domestic waste treatment. 

It is evident that no single medium will reliably support growth 



of all types of bacteria present in activated sludge (Lighthart and 

Oglesby, 1969). Prakasam and Dondero (1967) reported higher counts 

9 

with activated sludge agar. Pike et al. (1972) compared casitone­

glycerol-yeast extract agar with activated sludge agar and found it to 

be superior. A large proportion of the microscopically visible bacteria 

in liquors from sewage treatment plants are not recoverable by viable 

counting methods (Unz and Dondero, 1970). Many of these discrepancies 

can possibly be attributed to difficulties in distinguishing inert par­

ticles from bacteria under the microscope, cultural techniques, and low 

viability of bacteria. Pike et al. (1972), in an attempt to standardize 

procedures, recommended, after extensive work, a series of procedures 

including the use of casitone-glycerol-yeast extract agar as a standard 

medium for isolation and enumeration of bacteria.in activated sludge. 

The use of an easily prepared medium, such as casitone-glycerol-yeast 

extract agar, for routine plating of microorganisms present in acti­

vated sludge seems to be essential since all media tested thus far are 

selective, at least to some degree. 

Bacteria other than those mentioned above have also received much 

attention by researchers. A number of conditions have been associated 

with bulking of sludge (poorly settling sludge) but the most common of 

these is related to the growth of filamentous microorganisms in the 

sludge. This condition has been described by Pipes (1967). 

The study of filamentm~s microorganisms has been generally restric­

ted to a few genera and in particular Sphaerotil us. The term 11 Sphaero­

tilus11 has been used by many to describe all filamentous microorganisms. 

Many other filamentous microorganisms have been isolated and identified 

from activated sludge. Eikelboom (1975), in an extensive work on 1,100 
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activated sludge samples, distinguished and characterized 26 different 

types. In a study of 34 cases of filamentous bulking, Pipes (1978) 

found the dominant filamentous bacteria to belong to the genera Bacil­

lus, Sphaerotilus, Beggiatoa, Arthrobacter, and Brevibacterium. It is 

difficult to differentiate the various filamentous microorganisms, 

since most of them are very difficult to isolate and grow in pure cul­

ture. Consequently, much of the taxonomic work is based on morphologi­

cal characteristics. Continued and extensive taxonomic work is needed 

in this area since the filamentous microorganisms are thought to cause 

bulking of activated sludge. 

Activated sludge plants are occasionally plagued with the produc­

tion of a viscous scum or foam. Microscopic examinations of such scums 

and foams reveal that they are composed of a mas$ of hyphae. Leche­

valier and Lechevalier (1974) studied the microbiology of scums and 

foams produced by activated sludge, and found that the hyphae present 

are predominately that of the actinomycte Nocardia amarae. Also, ]1. 

amarae was isolated from the mixed liquor of the activated sludge 

plants studied. 

Protozoa clearly play an important role in the efficient operation 

of activated sludge plants. Protozoa are plentiful in activated sludge. 

It is not uncommon to find numbers in the order of 50,000 cells per ml 

in the mixed liquor of activated sludge plants. Calculations based on 

such numbers indicate that protozoa constitute approximately five per­

cent of the dry weight of the suspended solids in the mixed liquor 

(Curds, 1973). Curds (1973) reported that four classes of protozoa are 

present in activated sludge. These in order of decreasing frequency, 

were the Ciliates, the Rhizopodea, the Phytomastigophorea, and the 
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Actinopodea. Based upon the relative abundance and frequency of the 

Ciliates, they are considered to be the most important group. The two 

Ciliates, Vorticella and Opercula, are responsible to a great degree 

for the success of the treatment process (Curds and Fey, 1969). Vorti­

cella and Opercula have been shown to be responsible for the removal of 

Escherichia coli from wastewater (Curds and Fey, 1969). Curds (1973) 

showed that activated sludge produced a turbid effluent in the absence 

of protozoa. Ciliated protozoa are therefore responsible for decreas­

ing the bacterial population in the clarifier supernatant, ensuring a 

clear effluent (Pillai and Subrahmanyan, 1944). Thus, oxygen-consuming 

bacteria are not released into the receiving body of water. Additional 

studies on the abundance, distribution, and ecological relationships 

between protozoa and bacteria are warranted. 

Fungi, due to their versatility in decomposing an extremely wide 

variety of organics, play an important role in the decomposition and 

stabilization of waste. The detailed systematic studies of Cooke and 

Pipes (1970) were the first to describe quantitatively the fungal pop­

ulations in activated sludge. The fungi most commonly found in their 

studies belonged to the genera Geotrichum, Trichosporon, and Penicil­

lium. Geotrichum and Penicillium were isolated from all 19 activated 

sludge units examined. 

Due to the absence of light, algae do not become established read­

ily in activated sludge. Rotifers have been suggested as indicators of 

a very high level of purification, since they predominate after all of 

the protozoa have died of starvation (McKinney, 1957). Nematode worms, 

Oligochaete worms and Chironomid larvae may also be found rarely (Curds, 

1973). The role of these higher forms is not thought to be important. 
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Further research in systems where they are found should be conducted to 

determine their role in the ecosystem. 

More work is needed in the field of microbial ecology to deter­

mine the organisms present and their roles and interrelationships in a 

variety of activated sludge plants. This information, hopefully, can 

be useful to help solve some of the operational problems of wastewater 

treatment plants, such as bulking sludge and excess foam and scum. The 

present investigation was undertaken to characterize the bacterial pop­

ulations that develop in a bench-scale pilot plant operated with total 

cell recycle. 



CHAPTER II 

MATERIALS AND METHODS 

Description of the Bench-seale Laboratory 

Activated Sludge Plant Operated 

With Total Cell Recycle 

The bench-scale laboratory plant investigated in this study is 

part of a research project conducted in the Bioenvironmental Engineer­

ing laboratories at Oklahoma State University, Stillwater, Oklahoma. 

The plant was operated with glucose-ammonium sulfate minimal medium 

with a chemical oxygen demand (COD) of approximately 500 mg/1 as the 

feed. The composition of the glucose-ammonium sulfate minimal medium 

used as feed for the plant is shown in Table I. 

The rate of feed was eight liters per day with an adjusted pH of 

7. The detention time in the aerator was 24 hours. The liquor in the 

12-liter aerator was adjusted periodically to pH 7. The settling tank 

had an 18-1 iter capacity. The settled sludge was returned to the 

aerator at a rate of two liters per day. 

Isolation and Enumeration of the 

Predominant Bacteria 

Samples were collected on the following dates: 8-29-78, 11-8-78, 

1-18-79, 2-6-79, and 2-20-79. Each sample was collected from the 

13 



TABLE I 

COMPOSITION OF GLUCOSE AMMONIUM SULFATE MINIMAL MEDIUM 

Glucose 

(NH4)2so4 

MgS04·7H2o 

FeC1 3 

CaC1 2 

MnS04·H2o 

Phosphate buffer, pH 7.6 

500 mg/1 

250 mg/1 

50 mg/1 

0.25 mg/1 

3.75 mg/1 

5 mg/1 

(KH/04, 38.5 gm/1 and K2HP04, 124.5 gm/l) 10 ml/1 

Tap water 100 ml/1 

Distilled water to volume 

14 
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aerator in a sterile test tube. 

Each sample was diluted 1:10 with sterile buffered dilution water 

and blended for four minutes at the high setting to release the bacteria 

from the floes. The blender used was an Osterizer Galaxie dual range 

14. The blender container was disinfected by rinsing with 70 percent 

ethanol, air drying and rinsing with sterile buffered dilution water 

immediately before blending each sample. 

Quantitative dilutions of each sample were prepared in sterile buf­

fered dilution water in preparation for plating. The buffered dilution 

water, used for dilution of samples, was prepared by dissolving 16 gm 

KH2Po4 in 250 ml distilled water. The pH was adjusted to 7.2 with 1.0 N 

NaOH. Distilled water was added to make the total volume 500 ml. The 

above stock was used to prepare buffered dilution water by adding 1.25 

ml of the stock buffer to one liter of distilled water, and dispensing 

in dilution blanks. The buffered dilution water was sterilized by 

autoclaving for fifteen minutes at 15 pounds pressure (121C). 

Each dilution (lo-6, 10-7, and 10-8) was plated in quadruplicate 

by plating 0.1 ml of each dilution on a pre-dried casitone-glycerol­

yeast extract agar (CGYA) surface and spreading with a sterile bent 

glass rod. CGYA agar medium contained: casitone, 5 gm; glycerol, 5 gm; 

yeast extract, 1 gm; agar (Difco), 20 gm, and one liter distilled 

water. The final pH was 7.2. Plates were prepared with 20 ml of medium 

per plate and were incubated at 37C over-night to dry the surface and 

to check for contamination. 

All spread plates were incubated at 30C for three days. Colonies 

were enumerated daily by using a darkfield Quebec colony counter. Col­

onies of each colonial type present on countable plates were selected 
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and transferred with a sterile needle to casitone-glycerol-yeast extract 

broth (CGYB) which has the same formula as CGYA without the agar. Each 

isolate was incubated in a slanted position on a reciprocal shaker at 

30C. Incubation was continued for each isolate until growth in CGYB 

produced visible turbidity. Then each culture was streaked on CGYA 

and incubated at 30C until colonies formed. Isolated colonies were 

selected and restreaked on CGYA to ensure purity. Wet mounts and Gram 

stains were utilized to check the purity of each isolate and to deter­

mine the cellular morphology of each isolate. 

Cultivation of Isolates 

Stock cultures of each of the isolates used in these studies were 
i 

·prepared by inoculating tryptic soy agar (TSA) (Difco) slants from 

isolated colonies. The inoculated slants were incubated at 30C for 24 

to 48 hours and stored at 4C. Stock cultures were transferred to new 

TSA slants monthly. For most experiments, cells used as inoculum were 

grown on TSA slants over-night and washed off with sterile 0.85 per-

cent saline solution. 

Characterization of the Isolates 

The colonial morphology of each isolate was described according to 

its appearance on TSA plates. The cellular morphology and motility of 

each isolate were determined by observing wet mounts using phase-

contrast microscopy. The Gram reaction of each isolate was determined 

by Gram staining cultures 24 hours old. 

The biochemical properties of the isolated organisms were deter­

mined by subjecting each isolate to a series of tests. The series of 
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tests included glycerol and glucose fermentation broths containing 

bromthymol blue as pH indicator. Phenol red was also used as pH indi­

cator for some tests. Other broths used were nitrate, urea, and methyl 

red-Voges Proskauer (MRVP). These broths were used respectively to 

test each isolate•s ability to reduce nitrate and produce urease, and 

to determine its pattern of fermentation. Readings were taken at 24 

and 48 hours and one week for the fermentation broths and nitrate 

broth. Urease production and the VP portion of the MRVP test were 

checked after 48 hours and the MR portion of the MRVP test after one 

week. 

Gelatin, starch, and tributyrin plates were inoculated and exam­

ined for hydrolysis after 48 hours. Tributyrin plates were checked 

again after four days. 

To test the ability of each isolate to utilize glucose, acetate 

and citrate as sole carbon and energy sources, the following media were 

inoculated and read after 48 and 72 hours: glucose and acetate minimal 

media and Simmon•s citrate agar (Difco). 

The composition of the glucose and acetate minimal media used was: 

(NH4)2so4, 0.5 gm; MgS04·7H20, 0.1 gm; FeC1 3·6H20, 0.5 gm; CaC1 3·2H20, 

7.5 mg; KH2Po4 , 3 gm; Na 2HP04, 6 gm; carbon and energy source (glucose 

or sodium acetate), 1 gm; tap water, 100 ml; distilled water, 700 ml, 

and agar (Difco), 20 gm. 

Kligler•s iron agar (Difco) was inoculated to determine the pro­

duction of hydrogen sulfide. Readings were taken after 24 and 48 hours. 

A drop of three percent H2o2 was placed on isolated colonies grown 

on TSA plates to determine catalase activity. Cytochrome oxidase acti­

vity was determined by placing one drop of a freshly prepared one 



percent solution of dimethyl-p-phenylenediamine-HCl on isolated colo­

nies grown on TSA pl~tes. 

Urea broth was filter-sterilized. All other media used for the 

cultivation, characterization, and enumeration of the isolates were 

sterilized by autoclaving for fifteen minutes at 15 pounds pressure 

(l21C). All incubations were at 30C. 

Microscopic Observations of the Mixed Liquor 

Microscopic observations of samples taken from the aerator were 

conducted with phase-contrast microscopy on the following dates: (l) 

8-29-78, (2) 10-31-78, (3) ll-9-78, (4) l-18-79, (5) 2-6-79, (6) 

2-20-79, (7) 3-19-79, and (8) 4-5-79. 
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CHAPTER III 

EXPERIMENTAL RESULTS 

Isolation and Enumeration of the 

Predominant Bacteria 

The bench-scale laboratory activated sludge plant was sampled on 

five different occasions to isolate the predominant bacteria present. 

Viable cell counts were obtained by the spread plate technique on CGYA 

incubated at 30C for 72 hours. The viable cell Gount for each isola­

tion, expressed as an average of four replica plates is shown in 

Table II. 

The bacteria used in these studies were isolated from dilution 

plates used to determine viable counts. Selected colonies of each colon­

ial type present on countable plates were subcultured in CGYB. Pure 

cultures of twenty-five bacteria were obtained from isolation #1, 8-29-

78; twenty-two from isolation #2, 11-8-78; twenty-three from isolation 

#3, 1-18-79; twenty-three from isolation #4, 2-6-79; and twenty-four 

from isolation #5, 2-20-79. A total of 118 colonies were selected for 

isolation; only one failed to grow when subcultured in CGYB. 

Characterization of Isolates 

The overall characteristics of the population at each sampling were 

determined by compiling the biochemical and morphological characteris­

tics of all isolates. A summary of the characteristics of the isolates 
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Isolation # 

2 

3 

4 

5 

TABLE II 

VIABLE CELL COUNTS 

Date 

8-29-78 

11- 8-78 

1-18-79 

2- 6-79 

2-20-79 

Bacteria/ml 

1 . 7 X 1 09 

4.7 X 109 

3.8 X 108 

2.1 X 109 

6.6 X 108 

Viable count is the average of four rep­
licate plates. 

20 
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at each isolation, expressed as percent of positives, is shown in Tables 

III and IV. A composite total of the,five isolations, expressed as per­

cent of positives, is also included in Tables III and IV. 

In order to determine the number of groups present in each isola­

tion, characteristics that were of diagnostic value for grouping isola­

tes in each sample were determined from the morphological and biochemi­

cal properties of each isolate. The characters of diagnostic value for 

grouping isolates in each isolation are presented in Tables V - IX. A 

total of 46 groups was isolated in the five isolations. 

To determine whether the same group was present in more than one 

isolation, the morphological and biochemical characteristics of each 

group isolated were tabulated. The results are shown in Tables X - XIV. 

By comparing the characteristics of each of the 46 groups with each 

other, it was determined that group #1 in isolation #3 had the same 

characteristics as group #11 of isolation #4 and group #1 of isolation 

#5. Since these groups have the same characteristics, they are prob­

ably in the same group taxonomically. Several different groups have 

the same biochemical characteristics, but different morphological 

characteristics. The differences between these groups are shown in 

Table XV. All other groups isolated have at least one biochemical and 

one morphological difference. Those groups with morphological and/or 

biochemical differences are considered to be different groups; there­

fore 44 different groups were isolated. 

Additional information observed for the isolates, but not included 

in Tables III- XV, is as follows: (1) giant cocci three to four times 

as large as the other cocci were present in some older cultures of 

isolates with a cell cycle; (2) all the cocci isolated were 



TABLE II I 

MORPHOLOGICAL CHARACTERISTICS OF ISOLATES AS 
PERCENT OF POSITIVES 

Isolation Number , 2 3 4 

Number of isolates tested 25 22 23 23 

Colonial Morphology 

Colony elevation flat 0 0 13 0 
Colony elevation raised 100 100 87 100 
Colony margin entire 60 50 78 70 
Colony margin irregular 40 50 22 30 
Colony pink/red 4 0 0 0 
Colony yellow/orange/brown 8 9 83 87 
Colony cream/grey/white 88 91 17 9 
Co 1 ony gelatinous-watery 0 50 43 30 
Exopigment-water soluble 0 0 0 4 

Cell Morphology 

Branching present 0 5 43 39 
Rods only 4 0 0 0 
Cocci only 48 9 0 0 
Rods and cocci 48 91 100 100 
Motility 8 68 57 65 

22 

5 Total 

24 117 

8 4 
92 96 
75 67 
25 33 
0 1 

63 50 
38 49 
17 28 
0 1 

54 28 
0 1 
0 11 

100 88 
8 41 
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TABLE IV 

BIOCHEMICAL CHARACTERISTICS OF ISOLATES AS 
PERCENT OF POSITIVE REACTIONS 

Isolation Number , 2 3 4 5 Total 

Number of isolates tested 25 22 23 23 24 117 

Catalase 100 100 100 100 100 100 

Oxidase 0 55 52 43 42 38 

Acid from Glucose 

Aerobic 48 0 5 0 0 11 
Anaerobic 12 9 5 13 21 12 

Acid from Glycerol, Aerobic 0 0 0 0 13 3 

Hydrolysis Tests 

Urea 0 0 0 0 0 0 
Tributyrin 96 59 96 100 92 89 
Starch 4 0 0 13 25 8 
Gelatin 4 77 22 30 17 30 

Growth on Minimal Media 

Citrate 48 18 74 74 63 55 
Glucose 40 100 91 100 100 86 
Acetate 40 86 91 100 100 83 

Nitrate Reduction 

N03+N02 84 45 57 61 79 65 

- + N03+NH4 4 0 0 0 0 1 

NOj+N2 0 0 26 5 4 7 

Methyl Red 0 9 9 13 8 6 

Voges-Proskauer 0 0 13 13 17 9 

H2s Production 0 0 0 0 0 0 



TABLE V 

CHARACTERS OF DIAGNOSTIC VALUE FOR GROUPING 
ISOLATES IN ISOLATION #1 

1 2 3 
Graue # 

4 

Number of isolates in each group 10 4 7 1 

Colonial Morphology 

Colony margin entire + + + 
Colony margin irregular + 
Colony pink/red 
Colony yellow/orange/brown + 
Colony cream/grey/white + + + 

Cell Morphology 

Cocci only + + 
Rods only 
Rods and cocci + + 
Motility 

Acid from Glucose 

Aerobic + 
Anaerobic + 

Hydrolysis Tests 

Tributyrin + + + + 
Starch 
Gelatin 

Growth on Minimal Media 

Citrate + 
Glucose + 
Acetate + 

Nitrate Reduction 

N03-+N02 + + + + 
- + N03-+NH4 

24 

5 6 7 

1 1 

+ + + 

+ 
+ 

+ 

+ 
+ 

+ 
+ + 

+ 

+ + 
+ 
+ 

+ 

+ + 

+ 



TABLE VI 

CHARACTERS OF DIAGNOSTIC VALUE FOR GROUPING 
ISOLATES IN ISOLATION #2 

GrOUE # 
1 2 3 

Number of isolates in each group 11 2 7 

Colonial Morphology 

Colony margin entire + + 
Colony margin irregular + 
Colony orange/brown 
Colony cream/grey/white + + + 
Colony gelatinous-watery + 

Cell Morphology 

Cocci only + 
Rods and cocci + + 
Branching present 
Motility + + 

Oxidase + 

Acid from Glucose, Anaerobic + 

Hydrolysis Tests 

Tributyrin + + 
Gelatin + + 

Growth on Minimal Media 

Citrate + + 
Acetate + + 

Methyl Red + 

25 

4 5 

1 1 

+ + 

+ + 

+ + 
+ 
+ + 

+ 

+ 

+ 
+ + 
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TABLE VII 

CHARACTERS OF DIAGNOSTIC VALUE FOR GROUPING 
ISOLATES IN ISOLATION #3 

Grou~ # 
2 3 4 5 6 7 8 

Number of isolates in each group 6 3 2 4 5 

Colony Morphology 

Colony margin entire + + + + + + + 
Colony margin irregular + + 
Colony yellow/orange/brown + + + + + + 
Colony cream/grey/white + + 
Colony gelatinous-watery + + 

Cell Morphol og_y 

Branching present + + 
Motility + + + + + + 

Oxidase + + + + + 

Acid from Glucose, Anaerobic + 

Gelatin Hydrolysis + + 

Growth on Minimal Media, Citrate + + + + + + 

Nitrate Reduction 

N03-+N02 + + + + + 

N03-+N2 + + 

Methyl Red + 

Voges-Proskauer + + 
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TABLE VII I 

CHARACTERS OF DIAGNOSTIC VALUE FOR GROUPING 
ISOLATES IN I$0LATION #4 

Group # 

1 2 3 4 5 6 7 8 9 10 11 12 

Number of isolates in each group 2 1 1 1 1 1 1 1 2 .4 7 1 

Colony Morphology 

Colony margin entire 
Colony margin irregular 
Colony yellow/orange/brown 
Colony cream/grey/white 
Colony gelatinous-watery 
Exopigment-water soluble 

Cellular Morphology 

Branching present 
Motility 

Oxidase 

Acid from Glucose, Anaerobic 

Hydrolysis Test 

Starch 
Gelatin 

+ + + + + + + + + + - -
- - - - - - - - + + 

+ + - + + + - - - + + + 
- + - - - + + + -

- - - - - - - - + + 
- - - - - + -

+ + 
+ + + + 

- i - - + + + 
+ + + + 

- + - + - - + + - + - -

+ + 

+ + - + - -
+ - - + - + + - - + 

Growth on Minimal Media, Citrate - + + + + - + + - + + + 

Nitrate Reduction 

N03~N02 

N03~N2 
Methyl Red 

Voges-Proskauer 

+ + - - + - + - + + + + 

+ -

+ + -

+ + 
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TABLE IX 

CHARACTERS OF DIAGNOSTIC VALUE FOR GROUPING 
ISOLATES IN ISOLATION #5 

Group # 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of isolates in each group 4 6 1 2 1 1 1 1 1 1 1 1 1 2 

Colony Morphology 

Colony elevation flat 
Colony elevation raised 
Colony margin entire 
Colony margin irregular 
Colony yellow/orange/brown 
Colony cream/grey/white 
Colony gelatinous-watery 

Cell Morphology 

Branching present 
Motility 

Oxidase 

Acid from Glucose, Anaerobic 

Acid from Glycerol, Aerobic 

Hydrolysis Tests 

Tributyrin 
Starch 
Gelatin 

- + 
+ + + + + + + + + + + + + -
- + + + + + + + + + + + + -
+ -
+ + - + + - -

- + 
- - + + + 

- - + - - + + + + - - - + + 
+ -

+ + + - - + + + 
- - - - I - + 

- - + + - - + ~ + + + - + + 

- - - - + + - - - + - + 

- - - - + + 

+ + + + - - + + + + + + + + 
- + -

- - - + + - + - - + 

Growth on Minimal Media, Citrate + + + - + - - + - - + + 

Nitrate Reduction 

NOj+N02 

NO;+N2 

Methyl Red 

Voges-Proskauer 

+ + + + + + - + + - + - + -

- + -

- - + + 

- - + + - - - + 
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TABLE X 

CHARACTERISTICS OF EACH GROUP ISOLATED 
IN ISOLATION #1 

Group # 
2 3 4 5 6 7 

Number of isolates in each group 10 4 7 

Mor(1hological Characteristics 

Colonial Morphology 

Colony elevation flat 
Colony elevation raised + + + + + + + 
Colony margin entire + + + + + + 
Colony margin irregular + 
Colony pink/red + 
Colony yellow/orange/brown + + 
Colony cream/grey/white + + + + 
Colony gelatinous-watery 
Exopigment-water soluble 

Cell Morphology 

Branching present 
Rods only + 
Cocci only + + + 
Rods and cocci + + + 
Motility + + 

Biochemical Characteri sties 

Catalase + + + + + + + 

Oxidase 

Acid from Glucose 

Aerobic + + 
Anaerobic + 

Acid from Glycerol, Aerobic 

Hydrolysis Tests 

Urea 
Tributyrin + + + + + + 
Starch + 
Gelatin + 

Growth on Minimal Media 

Citrate + + 
Glucose + 
Acetate + 

Nitrate Reduction 

N03-•N02 + + + + + 
- + N0 3-•NH4 + 

N03•N2 

Methyl Red 

Voges-Proskauer 

H2S Production 



TABLE XI 

CHARACTERISTICS OF EACH GROUP ISOLATED 
IN ISOLATION #2 

Group # 
2 3 4 5 

Number of isolates in each group 

Morphological Characteristics 

Colonial Morphology 

Colony elevation flat 
Colony elevation raised 
Colony margin entire 
Colony margin irregular 
Co 1 ony pink/red 
Colony yellow/orange/brown 
Colony cream/grey/white 
Colony gelatinous watery 
Exopigment-water soluble 

Cell Morphology 

Branching present 
Rods only 
Cocci only 
Rods and cocci 
Motility 

Biochemical Characteristics 

Catalase 

Oxidase 

Acid from Glucose 

Aerobic 
Anaerobic 

Acid from Glycerol, Aerobic 

Hydrolysis Tests 

Urea 
Tributyrin 
Starch 
Gelatin 

Growth on M-inimal Media 

Citrate 
Glucose 
Acetate 

Nitrate Reduction 

NO)>NO; 
- + N03->NH4 

ND3•N2 

Methyl Red 

Voges-Proskauer 

H..,S Production ,_ 

11 

+ 

+ 

+ 
+ 

+ 
+ 

+ 

+ 

+ 

+ 

+ 
+ 
+ 

+ 

2 

+ 
+ 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 

+ 

7 

+ 
+ 

+ 

+j 

+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 

+ 
+ 
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TABLE XI I 

CHARACTERISTICS OF EACH GROUP ISOLATED 
IN ISOLATION #3 

Grou~ # 
2 3 4 5 6 7 8 

Number of isolates in each group 6 3 2 4 5 

Mor~hological Cha(acteristics 

Colony Morphology 

Colony elevation flat 
Colony elevation raised + + + + + + + + 
Colony margin entire + + + + + + 
Colony margin irregular + + 
Co 1 ony pink/red 
Colony yellow/orange/brown + + + + + + 
Colony cream/grey/white + + 
Colony gelatinous-watery + + 
Exopigment-water sol ub·l e 

Ce 11 Morpho 1 ogy 

Branching present + + 
Rods only 
Cocci only - i 

Rods and cocci + + + + + + + + 
Motility + + +i + + + 

Biochemical C ha rae teri s tics 

Catalase + + + + + + + + 

Oxidase + + + + + 

Acid from Glucose 

Aerobic 
Anaerobic + 

Acid from Glycerol, Aerobic 

Hydrolysis Tests 

Urea 
Tributyrin + + + + + + + + 
Starch 
Gelatin + + 

Growth on Minimal Media 

Citrate + + + + + + 
Glucose + + + + + + + + 
Acetate + + + + + + + + 

Nitrate Reduction 

N03•N02 + + + + + 
- + N03+NH4 

No; >N 2 + + 

Methyl Red + 

Voges-Proskauer + + 

H2s Production 



TABLE XI II 

CHARACTERISTICS OF EACH GROUP ISOLATED 
IN ISOLATION #4 

Group # 
-,-zj 4 5 6 7 8 9101112 

Number of isolates in each group 2 1 

Morphological Characteristics 

2 4 7 1 

Colony Morphology 

Colony elevation flat 
Colony elevation raised 
Colony margin entire 
Colony margin irregular 
Colony pink/red 
Colony yellow/orange/brown 
Colony cream/grey/white 
Colony gelatinous-watery 
Exopigment-water soluble 

Ce 11 Morpho 1 ogy 

Branching present 
Rods only 
Cocci only 
Rods and cocci 
Motility 

Biochemical Characteristics 

Catalase 

Oxidase 

Acid from Glucose 

Aerobic 
Anaerobic 

Acid from Glycerol, Aerobic 

Hydrolysis Tests 

Urea 
Tributyrin 
Starch 
Gelatin 

Growth on Minimal Media 

Citrate 
Glucose 
Acetate 

Nitrate Reduction 

NO:i'No; 
- + N03->NH4 

NOj>N2 

Methyl l<ed 

Voges-Proskauer 

H2S Production 

++++++++++++ 
++++++++++++ 

- - - - - - + + 

+ + - + + + 
- - + 

+ + -

+ -

- + + + 
+ + + 

- - + + 

- + + + 

! , ! ! ! ~ ~ ! I! + + + + 
+ + 

++++++++++++ 

- + - + - - + + - + - -

+ + 

++++++++++++ 
+ + - + -

+ - - - - + - + + - - + 

- + + + + - + + - + + + 
++++++++++++ 
+ + + + + + + + + + + + 

+ + - - + - + - + + + + 

- + -

+ + -

+ + - -
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TABLE XIV 

CHARACTERISTICS OF EACH GROUP ISOLATED 
IN ISOLATION #5 

Group # 
2 3 4 5 6 7 8 9 10 11 12 13 14 

Number of isolates in each group 2 6 

Morphological Character~stics 

2 2 

Colony Morphology 

Colony elevation flat 
Colony elevation raised 
Colony margin entire 
Colony margin irregular 
Colony pink/red 
Colony yellow/orange/brown 
Colony creamy/grey/white 
Colony gelatinous-watery 
Exopigment-water soluble 

Ce 11 Morpho 1 ogy 

Branching present 
Rods only 
Cocci only 
Rods and cocci 
Moti 1 ity 

Bjochemjcal Characteristjcs 

Ca ta 1 ase 

Oxidase 

Acid from Glucose 

Aerobic 
Anaerobic 

Acid from Gl ycero 1 , Aerobic 

Hydrolysis Tests 

Urea 
Tributyrin 
Starch 
Gelatin 

Growth on Minimal Media 

Citrate 
Glucose 
Acetate 

Nitrate Reduction 

NO;>N02 
- + N03-•NH4 

NO]'Nz 

Methyl Red 

Voges-Proskauer 

H2 S Production 

+ + + + + + + 
- + + + + + + 
+ - -

++-++­
-+--++ 

+ -

+ + + 

+ 
+ + + + + + -
+ + + + + + -

+ 

- + + + 
+ + - - - + + 

+ + + -

+ + + + + 
- - + 

+ + + + + + + + + + + + + + 

- - + + - - + - + + + - + + 

- - + + - - + - + 

- - + + 

+ + + + - - + + + + + + + + 
- + -

--++-+ - - + 

+ + + - + - - + - - + + 
+ + + + + + + + + + + + + + 
+ + + + + + + + + + + + + + 

+ + + + + + - + + - + - + -

+ - -

- + + -

- + + -

33 
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TABLE XV 

GROUPS THAT DIFFER ONLY MORPHOLOGICALLY 

GrOUQ # 
2 5 11 1 

Isolation number 3 3 4 4 5 

Colony gelatinous-watery + + + 

Colony margin entire + + 

Colony margin irregular + + + 

Branching present + + + + 

Group # 

7 10 5 

Isolation number 4 4 5 

Branching present + + 

Motility + + 

Colony cream/grey/white + + 

Colony yellow/orange/brown + 



Gram-positive; (3) all of the isolates that have a cell cycle were 

Gram-positive or Gram-variable. 

Microscopic Observations of the Aerator 

35 

General microscopic observations to determine the diversity of 

forms present in the aerator were conducted on eight different occa­

sions. A summary of the forms observed in the aerator is presented in 

Table XVI. 
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TABLE XVI 

SUMMARY OF MICROSCOPIC OBSERVATIONS 

Observation # 
1 2 3 4 5 6 7 8 

Protozoa 

Flagellates, free swimming + + + + + + + + 

Ciliates + + 

Amoeboid with test grey to 
golden brown + + + 

Nematoda + 

Bacteria 

Filaments, with ectobacilli + + + + + + + + 

Flat coccoid chains + + + + + + 

Microcolonies of cocci + + + + + + + 

Free floating cocci + 

Giant dense cocci + + + + + + 

Branched filaments + + + + + + 

Sheathed filaments + + + 

Free swimming bacilli + + + + + + + + 

Free floating coryneform rods + + 

Fl ocs 1 arge with projecting 
filaments + + + + + + + 

Fl ocs sma 11 with few filaments + 



CHAPTER IV 

DISCUSSION 

The primary purposes of this investigation were to enumerate, iso­

late in pure culture, and identify and/or characterize the populations 

of the predominant bacteria in the bench-scale laboratory activated 

sludge plant. The ecosystem investigated may be described as a con­

tinuous culture system in which essentially all of the cells produced 

are recycled into the aerator. 

The bacterial populations in the mixed liquor of this ecosystem 

are aggregated into floes. The formation of rapidly settling floes is 

essential for removing organic matter and the production of a clear 

effluent. The formation of floes makes quantitative studies of the 

numbers and types of bacteria more difficult. The bacteria present in 

floes must be separated and dispersed in order to conduct quantitative 

studies. The accuracy of the enumeration of the bacteria by the plate 

count technique relies on the assumption that the bacteria to be counted 

are in suspension as single cell units; therefore, the dispersal of the 

clumps of bacteria into unattached individuals is imperative. 

Lighthart and Oglesby (1969) in studies using blenders to achieve 

floc dispersal, found that maximum dispersal occurred after four min­

utes blending time. Micr~scopic examination of each of the five sam­

ples blended for four minutes in this study showed the cells to be 

evenly dispersed with no evidence of clumping. 

37 
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Careful choice of culture media must be made for enumeration, 

since no single medium can be expected to support the growth of all of 

the nutritional types that one would expect to encountet in activated 

sludge. Pike et al. (1972) evaluated and compared several media for 

plating activated sludge organisms. They found CGYA to be superior to 

activated sludge agar which Prakasam and Dondero (1967) had recommended 

as being superior. CGYA used for the isolations in this investigation 

was also somewhat selective. Mi£roscopic observations of samples 

revealed that several forms, particularly filamentous forms, were 

observed but were not isolated. 

The spread plate technique used in these investigations has been 

shown by Clark (1967) to give higher counts than other methods in 

studies of aquatic bacteria. The viable cell counts found in these 

studies are in the range reported by van Gils (1964) for a laboratory 

plant fed daily by 11 fill and draw 11 using mineral medium with glucose 

and ammonium sulfate. Although all media are somewhat selective, CGYA, 

due to the high viable counts obtained, was adequate for the isolation 

and enumeration of bacteria for this study. The bacteria that grew on 

high dilution CGYA plates were assumed to be the predominant bacteria 

present in the ecosystem. 

An activated sludge ecosystem may be described as a continuous 

culture with the feedback of part of the cell yield. The system is 

continually being inoculated with microorganisms from the incoming 

wastewater. Only those organisms that can compete for the growth­

limiting nutrients supplied in the wastewater will form the dominant 

populations. The composition of the growth-limiting substrate affects 

the outcome of competition in activated sludge. An important applied 
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example is that the sludge bulking organisms Geotrichum and Sphaero­

tilus have a competitive advantage over flocculating species, when the 

concentrations of nitrogen and phosphorus limit growth (Dias et al., 

1968). 

Pipes (1966) has suggested the importance in activated sludge of 

two factors that are commonly assumed to influence survival in this 

competitive environment: (1) ability to form storage products, and 

(2) low requirements for growth-limiting substrates. Organisms that 

have these properties would be considered to have a better chance of 

survival than organisms lacking these properties. 

This study was conducted on an activated sludge system that was 

fed glucose minimal medium with all of the cell yield recycled. The 

substrate concentration for the system was approximately 500 mg/1, as 

shown in Table XVII. This concentration is quite low in relation to 

the concentration of cells, and would be selective for those micro­

organisms with low requirements for nutrients. Nutrients used by the 

organisms present in the system also become available upon the death 

and lysis of cells, since all of the cell yield is returned to the 

aerator. These cellular nutrients are evidently being utilized, since 

the recycled biomass of the unit remained relatively stable during the 

time of this study, as shown in Table XVII. 

The high percentage of the isolates that were able to grow on min­

imal media and utilize inorganic nitrogen indicates that the mode of 

operation of the system is selective for organisms able to grow with 

limited nutrients. A large percentage of the organisms isolated in 

this study, therefore, meet at least one of the selective survival 

criteria of Pipes for activated sludge. The ability to form storage 



Date 

8-29-78 

11- 9-78 

1-18-79 

2- 6-79 

2-20-79 

3-19-79 

4- 5-79 

TABLE XVI I 

OPERATIONAL DATA FOR THE UNIT 

XR x X \t e 

9,750 2,127 25 36 

9,981 2,091 17 31 

1 0,412 1 '772 20 35 

1 0 '596 1 '753 9 61 

10,700 1 ,834 6 69 

7,723 1 ,669 7 40 

6 '011 1 '001 5 26 

S. s 
1 e 

526 26 

501 21 

527 16 

549 34 

569 33 

533 25 

520 16 

Each expressed as average (in mg/1) of approximately four days 
and after the given date (Gaudy, 1979, unpublished data). 

XR - recycled biomass 

40 

NO -N 3 

40.3 

22.5 

10 

4.2 

before 

X steady state biological solids concentration in the aeration tank 

xe - biomass in effluent 

Set- total substrate concentration in effluent 

S. - substrate concentration in feed 
1 

S soluble substrate concentration in effluent e 

N03-N - nitrate nitrogen 
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products was not examined. 

Pilot plants operated in a manner similar to that used in this 

study generally nitrify readily. Unfortunately, the nitrifying infor­

mation for the unit under study is limited, as shown in Table XVII. 

With nitrate available, organisms able to resort to nitrate as an 

electron acceptor may have a competitive advantage and be selected by 

this system due to conditions approaching anaerobiosis in the center 

of floes and in the settling tank. 

A number of bacteria isolated from activated sludge have been 

reported by Krul and Veeningen (1977) to synthesize dissimilatory 

nitrate reductase under aerobic conditions, independent of the nitrogen 

source present. This implies that as soon as aeration of the sludge 

ceases, nitrate reduction may be expected to occur, since nitrate 

reduction is an anaerobic process. Therefore growth, or at least 

endogenous respiration, of organisms capable of nitrate reduction can 

continue under the anaerobic conditions which may be established in 

the settling tank until the cell yield is harvested and returned to the 

aerator. This will give a competitive advantage to those organisms 

capable of nitrate reduction. The above information may help to 

explain why a high percentage of the organisms isolated in this study 

are nitrate reducers. 

The majority of the isolates have respiratory metabolism. A pos­

sible explanation is that fermentative organisms are not as nutrition­

ally versatile as respiratory bacteria. The amount of substrate in the 

aeration tank, due to the prolonged detention time, is very low, which 

would select for organisms with respiratory metabolism instead of those 

with fermentative metabolism. 
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In addition to a high percentage of isolates being able to reduce 

nitrate, the majority of the isolates were able to hydrolyse lipid. A 

significant percentage were also able to hydrolyze gelatin. The hydrol­

ysis of lipid and gelatin thought to be merely incidental proper-

ties of the isolates of little selection value. 

The operational data, presented in Table XVII, reveal a signifi­

cant reduction in the recycled biomass (autolysis) during the latter 

part of this study. Autolysis in pilot plants similar to the one 

investigated in this study occurs periodically. In the plant under 

study the relative numbers of a testate amoeboid protozoan increased 

dramatically during the period of autolysis. Only on one other occa­

sion was this protozoan observed, and then only in small numbers. The 

testate amoeboid protozoan was identified, according to the keys pro­

vided in Edmondson (1959), as belonging to the genus Arcella in the 

family Arcellidae. Curds and Cockburn (1970) reported Arcella vulgaris 

in almost half of the activated sludge samples examined. No attempt 

was made to identify the Arcella observed in this study beyond the 

genus level. The size of the floes was noticeably smaller during the 

period in which the Arcella population was high, although the sludge 

was settling rapidly and producing a clear effluent. A possible explan­

ation is that amoeboid protozoa, due to their size, settle rapidly to 

the bottom. The Arcella observed were adhering to the smaller floc 

particles and therefore could be aiding in the settling of the floes. 

The microscopic observations, as summarized in Table XVI, were not con­

ducted to determine quantitatively the numbers of protozoa present. 

The very large populations of Arcella present during the last two 

observations were much greater than those found during the first 



observation. Unfortunately, no isolation of bacteria was conducted 

during the period of autolysis. 
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The operational data, given in Table XVII, show that the unit was 

operating, during the period that isolations were obtained, in a stable 

manner, since the solids concentration in the aerator and the effluent 

remained relatively constant with only minor fluctuations. 

In comparing the characteristics of each of the 46 groups with 

each other (see Tables X- XIV), it is apparent that only one group was 

reisolated; group #1 of isolation #3 was reisolated in isolations #4 

and #5. Some groups differ only in one morphological characteristic, 

as shown in Table XV, which may not be a significant difference due to 

possible variability in morphological characteristics of bacteria. 

Based on the characteristics of each' isolate, mo~t of the isolates were 

definitely not reisolated from succeeding isolations. A total of 44 

different groups of bacteria were isolated in the five isolations. The 

populations of bacteria present in this ecosystem can thus be described 

as dynamic with shifting predominance patterns. Generally, the bacter­

ial populations of the ecosystem were continually changing, although 

the system as a whole from the engineering standpoint remained stable. 

Additional studies such as those carried out by Jones (1977) in this 

laboratory to determine the factors influencing the predominance of 

microorganisms in this system and a variety of other systems would be 

of practical value in the understanding of problems such as bulking 

and the formation of scum in the activated sludge process. 

The bacteria isolated in this study appear to belong to two major 

groups: (1) a group of Gram-positive cocci isolated in isolation #1 

and #2 and comprising eleven percent of the isolates, and (2) a 
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coryneform group with a definite cycle of development isolated in each 

of the five isolations and comprising 88 percent of the isolates. One 

isolate was a Gram-negative rod that was not identified as to genus. 

The Gram-positive cocci, groups #2, #3, and #7 of isolation #1 and 

group #2 of isolation #2 were identified as members of the genus Micro­

coccus in the family Micrococcaceae. Identification was accomplished 

by comparing their characteristics tablulated in Tables X and XI with 

the descriptions given in the eighth edition of Bergey's Manual. 

Approximately 25 percent of the bacteria isolated by van Gils 

(1964) from a laboratory activated sludge system fed daily by "fill 

and draw" with mineral medium containing glucose and ammonium sulfate 

were identified as Gram-positive cocci of the genus Micrococcus. 

The positive identification qf the coryneform isolates is a dif­

ficult task, because the taxonomic demarcation lines often run close 

together in the coryneform group. Several numerical taxonomic studies 

such as that of Jones (1975) on named and unnamed coryneform organisms, 

reveals that no "clear cut" distinction can be made between the coryne­

form genera. 

The coryneform group, which is characterized mainly on a morpho­

logical bas1s, is considered to include the genera Corynebacterium, 

Arthrobacter, Brevibacterium, Microbacterium, Cellulomonas, Listeria, 

Erysipelothrix, Mxcobacterium, and certain species of Nocardia, but 

the equivocal definition of these genera causes difficulties in iden­

tification (Bansfield, 1972). Veldkamp (1970) in a review of coryne­

form bacteria, states that all coryneform bacteria during log-phase 

growth form irregularly-shaped cells, although the extent of pleomorphy 

may vary among the coryneforms. Even within one species, the degree 
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of pleomorphy may depend on cultural conditions. A cycle of develop­

ment has also been shown to occur in representatives of all coryneform 

genera. But again, the extent of conversion of relatively large pleo­

morphic rods to very short rods or coccoid cells may vary widely within 

the group of coryneform bacteria and within a species may depend on 

cultural conditions. In a comparison of the results obtained in this 

study with numerical taxonomic studies on coryneform bacteria by Bans­

field (1972), Jones (1975), and Davis and Newton (1969), the isolates 

appear to be more closely associated with the Arthrobacter group because 

of the presence in the isolates of the following characteristics in com­

mon with the Arthrobacter group: (1) a definite cell cycle; (2) lim­

ited branching in some groups but no extensive branching; (3) limited 

nutritional requirements; (4) Gram-positive or Gram-variable; (5) 

presence of giant cocci called "cystites" in some isolates; (6) forma­

tion of capsules by several of the isolates as shown by the gelatinous­

watery colonies; (7) reports of Arthrobacter as common in activated 

sludge by van Gils (1964) and other workers; (8) the generally diverse 

physiological properties of the isolates: nitrate reduction, lipid 

hydrolysis, and growth on minimal media widespread by the isolates, 

and (9) the high percentage of strict aerobes among the isolates. 

Attempts to separate the coryneform isolates into separate genera 

failed, since they all appear to have characteristics that fit into the 

range of characteristics attributed to the genus Arthrobacter. 

Extensive comparative numerical taxonomic studies, such as that 

of Jones (1975), would be required to confirm the position of each of 

the coryneform bacteria isolated in relation to other coryneform groups. 

None of the data accumulated in this study suggest that the coryneform 



isolates do not belong to the Arthrobacter group. Additional tests, 

particularly cell wall analysis and determination of DNA base compo­

sition, are needed to confirm each isolate's taxonomic position. 

The genus Arthrobacter has been described by Mulder (1964) as 

remarkably resistant to desiccation and starvation in both the cocci 
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and rod states. Also, the genus Arthrobacter is a heterogeneous group 

that has considerable nutritional versatility. Clark (1972) and other 

workers have reported the frequent production of large amounts of poly­

saccharides both internally and externally by members of the genus 

Arthrobacter. The genus Arthrobacter, therefore, meets the selective 

survival criteria of Pipes (1966) for growth in activated sludge. The 

above listed properties of the genus Arthrobacter may help to explain 

the selection by this ecosystem for a wide variety of Arthrobacter forms. 

The populations of bacteria present in the ecosystem are hetero­

genous as demonstrated by the large number of different groups isolated. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

This study was primarily an attempt to isolate in pure culture, 

enumerate, and characterize the predominant bacterial populations 

present in a laboratory activated sludge plant operated with total 

cell recycle. 

The utilization of CGYA, as a medium for isolation and enumera­

tion, gave plate counts of 108 to 109 cell/ml which is in the range 

reported for activated sludge using various media by van Gils (1964) 

and Allen (1944). 

The predominant bacteria of this ecosystem constitute a hetero­

geneous population, which is. typical of activated sludge systems. The 

mode of operation of the system imposed a selective environment that 

selected for those organisms able to survive and grow under the condi­

tions of low nutrients and total cell recycle. The predominant bac­

terial populations were found to be changing continuously, although 

the system as a whole from the engineering standpoint remained stable. 

The predominant bacterial populations showed a remarkable physiological 

diversity with the majority of the isolates being able to grow on mini­

mal media, hydrolyze lipid and reduce nitrate. The selection for 

nitrate reducers by this system may be due to the establishment of anaer­

obic conditions in the settling tank and also in the center of floes. 

The predominant bacteria isolated belonged to two groups: a 
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coryneform group comprising the majority of the isolates, and a group 

of cocci. The cocci were identified as belonging to the genus Micro­

coccus. Much difficulty was encountered in the identification of the 

coryneform isolates due to the absence of clearly distinctive charac­

teristics to separate the coryneform genera. Based on the available 

information, the coryneforms isolated were tentatively identified as 

members of the genus Arthrobacter. Additional research to separate 

clearly the coryneform genera is sorely needed. Both the genera Arthro­

bacter and'Micrococcus are known to be resistant to adverse environ­

mental conditions, such as starvation, desiccation, and reduced water 

potential, which may partially explain their predominance in this 

ecosystem. 

Microscopic observations revealed the presence of large numbers of 

a testate amoeboid protozoan identified as a member of the genus Arcella 

during the period of autolysis that occurred after the last isolation. 

The large Arcella population is thought to aid in the settling of the 

smaller floes that occurred during autolysis. This observation may 

have significance for future studies of the phenomenon of autolysis. 

The methods utilized in these studies for the isolation and enum­

eration of the predominant bacteria in this ecosystem are recommended 

for other workers desiring to isolate aerobic heterotrophs from acti­

vated sludge systems. 
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