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CHAPTER I 

SUMMARY OF PHASE SPACE THEORIES OF 

REACTION RATES 

Introduction 

Formulation of reaction-rate theories has been a subject of 

intense interest to scientists for several years. Many ingenious 

methods have been devised and applied with reasonable success to cal

culate reaction rate coefficients, reaction cross sections and product 

energy distributions. One theory that has received substantial atten

tion is the statistical phase-space theory and an extension of phase

space theory, the variational theory of reaction rates (1). 

As with most other theories of reaction rates, the interaction 

potential is considered to be adiabatic. In essence this means the 

potential energy of the system is described by a "single" surface that 

is a function of the nuclear configuration. In some instances the 

adiabatic assumption may not be valid. For example two potential

surfaces may be separated by a narrow energy gap for given nuclear 

configurations (2) (3). In cases such as this, it becomes very diffi

cult to assess the appropriate nature of the potential. 

Phase-Space Theories 

Phase-space models which involve the computation of a flux across 

a surface dividing the phase space of the products from that of the 

1 
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reactants, contain other theories as special cases. If the dividing 

surface is in the reactant region of phase space, the method is termed 

a collision theory. If the surface is placed through or near the phase 

space of the saddle point, it then becomes "absolute rate" theory, as 

pointed out by Johnston (4). 

One of the earliest calculations of this nature was by Eyring and 

coworkers (5) in which they calculated a probability for recombina

tion of three hydrogen atoms to form the diatomic molecule and a sepa

rated hydrogen atom. Using transition-state theory, they were able to 

calculate a rate for this process with the crossing probability replac

ing the usual transmission coefficient. 

Keck (6) proposed a ge~eral statistical theory of reaction rates 

applied to the recombination of two atoms under the influence of a third 

in a "strong coupling" approximation. The recombination rate was given 

by the rate of flow of phase points from a free state through the 

collision complex where the dividing surface was located into the phase 

space of the products. He was able to show that his theory encompassed 

three-body collision theories of recombination, available energy 

theories of dissociation, and the variational theory of atomic recom

bination (7) (8) (9) (10). This flow of points is actually the equi

librium flow of points crossing the surface defining the collision 

complex in one direction. The reaction rate obtained should always be 

an upper bound to the true reaction rate because some of the phase 

points recross the surface many times before they go into the product 

or reactant phase space. Consequently some nonreactive trajectories 

contribute to the flux across the dividing surface. These trajectories 



cross the surface toward the product phase space and then backtrack to 

the reactant phase space. 

3 

Alternately an "available phase-space" theory has been formulated 

for systems without activation energy (11). The hypothesis was posed 

as follows: The probability of formation of any given product in a 

"strong coupling" collision is proportional to the ratio of phase space 

available to that product divided by the total phase space available 

to the system within the constraints imposed by conservation of total 

energy and total angular momentum. In this form, application of the 

theory has led to the computation of reaction cross sections for model 

ion-molecule systems. 

The available phase-space theory later proved to be unsatisfactory 

because it failed to satisfy the principle of detailed balancing (12). 

Consequently, a new formalism was developed in the spirit of the strong 

coupling assumption which satisfied this criterion for both classical 

and quantum mechanical treatments (13). In addition, this formalism 

retained the geometric interpretation, that the probability of forma

tion of a given product is proportional to the phase space available 

to that product. It was applied with some success to biomolecular 

exchange ion-molecule reactions without activation energy, bimolecular 

atom-diatomic molecule processes without activation energy, ion-molecular 

systems with and without activation energy and neutral atom-diatomic 

molecule systems with activation energy (14) (15) (16) (17). 

Eu and Ross (18) applied Wigner's (19) R-matrix theory to the 

molecular scattering problem. In the R-matrix theory approach, the 

configuration space of the system is divided into two regions, an 
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internal region in which the collision complex is well defined and 

bounded by a surface that separates it from the external region. In 

the external region it is assumed that the interaction between parti-
' 
cles is small or in the event of large interaction, the forces are 

known. The appropriate wave equations are then solved subject to the 

boundary conditions on the surface separating the two regions. Upon 

application of this formalism they were able to obtairi rate expressions 

for the activated complex theory of Eyring (20), Keck's statistical 

theory (6), and the available phase-space theory of Light and coworkers 

(11) (13). 

Miller (21) has givert an account of a unified statistical phase-

' 
space theory model tor "complex'' and "direct" reaction mechanisms. The 

model employs the calculation of fluxes through surfaces dividing the 

' 

phase-space of the system into reactant and product regions in which the 

variational procedure of Keck (22) is applied to locate the dividing 

surfaces such that the flux is either maximized or minimized. The 

"direct" mechanism refers to a single surface crossing. In this case, 

the flux through the dividing surface is minimized and the model reduces 

to transition state theory (20). However, for the long lived "complex" 

mechanisms, such as orbiting and non-adiabatic trapping collisions, 

many surface crossings are completed, maximizing the flux through the 

dividing surface, and transition state theory is no longer valid. In 

this limit, the model takes on the character of the statistical theories 

of Light (23) and Nikitin (24). 

A rather unique application of phase-space theory, the "informa-

tion theoretic approach'' has recently been proposed (25) (26). The 
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method concerns itself. with the ·analysis of branching ratios in chemical 

reactions from a thermodynamic viewpoint. The argument being that the 

fractional yield or rate for a given reaction pathway is proportional 

to the volume of phase-space accessible to that product (27). The 

information theoretic approach proceeds as follows: First, one com

putes the most probable way to distribute the molecules among all 

available quantum states, or maximize the entropy for a given reaction 

path. This is the basis of the equilibrium phase-space assumption 

in that all available quantum states have equal "a prior" probability 

from which the entropy of the equilibrium phase-space is evaluated. The 

actual entropies are then obtained from any information available on 

the molecular system. From this an entropy difference is computed, 

termed the "surprisal". The basic postulate of the theory is that the 

system will behave in such a manner as to maximize the system's entropy 

or minimize the surprisal. From this analysis branching ratios may be 

computed for competing reaction pathways by analysis in terms of the sur

prisal for each product (28). Some applications of the information 

theoretic approach have been investigation of branching ratios in 

reactive H or D atom collisions with hydrogen halides and interhalogens, 

internal and translational energy distributions for reactive collisions, 

the effect of vibrational and rotational excitation of the reactants 

on reaction rates, the energy distributions of reaction products for 

atom-diatomic molecule reactions and the isotopic branching ratio for 

the reaction F + HD, and vibrational energy transfer in inelastic and 

reactive atom-diatomic molecule collisions (29) (26) (30) (31) (32). 

The results for the most part, give reasonable agreement with experi

ment and trajectory calculations. However, in the reactions F + H2, 
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n2 the rcHt.11ts muHt be regarded wJth caution since the rotational energy 

distributions agree with trajectory calculations but, disagree with 

infrared chemiluminescence results (31). 

Variational Theories 

Variational rate theories are a branch of phase-space theories 

in that they still involve a dividing surface but they also investigate 

the possibility of minimizing the rate by varying the location of the 

dividing surface. The rate evaluated in this manner is the equilibrium 

flux crossing the dividing surface, which should be an upper bound to 

the rate as described earlier. 

One of the earliest variational calculations was applied to 

elementary association reactions (10). In its application to recombi

nation reactions, the dividing surface was located where the energy 

of the diatomic system would be zero and the number of points crossing 

the surface per unit time would be an upper bound to the rate. It was 

noted that this upper bound could probably be lowered somewhat by 

choosing a more appropriate dividing surface. When the formalism was 

applied to the as.sociation of iodine atoms under the influence of a 

third body, the calculated rates were lower than the experimental 

results. This was attributed possibly to errors in the Morse potential 

employed and the number of electronic states contributing to products. 

Horiuti (34) formulated an expression for the rate in which the 

variation of the rate with respect to a coordinate normal to ·the 

surface was required to be zero. This constraint led to the require

ment that for a minimum flow through the surface in the configuration 



space of the system the coordinate normal to the surface was related 

to the principal radii of curvature of the other coordinates as para

meters on which the rate was dependent. In comparison of this rate 

with the transition-state theory rate, it was found to have a small 

difference at room temperature. However, at higher temperatures 

transition-state theory gave a much larger rate. 

7 

Keck (35), following the variational approach of Wigner (10), 

applied the method to the calculation of a rigorous upper bound for 

the rate of three-body recombinations. This calculated rate was found 

to be lower than experimental rates obtained for these systems. How

ever, the experimental error was large enough that the calculated rate 

might still have been an upper bound to the true reaction rate. 

An important extension of the variational approach was realized 

when the variational method was coupled with Monte Carlo techniques 

for a trajectory analysis of dissociation cross sections for diatomic 

molecules (40). The initial conditions were selected from a dividing 

surface located tangent to the top of the rotational barrier. The 

time evolution of a trajectory was determined by forward and backward 

integration of the equations of motion for the phase point from the 

dividing surface to see if it would originate as reactants and terminate 

as products. One observation was that a large fraction of trajec

tories examined were reactive and a reduction of computational effort 

as compared with conventional trajectory methods seemed likely. 

The variational theory was realized to be very general in nature 

in the sense that it contained many other reaction rate theories as 

special cases (22). By incorporating the constraints pertinent to 

a given theory as conditions on the dividing surface, Keck (22) was 
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able to derive rate expressions for: unimolecular decay theory, the 

available energy theory, absolute rate theory, and statistical theories 

(37) (38) (20) (6) (13) (18). In the statistical theory, with argu

ments dealing with conservation of density in phase space, Keck (22) 

pointed out that the arbitrary measure used by Pechukas and Light (13) 

in their quantum formulation of phase space available to a product 

channel was analogous to his rate of flow of phase fluid into the vari

ous channels from a classical viewpoint. A discussion of conservation 

of density in phase space may be found in various texts on statistical 

mechanics (36). From this he noted that the omission of the flow 

velocity of phase points was what made Light's (11) original theory 

fail to satisfy the principle of detailed balancing. 

Another application of the variational procedure coupled with 

Monte Carlo trajectory methods was used to evaluate rates of atomic 

excitation and ionization by thermal electrons (39). Mansbach and 

Keck (39) obtained rates for these processes by evaluating the equi

librium surface crossing rate by the solution of the master equation 

for the system. The procedure then called for forming the product 

of the equilibrium crossing rate with a statistically weighted ratio 

of successful deexcitation trajectories to the total number to obtain 

the deexcitation rate. They concluded that the corrected surface 

crossing rate was in accord with the available experimental data at 

the time. 

Equilibrium Assumption 

For the most part the theories discussed so far have included 

some sort of equilibrium condition for formation of a collision complex. 
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This assumption is also inherent in transition-state theory and the 

combined phase-space-trajectory or combined variational theory-trajectory 

procedures (41) (42). This assumption has been treated in some detail 

for collinear and three dimensional studies. Karplus and coworkers (43) 

cast transition-state theory into a form that permitted evaluation of 

the react:ion probabilities as a function of energy for collinear reac-

tions. In the low-energy domain, transition-state theory gave a reason-

able account of the reaction probability with the potential-energy 

surface used. However, in the high-energy domain the reaction prob-

ability became greater than unity. It was concluded from this that 

transition-state theory included certain regions of phase space that 

were inaccessible to the system. 

In an extension of prior work, Morokuma and Karplus (43) (44) used 
I 

classical trajectory analysis to check the validity of an equilibrium 

distribution assumption at the transition state and investigated the 

possibility of the transmission coefficient being less than unity. 

These assumptions were tested to see how they behaved with respect to 

the nature of the potential-energy surface. They determined that the 

shape of the potential-energy surface in regions other than the transi-

tion region does affect the reaction probability and the distribution 

at the transition state. Also the location of the barrier displaced 

toward the exit or entrance channels can produce a nonequilibrium dis-

tribution in the transition region. More investigations of this nature 

for a complete three dimensional treatment on an extended LEPS surface · 

with a barrier in the exit valley proved nonequilibrium distributions 

in the transition region could occur (45). 
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The Combined Phase-Space Theory and Combined 

Variational Theory Procedures 

Anderson (41) (42) has developed a combined phase-space theory 

wherein he combined variational theory and trajectory methods. It is 

referred to collectively as the (CPST) method following the procedures 

outlined by Keck (6) (22) (40). The tests used to establish the CPST 

procedure have been comparisons with standard quasiclassical trajectory 

methods (SQCT) currently acknowledged as being the most useful theore-

tical method for investigating molecular scattering events (46). 

Anderson's motivation for the CPST procedure is that it could reduce 

computation time substantially for processes in which the SQCT method 

would be inefficient. 

The rationale of the CPST procedure is to first select a dividing 

surface S without "wrinkles" or "holes" in the phase space of the ,..., 
interaction region such that it separates the phase space of the reac-

tants from that of the products. The thermal equilibrium flux K~(T) of 

phase points crossing S in one direction is then evaluated in the classi,... 

cal approximation. This should be an upper bound to the reaction rate, 

and it should be possible to lower this upper bound by varying S in -
the interacti'on region. This is the variational aspect of the problem. 

However, the CPST procedure calls for selecting initial conditions for 

the trajectories from a Boltzmann distribution on S. The next step in -
the procedure is to integrate the classical equations of motion both 

forward and backward in time to determine if they originate in the 

reactant phase space and terminate in the product phase space. The 
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fraction ~(T) of reactive trajectories is then evaluated, and the . 

expression for the thermal rate coefficient is 

K(T) = ~(T) K~(T). (1-1) 

There are two assumptions inherent in this procedure: 

1. the thermal rate coefficient is independent of the location 

of S -
2. the initial phase points may be selected from a Boltzmann 

distribution of S (47). -
Anderson has suggested that any non~Boltzmann character on S is cor,--

rected by the conversion factor ~(T) and that the true distribution is 

the equilibrium distribution with trajectories from products missing. 

This assumption has been questioned (47) (48). 

The CPST procedure has been subjected to a number of tests and 

comparisons with the SQCT method. Some of its applications so far have 

been a study of vibrational population inversion in HI, the molecular 

dynamics of the system (H2 , r 2) as compared to the SQCT results obtained 

by Raff and coworkers (52) using the same potential-energy surface and 

other SQCT results obtained by Anderson et al. (49) (50) (51) (53). 

Several collinear model systems have been investigated by Anderson 

(41) (54) on a variety of potential-energy surfaces intersecting 

rectangular channels of different elevation, smooth curves of para-

bolic cross section and the potential-energy surface for the reaction 

H2 + I -> H + HI. It was applied to both forward and reverse reactions 

for the system F + H2 + HF + H and compared to the previous SQCT result 

(42) (55) obtained with the same potential-energy surface. The CPST 
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procedure was applied to the (H, r2) and (HJ Br2) systems and compared 

with SQCT results in the same study (47). Also a model system A+ BB + 

AB + B closely related to the H + F2 + HF + H system was investigated 

to assess the validity of the thermal rate coefficient being indepen-

dent of the location of the dividing surface (56). 

Conclusions regarding the CPST procedure are that for some sys-

terns the thermal rate coefficient may be obtained nearly within the 

statistical error of the SQCT results (41) (47) (56). Claims of 

large reduction in computational time have been made but, they are not 

believed to be general (40) (41) (47). The validity of the method should 

increase as the accuracy of classical mechanics increases in describing 

the nuclear motion (42). The initial assumption of a Boltzmann distri-

bution on the surface S when it is located in the interaction region ,.._ 

may induce nonequilibrium distributions 'in the reactants (47). The CPST 

procedure is not reliable for accurate determinations of reaction cross 

sections arid is not applicable to nonthermal systems (47) (42). 

Statement of Research Problem 

The present research problem is twofold in character. The first 

part being to apply Keck's (22) variational procedure to minimize the 

variational rate coefficient by systematic variation of S over a given 
~ 

potential-energy surface. One in particular will be the potential-

energy surface obtained by Porter and Karplus (57) for the (H, H2) 

system. Once the minimum variational rate coefficient has been found 

for a given temperature for the minimum crossing surface,s0 , a number 

of variational rate coefficients will be computed at other temperatures 



13 

for the surface!o· In addition to this, rate coefficients will be com

puted from classical trajectories at various temperatures to allow com

parison of the classical trajectory and variational rate coefficient's 

temperature dependence. 

In the second part of the problem, once the minimum variational 

rate coefficient has been found, the surface,~' will be used to select 

initial conditions for the classical trajectories required to compute 

the thermal rate coefficient from Eq. (1-1). These results will then 

be compared with the corresponding SQCT results on the (H, H2) system 

(58). It is realized that this is one of the most severe tests of the 

CPST procedure. There is a significant amount of zero-point energy 

in the (H, H2) system which is entirely neglected in the CPST approach. 

Also, there is a large barrier to reaction which could introduce sig

nificant error if the zero-point energy is ignored. In addition to 

this, the CPST rate coefficient, differential scattering cross sections 

and energy distributions will be compared with the classical trajectory 

results. It is hoped that from these detailed comparisons a quanti

tative assessment may be made of the CPST procedure. 



CHAPTER II 

FORMULATION OF THE PROBLEM 

Description of the 

Problem 

The initial part of the problem is to compute classical trajector

ies for the (H, H2) system using two different methods to select the 

initial conditions for the internal coordinates and momenta for the BC 

molecule. Method I involves selection of the initial BC relative mo

menta from randomly chosen classical vibrational and rotational action 

variables with the BC radial distance randomly chosen from a Morse oscil

lator distribution. Method II calls for randomly choosing the initial 

conditions for the internal dynamical variables of BC from Holtzman 

weighting of the classical internal BC Hamilto~ian. 

The formulation of the variational rate coefficient involves a 

linear transformation from the relative configuration space of the 

A-B-C system (r, 6, ~~ R, 0, ~) to a (W, V, e, ~' 0, ~) configuration 

space. The variational rate coefficient depends upon the location of 

the dividing surface, which may be varied to find a local minimum. A 

minimization of the variational rate coefficients is carried out for 

both the (H, H2) and (H, I 2) systems. 

Once a minimum crossing surface, s0 , has been found for the varia

tional rate coefficient for the (H, H2) system at one temperature, it 

14 
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will be used to compute variational rate coefficients at a number of 

other temperatures. In addition, rate coefficients from classical 

trajectory procedures will be evaluated at these temperatures and com-

pared with the minimum variational rate coefficients. To evaluate 

the CPST rate coefficient at these temperatures, the phase points are 

assumed to have Boltzmann weighting on s0 and initial conditions for 

the CPST trajectories will be chosen for the eleven degrees of freedom 

on s0 from the appropriate distribution functions according to Ander

son's (41) (42) (49) prescription. 

After the CPST rate coefficients have been evaluated at the vari-

ous temperatures mentioned above, they will be compared to both the CT 

rate coefficients and the minimum variational rate coefficients. The 

various statistical distributions obtained in the CPST procedure will 

be compared with those obtained from the CT results. Indeed, the react

ant distributions obtained from the CPST procedure should provide some 

insight into the question as to whether both procedures sample the 

same set of trajectories. The CT procedure requires that atom A and 

molecule BC be separated by a large enough distance such that the 

intermolecular potential is negligible. So, for thermal systems, a 

Boltzmann distribution is assured in the CT procedure. That is, all 

trajectories originating in the reactant valley should be in thermal 

Boltzmann equilibrium. 

Classical Trajectories-Method I 

The procedure for random selection of initial states for classi-

cal trajectories has been well described previously (46) (58) so only 
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pertinent equations will be given here. If the dynamical variables 

of the system are assumed to be separable, the Monte Carlo random num-

ber for the variable x is defined by 

X 

{;(x) { w(x')dx'/ 

0 

X J w(x")dx", 

X 
0 

(2-1) 

where 0 ..::_ E;;(x) ..::_ l. In the equation given above w(x)dx is the weight 

associated with the variable x. x is the lower limit of integration 
0 

and x is the upper limit of integration. The solutions of Eq. (2-1) 

for x provides the randomly chosen initial condition for the dynamical 

variable x. 

The rotational action (46) in the rigid rotor approximation for 

method I is assumed to be continuous in J with Boltzmann weight factor 

w(J)dJ (2-2) 

where I is the equilibrium moment of inertia. When w(J)dJ is sub-

stituted into Eq. (2-1), the integral in the denominator becomes the 

rotational partition function 

Q = 2IkT/h2 • 
r 

(2-3) 

The solution to Eq. (2-1) for the continuous rotational action variable 

becomes 

(2-4) 
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The random selection of the initial vibrational action variable 

(46) for BC in the harmonic oscillator approximation proceeds by sub-

Stituting the Boltzmann weight factor 

w(v)dv = e 
-vftw /kT 

0 dv (2-5) 

Substituting Eq. (2-5) into (2-1) with v = 0 and v = ®' then solving 
0 

for the upper limit of the numerator integral one obtains 

v = -kT ln(l-~(v))/tw • 
0 

(2-6) 

The initial BC radial separation is obtained by setting a random number 

R equal to the radial distribution function D(r) (59) so that, 

1 1 . (b~ + 2a ) R = ~ - ; arcs1n .~~~==~ , 
~v{2 -4ac 

(2-7) 

where a = E - D, b = 2D, c = -D, E is the energy of the Morse oscilla-

tor, and 
-a(r-r ) 

e 
e 

Solving Eq. (2-7) for r one obtains 

r = r - l ln((-2a)/(b-~ 2-4ac cosnR)). 
e a 

(2-8) 

(2-9) 

If the argument of cos(nR) is replaced with 2nR + n/2, which retains 

the same weighting as the argument R, Eq. (2-9) becomes 

r = r 
e 

- l ln((-2a)/(b+/i62-4ac sin(2nR))), 
a. 

(2-10) 
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tltls is the equation obtained by Porter, Raff and Miller (59). 

Initially, the radial vector of BC is aligned along the z-axi~ 

with its angular momentum vector pointing in the positive x direction. 

This gives the following relative cartesian coordinates and mementa for 

BC (46) 

Qo = 0 
1 

Qo 
2 

0 

0 r (2-11) Q3 = 

Po = 0 1 

Po 
1 

= (J(J + 1)~/r 
2 

Po ~(2~ 
~ = (E - V(r))) , 

3 

In the above equations, ~ is the BC reduced mass, E is the vibrational 

energy in the harmonic oscillator approximation for the given vibration-

al action v and V(r) is the Morse potential (46). 

To accomplish the random orientation of the BC relative coordinates 

and momenta, rotation matrices are employed. Written out in operator 

form the equations for the rotations are 

R (~) R (8) R (n) z y z 

= R (~) R (8) R (n) P0 
z y z 2 

Po 
3 

(2-12) 



The rotation matrices R (41) and R (41) (46) (52) are given by 
z y 

cos41 sin4l 0 

R (41) = -sin41 cos4l 0 
z 

R (41) = 
y 

0 0 1 

coscp 0 -sin4l 

0 1 0 

sincp 0 cos4l 
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(2-13) 

(2-14) 

The orientation angles q,, 8, and n expressed in terms of the appropriate 

random numbers are 

(2-15) 

8 =arccos(!- 2 ~(8)). 

The initial separation between A and the BC center of mass is 

fixed at R at the beginning of each trajectory, where R is a distance 
0 0 

such that the intermolecular interaction between A and BC is neglible. 

The initial cartesian coordinates and conjugate momenta of A relative 

to the BC center of mass are given by (58) 

Q4 0 

Q5 b 
1 

Q6 = -(R2 b2)~ (2-16) 
0 

p4 = 0 

p5 0 

p6 = J..IA,BCVr, 
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where ~ C is the A, BC reduced mass, V is the relative velocity of A 
A,B r 

with respect to the BC center of mass and b is the impact parameter. 

The initial impact parameter is chosen from (46) 

(2-17) 

The reaction probability obtained from a set of N trajectories contain-

ing N reactive trajectories is defined by 
r 

P(V ,b) 
r 

b < b - M 
(2-18) 

where bM is the maximum impact parameter. To obtain bM, one computes 

trajectories at fixed values of b and relative velocities above the 

threshold velocity, whenever P(V , b) ~ 0, one chooses that value of 
r 

b as b • 
m 

After all the steps above have been completed, the initial condi-

tions for an A + BC collision have been completely specified. The 

trajectories are time integrated from the initial reactant state to 

the final state by a fourth order Runge-Kutta method (60). Initially, 

non-statistical trajectories are computed to find the maximum impact 

parameter according to Eq. (2-18). Trajectories are then computed at 

low relative velocities until it is possible to approximate the reac-

tion threshold V , the relative velocity below which no reactions occur. 
0 

If b is defined by Eq. (2-17), the reaction cross section is given by 

v < v 
r- o 

> v 
0 

(2.:..19) 
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where ~(bi) is the random number associated with the impact parameter 

for a given reactive trajectory i, N is the total number of reactive 
r 

trajectories, and N is the total number of trajectories examined for a 

given relative velocity (46). To obtain V , trajectories are computed 
0 

at fixed relative velocities until a relative velocity is found for 

which S(V ) vanishes, this relative velocity is then chosen as V • 
r o 

Cross sections averaged over rotation and vibration are computed 

for several relative velocities via Eq. (2-19). The stati~tical error 

is given by 

(J = 
N 

r 

<1: 
i=l 

N 
r 

1 ( 1: 
N i=l 

N 
r 

1: 
i=l 

(2-20) 

Once the cross sections have been computed, the rate coefficient may be 

obtained from (58) 

!v" 
0 

S(V ) r 

(2-21) 

where C is a conversion factor converting the rate coefficient into 

3 em /mole-sec. The upper limit of infinity for the relative velocity 

may be replaced by a finite upper limit V above which the value of the 
r 

integrand makes small contribution to the integral. 

Molecular units (52) are used throughout the body of the text 

unless otherwise specified. 

Classical Trajectories-Method II 

To select the initial internal momenta and coordinates of BC for 



method II, let A be a distance R away from the center of mass of BC, 
0 
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so that there is little interaction between A and BC. The BC Hamilton-

ian in spherical polar coordinates is approximately 

1 2 2 2 2 2 2 
H - 2 ~ (pr + p6/r + p~/r sin 6) + V(r) , (2-22) 

where V(r) is the Morse potential 

V(r) 
-a.(r-r ) 

= D (1- e e ) 2. 
1 

(2-23) 

One begins the selection of initial conditions by substituting 

the appropriate Boltzmann weight factor for a particular degree of 

freedom into Eq. (2-1). The Boltzmann weight factors for the momenta 

all fall into the same category 

2 
w(p)dp = e-a p dp (2-24) 

for p a = 8/2~, where 8 = 1/kT. Substituting this into Eq. (2-1) r 

with appropriate limits one obtains 

~(p) 

... 2 r -ap 

= J-p e 

2 J_oo -ap 

-co e 
dp. (2-25) 

The denominator integral is frr/a taking a = l/2o2 it becomes /2; o. 

Changing variables from p ... to y ... = p ... /(.ff a) Eq. (2-25) becomes 

f y,-y ... 2 
. 2 

~(y) = -- e dy ... = erf(y) 
;; 0 

(2-26) 
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the error function (36). To find p that is the solution to Eq. (2-26) 

one solves 

~(y) - erf(y) = 0 , (2-27) 

and 

p = + 12. q y (2-28) 

with the plus or minus sign chosen randomly. The spherical polar 

momenta for BC may be determined by Eq. (2-28) and the appropriate 

y for each momentum for the solution to Eq. (2-27). It has already 

been noted for pr' that a = l/2~kT, a = l//:2.a = /~kT so 

(2-29) 

Similarly, by appropriate substitution, one has for p8 and p~ 

p 0 = + r sinO l2~kT y~ • (2-30) 

To randomly select the BC radial length, the Boltzmann weight of 

V(r) given in Eq. (2-23) is employed in a numerical partial sum tech-

nique that is equivalent to Eq. (2-1) (47). The Boltzmann weight for 

the variable r is 

w(r)dr 
-V(r)/kT 2 

= e r dr (2-31) 

Substituting w(r)dr into Eq. (2-1) the formal definition of ~(r) is 
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{r 2 -V(r"')/kT roo -V(r)/kT 
~(r) = .Ia r"' dr"' e I .Ia r 2dr e (2-32) 

The important contributions for the integrand of the denominator inte-

gral occur near r = r 0 • One may replace the infinite upper limit with 

a finite upper limit r"'"' and obtain an approximation for the denomina-

tor integral. This approximation should be reasonable as long as the 

interval [a, r"'"'] contains the r values where the integrand makes its 

largest contribution to the integral. To implement the selection of 

r in this manner, one first evaluates the sequence of partial sums 

k 2 
sk = 1: ri 

i=l 
(2-33) 

where (k = 1, 2, 3, •.. , n), n = r"'"'/~r + 1, where ~r is the interval 

spacing. The partial sum sequence {s1 , s2 , ••• , Sn} is then normalized 

with respect to S 
n 

(2-34) 

To numerically solve the initial r, one employs the sequence {Wk} 

and tests by incrementing over k for randomly chosen ~(r) the condition 

(2-35) 

The first k value for which condition (2-35) holds, one chooses r = rk. 
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To complete the specification of the relative cartesian coorai-

nates and mementa of BC, one randomly chooses the orientation an&le~ e 

and$ according to Eq. (2-15). So the initial cartesian coordinate~ 

for BC are 

Ql ::: r sinS COS$ 

Q2 ::: r sinS sin$ (2-36) 

Q3 ::: r cosS 

Letting y = ±. y in Eq. (2-28) and substituting the randomly chosen 

pr' p0 , p$ into the spherical polar expressions for the relative 

cartesian momenta of BC one has 

pl sinS COS$ lzllkT y + cosS COS$ lzllkT y·S sin$ lzllkT y $ r 

p2 ::: sinS sin$ lzllkT y + cosS sin$ lzllkT y S + cos$ lzllkT y $ r 

P3 = cose 12llkT yr - sinS hllkT y S • (2:-37) 

The only remaining difference between method I and method II in 

specifying the initial conditions for an A, BC collision is the selec-

tion of the initial relative velocity. In method I, cross sections are 

computed at fixed relative velocities in the interval [V ,V ']_so that o r 

Eq. (2-21) may be evaluated by a given quadrature formula. However in 

method II V is randomly selected and Eq. (2-21) is evaluated by Monte 
r 

Carlo techniques. The Boltzmann weight factor associated with V 
r 

is (46) 

w(V )dV 
r r 

2 
-ll BCV /2kT 3 = e A, r V dV 

r r 

Substituting the appropriate limits into Eq. (2-1) ~(V ) becomes 
r 

(2-38). 



t;(V ) 
r 

• Jr.-PA,BCv;2/2kT 

0 

v .. 3 dV .. 1 
r r 
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2 fvoo e-~A BCV /2kT 3 
' r V dV 

r r 
0 

(2-39) 

After the integrals have been evaluated, V is the solution of the ex
r 

pression 

(l _ t;(V ))(V2 + 2kT ) 
r 0 ~A BC 

' 

0 • 

(V2 + _ 2kT ) 
r ~A BC 

' 

(2-40) 

Once V has been specified, the A relative to BC center of mass coordi
r 

nates and momenta are selected according to Eq. (2-16), which completes 

the specification of initial conditions in the method II formulation. 
I 

After numerical integration of a set of N trajectories containing 

a subset of N reactive trajectories, the rate coefficient is given by 
r 

(46) 

K(T) 

N 
~ r 
~ t;(bi) 
i=l 

with statistical error determined by Eq. (2-20). 

Formulation of the Variational 

Rate Coefficient 

(2-41) 

The variational rate coefficient for an (A, BC) exchange process 
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at thermal equilibrium has been expressed by Keck (22) as the eqYili-

brium flux across S, 

1 
= - Q(S) /s = o 

-+ " 
v.n > 0 

-SH 
e 

-+ A 

v.n do, 
s 

(2-42) 

where do is the differential surface element obtained by fixing the 

value of one of the generalized coordinates of the relative A-B-C phase 

space. S is the trial surface separating the reactant phase space from 

the product phase space with the position of S being described by a 

fixed value of the coordinate ql. 
-+ 
v is the generalized velocity of a 

phase point crossing the surface S; n is the vector normal to the 
s 

-+ .... -+ 
surface S; v.n is therefore the component of v normal to S, and the 

s 
-+ .... 

integration limit v.n > 0 only counts that portion of the flux crossing 
s 

S in the direction of the product phase space. Q(S) is the classical 

partition function per unit volume for reactants given by 

y 
Q(S) 

1 =-

w 

6 
II 

i=l 
dp.dq. 

~ ~ 
(2-43) 

where y is the normalization volume in configuration space; and w is 

the volume of the reactant phase space. The classical Hamiltonian 

initially expressed in spherical polar coordinates shown in Figure 1 

is 

P 2tR2sin20) + ( 9 ~ R 0 ~) v r, ' '~"' ' -' 'f! 
4> 

= T + v(r, 9, cj>, R, 0, ~) , (2-44) 



A 

Figure 1. Spherical Polar Coordinate System to 
Initially Formulate the Variational 
Rate Coefficient 

21 
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where v(r, 6, ~' R, 0, ~) is the three body A-B-C potential. As the 

+ radial vector R gets large v(r, 6, ~' R, 0, ~) goes to V(r) and Eq. 

(2-44) reduces to 

H = T + V(r), 
0 

(2-45), 

where V(r) is taken to be the Morse potential given by Eq. (2-23). 

In order to obtain the parameterization of S, a linear trans-

formation is made from (r, 6, ~' R, 0, ~) space to (W, V, 6, ., 0; ~) 

space. The transformation is 

W = AR- Br 
(2-46) 

V = R + r 

with no changes in the other coordinates. To express the Hamiltonian 

in terms of the new momenta, one requires the Lagrangian in spherical 

polar coordinates. The expression is 

2 2 2 ·2 2 2 ~A,BC 2 2 2 
L - ~ (~ + r e + • r sin 6) + - (R + R 0 + - 2 2 

•2 2 2 
~ R sin 0) - v(r, 6, ~' R, 0, ~) • (2-47) 

Taking the time derivatives of Eq. (2-46) and inverting to obtain the 

old velocities in terms of the new, one obtains 

. 
r = (AV W)/(A +B) 

R = (BV + W)/(A +B). (2-48) 

Substituting r and R into Eq. (2-47) one obtains the new Lagrangian 

as, 



L = ~ (((AV- W)/(A + B.)) 2 + ((AV- W)/(A + B)) 2 ;/ 
2 

+ ((AV- W)/(A + B)) 2 ~2 sin2e) + 
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]..IA2BC (((BV + W)/(A + B)) 2 + ((BV + W)/(A + B)) 2 fl 

2 • 2 2 
+((BV + W)/(A +B)) ~ sin 8) -

v(r(W,V), e, ~' R(W,V), 8, ~) • (2-49) 

The new momenta are obtained from (61) 

(2-50) 

Applying Eq. (2-50) to Eq. (2-49) one obtains P cv, w w) and P (V, W). 
v 

Substitution of Eq. (2-48) and noting r = p /]..1 and R = PR/]..IA,BC yields r 

p = (-pr + PR)/(A + B) w 
(2-51) 

p = (Apr+ BPR)/(A +B). v 

Inversion of Eqs. (2-51) gives 

pr = P - BP v w 
(2-52) 

PR = P + AP v w 

Substitution of Eq. (2-52) into the Hamiltonian Eq. (2-44) yields the 

Hamiltonian in the new coordinate system. 
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2 A2 
H = (_l + 1 )P 2 + ( A _ !)p p + (!_ + )P 2 

2~ 2~A,BC v ~A,BC ~ v w 2 ~ 2 ~A,BC w 

+v(r(W, V), 6, <f>, R(W, V), 0, ~). (2-53) 

+ A 

In order to integrate Eq. (2-42), one requires v.n = v expressed s n 
s 

in terms of the new coordinates and momenta. The dividing surface S is 

defined to be: 

S - W - C = AR - Br - C 0 . (2-54) 

Thus, one has two variational parameters with which vary the location of 

S since 

R- (B/A)r- C/A = 0. 

The unit vector normal to S is given by 

+ A 

The dot product v.n may be written 
s 

+ A 

v.n 
s 

+ + v.vs 
=--- = 

-'+ 
lvsl 

[dS/dt]/ I vsl. 

(2-55) 

(2-56) 

(2-57). 

However, S has no explicit time dependencn, so the total time variation 

of :; j :-; given by the Poisson bracket of S with H (61). That is, 



dS/dt = [S, H] • 

Combining Eqs. (2-57) and (2-58) one has 

v = [s, H] /IVSI 
n s 

Expansion of the Poisson bracket leads to 

[s, H] 
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(2-58) 

(2-59) 

(2-60) 

Obtain-ing IVSI in the (W, V, e, cf>, e, 4>) coordinate system is some

what involved and its derivation is given in Appendix A. If VS is 

expressed in relative cartesian coordinates of the relative A-B-C 

configuration space, one obtains 

~ ~ 

Q5 (as/aQ5) + Q6 (as/aQ6), (2-61) 

where the Qi are orthonormal vectors in the direction of the Qi axes. 

Taking the magnitude of Eq. (2-61) provides 

(2-62) 

and substitution of Eqs. (2-60) and (2-62) into Eq. (2-59) the velocity 

component normal to S'of a particle crossing S is, 

B2 A2 ( A _ ..!!)P ) 1h_z + Bz (2-63) v = ( ( - + )P + n ll llA,BC w llA,BC ll v s 



To obtain the upper limit of integration for v.n > 0 in Eq. 
s 

(2-42) for the (W, V, e, $, 0, ~) coordinate system, the requirement 

v < 0 must be satisfied. This leads to the condition, 
n s 
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p < -
w 

A B B2 A2 
( - -)P I(-+ ) 
~A,BC ~ v ~ ~A,BC 

(2-64). 

In order to evaluate the configuration integrals in Eq. (2-42), one 

must integrate over all (r, R) space accessible to the system on the 

surfaceS given by Eq. (2-54). Substituting W = C into r(W, V) 

and R(W, V) yields the expressions, 

r(C, V) = (AV C)/(A +B) 
(2-65) 

R(C, V) = (BV + C)/(A +B) 

To find the lower limit of the V integral for C > 0, set r(C, V) 

in Eq. (2-65) equal to zero and solve for V. For C < 0, treat R(C, V) 

in the same manner. This yields the following equation for v~, the 

lower integration limit of V, 

{ 

C/A, 

. 0, c = 0 

-C/B, 

c > 0 

(2-66) 

c < 0 • 

Since the Jacobian determinant of the transformation to (W, V, 

8, $, 0, ~, Pw' Pv, PO, p$, P0 , P~) phase space, factors into the 

product of the Jacobian for the configuration space and that of the 

momentum space one has, 

dcr = ldet aQ (C) 
,_, 

/det gp(C) dV de d$ d0 d~ dP dP dp dp~ dP0 dP , 
w v e 't' - ~ ,...., 

(2-6 7) 
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where det aQ(C) is the determinant of the metric tensor for the five-dimensional hypersurface of the configuration space described by W = C. 

This may be obtained by taking the g11 cofactor of Eq. (A-8) of Appen

dix A and evaluating it at W = C. One evaluates det gp(C) by taking -the determinant of gp(C) of Eq. (A-14) of Appendix A. Substituting 
,._ 

the results of these operations into Eq. (2-67) yields the differen-

tial element of surface for the eleven-dimensional surface in phase 

space defined by W = C. The result is, 

(2-68) 

Substitution of Eqs. (2-53), (2-63), (2-64), (2-68), and the appro-

priate v~ from Eq. (2-66) into Eq. (2-42) yields the variational rate 

coefficient 

K~ (A, B, C, S) = - Q(~) (w dV (1T d8 ( 2
1T d<f> ( 2

1T 

.lv=v~ .lo .I o J' o 
de 

-Sv(r(C,V), 
X e 

2 AV-C 2 2 (w -Sp<l> /2ll(A +B) sin 8 
X .1-w dp<P e 

dP 
v 

e 
-S( 1 + _!)P 2 

2llA,BC 2ll v 
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< - ( 
A B B2 A2 

p - -)P /(- + ) : 

Jd: 
JJ A, BC jJ v jJ JJ A, BC 

B2 2 
+ ( A _ B)P ) X ((- + A )P 

.. w jJ JJA,BC w JJA,BC 1J v -co 

82 2 
_8((- + A )P 2 + ( A _ !)p p ) 

2JJ 21lA,BC w JJA,BC ~ w v X e 
(2-69) 

The partition function for reactants Eq. (2-43) written in spherical 

polar coordinates gives the following phase space integral, 

Q( D) -- ly/000 dr e-8V(r) (OR"'dR ('IT (2'IT {'IT r2'IT 
~ .lo .lode ./o d~ }ode }o d~ 

2 2 2 2 2 

J_oo -8P0 /2JJA BCR foo -8P /2JJ R sin 0 
X dP0 e ' dP~ e ~ A,BC 

-oo _oo 

2 
co -8P /2JJ J_ dP e R A,BC 

X R 
-00 

(2-70) 

where y = 47rR"' 3/3. After evaluation of the phase space integrals in 

Eqs. (2-67) and (2-68) and substitution of the resulting expression for 

Q(8) into K"'(A, B, C, 8), one obtains 

K"'(A, B, C, kT) 1 h'ITkT (B2 + A2 ) 
1J JJA BC 

' 
(A+B) 

where, 
00 I -V(r)/kT 

r 2dr e 

0 

11 (A, B, C, kT) 

r2 (kT) (2-71) 

(2-72) 



1T 

I 1 (A, B, v~, kT) = ~ sin8d8 

0 
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00 

~-v- dV 

-v(r(C,V), R(C,V), cos8)/kT (2-73) 
X e 

and 8 is the A, BC center of mass, C angle. That is, in order to 

evaluate the configuration integrals in Eq. (2-67) that specify the 

+ 
arbitrary collision plane, one orients the vector R along the Q6 axis, 

then a = e and the integrations over the orientation angles are carried 

out for fixed e and V. 

Questions have been raised about the conyergence of Eqs. (2-72) and 

(2-73) (22) (47) (64). The argument being, that the potential becomes 

constant at large particle separations and the integrals are divergent. 

The current remedy is to replace the infinite upper limits of Eqs. 

(2-72) and (2-73) with finite upper limits Vml and rm2 values of V > Vml 

and r > rm2 might be considered a region of inaccessible phase space 

for the process under consideration. The new upper bounds define 

1m2 
0 

1T 

-~ sin8d8 

2 r dr e 
-V(r)/kT 

2 
dV (BV+C) 

A+B 

Av C 2 -v(r(C,V), R(C,V), cose)/kT 
(---) X A+B e 

(2-74) 



Examination of Eq. (2-69) reveals that it is a variational rate 

coefficient depending on two variational parameters. Taking the par-

ticular set B = 0, A= 1, and C = R in Eq. (2-54), one finds an 
t 

interesting special case of Eq. (2-71). The surfaceS is now defines 

as, 

37 

S = R - R = 0 
t 

(2-75) 

Denoting r1 of Eq. (2-74) as r1 ~ and making the change of variable 

r = V - C yields, 

sin8d8 

r 

/
ml 2 -v(r, Rt' cose)/kT 

r dr e 

0 

(2-76) 

Substitution of Eq. (2-76) into Eq. (2-71) gives the following 

expression: 

(2-77) 

This is the result previously derived by Anderson (42) with finite 

upper limits for the integrals r1 and r 2 • 

Selection of Initial Conditions for the Combined 

Phase Space/Trajectory Procedure 

The derivation of the variational rate coefficient is based on 

the first of the two CPST assumptions: The thermal rate coefficient 

K(T) evaluated from Eq. (1-1) is independent of the location of S. In 

order to select initial phase points on S for the CPST trajectories, 
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a1mumpt:lon 2 is invoked. That is, the initial phase po:lnt describing 

the remaining eleven classical degrees of freedom of S may be selected 

from an equilibrium thermal Boltzmann distribution for each degree of 

freedom. 

The classical degrees of freedom e and V have as their Boltzmann 

weight factor the integrand of Eq. (2-74). That is, 

( BV i +C)2 ( AV i -c)2 
sinej A+B . A+B 

-v(r(C,Vi), R(C,Vi), cosej)/kT 
X e ~ej ~Vi (2-78) 

where ej and Vi are the increment sizes along the e and V axes, respec

tively. Notice that Eq. (2-78) implies f(e, V) is constant over the 

(e, V) region e in the interval [ej, 9j+ ~ej] and v in the interval 

[vi, Vi+ ~Vi]. To implement the random sampling of the initial 

(ej, Vi) over the integration limits of Eq. (2-74), one requires the 

e and V increment sizes be constant. The partial sums of Eq. (2-78) 

(47) may be used for the Boltzmann weight of e values in the integral 

[0, et] and V in the interval [v~, Vk]. That is, 

s = tk 

k 

1: 
i=l 

The partial sums Stk are evaluated for 

contained in the area bounded by e. in 
J 

(2-79) 

every grid point, (ej, Vi), 

the interval [0, 1T] and vi in 

the interval (V .. , Vml]. Denoting em = 1r and Vn = Vml one forms the 
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sequence of partial sums, 

(2-80) 

Normalizing this partial sum sequence with respect to S , a normalized nm 

sequence of partial sums may be obtained, 

(2-81) 

where 

(2-82) 

Random selection of the initial (er' Vk) for a CPST trajectory proceeds 

by choosing a random number,,(e, V), and searching the {Wij} sequence 

until the condition 

~(e, v) - wtk' o (2-83) 

is satisfied. Then, one may obtain the spherical polar variables 

r(C, Vk) and R(C, Vk) from Eq. (2-65). 

To specify the initial momenta on S, one requires the indefinite 

integrals of Eq. (2-69). After integration over the P integral, the 
w 

remaining integrals are all gaussians described by Eqs. (2-24) through 

(2-28). Replacing y with z as the solution to Eq. (2-27), absorbing 

the randomly chosen positive or negative sign into z, and substituting 

the appropriate a's into Eq. (2-28), the initial Pv' p6, p., P0 , P~ 

momenta for a given CPST trajectory on S are given by, 



p 
v 

1 
(A+ B) 

P0 = z0 R(C,Vk) 

p~ = z 
~ 

r(C,Vk) 

Pe o:; z 
8 

r(C,Vk) 

lzllA,BCkT 

v'zJJkT 

lzJJkT . 

If one defines 

f(P ) 
w 

2 A2 
= (!_ + ) p 2 + ( A _ !) p p 

21l 21lA,BC w llA,BC JJ w v 

z v 

(2-84) 

(2-85) 
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and Ip (Pv) as the definite integral of Pw over the limits given by 
w 

Eq. (2-69), 

I (P ) 
p v 
w 

1 
-- e s (2-86) 

then replacing the lower limit of -oo of the P integral by P , the 
w w 

Monte Carlo random number for the random selection of P may be 
w 

written as, 

-Sf(P ) 
e w + 1 . (2-87) 

Substituting the quantities defined by Eqs. (2-85) and (2-86) and 

solving Eq. (2-87) for P , one obtains, 
w 



p 
w 

1 
= -...,.-----

B2 A2 
(-+--) 

J..l llA,BC 

( _ ( A _ B)P 
llA,BC J..l v 
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j.(2kT(B2 + A2 )ln(l-~(P )))) 
ll llA,BC w 

The orientation angles, ~' 0, ~, for the arbitrary collision plane 

are the only variables that have not been specified. Setting ~=e=~=O 

and obtaining the radial momenta pr and PR from Eq. (2-52), one may 

write the initial phase space point on S as cartesian coordinates and 

momenta expressed in terms of spherical polar coordinates and momenta. 

The result is, 

Ql = r(C, Vk) sine t 

Q2 = 0 

Q3 = r(C, Vk) cose 
t 

Q4 = 0 

Qs = 0 

Q6 R(C, Vk) 

pl = sinet pr + coset 12]..lkT z 6 

p2 = h]..lkT z~ 

p3 = cos6 pr + sinE\ 12\lkT z6 t 

p4 = /2J..IA BCkT ze 
' 

Ps hllA,BCkT z~ 

p6 = p (2-89) R 
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Once the initial phase point on S has been determined by Eqs. 

(2-89) this provides the initial conditions for a CPST trajectory. 

Hamilton's equations are then numerically integrated (60) toward the 

product region of phase space, or one follows the time evolution of 

the trajectory in the relative A-B-C phase space until one of the 

following conditions is satisfied, 

s = w - c > 0 (2-90): 

or 

2 - R 2 > 0 pi 0 
(2-91) 

where pi is the distance from the geometric center of molecule i to 

the separated atom. 

If the condition of Eq. (2-90) is satisfied, the trajectory 

has recrossed S and started toward the reactant phase space. This 

is considered a nonreactive or unsuccessful trajectory. Any tra-

jectory satisfying this criterion is terminated. If a trajectory 

starting from S going toward the product region of phase space does 

not satisfy Eq. (2-90), but does satisfy Eq. (2-91), then it is a 

possible candidate for a successful trajectory. To determine if a 

trajectory is successful after it reaches the product region of phase 

space, the trajectory is back integrated from the initial phase point 

on S. If it terminates in either of the product regions of phase 

space by satisfying Eq. (2-91), the trajectory is unsuccessful. If 

the trajectory terminates in the reactant region of phase space, it is 

a successful or reactive trajectory. 
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Considering the results of the previous section, a variational 

rate coefficient has been derived that depends on the variational 

parameters A, B, and C which describe the location of S in the con-

figuration space of the (A, BC) system. One may vary S with respect 

to these parameters and determine a minimum variational rate coeffi-

cient by evaluation of K'(A, B, C, kT) of Eq. (2-71) for each (A, B, C) 

triple. Once this minimum has been determined, one may evaluate the 

CPST rate coefficient by running trajectories with initial conditions 

chosen from the minimum corssing surface s0 • The CPST rate coeffi

cient Eq. (1-1) becomes, 

K(A, B, C, kT) =~(A, B, C, T) K'(A, B, C, kT), 

where 

~(A, B, C, T) = N (A, B, C, T)/N(A, B, C, T), 
r 

(2-92) 

(2-93) 

and N denotes the number of reactive trajectories computed from a set 
r 

of N trajectories. 

The statistical error associated with Eq. (2-92) is given by 

(47), 

cr 2 = (N-N )/NN • 
r r 

(2-94) 

Once the A, B, C, triple describing s0 has been found for a 

given temperature, these parameters are used to compute variational 

rate coefficients over a large temperature range. 

Integration of the Equations of Motion 

Once the initial conditions for a trajectory have been specified 
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by Eqs (2-11), (2-12), and (2-16) of method I, Eqs. (2-36), (2-37) and 

(2-16) for method II, or Eqs. (2-89) for a CPST trajectory, one has 

chosen a point on a trajectory in the phase space of the system. 

Following the time evolution of a trajectory through the phase space 

of the system is equivalent to knowing all values of the Qi and Pi for 

the trajectory at each instant of time during the collision event. 

To obtain the P. and Q., one must numerically solve Hamilton's equa-
J J 

tiona for a conservative system. The equations are: 

(2-95) 

where both i and j assume values from 1 to 6. The procedure involves 

solving twelve simultaneous differential equations of the form 
. . 

The expressions for the Pj and Qj have been 

derived by Karplus, Porter and Sharma (58). 

To implement the solution of this system of differential equations, 

a fourth order Runge-Kutta method with minimum error bounds is employed 

(60). Specifying one of the dependent variables as y at time t and y 
0 

as its value at the previous time step t-h with h being the integration 

step size, the pertinent iterative equations are: 

y y0 + 0.17476028 k1 - 0.55148066 k2 + 1.20553560 k3 + 

0.17718478 k4 • (2-96) 

If the expression for y~ is y~ = f(t, y), the expressions for the 
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kl = h f (t ,y ) 
0 0 

k3 h f(t0 + 0.45573725h, y0 + 0.29697761 k1 + 0.15875964 k2) 

k4 = h f(t 0 + h, y0 + 0.21810040 k1 - 3.05096516 k2 + 3.83286476 k 3). 

(2-97) 

The integration step size is determined by integrating a random sampling 

of ten classical trajectories for each temperature from initial condi-

tions chosen in the reactant valley to final conditions and then back-

integrating to the reactant state. The criterion a step size was 

required to satisfy in order to be acceptable is that it reproduce the 

initial conditions with less than ten percent' relative error of the 

most inaccurate coordinate or momenta. The step sizes determined in 

this manner from the classical trajectory procedure are assumed valid 

for the CPST trajectories. 

Determination of the Final State 

The final state of a classical trajectory is determined by testing 

Eq. (2-91) at each time step during the numerical integration of a tra-

jectory, a condition which is valid for both CTA and CPST trajectories. 

Once Eq. (2-91) is satisfied, one has the possibilities of three dif-

ferent final systems: A+ BC, AB + C, and AC + B. These are the only 

considerations necessary, since, for the collision energies sampled 

processes that lead to products other than those mentioned are negli-

gible. The cartesian coordinates necessary for the end. test for 

product AB + C are: 



46 

(2-98) 

The description of the final state of the system may be specified 

in terms of final relative velocity, orbital and molecular angular mo-

menta, and internal energy of the product diatomic molecule expressed 

in terms of the final coordinates and momenta (58). Denoting the 

final state with primes, the scattering angle in the center of mass 

coordinate system is (46), 

(2-99) 

where, VR~ and VR are the magnitudes of the final and initial relative 

velocity vectors, respectively, and the V. are the cartesian components 
1 

of the relative velocity, Eq. (2-99) must be used to compute the 

scattering angles for CPST trajectories, since the orientation of 

the initial relative velocity vector is random. However, in CTA tra-

jectories, the initial relative velocity vector is oriented in the 

direction of the positive Q6-axis and Eq. (2-99) reduces to, 

(2-100) 

If one wishes to separate the internal energy of the product 

diatomic molecule into rotational and vibrational components, this may 
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be partially accomplished by the Morse oscillator approximation. De-

noting r 1 and r 2 as the inner and outer turning points for the product 

diatomic molecule one has for the classical vibrational action (59): 

2 n=-
h 

p dr • 
r 

(2-101) 

This integration may be accomplished by continuing the trajectory after 

the final state has been reached and searching for the inner turning 

point. That is, p = 0. 
r 

The final relative coordinates are arbitrarily 

oriented in their coordinate system and one narrows the search for 

pr = 0 by searching for the smallest r value found after continuation 

of the trajectory. 
+ + 

The r and p vectors are then simultaneously oriented 

+ in a new coordinate system with the z-axis oriented along r. If the new 

coordinate system is designated by primes, then pz~ = pr. One may 

accomplish this orientation with the aid of the rotation matrices (46) 

(52). The newly oriented coordinates and momenta are: 

+~ 
R (8) R (cf>) 

+ 
r = r y z - ,.._, 
-p~ R (8) R (cf>) 

+ 
= p 

y z 
(2-102) 

,_, ,...., 
where 

cp arctan(y/x) 

e = arccos(z/r). (2-103) 

The procedure mentioned above must be repeated for each time step after 

the end of a trajectory storing the values of p ~ = p at each time 
z r 

step until the outer turning point, r 2 , is reached. This gives one a 

numerical compilation of pr(r) for r in the interval [r1 ,r2] with 
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varying increment sizes along r. It would be difficult at best to 

attempt an accurate numerical integration of pr(r) over the limits r 1 

However, p (r) may be numerically interpolated at desired r 
r 

values with the aid of the one dimensional cubic spline procedure (65). 

The two and three dimensional counterparts of the cubic spline pro-

cedure have proven more than adequate in several cases for numerical 

interpolation of potential energy surfaces (66). After one has numeri-

cally interpolated p (r) at the necessary r values, Eq. (2-101) may be 
r 

numerically integrated by one of the Newton Cotes quadrature formulas 

(67). After the vibrational action has been obtained, the vibrational 

energy in the Morse oscillator approximation is (46); 

E = ntw n o (2-104) 

The approximation for the rotational energy is the difference of in-

ternal and vibrational energy, 

E 
r 

E - E (2-105) 
vr n 

Initial states in the CTA procedure for thermal processes are 

chosen from a Boltzmann distribution in the reactant valley with 

only final states of products being examined. The CPST procedure_ 

requires sampling of states on S from a Boltzmann distributions. Unless 

one examines both reactant and product state distributions, there is 

no knowledge about the original reactant distribution. At least if 

one compiles reactant distributions for reactive trajectories in both 

CPST and CTA procedures, it may be possible to determine if the reactive 

trajectories originate from equivalent distributions in the reactant 

valley. 
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Statistical Averaging for the CTA and 

CPST Procedures 

To compile frequency distributions for a given dynamical vari-

able p, whether it be the initial or final state, the usual method 

(46) is to divide the range of the dynamical variable into constant 

~ncrement sizes and to sum the weights of each trajectory that pro-

duces the dynamical variables p in the range of p to p + Ap for the 

process being studied. That is, if p is in the interval, [p0 , p1], 

one defines the increment size as, 

where n is the number of intervals contained in the range of p. For 

example, if one is studying reactive processes, one finds the integer 

k or increment label from, 

k = (p-p )f/j. • 
0 p 

(2-107) 

After a set of N trajectories have been computed containing a 

subset of N reactive trajectories, the normalized frequency of 
r 

occurrence of the dynamical variable p in the increment k is, 

N N 
= 1: r wm(k)/ L r 

m=l i=l 
(2-108) 

where wi is the weight attributed to trajectory i, and wm(k) is the 

weight associated with the trajectories m that produce the dynamical 
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variable p in the increment [p +(k-1)~ , p +k~ ]. If one is computing 
0 p 0 p 

classical trajectories and selecting the impact parameter with Eq. 

(2-17), each trajectory is weighted by the impact parameter weighting. 

That is, wi = ~(bi). If one is computing CPST trajectories, each 

trajectory has weight wi = 1. 

One example of this, is the computation of the normalized differ-

ential cross section with 0 in the interval [0, TI]. The expression is, 
c 

N 
_da_<_<_e c_)_k_) = L r 

dQk m=l 

w (k) 
m 

N 
I 1: r 

i=l 
W,' 
~ 

(2-109) 

where the wi take on the weights mentioned previously for either the 

CTA or CPST procedures. 



CHAPTER III 

RESULTS AND DISCUSSION 

CTA Rate Coefficient - Method I 

The CTA rate coefficient has been computed at 900 K by computa-

tion of reaction cross sections at six relative velocities with initial 

conditions chosen by the procedures described under method I. The maxi-

mum impact parameter was chosen to be 2.50 au for V = 2.0 vu. Since 
r 

the number of reactions decrease at lower relative velocities, the 

impact parameter was reduced for the lower relative velocities in order 

to avoid the large standard error given by Eq. (2-20). All trajectories 

were computed with an integration step size of 0.02 tu. Computer 

codes were checked by computation of standard quasiclassical trajec-

tories at 900 K. The result of 7563 trajectories produced K(900) = 

7.9346 x 1011 + 0.8823 x 1011 cm3/mole-sec. This result is in statis

tical accord with the previous SQCT result of K(900) = 7.3760 x 1011 

3 em /mole-sec. The reaction cross sections computed by Eq. (2-19) are 

given in Table I. 

To evaluate the rate coefficient from Eq. (2-21), one requires 

reaction cross sections at relative velocities for which the integrand 

must be evaluated in the numerical integration procedure. The numeri-

cal values of the reaction cross sections along with the upper and lower 

bounds were obtained graphically as shown in Figure 2. Extrapolation 
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to zero cross section was employed to estimate the reaction threshold. 

v vu 
r 

1.050 

1.088 

1.200 

1.400 

1.600 

2.000 

TABLE I 

REACTION CROSS SECTION AS A FUNCTION OF 
RELATIVE VELOCITY 

Na b b au 
max 

600 1.25 

600 1.25 

382 1.60 

400 1.80 

400 2.00 

400 2.50 

S(V ) 
r 

2 au 

0.0481 + 0.0184 

0.1369 + 0.0355 

0.5265 + 0.1006 

1. 7009 + 0. 2024 

2.9220 + 0.2601 

4.8896 + 0.3961 

a N total number of trajectories computed at each relative velocity 

bMolecular units are described in Appendix B 

A nine-point Newton Cotes quadrature (67) was employed for the 

numerical integration of Eq. (2-21). Upper and lower bounds of S(V ) 
r 

were obtained by graphical techniques with each value of S(V ) being 
r 

weighted by the relative velocity weighting to form the integrand of 

Eq. (2-21). The results of these computations with their threshold 

velocities V are given in Table II. 
0 



5.0 

4.0 

Vr 
Figure 2. Plot of Reaction Cross Section vs. 

Relative Velocity, S(V ) and 
V Have Units of au2 aftd Ve-
15city Units, Respectively 
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TABLE II 

RATE COEFFICIENT COMPUTED AT 900 K FROM METHOD I 

Reference to Fig. 2 v K(900) 
crn3 d 

vu 
0 

I a 1.014 

lib 1.026 

IIIc 1.032 

Est. rel. error 17.7% 

a 
Lower bound 

bFrom numerically computed cross sections 
c Upper bound 
d 13 

Eq. (2-21) C = 1.65652 x 10 

mole-sec 

1.7760 X 1011 

2.1202 X 1011 

2.5374 X 1011 

The primary purpose of evaluating this rate coefficient is to corn-

pare the rate coefficients obtained when the initial conditions for BC 

are chosen by methods I or II. However, it is worthwhile to compare this 

classical rate coefficient with that obtained in the previous SQCT study 

(58). The Porter-Korplus result is K(900) = 7.3760 x 1011 cm3/mole-sec, 

roughly a three to four-fold factor larger than the method I CT rate 

coefficient. The SQCT cross sections are computed for v = 0 and 

J = 0, 1, ••• , 5. Examination of the Boltzmann weight factor shows 

S(V , J, v) for J = 1, 2, 3 to give the most important contributions to 
r 

the sum over rotational states given in Eq. (41) of Ref. (58) for the 

evaluation of the rate coefficient. These reaction cross section 
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curves all exhibit threshold velocitielil below the threlilhold velocity 

for the classical barrier V ,._,1. 09 vu. Some are ail low as 0. 9 vu. . . 0 

Porter and coworkers point out that rotational energy probably does 

not enhance reaction for three dimensional trajectories. In fact, 

its major contribution is probably to provide a disorienting effect 

for the most favorable transition-liltate configuration, the collinear 

complex. Thus, the decrease of threshold below the classical value is 

due to the contribution of zero-point energy. 

The CT rotationally vibrationally averaged cross section com-

puted by method I does exhibit a threshold velocity below the V .. 
0 

value. If one applies arguments about rotational energy given above 

to the present case it appears that classical vibrational energy does 

lower the reaction threshold about 0.05 vu below the classical V .. 
0 

value. However, it does not seem to be nearly as significant as the 

zero point energy present in every trajectory sampled in the SQCT 

study. 

CTA Rate Coefficients - Method II 

The CTA rate coefficients for the H + H2 thermal exchange reaction 

have been computed for temperatures of 300, 500, 900, and 1100 Kwith 

initial conditions selected by the procedures described by method II. 

Integration step sizes at the different temperatures have been deter-

mined by the criterion mentioned on p 45. Reaction thresholds were 

determined by computing nonstatistical trajectories with small impact 

parameters, b 
max 

= 0.25 au, and relative velocities near the classical 
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threshold V ~,wl.09 vu. Initially 200 trajectory batches were computed 
0 

to determine nonzero cross sections above threshold, then additional 

trajectories were computed to reduce statistical error. Results of the 

procedure described above at 300 K are given in Table III, with cross 

sections obtained from Eq. (2-19) and standard error given by Eq. (2-20). 

The trajectory computed cross sections with their upper and lower error 

bounds are shown in Figure 3. 

TABLE III 

REACTION CROSS SECTION NEAR THRESHOLD AT 300 K 

v N S(V ) X 103 2 a 
vu au 

r r 

1.10 603 4.847 + 1.494 

1.15 600 11.598 + 2.112 

1.20 400 26.006 + 3.773 

ab 0.25 au 
max 

Extrapolation to zero cross section yields a reaction threshold 

V ~1.04 vu to be used as the lower bound of Eq. (2-40) to select the 
0 

initial relative velocity for a classical trajectory. 

The maximum impact parameter was determined by computing the 

reaction probability P (V , b) from Eq. (2-18) with V = 1.20 vu and r r · r 



,., 
0 

X -> -CJ) 

40.0r-----r----..,...-----r---~ 

30.0 

20.0 

10.0 
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Vr 
Figure 3. Reaction Cross Section Near 

Threshold at 300 K from 
Method II, S(Vr) has 
Units of au2 , Vr is in 
Velocity Units 
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N = 200 at each value of b. When b was sufficiently large so that 

P ~ 0 for the 200 trajectories sampled, b was set equal to that 
r max 

value of b. The b value so determined was used to select the ini-
max 

tial impact parameter for a classical trajectory from Eq. (2-17). 

The procedures discussed above were repeated for each tempera-

ture with the exception, that the threshold velocity at 900 K was the 

one determined from the method I procedure. The results are summarized 

in Table IV. 

T K 

300 

500 

900 

1100 

TABLE IV 

INTEGRATION STEP SIZE AND PARAMETERS DETERMINED 
BY NONSTATISTICAL TRAJECTORIES 

a v t\t tu vu 
0 

0.04 1.040 

0.04 1.006 

0.02 1.014 

0.02 0.870 

a 
Integration step size 

b au 
max 

1.20 

1.50 

2.00 

2.10 

Classical trajectories were computed at the four temperatures 

given in Table IV with initial conditions chosen by the procedures 



described in method II. The results of these computations along with 

the previous SQCT rate coefficients are given in Table V. 

T K 

300 

500 

900 

1100 

TABLE V 

CT AND SQCT COMPUTED RATE COEFFICIENTS FOR THE 
H + H2 THERMAL EXCHANGE REACTION 

16328 

10314 

4836 

3664 

3 em 
KCT(T) mole-sec 

(1.6140 ± 0.1564) X 106 

(1.4869 ± 0.1414) X 109 . 

11 (1.8462 ± 0.1477) x.lO 

(7.3613 ± 0.7958) X lOll 

3 c 
em 

KSQCT(T) mole-sec 

2.0080 X 108 

2.3200 X 1010 

7.3760 X 1011 

aNumber of trajectories computed for CT rate coefficient 

bCT rate coefficient 

cSQCT rate coefficient (Reference 58) 

Comparison of the 900 K CT rate coefficient of Table V determined 

by method II and the upper and lower bounds for the method I CT rate 

coefficient given in Table II show the two results are in statistical 

agreement. 

The rate coefficients of the SQCT study have been fitted to an 

Arrhenius expression (58). which resulted in a computed activation 

energy EA = 7.435 kcal/mole. A similar treatment of the CT rate 



coefficients listed in Table V yields EA = 10.593 kcal/mole. It is 

possible from these results to make a qualitative statement about the 

contribution of zero-point energy to the reaction. However, it must 

be remembered the classical trajectories do exhibit classical vibra-
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tiona! energy. The zero-point vibrational energy of the H2 molecule is 

E ~6.386 kcal/mole. The difference of the CT and SQCT activation 
,o 

energies mentioned above is 3.158 kcal/mole, from this, one may say a 

fraction of 0.495 or about half the zero-point energy aids the quasi-

classical trajectories in crossing the barrier. A more precise deter-

mination of the effective zero-point energy involved in reaction could 

be obtained if one were to compute rate coefficients from trajectories 

having no vibrational energy. These ,computations have been done at 

temperatures of 300, 500, 700, and 900 K. The resulting activation 

energy is 11.652 kcal/mole, which sugges'ts that 4. 2 kcal/mole of the 

zero-point energy is effective in promoting reaction. This result is 

in reasonable accord with that obtained in the SQCT study, where 

collinear trajectories were computed both with and without zero-point 

energy. The resulting difference in the relative translational energy 

necessary to transverse the barrier was determined to be 4.1 kcal/mole. 

This agreement must be regarded with some caution since it involves a 

comparison between a three dimensional and a collinear study. If such 

comparison of activation energies is a valid method to estimate the con-

tribution of vibrational energy to reaction, one may compare the acti-

vation energies from rate coefficients obtained by trajectories without 

vibrational energy and the CT rate coefficients to estimate the classical 
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vibrational energy contribution to reaction. The result is 1.059 

kcal/mole of classical vibrational energy contributes to reaction. 

Investigation of the Variational Rate 

Coefficient 

The final form of the variational rate coefficient given by 

Eq. (2-71) intuitively suggests that one could study the variation 

of K .. (A, B, C, T) with respect to the variational parameters A, B, 

and C, possibly finding local minima, that must be upper bounds to 

the classical rate coefficient (22). 

To assess the reliability of the computed variational rate coeffi-

cients one must determine the accuracy of the numerically computed 

values of the integrals, r 2(rm2' kT) and
1 

11 (A, B, V .. , Vml' kT) given 

by Eqs. (2-74). Some of the tests that have been performed to evaluate 

the accuracy of the integrals are comparison of simple definite inte-

grals computed both analytically and numerically, evaluation of 11 by 

two different numerical integration procedures for the (H, H2) system, 

evaluation of 11 , 12 and K .. (T) for the (H, I 2) system and comparing 

with previous results (47), evaluation of 11 for the reactant asympto

tic limit, and comparison of 11 and the normalization factor S 
nm 

defined in Eqs. (2-79) and (2-80). 

The simple definite integrals used to test the numerical integra-

tion procedures are: /1 dx x 
2 

= 1/3 

0 

(;3-la) 

1 1 

I dy £ dx 
2 2 1/9 X y = (3-lb) 
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The result of a Simpson's rule integration of Eq. (3-la) with seven 

integrand evaluations produces a value of 0.333333. With seven points 

to evaluate the inner integral and seven for the outer integral of 

Eq. (3-lb), a result of 0.11111 was obtained. 

The results of numerical integration by both Simpson's rule and 

a five-point Newton Cotes procedure for I 1 given in Eq. (2-74) evaluated 

at 900 K are shown in Table VI. The results in Table VI show that as 

the values of Nv and N6 are increased, the computed values of I 1 show an 

oscillatory convergence. Comparison of the results for Simpon's rule 

I 8 (Nv' N8) and the Newton Cotes procedure INC(Nv' N6) shows that I 8 (49, 

15) and INC(49,17) are converging to the same value. The values of I 1 

for I 8 (143, 91) and INC(l61, 93) are practically identical. In addi

tion, if one rejects INC(29,17) and INC(33, 17), the computed relative 

standard deviations are less than 1.8%. Computing the relative devia

tions from the mean for INC(29, 17) and INC(33, 17), one finds both are 

greater than 10 s. 

If one sets A= 1.0, B = 0.0, and C = Rt' I 1 assumes the form of 

Eq. (2-76) with the variational rate coefficient given by Eq. (2-77). 

The integrals I 1 , I 2 and the variational rate coefficient have been 

computed for the (H, I2) system and the results compared with the 

previous CPST study (47) at 600 K. The results are given in Table VII 

with the results of the previous CPST study taken as the correct values. 

Table VII shows the results of this work are good in accord with those 

of the previous CPST study with the relative error of each computed 

quantity being on the order of a fraction of a percent. 



Integration 
Procedure 

Simpson's 
Rule 

Newton 
Cotes 

Rel. std. dev. 

TABLE VI 

NUMERICAL INTEGRATION OF I1 AT 900 K 
FOR THE (H, Hz) SYSTEMa 

N b N c 
v e 

31 15 

49 15 

143 91 

29 17 

33 17 

49 17 

161 93 

d 
1. 7% = 

a 
A = 1.0, B = 1.5, C = 0.0 

bNumber of integrand evaluations along V 
c Number of integrand evaluations along 6 
d Based on rejection of INC(29, 17) and INC(33, 17) 
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5 
Il au 

0.9966116 X 10-z 

0.1002501 X 10-l 

0.9854186 X 10-Z 

0.1216127 X 10-l 

0.8222695 X 10-z 

0.1027321 X 10-l 

0.9854142 X 10-2 



Quantity 

I2(600) 
3 au 

d 5 Il(600) au 

3 
ern 

TAILE VII 

COMPARISON OF PRESENT WORK WITH A • 1.0, 
I = 0.0, AND C = Rt WITH PREVIOUS WORK 

ON THE (H, I2) SYSTEM 

Numerical a b Numerical ' 
Procedure Result 

Simpson's 8.58407 
Rule 

Newton 8.58372 
Cotes 

Simpson's 34.8725 
Rule 

Rhomberg 34.7172 
Method 

Newton 34.7771 
Cotes 

K .. (600) 
mole-sec 2.518 X 1015 

el = 0.22%f e2 = 0.47% 

a Reference 47 
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Numerical c 

Result 

---------

8.56446 

---------

---------

34.6140 

2.514 X 1015 

e3 .. o.l6% 

b -D1/kT 
I 1 and I 2 of Ref. 47 multiplied bye to adjust energy zero to 

that of this work. o1 is the Morse well depth for I-I 

cThis work 

dil Eq. (2-74) 

eK"'(600) Eq. (2-71) 
f Rel. error, e1 , e2 , e3 of I 2 , 11 , and K .. (T) respectively 

work of Ref. 47 taken as the correct results 

e 
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If one evaluates the variational rate coefficient for the case 

of A = 1.0, B = 0.0, and C = R for very large R , r1 from Eq. (2-77) 
t t 

goes into the form, 

(3-2) 

The integration has been done for the (H, I 2) system at 600 K the 

result is, 

(3-3) 

with Rt = 16.0 au. 

The definition of the Reimann sum (68) of f defined and continuous 

over a rectangle R described by a < x < b and c ~ y ~ d is, 

S (N , f , { p ij } ) = 
n-1 

2: 
i=O 

~m-1 
~ f (p .. ) flxi fly. , 

1J J 
j=O 

(3-4) 

where pij is the point (xi, yj), flxi flyj is the area of the subrec-

tangle Rij containing pij and N is the grid partitioning R. As the 

grid N is made finer, the diagonal length d(N) of the largest of 

the Rij decreases, and as d(N) + 0 the value of the Reimann sum 

approaches the value of the integral of f over the rectangle R. The 

Reimann sum may serve as a method to approximate double integrals. 

If ~xi and flyj are constant, that is they have the same value for every 

i and j Eq. (3-4) becomes, 

S (N, f, { p ij}) = ~X fly Ln-1 

i=O 
.I 

m-1 
(3-5) 

j=O 
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that is the area element A(Rij) = Ax 6y may be factored outside the 

double sum. This double sum is of the same form as S of Eq. (2-79). 
nm 

A value for S has been computed for n = m = 250, A = 0.56, B = 0.95, 
nm 

and C = -0.25 at a temperature of 900 K for the (H, H2) system the 

results are compared with I 1 evaluated by the five-point Newton Cotes 

procedure in Table VIII. 

a 

b 

Quantity 

I b 
1 

s c 
nm 

AO 6Vd 

66 6V s nm 

TABLE VIII 

COMPARISON OF Il AND S a 
nm 

Numerical Result 

8.892371 X 10-3 

15.35830 

5.788712 X 10-4 

8.890477 X 10-3 

(H, H2) system, T = 900 K, A = 0.56, B = 0.95, and C = -0.25 

Five-point Newton Cotes quadrature 
c · Eq. (2-79), n = m = 250 
d 68 and AV obtained from upper and lower limits on e and V integrals 

divided by 249 the number of intervals, upper and lower limits on a 
and V integrals are 0.0, 3.14159, 0.26316 and 11.68750 respectively 
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The search for local minima of K .. (A, B, C, T) was carried out by 

a numerical grid search, where values of K .. (Ai, Bj, Ck' T) were computed 

at each grid point (Ai' Bj' Ck). The boundaries of the A, B, C grid 

were defined as 0.2 ~A~ 1.1, 0.2 ~ B ~ 1.1 with C taking values of 

-0.30, -0.25, -0.20, 0.0, and 0.25. The mesh of the grid in the A-B 

plane for a fixed value of C is given by Ai+l - Ai = 0.1 and 

Bj+l - Bj = 0.1. Some numerically computed values of K .. (A,B,C,T) for 

the (H, H2) system at 900 K are given in Table IX. Variational rate 

coefficients computed for these grid points are arranged from the 

maximum found for each value of Ck to the minimum with a few inter

mediate values. A numerical grid search of 500 computed values of 

K .. (A, B, C, T) reveals a minimu~ for (A, B, 0) = (0.60, 1.00, -0.25). 

Taking a finer mesh of the grid about the region (A, B, C) = (0.60, 

1.00, -0.25) produced the last value listed in Table IX, K .. (0.56, 

0.95, -0.25, 900) = 2.3340 x 1011 cm3/mole-sec. Further refinement 

of the grid possibly would yield lower variational rate coefficients. 

However, the reduction in mesh size only produced a change in the third 

significant digit of the computed variational rate coefficient, and itis 

entirely possible that other values of Ck would yield lower variational 

rate coefficients. A more detailed search of this grid would soon 

become prohibitive for practical computer time requirements, and would, 

in essence, defeat the purpose of the entire procedure. In addition a 

comparison of K .. (0.56, 0.95, -0.25, 900) with the CT rate coefficient 

11 3 listed in Table V shows K(900) = 1.8462 x 10 em /mole-sec, which 

shows the variational rate coefficient is certainly an upper bound to 
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TABLE IX 

COMPUTED VALUES OF K (A, B, C, T) FOR 
THE (H, H2) SYSTEM AT 900 K 

3 a 

A B c K'(A, B, C, T) em 
mole-sec 

0.20 1.10 -0.30 6.2726 X 1015 

0.30 1.10 -0.30 8.3245 X 1014 

0.30 0.30 -0.30 3.5766 X 1014 

0.30 0.40 -0.30 2.5293 X 1013 

0.30 0.50 -0.30 1.0740 X 1012 

0.30 0.60 -0.30 2.3422 X 1011 

0.20 1.10 -0.25 7.0765 X 1015 

0.60 0.50 -0.25 2.9754 X 1014 

0.60 0.60 -0.25 1.4283 X 1014 

0.60 0.70 -0.25 1.7062 X 1013 

0.60 0.80 -0.25 2.1503 X 1012 

0.60 0.90 -0.25 4.4133 X 1011 

0.60 1.00 -0.25 2.3402 X 1011 

0.20 1.10 -0.20 7.7925 X 1015 

0.20 0.90 -0.20 3.1929 X 1015 

0.20 0.70 -0.20 5.5506 X 1014 

0.20 0.60 -0.20 8.9066 X 1013 

0.20 0.50 -0.20 3.6467 X 1012 

0.20 0.40 -0.20 2.3422 X 1011 

0.20 1.10 o.o 1. 0779 X 1016 

0.70 0.60 0.0 2.3485 X 1014 
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TABLE IX (Continued) 

3 
a 

A B c K ... (A, B, C, T) em 
mole-sec 

0.70 0.70 0.0 2.3656 X 1013 

0.70 0.80 o .. o 2.5119 X 1012 

0.70 0.90 0.0 4.6623 X 1011 

0.70 1.00 0.0 2.3697 X 1011 

0.20 1.10 0.25 1. 4838 X 1016 

0.80 0.60 0.25 3.5957 X 1014 

0.80 0.70 0.25 3.5206 X 1013 

0.80 0.80 0.25 3.0535 X 1012 

0.80 0.90 0.25 5.0144 X 1011 

0.80 1.00 0.25 2.4263 X 1011 

b 
0.56 0.95 -0.25 2.3340 X 1011 

a Eq. (2-71) with 11 and 12 from Eq. (2-74) 
b Fine mesh grid search C = -0.25, 0.55 ~A~ 0.65, 0.95 ~ B ~ 1.05, 

mesh: 
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K(900) as it should be according to Keck (22), but it is still within 

reasonable agreement with K(900). In fact, K'(0.56, 0.95, -0.25, 900) 

,_, 1. 26 K(900). 

In order to qualitatively examine the variation of K'(A, B, C, T) 

with respect to the parameters A, B, and c one may inspect the projec-

tion of S onto the potential v(r, R, e). This is equivalent to follow-

ing the integration path Il of Eq. (2-74) assumes along the curve S = 0, 

for different choices of A, B, and c. To implement this procedure 

contour maps of v(r, R, e) were plotted for fixed e with S of the form, 

(3-6) 

These coordinates are shown in Figure 4. 

Projections of S onto the (r, R) plane for (A, B, C) = (0.56, 0.95, 

-0.25) are shown for e = ~/3, ~/2, 3~/4, and ~ in Figures 5-8. This 

(A, B, C) triple produced the smallest computed variational rate coeffi-

cient. In addition, projections of S onto these contour maps are shown 

for other choices of (A, B, C) in Figures 9-13. 

Figures 5-8 correspond to the smallest computed value of the 

variational rate coefficient while Figures 9(b), ll(a) and 12(a) corres-

pond to the smallest variational rate coefficients computed for 

C = -0.25, 0.0, and 0.25 respectively from the initial grid search. The 

integration path for 11 described by S = 0 shown in the figures is cut 

off at r = rml = 4.50 au, which is adequate to include the important 

contributions of the integrand of I 1 • Mathematically speaking, one 

wishes to minimize K'(A, B, C, T), which is strongly dependent on 
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Figure 4. Coordinate System Employed to Plot Con
tours of v(r,R,a) with the Projection 
of S onto the r-R plane, r is the 
Radial B-C Vector, R is the Radial 
Vector from the B-C Center of Mass to 
Atom A, and 6 is the Angle Between 
r and R 
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4.0 

3.0 

r 

2.0 

c. 

A 

1.0 

Figure 5. Projection of S onto the (r,R) Plane, 
A = 0.56, B • 0.95, c ~ -0.25, a = w/3, 
Potential Contours are in eV Referenced 
to H + Hz at Infinite Separation as the 
Zero of Energy r and R in Atomic Units 
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r 

1.0 2.0 R 

c ___...J 
----~.0 

:A e .... ____ _,_--lr 

3.0 4.0 

Figure 6. Projection of S onto the (r,R) Plane, 
A= 0.56, B = 0.95, C = -0.25, 8 = ~/2, 
Potential Contours are in eV Referenced 
to H ± Hz at Infinite Separation as the 
Zero of Energy, r and R in Atomic Units 

73 



3.0 

r 

2.0 
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~:::__:_----_1 .. 0-
~---=-'0.5 

----~0.3 

1.0 2.0 R 3.0 4.0 

Figure 7. Projection of S onto the (r,R) Plane, 
A= 0.56, B = 0.95, C = -0.25, 8 = 3TI/4, 
Potential Contours are in eV Referenced 
to H + H2 at Infinite Separation as the 
Zero of Energy, r and R in Atomic Units 
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1-0 2.0 R 3.0 4.0 

Figure 8. Projection of S onto the (r,R) Plane, 
A = 0.56, B = 0.95, C = -0.25, e = ~, 
Potential Contours are in eV Referenced 
to H + H2 at Infinite Separation as the 
Zero of Energy, r and R in Atomic Units 
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·. .· R 
(a) A= 0.20, B = 1.10, C = -0.25 
(b) A = 0.60, B = 1.00, C = -0.25 

Figure 9. Projection of S onto the (r,R) Plane for the (H, Hz) System, Same 
as Figures 5, 6, 7, and 8, 8 Follows Same Sequence from Left to 
Right as it Does in Figures 5-8 
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0\ 
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·. 2.~R_3.0 . 

(a) A = 0.30, B = 1.00, C = 0.0, 
(b) A = 1.00, B = 0.80, C = 0.0, 

R 3.0 

K_'(900) = 
K'(900) = 

1.4025 x lolS cm3/mole-sec. 
3.9102 x 1014 cm3/mole-sec. 

Figure 10. Projection of S onto the (r,R) Plane for the (H, Hz) System, Same 
as Figures 5, 6, 7, and 8, a Follows Same Sequence from Left to 
Right as it Does in Figures 5-8 
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·. R 3.0 

(a) A= 0.70, B = 1.00, C = 0.0 
(b) A= 0.80, B = 0.70, C = 0.25 

Figure 11. Projection of S onto the (r,R) Plane for the (H, Hz) System, Same 
as Figures 5-8, e Follows same Sequence from Left to Right as 
it Does in Figures 5-8 
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·. R 3.0 3.0 
R 

(a) A = 0.80, B = 1.00, C = 0.25 
(b) A= 0.90, B = 0.40, C = o.zs, K~(900) = 8.1804 x 1013 cm3/mole-sec. 

Figure 12. Projection of S onto the (r,R) Plane for the (H, Hz) System, Same as 
Figures S-8, e Follows Same Sequence from Left to Right as it bees 
in Figures 5-8 
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·. 
A = -1.0, B = 1.0, C = -5.0 
A = -1.0, B = 0.4, C = -2.4 

R 3.0 

Figure 13. Projection of S onto the (r,R) Plane for the (H, Hz) System, Same as 
Figures 5-8, e Follows Same Sequence from Left to Right as it Does 
in Figures 5-8 
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the value of 11 • The integrand of 11 given in Eq. (2-74) is seen to 

depend strongly on the potential sampled by the integration path S = 0. 

An examination of the potential contours crossed by the projection of 

S onto the (r, R) plane in Figures 5-8, 9(b), ll(a), and 12(a) shows 

that S does cross high-energy regions of the potential-energy surfaces 

for different values of 6, particularly in the vicinity of the reaction 

path, where the important contributions to r1 occur. Conversely, an 

inspection of Figures 9(a). lO(a), ll(b), and 12(b) shows S traversing 

regions of low energy, in particular Figure 9(a) shows S far out in 

the entrance valley, one of the lowest-energy regions of the potential 

surface. 

A more pleasing interpretation of the variational rate coefficient 

may be obtained by discussing it in terms of "a flow of phase-space 

points across S", as described by Keck (22). According to this des

cription, the variational rate coefficient becomes the flux of phase

space points across S. The ~arallelism between the flux analogy of the 

variational rate coefficient and collision theory is clear if one 

chooses S far out in the reactant valley. In such a case, the limiting 

form of the variational rate coefficient (flux across S) becomes the 

collision frequency. In order to investigate the flux for reactive 

processes, one must choose S so that it divides the phase space of 

the system into a reactant region and a product region. The flow of 

phase points traversing S. from the reactant region to the product 

region of phase space will be an upper bound to the classical reaction 

rate coefficient if S is chosen properly. Proper choices of S have 



been discussed by Keck (22) and Wigner (10). In essence, S ~ust be 

chosen so that it has no wrinkles or holes. For instance, consider 
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a trajectory that originates in the reactant region of phase space and 

terminates in the product region of phase space. If it traverses S in 

the vicinity of a wrinkle, the trajectory of the phase point could 

cross S more than once. This would correspond to counting the same 

trajectory more than once for its contribution to the flux. If it 

traverses S in a region of phase space where there is a hole, it might 

not cross S at all, and would make no contribution to the flux across 

S in the product direction. Choices of S that lead to multiple count

ing or complete neglect of a trajectory originating in the reactant 

phase space and terminating in the product region of phase space should 

be avoided. The motivating idea behind the variational study is to 

locate S in a region of phase space, where the density of reactive 

trajectories is largest. That is, S is located in a region of phase 

space where trajectories originating in the reactant phase space that 

are unable to reach the product phase space do not reach S. The flux 

also includes trajectories that reach S from the product region of 

phase space and are counted on the return trip to the product phase 

space. It is also possible a trajectory from either the product or 

reactant region of phase space may reach S recross it many times and 

go off in either direction. Each crossing of S toward the product 

region of phase space contributes to the flux. 

The previous discussion indicates a.proper choice of S for reac

tive processes is in a region of phase space that is inaccessible to 
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nonreactive trajectories. The (H, H2) system has an energy barrier to 

reaction. 

In order for a trajectory to be reactive, it must possess suffi

cient energy to traverse the barrier. Any trajectory not satisfying 

this requirement, whether approaching S (rom the product or reactant 

region of phase space, will turn back to its original region of phase 

space. It seems evident from the previous discussion that a good 

location for S is across the reaction path and as near the region of 

phase space that contains the top of the energy barrier as possible. 

It was considerations such as these that led to the concept of a 

"transition-state11 at the top of the barrier. 

Perhaps a qualitative illustration of th~ ideas discussed above 

may be obtained from the figures showing the projections of S onto the 

(r, R) plane. Figures 5-8, 9(a), 9(b), lO(a), ll(a), ll(b), and 12(a) 

show surfaces S that divide the system phase space into two different 

regions. However, the surfaces S shown in Figures 9(a) and lO(a) will 

be poor choices since trajectories crossing S in the forward direction 

still must traverse a 9 kcal/mole barrier to reach the product region 

of phase space. The majority of these trajectories return to the 

reactant region of phase space. Consequently, when S is located in 

this region of phase space, the density of phase points that possess 

the ability to cross S in the forward direction is very large. In 

fact, all reactive and nonreactive trajectories must cross this 

dividing surface. As a result, very large flux values are obtained 

for these particular choices of S. K'(O.JO~ 1.00, 0.0, 900) is given 

in Figure 10 and K'(0.20, 1.10, -0.25, 900) is given in Table IX. 

The choices of S shown in Figure ll(b) is beginning to resemble a 
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desirable choice of s, however, at the a = ~ projection of the poten

tial surface, one finds that trajectories originating from the product 

region of phase space that turn back recross S in the forward direction 

on the return trip. An examination of Table IX shows the flux computed 

for this particular S is easily two orders of magnitude larger than the 

lowest computed estimate of the reactive flux for C = 0.25. Examples 

of choices of S with holes that are only crossed once or not at all 

by phase-space points successfully completing the path from reactant 

to product phase space are shown in Figures lO(b) and 12(b). This is 

particularly noticeable for the surface on the a = ~ map. Figure lO(b) 

shows S far out in the product region of phase space. Since, S is 

cut-off at r = 4.5 au, many reactive trajectories could reach the pro

duct region of phase space without ever crossing S. Figure 12(b) 

clearly shows a bad choice of S particularly for the a = ~ map. S is 

situated on top of a ridge that is at least 180 eV above the zero of 

energy, this region of phase space is never sampled by any phase point 

at thermal energies. Any phase point that successfully travels the 

path from reactant to product regions of phase space near or on the 

a = ~ projection of the potential-energy map will contribute nothing 

to the flux. One might call a dividing surface S of this type a 

"leaky surface". Figure 13 is another illustration of poor choices 

of S. For example, most reactive trajectories crossing the surface S 

shown in Figure 13(a) must cross S twice to reach the product region 

of phase space. This is an example of the "multiple crossings" of S 

mentioned earlier. Figure 13(b) is similar to 13(a) except that it 

is a "leaky surface". Any reactive trajectory that does reach S 

could cross S twice before it reaches the product region of phase 
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space. However, most reactive trajectories will never reach S at all, 

eHp(.~ci.ally those that travel the minimum energy paths. The multiple 

crossing surfaces shown here result from a choice of A < 0, so for 

potential-energy surfaces resembling those of the (H, H2) system 

choices of A or B < 0 should be avoided. In addition, Figures 5-8, 

9(b), ll(a), and 12(a) all seem to represent good or "proper" choices 

~f S in the sense that S crosses the reaction path near the high energy 

regions. These surfaces are in regions of phase space that are mostly 

inaccessible to nonreactive trajectories. 

Examining the projections of S in Figures 5-8, one finds S does 

traverse high energy regions of the potential surface. However, it 

always seems to miss the regions of highest ertergy. A comparison of 

the variational rate coefficient K~(0.56, 0.95, -0.25, 900) to K(900) 

computed from CT trajectories of method II show the variational rate 

coefficient is about 20% larger. The problem seems to be that S does 

not depend on e. It is easily seen by examining v(r, R, e) for differ

ent values of e, that the potential barrier in the reaction path 

shifts for different values of e. The present formulation of the 

variational rate coefficient shows S has no way to compensate for this 

shifting of the barrier position, with respect to changing e. 

It would be very interesting to see if there was much improvement 

in the variational rate coefficient if e was included in the description 

of S. There is definitely a connection between the degrees of freedom 

that are important in the description of the potential and the degrees 

of freedom that are important for the description of a proper choice of 

S. This appears encouraging enough to state a hypothesis that appears 

nearly axiomatic: 



All degrees of freedom that are important in the descrip
tion of the potential for a process under study by the 
variational procedure should be included in the descrip
tion of S in order for the variational rate coefficient 
to converge to the true rate coefficient for the process. 
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The variational procedure has been applied to the (H, H2) system. 

The parameters that yield the smallest value for the computed varia-

tiona! rate coefficient are (0.56, 0.95, -0.25). The dividing sur-

face corresponding to this particular (A, B, C) triple was designated 

s0 . s0 was then used to compute variational rate coefficients for the 

(H, H2) thermal exchange reaction at several other temperatures. The 

results of these computations are given in Table X. 

TABLE X 

COMPUTED VARIATIONAL RATE COEFFICIENTS FOR THE (H, H2) 
THERMAL EXCHANGE REACTION USING THE DIVIDING 

SURFACE s0 a 

T K 

300 

500 

700 

900 

1100 

aA = 0.56, B = 0.95, C = -0.25 

cm3 
K~(A, B, C, T) mole-sec 

1.8247 X 106 

1.6804 X 109 

3.7507 X 1010 

2.3340 X 1011 

8.0052 X 1011 
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A comparison of the variational rate coefficients with the 

CT rate coefficients given in·Table V shows the variational rate 

coefficients are upper bounds to the CT rate coefficients computed at 

temperathres of 300, 500, and 900 K. However, at 1100 K the variational 

rate coefficient falls within the statistical error bounds of the CT 

rate coefficient. 

The; variational procedure has also been applied to the (H, I 2) 

system. The potential-energy surface employed was obtained from the 

asymptotic three-body limit of the (H2 , I 2) interaction potential (54). 

The initial grid search over the A-B plane w~s carried out in the same 

fashion as it was for the (H, H2) system with values of C = -0.20, 

-0.10, 0.0, and 0.10 with rml = 7.50 au at a temperature of 600 K. 

Table XI lists the minimum variational rate coefficient obtained from 

the grid search for each value of C with the value obtained from the 

refined grid search as the last entry of Table XI. 

A 

0.80 

0.80 

0.60 

0.60 

0.56 

aResult of 

TABLE XI 

COMPUTED VALUES OF K~(A, B, C, T) FOR 
THE (H, I 2) SYSTEM AT 600 K 

3 em B c K~ (A, B, C, T) mole-sec 

1.10 -0.20 2.2385 X 1015 

1.10 -0.10 2.2220 X 1015 

0.80 0.0 2.2205 X 1015 

0.80 0.10 2.2403 x' 1015 

0.75 o.o 2.2170 x 1015 a 

refined grid search 
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The (H, I 2) system has very little zero-point energy so the SQCT 

rate coefficient should be comparable to the CT rate coefficient. The 

SQCT rate coefficient computed in the previous CPST study is K(600) = 
14 3 2.12 x 10 em /mole-sec, this corresponds to K~(0.56, 0.75, 0.0, 600) 

~ 10.5 K(600). The variational rate coefficient is roughly an order 

of magnitude greater than the SQCT result. 

This result suggests S is located in a region of phase space 

that is accessible to nonreactive trajectories. The source of the 

problem may be found from an examination of the projection of S onto 

the (r, R) plane. These are shown in Figures 14-17. 

One feature that is immediately apparent from the projections of 

S onto the (r, R) plane is that S traverses a 1 region of attractive 

three-body interaction, a shallow well in the entrance valley. The 

greatest well depth o occurs for the e = ~/2 surface shown in Figure 15 

with o~-2.1 kcal/mole below the energy zero of separated reactants 

and reaches its highest value for e = ~with o~-1.2 kcal/mole shown 

in Figure 17. In addition, there are small barriers in the entrance 

valley they are approximately 0.9, 0.7, 0.7 kcal/mole for a= ~/3, 

3~/4, ~ respectively, and 16.6 kcal/mole for a = ~/2. 

It is apparent from Figures 14-17 that there will be virtually 

no contribution to the flux from phase-space points that originate 

in the product phase space, cross S, and return since the difference 

in elevation between stable products and reactants is 36.9 kcal/mole. 

The average translational energy at 600 K of phase-space points origi-

nating in the reactant region of phase space is more than adequate to 

traverse the barrier except for a values near ~/2. Although, it 
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Figure 14. Projecti.on o:f; S onto the (r ,R.} Plane, 
A = 0.56, B = 0.75, C = 0.0, e = w/3, 
Potential Contours are in eV Refer- . 
enced to H + Iz at Infinite Separa
tions as the Zero of Energy, r and R 
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Figure 15. Projection of S onto the (r,R) Plane, 
A= 0.56, B = 0.75, c = 0.0, e = n/2, 
Potential Contours are in eV Refer
enced to H + 12 at Infinite Separa
tion as the Zero of Energy, r and R 
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Figure 16. Projection of S onto the (r,R) Plane, 
A= 0.56, B = 0.75, C = 0.0, e = 3~/4, 
Potential Contours are in eV Refer
enced to H + 12 at Infinite Separa
tion as the Zero of Energy, r and R 
in Atomic Units 
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appears S must be located near the barrier for 3~/4<a<tr and O<a<~/4 

shown in Figures 16 and 17, for ~/4 <a< 3~/4 S traverses the well 

in the entrance valley. Notice this includes the a = ~12 surface. 
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Since the average relative translational energy is 1.77 kT~ 2.1 kcal/ 

mole, virtually all phase-space points originating in the reactant zone 

with a near ~/2 in the vicinity of the barrier will return. An examina

tion of the relative velocity distribution of the (H, I 2) system shown 

in Figure 8 of reference 47 shows the most probable relative transla

tional energy is about 1.9 kcal/mole at 600 K. Considering barrier 

heights and relative translational energies alone, it appears that more 

than half of the phase points originating in the reactant phase 

space will react, this discussion does not include phase points 

traveling on potential-energy surfaces where a is near ~/2 in the 

vicinity of the barrier. However, all phase points originating in the 

reactant region of phase space will reach S. Indeed, one would expect 

the flux to significantly overestimate the true reaction rate coeffi

cient. Although, this is the best result obtained for S described by 

the degrees of freedom r and R, it appears that S does include sub

stantial regions of phase space that are accessible to nonreactive 

trajectories originating in the reactant region of phase space. 

Once, s0 was determined with (A, B, C) = (0.56, 0.75, 0.0) varia

tional rate coefficients were evaluated for the (H, I 2) system over 

the temperature range 300-1100 K. The results are reported in Table 

XII. In addition, Table XII includes rate coefficients evaluated 

from Sullivan's (69) experimentally determined temperature fit of the 

rate coefficient for the (H, I 2) system. The rate coefficient is of 



T K 

300 

500 

600 

700 

900 

1100 

TABLE XII 

COMPUTED VARIATIONAL RATE COEFFICIENTS 
FOR THE REACTION H + I 2 + HI + I 

USING THE DIVIDING SURFACE 
S a 

0 

94 

3 3 b 
em 

K(T) mole-sec 
em 

K'(A, B, C, T) mole~sec 

1. 73 X 1014 

2.24 X 1014 

2.45 X 1014 

2.65 X 1014 

3.00 X 1014 

3.32 X 1014 

4.4290 X 1015 

2.4695 X 1015 

2.2167 X 1015 

2.0850 X 1015 

1. 9791 X 1015 

1.9647 X 1015 

a A= 0.56, B = 0.75, C = 0.0 

bReference 69 
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the form, 

(3-6) 

with A = 1013 •0 ± 0 •2 and essentially no activation energy. The 

experimental uncertainty in the frequency factor gives upper and lower 

12 13 
bounds of 6.3 x 10 < A < 1.6 x 10 • At low temperatures the experi-

mental rate coefficients show that phase points originating in the 

reactant zone have a small region of phase space available to follow 

to the product zone because the majority of these trajectories are of 

low energy and unable to traverse the small barrier. As the tempera-

ture is increased, the phase points begin to populate the regions 

of higher energy. Hence, more phase points are able to follow trajec-

tories leading to the product phase space. Consequently, one observes 

an increase in the rate coefficient. However, the variational rate 

coefficients certainly do not behave in this manner. This flux is a 

measure of phase points reaching S from the reactant zone with S located 

in the region of phase space containing the well in the entrance valley. 

The most striking feature of the temperature study of the varia-

tional rate coefficient is its decrease with respect to temperature. 

At low temperatures one may think of the phase space points clustered 

closely together in the region of phase space containing the well in 

the entrance valley with other phase space points more sparsely distri-

buted in the complementary regions of phase space. That is, there is 

a high density of systems in this region of phase space. Since S 

does span this region of phase space, one would expect the flux across 

S in the product direction to be large. As the temperature is increased, 
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this low-energy region of phase space becomes less important and the 

phase-space points are redistributed more sparsely over a much larger 

region of available phase space. In essence, the phase-space points 

are spread out over the accessible regions. Now the region of phase 

space corresponding to the well is not as densely populated. Couse-

quently, the flux across S in the direction of the product region of 

phase space decreases, and the variational rate coefficients decreases 

with temperature. 

The comparison between Sullivan's experimental results on the 

(H, r2) system and the variational rate coefficients is, at best, poor. 

An examination of the projection of S onto the (r, R) plane shows S 

does span the well in the entrance valley for'certain values of e. 

Furthermore, there is no way to avoid this with S being described by 

the two degrees of freedom, r and R. If one were to include the addi-

tional degree of freedom, e, in the description of S, there might be 

a substantial improvement in the variational rate coefficients. 

Such a study has been done for (H, I 2) system with S defined by, 

S = AR- Br- De-C= 0 (3-7). 

The derivation of K .. (A, B, C, D, T) is given in Appendix C. The 

final result is: 

K~(A, B, C, D, T) = 

where, 

f2';kT 
(A+ B) 

I 1 (A, B, C, D, kT) 

r2(kT) (3-8) 



,. vml 

I 1 (A, B, C, D, kT) = f sinS dS f dV R2(S,V,C) r(S,V,C) x 

0 V' 

2 B2 D2 2 A2 r (S,V,C) + + r (S,V,C) 
X 

]J ]J l.JA BC 
' 

-v(r(S,V ,C), R(S,V,C), cosS)/kT, (3-9) 
e 

with r2 given by Eq. (2-74). Notice V' and Vml' both depend upon 9 

and if A and B are considered positive, V' depends upon the sign of 

C and D. Another point worth noting is if D = 0, K'(A, B, C, D, T) 

reduces to K'(A, B, C, T). 
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An examination of the potential-energy contours for the H + 12 

system suggests that one might expect a substantial improvement in the 

variational rate using equations (3-8) and (3-9). In Figures 14-17, 

it is seen the location of S is fixed whereas the potential is a func-

tion of 9. During the integration over 9, S traverses low-energy 

regions of the potential, in particular, the well in the entrance 

valley. Since the flux is large in such regions, the variational rate 

is much larger than the reaction rate. This difference will be mag-

nified at lower temperatures. 

One may utilize the previous discussion as additional informa-

tion that may prove helpful in the grid search for local minima of 

K'(A,B,C,D,T). The (A,B,C) set that yielded the smallest K .. (A_.B,C,T) 
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will be used as the initial guess for the minimization of K'(A,B;C,D,T) 

at a temperature of 300 K. Taking advantage of the symmetry of the 

potential about e = ~/2, S is defined as, 

s={n-
n-

Br - D8 - C, o ~ e ~ ~12 

Br - D'S - C', ~/2 < e < ~ D' = -D, C' = C - D~. (3-10) 

An inspection of the contour maps of Figures 14-17 show that the 

high-energy regions of the potential in the reaction path moves toward 

smaller R values for 0 < e ~ ~12. For ~/2 < e ~ ~ this region back-

tracks toward larger R values. If one rewrites S of Eq. (3~10) in 

the form, 

A D 
r=-R--8 B B 

c 
B ' (3-11) 

it is seen that a choice of D < 0 for 0 < 8 ~ ~12 will increase the 

r-intercept, which will result in moving S out of the small well in 

the entrance valley. 

Using the initial guess to aid in the grid search, B is fixed 

at 0.75 while an (A, D) grid is searched for a local minima of 

K~(A, B, C, D, T) at different values of C. Results of such a grid 

search for the (H, I 2) system for different values of C are shown in 

Table XIII with the smallest K'(A, B, C, D, T) computed being the last 

entry. The projections of S onto the (r, R) plane are shown in 

Figure 18-21. 

An examination of Table XII shows K(300) z 1.73 x 1014 cm3/mole-

sec evaluated from Sullivan's expression Eq. (3-6) for the (H, I ) 
2 

thermal exchange reaction. The results listed in Table XIII show that 



TABLE XIII 

RESULTS OF THE GRID SEARCH OF 
K'(A, B, C, D, T) FOR THE 

(H, I 2) SYSTEM AT 300 K a 

A c D 

0.54 0.100 -0.92 

0.54 0.0 -0.80 

0.54 -0.100 -0.60 

0.54 0.100 -0.90 

0.52 0.200 -1.10 

0.52 0.175 -1.10 

0.52 0.125 -1.10 

0.52 0.150 -1.10 

0.51 0.150 -1.20 

aB = 0.75 

bunits of K' are cm3/mo1e-sec 

cK'(A, B, C, D, T) given by Eq. (3-8) 
d Refined grid search 
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K'(A, B, C, D, T)b,c 

5.4037 X 1014 

1.3943 X 1015 

4.1346 X 1015 

5.6366 X 1014 

3.0456 X 1014 

2.6397 X 1014 

2.4442 X 1014 

2.4280 X 1014 

2.0643 X 1014 
d 
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Figure 18. Projection of S onto the (r,R) Plane, 
A= 0.51, B = 0.75, C = 0.150, D = 
-1.20, 8 = ~/3, Potential Contours 
are in eV Referenced to H - Iz at 
Infinite Separation as the Zero of 
Energy, r and R in Atomic Units 
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Figure 19. Projection of S onto the (r,R) Plane, 
A= 0.51, B = 0.75, C = 0.150, D = 
-1.20, 8 = ~/2, Potential Contours 
are in eV Referenced to H - I2 at 
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Figure 20. Projection of S onto the (r,R) Plane, 
A= 0.51, B = 0.75, C = 0.150, D = 
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K~(A, B, C, D, T) is nearing this value. Of the 285 K~(A, B, C, D, T) 

computed, K~(0.51, 0.75, 0.15, -1.20, 300)~1.2 K(300) was the smallest 

found. This result could be improved somewhat by searching a grid of 

finer mesh over C and D in this vicinity. If one considers the pro

jections of S onto the (r, R) plane in Figures 18-21, it is seen from 

e = TI surface, Figure 21, that s does touch the -0.02 eV contour. Thus, 

it is not surprising that K~(300) is still about 19% too large. How

ever, the essential question is: How good is the variational procedure 

in providing reliable classical rate coefficients? Clearly, the (H, H2) 

and (H, I 2) systems give very good results. Furthermore, if one con

siders the different classes of potential these two systems represent, 

the two examples prove more enlightening than they first appear. The 

(H, H2) system potential has a wide region of very high potential 

between the reactant and product regions with no potential minima. Con

sequently, it should not prove too difficult to locate a satisfactory 

S. As a matter of fact, K~(A, B, C, T) proved quite adequate. On the 

other hand the (H, I 2) system has a very narrow, modestly repulsive 

potential between the reactant and product regions and also has a well 

in the entrance valley. In order to obtain a satisfactory variational 

rate coefficient, S must pass between the regions of low potential 

always avoiding the potential well. Certainly K~(A, B, C, 600)~10.5 

K(600) is inadequate, where K(600) is the SQCT result reported in a 

previous study (47), and K~(600) is from Table XII. However, if one 

employs K~(A, B, C, D, T) and takes advantage of the symmetry of the 

potential about e = TI/2, a result K~(0.51, 0.75, 0.150, -1.20, 600)~ 
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2.0 K(600) is obtained. Clearly, the variational procedure can pro-

vide reasonable approximations to classical rate coefficients provided 

the parameterization of S is sufficiently flexible. 

Choosing the set (A, B, C, D) = (0.51, 0.75, 0.150, -1.20) as the 

set of parameters describing s0 , variational rate coefficients were com

puted over the temperature range 300-1100 K. The results are given in 

Table XIV. These results show reasonable agreement with Sullivan's ex-

perimental values at 300 K and increase to K (A,B,C,D,T),J2.33 K(T) at 

1100 K. A refined grid search could improve the results. The result at 

14 3 1100 K is larger than the upper bound, 5.~ x 10 em /mole-sec, from 

Sullivan's experimental uncertainty. In addition, it may not be valid 

to compare experimental results over the temperature range of 667-800 K 

to variational rate coefficients computed over the temperature range of 

300-1100 K. Furthermore, the experimental study reports an activation 

energy EA = 0, whereas the H-I2 potential-energy surface has a barrier 

of 0.49 kcal/mole. Essentially, the potential surface employed in the 

variational study may not represent the true system potential accurately 

in all regions. 

CPST Rate Coefficients 

Once s0 has been determined by the variational procedure, it is 

employed in a CPST computation of the rate coefficient. If the 

variational study has been reasonably successful, one would expect 

the CPST correction factor, ~(A, B, C, T) defined by Eqs. (2-92) and 

(2-93), to approach unity. That is, if a set of N trajectories are 

sampled from S the number of reactive trajectories N should approach o' r 

N. 



a 

T K 

300 

500 

600 

700 

900 

1100 

TABLE XIV 

a TEMPERATURE BEHAVIOR OF K~(A, B, C, D, T) 

K~ (A, B, C, D, T)b 

2.0643 X 1014 

3.6385 X 1014 

4.3342 X 1014 

4.9854 X 1014 

6.1822 X 1014 

7. 7272 X 1014 

A= 0.51, B = 0.75, C = 0.150, D -1.20 

bK~ in units of cm3/mole-sec 
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s0 for the (H, H2) system is described by (A, B, C) = (0.56, 0.95, 

-0.25). CPST rate coefficients have been computed from initial condi-

tions sampled from s0 as described in Chapter II at temperatures of 

300, 500, 700, 900, and 1100 K using 100 trajectories to compute the 

CPST rate coefficient at each temperature. The results of these compu-

tations along with the correction factor ~(A, B, C, T) and standard 

error a given by Eq. (2-94) are given in Table XV. 

The upper and lower error bounds for the CPST and CT rate coeffi-

cients overlap indicating statistical agreement with the exception of 
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the 900 K rate coefficients. A possible source of the disagreement 

between the two rate coefficients could be an overestimate of the 

reaction threshold in the CT procedure. An examination of threshold 

velocities from Table IV does show a decrease in reaction threshold 

with temperature except at 900 K. Probably the cause of this descrep-

ancy is the use of a larger b for the estimate of the 900 K thres-
max 

hold. Consequently, the smaller impact parameters are not as heavily 

sampled as those at other temperatures. 

T K 

300 

500 

700 

900 

1100 

TABLE XV 

RATE COEFFICIENTS COMPUTED BY THE CPST 
PROCEDURE FOR THE H + Hz THERMAL 

EXCHANGE REACTIONa 

~(A, B, C, T) 

0.89 

0.98 

0.94 

0.94 

0.88 

3 em K(A, B, C, T) --~1----mo e=sec 

(1.6240 ± 0.0571) X 106 

(1.6468 ± 0.0235) X 109 

(3.5256 ± 0.0891) X 1010 

(2.1939 ± 0.0554) X 1011 

(7.0446 + 0.2602) X 1011 

alOO trajectories computed for each CPST rate coefficient 
b Eq. (2-92) 
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It should be noted that the number of trajectories required to 

obtain the CT coefficients with statistical accuracy on the order of 

10% is significantly larger than the 100 trajectories used to compute 

the CPST rate coefficients with statistical error bounds on the order 

of 2-4%. This increased efficiency of the CPST procedure is not always 

obtained, however. It is strongly dependent upon the particular sys-

tem under investigation (47). For example, for the (H, I 2) system 

studied in the previous section with S described by the two degrees of 

freedom rand R, the best choice of (AyB,C) found was (0.56, 0.75, 0.0) 

--- ------
which yields K~(A,B,C,T)~6.6 K(T) at 900 K. One would expect opti-

mization of the CPST procedure to be poor for thi.s case. Thb 

has previously been found to be true for S = R - C = 0, where 

C=R (47). 
t 

Temperature Study by the CTA, CPST and 

Variational Methods 

The temperature behavior of the (H, H2) system has been studied 

by the CT, variational, and CPST procedures. The computed rate coe-

fficients as a function of temperature are given in Tables V, X, and 

XV, respectively. ·The temperature dependence of the rate coefficients 

was expressed in the Arrhenius form, 

-EA/RT 
K(T) = A e (3-12) 

and the results of a linear least squares fit to ln K(T) vs. 103/T 

for the three methods are shown in Figures 22, 23, and 24. The 
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frequency factors and activation energies predicted by the three 

methods are given in Table XVI. 

Procedure 

CT 

TABLE XVI 

RESULTS OF THE ARRHENIUS TEMPERATURE FIT OF THE RATE 
COEFFICIENT FOR THE (H, Hz) THERMAL EXCHANGE 

REACTION INVESTIGATED BY THE CT, 
VARIATIONAL, AND CPST 

PROCEDURE 

ln A E kcal 
A mole 

31.97 + 0.16a 10.59 + 0.15 

Variational b 
32.08 + 0.12 10.59 + 0.12 

CPSTb 32.02 + 0.08 10.60 + 0.08 

a Probable error of slope and intercept of linear least squares line 

Reference 70 
b A= 0.56, B = 0.95, C = -0.25 
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In this comparison of predicted temperature behavior of the rate 

coefficient, the CT results are considered to be the correct values. 

Essentially, one is comparing the results of two other procedures to 

the results from trajectory calculations with initial conditions 

sampled from a Boltzmann distribution in the reactant valley, which 

is correct for thermal processes. 
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An examination of Figures 22, 23, and 24 shows the Arrhenius 

description of the rate coefficient provides a good fit for all three 

methods. The Arrhenius fit to the CT rate coefficients shown in Figure 

22 depicts a small deviation from Arrhenius behavior, there is a slight 

increase in slope at the low temperature end. This feature also 

appears in the Arrhenius fit to the Variational and CPST rate coeffi

cient. It seems the temperature behavior predicted by the variational 

and CPST procedures does mimic the CT results with regard to the 

characteristics mentioned above. The CPST and variational frequency 

factors and activation energies shown in Table XVI indicate very good 

agreement with CT results with the uncertainty of each computed quan

tity being less than 2%. 

Consider an isolated system composed of a mixture of A and BC 

particles at temperature T with A and BC capable of reaction. If one 

defines the activation energy of the system as the difference between 

the ensemble average of energy of A and BC particles that do react and 

the ensemble average energy of the system, we have 

(3-13) 

where (E) is the ensemble average of the system energy and (ER) is the 

ensemble average energy of A and BC particles in the system that do 

react. This quantity may be computed by CT methods. An analogous 

variational definition could be the difference between the ensemble 

average energy of A and BC particles that reach S and the ensemble 

average of the system energy. Or, 
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(E ) = (E ) - (E) 
s A s 

(3-14) 

where (Es) is the ensemble average energy of A and BC particles that 

reach S and (E ) is the predicted activation energy from the varia
s A 

tiona! procedure. Notice one might be able to computed (E ) from, 
s A 

1=0 
-SH 

/Ho 

-SH 6 
H e do 0 

II dpi dqi e 
i=l 

~.n >o 
w 

(E ) s (3-15) 
6 ' s A 

1=0 
-SH 

/e-SHo II dpi dqi e do i=l 

~.~ >0 
w 

s 

where the Hamiltonian has been described by Eqs. (2-44) and (2-45). 

It might prove worthwhile to attempt the evaluation of Eq. (3-15) 

notice (E ) does exhibit temperature dependence and unless actual 
s A 

computations are performed, it is difficult to say how strong this 

temperature dependence would be. 

According to Keck (22), there exists a surface s0 that is crossed 

once and only once by trajectories traveling from reactant to product 

phase space. If one considers the conditions required for a "proper" 

choice of S, that is S must completely separate reactant and product 

phase space and be as inaccesible to nonreactive trajectories as possi-

ble, it is clear that the variational procedure essentially tries to 

. so approx1mate This implies no nonreactive trajectories will reach 

s0• It appears that a necessary criterion for a given trajectory to 

belong to the set of reactive trajectories is that the set of phase 



0 
space coordinates composing a trajectory contain a point on S as a 

limit point (68). 
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Clearly a proper choice of S is in order, since, if S were chosen 

to lie far out into the· reactant phase space (E ) + 0, and certainly 
. sA 

EA is a least upper bound for (E ) 0 
s A' As S begins to resemble S more 

closely, one expects (E ) to approach EA from below, or 
s A 

lim (E ) = lub 
s A 

s + s0 

(E ) = EA. 
s A 

(3-16). 

If one considers the activation energies of Table XVI, it is obvious 

0 that S must be approaching S for the (H, H2) system. However, it is 

0 not s .. since, K~(A, B, C, T)>K(T) for every temperature. This is 

also evident from the CPST trajectories in which some phase-space 

points selected on s0 do recross s0 and return to the reactant 

phase space. 

Temperature studies have also been performed with the variational 

procedure applied to the (H, I 2) system with s0 described by 

(A,B,C) = (0.56, 0.75, 0.0). The variational rate coefficients given in 

Table XII were assumed to follow the temperature dependence of Eq. 

(2-6) as suggested by Sullivan (69) and a plot of ln (K~(A,B,C,T)/IT) 

vs. 103/T is shown in Figure 25. The resulting frequency factor and 

activation . nergy are given in Table XVII along with Sullivan's results. 

The activation energy obtained from the temperature study of 

K (A, B, C, T) does not suggest any agreement at all with Sullivan's 

experimental results, neither does it agree with what one expects from 

the potential-energy surface for the (H, r 2) system with a barrier of 
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approximately 0.7 kcal/mole. However, if one considers the definition 

of (E ) given by Eq. (3-14) as the energy difference between the average 
s A 

energy of particles in the reactant phase space and those reaching 

S, it is not necessary that (E ) always be greater than zero. Cer-
s A 

tainly s0 is not a good approximation to S0 • An inspection of Figures 

14-18 shows s0 traversing the well in the entrance valley which has a 

depth -2.1 < 0 < -1.2 kcal/mole for different values of a. 

Procedure 

Variational 

K'(A, B, C, 

K' (A, B, c, 

Experiment c 

T)a 

TABLE XVII 

RESULTS OF THE TEMPERATURE STUDY OF THE 
(H, I 2) THERMAL EXCHANGE RE~CTION BY 

THE VARIATIONAL PROCEDURE 

ln A 

31.141 + 0.012 

D, T)b 30.930 + 0.008 

29.99 + 0.46 

aS= AR- Br- C = 0, A= 0.56, B = 0.75, C = 0.0 

E kcal 
A mole 

-1.205 + 0.012 

0.495 + 0.009 

0.0 + 0.50 

bS = AR- Br D8- C = 0, A= 0.51, B = 0.75, C = 0.150, D = -1.20 

cReference 69 



It is perhaps useful to analyze the grid search algorithim to 

understand what led to this choice of s0 • The search was performed 

over a grid of (A, B) points for different choices of C at an arbi-
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trary temperature. For this case, the search was conducted at 600 K. 

At this temperature -1.76 ~ o/kT ~ -1.01 or the integrand of I 1 may 

assume values as large as e1 • 76 ~5.8 as the integration over e is 

performed. However, at 300 K -3.52 ~ o/kT ~ -2.01 the integrand of 

I 1 1 3•52 8 d h . i 1 may assume va ues as arge as e ~ 33. uring t e 1ntegrat on 

over e. The effect of the small well is not as significant at the 

higher temperature. Consequently, one obtains variational rate coe-

fficients that decrease with temperature. Thus, it appears that one 

should perform the grid search at low temperatures where the low-energy 

attributes of the potential will be maximized in the variational study. 

The set (A, B, C, D)= (0.51, 0.75, 0.150, -1.20) yielded the 

smallest computed variational rate coefficient at 300 K with s0 des

cribed by Eq. (3-10). Computed values of K~(A, B, C, D, T) are given 

in Table XIV as a function of temperature for this particular s0 , and 

a plot of ln (K~(A,B,C,D,T)/i'f) vs. 103/T is given in Figure 26. 

The computed frequency factor and activation energy from the linear 

least squares fit are given in Table XVII. 

The results of the temperature fit of K~(A,B,C,D,T) show EA~0.5 

kcal/mole, certainly not unreasonable for a potential-energy surface 

with a 0.49 kcal/mole barrier (47). It is difficult to compare the 

variational and experimental frequency factors considering the uncer-

tainty of the experimental results. Essentially the variational 

frequency factor is 2.6 times larger than the experimental result. 
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However, the variational procedure does seem to provide reliable clas

sical rate coefficients, activation energies, and possibly frequency 

factors requiring small amounts of computer time in comparison with 

Monte-Carlo classical trajectory procedures. For example, to compute 

K(900) to within 10% statistical uncertainty for the (H, H2) system by 

CT procedures required 27 CPU hours on an IBM 370/158 computer, while 

,, the search for a local minima of K"'(A,B,C,900) required 7.8 CPU hours. 

However, it must be remembered that the (H, H2) system is one of the 

worst cases to examine by CT procedures. For other systems it may 

not be possible to find an adequate S or the resulting grid search 

may prove more cumbersome than the actual trajectory calculation. Of 

course, one obtains no information on collision details, reaction 

cross sections, differential cross sections, or product energy distribu

tions that are readily available from Monte Carlo procedures. 

A Comparison of Initial and Final State 

Properties Predicted by the CPST 

and CT Procedures 

The CPST procedure has shown it can produce reliable classical 

rate coefficients within statistical agreement with CT results with 

just a few trajectories if an optimum S has been chosen. Another 

interesting test would be to examine the final state distributions of 

the dynamical variables predicted by the CPST procedure. Such a 

problem was seriously addressed in the study of the (H, I 2) system 

at 600 K. These authors found that it required 15,000 trajectories 

to obtain adequate statistical accuracy to determine very small 



differences in differential cross sections predicted by the two pro-

cedures. 

Since the (H, r 2) system is a highly reactive system, compared 

to the (H, H2) system, this essentially eliminates any chance of 

making quantitative comparisons between the two procedures for the 

(H, H2) system. The best one may hope for is qualitative compari

sons and conclusions. A total of 4750 classical trajectories were 

examined for the final ~tate distributions by the CT procedure which 

produced a weighted sum of reactive trajectories of 60.8, or essen-

tially 1 out of 80 trajectories react. To study the final state 

distributions produced by the CPST procedure, 500 trajectories were 
I 

sampled from s0 , of which 461 were reactive. Certainly one would 

expect much better statistical accuracy in the final state distribu-

tions of the CPST procedure, however, the question is how well do 

these results compare with the CT results. 

The differential scattering cross sections predicted by the CT 
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and CPST procedures are shown in Figure 27 (a) and (b), respectively. 

Qualitatively they are both similar, both predict backward scattering 

peaked at 175-180 degrees. This predicts a rebound type of mechanism, 

essentially, this agrees with the reaction cross section. An examina-

2 
tion of Figure 2 shows reaction cross sections less than 5 au accord-

ing to Laidler (1), processes with reaction cross less than lO(R) 
2 

will undergo backward scattering. However, any fine details of the 

scattering cannot be obtained, one might examine Figure 27 (a) and 

conclude the CT results predict stronger backward scattering, but 
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these results have large statistical uncertainty, hence such conclu-

sions may not be reliable. 

The final state rotational energy of a trajectory is obtained 

from Eqs. (2-101), (2-104), and (2-105) as the difference of internal 

and vibrational energy in the Morse oscillator approximation. The 

rotational energy distributions from the CT and CPST procedures are 

shown in Figure 28 (a) and (b), respectively. The CPST result shown 

in Figure 28 (b) appears to predict a higher occurence of low rota-

tional energy products, but again large differences may be absorbed 

in the large statistical error. Essentially, this rules out quanti-

tative assessment of the CT and CPST product rotational energy distri-

butions. Again, there is qualitative resembl~nce of the distribution 

of product rotational energies predicted by the two procedures. 

The distribution of product vibrational energy is shown in Figure 

29 (a) and (b), for the CT and CPST procedures, respectively. Here 

again, one has qualitatively similar vibrational energy distribution 

predicted by the two procedures. However, on the low energy end 0-3 

kcal/mole, there is a consistently higher occurrence of low product 

vibratonal energy predicted by the CT method, which might not be as 

easily dismissed as statistical uncertainty •. 

Further comparisons may yet be made, for instance, one is 
I 

reasonably assured of a Boltzmann distribution of initial conditions 

in the reactant region of phase space. In fact, this is how the 

initial conditions are selected in the CT study of thermal processes. 

To determine if the Boltzmann weighting of states on s0 was appropriate, 

one might back-integrate from initial conditions chosen on s0 to the 
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reactant region of phase space. Although this will exclude trajec-

tories that never reach s0 from reactants and for the (H, H2) system, 

this is the vast majority. However, one could obtain initial state 

distributions in the CT formalism of trajectories sampled in the react-

ant region of phase space by integrating trajectories from reactants 

to s0 • Then, employing the CPST procedure, one could backintegrate 

from s0 to reactants and obtain the reactant state distribution of 

CPST trajectories sampled on s0 from a Boltzmann distribution. If 

the two procedures are equivalent, the reactant state distribution 

obtained by the two procedures should be the same. 

Such a comparison was attempted out of 2250 trajectories examined, 

I 
the weighted sum of reactive trajectories was 36.7. Of the 500 CPST 

trajectories examined with initial conditions chosen from a Boltzmann 

distribution on s0 , 486 backintegrated to reactants. The initial 

relative speed distribution obtained from the CT and CPST procedures 

are shown in Figure 30 (a) and (b), respectively. The two distributions 

do agree on the location of the maximum at V = 1.25 vu. However, the 
r 

CT distribution is skewed to the low velocity side, this could be 

chosen from choosing V as a lower limit for the selection of initial 
0 

relative velocities! The relative velocities from which the initial 

conditions are chosen in the CT procedure actually corresponds to 

the high velocity tail of the Boltzmann relative speed distribution. 

An interesting point to notice about the CPST initial relative speed 

distribution is that there are some trajectories that reach s0 well 

below the estimated threshold velocity. It is very difficult to obtain 

a good estimate of the threshold velocity from the CT procedure. The 
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present case is a good example with V chosen as 1.014 vu, it is possi
o 

ble the CPST procedure might prove useful in obtaining threshold 

velocities. 

The initial BC internal energy distributions for the (H, H2) 

system predicted by the CT and CPST procedures are shown in Figure 

31 (a) and (b), respectively. Essentially, there is nothing to compqre 

the CPST internal energy distribution with, since, the CT results only 

represent an example of large statistical error. It appears computa-

tion of many more trajectories would be required before one could even 

make qualitative statements about the nature of these distributions. 
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CHAPTER IV 

CONCLUSIONS AND REMARKS 

The agreement of the variational and CPST rate coefficients with 

CT rate coefficients for the (H, H2) thermal exchange reaction is very 

good. As far as the CPST rate coefficient is concerned this is not 

surprising, since, the variational rate coefficient for this case is 

already a close upper bound of the CT rate coefficient. The CPST cor

rection factor can only improve the agreement., If one is able to find 

an s0 that provides a variational rate coefficient that is a close upper 

bound to the classical rate coefficient, this essentially optimizes 

the CPST procedure. In practice one usually does not know the classi

cal rate coefficient and has no knowledge of the lower bound. In such 

a situation a reasonable approach might be to follow a procedure simi

lar to that applied to the (H, I 2) system. Search an (A, B, C) grid 

for local minima of K~(A, B, C, T); use the set (A, B, C) that provides 

the lowest local minima in K~(A,B,C,T) to provide an initial guess 

region for an (A, B, C, D) grid and search the (A, C, D) grid for local 

minima of K~(A, B, C, D, T) for fixed B. Hopefully, this will be 

a close upper bound to the true classical rate coefficient. 

The Arrhenius parameters computed from the variational and CPST 

procedures also compare well with CT results. The agreement of the 
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activation energies for the (H, H2) system seems to imply that acti

vation energy is not as critically dependent upon the degree of agree-

0 ment between s0 and S as the individual rate coefficients are. However, 

in order to obtain a reliable activation energy for the system under 

study, it appears necessary that the variational rate coefficients be 

reasonably close to the classical rate coefficients as was demonstrated 

for the (H, r 2) system. Although there are larger uncertainties in 

the data (47) (69) upon which the comparisons are based for this system, 

one should be able to draw some qualitative assessments concerning the 

variational procedure. 

The initial grid search for local minima of K~(A,B,C,T) produced 

(E ) < 0, a poor result for a system treated 1by classical mechanics 
s A I 

with a 0.49 kcal/mole barrier. However, if one minimizes K~(A,B,C,D,T) 

for the (H, I 2) system, (E ) becomes 0.5 kcal/mole which is equivalent 
s A 

to the barrier height. Although, the experimental and variational 

frequency factors disagree by a factor of 2.6, this is probably due 

in large measure to the inadequacy of the potential-energy surface. 

The results of the variational study of the (H, H2) and (H, r2) 

thermal exchange reactions appear to serve as an illustration of the 

hypothesis stated on p. 86. K~(A,B,C,T) was adequate to obtain a 

reasonable variational rate coefficient for the (H, H2) system. Since 

the system potential has a broad saddle point region, it is not too 

difficult to find an appropriate S that divides the system phase space 

described by these regions of high potential energy. In addition, 

there are no low~energy regions of the potential in the proximity of 

the saddle point as there were for the (H, I 2) system. However, the 



(H, I 2) system potential has a low barrier with a small well in the 

entrance valley. These features both depend upon e in such a manner 
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that if S is described only by the degrees of freedom r and R, it must 

traverse the well in the entrance valley. If one does include e in 

the description of S, the minimization of K'(A,B,C,D,T) appears to be 

reasonably successful. 

Anderson et al. (42) have made claims that the CPST procedure 

5 6 offers a computational advantage of 10 -10 over the CT procedure if 

the process under study has steric and/or energy requirements for 

reaction. The (H, H2) system certainly falls into this category with 

9 kcal/mole barrier to reaction. The CPST procedure has been opti-

mized already at the expense of finding s0 , and the CT rate coefficient 

at 300 K required 16328 trajectories to obtain a statistical error on 

the order of 10%. The estimated number of CPST trajectories at 300 K 

required to obtain a statistical error of 10% is 12-13 which gives a 

computational advantage on the order of 1300. It appears Anderson's 

claims are somewhat out of proportion. Of course, if S is not varia-

tionally optimiz~d, the CPST procedure may require more computer time 

than aCT calculation (47). 
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APPENDIX A 

DERIVATION OF IVS+ IN THE 

(W , v , e , 4» , e , ~) 

COORDINATE 

SYSTEM 

The square of the magnitude of VS that is normal to an (n-1) 

dimensional hypersurface described by S = 0 is given by (62), 

--+- --+- as ij as 
(VS. VS) ,.. -i g -j ax ax (A-1) 

The shorthand notation employed in Eq. (A-1) is an example of the 

tensor summation convention. That is, one sums over repeated indices. 

If one includes the proper summation signs, the abbreviated form of 

Eq. (A-1) appears as, 

as i" -igJ ax ~j ax = 
~n as 
~ -i ax 

i=l 

. n i" 1: g J l§.j' 
ax (A-2) 

j=l 

where the gij are the components of the conjugate or reciprocal metric 

tensor given by (63), 

(A-3) 

The Gij in Eq. (A-3) is the cofactor of the element gij of the 
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determinant of the fundamental metric tensor whose elements are given 

by, 

(A-4) 

k i 
where the tensor summation convention has been employed with x (y ) as 

the old coordinates and yi as the new ones. 

Following the tensor notation the relative cartesian coordinates 

1 2 3 4 5 6 Qi are relabeled as (x , x , x , x , x , x ) and (W, V, e, cf>, e, cl>) are 

1 2 3 4 5 6 renamed as (y , y , y , y , y , y ). Substituting r(W, V) and R(W, V) 

into the transformation equations from cartesian to spherical polar, 

i 1 2 3 4 5 6 one obtains the x (y , y , y , y , y , y ). That is, 

2 1 I 

1 = (Ay -y ) siny 3 4 
X cosy A+B 

2 2 1 3 4 
X = (Ay -y ) siny siny 

A-i;'B 

3 2 1 
cosy3 X = (Ay -y ) 

A+B 

4 2 1 5 6 
X = (By +y ) siny cosy A+B 

5 2 1 5 6 
X = (,BY +y ) siny siny A+B 

6 
2 1 

cosy5 X = (By +y ) (A-S) A+B 

To construct the fundamental metric tensor, one evaluates its 

components by employing Eq. (A-4). For example, 



6' 6 
axi ax2 = (B-A)/(A+B) 2 
ay ay 

Noting that the metric tensor is symmetric, that 
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(A-6) 

is; 

(A-7) 

one can construct the metric tensor by evaluating it's upper diagonal 

components, the rest following from Eq. (A-7). Continuing in the 

manner indicated above, employing Eq. (A-4) with the aid of Eq. (A-7), 

one obtains the fundamental metric tensor: 

2 
(A+B) 2 

B-A 
(A+B) 2 0 0 0 0 

B-A 
(A+B) 2 

A2+B2 
(A+B) 2 0 0 0 0 

2 1 
0 0 <Ay -x >2 0 0 0 

A+B 
g = 
Q 2 1 

""" (Ay -y )2 i 3 3 0 0 0 0 . ·· s n y 0 
A+B 

2 1 
0 0 0 0 (By +y )2 0 

A+B 

2 1 
(By +y )2 i 2 5 

0 0 0 0 0 A+B s n y • 

The determinant of the fundamental metric tensor for this coordinate 
(A-8) 

system is, 
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1 
gQ "' (A+B) 2 (Ay2-y1)4 2 3 By2+y1 4 2 5 - sin y ( ) sin y • A+B A+B (A-9) 

Some interesting points may be noted about Eqs. (A-8) and (A-9). 

It is seen that the (W, V, a, ~' e, ~) coordinate system is nonortho-

gonal since all off-diagonal of the fundamental metric tensor are 

zero for orthogonal coordinate systems. The only way this may happen is 

if B = A. ~lso, the Jacobian determinant of an admissible transforma-

tion is defined as the square root of gQ (63). If one takes the 

square root of Eq. (A-9) and writes it in terms of spherical polar 

coordinates, the result is: 

1 2 2 
J 3 • A+B r ,sinS R sine 1 

(A-10) 

where J 3 is the Jacobian determinant of the transformation from the 

relative cartesian coordinates to the (W, V, a, ~' e, ~) coordinate 

system. If one defines J1 as the Jacobian determinant of the transfor

mation from the relative cartesian to spherical polar coordinates, and 

J 2 as the Jacobian determinant of the transformation from spherical 

polar coordinates to the (W, V, a, ~' e, ~) coordinate system, the 

following expressions are obtained: 

(A-ll) 

One of the properties of admissible transformations is J 3 • J1J 2 (63), 

which yields the same result as Eq. (A-10). 
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One now has the essentials to obtain the ·components of the conju-

gate metric tensor from Eq. (A-3). For example, 

(A-12) 

Employing Eq. (A-3) and obtaining some aid from the symmetry 

property, 

gij = gji , (A-13) 

one may construct the conjugate metric tensor. The result is: 

A2+B2 A-B 0 0 0 0 

A-B 2 0 0 0 0 

2 1 
0 0 <Ay -x >-2 0 0 0 

g = A+B 
p 
~ 

0 0 0 2 1 -2 3 <Ay -x >-2 0 0 
A+B sin y 

0 0 0 0 
2 1 0 <BY. +x >-2 

A+B 

0 0 0 0 0 2 1 
(By ry )-2 i -2 5 

A+B s n y 

(A-14) 
Obtaining the necessary partial derivatives from Eq. (2-54) and sub-

stituting the gij and the partial derivatives into Eq. (A-2), the 

expression for VS•VS is, 

~i gij ~j 
ay ay (A-15) 



Physical 
Quantity 

length 

mass 

time 

velocity 

momentum 

angular momentum 

energy 

a Reference 52 

APPENDIX B 

TABLE XVIII 

MOLECULAR UNITSa 

Molecular 
Unit 

au 

amu 

tu 

vu 

mom u 

ang m u 

eV 
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CGS 
Equivalent 

0.529167 -8 x 10 em 

1.6604345 X 10-24 g 

-14 0.53871469 x 10 sec 

0.9822769 x 106 em/sec 

-18 1.631006453 x 10 g-em/sec 

0.86307479 X 
-26 10 erg-sec 

-12 1.60210 x 10 erg 



APPENDIX C 

FORMULATION OF K'(A, B, C, D, T) 

Following the general formulation of the flux integral given by 

Eq. (2-42), one defines S by, 

S = AR - Br - De - C = O, 

This defines W from Eq. (2-54) as, 

I 

w = AR - Br - ne . 

(C-1) 

(C-2) 

In addition, the two other transformation equations are defined by, 

V = R + r 

u = a, 

with the inverse transformations 

R = BV + W + DU 
A+ B 

AV - W- DU 
r "' A+ B 

a = u • 

(G-3) 

(C-4) 

One requires the spherical polar momenta expressed in terms of 

the new momenta P , P , and P to substitute into the Hamiltonian w v u 

expressed in spherical polar coordinates given by Eq. (2-44) to 
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obtain the Hamiltonian in terms of the new coordinates and meomenta. 

This may be accomplished by employing a generating function (61) of 

the type F2(f(q), P) where the q's are the old coordinates and the P's 

are the new momenta. In particular, the f(q) are chosen to be the 

transformation equations Eqs. (C-2) and (C-3). To obtain the old 

momenta in terms of the new, F2 is written as, 

(C-5) 

from which the old momenta may be obtained by, 

(C-6) 

The old momenta expressed in terms of the new are therefore, 

p = p + AP 
R v w 

Pr = p BP v w 

Ps = p DP 
u w 

(C-7) 

Substituting Eqs. (C-7) and (C-4) into the Hamiltonian, Eq. (2-44) 

and collecting terms results in the 1 following expression, 

(___!_ + 1 p 2 
2 D2 A2 p 2 H = ) + (.!!.._ + + ) + 

2ll 2llA,BC v 2ll 2 2llA,BC w 2llr (U,V,W) 

1 2 ( A B D 
2 . p + - -) p p 

2 
p p + 

2llr (U,V,W) u llA,BC ll vw llr (U,V,W) uw 

2 2 2 2 2 2 2 2 
p~ /2llr (U,V,W)sin U + P0 /2llA,BCR (U,V,W) + P~ /2llA,BCR (U,V,W)sin 0 

+ v(r(U,V,W), R(U,V,W), cosU). (C-8) 
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In order to obtain the surface element do for which S = 0, one 

must evaluate det aQ(C) and det gp(C) since, 
~ 

,._, 

do(C) = doQ(C) dVP(C) = ldet aQ(C) ldet gp(C) dV dU dcj> de 
,.._ ~ 

diP dP dP dP dPe dPib dpcj>, (C-9) 
w v u 

where doQ(C) is the differential surface element defined by S = 0 

in the coordinate space, and dVP(C) is the differential volume element 

defined by S = 0 in the momentum space. 

Since the Jacobian of the transformation from cart·esian to 

(W,V,U,cj>,e,~,P ,P ,P ,p~,P0 ,P~) phase space factors into the product w v u 'I' - ..., 

of the momentum and coordinate space Jacobians, the methods of Appen-

dix A (62) (63) may be employed. One may write the components of the 

metric tensor for the coordinate space transformation on the surface 

S = 0 as, 

w = c 

where, in this case the Qi are the six relative coordinates of the 

(A, BC) coordinate space (S8) and the qj are the new coordinates. 

Similarly one may write the components of the metric tensor for the 

momentum space transformation as, 

(C-11). 

w = c 

.where the Pi are the conjugate momenta of the Qi, and the pj are 



OQ II> ..... t1 
< (I) 
(I) 
~ rt 

::T 
0" (I) 

'< n 
tz:l 0 .a ~ 
Ol w. 
0 c: 

OQ - II> 
(") rt 
I (I) 

1-' 
N g -
II> ~ 
~ ~ 
0. rt 

II> 

A2+B2 D(B-A) 
0 0 0 

(A+B) 2 (A+B) 2 -(") 0 
I 1-h 

1-' 
IJ,) rt - ::T 

(I) 

.a 
'-'· 

D(B-A) 2D2 2 
0 0 0 

(A+B) 2 2 + r (U,V,C) 
(A+ B) 

0 

1-i 
::T 
(I) 

t1 
(I) 
Ol 
c: 
1-' 
rt ..... 
~ 

aQ(C) = I o. 0 r 2(U,V,C)sin2u 0 0 ,..., 
I 

0 0 
2 0 0 R (U,V,C) 

OQ 

~ 
rt 
t1 ..... 

2 2 0 0 0 0 R (U,V,C)sin 0 
I • 

n 
rt 
(I) 
~ 
Ol 
0 
t1 
Ol (C-12) 
II> 
t1 1-' 
(I) ~ 

0\ 



I 
gp(C) = ,._, 

D2 2 2 + 
A +B r2(U,V,C) 

A-B 

-D2 
2 r (U,V,C) 

0 

0 

0 

-D2 
A-B 

2 r (U,V,C) 

2 0 

0 
1 

2 r (U,V,C) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 2 2 r (U,V,C)sin U 

1 0 
2 R (U,V,C) 

0 0 

0 

0 

0 

0 

0 

1 

R2(U,V,C)sin2e 

(C-13) 

1-' 
~ 

"""' 
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Comb1nlng the square roots of the determinants of l•:qs. (C-12) and (C-13) 

one obtains, 

da(C) 

(C-14) 

The velocity normal to the surface S = 0 is defined by Eq. (2-59.) 

as, 

...... I v.n 
SS=O 

= [s, H]/ IWI (C-15) 

Substituting [s, H] and lvsl into Eq. (C-15) one obtains 

+ ( A _ ~) p _ -:---D __ pu) , 
~A BC ~ v 2 (U V C) 

' ~r ' ' 

(C-16) 

.... A 

and setting v.n < 0 the upper limit to P is found to be 
s w 

A B D 
-(----- - -) pv + 2 p 

~A,BC ~ ~r (U,V,C) u 
Pw ~ --~2~--~2~------~2~~2~~------

(B /~+A /~ABC+ D /~r (U,V,C)) 

Substituting Eqs. (C-8), (C-14), (C-16)· and (C-17) into Eq. 

(2-42) the expression for the variational rate coefficient is: 
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1f 

K.(A, 1~, C, n, I~) 
-I 

(f(i~) [ de x 
0 

00 

f 
-00 

-Sv(r(U,V,C), R(U,V,C), cosU) 
d<l> e 

2 2 
-SP /2~r (U,V,C) 

dP e u 
u 

00 

I dP. 
<I> 

X 

00 2 2 2 I -Sp~ /2~r (U,V,C)sin U 
dp~ e 

-oo 

00 

I 
-00 

-6(_!_ + 1 )P 2 
dP e 2~ 2~A,BC v 

v 

A B 0 B2 o2 
p = (-( - -)P + 2 Pu)/(~ + 2 j w ~ABC ~ v ~r (U,V,C) · ~r (U,V,C) 

+ A ' 
~A,BC 

2 ' . o2 A2 · A B 
p ((!_ + 2 + . )P + ( - -)P -
w ~ ~r (U,V,C) ~A,BC w ~A,BC ~ v 

-co , 

D 
2 Pu) X 

pr (U,V,C) 

2 2 
H D 

exp(-S((2P + 2 
2~r (U,V,C) 

2 
+ A . )P 2 + ( A _ !)p p _ 

2~A BC w PA BC ~ v w 
' ' . 

(C-18) 



The upper and lower ll.mi ts V .l and V • arc given by, 
m. 

V"' 

Vml = ((A+ B)rml + C + DU)/A, 

DU/A, C 0, D > 0 

C + DU, C > O, D > 0 
A 

-C -DU, C < 0, D > 0, U 2 -C/D 
B 

C + DU, C < 0, D > 0, U > -C/D 
A 

-l>U/B, C 0, D < 0 

-C -DU, C < 0, D < 0 
B 

C + DU, C > 0, D < 0, U 2 C/(-D) 
A 

-C -DU, C > 0, D < 0, U > C/(-D) • 
B 
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(C-19) 

(C-20) 

After evaluation of the momentum integrals and configuration integrals 

over ~' 0, and ~ and substitution of, 

Q(S) 
2n~A BC 3/2 3/2 

= ( s' ) <2?> 4ni2 (S), (C-21) 

into the result of Eq. (C-18), one obtains: 



1 rz:; I 1 (A, B, C, D, B) 

K .. (A, B, c, D, B) - (A + B) { T I (0) 

where r1 is· given by, 

r1(A, B, C, D, B) • 

"" 2 p 

1T 

[ sinU dU 

0 

. v2 2 2 2 2 
r(U,V,C) (U,V,C)B + Q_ + r (U,V,C)A 

~ ~ ~A,BC 

-Bv(r(U,V,C), R(U,V,C), cosU). 
e 

X 

Substituting B • 1/kT and using I 2 of Eq. (2-72) in Eq. (C-22) 

one obtains Eq. (3-8). 
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(C-22) 

(C-23) 
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