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CHAPTER I 

INTRODUCTION AND SURVEYS 

A. Opening Remarks 

We begin our story with a little background information. The 

general problem being considered is the determination of the root 

structure of a group. More preciselyt given an element g r 1 of a 

group Gt g is said to be divisible by an integer n if g = xn has a 

solution in G; that is, g has an nth root. If g = xn has a solution 

in G for infinitely mahy integers nt then g is said to be infinitely 

divisible. Given a presentation for a group Gt and W a word in the 

generators, ideally we would like to have a scheme which would enumerate 

all those integers n for which W = xn has a solution in Gt andt for 

each such n, enumerate all the solutions. As with many such problems 

in group theory, obtaining this general solution is not possible. In 

fact, all the fundamental decision problems formulated by Max Dehn 

(Word, Conjugacy, and Isomorphism Problems) as well as several otherst 

including our ownt are known to be unsolvable in general [2] [9]. Thus, 

tempering ~ition with pragmatismt we redefine and specialize. 

We begin by restricting ourselves to a particular class of groups 

namely fundamental groups of 3-manifolds. Since our approach is to get 

at the algebraic structure of the group by means of the geometric 

structure of the manifold, we obviously want 11 nice 11 manifolds. Our 

first limitation is to compact manifolds, for very few geometric tools 

1 
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are at our disposal in the non-compact case. Second, we only consider 

orientable manifolds. This is more a matter of convenience, and may be 

one of the easiest conditions to eliminate, e.g. by "lifting" the 

problem to the orientable, double cover. Next when M is compact and 

orientable ~ 1 (M) is isomorphic to a finite free product of infinite 

cyclic groups and fundamental groups of irreducible compact, orientable 

3-manifolds. Thus, a further restriction arises naturally. Thirdly, 

we consider manifolds which are also sufficiently large, for such 

manifolds guarantee the existence of certain surfaces which will become 

our chief tool for getting at the structure of the manifold. 

Now things begin to look good. P. Shalen [10] has shown that for 

this class of manifolds, Til (M) has no infinitely divisible elements. 

In particular, we've eliminated such uninteresting groups as the addi­

tive group of rationals, in which every element is divisible by every 

integer, or finite groups, where again every element is infinitely 

divisible. Some unusual things can still occur though. An element may 

have infinitely many distinct nth roots for a given n; it may have 

distinct nth roots even up to conjugacy; and finally it may have roots 

of distinct and relatively prime orders. 

However, we are consoled by W. Jaco's [5] result that a non-trivial 

element of such groups has only finitely many distinct conjugacy classes 

of roots, and if it is divisible by distinct integers, then the solutions 

to the corresponding equations are not conjugate. 

Lastly, we impose the condition that our manifold contain no 

essential annuli or tori, and that whenever we cut the manifold along 

certain surfaces, the resulting manifold also contain no such annuli or 

tori. This final restriction makes our work a bit easier. In fact, it 

/ 
/ 
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guarantees that the centralizer of every non-trivial element in the 

group must be a subgroup of Z m Z; and any solution to g = xn must lie 

in the centralizer. This restriction, though is the first one we would 

naturally hope to eliminate. 

In the course of reductions, the problem itself, or more accurately, 

the definition of solution, has changed. We chose our particular class 

of groups in order to get a topological handle on their structure. So 

instead of dealing with the presentation of the group, and a word in 

the generators, we deal with the manifold and a loop representing an 

element in the fundamental group. Further, if a group element is 

divisible by an integer, then any conjugate of that element is also 

divisible by that integer; hence we need only study the root structure 

up to conjugacy. Since there is a one-one correspondence between 

conjugacy classes of elements in the fundamental group (for some fixed 

base point) and free homotopy classes of loops, our problem translates 

into determining when a given loop is freely homotopic to a power of 

some other loop. Notice that this eliminates the annoyance of an 

element g having an infinite number of conjugate solutions to g = xn 

for some fixed n, but does not allow any integer to get 11 lOSt 11 • 

Before developing our algorithm, we give a short survey of two 

other algorithms, results of which we use extensively. It is hoped 

that the survey will serve as a motivation for our approach, illustrate 

certain of the ideas we will use, and familiarize the reader with our 

use of the term 11 algorithm11 • 

B. Word Algorithm 

The first algorithm considered is that of F. Waldhausen [13] for 



solving the word problem in the fundamental groups of certain 3-

manifolds; that is, determining, for a given presentation of the group 

and a word in the generators, whether that word is equivalent to the 

identity element in the group. The class of 3-manifolds with which he 

deals is somewhat broader than ours, but the geometric problems he 

encounters will be seen to be easier. His restriction is to compact, 

orientable, irreducible, and sufficiently large 3-manifolds, and the 

reasons for these are basically the same as those mentioned in the 

introduction. 

To expand just a bit, recall that the restriction to irreducible 

4 

manifolds arose in part because of Kneser's factorization theorem. 

Specifically, any 3-manifold (compact, orientable) can be expressed 

uniquely as a connected sum of irreducible 3-manifolds and s2 x s1 

factors, and thus its fundamental group as a free product of fundamental 

groups of irreducible 3-manifolds and infinite cyclic groups. The 

restriction follows because if the word problem is solvable for each 

factor in a (finite) free product of groups, then it is solvable for 

the product itself. 

One of the most powerful tools in developing geometric algorithms 

(among other things) is the existence of hierarchies; this existence is 

guaranteed for sufficiently large 3-manifolds. A hierarchy for a 3-

manifold ·M is a sequence, M = M ~ M1 ~ ... ~ M, of 3-submanifolds of o . n 

M such that Mi+l is obtained from Mi by cutting along a properly em-

bedded, 2-sided, incompressible surface Fi, and such that each component 

of Mn is a 3-cell. The situation is somewhat of a 3-dimensional analog 

to the property that a compact surface can be cut open along a certain 

collection of a simple closed curves and arcs to yield a disk. Three-



5 

cells are of course rather nice manifolds to work with; and incompres-

sible surfaces have certain convenient properties for setting up an 

inductive scheme. 

Now elements of the fundamental group can be represented by loops 

(embeddings of s1) in the manifold, and many questions about such 

elements have geometric analogs concerning such loops. What one hopes 

for is that the questions about loops in M can be answered by answering 

easier questions about the loops,or pieces of them, in the Mi. A 

judicious choice of the cutting surfaces often aids in making this 

possible. 

The above ideas are all illustrated in Waldhausen's algorithm. 

The geometric analog to determining whether an element in the fundamen­

tal group is the identity, is determining whether a loop representing 

that element contracts in the manifold. This is equivalent to deter­

mining whether the loop bounds a (singular) disk. The motivation behind 

the various contortions which take place in the algorithm is that, if 

such a loop and disk exist, then ones should exist which meet the 

cutting surfaces of a hierarchy nicely. The algorithm seeks to discover 

and construct pieces of such a "nice" disk; its procedure follows. 

Construct a hierarchy for the manifold using "good" surfaces; an 

algorithm is available for doing this. Here "good" means that, in 

addition to being incompressible, they be boundary incompressible, as 

simple as possible (maximal Euler characteristic) and at each stage, 

e.g. the ith, meet a certain graph in bd M. minimally. (See II.A. for 
1 

a more precise definition.) This graph arises from the boundaries of 

the previous cutting surfaces. 

/ 



Three questions need to be considered: whether a given simple 

closed curve contracts (tx); whether a given arc with endpoints in the 
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boundary of a manifold, less a given graph, can be homotoped relative 

to these endpoints, to a path in the boundary, either missing the graph 

(s); or meeting the graph in a single point (a). These questions about 

arcs are questions about the pieces of the hypothetical disk. An 

algorithm (actually a sequence of algorithms) is constructed to answer 

these questions at each stage of the hierarchy. In effect, each 

algorithm is for manifolds of a given length, where "length" here refers 

to the length of a hierarchy. If the length is 0, M is a 3-cell and 

the answers are clear: the answer to (a) is always "yes", and that to 

(s) (resp. (a)) is yes if and only if the endpoints lie in the same 

(resp. adjacent) component of the boundary minus the graph. 

Inductively, questions at the rth stage are reduced to questions 
st · 

at the r+l stage where the answers are assumed to be known. Speci-

fically consider the question (a). The given loop may be the original 

one, or one obtained from it by deforming it off of all the previous 

cutting surfaces. Now, if the loop misses Fr' then, in a natural way, 

it defines a loop in Mr+l' after cutting along Fr. Mr+l has a shorter 

length, so by induction, an algorithm is available to answer (a) in 

Mr+l' The incompressibility of Fr is what guarantees that the answer 

in Mr is 11 yes 11 if and only if it is "yes" in Mr+l' 

Suppose the loop meets F . If it bounds a disk, then one should r 

certainly be able to homotope it off of Fr. To determine if this is 

possible, the various subarcs defined by the interesections with Fr' 

are considered successively in order to determine whether they can be 

"shoved" to the other side of Fr. The subarc k indicated in Figure 1 

/ 
/ 
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Figure 1. Deforming a Subarc of the Loop t 

illustrates the situation. It is clear that the number of intersections 

of the loop t can be decreased by two via a homotopy if and only if k 

can be deformed to a path k' in Fr. But, by regarding k as an arc in 

Mr+l (more precisely we consider its lift in Mr+l by regarding Mr as a 

quotient space of Mr+l obtained by identifying two copies of Fr in bd 

Mr+l)' this is equivalent to asking the question (s) of the arc. By 

induction, this answer is available. 

Question (a) comes into play when one seeks the answer to (s) for 

an arc such as k above. That is, suppose we are led to ask (S) of some 

arc k in Mr. We use the algorithm for Mr+l to help us. If int k does 

not meet Fr' then k can be regarded as an arc in Mr+l' and our question 

can be answered there. If it does meet Fr' we proceed by successively 

considering subarcs of k, such as k1 of Figure 2, regarding them as 

arcs in Mr+l' and asking question (s) there. A 11yes .. answer means we 

can push k1 to the other side of Fr; a 11 n0 11 answer implies a 11 n0 11 answer 

for the arc k. 



(a) (b) 

Figure 2. Asking Question (B) of k1 in Order to Answer 
Question (B) for k 

'· .. J ~. 
~ 

(a) (b) (c) 

Figure 3. Asking Question (a) of kl and Question (B) of 
k1"*k2 in Order to Answer Question (B) for 
kl*k2 

8 
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Assuming yes answers, all such subarcs k1 can be eliminated and 

there remains either an arc which misses Fr (Figure 2(b)) and which we 

can treat as in the first case, or else the arc meets Fr in exactly one 

point (Figure 3(a)). To answer (B) for k1 k2, regard k1 as lying in 

Mr+l and ask (a). A .. yes .. answer implies k1 can be deformed to 

k1' k1" (Figure 3(b)). Next regard k1.. k2 as an arc in Mr+l and 

there ask (B). A 11yes" answer yields an arc k2' and hence the arc 

k1 • k2• which is a yes answer to the original question about k1 k2 

(Figure 3(c)). 

With this, all our questions have been answered, and consequently 

the existence or non-existence of the disk determined. One might think 

of each deformation as being a piece of a jig-saw puzzle whose end 

product is a disk. 

C. Conjugacy Algorithm 

The second algorithm we consider is that of B. Evans [4.] for solving 

the conjugacy problem in the fundamental group of certain 3-manifolds. 

Here the geometric problems become more complicated and the class of 3-

manifolds smaller. Excluded from consideration are 3-manifolds which 

are 11 exceptional 11 ; i.e. contain submanifolds which are either simple 

bundles or simple double twisted !-bundles. The fonner is a 2-manifold 

bundle over S 1, having i ncompress i bl e boundary but containing no essen­

tial tori or annuli (See II.A. for def.). If N is an orientable !­

bundle over a non-orientable surface F, then a double twisted !-bundle 

is obtained by doubling N along the {0,1}-bundle. This bundle is simple 

if it contains no essential tori or annuli. These are excluded for the 

conjugacy classes of certain elements in the fundamental groups of such 
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manifolds can unfortunately be rather complicat~d. 

It its topological setting, the problem of determining whether two 

elements of ~ 1 (M) are conjugates becomes one of determining whether 

two loops in M are freely homotopic. This follows as there is a 

natural one-one correspondence between conjugacy classes in ~1 (M) and 

free homotopy classes in M. The existence of a free homotopy is 

equivalent to the existence of a (singular) annulus having the given . 
loops as boundary curves, and it is this hypothetical annulus which 

the algorithm seeks to detect. As in the word algorithm, the basic 

approach is to cut the manifold up along appropriate surfaces and look 

for potential pieces of the annulus in the simpler manifold. 

It turns out again that in trying to answer questions about loops 

one is forced to answer certain other questions about arcs. How these 

basic questions arise follows. 

Suppose a and s are freely homotopic loops in M and FC M is a 

cutting surface. Evans proves that such a homotopy (i.e. map A: s1 x I 

--+ M) can be assumed to either miss F or to be one of two types. In 

the first case both a and B miss F, and the preimage of F under the 

homotopy consists of disjoint concentric circles, all parallel to the 

boundaries (Figure 4). To detect such a homotopy one needs to be able 

to determine when a loop is homotopic to a loop in F, and when two 

loops are freely homotopic in M. 

The idea is this. Given a, find all loops on F which are freely 

homotopic to a in M (M cut open along F; see II.A. for def.). These 

loops are potential candidates for the first intersection of the hypo­

thetical annulus with F; and for each such loop the algorithm is able 

to construct the homotopy. To find "all" loops, an algorithm is 
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Figure 4. Free Homotopy Between a and 8; Type 1 

developed which produces a collection (the complete (a,F) conjugacy 

system) of loops, all freely homotopic to a, but no two freely homo­

topic on F to each other, and such that any loop on F which is freely 

homotopic in M to a must be homotopic on F to one of these. 

Next, for each such loop, determine whether it is freely homotopic 
,... 

in M to 8. If it is, we have our desired annulus. If not, there is 

still the possibility that the annulus meets F several times in an 

essential way. For example in Figure 4(b), while a1 is in the {a,F) 

system, a2 and a3 are not, and though a1 is not homotopic to 8 in M it 

~ homotopic to J2 which deforms to a3 and then to 6, each homotopy 
.,J 

occurring in M. So for each loop dj in the (a,F) system, the algorithm 

produces a (aj,F) system. The representative loops in these systems 

are then checked to see if they deform in M to s. Again, if they are, 

the homotopy is constructed, while if not, more systems are produced. 

Eventually either a dead end is reached, signaling no annulus, or a 

desired homotopy is constructed, or the a 1 gori thm produces a sequence 
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of loops on F, each freely homotopic to the next in M, but no two freely 

homotopic on F. If the sequence is longer than a calculable amount, we 

are guaranteed that an essential torus or annulus exists in the mani­

fold, which can be constructed. The algorithm then 11 trades 11 off F for 

this new surface and uses it instead in the above procedure. With 

tori and annuli, either the desired homotopy is constructed or it is 

determined that M is homeomorphic to a manifold whose fundamental group 

is known to have a solvable conjugacy problem. 

In the second case, <l and r~ both meet F, and the preimf:\age of 

F consists of disjoint arcs connecting the two boundary curves of S' x I 

(Figure 5). Here the question is whether two arcs, with their endpoints 

in F, are homotopic in M keeping their endpoints in F (e.g. arcs a1 and 

s1 in Figure 6) and also whether two arcs in F, with common endpoints, 

are homotopic in F, keeping those endpoints fixed (e.g. arcs a1 and a2 

in Figure 6). 

Figure 5. Free Homotopy Between a and s; Type 2 



Consider Figure 6 again. Suppose we wish to discover whether a 1 

* a 2 and s1 * a2 are homotopic (*here indicates path composition). 

Further suppose that by cutting along F we were able to obtain the 

homotopies H; between a; and S;, which left the 11 tracks 11 a; on F, 

i = 1, 2. Then a 1 * a 2 and e1 * e2 are homotopic if a1 is endpoint­

fixed homotopic to a2 on F; i.e. we would then be able to 11match up 11 

the homotopies H1 and H2. Actually, the question is a bit more involved. 

Given the homotopies, the word algorithm of M. Dehn [3] is available 

to answer the question about a1 and a2; i.e. does a1 * a2-l contract 

on F? But it says nothing about other homotopies. What is really 

needed is a way to construct homotopies which have the 11 best chance 11 of 

Figure 6. Two Homotopies, H1 and H2, of Arcs Which 
Cannot Be Matched Up 
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matching up, or to at least limit the possibilities. A considerable 

portion of the paper is devoted to creating these 11 optimal homotopies 11 • 

Further in determining whether two proper arcs (e.g. a and o in 

Figure 7) are properly homotopic we are led to the same sort of problem 

as we had with loops. Suppose that in order to determine whether a and 

8 are homotopic we cut along the surface F which misses both arcs. Now 

it may happen that a and o are not homotopic in M; that is any proper 

homotopy between them must meet F, and it may be forced to meet it 

several times. As with loops the remedy takes the form of an algorithm 

which for a given arc a, injective graph J c bd M, and cutting surface 

F, produces a finite collection of proper paths in F-- the complete 

f . 
I 

--------...........; 

Figure 7. Proper J-Homotopy Between a and o Which 
~1ust Intersect F 
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(a, J, F) path class system. These paths {ai} are each properly J U bd 

F homotopic to a, and if a is so homotopic to any other path a in F, 

the a is J n bd F homotopic to one of the ai. 

Thus given a in Figure 7, we determine whether it is homotopic to 

o missing F. If not form the (a, J, F) system and check whether each 

of these paths are homotopic to o in M. If so we obtain a homotopy 

between a and o; if not we form a system for each of these paths, and 

so on, generating a tree of potential homotopies. It can be shown that 

if no homotopy exists this procedure detects the fact, while if one 

does exist it will be produced or the process will go beyond a calculable 

number of steps and so indicate the existence of an essential torus or 

annulus. This new surface can be constructed and we trade off the 

original cutting surface for it. Using these cutting surfaces the 

answer to our question is obtained. 

Finally, we mention one other idea and algorithm which is crucial 

in Evans paper and in ours. This is the extended intersection graph 

for a given surface, graph, and pair of arcs (See II.B., algorithm~). 

Basically, what the algorithm provides is a means of answering the 

following: suppose a and s are arcs in a manifold which meet a cutting 

surface F only in their endpoints. And suppose a is a path from a(l) 

to s(l) in F-J, J a given graph in F. Does there exist a homotopy in 

M from a to B keeping endpoints in F-J and with a as the terminal end. 

(Figure 8)? The answer is essential in determining whether homotopies 

can be made to match up. 

We remark that while the construction of these graphs is rather 

involved, the proof of their existence is a bit easier. It relies on 

the existence of the Seifert set associated with a manifold M and 



Figure 8. Situation to Which Evans• Intersection 
Graph Algorithm Applies. a* a * 
s-1 Deforms too 

surface G in its boundary, as developed by W. Jaco and P. Shalen [6]. 

The Seifert set is basically a 11 Canonica,.. collection of Seifert 
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manifolds properly embedded in M and meeting bd M in G, such that any 

Seifert manifold which can be mapped into M in an essential way and 

meeting bd M in G, can have its image deformed into a component of this 

collection. (We make use of this set in IV.C.3., Lemma D) It turns 

out that the intersection graph is determined, up to isotopy, by the 

boundaries of the components of the intersections of the members of 

this set with G. Now there is a scheme for listing (up to isotopy) all 

possible injective graphs in a given surface. The key to the proof lies 

in establishing a means of checking whether a given graph is the desired 

intersection graph. 



D. Power Algorithm 

Lastly, we give a short account of the current algorithm. As 

mentioned in the introduction, to determihe whether an element in a 

group is a power of another element, it suffices to determine whether 

any conjugate of that element is a power. In its geometric setting, 

this amounts to determining whether a given representation loop is 
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freely homotopic to some power of another loop. It would seem that this 

involves a search for a singular annulus (the image of the free homotopy) 

as in the conjugacy algorithm. It does, but not the obvious one, for 

this singular annulus obscures the role of the one boundary curve being 

a power of the other. Hence we approach things differently. 

Figure 9. Collapsing a Torus to a Singular Annulus 



The classical example of a power is the case of a simple closed 

curve L on the torus boundary T of a solid torus S = o2 x S1 , which 

does not contract in S. Such a curve is freely homotopic in S to a 

power of the 11 Core 11 C = {0} X s1; the natural homotopy, at timet, 

taking a point p = ((1,9),¢) e L to Ht{p) = (1- t, Q),¢) e S. 

Collapsing the torus to the image of the homotopy yields the obvious 

18 

singular annulus mentioned above. We want to think of reversing the 

process -- 11 blowing up .. the annulus to obtain a {probably singular) torus 

containing L (Figure 9). Now another annulus presents itself, namely 

the open annulus T-L CT. We can think of it as coming from a homotopy 

of L to itself on T which is not equivalent to the trivial homotopy 

(ht = ll for each t). Observe that choosing some point a e L, we can 

find an arc a from a to another point b e L, which cannot be endpoint-

fixed homotopic to a subarc of L, but which can be used to describe 

the.above annulus by 11 sliding it 11 around T, keeping its endpoints in L, 

until it returns to itself (Figure 10). This latter annulus is the one 

Figure 10. An Annulus Defined by Sliding the 
Subarc a of Q Around the Torus T 
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we seek to discover. As in the two previous algorithms, our approach 

is to cut the manifold into simpler submanifolds, and to there look for 

pieces of the-hypothetical torus-annulus. 

Let us first assume our loop L meets the cutting surface F nicely; 

this is the speci a 1 case considered in II I. A. Speci fica lly assume L 

cannot avoid intersecting F and yet cannot be deformed into F. In this 

situation, Evans• results guarantee that a homotopy between L and a 

power of another loop can be assumed to be of the second type discussed 

in I.C. This implies that the singular solid torus created by 11 blowing 

up 11 this annulus (image of the homotopy), meets Fin a (singular) 

11 meridian 11 disk. Having chosen a e L c F, this also shows that the arc 

d we seek in order to construct the latter annulus, must be among the 

arcs on F from a to other points in L n F (Figure 11). 

Figure 11. Deforming a Singular Annulus Into a Torus. 
F Intersects the Solid Torus in a Disk D 



Unfortunately the number of such arcs may be infinite even after 

moding out by path equivalence. In order to narrow down the possi­

bilities, we mimic a technique of Evans which makes strong use of his 

extended intersection graphs. Let us regard the loop L as an arc 

with a as endpoints, and also as an arc a with b e L n F as endpoints, 

i.e. two parametrizations. Then any o c F from a= a(l) to b = 8(1) 

which aspires to be the desired a must satisfy: a* o * 8-1 is homo­

topic to an arc o*C: F from a(O) =a to 8(0) = b (Figure 12). If o* 
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can be deformed on F to o, we have our desired annulus, and hence torus. 

By means of the intersection graphs, we can form a subsurface G of F, 

containing aU b, which has the property that any arc o in G from a to 

b can be homotoped in M to a o* in F. Now a, if it exists, would of 

course be one of these, and in fact we could homotope it around L as 

often as we want. This motivates the construction of a nested sequence 

Figure 12. Constructing a Torus. Deform a*o*S-l to o* 
in M, Then Deform o* to o on F 



of such subsurfaces, which because of the restrictions we•ve placed on 

the manifold, is either going to indicate no such o exists, or, if one 

does exist, stabilize into a disk. In that case any arc in this disk 

that we choose is the 11 right one 11 • 

Ndw as we cut along surfaces, there is no guarantee that the loop 
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L meets the surface as we assumed above. Chapter II I. B. de a 1 s with this 

case. If the loop missed F and can•t be deformed into F we simply work 

-with it in the simpler cut open manifold M. If L can be deformed into 
,.., 

F we do so, so that when M is formed we obtain two loops in its boundary 

(possibly in different components of M). We then apply the algorithm 

to each of these loops in the simpler manifold, assuming by induction 

that the problem is solved here. A group theoretical argument shows 

that L was a power in M if and only if at least one of the loops above 

"" is a power in M. 

Finally, we comment on our restrictions on the class of manifolds. 

In Evans algorithm the stickiest problems with tori and annuli could be 

circumvented by observing that in situations where the algorithm he 

developed might fail, he was guaranteed that the manifold he was dealing· 

with, had a fundame~tal group for which the conjugacy problem was known 

to be solvable by other means. Unfortunately that is not the case for 

our problem. 



CHAPTER II 

DEFINITIONS AND PRELIMINARY ALGORITHMS 

A. Definitions and Notation 

Our setting will be the piecewise linear category. Three-

manifolds will always be assumed to be compact orientable, and irredu­

cible--- any 2-sphere embedded in the manifold bounds a 3-cell. Bd M 

will denote the boundary of M, and int M = M - bd M the interior. Unless 

otherwise stated a surface will mean a compact, connected, orientable 

2-manifold. A surface F is properly embedded in a 3-manifold M if bd F 

= Fn bd M. A surface F, with FCbd M or F properly embedded in M, 

said to be incompressible in M if none of the following conditions are 

satisfied: 

1. F is a 2-sphere which bounds a homotopy 3-cell in M; 

2. F is a 2-cell and either F c bd M, or there is a homotopy 3-

ce 11 XC M with bd X C F U bd M; 

3. There is a 2-cell DC M with D n F = bd D and with bd D not 

contractible in F. 

A surface F, properly embedded in M is called boundary incompres­

sible if no component of bd F bounds a disk in bd M; and, if 0 is a 

disk in M such that 0 n (Fu bd M) = bd 0, where D n F is an arc kin 

bd 0 with k n bd F = bd k, then there exist a (non-singular) disk D 
in F such that bd D c k u bd M. 
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A graph J in the boundary of a 3-manifold M will be called injec­

tive if J is finite, the order of J is less than or equal to 3, and 

each component of bd M-J in incompressible in M. A ~-good cutting sur­

face forM is a properly embedded, 2-sided surface F satisfying: 

(1) bd F is in general position with respect to J; 

(2) F is incompressible; 

(3) F is boundary incompressible; 

(4) Among all surfaces satisfying (1), (2) and (3), none has an 

Euler characteristic which is larger than that of F; 

(5) Suppose that D is a disk (possibly singular) in M such that 

D n (F u bd M) = bd D, and D n F is an arc kc bd D with 

k n bd F = bd k. If D n J consists of at most one point, then 

there exists a disk~ (possibly singula~) in F such that bd ff 

Cbd M and ~n J consists of no more points than D n J. 

Let N be a regular neighborhood of the cutting surface F in M that 

N is the embedded image of F x I with F corresponding to F x {1/2}. 

Then M, the manifold !1 cut 9~ £, is the manifold, homeomorphic to cl 

(M-N) satisfying: 

(1) There exist surfaces F', F" c bd M, homeomorphic to F under 

maps g' and g"; 

(2) There is a surjection p: M--+ M; 

(3) pjM-(F' U F") is a homeomorphism; and 

(4) For each x e F, pg'(x) = pg"(x) = x. 

A path a: I--+ M is proper~ !1 if a( I) n bd M = a{bd I). We 

will often use the same symbol for a path and its image when there is no 

danger of confusion. If J is an injective graph in bd M, and a, 8 are 

proper paths, then we say u is properly ~-homotopic to a provided there 



24 

exists a homotopy h: I x I --+- M, such that h II x {0} = a, h II x{l }= s 

and H(bd I x I) Cbd M-J. For any homotopy between paths a and 8, we 

will refer to the path hi{O} xI as the initial end of h, and to hi{l} 

x I as the terminal end. We also define the reverse of h to be the 

homotopy, r(h): I xI-+ M, given by r(h) (s,t) = h(s,l-t). r(h) is 

then simply a natural homotopy from 8 to a. Observe that if a(t) = 
h(o,t) is the initial end of h, then a-1(t) = a(l-t) is the initial end 

of r(h). 

Finally a few more definitions to describe the mileu of our algo­

rithm. An annulus properly embedded in a 3-manifold M is essential 

provided it is incompressible and boundary incompressible. An incom­

pressible torus T in a 3-manifolrl is essential if no non-trivial loop 

in T is freely homotopic in M to a loop in bd M. A 3-manifold is called 

sufficiently large if it contains an incompressible surface. A suf­

ficiently large manifold will be called sparse if it can be made to 

contain no essential tori or annuli in its entire hierarchy, as defined 

in I. A. 

B. Available Algorithms 

In describing our a 1 gorithm we will make use of severa 1 other 

algorithms which already exist. We list these below, proving only a 

few. Proofs of the others may be found in the references cited. Most 

of these algorithms are applicable to more general settings, but we 

state them only as they are to be used. 

The first three algorithms concern the surfaces and graphs we will 

be dealing with. The latter two are each preceded by a necessary 

definition: 
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T: Let M be a sparse manifo1 d and J an injective graph in bd M. There. 

is an algorithm T(M,J) which will construct in M a J-good cutting 

surface F [13, (1.2)]. 

Suppose G is a cutting surface for a 3-manifold and a, s are paths 

in M with endpoints in G. Let J be an injective graph in G. We define 

the injective graph J1 C G to be the extended - (a, s, J, G) - inter­

section graph if J1 satisfies: 

(i) Iff: I xI -+M is a map such that fl(l x {0}) =a, fj(I x 

{1 } ) = r~ and f I ( {0} x I) C G-J, then f I {1 } x I deforms into 

G-Jl. 

(ii) If a is a path in G-J1 from a(1) to s(l), then a*a*s-1 deforms 

into G-J. 

X: Let G be a cutting surface for a sparse 3-manifold M, J an injective 

graph in G, and a, s paths in M with endpoints in G. Then there is 

an algorithm ~(a, s, J, G, M) which constructs an extended -

(a, s, J, G) -intersection graph in M [4, (10.11)]. 

Let K and L be incompressible submanifolds of the 2-manifold G, and 

let p, g be points in K n L. We say K and L are normalized with respect 

to p and g if no arc ~ c bd K can be endpoint-fixed deformed, in G-{p,g}, 

to an arc in bd L. 

C: Let K and L be incompressible submanifold of the 2-manifold G, and 

p, g e K n L. There is an algorithm C(G, K, L, p. g) which con-· 

structs an isotopy of G, fixed on {p,g}, such that K and L are 

normalized with respect to p and g [4, (5.4)]. 

The next three algorithms are concerned with arcs and paths: 

~= Let a and s be proper paths in a sparse manifold M, and J an injec~ 

tive graph in bd M. There is an algorithm ~(M, J, a, S) which will 



determine whether a is properly J-homotopic in M to s. If such a 

homotopy exists,~ will construct one [4, ~algorithm]. 

CQ: Let F be a surface and a a path in int F. There is an algorithm 

~(F,a) which will construct an arc a*, which is homotopic, rel 

endpoints, in int F, to a [4]. 

Proof: A small deformation of a, constant on bd a, yields a as an 

26 

immersion n.: I --• int F, having only a finite number of singularities 

(double points), and such that all self-intersections are transverse. 

Let 0 be the unique subarc of a having the same initial point as a, and 

with terminal point S(l), one of the double points. We can choose a 

neighborhood U of B, small enough so that it is homeomorphic to the set 

B (I, l/2) = {(x,y) e R2: (x-t) 2 + y2 21, 0 2 t 2 1}, with an U mapped 

to the segments [0,3/2] x {0}, {1} x [-l/2, l/2], and s to the unit 

i nterva 1 (Figure 13). Now there is an isotopy of B (I, 1/2), fixed on 

----

Figure 13. Removing a Singularity B(l) From the Path a 



the boundary, which takes the segment {1} x [-l/4, l/4] to the arc in 

the frontier of B (I,l/4) consisting of those points (x,y) with x ~ 1. 
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This provides a deformation of a in U which removes one of the singular 

points. We can repeat the above until all such singularities are 

removed. 

~: Let M be a sparse manifold, Jan injective graph in bd M, Fa J-good 

cutting surface in M, and a a path with an F = bd a. There is an 

algorithm ~(M, J, F, a) which will determine whether there exists 

a homotopy of a, constant on bd I x I, taking a to a path in F. 

Further if such a homotopy exists, a3 constructs one. 

Proof: We obtain by a slight modification of the following algorithm 

of Waldhausen [13, §2]. 

~·: Let M be a connected 3-manifold, J an injective graph in bd M, and 

a proper path with a (bd I) C bd M-J. There is an algorithm~· 

(M, J, a) which will determine whether there exists a homotopy, 

constant on bd I, from a to a path a* c bd M-J. If such a homotopy 

exists the algorithm constructs one. 

For<B, we letM be'M cut along F, and J =p-1(J bd F), p being the 
.... 

canonical projection. Since a(I) n F = bd a, a lifts to a path a in M 

with ti-l (bd M) = bd I and a(bd I) c bd M-J. Apply e• (M, J, a) to 

determine whether a can be homotoped (rel endpoints) in~. to a path in 
. ..., ....., 

bd M-J. If it can, then the homotopy is constructed and projects to a 

homotopy taking c~ into F. 

Conversely, if a can be homotoped in M, rel endpoints, to a path 
....., ....,. 

in F, then a can be so homotoped in M to a path in bd M-J. For let h be 

the hypothesized homotopy of a to S C F. We may assume h is transverse 
. -1 

with respect to F, so that h (F) consists of (bd I x I) u (I x 1) and 
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a collection of disjoint simple closed curves in int (I x I). We can 

eliminate the curves as follows: 

The transversality of h with respect to F also guarantees that 

there is a product neighborhood, N ~ F x [-1, 1], ofF, with F corre­

sponding to F x {0}, and a neighborhood K ~ h-l (F) x [-1, 1] of h-l (F) 

such that h {x,t) = (h (x,O), t) on K. (On (bd I x I) U (I x 1) = E 

this neighborhood has the formE x [0,1].) Now suppose kC h-l (F) is 

an innermost curve, bounding the disk De: I xI. Since h(k) bounds h(D) 

in M, it must bound a disk G on F, as F is incompressible (See Figure 

14). But then h(D) U G is a non-singular 2•sphere in the· irreducible 
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Figure 14. Removing a Simple Closed Curve From the 
Preimage of F 
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manifold M, so it must bound a 3-cell (Figure 14(a)). This 3-cell 

implies that h can be deformed, keeping (I x I) - int D fixed, so that 

h(D) = G (Figure 14(b)). 
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Now before the deformation k had an annular neighborhood k x [-1, 

1] in h- 1(F) x [-1, 1] which mapped into F x [-1, 1] preserving levels. 

Our deformation doesn't affect this neighborhood outside int D. In 

particular k' = k x {-1} bounds a disk o•, containing D in its interior, 

while h(k') = h(k) x {-1} in F x [-1, 1] bounds the disk G11 = G x {-1} 

(Figure 14(b)). But h(D') = h (k x [-1 ,0] U D) = (h(k) x [-1 ,0]) U G 

is a disk G'. Using the product structure ofF x [-1 ,1], or the fact 

that G' U G11 must bound a 3-cell, this implies h can be deformed, 

keeping it fixed outside int D', so that h (D') = G11 (Figure 14(c)). 

Hence h- 1(F) now has 1 less curve. 

Eventua 11 y then we obtain a homotopy g, with g -l (F) = ( bd I x I) 

U(I x l) and gl (I x {0}) =a, which clearly lifts to a homotopy of 

a in ~ into bd ~-J. 

The last three algorithms deal with loops. 

~: Let G be any surface and k a loop in G. There is an algorithm )B 

(G,k) which determines whether k is contractible in G, and, if it 

is, constructs a contraction [3]. 

£: Let M be a sparse manifold, F an incompressible surface in bd M, 

and ~ a loop in M. There is an algorithm ~(M, F, ~) which deter­

mines whether ~ is freely homotopic in M to a loop k in F. If such 

a homotopy exists, the algorithm constructs one [4, z algorithm]. 

We remark that in general there may be several loops in F which are 

freely homotopic in M to £, but which are not themselves freely homotopic 

in F. An algorithm [4, = algorithm] is available to construct 
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representatives for all such classes of loops; however, the absence of 

essential annuli in M makes this unnecessary, since, in this case, there 

can be but one class. 

The final algorithm allows us to make the intersections of curves 

with surfaces 11 nice 11 • 

~: Let M be a sparse manifold, J an injective graph in bd M, F a J-good 

cutting surface in M, and £: s1 ~ M a loop in M which cannot be 

freely homotoped into F. There is an algorithm, .j( (M, J, F, £)which 

will produce a loop £*, such that £ and £* are freely homotopic in 

M, and £*meets F minimally and transversely. 

Proof: Transversality allows us to deform 2 slightly to an embedding 

such that 1-l (F) consists of a finite number of points on s1, and all 

intersections of 1 (s1) and Fare transverse. 

Consider any arc k c s1 with k n 1-l (F) = bd k. Now tlk defines 

an arcs: I~ M with s(I)n F = S(bd I), so we may apply algorithm 

~· (M, J, F, B) to determine whether 8 is homotopic in M, rel endpoints, 

to a path s• in F. 

If it is not, we proceed to a different arc and try again. If it 

is, then~· constructs a homotopy which provides a deformation of £ to 

a map 11.: with 1' (k) C F (Figure 15(a)). Applying another small defor­

mation, (use a small product neighborhood of F) we push JL' (k) off of F · 

yielding 1*: s1 --~ M, freely homotopic to JL and having two less points 

in its inverse image of F (Figure lS(b)). We continue this process until 

either 1* 0, o~ no path £(k), k C s1, can be homotoped into F. 

The resulting 1* is the desired curVe; for suppose i is another 

loop freely homotopic to £ and meeting F in a finite number of transverse 

intersection points. Then 1 and £* are themselves freely homotopic 
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Figure 15. Deforming the Path 1(k) to the Path 1'(k) 
in F; Then Deforming 1 to Miss F 
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under say h: s1 xI-+ M, with hi (s1 x {0}) = 1 and hJ (s1 x {1}) = £*. 

Transversality allows us to assume that h-1(F) consists of a finite 

disjoint collection of simple closed curves, of arcs with both end­

points in the same boundary component, and arcs with an endpoint in each 

boundary component. Since F is incompressible and M irreducible we can 

deform h so as to remove the curves just as we did in the proof of the 

® algorithm. Note that no curves can be parallel to the boundary com­

ponents since 1 {hence i and 1*) cannot be freely homotoped into F. 

By construction of £*, no arcs of the first type can exist with both 

endpoints in s1 x {1 }. Thus s1 x {0} contains no fewer points in h-1(F) 

than does s1 x {1} (Figure 16); that is, i meets Fin no fewer points 



than does £*. 
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CHAPTER III 

DESCRIPTION OF THE POWER ALGORITHM 

A. Special Case, The T Algorithm 

We begin by defining an algorithm for a special case, then give 

the procedure for reducing the general case to this one. The proofs of 

two lemmas (B and D) used in defining the algorithm are deferred to the 

end of the chapter. 

r: Let M be a connected sparse 3-manifold, J an injective graph in 

bd M, F a good cutting surface in M, and ~ a loop in M, which 

satisfies the following conditions: 

(i) £ intersects F transversely and at only a finite number of 

points. 

(ii) #(£ n F) > 0 is minimal in the sense that 1 is not freely 

homotopic in M to a loop ~* with #(£* () F) < #(~ 11 F). 

(iii) 1 cannot be homotoped into nor off of F. Then there is an 

algorithm T (M, J, F, £) which determines, in a finite number 

of steps, those positive integers for which there exists a 

loop as such that 1 is freely homotopic in M to ass· Further, 

for each such s, the algorithm actually constructs such a 

loop. 
~ ~ ~ 

Proof: Let M denote M cut a 1 ong F and F = F' U F" the copies of F in 

bd M. In general ~will be used to denote an object in M, or the lift 

into M of the corresponding object in M. Let a denote our given loop 1 
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regarded as a path, with initial and terminal point x e F [i.e. we choose 

x e im (£) () F and reparameterize £: Sl -+ M so that . .Q, (0,1) = x.]. 

Let K denote the collection of subarcs of a determined by a(\ F. Index 

these so that a = a1 Choose n ~ exp [(g + b + 1) 2] 

where g is the genus of F and b is its first Betti number, and choose 

j = 1, ... , m. 

Step 1: Let B =a.* *a *a * *a. 1. For each i < n we 
- J · · · m 1 J-

construct an injective graph Ji and surface Ri as follows: 

Let J0 = bd F and F = R0 • Apply '-*(a, B, F, Ji_1) to construct the 

extended (ex., ~'1, F, J. 1) intersection graph J.*C F. Let R.* be the 
1- 1 1 

component of F-J,* containing a(l) U B(l) (possibly empty but always 

incompressible). NormalizeR.* and R. 1 with respect to a(l) and B(l) 1 ,_ 

by applying e(F, R.*, R. l' a(l), B(l)). Let R1. be the component of 
1 1-

Ri*(\ Ri-l containing a(l) U s(l). Let Ji = bd Ri (Figure 17). If Ri* 

= 0, we let J. = J.* and R. = R.*. If at some stage R1. = 0, then we 
1 1 1 1 

choose the next j and start the procedure again. If R. 1 0 for each i, 
1 

then it will be shown (Lemma D) that for some k, Rk is a disk R. 

Step 2: Index the subarcs of a so that a = a1 * * am (recall s1 = 

ctj etc.). Let c1 be an arc in R from a1 (0) to s1 (0). c: 1 determines two 

arcs in M: c1 from a:1 (0) to s1 (0), and ~,· from a'm(l) to Bm(l). Using 
,..., ,.., _,,.., _, 

the product structure of a collar on bd M, deform the art a1 c:1 s1 

slightly to an arc;;-, proper in M. ApplyiB 1 (M, p-l (bd F), a,) to 

determine whether 01 can be deformed into bd M-[p-1(bd F)]. If not 

choose a new j and return to Step 1. If it does, let ~l be the path in 
,.., 

bd M and h1* the homotopy so determined. Apply Gt(bd M, T 1) to deform 

Tl to an arc, and via a small boundary collar in M, extend this to a 

deformation of h1*. ,.., -1 """ ,..., The homotopy h1* and the deformation of a1 *c:1*s1 
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Figure 17. Normalizing R.* and R.+1 With Respect to a(l) and 8(1). 
Before NormAlizatio~ Arc a in R.* Deforms to Arc o 
in R._, but Cannot Be Deformed1 Into Ri*(') R;_ 1 
Aftet ~ormalization a Can Be Deformed to o•c R.* 
n R; -1. , 

,.... 
to 01 can be combined to yield a homotopy h1 of ~l to s1 with ~l as 

initial end and Tl as terminal end. 

Step 3: Assume '€ 1, T 1 and h 1 have been constructed. Let €u be u- u- u-
the arc in p-l p (T' 1) from a (0) to 8 (0) 'i.e. p (€) = p (T' ). u- u u u u 

N -1 ,.., ,._, ,v ~ 
Deform (l *E *~ slightly, as in Step 2, to a proper arc au in M and u u u 
apply~· (M, bd f, au) to determine whether au deforms into bd M--

,..., 
( bd F). If not choose the next j and return to Step 1. Otherwise 

.-J 

from ~u '""' proceed as in Step 2 to obtain an arc 'Tu and homotopy hu to Bu 

with 'Eu and T'u as ends (Figure 18). If u = m proceed to Step 4. 
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Figure 19. Illustration of Step 4. Using a Product Neighbor­
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to One of the Homotopy hm m 
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St~: Let Tm - p ·1m and apply ,J (F. c1 *'m -l) to determine whether e1 

is homotopic, rel endpoints, to 'm in F. The answer can be shown to 

always be yes in this case, and ~constructs a homotopy. This homotopy 
..., 

is used to deform h1, keeping h1 II x {0,1} fixed, so that p(81) = p{Tm} 

(Figure 19). 
,..., 

We remark that at this stage the homotopies {p·hi = h;} can be 

pieced together to yield a proper homotopy h* from ~ to B with h*({O} 

xI) = h*({l} x I) R. Also each arc, ~i inK has occurred twice in 

the process-- once as ~i itself and once as sk (k = i+j mod m). Thus 

each a1 has exactly two homotopies associated with it: one h; with the 

arc as initial end and the other hk with it as terminal end. So for 

each ~i' beginning with hi' there is a unique sequence of arcs inK and 

homotopies between them which eventually returns to ~ 1 . 

Step 5: Define Cj to be the collection of arcs in K occurring in the 

sequence which 

k, c1, ... , ck 

s = m/k arcs. 

For each i 

contains ~j as the arc of minimal index. Then for some 
k 

are all distinct, U c. = K, and each C1. contains exactly 
1 1 

(See Lemma B for proof.) 

= l, ... , k, let aij be the arc ~u in Ci with jth 

smallest index, j = l, ... , s; so a. = ~ .• Then for each ~1.J., a 
1 1 1 

homotopy gij' from aij to ~ij+l is determined by the sequence of homo-

topies associated with Ci. We always begin with that homotopy which has 

~ .. as initial end. The homotopy g1.s runs from~. to~. 1 (Figure 20). 
1J 1S 1, 

By consturction the homotopies "match up" i.e. g .. j{l} xI= g.+l .j{O} 
1 J 1 ,J 

xI. Let \.lj = (g1jj{O} xI) and'¥= \.1 1* ... * \.ls a loop in F. 

We now observe that the homotopies gij can be pieced together to 

yield a map T: s1 X s1 --~ M which takes the standard (s,l)-curve to 

and the standard (0,1)-meridian to'¥ (Figure 21). 



Figure 20. 

Figure 21. 

Illustration of Step 5. T Relabels C1 = [al,a3, 
a 5] as [all'al2'al3]. The Homotopy 911 From 
a11 to a12 Is the Composition of h1 and h5 

Singular Torus Construction by T. In This Cfse 
a Is a Third Power of the Loop a11*a21*~1- = 
03 
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Step 6: Construct the above map T. The singular torus T cannot be 

essential, by the hypotheses on M, and since a does not deform into 

bd M, the loop~ must contract. Apply ~(F, ~) to construct the con-

traction H. The algorithm cannot fail since incompressibility of F 

guarantees that a contraction on F exists. 

Step 7: By means of the gij and H, construct a homotopy from a to 
s -1 

the loop os where os = a11 * * akl * ~l 
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Finally it may occur that all values of j are exhausted before we 

ever reach Step 7. (Actually it suffices to stop when j ~ [m; 1].) In 

this case we conclude that ~ is primitive. 

B. General Algorithm 

We now present the basic scheme for implementing the previous 

algorithms. This scheme involves repeated use of the following routine 

<1\.applied to a triple (M, ~. J) where M is a connected sparse 3-manifold, 

~ a loop in M or in Bd M and J C Bd M an injective graph. We assume ~ 

is not null homotopic in M; this may be checked using Waldhausen•s word 

algorithm [13]. 

(1\_(M, ~. J): 

Apply algorithm 1r(M, J) to construct a J-good cutting surface in M. 

Apply algorithm d((M, F, ~) to determine whether ~ can be freely homo-

toped into F; and to construct such a homotopy if one exists. 

If it cannot, we apply algorithm J(M, J, F, ~) to make the intersec-

tions of 2 with F 11 nice 11 , i.e. transverse and minimal. 

(a) If tn F ~ fll, apply T (M, £, ,J, F). 

-(b) If~ n F = fll, (and~ cannot be homotoped into F), then form M, 

M cut along F. Let M1 be the component of M (in case F 
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,.., -1 ,.., ~ ~ 

separates) containing )1,1 = p (£)' and let J' = J n w' where 

J = p-1(J)U bd F'U bd F11 • This yields the triple (M', 1, 3'•). 

If £can be freely homotoped into F, we carry out the homotopy (Notice, 

this homotopy is essentially unique since M contains no essential 

annuli). Forming M then 1 eaves us with two copies of Jl,, "R> C F • and 

'i 11 C F11 • Let M' and M11 be the corresponding components of M containing 

£• and 1 .. respectively in their boundary and let J' = JnM', J~~ = J II 
M". M' and M11 will of course be the same manifold ifF didn't sepa-

IV "" ,.._, . 

rate. Nevertheless we are left with two triples (M', £', J') and 

The routine is used in the following manner: 

Apply @lto (M, Jl,, 0); let Fo denote the cutting surface produced. 

If T applies to (M, £, 0, Fo) we're done, for it will either construct 
s a simple closed curve as, where Jl, is freely homotopic to as , for 

somes~ 1, or indicate that Jl, is primitive. 

If T doesn't apply, then we are left with one or two triples which we 

label as (Mlj' £lj' J1j) j = 1 or j = 1, 2. Each M1. is connected, 
J . 

so we can applyOlto each triple. This leaves us either with pairs 

(s, us) produced by T, or with a new collection of triples, which 

we label as (MZj' £Zj' J2j); or both. We continue in this manner, 

applying 6\. to each triple in each collection {(M .. , £. ., J .. )}; 
lJ lJ lJ 

as long as any remain. Each triple will result in either an appli-

cation of T, or the formation of one or two new triples. 

This process must terminate. In fact, except possibly at the first 

cut, each of the triples we have involved a manifold with boundary. 

Thus, we can choose our cutting surfaces to be non-separating. Moreover 

we can use the same cutting surface for each triple involving the same 
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component. Hence for each Mlj we are actually constructing a hierarchy 

in the sense of Waldhausen, and after a finite number of cuttings, Mlj 

is reduced to a 3-cell. Of course no triple (83, t•, J) can occur 

since £1 is freely homotopic tot which is non-trivial; so all triples 

must have been eliminated before this stage. 

With the termination of the process, we are done for each time T 

applies to a triple (Mij' £i, Jij)' we obtain a pair (s, cr5 ) with tij 
s freely homotopic in M .. to a • Since M1.J. was obtained by a sequence 

lJ s 
of splittings of M, applying the projection maps yield p1· ... pi (tij) 

freely homotopic to p1 ... pi {ass)= [p1 ... pi (crs)]s. Further, all 

the free homotopies of£ to obtain L., project, so we obtain£ freely 
lJ 

homotopic in ~1 to [(p1 ... P;) (as)Js. 

C. Auxiliary Lemmas 

C.l. Lemma G 

Let M be a nice 3-manifold, G a cutting surface in M and J an 

injective graph in G. (Here "nice 11 means compact, orientable, irre-

ducible, sufficiently large and not "exceptional .. as defined by Evans 

[4]; also see I.B.) Let a, B be paths in M with endpoints in G and J1 

the extended (a, B, J, G) intersection graph. Suppose a(l) and B(l) 

lie in the same path component of G-J1 and a is a loop based at a(l) in 

G-J1. Then a*a*a-l is homotopic, rel a{O), to a loop in G-J. 

Proof: Let\ be any path in G-J1 from a(l) to B(l). Then 3*\ is a 

path from a(l) to G(l), so by the properties of J1, a*a*\*B-l deforms 
-1 -1 to a path a in G-J from a(O) to B(O). Similarly B*\ *a deforms to a 

path o in G-J from r-1(0) to !t(O). But then a*3*a-l deforms to cr*o, a 

loop in G-J, based at a(O) (Fi~ure 22). 



o<(i) 

Figure 22. 

o(li) 

Constructing a Homotopy of a*a*a-l to a*o Using a Homo­
topy of a*a*A*s·-1 to a, and one of B*A-T*a-1 to 8 
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The following fact concerning extended intersection graphs will be 

needed in the proof of Lemma D. 

C.2. Lemma LP 

Suppose R = R., S = R.+l are two consecutive surfaces constructed 
1 1 . 

by the procedure in III.A., with R = S t 0. Then, if A is a loop in 

(R, a(O)), a-l*A*a is homotopic in M to a loop in (S, a(l)). (That is 

loops can be deformed in the 11 0ther" direction from that guaranteed by 

Lemma G.) 

Proof: Let (M,a), p be the covering space of (M,a(O)) corresponding to 

the subgroup 1r1 (R,a(O)) of 1r1 (M,Il(O)). Let (R,a) be the component of 

p-l (R,a(O)) for which the inclusion induced homomorphism 1r1 (R,a) --+ 
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1r1 (M,a) is an isomorphism. Let ct be the lift of (t with initial point 

a= ~(0) and terminal point b = ~(1); and let (S,b) be the corresponding 

component of p-l (S,a(l)). Now the components of p-1(F) separate M (R, 

S c F, a cutting surface forM), so we let W be the closure of that 

component of M-p-1{F) containing a. Observe that R usc bd wand bd w 

Cp-1{F) is incompressible. Our plan is to get~ contained in a 
.... " product, lying in W and having R and S as ends. 

Next we choose a collection {oi: i=l, ...• 2g, ... s} (where g is 
..... 

the genus of S) of simple closed curves, and arcs oi from b to o;(O), 

all in Sand satisfying: 
-1 (i) The homotopy classes of the loops oi*oi*oi 

minimal set of generators for TI1(s,b); 

" = a. form a 
1 

(ii) o; () oj is a single point when i ~ 2g is even and j = i-1, 

and is empty otherwise. 

(iii) o i n o j = b for every i "f j. 

Such a collection can be constructed by considering the canonical repre­

sentation of a bounded surface (Figure 23). 

A • 1 ° ( s ( 1 ) ) (" *" *" -l) - * 0 For each i, p o oi 1S a oop 1n •a • soP 0 a oi a -a p 

O~·*a-l deforms in M to a loop a. in (R,a(O)) by Lemma G. This homotopy 
1 . 1 

lifts to one in M between ~*~;*~-l and a loop ~i in (R,a). Because bd W 

is incompressible we may assume the homotopies take place in W. (See 

the proof of algorithmS in II.B.) Further, the generalized loop theorem 

[11] allows us to assume that these homotopies are embedded annuli A;, 

with 0 i as one of the boundary components. The theorem guarantees 
-1 embedded annuli with one boundary curve in a neighborhood of oi*o;*o; 

of the form in Figure 24; it is then obvious that this curve can be 

deformed · to 0 i . 



Figure 23. The Collection of cri and oi for 
the Canonical Representation of 
a Genus 2 Surface With Two 
Boundary Components 

_.. ' 

, ---·'G\:11 ,\ r ,. - ' J ' o----- '•- ,.) I I - I 
'- I -----,. , 

..... "' ..... .. 
...... -----

Figure 24. Deforming the Singular Curve o*a*o-l to the 
Simple Closed Curve o1 in a Small Neighborhood 
E. Clear~y Any Curve Freely Homotopic in E to 
o;*cr;*o;- Can Also Be Deformed to cri 
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We can perform standard surjury techniques on these annuli, leaving 

o·i fixed, so that A; n Aj is either empty, or, when i ~ 2g is even and 

j = i-1, is a single arc with an endpoint in each boundary component. 

Note that no A; can intersect in a curve parallel to a boundary component. 

Let N be the closure of a relative regular neighborhood in W of 

R us u (UAi) mod bd W-(Ru S). So R usc bd N, and N is compact. We 

proceed to alter N to obtain a compact, irreducible, orientable, manifold 

with incompressible boundary. 

First, suppose N has a 2-sphere boundary component Q. R US is 

incompressible so Q c Frw(N) and thus lies in the interior of the irre­

ducible manifold W. So Q bounds a 3-cell CC W which we adjoin toN 

along Q. 

Next, suppose there is a simple closed curve k in Frw(N) which con­

tracts inN but not on Frw(N). Let d: s2 ~ N, with d(S1) = k define 

the contraction. We claim that d can be deformed, keeping d!S1 fixed, 

so that d(B2) n (UA;) = 0. Inductively assumed has been deformed so 

that d(B2) n (A 1U .•. UAk-l) =CQ 0 • Now d-l(Ak) consists solely of 

simple closed curves. Proceeding as in the proof of algorithm a, let J, 

bounding DC B2, be an innermost curve. Then d(J) cannot be parallel 

to a boundary component of Ak, so it bounds a disk D • C Ak. The 2-sphere 

o• U d(D), then bounds a 3-cell C in W (if not in N) which allows us to 

deform d so that D is taken slightly to the other side of D'. Note that 

D'nal0 must be empty, so no intersections with~0 have been created, 

while J has been eliminated from d-1(Ak). 

Now suppose there is a 2-sphere Q in int N. Q bounds a 3-cell cc 

W which we adjoin to N along Q. Observe that if C does not already lie 

in N, then it contains a component of bd N. Such a component cannot 



meet RU S else C would be forced to contain a component of p-1(F) 

implying that F contracts. 
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With T = R u S, let (E,~) be a characteristic pair for (N,T) as 

defined in [6, Ch. V]. That is, (E,~) is a perfectly embedded Seifert 

pair with¢ c int T, such that iff is any essential, non-degenerate 

map of any Seifert pair (S,F) into {M,T), then f is homotopic, as a map 

of pairs to a map f' with f' (S) C E and f' (F) C ~. We will explain the 

undefined terms as needed. 
T For our purposes we first observe that if we have a map f: (S x I, 

s1 x bd I)-+ {M,T) of an annulus, such that f*: 'lfl (s1 x I) -+ 'lfl (M) 

is monic, and f is not homotopic, as a map of pairs to some g with g 

(s1 x I) C T, then f is homotopic, as a map of pairs, to some f' with 

f' (s1 x I) c E and f' (S1 x bd I)C ~. In particular this guarantees 
A A A 

that any loop in S can be freely homotoped in S to a loop in ~ n S 

(Figure 25). Simply run any arc 8 from b to ~(0), where~ is the loop, 

and use the fact that ;*8*a*8-l*~-l can be deformed to a loop ~ in (R,a). 

Second, the condition that E be well embedded means En bd N c T 

and FrN(E) is incompressible, so the inclusion induced homomorphism 

'1T1(E)-+ '1T1(N) is monic. 

From among the components of (E,~) we remove any which do not inter-
~ " 

sect both R and S. This does not render E empty, since the A; must 

deform into some components. Seifert fiber spaces can be eliminated as 

possible components. Their presence would imply that '1T1(N), which is 

free (n1(N) z '1T 1(R)) would have to contain the isomorphic image of the 

fundamental group of an orientable Seifert fiber space, which possesses 

an infinite cyclic normal subgroup. Twisted !-bundles have already been 

eliminated since they must meet T in their associated bd !-bundle, which 



Figure 25. 

I -- --> 
I 
I 
I 

Deforming the Loop a in § fo a Loop • in ~ n §. 
The Homotopy of a*8*a*8- *a-1 to a loop in (R,a) 
Defines a Singular Annulus Which Can Be Properly 
Deformed Into ¢ n S 

"' .... 
would force them to meet only one of R and S. 
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The remaining components must all be products (G; x I, G; x bd I). 

We take the 0-level to meetS and identify G x {0} with G. Suppose some 

G satisfies: any loop on S which freely homotopes on S into G also 

" freely homotopes on S into some G' t G. Then we remove G x I from t:. 

Now ); consists of a single component or else there are loops a C G, a• 
... 

c G' such that ;l(resp. :l') is not freely homotopic on S into G' (resp. 

G). But then a(resp. ~·) is not freely homotopic on S into G' (resp. G). 

{Recall ~ = T*a*T-l for some path T from b to a(o).) Yet the fact that 
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~*a*a'*~-l ~homotopic to a loop in (R,a) implies the existence of an 

essential annulus, which must deform into one of the components of r., 

implying that a*~' deforms into one of the components, a contradiction. 

We conclude that (L,¢) consists of a single product ( G x I, G x bd I). 
~ 

Now G C S, and each generator of S freely homotopes into G, so we 
" ... have G = S, and we may in fact assume G = S. A 1 so G X { 1} c R ~ s' so 

. " 
we may assume G x {1} = R. Together with the incompressibility of bd N, 

this implies we may assume G x I = N. 
-1 .-.-1 ......... Thus, if A is any loop in (R,o(O)), then a *A*a lifts to a *A*a 

with 1 c (R,a) C bd N. The product structure of N, then allows us to 

--1 ~ ~ ~ ( ) homo tope <~ *A *r~ to a 1 oop o c S, b . Projection into M gives the 

desired homotopy between cx-l*A*a and p o a C (S,a(l)). 

C.3. Lemma D 

Assuming the construction and notation of III.A., we claim that if 

Ri t 0 for every i then for some k, Rk is a disk. 

Proof: Suppose no R. is empty or a disk. 
1 

Consider the case where Rj is 

an annulus for some j. Notice that Rj+l must then also be an annulus. 

Being a subset of Rj it could only be a disk with holes, yet its boundary 

curves must all be parallel to those of Rj' by the normalization proce­

dure and requirements of incompressibility. Thus, in fact, we must have 

Rj+l = Rj. 

First, suppose bd Rj is not freely homotopic in F to a component of 

bd F. Let x be a representative of the generator of n1 (Rj+l, a(l)) ~ Z. 
-1 p Then by lemma G, a*x*a is homotopic in M to a loop y=x in Rj. But by 

a theorem of W. Jaco [5, Corollary 2], p = :':_1. If p = 1, we have the 

existence of an essential singular torus -essential since the "meridian" 
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x does not deform into bd M. Hence, by Waldhausen's theorem [14], we 

have an essential embedded torus in M, in contradiction to our conditions 

on M. If p = -1, then as above a*x-1*a-l is homotopic in M to x, so 

11 glueing 11 these homotopies together again would yield a forbidden torus 

(Figure 26). 

""' )<. ·' 

_, 

'"' X 40(. 

Figure 26. 

oC1 x:' 

Forming a Singular Torus From a Homotopy K1 
of a*x*a-1 to x-1 and a Homotopy K2 of 
a*x-1 *a-1 to x 

Second, suppose bd Ri ~homotopic in F to a component of bd F. As· 

in the first case, we obtain a free homotopy h, in M from x to x (or to 

-1) f x . Let g be a free homotopy in F from x to a boundary component o 

F, and ~ its reverse. Then §hg (or ~hg-l in the second case) is a sin­

gular proper annulus in M which is essential by construction since a does 

not deform into bd M. Waldhausen's theorem then guarantees the existence 

of a forbidden essential embedded annulus. 

We observe that no Ri can be a torus. Indeed no Ri could be closed 

unless Ri = F, and F cannot be a torus. For this would mean M had no 
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boundary, and then F would have been essential. 

Next consider the case where no R. 
1 

is a disk or annulus (or is 

empty). Let a be a non-trivial loop in Rn, n as in III.A., which is not 

homotopic in F to a component of bd F. Such a a exists. This is 

trivially the case if F is closed, while for F bounded, we may choose 

x,y any two non-trivial simple closed curves in Rn, neither a power of 

the other. These exist as ~ 1 (Rn) is free of rank > 2. They are also 

non-trivial in F since R is incompressible in F. Then a= [x ... [x·,[x,y]] . n 
'' 

.. .''] e ~ 1 (F)-~ 1 (bdF) for a sufficiently large number of iterations, 

since ~ 1 (F) being free is residually nil-potent. ([a,b] denotes the 

commutator aba-lb- 1). 

So a*a*a -l is homotopic in M to a l-oop-1!1 in Rn-l by Lemma G, since 

Rn lies in the complement of the extended (a, S, bd Rn-l, F) intersection 

graph; while a*a 1*a-l is homotopic in M to a loop a2 in Rn_ 2, etc. That 

is, we have a collection of loops a=a 0 , a1, ... , an in F, all freely 

homotopic in M. Suppose no a. can be deformed into bd F. Now if some 
1 

ai could be deformed on F to aj for some j f i we would have constructed 

an essential annulus, while if no pair were homotopic in F, then an 

essential torus or annulus would result by a theorem of Evans and Jaco 

[4, (7.7)]. 

Next suppose some a. could be deformed into bd F. Then we continue 
1 

the construction of the sequence of Ri beyond 2n. Specifically, let 

c(R.) = (g.,b.), where g. =genus (R.) and b1. is its first Betti number, 
1 1 1 1 1 

be ordered lexicographically. Then c(R.) never increases with i. 
1 

Thus, 

we may continue constructing R. 's until we either encounter a disk or 
1 

annulus, in which case we are done as before, or we have a sequence of 

at least n surfaces, a11 of which are homeomorphic. 
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Let Rk be the first surface in this sequence of homeomorphic sur-

faces; so Rk = Rk+l = ... = Rk+n· Since we are assuming none of the R. 
1 

are annuli or disks, we can find a non-trivial loop a in Rk which is 

not homotopic in F to a component of bd F. As before this leads to a 

collection {a1, i = 0, 1, ... , n} of n+l loops in Fall freely homotopic 

in M. Specifically a0 = a and aj is (pointed) homotopic to a*aj_1*a-l. 

If none of these can be deformed into bd F, then our. previous argument 

would imply the existence of an essential embedded torus or annulus. 

So suppose a' is the first a; which can be deformed in F to a component 

of bd F. 

We now proceed to "pull" the loop 3 in the other direction. Figure 

27, which is meant to be a schematic of the covering space of M corre­

sponding to ~ 1 (Rk,a(O)), is helpful in illustrating our plan. By lemma 

LP we have that a.- 1*a*a. is homotopic in M to a loop o1 in (Rk+l'a(l)). 

Similarly a.-1*o2*a. is homotopic to some o2 in (Rk+]'a.(l)) etc. That is, 

we can again generate a collection {o;, i = 0, .•. , n} (o0 = a) of n+l 

Figure 27. Schematic of the Covering Space of M Corresponding 
to ~1 (R10 (l(Q)). the Loop & Can 81i} upyll~d" in 
Either Dirtction to Generate Co1ieet1ont {~;1 
and { o;} 
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loops in (F,a(l)), all freely homotopic in M. If none of these can be 

deformed into bd F, we are led to a contradiction as before. 

SG suppose 8' is the first loop in this collection which is freely 

homotopic in F to a component of bd F. Then a' and o', after deforma­

tion, form the images of the boundary components of a proper singular 

annulus created by piecing together the free homotopies of a' to a and 

a to o'. This annulus is essential since the non-trivial curve a lies 

in this annulus and cannot be deformed into bd M. Waldhausen's theorem 

then guarantees the existence of a forbidden essential embedded annulus. 

Hence, in all cases the non-existence of a disk would lead to a 

contradiction. 

C.4. Lemma B 

It is clear that the Ci form a partition of K. Choose k maximal 

such that c1, ... , Ck are mutually disjoint. Now ai+l e ~ Cj for if 
k . 

not, we would have Ck+l n (Y Cj) = 0 and the maximality of k is con-

tradicted. In fact, ak+l e c1; for suppose ak+l e Cj 1 ~ j ~ k. Then 

there is a sequence of arcs and homotopies between them from ak+l to 

Ct •• 
J 

Yet this sequence implies the existence of a sequence of arcs and 

homotopies from ak to a. 1, which unless j = l, 
J-

jointness of Cj=l and Ck. Similarly ak+2 e c2, 

contradict the dis-

since the sequence of 

homotopies from ak+l to a1 implies one from ak+2 to a2. Inductively 
k 

we obtain K = U C. and it is clear that each c. contains the same num-1 1 1 . 

ber of arcs. 



CHAPTER IV 

VALIDITY OF THE ALGORITHM 

A. Special Case 

Herein we answer the important question: does thealgorithm work? 

We first show that T works ~henever it applies, and then show that this 

is sufficient to ensure that the general algorithm works. 

Assume we have a 3-manifold M, graph J C bd M, surface F, and loop 

t for which T applies. By T "working", we mean that if R. is freely 

homotopic in M to some os, s ~ 1, then Twill in fact detect this and 
s construct a loop crs and homotopy from 2 to crs . So assume such a a 

exists. We may also assume that among all such a (for s fixed) a meets 

F minimally and transversely, as does t. 

Let A: s1 x I --+ M be the homotopy with A!S1 x {0} = t and Ais1 x 

{1} = as We will often find it convenient to regard A as a map from 

I xI--+ M with a (i.e. t regarded as a path) as 0-level and Ai{O} xI; 

the context indicating how we are viewing A. By [4, Lemma 4.4; also see 

survey in introduction] we may assume A-1(F) consists of a finite, dis­

joint; collection of arcs d1, ... , dm with d1(t)C: s1 x {t}, t = 0, 1. 

Let these be indexed so that d1(o) = a(O) = a1(o) and so that a1 = A-l 

(a1) C s1 x {0} is an arc from d1(0) to di+l(O), i = 1, ... , m. (The 

a1, as before, are the subarcs of a determined by an F). Assume a has 

been parameterized so that d1(1) = a(O). Corresponding to each a1 we 
1 have an arc ci<: S x {1} from di(l) to di+l(l). Note that fork= m/s, 
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A(c1* ... *ck) = A(ck+l* ... *c2k} = 

Figure 28}. 

= A(c(s-l)k+l* ... *cm} =a (See 

LetS= a.k+l* ... *a.m*a.1* ... *a.k' and let A; be the homotopy of a; = 

A(c1) to a1 determined by A restricted to the disk bounded by a1, c1, 

d. and d.+1. We define a homotopy from a. to s. = ak+' by B. = A.*r 
1 1 1 1 '1 1 1 
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(Ai+k); i.e. we take a1 to a1 = ak+l under A; and then ak+l to ak+l = s1 

under the reverse of Ai+k' The B1 then defines a homotopy of a to 8. 

Finally let ~i' i 1 denote the induced homotopies in~. Observe that 
.., 

. deformations of B1, induce deformations of B1, which induce deformations 

of B (and conversely); and we will always assume any deformations which 
.... 

we perform on Bi or Bi have been extended to B. 

Now at some stage of the algorithm, 8 = ak+l* ... *ak will be con­

sidered. We claim that in this case the algorithm c~nnot fail. The 

first step ofT is construction of a disk R containing a(O} U 8(0}. As 

has been shown, such a disk will always arise provided none of the sur­

faces Ri is empty. Consider R1• The existence of J1*, the extended 

(a, 8, J0 , F) intersection graph is guaranteed, and, by the properties 

of the graph Bj{l} xI= Bj{O} xI can be deformed into F-J1. So R1* 

must be non-empty.· Also, in normalizing R1* and R0 = F with respect to 

a(O) and B(O), any deformation which cannot avoid meeting B({l} xI} 

must be unable to miss a.(O} U S(O) and so wouldn't have occurred. Thus, 

after normalization B({O} xI) lies in a component of R1*n R0 = R1* and 

so in R1 . 

Inductively, suppose B({Q} x I) lies in Rk-l and we form Jk*' the 

extended (a., S, bd Rk-l' F) intersection graph. Then 8({0} xI) lying in 

F-bd Rk-l implies B({l} x I) lies in Rk*' a component of F-Jk*. Again, 

normalizing Rk* and Rk-l with respect to a.(O) and s(O) cannot separate 



Figure 28. Indexing Scheme for the Type 2 Homotopy A: 
s1 x I--+ M. Here a= a-* ... *a6 Is a 
Third Power of a= a1*a2, 1m = 6, s = 3, 
and k = 2. At Some Stage T Considers 
D - D * *a - * * ~ - ~1 · · · ~6 - a3 · · · a2 
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.... 
The next step is· to determine whether there exists a homotopy in M 

"' from a, to s, with €, as initial end. s, is such a homotopy, so the 

a 1 gorithm detects this and constructs a homotopy 'h1. Now (81 I {1 } x I) 

*~ 1 -l is a loop in F which contracts in M (B1*r(h1) defines the contrac-
~ 

tion), so it must contract on F. 
#OJ 

This implies B can be deformed so that B1 in} xI= ,1 and hence 

B2 iCOf xI= ~2 (Figure 29). 

--------
Figure 29. 

,_, 
Deformation of §1 so That 

s1Jn} x r = -r 1 
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-Inductively, suppose the algorithm has constructed hj-l with 

h. 1 i{O} xI=~- 1, and that B has been deformed so that B. 1 !{l} 
J- J- J-

X I = 

T. 1. Then B.!{O} xI= c., and B. shows that a 
J- J J J 

"" ~ homotopy from aj to sj 
""' with initial end Ej exists. T1 detects 

As above (Bji{l} x I)*'Tj-l contracts on 

this and construct a homotopy h .. 
J _. 

F and we deform B so that 
~ I ~ -1 B.{llxi=T. 

J J ..., 

Finally for j = m, the above shows a homotopy hm will be produced 

and (Bml {1} x I)*~m-l must be bound a disk on F. But Bml{l} xI= B1 I 
.... 

{0} x I = ci, hence h1 can be deformed so that p(Tm) = p(€1 ). Thus 

Step 4 is completed. 

From this point on continuation of the algorithm is automatic. We 

remark on the os whi~h is constructed. Consider how the collection c1 

is formed. a1 becomes a11 , and the sequence of homotopies, beginning 

with h1, indicate the other elements. Thus B1 = ak+l e c1 which implies 

Bk+l = 112k+l e c1 , etc., until finally the sequence ends with h(s-l)k+l 

from <t(s-l)k+l to B(s-l )k+l = cx1. Since the sequence follows an 

increasing subsequence of the indicies of K we see a(j-l)k+l becomes 

alj for j = 1, ... , s. Similarly a2 becomes a21 and a(j-l )k+2 becomes 

a2j, etc. 

homotopies 
-1 

al 

This also implies that the homotopies g .. are simply the 
lJ 

h(j-l)k+i' Thus~,= h11 i{O} xI= s 1 and os is a1* ... *ak* 

B. General Case 

We next show that the general algorithm works. Let Case 1 refer 

to the situation where£ cannot be freely homotoped into F, but can be 

homotoped to £' with ~· n F = ~; and let Case 2 refer to the situation 
~ 

where ~ can be freely homotoped to £' C F. As usual M denotes M cut 



,.., 
~long F, and F1 F2 are the copies of F in bd M identified under the 

projection p. Let ~· (or ~· 1 and 9:'t 2) be the lift (lifts) of£' into 

M depending on the case being considered. If F separates M, we have 

M = M1 u M2, and take :Q> . c "F. c bd "M. , i = 1 , 2. 
1 1 1 

Notice that since, in the course of the general algorithm, we 

must eventually arrive at a manifold M*, surface F*, graph J* and loop 

i* to which r applies~ it suffices to show that if £, and hence i', is 
s ~ ~ 

freely homotopic in M to some c , then£' (or£' i) is freely homotopic 
,.., ~s 

in M to some c . 
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We make use of the existence of the 1-l correspondence between free 

homotopy classes of loops in M (regarding them as maps of s1 into M) and 

conjugacy classes in w1(M), where some choice of base point has been 

made. For such a loop£: s1 --+ M, if G = n 1(M) we let [l]G denote the 

corresponding conjugacy class in G. 

First we suppose that F separates M. Let ~i = n1(Mi) and let H; 
~ 

be the subgroup ni (w 1 (F)) of Gi where ni is the monomorphism induced 

by the natural embedding of F into bd Mi (i=l ,2). Let G = w1 (M) and 
~ ~ "' 

H = n 1(F). Then G z G1 * G2 and we identify G. with its monic image 
Hl=Hz 1 

in G. 
~ "' 

For Case 1, we assume i' lifts to£' in the component M1. Choose 
"' an element (word in the generators of G1) We [i']G,. Choose V e [c]G 

such that V is cyclically reduced. Recall that any word in a free 

product with amalgamation is conjugate to a cyclically reduced word. 

C does not necessarily represent V, even assuming no base point problems, 

but there is some loop c* which does represent V, and since they repre-

sent the same conjugacy class in G, they are freely homotopic in M. 

That is, we can just as easily work with c* as with c. 
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In G, Vs is conjugate to W, which lies in the factor G1 yet lies 

in no conjugate of H; i.e. regarding Was an element of G, [W]G n H = 0. 

This follows since t (hence £i) is not freely homotopic to a curve in F. 

So from a standard group theoretic result [7, Theorem 4.6] Vs and W 
IV 

must lie in the same factor, G. , and be conjugate in that factor. That 
1 I 

is, i• is freely homotopic in M1 to a curve cs. 

For Case 2 choose We [t•]G with We H, and Vas before. Appealing 

to the same theorem, since V5 is conjugate to W, V5 must lie in some 

factor say G1, and there must exist a sequence W = U0 , u1 , ... , Ur = Vs 

with U. e H for j = 0, ... , t-1, and U. conjugate to U.+l in a factor. 
J J . J 

But since we are assuming no essential annuli exist in Mi' then for each 

j ~ r, Uj is conjugate to Uj+l in H. So, in· particular, 1• 1 is freely 
...., s 

homotopic in M1 to c 

Second, suppose F does not separate M. Then G = rr 1(M) can be 

obtained from G = w1(M) as an HNN group with Gas base and Hi = ni w1 (F) 

the bonding subgroups, where ni: rr 1(F)--+ rr 1(M), i = 1, 2 are induced 

by the natural embeddings of F into bd M with reference to some common 

base point. We write G = P/N where P = G*<t> and N is the normal sub­

group of P generated by the elements tWt-l [n 2n1 -l(W)]-l for We H, or 

equivalently by tn 1(s) t-l [n 2(s)r1 S e ;r 1(F). We write G = <G, t: 

-1 ( -1 tWt = o/ w) W e H1> where o/ = n2 n1 In order to apply certain 

results found in [8] we need a few definitions. 

A word in P = G*<t> is t-reduced if it contains no subword of the 
-1 1 form t U t , U e H1, or t- U t, U e H2. It is cyclically t-reduced if 

all cyclic permutation of it are t-reduced. For V a word in P, the 
-1 t-projection of V is the sequence of t-symbo1s occurring in V. E.g. t 

2 -1 -1 -1 g1 t g2 t --+ t , t, t, t . The words W, V are t-parallel if their 
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t-projections are equal; they are t-circumparallel if one is t-parallel 

to a cyclic permutation of the other. 

For Case 1, choose We [i•]G. Then W is a word in the generators 

of G, and, containing no t-symbol, is clearly cyclically t-reduced. 

Choose V to be a cyclically t-reduced word in [c]G. This is possible 

since every element of G is conjugate to a cyclically t-reduced element 

[8, p. 797]. V may of course also be regarded as an element in P. In 

G, W is conjugate to Vs, so, since W contains not-symbol, neither does 

Vs. This follows from Collin's Lemma [S, Theorem 2], for if either con-· 

tained at-symbol, they would have to be t-circumparallel, a contra-

diction. 

... ' 
Further, by the same theorem, there exists a sequence W = U0 , u1, 

Uk-l, Uk = Vs with uj e H1 or H2 for j = 0, ... , k-1, and such that 
N 

ul is obtained from U. 1 by conjugation by an 
1-

element of G and then by 

t~l. ""' Yet if k> 1 ' this implies W is conjugate in G to an element in 

is £• 
,.., 

""' -either Hl or H2. That freely homo topes into F1 or F 2 in M, so 

freely homo topes into F in M, a contradiction. Thus k=l and W is 

conjugate to Vs in G; that is, i• is freely homotopic to cs in~­

For Case 2, choose w1 e G •; ]G with w1 e H;. Again the Wi are 

cyclically t-reduced words in P, which in fact contain no t-symbols. 

Choosing V e [c]G, cyclically t-reduced, the same argument as above 

implies V contains not-symbol. Hence there is a sequence (actually 

Q.' 

one for each i = 1 ' 2) w; = uo' u, , - s ... , Uk- V as before. Here too, 

k must= 1, else if u, e H1 or H2, with u1 = tu g W. g-1 -u t , where u 
1 

is 2:_1, we would have the existence of an essential annulus. Specifi­

cally we would have £i' freely homotopic in M to some~ in F1 or F2, 
~ ~ 

yet not homotopic in F1 U F2. 
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