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CHAPTER I 

INTRODUCTION 

The existence of a "fat-soluble A factor" which is essential for 

life was first demonstrated by McCollum and Davis (1, 2) at the Uni­

versity of lVisconsin in 1913 and by Osborne and Mendel (3) at Yale 

University. The structures of this vitamin A and of a-carotene, the 

provitamin A form, were determined by Karrer et al. (4, 5) in the 

1930's, while the syntheses of these two compounds were accomplished 

some fifteen years later. The term "vitamins A" includes retinol as 

well as compounds similar to retinol in structure and function while 

natural and synthetic analogs of vitamin A are referred to as "reti­

noids" (6). Vitamin A is involved in many biological processes 

including vision, growth, reproduction, and maintenance of epithelial 

tissues (7, 8, 9, 10, 11, 12). The function of vitamin A in the 

visual cycle was elucidated by George Wald (13) who was awarded the 

Nobel Prize for Medicine in 1967. Vitamin A compounds involved in 

the visual system include all-trans- and 11-cis-retinal (both vitamin 

A aldehydes). The role of vitamin A in biological processes other 

than vision is not well understood. 

Formation, Function and Transport 

of Retinoic Acid 

Retinol (vitamin A alcohol) is reversibly oxidized in vivo to 

1 
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retinal (vitamin A aldehyde) which is then irreversibly oxidized to 

retinoic acid (vitamin A acid) (12) as shown in Figure 1. 

Retinoic acid vms synthesized from 13-ionone by Arens and Van Dorp 

(14) more than thirty years ago. When given orally to vitamin A 

deficient rats, retinoic acid had a growth promoting activity equal 

to that of the alcohol (15). Arens and Van Dorp (16) first suggested 

that retinoic acid was not converted to retinol in vivo. After 

retinoic acid was injected or fed, retinol could not be detected in 

the liver (16). These findings were later substantiated by Dowling 

and Wald (17, 18) who reported that rats maintained on retinoic acid, 

though growing normally, became blind. In addition, retinoic acid 

was unable to maintain normal fertility in female rats or spermato-

genesis in male rats (19, 20). 

The growth promoting activity of retinoic acid has been confirmed 

by other investigators who have reported it to be as active as retinol 

(21, 22). Retinoic acid was as effective as the alcohol in reducing 

elevated cerebrospinal fluid pressures of vitamin A deficient pigs, 

suggesting that these two compounds have similar biological activities 

(23). Cerebrospinal fluid pressure has proven to be an adequate 

criterion for assessing the vitamin A status of the pig. In addition, 

retinoic acid had a sparing effect on liver vitamin A in the pig (23). 

The presence of retinoic acid in blood plasma was first detected 

quantitatively by Nelson et al. (24). When [6,7- 14C]retinoic acid 

was fed to pigs, retinoic acid concentration in blood plasma reached 

a maximum in 1.5 to 3 hours then decreased until none could be detected 

after 12 hours. 

The formation of retinoic acid in tissues was demonstrated through 
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Figure 1. Oxidat~on of Retinol to Retinqic Acid 
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the use of radioactive precursors. Small atnounts of intravenously 

injected retinal could be recovered as retinoic acid in bile (25), 

liver and intestine (26). Retinoic acid was also formed in the 

intestine following the administration of B~carotene (27) or retinol 

(28). More recently, the administration of a physiological dose of 

retinyl acetate led to the detection of retinoic acid in blood plasma 

(29) and in rat liver, intestine and testes (30). After the intra­

venous administration of physiological doses of [6,7- 14 C]retinoic 

4 

acid to vitamin A deficient rats, the radioactivity was distributed 

among all tissues, with highest levels in the liver and small intestine 

(31). 

The transport of retinoic acid in the blood of the rat has recently 

been examined (32, 33). Retinoic acid is transported in rat serum 

bound to serum albumin, and not to retinol-binding protein, the specific 

transport protein for retinol in blood plasma. Analogs of retinoic acid 

also bind serum albumin but no correlation has been found between 

binding affinity for albumin and the biological potency of these 

analogs (34). 

Cellular Retinoic Acid-Binding Protein 

The discovery of a cellular retinoic acid-binding protein, distinct 

from cellular retinol-binding protein, has given added impetus to the 

idea that retinoic acid acts as a distinct physiological compound, 

separate from retinol (35). Cellular retinoic acid-binding protein 

(CRABP) was first isolated from rat testes (35) and from chick embryo 

skin (36). Whereas cellular retinol-binding protein was found in all 

organs with the exception of serum and muscle, cellular retinoic acid-



binding protein was only detected in brain, skin, eye, ovary, uterus 

and testes. CRABP was presented in smaller amounts in bladder, pros­

tate, heart muscle, trachea and mammary glands but was not detected 

5 

in small intestine, kidney, colon, liver, lung, serum, muscle and 

spleen (35, 37-40). In addition, cellular retinoic acid-binding 

protein has been found in the nuclei of chick embryo skin and in the 

nuclei isolated from a transplantable colon tumor and Lewis lung carci­

noma (41, 42). When intact retinoblastoma cells were preincubated with 

retinoic acid, cellular retinoic acid-binding protein was detected in 

the nuclear extract (43). This preliminary result may point to a 

possible involvement of retinoic acid at the gene level. 

Different and changing requirements for retinoic acid in rat organ 

development and maturation have been suggested (44). During perinatal 

development of lung, the level of cellular retinoic acid-binding protein 

increased at parturition, peaking at day ten, and fell rapidly to an 

undetectable level at day 21. Liver levels of the protein were not 

detectable after day 5. These observed changes in concentration suggest 

a higher requirement of retinoic acid during embryogenesis than in later 

life (44). 

A fuller characterization of CRABP has been possible through its 

purification from rat testes (45) and from chick embryo skin (46, lf7). 

The binding was saturatable and specific, with retinol, retinal and 

long chain fatty acids unable to bind (35, 36). Several analogs of 

retinoic acid were tested for binding affinity. The binding affinity 

of these analogs correlated with biological activity in the differen­

tiation of epithelial tissues and in the control of tumorigenesis 

(34, 47-49). This correlation suggests that the action of retinoic 



acid and its analogs in carcinogenesis could be mediated by cellular 

retinoic acid-binding protein (34, 48). 

Retinoic Acid and Carcinogenesis 

Vitamin A plays an essential role in controlling normal differen-
1 

tiation of many epithelial tissues in vivo (7, 11, 50-53). This has 

also been demonstrated in vitro in recent years in both tracheal organ 

cultures (54, 55) and in prostate gland organ cultures (56-58). In 

vitamin A deficiency, the mucus-secreting lining of epithelial tissues 

was replaced by a squamous metaplastic epithelium with an increased 

production of keratin. This is thought to represent the first phase 

in the transformation process from a normal tissue to a neoplastic 

tissue. When vitamin A or a structural analog (retinoid) was added 

to the organ culture, a reversal of the keratinization process was 

seen along with a replacement of the abnormal squamous cells by 

columnar ciliated and mucous cells. 

Several studies have indicated that lower levels of vitamin A 

predispose epithelial tissues to carcinogenesis. For example, the 

induction of colon tumors by aflatoxin B1 and dimethylhydrazine is 

greater and faster in vitamin A deficient rats (59, 60). This in-

creased susceptibility to chemical carcinogens in vitamin A deficiency 

has been reviewed by Sporn et al. (6, 61). Carcinogenesis involves a 

de-differentiation in epithelia and since the vitamins A are involved 

in the regulation of normal cell differentiation, they have been used 

6 

as chemopreventive agents, interfering with tumor induction by carcino-

gens. 

Natural retinoids have been shown to prevent the development of 
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epithelial cancer during its preneoplastic period in severql tissues. 

Saffioti et al. (62) demonstrated that vitamin A given to hamsters 

inhibited benzo(a)pyrene induction of respiratory tract tumors. In 

studies by BcHag (63-65), treatment with retinyl palmitate or with 

retinoic acid led to the regression of skin papillomas in mice induced 

by dimethylbenzanthracene and croton oil. Retinoic acid had a prophy­

lactic effect, in that its administration led to a delay in appearance 

of the papillomas, as well as a therapeutic effect, accounting for a 

retardation of the growth and induction of the regression of papillomas 

(65). An increased survival time and a decreased rate of mammary tumor 

growth was observed in mice fed retinyl palmitate (66) while adminis­

tration of retinyl acetate to rats one week following the intragastric 

installation of dimethylbenz(a)anthracene resulted in reduction both 

in the incidence of benign and malignant mammary tumors and in the 

number of tumors (67). 

Several effects of natural vitamin A compounds greatly reduce 

their usefulness in cancer prevention. These include the likelihood 

of liver injury due to excessive deposition of high doses of vitamin 

A and the inadequate tissue distribution of natural retinoids (6, 61, 

68). For these reasons, synthetic retinoids have been developed and 

used as chemopreventive agents. The nature of the terminal polar group 

of retinoids is an important determinant in modifying activity, toxicity, 

metabolism and tissue distribution of this class of molecules (69). 

Synthetic retinoids were highly active in mouse prostate organ 

culture in inhibiting the effects of methylcholanthrene (58) and of 

N-methyl-N'-nitro-N-nitrosoguanidine (56). Sporn et al. (55, 70, 71) 

used synthetic retinoids in organ cultures of hamster trachea in order 
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to assay their anticarcinogenic activities, while Wilkoff et al. (49) 

tested vitamin A analogs for activity in altering epithelial differen-

tiation of chick embryo metatarsal skin explants. In addition to their 

effect in vi~c:, retinoids also reduced the growth or the incidence of 

chemically induced tumors in skin, lung, bladder and mammary tissues 

in vivo. The first such studies utilizing a synthetic retinoid involved 

chemically induced skin papillomas and carcinomas of mice. Bollag (68, 

72-74) demonstrated that an aromatic retinoic acid derivative with a 

modified polar end group exerted a prophylactic as well as a thera-

peutic effect on the tumors and was more effective than all-trans-

retinoic acid. Two compounds were successfully used to inhibit mammary 

cancer in the rat. Retinyl methyl ether inhibited the incidence and 

decreased the number of mammary tumors induced by 7,12-dimethylbenz(a)-

anthracene (75, 76) while N-(4-hydroxyphenyl)-all-trans-retinamide 

inhibited the development of mammary cancer induced by N-nitroso-N-

methylurea (77). 

13-cis-Retinoic acid was an effective anticarcinogen in the lung 

as well as in the bladder. It prevented tracheobronchial cancer in 

hamsters after malignancy had been induced by benzo(a)pyrene (78). 

Whether rat bladder carcinogenesis was induced by N-methyl-N-nitroso-

urea (39) or by N-butyl-N-(4-hydroxybutyl)nitrosamine (80, 81), 13-

cis-retinoic acid was equally effective in reducing the incidence, 

number and severity of the resultant carcinomas. This was found to 

be true even after a nine-week delay in starting the retinoid feeding 

(81). 

Since epithelial cancers account for a large proportion of new 

cancer cases and of cancer deaths in humans, this chemopreventive 



approach to the control of cancer offers great promise for the future. 

However, the mechanism of action of these retinoids remains to be 

determined. It has been suggested by DeLuca et al. (7, 51-53) that 

retinoids function by an action on cell membranes, specifically in 

the synthesis of glycoproteins. 

Metabolism of Retinoic Acid 

9 

The metabolism of retinoic acid has been investigated in the hope 

of determining the biologically active form(s) of vitamin A. Knowledge 

of the chemical structure of the metabolites of retinoic acid would 

greatly aid in the search for the metabolic role of vitamin A in pro­

cesses other than vision. 

The major metabolite of retinoic acid in bile has been identified 

as retinoyl B-glucuronide (25, 82). Several other excretory products 

of retinoic acid metabolism have been proposed. Sundaresan and Bhagavan 

(83) reported the presence of at least six metabolites of retinoic acid 

in the urine of rats. The major metabolite lacked both C-14 and C-15 

of retinoic acid. A specific loss of tritium at C-11 and C-12 was also 

observed (84). Rietz et al. (85), on the basis of spectroscopic data, 

proposed a 4-oxo metabolite of retinoic acid with a carboxyl function 

in place of the methyl group at C-1 and a nonconjugated carboxyl group 

at C-15. Hanni et al. (86) isolated three major urinary metabolites 

following intraperitoneal administration of retinoic acid. In these 

metabolites the tetraene side chain at carbons 9-12 was converted to 

a furanone, the cyclohexene ring was oxidized at C-4 and one of the 

methyl groups at C-1 was oxidized to a primary alcohol. The physio­

logical importance of these metabolites, generated when very high doses 



(grams) of retinoic acid were administered to rats, is still to be 

determined. 

Three major metabolites as well as intact retinoic acid were 

isolated and i.dentified from rat feces, foll~wing intraperitoneal 

administration of the parent compound (87). Hydroxylation of the 

methyl group at C-5, oxidation of the ring at C-4 and cis-trans 

isomerization of the side chain produced these metabolites. It was 

proposed that metabolites with a shortened side chain are mainly 

eliminated by the kidney while metabolites with an intact side chain 

and retinoic acid are eliminated in feces by the liver and bile. The 

glucuronides of retinoic acid and its metabolites may be hydrolyzed 

in the intestine before excretion. 

While retinoic acid seems to undergo glucuronic acid conjugation 

in the forntation of biliary retinoyl a-glucuronide (25, 82, 88, 89) 

and hydroxylation and cleavage in the formation of the urinary and 

fecal metabolites (86, 87), several other possible fates for retinoic 

acid have been proposed. Isomerization to 13-cis-retinoic acid has 

been reported in rat liver (90), but since extensive isomerization 

occurs during routine handling of all-trans-retinoic acid, the 

physiological significance of this finding is questionable (90). 

5,8-Epoxyretinoic acid has been reported as a metabolite of retinoic 

acid (91), although it has also been identified as a major impurity 

10 

of samples of 3 H- and 14C-labeled all-trans-retinoic acid (92). 

Sundaresan and Sundaresan (84) have discussed the metabolism of the 

side chain of retinoic acid with specific loss of tritium at positions 

11 and 12. This could occur through hydroxylation at the 11,12 double 

bond. More recently, evidence has been presented indicating that the 
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major pathway of retinoic acid metabolism in hamster liver microsomes 

and in hamster intestine involves hydroxylation at C-4 in the ring 

followed by the formation of a keto group at the same position (93-

95). 4-0xoretinoic acid is then converted to more polar metabolites. 

Retinoic acid is also metabolized to 4-hydroxyretinoic acid and 

4-oxoretinoic acid in a hamster tracheal organ culture system (96, 97). 

These compounds displayed one tenth the biological activity of all­

trans-retinoic acid when tested in a vitamin A deficient hamster 

tracheal organ culture assay. Retinoic acid also may be metabolized 

to a hydroxylated derivative (98) which becomes phosphorylated, forms 

a mannosyl phosphate derivative and subsequently leads to the formation 

of a mannoglycoprotein (51). 

The decarboxylation of retinoic acid has been under study since 

the discovery of a decarboxylation product that was biologically active 

(99). The breakdown of 14C-retinoic acid labeled either at C-6, C-14 

or C-15 was studied by several investigators by analysis of the radio­

activity in urine, carbon dioxide and feces following intravenous 

injections of the substrate into retinol deficient rats (100-102). 

These studies indicated that retinoic acid was metabolized quite rapidly. 

With the 15- 14 C- and 14- 14C-labeled compounds, a significant amount of 

radioactivity was recovered as 14 C0 2 (10-20%). 

The decarboxylation of retinoic acid in vitro was demonstrated 

with tissue slices of rat liver and kidney (103, 104). When run in 

the presence of microsomes, the reaction required NADPH and Fe+2 and 

was further stimulated by pyrophosphate. A maximum of 50% decarboxy­

lation was achieved (104). The decarboxylation could also occur 

nonenzymatically in the presence of ascorbate, Fe+ 2 and boiled micro-
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somes. This NADPH reaction resembled lipid peroxidation in the 

cofactor requirements and the response to inhibitors. N,N'-Diphenyl­

p-phenylenediamine (DPPD), an antioxidant, inhibited the decarboxy­

lation in the rat liver or kidney microscmal fractions and in the 

tissue slices, whether the inhibitor had been injected into the animal 

prior to the isolation of the tissues or had been added in vitro (105). 

Similar results were obtained by Lin (102) and Nelson et al. (106). 

Lin observed a requirement for 02 and Fe+2 in order for a partially 

purified preparation of microsomal enzyme to decarboxylate retinoic 

acid (102). When retinoic acid was incubated in phosphate buffer and 

Fe+ 2 with horseradish peroxidase or with an acetone-butanol-ether 

dried liver powder, decarboxylation was 48% and 40%, respectively (106). 

The decarboxylation of retinoic acid by horseradish peroxidase has been 

further investigated by McKenzie and Nelson (107). They demonstrated 

that the requirements for phosphate, oxygen and ferrous ion could be 

eliminated when hydrogen peroxide was present in the incubation medium. 

Hemoglobin could be substituted for horseradish peroxidase in the 

decarboxylation reaction, provided that hydrogen peroxide was present. 

Therefore, the objective of the present study was to isolate and 

identify the products formed in the decarboxylation of retinoic acid in 

vitro. Once the structures of these metabolites have been determined, 

it should be easier to identify metabolites formed in vivo and to 

elucidate the molecular function of vitamin A in growth, reproduction 

and maintenance of epithelial tissues. 



CHAPTER II 

OXIDATION AND DECARBOXYLATION OF 

RETINOIC ACID IN VITRO 

The search for metabolites of retinoic acid has been in progress 

for two decades. Several compounds have been characterized including 

retinoyl B-glucuronide (25) and 5, 8-epoxyretinoic acid (91). In addition, 

all-trans-4-oxoretinoic acid, 9-cis-5'-hydroxyretinoic acid and 

all-trans-5 1 -hydroxyretinoic acid have been isolated from rat feces 

(87) while three retinoic acid metabolites obtained from rat urine 

have an oxidized cyclohexene ring and a shortened side chain (86). 

With the exception of the glucuronide, neither the physiological 

importance of these compounds nor their modes of production in vivo 

have been ascertained. 

The metabolism of retinoic acid in vitro, and specifically its 

decarboxylation has also been under study (102, 104, 106, 107) since 

the discovery of a decarboxylation product that was biologically active 

(99). Nelson et al. (106) developed a model system for the study of 

the decarboxylation of retinoic acid. The incubation which consists 

of retinoic acid, horseradish peroxidase and ferrous chloride resulted 

in 48% decarboxylation (106). McKenzie and Nelson (107) demonstrated 

that the requirements for phosphate, oxygen and ferrous ion could be 

eliminated when hydrogen peroxide was present in the incubation medium. 

The horseradish peroxidase requirement could be eliminated by the 

13 
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substitution of hemoglobin when hydrogen peroxide was present in the 

decarboxylation reaction. The use of horseradish peroxidase prepar­

ations as the decarboxylating agent was based on their low levels of 

contaminating lipids and on the observatianthat liver and kidney 

microsomes seem to decarboxylate retinoic acid in vitro by a free 

radical mechanism resembling that in peroxidation (104). In addition, 

thin-layer chromatography of 14 C-labeled products, isolated from 

incubations containing retinoic acid and either liver microsomes, 

crude liver powders or horseradish peroxidase revealed products with 

similar migration rates (106, 108). 

The objective of the work presented in this chapter was twofold: 

to optimize the production of decarboxylated products generated from 

retinoic acid and to further characterize the model system developed 

by Nelson et al. (102, 106, 107). 

Materials 

Retinoic Acid, Catalysts and Coreactants 

All-trans-retinoic acid, all-trans-[11,12- 3 H2 ]retinoic acid (4.85 

~Ci/mg or 2.9 mCi/mM stored in toluene) and all-trans-[15-14C]retinoic 

acid (59 ~Ci/mg or 0.16 mCi/mM when methanol was added) were obtained 

as gifts from Dr. W. E. Scott, Roffman-La Roche Inc. (Nutley, NJ). 

These radiochemicals were stored under nitrogen and in the dark at 4° 

or -20°C. 

Horseradish peroxidase (type VI), hemoglobin (type I, from beef 

blood), cytochrome c (from horse heart), hemin (type I, bovine), proto­

porphyrin IX (grade I, dimethyl ether from ox hemin) and bovine serum 
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albumin were all obtained from Sigma Chemical Co. (St. Louis, MO). 

Coreactants in the incubations consisted of FeCl2 from Matheson 

Coleman and Bell (Norwood, OH) and hydrogen peroxide (H 2 0 2) 30% from 

Fisher (Fair Lawn, NJ), 

Buffers and Solvents 

Incubations were usually in phosphate buffer from Fisher Scientific 

Co. (Fair Lawn, NJ), Other buffers included piperazine-N,N'-bis(2-

ethanesulfonic acid)(PIPES), glycylglycine, Tris (hydroxymethyl)amino-

methane (Tris) and N-tris(hydroxymethyl)methylglycine (Tricine) from 

Sigma Chemical Co. (St. Louis, MO), 2-(N-Morpholino)ethanesulfonic 

acid (MES), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) 

and N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid (TES) were 

purchased from Cal Biochem (La Jolla, CA). Boric acid was obtained 

from Hallinckrodt Chemical Works (St. Louis, MO). Glass-distilled 

residue-free solvents (Burdick and Jackson Labs, Muskegon, MI) were used 

for extractions as well as liquid and high performance liquid chromatog-

raphy (HPLC). The water '"as deionized and redistilled in glass. 

Chicks 

Chicks, 2-5 weeks of age, were obtained from Dr. R. H. Thayer, 

Animal Science Department, Oklahoma State University (Stillwater, OK) • 

• Day old chicks were divided into three groups and fed one of three 

rations. Group A was fed a vitamin A deficient diet; group B was fed a 
' 

diet which was deficient in vitamin A until 24 hours prior to the experi-

ment when retinoic acid was added to the ration; group C was fed a diet 

containing retinoic acid from the time of hatching. The retinoic acid 
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was stabilized in gelatin beadlets (Roffman-La Roche Inc.) added to the 

ration at a level of 1.1 mg of retinoic acid per kg of feed. 

Methods 

Incubation Conditions 

Incubations as described by Nelson et al. (106) were carried out 

either in 18 x 150 mm stoppered test tubes, or in 125 ml stoppered 

erlenmeyer flasks. The test tube racks and flasks containing the 

incubations were placed in a reciprocating waterbath (Eberbach Corp., 

Ann Arbor, MI), at a temperature of 37~C, for two hours in the dark. 

The stoppers supported a small glass rod to which a glass cup, con­

taining a filter-paper wick and ethanolamine with 2-methoxyethanol 

(1:2, v/v), was attached. The stoppered test tubes held 0.3 ml of 

the C0 2 trapping solution in the glass cups while the stoppered flasks 

held 3 ml. 

Before use, both the 3 H- and the 14C-labeled retinoic acid were 

routinely purified by high performance liquid chromatography and eluted 

at 50 minutes, as indicated by the arrows in Figure 2. The labeled and 

unlabeled retinoic acid, dissolved in methanol, were added first in all 

incubation procedures so as to obtain a uniform distribution of the 

label prior to addition of the aqueous assay reagents. The retinoic 

acid was present at a final concentration of 133 ~M, while approximately 

2 x 10 4 dpm of each label were added per test tube or 2 x 10 5 dpm per 

stoppered flask. The coreactant was either FeCl2 (2 mM) or hydrogen 

peroxide (1 mM), and the reactions are referred to as the Fe+2 reaction 

and the H20 2 reaction. The catalyst was added last and was one of the 

following: horseradish peroxidase (4 ~M), hemoglobin (13 ~M), cyto-
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chrome c (12.9 ~M), hemin (3.7 ~M), protoporphyrin IX (4.1 ~M), and 

bovine serum albumin (3.5 ~M). Microsomal incubations contained 

retinoic acid (13.3 ~M), FeCl2 (1 mM) and 50 mg freshly prepared 

microsomal fraction per 2.5 ml incubation or 0.5-1.0 g microsomal 

fraction per 25 ml incubation. The substrate, coreactant and catalyst 

were diluted to a final volume of 2.5 ml (stoppered test tubes) or 25 

ml (stoppered flasks) with 200 mM potassium phosphate buffer, pH 6.4. 

Where indicated, other buffers were used at a concentration of 100 

mM including: borate (pH 9.0), PIPES (pH 6.4), Tris (pH 7.0), gly­

cylglycine (pH 7.4), MES (pH 6.5), HEPES (pH 7.0), TES (pH 7.0), or 

Tricine (pH 7.0). Reaction vessels containing FeCl 2 were purged with 

a gentle stream of oxygen prior to being placed in the waterbath. 

At the end of the incubation period, 0.2 ml of 2N HCl and 0.1 

ml of 200 mM NaHC0 3 were added to the test tubes unless products 

were later to be isolated from the reaction vessels. The acid was 

added to stop the reaction and to release 14 C0 2. The addition of 

the NaHC0 3 reduced the variability in the counts of 14C among the 

triplicate test tubes (107). 

After 1 hour at 37°C, the glass cups were removed from the 

reaction vessels and were rinsed with 5 ml of Insta-Gel (Packard 

Instrument Co. Inc., Downers Grove, IL). Their contents were trans­

ferred to .a counting vial along with the filter-paper wick. Radio­

activity was counted with a PRIAS liquid scintillation counter 

(Model PL from Packard Instrument Co. Inc., Downers Grove, IL). The 

standard deviation of the triplicate measurements is shown as a 

vertical error bar in the figures where percent 14C0 2 is plotted. 

When products were to be isolated, the flasks and test tubes 



were set aside for extraction of the incubation products, while the 

C0 2 traps were removed and their contents assayed for radioactivity. 

No additions of HCl or NaHC03 were made. 

Extraction of Incubation Products 
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Incubation mixtures were routinely extracted six times with equal 

volumes of chloroform. Where indicated, hexane was used instead of 

chloroform. The extracts were concentrated by evaporation on a rotary 

evaporator (Rotovapor-R, by Buchi/Brinkmann Instruments, Westbury, 

NY) at a setting of 4-5 and a temperature of 37°C. The residue was 

dissolved in methanol and filtered through a 0.5 ~m filter (filter 

type FH, from Millipore Corp., Bedford, MA) prior to chromatographic 

analysis. Filtering removed any large molecules, such as HRP, which 

tend to adhere to the high performance liquid chromatography columns. 

Liquid Chromatography 

Three different types of lipophilic gels were used as packing 

material for an analytical column (1.2 x 60 em) and included Sephadex 

LH-20 (Pharmacia Fine Chemicals Inc., Piscataway, NJ) which is a 

hydroxypropyl derivative of Sephadex G-25, LIPIDEX-1000 and LIPIDEX-

5000 (Packard Instrument Co. Inc., Downers Grove, IL), both hydroxy­

alkoxypropyl derivatives of Sephadex G-25. While LIPIDEX-1000 was 

10% substituted, LIPIDEX-5000 was 50% substituted. All liquid chro­

matography was at room temperature (22-32°C), in the dark. The gels 

were slurried in the various solvents used for elution, and left 

to equilibrate for approximately 24 hrs prior to pouring into the 

columns to a height of 0.5 m. Procedures followed were those of 
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Ito et al. (30). 

Sephadex LH-20 (20 g, particle size 25-100 vm) was slurried with 

100 ml of chloroform--hexane-methanol (65: 35: 1). Extracts from incu­

bations containing retinoic acid, FeCl2 and<horseradish peroxidase were 

chromatographed at a flow rate of 0.5 ml per min and collected in 2 ml 

fractions. In order to remove any remaining material from the column, 

methanol-acetone (1:1) was substituted as the solvent and 5 ml fractions 

were collected. The contents of each fraction were analyzed for absor­

bance at 350 nm. 

LIPIDEX-1000 or LIPIDEX-5000 (20 g) were slurried with 100 ml of 

hexane-acetone (92:8). Extracts from incubations containing retinoic 

acid, FeC1 2 and horseradish peroxidase were methylated prior to chro­

matography by the procedure described by Schlenk and Gellerman (109). 

The products were extracted with diethylether, concentrated by 

evaporation and dissolved in 10 ml of 10% methanol and 90% diethyl­

ether, prior to the addition of diazomethane (obtained from Dr. E. J. 

Eisenbraun, Chemistry Department, Oklahoma State University, Stillwater, 

OK). After 10 to 15 min, the sample was dried under a gentle stream 

of nitrogen to remove excess diazomethane, and redissolved in the 

solvent used for chromatography. Hexane-acetone was eluted from the 

column at a flow rate of 0.5 ml per min, and 2 ml fractions were 

collected from the two LIPIDEX columns for the first 60 min, after 

which 5 ml fractions were collected. 

A 0.2 ml aliquot of each fraction obtained from the three different 

columns was transferred to a vial containing 10 ml of scintillation 

fluid consisting of toluene (60%), 2-methoxyethanol (36%), ethanolamine 

(2%), and Permablend I or III (Packard Instrument Co., Downers Grove, 



IL), 5.5 g/1. These vials were counted in a liquid scintillation 

counter. 

High Performance Liquid Chromatog~a£hy 

High performance liquid chromatography was performed with two 

0.46 x 25 em bonded octadecylsilane (ODS) columns (Partisil 10-0DS, 

Whatman, Clifton, NJ) in series. When larger quantities of materials 

were to be separated, a 0.94 x 50 em ODS column (Partisil M9, 10/50 

ODS, Whatman) was used. The Partisil M9 column was connected to a 

DuPont Model 830 (E. I. DuPont de Nemours and Co., Wilmington, DE) 
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high pressure pumping system equipped with a single-beam 254 nm photo­

meter. The Partisil 10 columns were operated through a Model 314 

pump (Isco, Lincoln, NE) connected to a DuPont gradient-elution 

accessory. The spectrophotometer was a Model 25 (Beckman, Fullerton, 

CA) fitted with a set of Model LC-25 microcells (Waters Assoc., Milford, 

MA). Solvents used were methanol-water. Prior to injection, the 

samples were dried under a gentle stream of nitrogen with the aid of 

a waterbath (25-35°C), and redissolved in the same solvent concen­

tration as that used on the column. Where indicated, 1 min fractions 

were collected in scintillation vials containing 5 ml of Insta-Gel 

and counted in a liquid scintillation counter. Column performance 

was checked at least once per week by injecting a standard solution 

of 2.5 ~g retinoic acid which had been isomerized by exposure to light 

for a period of approximately 24 hrs in methanol (Figure 3). The elut­

ing solvent was 68% methanol, 32% water. By adjusting the high pressure 

pumping system so as to obtain the same flow rate, the resolution and 

retention times of the retinoic acid isomers could be compared from one 
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week to the next. These isomers are numbered in Figure 3 as follows: 

peak 0 = 13-cis(S~lO) photocyclized isomer; peak 1 = 9,11,13-tri-cis­

retinoic acid; peak 2 = 11,13-di-cis-retinoi~ acid; peak 5 = 11-cis­

retinoic acid; peak 6 = 9-cis-retinoic acid; peak 7 = all-trans-retinoic 

acid (110, 111). When the resolution was unsatisfactory, the column 

was regenerated overnight by pumping 250 ml of 0.5 M acetic acid in 

water through the column at a flow rate of approximately 0.2 ml per 

min. 

Following cervical dislocation, the livers were removed from the 

chicks and placed in 0.25 M sucrose at 4°C. Liver tissue was homage~ 

nized by expulsion through a 1 mm stainless steel screen by means of a 

screw press (Harvard Apparatus, Inc., Cambridge, MA) to remove 

connective tissue. A 10% solution (w/v) of 0.25 M sucrose was then 

added to the livers as they were homogenized in a Potter-Elvejhem 

glass tissue grinder with a motor driven grooved teflon pestle. The 

procedure of Schneider and Hogeboom (110) was modified for the prepa­

ration of the microsomal fraction. The 10% homogenate was centrifuged 

at 10,000 x g for 20 min (Figure 4). The supernatant solution was 

decanted and centrifuged for 1 hr at 4°C and 105,000 x g. The 105,000 

x g pellet was suspended in a 10% solution of phosphate buffer (250 rnM, 

pH 6.4) and kept refrigerated at 4°C until use. 
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Results 

Optimum Concentrations of Retinoic AcidL FeCl~t 

H202 and Horseradish Peroxidase in 

the Incubations 

The incubations were run in stoppered test tubes and contained 

all-trans-retinoic acid and all-trans-[15- 14 C]retinoic acid as sub­

strates, FeCl 2 or hydrogen peroxide as coreactants and horseradish 

peroxidase as catalyst. Percent 14 C0 2 release following each incu­

bation was measured as described under "Experimental". Each value 

reported as a percent decarboxylation of retinoic acid was determined 

using the average of triplicate incubations. 
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The effect of retinoic acid concentration on the amount of product 

produced is shown in Figure 5. Horseradish peroxidase was at 4 ~M, and 

concentrations of FeC1 2 (top) and H2 0 2 (bottom) were held constant at 

2 rnM and 1 rn}f, respectively. Plotted are percent decarboxylation 

(circles) and micrograms total products formed (triangles) versus 

micrograms retinoic acid per assay. While the percent 14 C0 2 decreased 

with increasing retinoic acid, the total amount of decarboxylation and 

oxidation products increased. The levels of decarboxylation never 

exceeded 50%. The concentration of retinoic acid which yielded the 

greatest amount of product in the Fe+2 reaction was 50-100 ~g per 

assay and in the H202 reaction was 80-100 ~g per assay. The upper 

limit of 100 ~g per assay (133 ~M) was chosen as the optimum concen­

tration of retinoic acid in all succeeding incubations. 

When incubations contained 133 ~M retinoic acid and 4 ~M horse­

radish peroxidase (HRP), maximum percent decarboxylation of retinoic 



80!-. 2+ 

J:IRP + Fe+ 02 + Retinoic Acid 

I · I I I 

20 40 60 80 
p.g 14C Retinoic Acid I Assay 

HRP+ H202 + Retinoic Acid 

20 40 60 80 
p.g 14C Retinoic Acid I Assay 

! 
Ill -0 
::::> 
"0 
0 .... 
0.. 

Figure 5. Effect o.f Retinoic Acid Concentration 
on the Decarboxylation of Retinoic 
Acid and on the Amount of Product 
Obtained in the Fe+2 Reaction. (Top) 
and in the H2 0 2 Reaction (Bottom) · 

26 



27 

acid was obtained with levels of 0.5 to 2 mM H202 as shown in Figure 

6. A concentration of 1 mM H20 2 was used in all subsequent incubations. 

In Figure 7 the percent 14C02 produced versus time are plotted for 

incubations containing [15- 14C]retinoic acid (133 ~M), HRP (4 ~M) and 

1 or 2 w~ FeCl 2 , in the presence or absence of oxygen. A gentle stream 

of oxygen was allowed to flow into the test tubes prior to capping, at 

zero time of incubation. When concentrations higher than 2 mM FeCl2 

were added, an ion salt precipitated. The highest levels of decar­

boxylation were achieved with 2 mM FeC1 2 in the presence of oxygen. 

In an attempt to increase the amount of 14 C02 generated, FeCl2 was 

added at 1, 2 and 3 hours. The tubes were also purged with oxygen 

every hour, but neither the additional purging with oxygen nor the 

hourly addition of FeCl 2 led to higher percent decarboxylation. 

The optimum concentration of horseradish peroxidase per assay was 

determined in the two types of incubations as shown in Figure 8. In 

the iron reaction, 4 to 10 ~M HRP were saturating levels (top), while 

in the H20 2 reaction, 2 to 10 ~M HRP led to maximum amounts of 14C02 

formation (bottom). All subsequent incubations were carried out with 

4 ~M HRP. 

When FeC1 2 or H20 2 were left out of the incubation medium only 

1.5 (± 0.1) percent decarboxylation was observed. The omission of 

horseradish peroxidase from the mixture led to 0.2 (± 0) percent 14C02 

in the Fe+2 reaction and 0.2 (± 0.1) percent 14C02 in the H202 reaction. 

Time Course of the Horseradish Peroxidase 

Catalyzed Incubation 

The decarboxylation of retinoic acid, as determined by percent • 
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14C02 release, was essentially complete at the end of two hours of 

incubation (Figure 9). Therefore, all incubations were routinely 

run for a period of at least two hours in order to obtain maximum 

decarboxylation. 

pH of the Horseradish Peroxidase 

~atalyzed Incubation 

30 

In an attempt to determine the pH optimum of the incubations 

containing FeCl2 or H202, phosphate buffers (pKa = 7.2, buffering 

range: 6.2 to 8.2) were prepared at the pH values indicated in Table 

I. Each percent decarboxylation value in the table represents the 

average of nine phosphate containing incubations for the Fe+2 reaction 

and six phosphate containing incubations for the H20 2 reaction. While 

the H202 reaction led to similar levels of decarboxylation from pH 6 

to 8.5, the FeCl 2 reaction appeared to have a pH optimum well above 

the previously reported value of 6.4 (106). In order to determine 

what this pH optimum was, borate buffer was selected since its buffering 

capacity was higher than that of phosphate. However, as indicated in 

Table I, only 3.7% 14 C0 2 could be achieved for the Fe+2 incubation in 

borate at pH 7.9. The H202 incubation led to decarboxylation of reti­

noic acid equally well in phosphate or in borate buffer. 

Effect of Buffer on the Horseradish Peroxidase 

Catalyzed Incubation 

Following the observation that retinoic acid was decarboxylated 

in the Fe+2 containing reaction in the presence of phosphate but not 

borate, other buffers were selected for the incubations (Table II). 
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pH 

5.9 

6.6 

7.2 

7.7 

8.2 

7.9 

8.5 

9.0 

9.5 

10.0 

TABLE I 

EFFECT OF pH ON THE DECARBOXYLATION OF RETINOIC ACID 

Buffer 

Pi (200 mM) 

Borate (100 mM) 

Percent Decarboxylation 

30.2 ± 6.5 

30.0 ± 2.7 

30.5 ± 4.2 

27.2 ± 1.2 

22.8 ± 1. 7 

34.0 ± 1. 7 

32.6 ± 3.8 

27.3 ± 1.9 

25.9 

23.3 ± 1.5 

11.6 ± 1. 9 

13.5 ± 2.2 

14.7 ± 0.1 

17.6 ± 0.7 

19.2 ± 1. 8 

3.7 ± 0.3 
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TABLE II 

EFFECT OF BUFFER ON THE DECARBOXYLATION OF RETINOIC ACID 

Percent Decarboxylation 

Buffer pH 

Pi (200 mM) 6.4 33.6 ± 1.0 49 ± 1.0 

PIPES (100 mM) 6.4 6.7 ± 0.4 40.4 ± 0.2 

Tris (100 mM) 7 33.6 ± 1.0 50 ± 0.4 

G1ycyl- 7.4 6.2 ± 0.1 42.5 ± 2.5 Glycine (100 mM) 

:HES (100 mM) 6.5 5.2 ± 0.3 37.6 ± 0.8 

HEPES (100 mM) 7 5.6 ± 0.1 33.3 ± 0.3 

TES (100 mM) 7 17.9 ± 0.2 40 

Tricine (100 mM) 7 4.6 ± 0.2 38.5 ± 0.8 

Borate (100 mM) 8 3.7 ± 0.3 34 ± 1.7 
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The pH value chosen for each buffer was within its buffer zone except 

for Tricine where it was slightly lower. The buffers included PIPES, 

pH 6.4 (buffer zone 6.1-7.5); Tris, pH 7.0 (buffer zone 7-9); Gly-

cylglycine, pH 7.4 (buffer zone 7.4-9.4); MES, pH 6.5 (buffer zone 

5.5-7.0); HEPES, pH 7.0 (buffer zone 6.8-8.2); TES, pH 7.0 (buffer 

zone 6.8-8.2); and Tricine, pH 7.0 (buffer zone 7.4-8.8). Retinoic 

acid was decarboxylated in all incubations containing H202, regardless 

of the buffer used. Phosphate and Tris buffered assays led to maximum 

decarboxylation (50%), at the pH values selected. \~en Fe+2 was 

present in the incubations, only three buffers, phosphate, Tris or 

TES supported substantial decarboxylation of the substrate. In the 

case of phosphate or Tris buffered incubations, 33.6 (± 1.0) percent 

14C02 was released with approximately half as much 14C02 released in 

incubations in TES. 

Catalysts Other Than Horseradish Peroxidase 

in the Incubation 

It had been reported (107) that hemoglobin and horseradish peroxi-

dase decarboxylated retinoic acid with equal facility in the presence 

of hydrogen peroxide. Hemoglobin was not effective as a catalyst for 

decarboxylation in the Fe+2 reaction. It was suggested that the H202 

reaction was a nonenzymatic, heme catalyzed peroxidation. In order to 

check the validity of this hypothesis and to ensure that the reaction 

was not being catalyzed by the protein part of these heme containing 

d +2 compoun s, the Fe and H20 2 incubations were carried out in the 

presence of a variety of catalysts (Table III). Mixtures containing 

retinoic acid and FeC1 2 showed an absolute requirement for horseradish 
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TABLE III 

EFFECT OF CATALYST ON THE DECARBOXYLATION OF RETINOIC ACID 

Coreactant 

HRP 
( 4 lll1) 

19 

35 

Hb 
(13 llM) 

1 

21 

PERCENT DECARBOXYLATION 

Catalyst 

Hemin 
(3.7llM) 

4 

28 

Porph 
(4 .1 llM) 

2 

Cytc 
(12.9 llM) 

0.7 

22 

BSA 
(3.5 llM) 

1 

1 



peroxidase. Hemoglobin, hemin and cytochrome c were effective 

catalysts for the decarboxylation of retinoic acid in the H20 2 

reaction. These three compounds and HRP all have an iron porphyrin 

moiety in comm9n. Protoporphyrin IX, containing no metal, and 

bovine serum albumin were unable to catalyze the decarboxylation 

reaction. 

Extraction Controls 

Freshly distilled diethyl ether had been routinely used in this 

laboratory for extraction of incubation mixtures (102, 108). Due to 

the potential presence of peroxides in the ether, other solvents were 

investigated for extraction, including chloroform and hexane (Figure 

10). Duplicate incubations were run in stoppered flasks containing 

either all-trans-[15- 14C]retinoic acid (Figure 10-A) or all-trans­

[11,12-3H2]retinoic acid (Figure 10-B) in the presence of FeC1 2 and 

horseradish peroxidase. The mixture from each flask was extracted 

with an equal volume of chloroform 6 to 9 times, then with an equal 

volume of hexane 3 to 6 times (solid lines in Figure 10). The 

mixture from the duplicate incubation was extracted with hexane 

6 to 7 times, then with chloroform 3 to 6 times (dashed lines). 
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An aliquot of each extraction was counted on the liquid scintillation 

counter in order to determine efficiency of extraction of labeled 

products from the aqueous medium. The results indicated that chloro­

form and hexane were equally useful solvents for extraction of 14C­

labeled products. 3H-labeled decarboxylation products, however, were 

more readily removed from the aqueous incubation mixture by chloroform. 
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Liver Microsomal Fraction Incubations 

Chicks were divided into three groups based on the presence or 

absence of retinoic acid in their diets, as described in "Experimental". 

Liver microsomal fractions decarboxylated retinoic acid in vitro to 

the same extent, regardless of the diet of the chicks. In contrast 

+z with previous reports, no Fe was required in these incubations 

(Table IV). 

Optimum concentrations of retinoic acid and liver microsomal 

fraction were determined as shown in Figure 11 and found to be consis-

tent with those of other investigations (102, 108). When retinoic acid 

was incubated at 13.3 to 133 ~M concentrations in the presence of 50 mg 

of the liver microsomal fraction, the percent 14 C0 2 released dropped 

from 31% to 22% (Figure 11, top). In incubations containing 6.6 pM 

retinoic acid, saturation of the microsomal fraction was reached 

between 30-100 mg of liver (Figure 11, bottom). 

Liquid Chromatography of the Incubation Mixtures 

Extracts from incubations containing 3 H-labeled retinoic acid, 

FeC1 2 and horseradish peroxidase were chromatographed on a Sephadex 

LH-20 column, as described under "Experimental" and as shown in Figure 

12 (top). Sephadex LH-20 is a polar gel so as the number of milli-

liters of column effluent increases, the polarity of the compounds 

eluting from the column increases. The single peak eluting at 80 

ml of column effluent was all-trans-retinoic acid. This was demon-

strated by applying a pure sample of retinoic acid to the column under 

identical conditions, and observing that it eluted in the same tube 



TABLE IV 

EFFECT OF DIET ON THE DECARBOXYLASE ACTIVITY OF 
CHICK LIVER MICROSOMAL FRACTION 

39 

Retinoic Acid in Diet Percent Decarboxylation 

Hatch to -24 hrs -24 hr to test 

no no 22.3 ± 0.5 15.0 ± 2.4 

no yes 24.7 ± 0.9 17.0 ± 1.0 

yes yes 24.7 ± 0.2 21.0 ± 1.3 
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number. A large percentage of the 3 H-labeled derivatives of retinoic 

acid appeared in the more polar fractions after 200 ml of column 

effluent, and were not resolved on this column. Attempts to separate 

decarboxylation products generated from the·microsomal incubations 

failed due to this lack of resolution. 

Extracts from incubations containing 3 H-labeled retinoic acid, 

FeC1 2 and horseradish peroxidase were methylated with diazomethane 

and chromatographed on two types of reverse phase columns, LIPIDEX-

5000 and the more polar LIPIDEX-1000 (Figure 12, bottom). Despite 
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the fact that the incubation mixtures were methylated and therefore 

less polar, these mixtures were not well resolved on either of the two 

columns and eluted close to the void volumes. 

High Performance Liquid Chromatography 

of the Extracts from the 

Incubation Mixtures 

Incubation mixtures containing microsomal fractions or horseradish 

peroxidase as catalysts for the decarboxylation of retinoic acid were 

successfully separated by high performance liquid chromatography per­

formed on reverse phase columns as described under "Experimental". 

In Figure 13 the product profiles of three different incubation 

mixtures were compared when they were chromatographed on the Partisil 

10-0DS columns using 60% methanol and 40% water at a flow rate of 0.5 

ml per min. The peak at 58 minutes was eluted from the column upon 

injection of 100% methanol and contained retinoic acid. The retention 

times of the oxidation and decarboxylation products obtained from incu­

bations containing retinoic acid+ H202 + HRP, retinoic acid+ FeCl2 + 
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h 
HRP + Ft + ~ + Relinoic Acid 
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MINUTES 
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Figure 13. HPLC of HRP and Hemoglobin Catalyzed Incubation Mixtures. 
Chromatography was performed with two Partisil 10-0DS 
columns in series, with 60% methanol and 40% water at 
0.5 ml per minute. 
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HRP and retinoic acid + HzOz + hemoglobin were found to be practically 

identical. 

The retention time and absorbance of products resulting from 

incubations containing either the microsomal fraction with retinoic 

acid (dashed line) or HRP + HzOz + retinoic acid (dotted line) are 

shown in Figure·l4. The two Partisil 10-0DS columns were used in 60% 

methanol,40% H2 0 at 0.67 ml per min. These product profiles were not 

as similar as those from the heme catalyzed reactions (Figure 13). 

To ensure that artifacts were not being generated on the column, 

controls were performed by deleting components individually. Either 

retinoic acid, the coreactant H2 0 2 or FeC1 2 , the catalyst HRP, or 

phosphate were left out of the incubations. The mixtures were then 

chromatographed in 60% CH3 0H, 40% H2 0 at 0.5 ml per min, as shown in 

Figures 15 and 16. The peak at 60-75 min in each chromatogram 

resulted from a gradient of 60-100% CH 3 0H. When incubations included 

retinoic acid, the substrate was detected in the gradient elution. 

The small peak at approximately 15 min corresponds to a change in 

refractive index when the solvent in the void volume passed through 

the detector. The product profiles of the incubations in the absence 

of phosphate buffer confirmed the absolute requirement for phosphate 

in the Fe+ 2 reaction but not in the H2 0 2 reaction. 

In Figures 17 and 18, the HPLC product profiles of the Fe+ 2 and 

H2 0 2 reactions are shown after varying the time of incubation. As the 

time of incubation increased, the percent decarboxylation of retinoic 

acid increased and this was accompanied by the formation of oxidation 

and decarboxylation products. Particularly noteworthy was the 

increasing absorbance of the polar fractions eluting from the column 
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between 8 and 25 minutes. These polar fractions contained the decar­

boxylation products of retinoic acid. 
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HPLC of the extracts from incubations containing all-trans-[11,12-

3Hz] retinoic acid and all-trims- [15- 14 C] retinoic acid with horseradish 

peroxidase and H2 0 2 or with microsomal fractions are shown in Figure 

19-A and 19-B, respectively. Although the 3H to 14C ratio of the 

retinoic acid was 1:1, the polar fractions eluting from the column had 

3H to 14C ratios greater than 1, indicating that some of these ill­

resolved early eluting compounds did not contain the 14C label, present 

on the carboxyl group of the substrate. The less polar compounds in 

the HRP reaction had 3 H to 14C ratios closer to 1. 

Discussion 

The optimum concentrations of retinoic acid and horseradish 

peroxidase for incubation were much higher than values previously 

reported. Retinoic acid was present at a concentration of 133 ~M 

in the horseradish peroxidase catalyzed incubations as compared with 

10 ~M reported by Reid and Nelson et al. (106, 108) and 8.3 ~M reported 

by McKenzie and Nelson (107). While the latter used 0.21 ~M HRP, the 

former used 2.6 ~M HRP and our results indicated a catalyst optimum 

of 4 ~M. The coreactant concentrations were approximately the same 

in all incubations. The explanation for these wide divergences in 

concentrations of substrate and catalyst lies in the fact that the 

previous investigators sought to maximize the percent decarboxylation 

of retinoic acid while our efforts were to maximize the amount of 

product formed. This was a necessary prerequisite for the subsequent 

isolation of sufficient quantities of purified product to permit 
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spectroscopic analysis. 

The requirement for FeCl2 and 02 could be met by the presence 

of H20 2 in the horseradish catalyzed incubations. This confirms data 

presented by other investigators (106, 108). The H202 reaction led 
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to decarboxylation of retinoic acid regardless of the choice of buffer 

in a pH range of 6.4 to 8.0. The FeCl2 reaction led to decarboxylation 

of retinoic acid only in a limited number of buffers including phos­

phate, Tris and TES. If one postulates that H20 2 is being produced 

in the Fe+2 reaction as follows: 

then it is reasonable to assume that by forming a stable complex with 

Fe+3 , phosphate prevents the reaction from reversing. Tris contains a 

primary aliphatic amine of considerable reactivity which could form a 

coordinate bond with Fe+3 (111). TES is synthesized from Tris and 

could contain enough Tris as a contaminant to account for the 18% 14 C0 2 

obtained in the TES buffered Fe+2 reaction. If the reaction to gen­

erate H202 does take place as postulated, this would explain the 

requirement for 02 demonstrated by the FeCl2 reaction as well as the 

absence of decarboxylation of retinoic acid in the presence of Fe+3 

observed by Nelson et al. (106). 

The studies on the pH optimum of the Fe+2 reaction were incon­

clusive. They indicated a pH optimum higher than the previously 

reported value of 6.4 (106). The pH optimum could not be determined 

since the pH buffering zone for phosphate is 6.2 to 8.2 and the 

decarboxylation values increased from 11.6 at pH 5.9 to 19.2% at pH 

8.2. The H202 reaction led to optimum decarboxylation at pH values 
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of 6.0 to 8.5. Since phosphate has a poorer buffering capacity above 

pH 7.5 (111), a pH of 6.4 was chosen as an optimum value for subsequent 

incubations. 

The only catalyst which successfully decarboxylated retinoic acid 

in the Fe+2 reaction was HRP. The H202 reaction could be performed 

with a wide variety of catalysts which contained a heme or hemin group. 

BSA which has no heme group and protoporphyrin IX which contains no 

metal did not catalyze the decarboxylation reaction. These results 

support the hypothesis by McKenzie and Nelson (107) that the reaction 

is a nonenzymatic, heme catalyzed peroxidation. 

The amount of labeled 14C02 never exceeded 50% evert though no 

retinoic acid remained at the end of the incubation. This is consistent 

with the results of other investigators (104, 106). Although the 

mechanism of the heme catalyzed reactions remains to be determined, 

these levels of decarboxylation suggest that two molecules of retinoic 

acid could be required in order to generate one molecule which was 

decarboxylated by a free radical reaction. Radiochemical analyses of 

the products found in the incubation demonstrated the presence of 

several 14 C-labeled non-decarboxylated oxidation products. Therefore, 

mechanisms of this reaction seem to involve oxidation as well as decar­

boxylation of retinoic acid. 

High performance liquid chromatography on reverse phase columns 

resulted in much better separation of the polar oxidation and decar­

boxylation products of retinoic acid than did liquid chromatography on 

Sephadex LH-20, LIPIDEX-1000 and LIPIDEX-5000. The advantages of the 

HPLC system over these traditional liquid chromatographic methods 

include an increased resolution of the products, much more rapid 



separation, a higher sensitivity of detection and greater reproduc­

ibility. We were also able to show that ODS columns produce no 

artifacts from retinoic acid during the separations. Incubations 

containing retinoic acid+ Fe+2 + HRP, retinoic acid+ H202 + HRP, 

54 

and retinoic acid + Hz02 + hemoglobin had very similar product pro­

files. The products formed in these incubations may well be identical. 

Chick liver microsomes decarboxylated retinoic acid to the same 

extent, regardless of the presence or absence of vitamin A in the diet 

of the chicks. This indicates that the microsomal enzymes are not 

inducible and confirms data in the literature (103). The incubations 

containing retinoic acid and microsomes did not require the addition of 

FeCl2 in contrast to previous reports by Lin (102). A possible explan­

ation for this is the fact that these microsomal fractions were not as 

pure as those used by Lin and probably contained both free and protein 

bound Fe+2 as contaminants. The optimal concentrations of retinoic acid 

and of microsomal fractions were found to be consistent with literature 

values (102, 108). When the extracts from microsomal incubations were 

chromatographed by HPLC on ODS columns, the product profiles were 

similar to those generated from heme containing incubations. In both 

the microsome and the heme catalyzed inc.ubations the decarboxylation 

products eluted in the polar fractions. 

In summary, by varying the nature and pH of the buffer, the con­

centrations of retinoic acid, H202 or FeCl2, and horseradish peroxidase, 

the amounts of products generated from the incubations have been opti­

mized. Further evidence has been provided in support of the hypothesis 

by McKenzie and Nelson (107) that the reaction under study is a nonen­

zymatic, heme catalyzed peroxidation. HPLC was demonstrated to be the 



method of choice for separation of oxidation and decarboxylation 

products of retinoic acid. 
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CHAPTER III 

ISOLATION AND CHARACTERIZATION OF OXIDATION 

PRODUCTS OF RETINOIC ACID 

Horseradish peroxidase (HRP) preparations have been used as a model 

system for the decarboxylation of retinoic acid for the past decade. 

The use of horseradish peroxidase preparations as the decarboxylating 

agent was based on their low levels of lipid contaminants and on the 

observation that liver and kidney microsomes seem to decarboxylate 

retinoic acid in vitro by a free radical mechanism resembling that in 

peroxidation (104). In addition, thin-layer chromatography of 14C­

labeled products, isolated from incubations containing retinoic acid 

and either microsomes, crude liver powders or horseradish peroxidase 

revealed prod~cts with similar migration rates. (108). In Chapter II 

the HPLC product profiles of heme and microsome catalyzed incubations 

also had similarities. Since the incubations containing retinoic acid, 

H20 2 and horseradish peroxidase consistently led to the highest percent 

decarboxylation, they were used for the isolation and characterization 

of several oxidation and decarboxylation products of retinoic acid. 

Experimental 

Materials 

All-trans-retinoic acid, all-trans-[11,12- 3 H2]retinoic acid (2.9 
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mCi/mM in toluene) and all-trans-[15- 14C]retinoic acid (0.16 mCi/~~ 

in methanol) were gifts from Dr. W. E. Scott, Hoffmann-La Roche Inc. 

(Nutley, NJ). Both the 3 H- and 14C-labeled retinoic acid were purified 

by high performance liquid chromatography as· described under "Experi­

mental" in Chapter II. Horseradish peroxidase (type VI) was obtained 

from Sigma Chemical Co. (St. Louis, MO), and hydrogen peroxide (30%) 

from Fisher (Fair Lawn, NJ). 

Glass-distilled residue-free solvents (Burdick and Jackson Labs., 

Muskegon, MI) were used for extraction and high performance liquid 

chromatography (HPLC). The water was deionized and redistilled in 

glass. 

Methods 

Incubation Conditions. To obtain sufficient quantities of 

products, approximately 100 incubations were performed in 125 ml 

stoppered flasks at 37°C for two hours in the dark. The incubations 

contained all-trans-retinoic acid (133 ~M), horseradish peroxidase (4 

~M) and hydrogen peroxide (1 mM), in 200 mM potassium phosphate buffer, 

pH 6.4. In studies where the extinction coefficients as well as the 

3 H/ 14C ratios of the purified products were determined, 8 incubations 

contained retinoic acid as well as all-trans-[15- 14 C]retinoic acid (2 x 

104 dpm/assay) and all-trans-[11,12- 3 H2 ]retinoic acid (2 x 10 4 dpm/assay). 

At the end of the incubation period, the reaction mixture was extracted 

six times with equal volumes of chloroform. The chloroform extracts 

were concentrated by evaporation on a rotary evaporator (Rotovapor-R, 

by Buchi/Brinkmann Instruments, Westbury, NY) at a setting of 4-5 and 

a temperature of 37°C. They were dissolved in methanol and filtered 



through a 0.5 ~m filter (filter type FH from Millipore Corporation, 

Bedford, MA). Extracts from equivalent incubations were pooled prior 

to chromatographic analyses. 

58 

High Performance Liquid Chromatography. Products from retinoic 

acid were separated on a 0.94 x 50 em octadecylsilane column (ODS) 

Partisil M9, 10/50 (Whatman, Clifton, NJ), and on two 0.46 x 25 em 

Parti.sil 10-0DS columns (Whatman, Clifton, NH) in series. The high 

pressure pumping systems and the detectors are described under "Exper­

imental" in Chapter II. Incubation extracts were chromatographed 

initially on the Partisil M9 column. Fractions eluting from the column 

which were of interest were collected in individual round bottom flasks. 

These were shielded from the light with the aid of a black cloth and 

aluminum foil. The fractions were concentrated by evaporation on a 

rotary evaporator. Each fraction was then injected onto the two 

Partisil 10-0DS columns in the same concentration of methanol and water 

as that used for column elution. By adjusting the solvent concentra­

tion the products of interest were further purified until baseline 

resolution was obtained. Column performance was checked routinely by 

chromatographing a standard solution of retinoic acid isomers, as 

described under "Experimental" in Chapter II. 

Mass Spectroscopy. The mass spectra were obtained using the direct 

probe of a prototype of the LKB-9000 mass spectrometer (114). The ion 

source temperature was 270°C, the direct inlet temperature 75°C to 80°C 

and the impact voltage was 70 eV. 

Nuclear Magnetic Resonance Spectroscopy. Proton nuclear magnetic 

resonance spectra (NMR)' were obtained on a Varian XL-100-15 instrument 



(Varian, Palo Alto, CA), interfaced to a Nicolet Technology Corp. 

TT-lOOA Fourier transform accessory. Due to the small quantities of 

product obtained, 16-24 hour accumulations were necessary (approxi­

mately 1600-2000 scans). The sample was dissolved in 30 vl of 

deuteroacetone, 100 atoms% D (Sigma Chemical Co., St. Louis, MO) 
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and was placed in a 1.7 x 90 mm capillary tube (Kimble Products, 

Toledo, OR). Tetramethylsilane, 99.9+%, NMR grade (Aldrich Chemical 

Co., Milwaukee, WI) was included i.n trace amounts as the internal 

standard and chemical shifts (in ppm) were all downfield from the 

standard. NMR spectra were matched using a version of LAOCN3 program 

(115, 116) on an IBM 370/158 computer. 

Infrared Analyses. The infrared spectrum was obtained on a 

Digilab FTS-2DC interfaced to a Data general NOVA 3/12 (Digilab Inc., 

Cambridge, MA). Three hundred scans were collected at a 4 cm- 1 

resolution. A background spectrum of a window without sample was 

subtracted from the sample spectrum. 

Results 

Separation of Incubation Extracts by HPLC 

The HPLC product profile of extracts generated from three 25 ml 

incubations containing retinoic acid, H2 0 2 and horseradish peroxidase 

is shown in Figure 20. The incubation extracts were first chromate­

graphed on a Partisil M9 column in 70% methanol and 30% water at 

approximately 1.4 ml per minute. This was done in order to partially 

resolve the extracts. At 128 min 100% methanol was injected to elute 

any remaining material from the column. The following fractions were 
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collected in individual round bottom flasks: fraction 1 from 40 to 60 

min; fraction 2 from 60 to 70 min; fraction 3 from 70 to 95 min; 

fraction 4 from 95 to 105 min; fraction 5 from 105 to 118 min; fraction 

6 from 133 to 140 min. The retention times of these fractions may be 

compared with those of incubation extracts chromatographed on two 

Partisil 10-0DS columns in series. In Figure 19-A fraction 1 eluted 

between 10 and 20 min, fraction 2 between 20 and 30 min, fraction 3 

between 30 and 55 min, fraction 4 between 55 and 65 min, fraction 5 

between 65 and 75 min and fraction 6 between 75 and 78 min. 

Fractions 1, 2, 4, 5 and 6 collected from the Partisil M9 column · 

were purified further by repeated chromatography on two Partisil 10-0DS 

columns in series, with a constant flow rate of approximately 0.5 ml 

per min. Fraction 3 contained many compounds present at low concen­

trations so that it was not purified further. 

Purification and Identification of Peak 1 

Fraction 1 eluting from the column (Partisil M9) between 40 and 60 

min (Figure 20), contained the highest concentration of products. When 

they were chromatographed on the Partisil 10-0DS columns in 40% methanol 

and 60% water, the peak with the highest intensity at 254 nm and at 350 

nm was named peak 1. It corresponded to the peak eluting off the same 

column at 19 min in Figure 19-A where the solvent concentrations were 

60% methanol and 40% water. ·Peak 1 was collected and further purified 

by HPLC as shown in Figure 21 (40% CH 3 0H, 60% H2 0) where it elutes at 

38 min. The peak at 62 min corresponded to a gradient of increasing 

methanol concentration which was initiated at 50 minutes. 

Peak 1 was formed by the decarboxylation of retinoic acid. This 
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was shown by including purified all-trans-[15- 14 C]retinoic acid (car­

boxyl labeled) and all-trans-[11,12- 3 H2]retinoic acid in the incubation. 

Although the 14C to 3 H ratio of the retinoic acid was 1:1, the purified 

product contained 3 H but no 14C. 

A total of approximately 300 ~g of pure peak 1 were obtained from 

100 incubations containing 100 mg of retinoic acid. The pure compound 

was characterized and identified by ultraviolet absorbance, nuclear 

magnetic resonance, infrared and mass spectroscopy. The structure is 

shown in Figure 22. This product was identified as a 4-oxo-C~g-alde­

hyde with a hydroxyl group on the side chain at C9, specifically 

8-(2,6,6-trimethyl-3-oxo-cyclohex-1-enyl)-2,6-dimethyl-6-hydroxy-

2,4,7-E-octatrienal. 

The decarboxylation product had an absorption maximum of 280 nm 

(Figure 23), which represents a blue shift compared to the Amax of 350 

nm observed for retinoic acid. This shift is indicative of a decrease 

in conjugation. The extinction coefficient at 280 nm was 37,000 ± 4%. 

When the decarboxylation product was subjected to mass spectral analysis 

(Figure 24), it yielded a molecular ion of 302 and a base peak of 43, 

which is also the base peak in the mass spectra of many oxidized 

derivatives of retinoic acid (117). The ten most intense peaks of the 

spectrum are, in decreasing order, 43, 41, 95, 55, 69, 57, 259, 121, 

109, 107, and are commonly found in the mass spectra of vitamin A 

analogs (117, 118). The ion at~~~ 149 may be a fragment ion formed 

in the fragmentation of the oxidized compound (117) or it may be 

formed from a contaminant such as pthalate ester. 

The proposed fragmentation pattern of peak 1 is shown in Figure 25. 

The molecular ion was found to dehydrate forming m/~ 284 (M+-18 (H20)), 
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Figure 22. Structure of the Retinoid Purified from Peak 1 
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and to lose a functional group as well as a methyl group, ~~~ 259 

(M+-43 (CH 3, CO)), a pattern which is also found in the fragmentation 

of retinal (118). The methyl group, which was easily removed, 
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was probably attached to the double bond inthe ring at carbon 5, as 

demonstrated by the mass spectrum of B-ionone which was hexadeuterated 

at the gem-dimethyls on carbon 1 (119). 

According to Enzell and Francis (120) cleavage of the 6,7 bond 

would be expected to occur with transfer of a hydrogen to the smaller 

ring fragment, which would then have a ~~~of 138 as in canthaxanthin. 

They also indicated that a prominent M+-56 peak should be detected and 

that this would be ascribed to an ion formed by loss of a C4-Cs frag­

ment. Although the cyclic portion of canthaxanthin and peak 1 are the 

same, we did not observe prominent fragments with~~~ 138 or M+-56. 

Peak 1 seemed to fragment in a manner more analogous to S-ionone or 

retinoic acid, giving rise to fragment ions m/~ 137 and 165. Loss of 

the C1 302H 1 9 radical led to the formation of ~~~ 95 which rearranged 

itself and lost CO to give rise to a furan ~~~ 67. Loss of H2 then 

led to~~~ 65 (121). Cleavage of the C8 -C 9 bond gave a fragment of 

m/z 163 which upon loss of the methyl at C5 gave rise to ~~~ 149. 

The fragmentation of the ring nucleus is shown in Figure 26. The 

fragment ion m/z 123 and 109 were both formed by loss of a methyl group 

followed by a hydrogen transfer, as in the ring nucleus of the S-ionone 

ring (102). Loss of 2 hydrogen atoms then led to the formation of an 

ion with~~~ 107 (121, 122). As in the fragmentation of S-ionone, 

retro-Diels-Alder (RDA) reactions could occur resulting in the loss 

of ethylene to give~~~ 137 4 m/~ 109; m/~ 123 + m/~ 95; m/~ 109 + m/~ 

81 (102, 123). 
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The NMR spectrum of the C19-aldehyde is shown in Figure 27. The 

signal at 9.5 ppm down field from TMS is from an aldehyde proton. This 

aldehyde is probably trans since the proton signals of conjugated 

aldehydes with a methyl group at the a carbon usually appear at 9.2 to 

9.7 ppm for trans compounds and at 10.0 to 10.3 ppm for cis compounds 

(124). There are five protons in the vinyl region (between 5.5 and 7.5 

ppm), which are located on carbons 7, 8, 10, 11 and 12. 

Singlets bet':'een 1 and 1.8 ppm were assigned to geminal methyls 

on carbon 1 and to methyl groups on carbons 5, 9 and 13. The signal 

at 1.16 ppm was assigned to protons on the gem dimethyls, based on the 

integration. This assignment is consistent with data in the literature. 

The chemical shift of the gem dimethyl protons in 4-oxoretinoic acid 

is 1.2 ppm (125), in 4-oxomethylretinoate is 1.9 ppm (87), in cantha­

xanthin is 1.19 ppm (124) and in three urina~y metabolites of retinoic 

acid in the rat, which all contained an oxo group at C4 , the chemical 

shift varied from 1.08 to 1.13 ppm (86). 

The assignment of singlets at 1.50 and 1.74 ppm to methyl groups 

on carbons 5 and 9 respectively is not certain. There is the possibil­

ity that the signal at 1.50 ppm is due to the methyl group at C5 • This 

is suggested by data from Hanni et al. (86) indicating that in the NMR 

spectrum of the urinary metabolite isolated from rat, 5-methyl-5-[2-

(2,6,6-trimethyl-3-oxo-1-cyclohexen-1-yl)vinyl]-2-tetrahydrofuranone, 

the signal for CH3 at Cs appears at 1.77 ppm while that for CH3 at C9 

appears at 1.58 ppm in CDC1 3• There is also disagreement as to the 

assignment of chemical shifts to methyl groups on carbons 5 and 9 in 

4-oxoretinoic acid. While Surekha Rao et al. (125) assigned the shift 

at 2.04 ppm to the C5 methyl group and at 1.8 ppm to the C9 methyl, 



10 9 . 8 7 6 5 
PPh~ 

4 3 2 

Figure 27. NMR Spectrum of the Retinoid from Peak 1 

· .. 

ca,!l,r) 

0 



72 

Hanni et al. (87) assigned them to methyls on C9 and Cs, respectively. 

The signal at 1.80 ppm was assigned to the methyl group at C13 • 

This is slightly upfield of the shift at 2.37 ppm reported for all­

trans-methylretinoate (112), 4-oxoretinoate (87) and retinoic acid (113). 

This shift was probably due to the fact that there is less delocaliza­

tion caused by a carbonyl two carbons removed from the center than by an 

acid group three carbons removed. The methyl group at C13 experienced 

greater shielding therefore in the 4-oxo-C 19-aldehyde. 

The signal at 1.3 ppm is probably due to the methylene protons on 

carbon 2. The two-proton triplet at 2.4 ppm arises from the protons 

on carbon 3 adjacent to a keto function at carbon 4 (125, 126). The 

broad signal at 2.8 ppm arises from the proton on the hydroxyl group 

attached to carbon 9 as well as to protons on H2 0 molecules present as 

contaminants in the deuteroacetone, or to hydroxyl protons originating 

from any residual methanol, which was the solvent used for routine 

storage of the sample. The signal at 0.9 ppm is probably due to the 

presence of an impurity since all the protons in the compound have 

been accounted for. 

The vinyl region of the NMR spectrum between 5.5 and 7.5 ppm is 

expanded in the upper part of Figure 28, while a LAOCN3 generated 

spectrum produced by peak matching is drawn in the lower portion. 

Interpretation of this portion and of other parts of the NMR spectrum 

was greatly facilitated by the interpretation of NMR spectra generated 

from isomers of retinoic acid (112, 113). 

The two spin transitions at 5.85 and 6.39 ppm form a pair of 

doublets with a spin-spin coupling constant of 16.2 Hz, indicative of 

a trans double bond. These transitions correspond to protons on 



Figure 28. Vinyl Region of NMR Spectrum of the Retinoid 
from Peak 1 
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carbons 8 and 7 respectively, with the signals from H7 being broader 

than those of Ha due to long-range coupling. The remaining signals in 

the vinyl region were solved by LAOCNJ as an isolated system consisting 

of three pl'otons and indicated that signals< at 6.5, 6.88, and 7.03 ppm 

correspond to protons on carbons 10, 11 and 12 respectively. The 

coupling constants of 15.4 Hz and 11 Hz are indicative of a trans 

double bond between carbons 10 and 11 and a single bond between carbons 

11 and 12 (113, 124). 

The presence of the two carbonyl groups and the hydroxyl group in 

the decarboxylation product was further confirmed by Fourier transform 

infrared analysis (Figure 29). The hydroxyl group absorbs in a wide 

region from 3200 to 3600 cm- 1 • 
-1 -1 The peaks at 1730 em and at 2720 em 

are attributable to the aldehyde on carbon 14 while the peak at 1672 

cm- 1 is consistent with the presence of a conjugated ketone on carbon 4 

of the ring (125). The loss of conjugation in the decarboxylated 

compound is confirmed by a shift to higher wavenumber in the absorbance 

of the double bonds (at 1600 cm- 1 and at 1640 cm- 1 ) compared with 

retinoic acid (at 1578 cm- 1 and at 1600 cm- 1 ). Further band assignments 

are made in Chapter IV. 

Purification and Identification of Peak 2 

Fraction 2, eluting from the Partisil M9 column (Figure 20) between 

60 and 70 min, was purified on the Partisil 10-0DS columns at 50% 

methanol, 50% water (Figure 30-A). A baseline resolved compound, peak 2, 

eluted at 60 min and corresponds to the peak at 65 min in Figure 20 or 

at 28 min in Figure 19-A. The absorption spectrum revealed the same 

Amax as for peak 1, namely 280 nm (Figure 30-B) indicative of a decrease 
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Figure 29. Infrared Spectrum of the Retinoid from Peak 1 
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in conjugation compared with the Amax of 350 nm for retinoic acid. The 

extinction coefficient was calculated to be 27,000 ± 5%. When incuba­

tions contained [11,12- 3 H2] and [15- 14 C]retinoic acid (dpm 3 H/dpm 14C 

equal to one), 3 H but no 14 C was present in peak 2. Thus the carboxyl 

group of retinoic acid was removed in the formation of this compound. 

Approximately 35 ~g of purified peak 2 were obtained from 100 

incubations containing a total of 100 mg of retinoic acid. This 

represents one tenth the amount of peak 1, described above. When peak 

2 was subjected to mass spectral analysis (Figure 31), it yielded a 

molecular ion of 316, with a base peak of 43, which is also the base 

peak of peak 1 and of other oxidized derivatives of retinoic acid (117). 

The ten most intense peaks of the spectrum are in decreasing order 43, 

41, 149, 284, 59, 55, 91, 95, 69 and 77. All but 284 are commonly 

found in the mass spectra of vitamin A analogs (117, 118). The nuclear 

magnetic resonance spectrum of peak 2 (Figure 32) showed many similar­

ities with that of peak 1 (Figure 27). There are five protons in the 

vinyl region between 5.5 and 7.5 ppm. The signal at 9.49 ppm downfield 

from TMS is from a proton on a trans-a-methyl substituted conjugated 

aldehyde (124). 

The signals between 0 and 2.5 ppm are identical in the spectra of 

peaks 1 and 2, with the exception of a slight amount of splitting in 

the singlets attributed to methyl protons on carbon 9 and 13 (at 1.75 

and 1.80 ppm). This is due to long-range coupling to protons on carbons 

10 and 12 respectively. The fact that these signals are split, while 

the corresponding ones for peak 1 are not, can be attributed to in­

creased resolution in the NMR spectrum of peak 2 as evidenced by the 

greater resolution of the deuteroacetone peak at 2.05 ppm. The broad 
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signal at 2.8 ppm arose from protons on water molecules present in the 

deuteroacetone solvent. The signal at 3.3 ppm is attributable to the 

presence of trace amounts of methanol in the sample (127). Since the 

NMR spec tn;m of this sample is identical with that of peak 1 in the 

region containing signals from methylene and methyl protons, it can be 

inferred that the ring portion of the molecule is the same for both 

compounds and that methyl groups at carbons 1, 5, 9 and 13 are not 

substituted. 

The vinyl region of the NMR spectrum between 5.4 and 7.3 ppm is 

expanded in the upper part of Figure 33 while a LAOCN3 generated 

spectrum produced by peak matching is drawn in the lower portion. 

The limited quantity of peak 2 did not allow for good resolution of 

this region. Peaks with a cross were found to be contaminants from 

the solvent since they were present in the NMR spectrum of a sample of 

deuteroacetone. This portion of the NMR spectrum shows a remarkable 

similarity to that of the vinyl region of the NMR spectrum of peak 1 

(Figure 28) and it could be inferred that the side chain of the two 

molecules are similar, with trans double bonds between carbons 7 and 

8, 10 and 11, 12 and 13. 

Signals at 5.68, 6.33, 6.40, 6.84 and 7.06 ppm were attributed to 

protons on carbons 8, 7, 10, 11 and 12 respectively. Chemical shifts 

for protons on carbons 7, 11 and 12 varied slightly compared with those 

for peak 1. Differences were found to be 6Hz for H7 , 4Hz for H11 

and 3 Hz for H1 2 and could be accounted for by the greater amount of 

contaminating water present in peak 2 or by differences in temperature 

when the samples were run. The signals on carbons 8 and 10 are shifted 

upfield compared with those for peak 1. Differences are on the order 
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of 17 Hz for Hs and 10 Hz for H1o• These are probably related to 

the identity of group X on carbon 9, whose presence is necessary to 

account for the conjugation in the side chain suggested by the NMR 

data. 

The coupling constant of 16.6 Hz between protons on carbons 7 and 

8 and 15.4 Hz between protons on carbons 10 and 11 were indicative of 

trans double bonds. An 11Hz coupling constant between protons on 

carbons 11 and 12 confirmed the presence of a single bond (113, 124). 

The identity of group X could not be definitively ascertained, 

based on the data presently available. The infrared spectra obtained 

were not helpful due to the small quantities of compound remaining when 

the scans were performed. The absorption maximum of 280 nm obtained for 

both peaks 1 and 2 indicated similar amounts of conjugation in accord 

with the NMR data. The mass spectra data were difficult to reconcile 

with the NMR data. The molecular ion of 316 is consistent with the 

formula C19H2404 which could not be reconciled with the structure of 

the side chain reflected by the vinyl region of the NMR spectrum. 

Based on the mass spectral data,the formation of a five-membered endo-

peroxide ring was suggested in order to account for the molecular 

formula. This could involve carbons 9, 10 and 11 or 7, 8 and 9. An 

endoperoxide ring involving carbon 13 was discounted since the NMR 

signal for the aldehyde proton clearly indicated the presence of a 

trans-a-methyl substituted conjugated aldehyde. The presence of an 
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endoperoxide linkage anywhere in the ring portion was also discounted 

since the upfield region of the NMR spectrum of peak 2 is clearly 

identical with that of peak 1. Based on the mass spectral data there­

fore, structures such as those shown in Figttre 34 (top, bottom) were 

suggested for the compound in peak 2. 

The structure suggested based on the NMR data is shown in Figure 

34 (middle) and is a 4-oxo-C 19-aldehyde with a peroxy group on the side 

chain, specifically 8-(2,6,6-trimethyl-3-oxo-cyclohex-1-enyl)-2,6-

dimethyl-6-peroxy-2,4,7-E-octatrienal. This would lead to a molecular 

ion of 318. The existence of a hydroperoxy group and of an endoperoxide 

has been shown in the synthesis of prostaglandins (128). Lipid hydro­

peroxides have also been prepared and purified from arachidonic acid 

andy-linolenic acid (129). The structure suggested based on the NMR 

data was preferred since it would be a more stable compound than the 

endoperoxide (128). 

Purification of Peaks 4 and 5 

Fractions 4 and 5 (Figure 20) were purified separately on Partisil 

10-0DS columns at 0.5 ml per min. In Figure 35-A, the HPLC profile of 

peak 4 is shown. Peak 4 was chromatographed at 55% methanol and 45% 

water and collected between 60 and 70 min after injection on the column. 

The peak at 90 minutes corresponded to a gradient of increasing 

methanol concentration which was initiated at 80 min. It had a Amax 

of 350 nm as \vell as 280 nm (Figure 35-B). The extinction coefficient 

at 350 nm was 60,000 ± 1%. Incubations performed in the presence of 

retinoic acid labeled with tritium at ell and cl2 and with 14 C at cl5 

( 3 H: 14C = 1) led to the isolation of peak 4 with a ratio of 3 H to 14C 
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of 0.65. This indicates the loss of 3 H in the formation of this 

compound. A total of approximately 19 ~g of peak 4 was obtained from 

100 incubations containing 100 mg of substrate. This amount was too 

small to obtain useful NMR or IR data but a mass spectrum (Figure 36) 

revealed a mass ion of 300 and a base peak of 43. 

Peak 5 was purified at 60% methanol and 40% water (Figure 37-A), 

eluting between 37 to 55 minutes. Approximately 150 ~g of compound 

were obtained from 100 incubations. The 3 H to 14 C ratio was identical 

with that of the starting material indicating no loss of label from the 

starting material in the formation of peak 5. The absorption spectrum 

had a Amax of 300 nm and the extinction coefficient was 30,000 ± 3% 

(Figure 37-B). As in the case of peak 4, the mass spectrum revealed a 

mass ion of 300 (Figure 38). 

Purification and Identification of Peak 6 

Fraction 6 in Figure 20 was eluted when 100% methanol was injected 

on the column. It contained only one peak when chromatographed in 70% 

methanol and 30% water at 0.8 ml per min (Figure 39-A). The mass 

spectrum of this peak was identical with that of the starting material, 

all-trans-retinoic acid (Figure 40). The Amax of the compound was 

found to be 337 nm (Figure 39-B). However, in the presence of trace 

amounts of HCl, the maximum was shifted to 350 nm, as reported by 

Robeson et al. (130) for all-trans-retinoic acid. 

Discussion 

The oxidative decarboxylation of retinoic acid was investigated 

utilizing a model system consisting of all-trans-retinoic acid, H2 0 2 
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and horseradish peroxidase, as described in Chapter II. The decarboxy­

lation products were purified by high performance liquid chromatography 

on bonded, octadecylsilane columns. Based on mass spectral, NMR, UV 

and FT-IR analyses, the major decarboxylatiGn product or peak 1 was 

identified as a 4-oxo-C 19-aldehyde with the hydroxyl group on the side 

chain at C9 , specifically 8-(2,6,6~trimethyl-3-oxocyclohex-l-enyl)-2,6-

dimethyl-6-hydroxy-2,4,7-E-octatrienal. 

The oxidation of retinoic acid on the side chain and at C4 in the 

ring has been observed by other investigators. For example, 4-oxo­

retinoic acid has been identified as a metabolite of retinoic acid 

incubated with hamster liver or trachea (93) and it has been hypothe­

sized that the major pathway of retinoic acid metabolism in hamster 

liver microsomes follows the scheme retinoic acid+4-hydroxyretinoic 

acid+ 4-oxoretinoic acid+ more polar metabolites. The presence of 

several oxidized metabolites, including 4-oxoretinoic acid and several 

metabolites hydroxylated at various positions, has been detected in 

rat urine and feces (86, 87). 5,8-Epoxyretinoic acid has been reported 

as a metabolite of retinoic acid (91), although it has also been 

identified as a major impurity of samples of 3 H- and 14 C-labeled 

all-trans-retinoic acid (92). Retinoic acid is also thought to be 

metabolized to a hydroxylated derivative which becomes phosphorylated, 

linked with mannose, and subsequently leads to the formation of a 

mannoglycoprotein (51). 

A possible mechanism in the production of the major decarboxylation 

product of retinoic acid is shown in Figure 41. Oxidation at carbon 14 

would lead to decarboxylation followed by the addition of a proton from 

the medium. Tautomerization would then occur followed by oxidation at 
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carbon 9 and at carbon 4 in the ring. It is also possible that this 

compound is first oxidized at C4 on the ring, and subsequently decar­

boxylated. This would be consistent with a scheme previously suggested 

(93). Unless intermediates in the reaction are isolated and identified, 

the mechanism in Figure 41 can only remain a hypothesis. 

Tentative structures were suggested for another decarboxylated 

product, peak 2. This compound was produced in much smaller quantities 

than peak 1 (one tenth) and was more difficult to identify. A defini­

tive identification will be obtained only with the production of much 

higher quantities of peak 2. 

Peaks 4 and 5 were not decarboxylated products of retinoic acid, 

as determined by labeling studies. Both of these compounds retained 

the 14C label on the carboxyl terminal. As in the case of peak 2, the 

elucidation of the structures of these minor products can only be accom­

plished by the successful production of larger quantities of material. 

In spite of the fact that they have the same molecular weight, these 

compounds are not cis-trans isomers of retinoic acid. The high perfor­

mance liquid chromatography profiles indicate that they are more polar 

than the retinoic acid isomers and the mass spectral patterns indicate 

that they are not fragmented in the same way as retinoic acid and its 

isomers. 

Peak 6 was found to be identical with the starting material all­

trans-retinoic acid. 

A summary of the Absmax' mass ion, 3 H/ 14 C and extinction coeffi­

cient data peaks 1, 2, 4 and 5 are given in Table V. 



TABLE V 

SUMMARY OF ABSMAX' MASS ION, 3 H/ 14 C RATIO AND EXTINCTION COEFFICIENT 
DATA OF OXIDATION AND DECARBOXYLATION PRODUCTS ISOLATED 

FROM PEAKS 1, 2, 4, 5 

Peak Absmax Mass Ion 

1 280 302 00 37,000 ± 4% 

2 280 316 00 27,000 ± 5% 

4 350 300 0.65 60,000 ± 1% 

5 300 300 1.0 30,000 ± 3% 
\ 
' 
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CHAPTER IV 

INFRARED SPECTROSCOPY OF RETINOIDS 

Although the metabolism of retinoic acid has been under investi­

gation for the last two decades, this search has revealed only a few 

compounds. Furthermore the physiological importance and mode of pro­

duction of these compounds in vivo remain to be ascertained (25, 82-87, 

90, 91, 93, 97). Along with mass spectrometry, ultraviolet absorbance 

and nuclear magnetic resonance spectroscopy, infrared spectroscopy is 

an important tool for the identification of metabolites of retinoic 

acid. 

Infrared analyses have been reported for some of the vitamins A. 

Spectra for 9-cis-, 13-cis-, 9,13-dicis-retinol (130) and for all­

trans-retinol (130-132) were the earliest to appear in the literature. 

Infrared data also were reported for all-trans- (132, 133), 9-cis-, 

13-cis-, 9,13-dicis- (133) and 11-cis- (134) retinal, as well as for 

all-trans- (132, 135), 9-cis-, 11-cis-, 13-cis- and 11,13-dicis-vitamin 

A2 alcohols (135). Vitamin A esters have also been analyzed by infrared 

spectroscopy, including retinyl acetate (131) and retinyl palmitate 

(136). More recently, McKenzie et al. (112) compared theIR spectra of 

seven of the isomers of methyl retinoate. Oxidation of the vitamins A 

by manganese dioxide has led to the synthesis of several oxo-derivatives 

whose structures were resolved by various spectroscopic methods includ­

ing infrared. 4-0xoretinol and 4-oxoretinal were prepared from retinol 
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and retinal respectively by Henbest et al. (137) while 4-oxoretinoic 

acid was prepared from methyl retinoate by Surekha Rao (125). The 5,6-

and 5,8-epoxy derivatives of retinol, retinyl acetate and retinal were 

synthesized by Jungalwala and Cama (138) while methyl 5,6-epoxyretinoate 

was prepared by Morgan and Thompson (139). 11,12-Epoxyretinol and 

11,12-epoxyretinal were prepared by Ogata et al. (140, 141). The 

structures of these epoxy compounds were confirmed by infrared analysis. 

No previous attempt has been made to correlate the infrared data 

available on the vitamins A and to indicate trends in the frequencies 

of the absorbances of these compounds. In this chapter we attempt such 

a correlation in the hope that this will simplify the task of identify­

ing metabolites of retinoic acid. The Fourier transform infrared 

spectra of all-trans-retinoic acid, 4-oxoretinoic acid, 5,6-epoxyretin­

oic acid, 5,8-epoxyretinoic acid, retinal, 9-cis-retinal, 13-cis­

retinal, C19-aldehyde and 4-oxo-9-hydroxy-C 19-aldehyde (peak 1 isolated 

in Chapter III) are reported and compared. The use of Fourier trans­

form infrared spectroscopy allows for short measurement times and for 

high resolution spectra from small amounts (ng) of sample to be obtained. 

Experimental 

Materials 

Retinoids. All-trans-retinoic acid, 4-oxoretinoic acid (R0-12-

4824/701), 5,6-epoxyretinoic acid (R0-08-3249/701), 5,8-epoxyretinoic 

acid (R0-08-3250/000) and C19-aldehyde (R0-1-8340) were obtained as 

gifts from Dr. W. E. Scott, Hoffmann-La Roche Inc. (Nutley, NJ). Reti­

nal (R-2500, type XVI), 9-cis-retinal (R-2250, type XIII) and 13-cis-
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retinal (R-2375, type XV) were purchased from Sigma Chemical Co. (St. 

Louis, MO). 4-0xo-9-hydroxy-Cl9-aldehyde (peak 1) was purified from 

incubations of retinoic acid, horseradish peroxidase and hydrogen 

peroxide, as described in Chapter III. 

Solvents. Glass distilled residue-free solvents (Burdick and 

Jackson) were used for high performance liquid chromatography and 

for infrared analyses. The water used for chromatography was deionized 

and redistilled in glass. 

Methods 

Purification of Retinoids by High Performance Liquid Chromatography. 

All retinoids were purified prior to infrared analysis by high per-

formance liquid chromatography (HPLC) on reverse phase columns. The 

integrity of the sample was also checked by HPLC following the IR 

scans. Either a Partisil PXS 10/25 ODS-2 column (Whatman, Clifton, 

NJ) or a ~Bondapak C1s column (Waters, Milford, MA) was used for the 

purification. The Waters column was operated through the Isco pump 

and DuPont gradient-elution accessory described in Chapter II, while 

the Whatman column was operated by a Waters pumping system. This 

consisted of a Model 660 solvent programmer, a Model 440 absorbance 

detector, Model M 6000A pumps, a Model U6K injector and a Sargent-Welch 

Model XKR recorder (Sargent-Welch Scientific, Dallas, TX). Solvents 

used were methanol and water, or methanol and 0.01 M acetic acid in 

water. 

Infrared Analyses. The infrared (IR) spectra were obtained on a 

Digilab FTS-2DC interfaced to a Data General Nova 3/12 (Digilab Inc., 
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Cambridge, MA). Two hundred. scans of each sample were collected except 

for C19-aldehyde and 4-oxoretinoic acid (250 scans) and 13-cis-retinal 

(1000 scans). The resolution for all analyses was 4 cm- 1 The sample 

in the solvent was applied on a NaCl or a KBr window (32 x 3 mm, 

7000-451 or 7000-452 from Barnes Engineering Co., Stanford, Conn). 

The solvent used, chloroform or carbon tetrachloride, was then allowed 

to evaporate to dryness before the window was inserted into the cell 

holder and introduced into the instrument. A background spectrum of 

a window without sample was routinely ratioed with that of the sample 

to obtain transmission spectra. Since the concentration of each 

sample was not determined prior to IR analysis, no extinction coeffi­

cients are reported. 

Results and Discussion 

Purification of Retinoids by High Performance 

Liquid Chromatography 

All compounds (shown in Figure 42) were chromatographed by HPLC 

in order to ensure their purity both before and after infrared analyses. 

Retinal and 9-cis-retinal were purified on the Whatman column (70% 

methanol, 30% water, at a flow rate of 1 ml per min) and eluted at 39 

min and 20 min, respectively. The same column was used to elute 5,6-

epoxyretinoic acid and 5,8-epoxyretinoic acid, both at 56 min (80% 

methanol, 20% 0.01 M acetic acid, at 0.5 ml per min). In order to 

ensure that each epoxy compound did not contain contaminants of the 

other, both compounds were scanned in methanol by ultraviolet absorbance 

and found to have only one Amax• at 326 nm for 5,6-epoxyretinoic acid 
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and at 296 nm for 5,8-epoxyretinoic acid. 

The Waters column was used to purify 13-cis-retinal (85% methanol, 

15% 0.01 M acetic acid, at 0.6 ml per min), which eluted at 54 minutes. 

The C19-aldehyde eluted from the column at 33 min (90% methanol, 10% 

0.01 M acetic acid, 0.65 ml per min), while 4-oxoretinoic acid was 

collected at 50 min (75% methanol, 25% 0.01 M acetic acid, at 0.6 ml 

per min). All-trans-retinoic acid and 4-oxo-9-hydroxy-C 19 -aldehyde 

(peak 1) were purified as described in Chapter I and II, respectively. 

Infrared Analyses. 

The infrared spectra of the nine retinoids are shown in Figures 

43-45. The band at 2400-2300 cm- 1 in the spectra of 13-cis-retinal, 

4-oxoretinoic acid and 5,6-epoxyretinoic acid is due to atmospheric 

C02. Since the absorption due to the C-H stretch of methyl and 

methylene groups (3000-2800 cm- 1 ) remains fairly constant for all 

the samples considered, only the region from 2000 to 600 cm- 1 is 

expanded in Figures 46 to 54. Infrared frequencies are tabulated in 

Table VI where references to "strong", "medium" and "weak" bands are 

given only as approximate indications of absorption intensity. 

The weak bands which appear at 2720 cm- 1 in the aldehydic com-

pounds reflect the presence of an aldehyde carbon-hydrogen stretch 

(127). -1 The presence of broad bands above 3000 em in the spectra of 

retinoic acid, 4-oxoretinoic ·acid and 5 ,8-epoxyretinoic acid is due 

to the acid hydrogen, and in the spectra of retinal and 13-cis-retinal 

to atmospheric water. The hydroxyl group in 4-oxo-9-hydroxy-Cl 9 -

aldehyde absorbs in the same region. 

Bands between 1690 and 1650 cm- 1 are attributed to the C=O 
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TABLE VI 

INFRARED FREQUENCIES OF RETINOIDS 

0 
1: c~o C=C 

Retinoid C-H Stretch RC-H Stretch Stretch Stretch 

Rctir.oic Acid 2930 ,2860 ,2820 1690 1605 ,1578 
s m w m s s 

5,6-E?o:qretinoic Acid 2940 m'2920m,2860w 1690 1605 ,1580 
In m s 

5,8-~?oxyretinoic Acid 2960m,29258 ,2860m 1710 1680 1650 ,1600 
w s m s 

Rctinnl 2950m,29205 ,2850m 2720 1660 1578 ,1560 
w s s m 

9-£0._-Rctinal 2960 ,2930 ,2860 2720 1730 1664 1585 ,1555 
m s m w m s s m 

13-cis-.Retinal 2950 ,2920 ,2850 2720 1730 1660 1580 ,1560 
m s m w w s s m 

4-oxorctinoic Acid 2940 ,2930 ,2850 1730 16605 , 1605 ,1555 
m s rn w 16505 m s 

C 1 9 A1d~hyde 2945 ,2930 ,2860 2720 1725 1670 1620 ,1600 
m s r.1 m w s m s 

4-0xo-9-hydroxy-c,. Aldehyde 2960 ,2930 ,2855 2720 1730 1672 1640 ,1565 
m s m w !:\ s s r:l 

-
Cll, on H Be:;C;.ng 

11-C-H Jl-C-H :1 f~ 

Retinoid B . . cis Double 1300-1100 cm- 1 of RC=C?, I 

cn,nng -Bond Ber.c.li.ng ~an~,u:1-

suhs:: il1Jted 

Retinoic Acid 1445 1350 1260 5 ,12555 ,11905 ,1160m 970 ,955 w m m ~ 

5,6-Epoxyrctinoic Acid 1445 1345 1258 5 ,11825 ,11)8m,ll20w 975 ,955 w In n m 

5,8-Epoxyretinoic Acid 1445 1365w 1280 ,1252 ,1190 ,1145 ,1120 960 
m m s s m m m 

Retinal 1450 1335 1200 w'1162m,1134w,1110w 968 
w w m 

9-cis-Retinal 1450 1330 1335 1270 w'1200w,1145m,1110m 962 m w w m 

13-cis-Retina1 1450· 1378 1390 1160 ,1110 964 w w w w m m 

4-0xoretinoic Acid 1450 1370m, 1200 968Ill w 1340m w 

C1 .·A1dehyde 1450 1360 1290 m'1270m,ll905 ,1115w 962 w m m 

4-o,o-9-hydroxy-C, 9 -Aldehyde 1455m 1355 1270 w' 1200w,ll80,,, 1130w 970 w m 

s D strop,g; m C medium; W a weak 



stretch of ketones, aldehydes and acids. Frequencies for the non-

conjugated C=O stretch generally are higher than for the conjugated 

bond and usually are between 1730 and 1710 cm- 1 (142). Unsaturation 

in conjugation with the C=O group leads to delocalization of the n 

electrons of the C=O, causing a decrease in the frequency of absorp-

tion of this group (127, 142-144). The introduction of the first 

C=C double bond results in a 30 cm- 1 shift to lower frequency while 

the introduction of the second results in an additional shift of 

15 cm- 1 (142). The position of the band is essentially constant for 

C=O containing compounds with more than two unsaturations (144). 
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Since all the compounds studied had at least two C=C bonds conjugated 

with the C=O, the frequencies are all within the same range. 

-t A band around 1730 em also appears in some of the spectra. 

This band could be due to the presence of two different conforma-

tions (cis and trans) around the terminal carbon. If the carbonyl 

is cis to the conjugated system, the frequency will be much higher 

than if it is trans (127). 

The carbon-carbon double bond stretch frequency is affected in 

the same way as the C=O by unsaturation (127, 142). Conjugation 

with another C=C or C=O leads to a shift to a lower frequency of 

approximately 40 to 60 cm- 1 with a substantial increase in intensity 

(144). The highest frequencies are found for the 4-oxo-9-hydroxy­

C19-aldehyde (1640 and 1600 cm- 1 ) with two C=C in conjugation with 

each carbonyl, C1 9-aldehyde (1620 and 1600 cm- 1 ) and 5,8-epoxyretinoic 

acid (1650 and 1600 cm- 1 ) with three C=C conjugated with the C=O. 

The remaining compounds all have 5 or 6 conjugated double bonds and 

the C=C stretch bands therefore has a lower frequency (between 1605 
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and 1555 cm- 1 ). 

The region between 1455 and 1445 cm- 1 is similar in the spectra 

of the nine retinoids and is due to the non-symmetrical HCH bending 

of methyl groups and the HCH bending (scissoring) of methylene groups 

(144, 145). The presence of a cis double bond in the 9-cis- and 13-

cis-retinals is confirmed by the absorption at 1380 and 1378 cm- 1 

respectively, due to the deformation vibration of the methyl group 

attached to a cis double bond (146). The absorption due to the 

sy1nmetrical HCH bending of methyl groups is found between 1370 and 

1335 cm- 1 in all spectra (127). The most helpful information in 

terms of retinoid structural identification comes from band splitting 

due to the presence of gem dimethyl groups at C1 • Only the most 

prominent band is listed in the table. 

The 1300 to 1100 cm- 1 region, also known as the fingerprint region, 

has several bands but is not very useful as an aid for identification 

of unknown compounds due to the large number of vibrations which con­

tribute to it. These include the C-0 stretch of a carboxylic acid at 

1320 to 1210 cm- 1 (127), the C-C stretch of geminal dimethyl groups 

which produce bands at 1195 and at 1125 cm- 1 (142), and the bending 

deformations (twisting and wagging) of the methylene groups at 1350 

to 1180 cm- 1 (142). 

The strong absorbances at 1258 cm- 1 in the spectrum of 5,6-

epoxyretinoic acid and at 1252 cm- 1 in that of 5,8-epoxyretinoic acid 

are attributable to symmetrical stretching of the epoxide ring (140, 

127). The presence of bands at 1065, 1083 and 1175 cm- 1 confirms the 

furan structure in the 5,8-epoxyretinoic acid (138). 

An out-of-plane hydrogen bending vibration of a trans -CH=CH- or 
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"unsubstituted trans" bond leads to the absorbances at 975 to 955 cm- 1 

present in all the spectra (143, 145, 147, 148). The intensity of 

the bands increases with the number of such bonds in a conjugated 

system. 

-1 The only strong bands in the 800 to 700 em range appear at 880 

cm- 1 (m), 792 em - 1 (s) and 760 cm- 1 (m) in the spectrum of 5,8-

epoxyretinoic acid. They reflect the presence of unsymmetrical 

stretching of an epoxy ring in which the C-C bond is stretching 

during contraction of the C-0 bond (127, 140). These bands also 

appear in the spectrum of 5,6-epoxyretinoic acid at 880 cm- 1 , 840 

cm- 1 and at 780 cm- 1 but are much weaker (139). 

In summary, retinoids which have C=O groups (aldehydes, acids 

or 4-oxocompounds) will have a band between 1690 and 1650 cm- 1 if 

they are conjugated. Compounds with 3 to 4 conjugated unsaturations 

will have a C=C stretch between 1650 and 1600 cm- 1 while more 

unsaturations will lead to bands between 1610 and 1555 cm- 1 and to 

an increase in intensity. The presence of cis double bonds with a 

methyl group attached is indicated by an absorption at 1380 cm- 1 while 

an epoxy ring leads to bands around 1250, 880 and 790 cm- 1 • A furan 

structure is confirmed by bands at 1065, 1083 and 1175 cm- 1 • Unsub-

stituted trans c~c bonds, present in most retinoids are detectable by 

absorbances at 975 to 955 cm- 1 , with an increased intensity as the 

number of these bonds becomes larger. 

The presence of some of these absorption bands in the infrared 

spectrum of an unknown metabolite of vitamin A should be helpful in 

the determination of the structure of unknown compounds and, as 



discussed in Chapter III, prove definitive in the identification of 

oxidation products of retinoic acid. 
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CHAPTER V 

SUMMARY 

The objective of this study was to characterize products of 

retinoic acid produced in vitro. Isomerically and radiochemically pure 

h d .· h "d · b t d f 2 hours at 37°C and 14 C0 2 orsera 1s perox1 ase were 1ncu a e or 

was collected. The nature of the heme catalyst, the type and pH of 

the buffer, the concentrations of retinoic acid, H20 2 or FeCl 2 , and 

horseradish peroxidase were optimized for the production of the greatest 

amount of oxidized and decarboxylated products. Products of retinoic 

acid were extracted from the H20 2 reaction with chloroform, purified by 

high performance liquid chromatography and identified by infrared, 

nuclear magnetic resonance, ultraviolet and mass spectroscopy. 

The Fourier transform infrared spectra of all-trans-retinoic acid, 

5,6-epoxyretinoic acid, 5,8-epoxyretinoic acid, retinal, 9-cis-retinal, 

13-cis-retinal, 4-oxoretinoic acid, c19-aldehyde and 4-oxo-9-hydroxy-

C1g-aldehyde were obtained as an aid in the identification of metabol-

ites of retinoic acid. 

Optimum concentrations which generated the highest levels of 

oxidation and decarboxylation products were 133 ~M retinoic acid, 4 ~M 

horseradish peroxidase and 1 mM H202 or 2 mM FeCl2. The H202 reaction 

decarboxylated retinoic acid in a pH range of 6.4 to 8.0 regardless of 

the type of buffer. The FeC1 2 reaction, however, required oxygen and 
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and phosphate, Tris or TES as buffer. The only heme catalyst which 

successfully decarboxylated retinoic acid in the Fe+2 reaction was 

horseradish peroxidase. In the presence of H20 2, the decarboxylation 

reaction was heme catalyzed. Cytochrome c, hemoglobin or hemin could 

be substituted for horseradish peroxidase. The mechanisms of these 

reactions seemed to involve oxidation as well as decarboxylation of 

retinoic acid. The high performance liquid chromatography elution 

profile for the H202 and horseradish peroxidase catalyzed reaction was 

identical to that obtained when retinoic acid was incubated with 

hemoglobin and H20 2 or with Fe+2, oxygen and horseradish peroxidase. 

When extracts from incubations containing retinoic acid and chick liver 

microsomal fraction were chromatographed by high performance liquid 

chromatography, the product profiles were similar to those generated 

from heme containing incubations. In both types of incubation, the 

decarboxylation products eluted from the column in the polar fractions. 

Products of retinoic acid were isolated from the H20 2 reaction 

and purified by high performance liquid chromatography. The major 

decarboxylation product was subjected to mass spectral analysis and 

yielded a molecular ion of 302. The extinction coefficient at 280 nm 

(Amax) was 37,000 ± 4%. Based on the mass spectral fragmentation 

pattern, on peak matching of the nuclear magnetic resonance spectrum 

by the LAOCN3 computer program and on the infrared spectrum, this 

product was identified as a 4-oxo-C 19-aldehyde with a hydroxyl group 

on the side chain at ~ 9 , specifically 8-(2,6,6-trimethyl-3-oxo-cyclo­

hex-1-enyl)-2,6-dimethyl-6-hydroxy-2,4,7-E-octatrienal. Another decar­

boxylated product of retinoic acid was isolated and tentatively 

identified by nuclear ~agnetic resonance spectroscopy as a 4-oxo-C 1 9 
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aldehyde with a peroxy group on the side chain at C9, specifically 

8-(2;6,6-trimethyl-3-oxo-cyclohex-1-enyl)-2,6-dimethyl-6-peroxy-

2,4,7-E-octatrienal. Several oxidized nondecarboxylated products 

were also isolated from the incubations. 

The Fourier transform infrared spectra of 9 purified retinoids 

were compared. Retinoids could be identified by the presence of a 

band between 1650 and 1600 cm- 1 due to C=C stretching where 3 to 4 

conjugated C=O and C=C bonds were present or between 1610 and 1555 

-1 em where more conjugated unsaturations were present. The intensity 

of this band increased with the number of unsaturations. The presence 

of cis double bonds was confirmed by a band at 1380 cm- 1 while unsub-

stituted trans double bonds led to absorbances at 975 to 955 cm- 1 with 

an increased intensity as the number of such bonds increased. Epoxy 

rings present in some retinoids led to bands at 1250, 880 and 790 cm- 1 

while a furan structure was confirmed by bands at 1065, 1083 and 1175 

cm- 1 Retinoids with conjugated C=O groups revealed the presence of 

a band between 1690 and 1650 cm- 1 • 
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