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CHAPTER 1
INTRODUCTION
1.1 Statement of the Problem

The design of digital filters involves three basic steps: (T) the
determination of the filter specifications; (2) the approximation of
these specifications uﬁing a discrete-time system; and (3) the realiza-
tion of the filter. Although these three steps are not completely inde-
pendent, this thesis is focused primarily on the third step. The
realization of the system as a computer program or in hardware requires
that a digital network orbstructure be chosen. There are many consider-
ations and tradeoffs involved in choosing a structure among which are
hardware requirements and/or specifications. A distinction in termi-
nology is being made between requirements and specifications. If the
filter is being implemented on a geﬁera]-purpose computer, the designer
will have to work with the existing specification of that computer among
which will be included the memory wordlength. If, on the other hand,
the filter is being implemented using a special purpose hardware, the
designer may or may not have more freedom in establishing hardware re-
quirements, thereby setting hardware specifications, necessary to meet
the filter specifications. These hardware requirements will include
the accuracy requirements on the A/D and the length of registers in the

system. In most hardwareé realizations, of course, it is economically



desirable to minimize fhe length of the registers that must be provided
to store the filter parameters. |

Regardless of the method of implementation, these hardware require-
ments and/or specifications have an imbact ubon the accuracy with which
the input and the system parameters can be realized. This impact mani-
fests itself in the form of input, filter coefficient, and multiplication
quantization errors. The effects of these three sources of error in
digital filters has been investigatéd extensively in the Titerature [1]
[2]. In this thesis, only recursive filters are considered.

For a given system transfer function

there is an infinite variéty of network realizations that realize the
system function when nétwork parameters are realized with infinite pre-
cision. It is to be expected that some of these structures will be Tess
sensitive than others to quantizatfon of the parameters; i.e., the system
function of the realization will be closer in some sense to the desired
system function. State-space techniques provide a convenient method for
generating various input/output equivalent structures. Recursive digital
filters cah be described by the state equations, which are amenable to
the incorporation of the effects of possible structure transformation

and state amplitude scaling so that an analytical study of the inter-
action of the filter structure and the quantization errors is made pos-

sible. This thesis investigates digital filter coefficient quantization



effects on digital filters that are described by and realized through
state equations. The effects are analyzed through the changes in filter:
pole locations due to the coefficient quantization.

Given a digital transfer function in the form of (1-1), it is well

known that there always exists a state model of the form

x(n+1)

Ax(n) + Bu(n) : (1-2)

y(n) = Cx(n) + Du(n) ' (1-3)

such that H(z) = C(zI-A)_]B + D aﬁd where x(n) is an N-dimensional vector
describing the state of the system at time t = nT, u(n) is a scalar input,
y(n) is the sca]arvoutﬁut, and A, B, C, and D are, respectively, NxN,

NxT, TxN, and 1x1 real, constant matrices. There are an 1nfinfte number
of state mode1s, all of which will yield the Same input-output relation-

ship between u(n) and y(n). Define
x(n) (1-4)

where T is a nonsingular matrix of order N, and x is an Nx1 vector. Then

x(n+1) = Ax(n) + Bu(n) | ~(1-5)
y(n) = Cx(n) + Du(n) (1-6)
where
A=T1lar (1-7)
=18 (1-8)
C=CT .(1-9)

The state model given by (1-5) and (1-6) realizes (1-1) 1ike that given
by (1-2) and (1-3) but may differ greatly in the effects that coefficient



quantization may have on the pole locations of the filter. The pole
locations of these filters are determined by the elements of the system
matrix A and A. When realized exactly, the poles of A and A are the
same. Under the effects of quantization, however, the poles of A and A
will diffef. This thesis compares the properties of various system
matrices where elements are subject to variation. A new system matrix
suitable for use in digital filter applications is introduced.

The second order filter has been recognized as a basic building
block for higher order filters due to its noise characteristics and its
suitability for multiplexing [3], thérefore only the second order case
is considered in this thesis. First- and second-order filters are nor-
mally combined in parallel or cascade forms to implement higher order
filters [4] [5].

While an analysis of various equivalent state-model formulations
for digital filters based on changes in pole location due to coefficient
quantization provides a useful basis for the comparison of equivalent
system matrices, a criterion more useful for determining hardware require-
ments for the implementation of a filter might be the number of bits re-
quired for each coefficient in order to ensure acceptable pefformance.
Closely associated with the required coefficient wordlength is the loca-
tion.and density of the discrete pole grids which can be realized with a
given number of bits. Avenhaus [6] used the density of allowable pole
locations in the z-plane as a measure for assessing various filter struc-
tures. In this thesis, the second-order system matrices under considera-
tion are compared for wordlength requirements for a given variation in
system matrix elements and for realizable pole grids within the unit

circle of the z-plane.



For final comparisons, the matrices will be compared regarding their
ability to sustain overflow limit cycles and their roundoff noise proper-
ties will be discussed. Mills et al. [7] has developed sufficient condi-
tions for the absence of overflow oscillations in second order filters
using two's complement arithmetic. ‘Jackson [34] has shown that the round-
off noise of a filter depends‘on the form of the realization.

- Throughout this thesis, only fixed-point arithmetic will be con-
sidered. Digital filters are usually realized through implementation on
a minicomputer or by the construction of special purpose hardware using
fixed point arithmetic. This a]]ows‘for simplicity in the design [3]

and, correspondingly, reduces cost.
1.2 Technical Approach

The approach used in this thesis to eva]uéte the effects of coef-
ficfent quantization upon the pole locations of state-model digital
filters is to analyze the eigenvalue sensitivity of the system matrix
‘due to variations in the system matrix elements. Since the eigenvalues
of the system matrix of the state-model are the pole locations of the
digital filter, the choice of the state-variables for realizing the
filter is important [8] [9].

A new system matrix suitable for use in digital filters is present-
ed. The paraméter space of the matrix elements is mapped into the unit
circle of the z-plane, showing that the second order matrix can realize
a11 real or complex conjugate pole locations within the unit circle.

This matrix is compared to other second order matrices that have been pre-
sented in the literature [8] [9] by using sensitivity analysis teChniqueé.

Expressions for the magnitude, and the corresponding radial and angular



components, of the change in complex conjugate pole 1ocatibns for each
system matrix are developed for both absolute and normalized simultan-
eous variations in the'system matrix elements. Minimum poie sensitivity
regions within the unit circle of the z-plane are shown for each system
matrix.

Using a sensitivity definition introduced by Singer [9], a sensi-
tiyity matrix is derived for each system matrix. Each system matrix can
be obtained from the others by the transformation given in (1-7). It ié
shown that a similar relation exists for the sensitivity matrices.

By using the sensitivity expressions‘for radial and angular movement,
the allowable variation in each element of the matrix is determined for
given pole movements in the radial and angular directions. This allow-
able element variation is then used to determine the coéfficient word-
length necessary to constrain the pole movements within the allowable
Timits. -

Since the system matrix elements of a digita] filter are implemented
with fixed wordlength binary registers, the coefficients of the resul-
tant characteristic polynomial of the system matrix can assume only dis-
crete values and therefore only a fixed set of discrete pole locations
within the unit circle can be realized. For a given wordlength, the
'rea1izab1e pole grid of each system matrix is determined by the set of
characteristiﬁ polynomials consisting of valid combinations of discrete
coefficient values. A valid polynomial is one that has roots inside the
ﬁnit circle. |

Mills et al. [7] developed sufficient conditions for the absence of
overflow oscillations in second order fi]ters using two's complement

arithmetic. This sufficient criteria will be applied to the system
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matrices under consideration. The roundoff noise properties of the mat-

rices will be obtained using a method presented by Gold and Rader [25].
1.3 Review of the Literature

The concept of sensitivity in its most basic form is almost as old
as the concept of féedback. One of the basic reasons for introducing
feedback was to reduce the effect of parameter changes upon system perfor-
mance. Therefore, it is quite natural that the basic concepts of sensi-
tivity appeared in the fundamental work of -Bode [10] which constituted
the beginning of the modern theory of control systems. However, the se-
ries of ideas and methods which were developed for solving problems con-
necfed with parameter variations were contributed by various disciplines.
This resulted in a genera]it& which makes it possible to treat these
ideas and methods as a fundamental theory--the theory of sensitivity
vana]ysis.'

Bode [10] introduced the idea of single element sensitivity. The

present day definition of this element sensitivity is given by

ST(jw) _d(In T(w))
o d(In o

where T(jw) is the continuous system transfer function and a is a system
parameter.

It has been shown that a continuous or discrete system defined by a
transfer function can be expressed in state model format with a companion
matrix as the system matrix [11] [12]. Wilkie and Perkins [13] considered
the problem bf generating the sensitivity functions of all states of a
companion matrix state model with respect to any number of parameters for

a continuous linear, time-invariant, single-input, controllable system.



As a consequence of an increasing application of the pole-zero ap-
proach to the problems of networks and control systems synthesis, the
idea of pole-zero sensitivity was developed. Kokotovic and Rutman [14]
present sensitivity coefficients for the movements of poles and zeroes
as a function of small relative and absolute variations in system param-
eters. |

A fundamental problem within the area of pole-zero sensitivity is
the effect of polynomial coefficient variation upon the roots of the
polynomial. Maley []5] considered this problem for single parameter
variation. Reddy [16] [17] and Morgan [18] considered the more general
prob]ém of the eigenvalue sensitivity of a multivariable system expressed
in state-model format whose system matrix elements are functions of the
system parameters.

Procedures are presented in Huelsman [19], Daryanani [20] and Mitra
[21] for the determination of transfer function sensitivity, pole-zero
sensitivity, and characteristic polynomial coefficient sensitivity.
These presentations are in regard to the analysis and synthesis of con-
.tinubus, linear, active networks.

Horowitz [28] considered the sensitivity analysis of sampled-data
systems by using fransformations which made it possible to study the
proberties of the sensitivity function in terms of continuous system fre-
quency concepts. He found that it is impossibie to secure unlimited
sensitivity reduction and that a compromise between the values of the
“sampling period, the system response, and the system sensitivity is
necessary.

The use of state-space techniques in systems analysis is very at-

tractive as they lend themselves very well to computer simulation and



sensitivity analysis. Kerlin [23] used state-variable formulation to
develop expressions for transfer function and pole sensitivities forvthe
analysis of large systems on digital or analog computers.

Associated with state-space techniques is the selection of the state
variables. Mantey [8] has investigated the relationship between eigen-
value sensftivity and state variable selection and found that the eigen-
value sensitivity depends strongly on the choice of the state variables.
His search was limited to matrices requiring a minimum number of arith-
metic operations. He mentions that no orderly procedure has'been devised
for the selection of a system matrix fo insure minimum eigenvalue sensi-
tivity. Singer [9] studied in furfher detail the problem of minimizing
eigenvalue sensitivity through the selection of state variables. He con-
sidered only second order matrices, the number of arithmetic operations
not being minimal.

An interesting area for the application of sensitivity analysis is
the field of problems concerning roundoff noise in digital filters. It
has been shown [4] [24] [25] that equivalent input/output digital filter
réa]izations exhibit different output noise characteristics. Fettweis
[26] has shown that there exists a connection between the generation of
roundoff noise by a multiplier and the effect that the coefficient wdrd-
Tength Jimitation of this multiplier has upon the response characteris-
tics of a filter. Bonzanigo [27] has shown that low coefficient sensi-
tivities do not guarantee low roundoff noise output since other factors,
such aé pairing and ordering of sections in the cascade form, affect the
noise output but not the coefficient sensitivities of the filter. Jack-

son [28] has utilized the sensitivities of a digital filter transfer
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function with respect to its coefficients to derive lower bdunds on the
roundoff noise output.

The effect of coefficient quantization upon the response of a digi-
tal filter can be analyzed by calculating the movements of the poles and
zeroes of the transfer function. Mitra and Sherwood [29] have presented
é technique for eétimating pole-zero displacements and for determining>
coefficient wordlength which insure that the pole-zero movements will
stay within prescribed bounds. Gold and Rader .[30] and Avenhaus [6]

have proposed structures with less pole sensitivity to parameter quanti-

"~ zation.

1.4 Quantization Errors in Digital Filters

In this section background information is presented concerning the
three sources of errors in digital filters. These sources are: input
quantization, product quantization, and coefficient quantization. The
procedure used foi]ows that employed by Hwang [31].

‘Given'a digital filter expressed in state-space format as shown in
(1-2) and (1-3), the effects of input, product, and coefficient quanti-
zations result in the actual filter implemented by a finite wordlength

.machine being given by

x(n+1) = [(A+aA)X(n)], + [(B+AB)i(n)], (1-11)

y(n) = [(c+aC)x(n)] . + [(D+aD)i(n)], »(1-12)

or %(n+1) = Ax(n) + Bu(n) + a(n) + 8(n) (1-13)
| y(n) = Tx(n) + Du(n) + v(n) + &(n) (1-14)

where [ ] indicates rounding; li(n), X(n), and ¥(n) are, respectively,
r



1N

the actual input, states, and output; A = A+DA, B = B+AB, C = C+AC,

D = D+AD; and a(n), B(n), ¥(n), and &(n) are respectively, N-, N-, 1-,
and 1- dimensioné] error vectors generated due to product quantizations
in the A, B, C, and D matrices.

Subtracting (1-2) from (1-13), and (1-3) from (1-14)

Aax(n) + Bau(n) + AAx(n) + ABu(n) + a(n) + 8(n) (1-15)

Ax(n+1)

Ay(n) Cax(n) + DAu(n) + ACx(n) + ADu(n) + y(n) + &(n) (1-16)

where Ax(n) is the state-error vector, and Ay(n) is the output error or
noise.
. Using the standard method for solving linear, time-invariant vector

matrix difference equations [32], the solutions to (1-15) and (1-16) are

-1 .
ax(n) = A"ax(o) +fz R 3V Bau(s) + aax(y)
J=0 ' . .
+ 8Bu(j) + a(d) + 8(3)] (1-17)

and, assuming that Ax(o) = o,

by(n) = Ay;(n) + Ay,(n) + Ays(n) | (1-18)
where :
ayyn) = €3 KO aug) + Baun) (1-19)
J=0 : '
L R I .
Ay,(n) = C i A [a(3) + B(3)] + v(n) + 8(n)  .(1-20)
"2 A=) L .
Ays(n) =C = A [aAx(3) + ABu(d)]
J=0

+ ACx(n) + ADu(n) (1-21)
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are the errors due to the input, product, and coefficient quantizations,
respectively.

One important point of emphasis is necessary at this point. Al-
though this development allows the three types of errors to be expressed
distinctly in (1-19), (1-20) and (1-21), it should be kept in mind that
the effect of coefficient quantizations, shown in (1-21), couples into
those of input quantization in (1-19) and product quantization in (1-20)
since A, B, C, and D are defined by A = A + AA, etc.

From (1-19) - (1-21) it is seen that Ay3(n) is directly proportional
to the magnitude»of the input, while Ay](n) and Ayz(n) are independent of
it. This means that the signal-to-noise ratio for the error due to coQ
efficient quantizations is fixed for a given network, while those for
the input and product quantizations can be improved by increasing the
fnput lTevel.

The state-model given by (1-5) and (1-6) is equivalent to that given
by (1-2) and (1-3) and is related by the transformation given in (1-4).
The effect of such a transformation on the input quantizatién error given
in (1-19) is now analyzed by substituting (1-7), (1-8), and (1-9) into
(1-19). This results in

Ln=l .
ay,(n) = ¢ "2 A3 5au(5) + Bau(n) (1-22)
J=0
= " s (n-§-1).-1 3 ~ .
By(n) = C Tz (TTAT)MI7HTTY BAu(d) + Dau(n) (1-23)
v J=-0
how (AT < TRy O (1-28)
=] . )
So Ay](n) =C TZ j(n-3-1) Bau(j) + DaAu(n) ' (1-25)

J=0
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Therefore, up to first order effects of the quantization level,
Ay](n) is invariant under structure transformation and/or amplitude
scalings. A similar examination of Ayz(n) and Ay3(n) shows that they
are highly dependent upon transformation effects. Thus, searching for
a better network realization entails minimizing the effects of coeffi-
cient and product quantizations.

The error due to input quantization, as shown in (1-19) is often
referred to as "quantization noise". It is inherent in any A/D conver-
sion process and has been studied in great depth [33] [34].

The error due to product quantizations, as shown in (1-20), is simi-
lar to the input quantizétion error in that it also involves quantization
of the data. However, this form of error is different in that the data
is already in digital form and the quantization, in the form of eithgr
rounding or truncation, takes place within the filter, not just at the
input. Generally, this type of error is referred to generically as
"roundoff noise”, and it is an important design consideration in digital
filters which has received extensive research [2] [31] [34].

The last source of error to be considered is that of.coefficieht
quantization as shown in (1-21). The effect of coefficient quantization |
on the performance of a filter has been of much concern and a number of
different approaches to this problem have been suggested [1] [4] [30].

In general, the effect of coefficient quantization is highly de-
pendent on the structure used to implement the system. Oppenheim and
Schafer [35] emphasize that the présent understanding of the relation-
ship between network structure and coefficient sensitivity is very mea-
ger. Although Jackson [34] considers the error due to coefficient

quantization as straightforward to analyze, he comments that the
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inclusion of coefficient quantization in the initiai filter synthesis
procedure in order to minimize the resulting filter complexity is a com-
plex problem. No systematic method has yet been developed for determin-
ing the best realization given constraints on the number of multipliers,
‘word length, and the number of delays. The only recourse is a compara-

tive search for the best of a set of possible structures.
1.5 Organization of the Thesis

Chapter II presents a new second order system matrix suitable for
digital filter applications. The parametef space of the matrix elements
is examined and the existence of the third order case, along with a
method of solution, is discussed.

Chapter IIT presents the eiéenva]ue sensitivity analysis of.the new
system matrix. Other second order system matrices discussed in the
1iterature.are also analyzed for comparison with the new matrix. Both
absolute and normalized element variations are assumed. Expressions for
the magnitude, and the corresponding radial and angular components, of
the efgenva]ue displacement due to variation in the matrix elements are
presented. ‘Minimum pole sensitivity regions within the unit circle of
the’z¥p1ane are shown for each system matrix. A relationship between
sensitivity matrices of equivalent system matrices is shown to exist.

A technique for determining the eigenvalue sensitivity of a system
matrix‘from the sensitivity of an equivalent companion matrix is pre-
_ eented.

.; Chapter IV presents a comparison of the system matrices based on
wordlength requirements necessary to insure thaf the pole-zero movements

will remain within prescribed bounds. .For a given coefficient word]ength,
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the rea]izab]g pole locations within the unit circle of the z-plane are
presented for each matrix. The tendency of each matrix to sustain over-
flow oscillations is also examined. As a final comparison, the roundoff
noise properties of each matrix is discussed.

Chapter V presents a summary and suggestions for further study.



CHAPTER 11
A TRIDIAGONAL SYSTEM MATRIX FOR DIGITAL FILTERS
2.1 Introduction

In analog filter design, LC ladder structures are noted for the
relative insensitivity of their frequency response to the element values.
Fettweis [36] has conjectured that digital filter structures modeled
after them would have the same coefficient sensitivity prdperties and
could be implemented with shorter coefficient wordlengths. Crochiere
[37] investigated this conjecture and found that, in many cases, digital
ladder structures can be implemented with shorter wordlengths than con-
ventional cascade structures. Fettweis [36] and Crochiere [37] presented
methods for designing digital ladder structures that utilized transfor-
mations and digitization methods on an existing analog ladder structure.

Marshall [38] has shown that tridiagonal matrices are related to
ladder networks. " Yarlagadda [39] has shown that a tridiagonal represen-
tation of a system can be obtained directly. As applied to digital fil-
ters, the use of a tridiagonal system matrix in a state-model represen-
tatidn‘a11ows a digital ladder structure to be 6btained directly without
using digitization of an analog ladder structure.

In this chapter a class of tridiagonal matrices is investigated for
usé as system matrices in state-model digital filters. The structure of

this class of tridiagonal matrices was chosen in an effort to combine

16
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desirable properties of iwo other classes of matrices used in state-
model representation of systems. These classes of matrices are the diag-
onal matrix which exhibits minimum eigenvalue sensitivity of 1 for real
eigenvalues [9]. Rader and Gold [30] has given a second order coupled-
loop structure which has an antisymmetric system matrix and exhibits a
constant eigenvalue sensitivity of /2~ for all eigenvalues inside the
unit circle of the z-plane [9].

Considering these two aspects, one logical tridiagonal system matrix

is
k1 1 0 0 0
-1 k2 1 0 0
K = 0 -1 0 ,(2-1)
0 0 1
i 0 0 0 -1 knJ

where it is clear that the only elements subject to variation are the
diagonal entries, as in the diagonal matrix. The entries for the two

sub-diagonals are chosen to be antisymmetric, i.e.,

ki’i+1 = —k1+1’1, i=1,2, .. .,n-1 ,(2-2)

as in the coupled-loop structure. The main diagonal elements are re-

quired to be real. For n=3, the matrix K in (2-1) is given by

k] 1 0
K‘ = | -1 k2 1 ' .(2-3)
0 -1 k3

However, since second order structures are the basic building blocks for
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higher order filters [5], the existence of higher order forms of the
matrix K are examined only for completeness. There is a general tridi-
agonal matrix, known as the Schwarz matrix [32], which exists for any
n-th order system. However, when applied to digital filters as a second
order building block, the matrix becomes identical to the companion
matrix.

Fbr the second order case, the parameter space of k], kz'is examined
regarding its mapping into the unit circle of the z-plane. The parameter
dynamics, or the relationship of k] and k2 as a function of pole loca- -

tions in the unit circle, is also examined. A second order state-model

is also presented.
2.2 Secbnd Order System Matrix

For any state-model representation of digital filter specifications

given by the transfer function

Hz) = pE (2-)

the characteristic polynomial of the system matrix A, given by

£(z) = |z1-A] | o L(2-8)
must satisfy
P(z) = |zI-A| ‘ .(2-6)

For the second order case let X(z) in (2-4) be given by X(z) = z
+ az + b where a and b are real. Then the second order form of (2-1),

given by
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K = ’(2"7)
-1 k2
must satisfy
_ .2

|zI - K| = 2" +az+b (2-8)
or

22 (ko+k, )z+k k1 = Z2+azth (2-9)

1 72 172 ’

Equating coefficients in (2-9) and solving for k] and k2 yields

. i 5
kysk, = -as g -4(b-1) | ,(2-10)

where the +(-) sign corresponds to k](kz).

It is clear that the coefficients a and b in (2-8) must satisfy

a —(z]+22) (2-11)

= 2,2, (2-12)

where z, and z, are the zeroes of the polynomial X(z). For digital fil-
ter applications, the zeroes of P(z) are the poles of the transfer func-
tion H(z) and, for a stable filter, must lie inside the unit circle in
the z-plane, i.e., |z;|<1, i=1,2.

Therefore b, as given in (2-12), has a magnitude less than one, and
this assures that the values of k]'and k2 in (2-10) are real. This is
the reason that a real matrix K, in (2-7), exists for all stable digita]
filter operations.

For filters requiring real pole locations, equations (2-10)-(2-12)
produce the necessary values of k] and k2.

For filters with complex poles, the restriction that a and b are
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real requires the poles to be complex conjugates given, in polar coordin-

ates, by

A

- pcosO + jpsing (2-13)

pcosO + jpsind .(2-14)

%2
Then (2-11) and (2-12) yield

= -2pcosO : (2-15)

o]
!

b = p? (2-16)

which, when substituted into (2-10), results in

pCcoso+ ‘/1-pzsin26 : (2-17)
k2 = pcoso- /1-p251n2® . .(2-18)

Examination of the possible values of k] and‘k2 for stable pole lo-

=~
"

cations inside the unit circle results in

0<ky <2 (2-19)

~2<k, <0 . (2-20)

“This completes the demonstration of the existence of the second
order tridiagonal system matrix for all root locations inside the unit
circle. The second ordef matrix in (2-7) has not been given before and
has considerable potentia] in digital filter synthesis. A comparison'df
this matrix with other second order matrices is presented in Chapter 3.
Equations defining the parameters k] and k2 are given a]bng with the
range of parameter values. In the next section the mapping of the param-

eter space k],k2 into the unit circle of the z-plane is examined.
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2.2.1 Parameter Space

A mapping of acceptable va]ueé of k] and k2 that permit the reali-
zations of real or complex pole locations inside the unit circ]e of the
z-plane is shown in Figure 1 and Figure 2. The labeled points fn Figure
1 are mapped into the corresponding points in Figure 2. Points within
bounded‘regions in Figure 1, such as ABEA, map into pole locations in-
side the corresponding region of Figure é. Points in the parameter space
along AB are mapped into complex conjugate pole locations on the right
half of the unft circle while pole locations on the left half of the unit
circle are obtained from a mapping of the parameter space along BC.

The left hand side of (2-9) can be solved for the pole locations Z4
and Z, in terms of the parameters k1 and k2. These solutions are

2
kytkot /(kq-ky) -4

z, = (2-21)

z, = 5 : ' .(2-22)

Exahination of these solutions yields the following information about

regions in the parameter space:

If k]-k2

If k]—k2=2 - the poles are real multiples.

>2 - the poles are real and distinct.

If k]-k2

>2 - the poles are complex conjugates.

Line segment AEC in Figure 1 corresponds to k]=2+k2. From the above
it is clear that the region to the left of AEC, bounded by ABCEA but not
including the boundary, maps into complex conjugate pole Tocations inside

the unit circle. Points inside the parameter space bounded by ABEA
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realize complex conjugate poles with positive Re(z) while points inside
BCEB realize complex conjugate poles with negative Re(z).

The region to the right of AEC, bounded by AECDA including the
boundary, maps into pole locations on the real axis. The boundary ADC
corresponds to the case when one or both of the real poles 1lie on the
unit circle. Points on AD in Figure 1 have one pole at 1‘whi1e the other
can be at any point on the real axis. Points on CD have one pole at -1
while the other can be at any point on the real axis.,AThe equations

defining the boundary segments AD and CD are

0 /Ek<2 (2-23)

A -
AD = kqky=k,-k,+2 =
CD = kqkytkytky+2 = 0 O<k,<v2 .(2-24)

The boundary ABCDA of the parameter space always realizes at Teast
one pole on the unit circle of the z-plane. Since most stable digital
filters require poies inside the unit circle, acceptable values for the

parameters will not include the boundary.

2.2.2 Parameter Dynamics

The parameter dynamics of the matrix addresses the relationship of
k] and k2 as a function of pole location in the unit circle. Such an
analysis givés information regarding regions of pole location that re-
quire little relative change in magnitude for one parameter as opposed
to the other. This information will be used‘in later chapters. ’
Using (2-17) and (2-18), Figure 3 shows piots of k] and k2 for pb]es
+j0

A = pe for different values of magnitude p and angle ©. Also shown

is a plot of the curve 2cos® which is the function approached by the sum



Figure 3.

ky = pcos® +Jl-pzsihn29

kz= pcos @ -JI-p2sin2@

Matrix Parameter Dynamics

¥e
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of k] and k2 as p approaches 1. As shown in Figure 3, for pole locations
close to thé unit circle the parameters have definite regions of angular
Tocation © where the location of the pole is primarily determined by only
one of the parameters. The 1imiting case of p=1 exhibits this feature
very well. For angular locations in the first and fourth quédrant of the
unit circle (0<6<90, 270<0<360) the parameter k,=0 while the parameter k,
‘determines the pole location. In the second and third quadrants (90<e<
270) the parameter k]=0 while k2 determines the pole location. As p de-
creases the angular regions primarily dominated by one parameter decrease
in size. An interesting result of these parameter characteristics is
that the effects of variations in the parameters will be primafi]y duevto
variations in the dominant parameter. As p’approaches 1, the dominant
parameter primarily affects the angular location of the pole since the
~increasing magnitude p is a result of the other parameter becoming
smaller and more constant in magnitude. Therefore, for poles close to
the unit circle, the angular location © is more sensitive than the mag-
nitude p to changes in the parameters. This intuitive concépt is ex-

vp]aihed analytically in Chapter III.
2.3 Second Order State Model

A state-model utilizing the new second order matrix as a systeh.
matrix is now presented. For the implementation of the state-model, a
useful characteristic of the second order matrix is applied. As was
and k. for stable

1 2
pole locations satisfy O<k]<2 and —2<k2<0. For these ranges, k] and k2

noted in (2-19) and (2-20), the range of values of k

can be written as ky=x+1 and k,=y-1, where |x|<1 and |y|<1. Now K in

(2-7) can be written as
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K = = + = Q+ 1 ,(2-25)

where I is an invariant matrix consisting of 1 elements. By using K in
this form, the state-model closely represents a simplified implementation
of the filter since the matrix I corresponds to hardwired connections and
no contingency plan is required to check whether the coefficient magni-
tudes are less than one [2]. This is a significant advantage over the
companion form realization.

A state model for the realization of a digital transfer function

22+b z+c
H(z) = a; —1— 5 V(z)=H(2)U(2) (2-26)
z +aztb
is given by
o] [x o[xm] [1 1][xm] o
= ) + , + u(n)
Xz(n+1) 0 y _Xz(n)_ -1 -1 X2(n) 1
W) = b sl[gm] ¢ utm) s vin) = agtn)
Xo(n)

where § = (b1—a) s Y = (c]-b) + Gk] .

The implementation of the model is shown in Figure 4.

2.4 Tridiagonal Realizations Greater

Than Second Order

The general existence of the n-th order matrix given in (2-1) that
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can realize any given set of n poles is not known for n>3. For n>2 it
becomes necessary to solve an increasingly difficu1t set of nonlinear
equations in fhe parameters ki to obtain the matrix. This problem is
illustrated for the third order case. Conditions under which it is
relatively easy to solve for the parameteré are presented along with a
method of solution. It is not clear that a solution a]ways‘exists under
these conditions.

In order for a third order tridiagonal matrix given in (2-3) to

realize a given pole polynomial
f(z) = 23-az’+bz-c = 0 C (2-27)

the determinant |zI-K| must satisfy

|21-K| = £(2) (2-28)

or,
23 (ky otk )22+ (K Kyt Ktk g#2) 2k kpkg-ky -kg=z3-az%4bz-c . (2-29)
Then kytkotky = a (2-30)
kykytkktkoky = b-2 S (2-31)
kykokgtkytky = c | : (2-32)

are the set of nonlinear equations to be solved for reé] values of k],
k2’ and k3f

By the elimination process or by use of Bezout's determinant [40]
equations (2-30)-(2-32) can be reduced to a sixth order polynomial in

one parameter given by
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6

ky

-2ak]5+(a2+2b-3)k]4-(2c+2ab—4a)k]3+(2ac-62—7b+2b2+7)k]2
| -(ab-2a+3c—2bc)k1+b-2+c2-ac'= 0 ! . (2-33)

If a real solution to (2-33) exists that satisfies (2-30)-(2-32) the
matrix can be realized. Further discussion on this is omitted as it is
fairly routine. In the following, a simpler method of solution is dis-

cussed.

2.4.1 Proposed Technigue for Third

Order Matrices

Examination of (2-30)-(2-32) points out a condition under which so-
Tutions might be obtained relatively easily. If the coefficients a and
c in the pole polynomial given by (2-27) were equal then (2-29)-(2-31)

could be satisfied by k2=0 or k k,=1.

173
Case I: For a=c and k,=0, (2-30)-(2-32) reduce to
k1+k3 = a - (2-34)
k.|k3 = b-2 . ,(2-35)

for which the solutions for k1 and k3 are

K = at /a2+4(2-b) | (2-36)

3 7
= a;'/a2+4(2-b) : o (2-37)
1 7 .
‘Case II: For a=c and kikg=1, (2-30)-(2-32) reduce to
+ = ‘ ‘ 2-
k1+k2 ky = 2 (2-38)
k-k,+k.k, = b-3 (2-39)

17277273 ~
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. :
,k3 = —;— ,(2-40)

for which the solutions for k]’ k2, k3 are

1
(= (2-41)
17 %,
- a-k,z /(a-k2)2-4 a2
3 5 | -
v,
k2 - at a2+4(3-b) .(2_43)

For most f(z) given in (2-27) the coefficients a and ¢ will not be

equal. However, by employing the change of variable
Z = Me (2"44)

1n’(2-27), the resultant f()A), given by

3

f(A) = A +aA2+Bx+y =0 »(2-45)

has coefficients a, B, and y that are polynomials in €. It is then poss-
ible to find a real e (since y is a third order polynomial in €) such
that a =y. The previously discussed Case I or Case II can then be ap-

plied to obtain possible solutions for the set of equations

k1+ké+k’ = q (2-46)
k{k’+k'k’+k’k' =R -2 (2-47)
k1k2k3+k]+k3 = q .(2-48)

If a solution exists, then matrix elements k], k2’ and k3 for realiza-

tion of f(z) in (2-27) are obtained by



.= ko+
k1 k1 €

2.4.2 Example

i=1,2,3

Given

find

Applying z=X\

f(A) =
Solving for
3

€

results in ¢

f(

and the set of equations to be solved are:

k

e AN

Ky
Applyin

k3

which is complex so this solution does not apply.

£(z) = 2542%40.52 = 0

k], Kos K

3 such that

+e to f(z) results in

2

A3+(3e+1)A2+(3e +2e+.5

£ such that

+e2+.5e = 3e+]

= 1.366. Then f(A) in. (2-51) is given by

A) = A3 2

+k2+k3 = -5.098

-

k,tkok

Y

k +k.I 37 6.829
k2k3+k1+k3 = -5.098

g Case I for k,, = 0, (2-36) yields

2
= 2.544+7.576

3

Ate“+e +.5¢

+5.098)1"+8.829)+5.098

31

.(2-49)

. (2-50)

.(2-51)

,(2-52)

(2-53)
(2-54)

.(2-55)
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-

Applying Case II for k;k; = 1, equations (2-41)-(2-43) yield k;

- -

-3.038, k2 = -1.732, k3 = -0.329. Applying (2-49) for the realization
of f(z) results in k] = -1.672, k2 = -0.366, k3 = 1.037. Therefore
z+1.672 -1 0
1 240.366 -1 | = z5+2%+40.52

0 1 z-1.037

As was mentioned previously, the general existenée of third and
higher order matrices for all pole locations is not known. The broposed
methods of solving the nonlinear equations (2-30)-(2-32), under the
condition that the coefficients a and ¢ in (2-27) are equal, has not been
proved to apply for all pole locations. In the example presented, Case I
did not provide a solution but Case II did.

In digital filter applications, third and higher order filters are
generally realized through first and second order sectionsvin cascade or
parallel combinations. This treatment of the third and higher ordered
matrices is included only for completeness.

In passing, it should be pointed out that two other third order tri-
diagonal matrices with ones on the sub-diagonals can be considered. The

first matrix is

r 1
k] 1 0

K' = |1 k2 1 , (2-56)
LO 1 k3_

Since K' is symmetric, it can realize only real poles and, therefore, is

not of much interest. The second matrix
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ky 1 0
K* = |1 k, 1] ' (2-57)
0 -1 k3,

is not of much interest either as it cannot realize most pole locations

in the unit circle. This can be proved by using root lTocus arguments

[41].
2.5 Summary

A second order tridiagonal matrix suitable for realizing all stable
pole locations for state-model digital filter applications is presented.
The mapping of the matrix element parameter space into the unit circle
of the z-plane is discussed. The dynamics of the parameter interaction
as a function of filter pole location is presented. A state-model using
the second order tridiagonal matrix as théAsystem matrix is presented.
Third and higher order realizations of all pole locations using this
class of tridiagonal matrices is not known. An example for the existence

of a third order matrix is presented.



CHAPTER III
SYSTEM MATRIX EIGENVALUE SENSITIVITY
3.1 Introductioh

In this chapter the second order form of the class of tridiagonal
matrices introduced in Chapter 2 is compared with other second order
matrices with similar characteristics that are capable of realizing all
pole locations inside the unit circle of the z-plane. The eigenvalue
sensitivity of the matrices is used as the method of evaluation. Eigen-
value sensitivity is defined as the change in the eigenvalue locations of
a matrix due to changes in the elements of the matrix. This sensitivity
measure can be applied to the coefficient accuracy problem of state-
model digital filters since the_constraint of finite wordlength is a
causé of changes in the system matrix elements. The research of Mantey
[8] and Singer [9] involved searches for minimally sensiti?e'system
matrices for equivalent input/output state-models. vAs pointed out by
Mantey [8] and Oppenheim and Schafer [35],no systematic method has yet
beeﬁ devised for determining the best realization in terms of insensi-
tiyity to the effects introduced by the constraints of finite wordlength
and the number of multipliers. The only recourse is a search for the
best of a set of possible realizations. In this thesis, a simple proce-
dure for selecting a second order matrix with two variational elements

is proposed which uses the concept of sensitivity analysis.

34
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The emphasis, in this thesis, will be onsystem matrices with complex |
conjugate eigenvalues. Singer [9] has shown that for real eigenvalues
the diagonal matrix exhibits a minimal sensitivity of one. In some
instances when real eigenvalues have large separations between them
they may be associated together in a companion matrix form to achieve a
sensitivity, for the smaller eigenvalue, fhat is less than one. With
this exception, real eigenva1ues are best realized through diagonal
system matrices.

- The matrices to be considered in this comparison are:

A =1 . A= . | , K= (3-1)
3B o d, d X 'y -1 k

A characteristic common to these matrices, with the exceptibn of AS, is
that they have only two elements subject to variation. Any zero or unity
elements which are in a fixed position of a matrix and do not occur as a
result of particular eigenvalue locations are considered to be free of
variation. The zero elements require no additions or multiplications to
be performed. Since their presence is an indication of an absence of
operations, no storage or computer error is associated with them. Simi-
larly, no multiplications are performed when an element of the system
matrix is unity. It represents a direct hardwire connection on a sbecia]
purpdse realization and a simple addition (subtraction for a minus sign)
in a computer. |

The variationa] elements in the compénion matrix AC are the coeffi-
cients of a given pole polynomial. Since these coefficients are func;ions
of the variational elements in the other system matrices of (3-1), it is

shown that the eigenvalue sensitivity of the matrices AS, Ao’ and K can
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be derived from the eigehva]ue sensitivity of the companion matrix Ac'
Using this technique, expressions for the magnitude, and the'correspond-
ing radial and angular components, of the eigenvalue displacement due
to simultaneous variation in the matrix elements are presented. Minimum
-pole sensitivity regions within the unit circle of the z-plane are shown
for each system matrix. |

Although second order system matrices are of primary emphasis, the
eigenvalue sensitivity technique presented is applicable to a general
n-th order system. A qualitative discussfon of the extension to an n-th

order system is presented later.
3.2 Matrix Eigenvalue Sensitivity Relationship

The foi]owing is from Huelsman [19] and is concerned with the varia-
tions in the simple roots of a polynomial due to variations in the poly-
nomial coefficients. For second order polynomials with complex conjugate
roots, to which this analysis is primarily applied in this thesis, the
case of multiple roots does not arise. For the derivation which follows
for a general n-th order polynomial, it should be remembered that thé
analysis applies only to simple roots.

Let f(z) be given by

21 . - (3-2)

I ™S
]
[=8

: n
f(z) = I

k 1(Z-Zk) )

where, without loss of generality, dn =1. The change in the simple root

+1
zZ, due to small changes in the coefficients dj is given by

azk
AZk = : 'é‘a-\]:‘Ad 9(3'3)

J

M S

J
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where Efg_is obtained from
ad.
J
—_— = ’(3_4)
9 j Qkizki
_ _f(z) |
and Qk(zk) Tz, (3-5)
=7,
By defining
2,91
G & b (3-6)
kJ | Qk(zk5 ’
equation (3-3) can be written as
‘where Az = co1(Az], cees Azn) : ,(3-8)
A = col (Adys +-.s Ad) ,(3-9)

and Q is an nxn matrix.

Equation (3-7) relates the polynomial root variations to the poly-
nomial coefficient variations.

The variational elements of a companion matrix are simply the nega-
tive of thevbole polynomial coefficients. Since the eiéenva]ues ¥ of
~ the matrix'aréﬁequa1 to the roots of’therpolynomial,(3-7) gives the vari-
ation of the matrix eigenvalues A; as a result of variations in the
matrix elements. For the second order matrix A, in (3-1) the character-

istic polynomial is

£(z) = zz—dzz-d1 .(3-10)

Application of (3-6) and (3-7) for the matrix eigenvalues M and xz
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M L "1 || g
= .(3-11)
A .
1 2
AX Ad
L 2- ->\2->\-l AZ-A.-I-‘ | 2Id
For complex eigenvalues given by
A] = pcose+jpsind (3-12)
Aé = pcosO+jpsin® ,(3-13)
equation (3-11) yields for AXy
Ad]+pcos@Ad2+jpsinGAd2
My = 32551n0 -(3-14)

It is clear from (3-11) that the variation AAZ is simply the complex con-
jugate of AA].
Singer [9] defined the magnitude of the eigenvalue sensitivity of'a

square matrix F at an eigenvalue Ak as

Tim [ Ta
_ 1 sup Vo Ao _
IS(Ak,F)l = A+O|<A A ’ﬁE—TXE:X?T »(3-15)
EEIER N
i=1
i#k

where o is a vector composed of the matrix element valr'iations’Af_ij and A
is a square, positive definite, symmetric matrix. The limit as A>0 oper-
étioh results in an expression for the magnitude of the sensitivity that
a]]oWs convenient geometrical comparisons of matrix sensitivity. What
it effectively does is to normalize the magnitude of the element varia-

tions to one since
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Tim A5 _

A0 A ,(3-16)
|Af1j|5A

where the sign is determined by the direction of the element variation.

Therefore the vector %-consists of elements *1 when the 1limit operation

is performed in (3-15).

o V/szl+2pcoseAd1Ad2+A2d2p2
o, | -

2p[sin0] -(3-17)

Employing the Timit operation of (3-15) and taking the supremum of (3-17)
yields the same result as derived by Singer [9] for the eigenvalue sensi-

tivity of the companion matrix Ac‘ That result is

2
. /1+Zplcos@|+p
ISOyA = —55Tsime] -(3-18)

From (3-15) and (3-17) it is clear that for the companion matrix
Ao o'Ax is given by
o'Ro = [ad;Ad, TN 1 pcose][Ad,

2 i | ,(3"]9)
pcoso p Ad2 o

or a'ha = Ad'A"Ad | | . (3-20)

. where A; is defined as the sensitivity matrix for the companion matrix
Ac' For a given system matrix F, there will be a corresponding varia-
tional vector a and a sensitivity matrix A.

The coefficients of a given pole po]ynomia]lare functions of the
variational elements of a system matrix used to rea]ize‘those poles.

Since the variational elements of a companion matrix are given by the



40

polynomial coefficients, it is clear that those elements can be-expkessed
as functions of the elements of any other system matrix used to realize
the same poles. As a result of this re]ationéhip, a product of this
thesis is a technique for the derivation of |S(Ak,F)| for any matrix F

based bn |S(Ak,AC)[. The methgd is presented for second order matrices

without the loss of generality.
For a second order companion matrix A.> as given in (3-1), and any
second order matrix F with matrix elements fij’ i,j=1,2, the functional

relationship of d] and d2 to the elements fij can be given by

d'l = g(f'ij) v g (3'21)

]

d, h(f;5) .(3-22)

For small variations in fij’ the resultant changes in d1 and d2 are

given by
_ I a9 a_
Ay = yL5 3 AFyj (3-23)
_ 1]
ad, = E M , (3-24)
2 i, afij ij :

Equations (3-23) and (3-24) can be written as

[ 1 Ts 39 3g oag | [.e |
Ad 99 99 | |af
1] |3, of,, 8ty 3t 11
= Af
12
| |2h 3h 3h oh | | (3-25)
2| |3F, of,, 3, of,, 21
or’ A = M-Af - .(3-26)

As shown in (3-23) and (3-24), if a matrix element is invariant it does
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not appear in (3-25). For example, for two elements subject fo varia-
tion, M is 2x2 and Af is 2x1 in size.

Substituting (3-26) into (3-20) results in

oo = AFTMTA“MAF ' ,(3-27)

where A = MT

A°M is the sensitivity matrix of F derived from the sensitiv-
ity matrii-A’ of the companion matrix AC and Af is the corresponding var-
iational vector a.

Equation (3-27) is the relationship between matrix eigenvalue sensi-
tivities that was being sought. Given the sensitivity matrix A” for the
‘companion matrix, the eigenva]ué sensitivity, as defined in (3-15), of
any other system matrix of the same order can be obtained through (3-25),

(3-26), and (3-27). For the second order matrix AC, A” as defined in
(3-20) is given in (3-19) as

1 pcoso

AT = , .(3-28)

pcoso p2

~ Singer [9] presents A" for the general n-th order companion matrix.

As an illustration of the described method for determining matrix
eigenvalue sensitivity, the sensitivity of the matrix AS in (3-1) will
be determined. Singer [9] has shown that the sensitivity given in (3-15)
for this matfix is |S(Ak’As)|,= /2. It is a good example for illustrat-
ing the above procedure bécause all four elements are subject to varia-

tion.

3.2.1 Example

For the métrix
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A_ = ‘ ‘7 . : 3(3'29)

equations (3-21) and (3-22) are given by

o
1]

2 2 _ ‘
-a - = f11f22~f12f2] (3-30)

dy, = 2a= fi +f »(3-31)

11722

where a=pcos® and B=psin® for eigehva]ues

' A],AZ = pcosO+jpsin® | .(3-32)

Applying (3-25) results in (3-26) being given by

[~ R

'Ad] -a B -8B -a Af1]
Ad2 T 0 0 1 Af]Z .(3-33)

Af)

Af,,

Even though there are four variational elements in this matrix, the vari-
‘ation of the elements is not independent. A given variation in f]] will
also exist in f22. Also, Af]z = -Af21 due to the antisymmetric nature
of the matrix. Due to these relationships (3-33) can be conveniently
condensed, as is also evident from (3-30) and (3-31), into
1 -20  -2B| | A

= , .(3-34)
2 0 AB
Equation (3-34) as (3-33) can be used in (3-27) to determine the sensi-

tivity matrix A for the system matrix As' For convenience (3-34) will
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- be used. The fact that As can be analyzed in terms of two variational
e]ements,'a1though all four elements are subject to variation, is the '
reason it was included in (3-1).
Substituting (3-34) and (3-28) into (3-27) results in the sensitiv-
ity matrix A for the matrix AS being given by
4p251n26 0

R(A) = .(3-35)
S 0 4p251n2®

‘Using (3-35) in (3-15) with a'=[Ax AB] results in

k*"'s |AF, . | <A 2p|sing@] )
1) '-

This yields

IS(\HA)| = sup /Bo%|sin‘el = V2 .(3-37)
2p|sino

3.3 Eigenvalue Sensitivity Expressions for

Second Order System Matrices

In the previous section a method was presented for:obtaining the
eigenvalue sensitivity of a matrix from the sensitivity expression for
a companion matrix. For i]]ustkation'of the method, an examp]e was pre-
sented for the matrix AS in (3-1). In this section, eigenvalue sensitiv-
ity expressions for the remaining system matrices in (3-1) are developed
using the same method. Since information on the variation of the matrix
elements may be given as absolute variations or as to]eranées, expres-

sions are developed for both absolute and normalized element variations.
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3.3.1 Absolute Element Variations

Absolute element variations refer to the information for the varia-
tional vector a in (3-15) being given in terms of a magnitude and a
direction either positive or negative. When the 1imit operation is per-
formed, the element variations are normalized to plus or minus one de-
pending on the direction assumed for each element variation. This'a11ows
the comparison of the eigenvalue sensitivity of various system matrices
to be based on equal magnitude of variation in the matrix elements. As
shown in the example in 3.2.1, the supremum is determined by the assumed
directions, plus or minus, the variations take. Without employing the
Timit operatjon, (3-15) gives the sensitivity of an eigenvalue Ak due to
~ given element variations Afij in the vector a. It should be remembered
that (3-15) is derived under the assumption of small element variations.

In section 3.2 expressions for the eigenvalue sensitivity of the
matrices AC and AS were presented. These expressions, repeated here for

~ convenience, are:

sup /A%d . +2pc0s6nd, Ady+a%d,o?
lS(}‘k’Ac)l - 2p[sin@] (3-38)
with normalized, equal variations resulting in
IS()\ A )l - /]+29|C059|+p2 (3_39)
A S 2p|sino| i
and ISR | = Y2 | . (3-40)

Sensitivity equations for the remaining matrices, A0 and K in (3-1) are

]

now developed.
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Matrix A:

For the matrix

1 1
(3-41)

>
"

X y

equations (3-21) and (3-22) are given by

d] X-y (3-42)

d T+y . (3-43)

2

For this matrix only two elements are subject to variation. Therefore
(3-25) is given by

- .(3-44)

Ad 0 1 Ay

2
Substituting (3-44) and (3-28) into (3-27) results in the sensitivity
matrix A for the matrix A0 being given by

1 pcosO-1

A(A) = ) . (3-45)
pCcosO-1 p -2pcoso+]

Using (3-45) in (3-15) with aT=[Ax Ay] results in

CIs(yaAl = a1 sup/A%x-2 (1-pcos0) Axay+(1-2pcosere’) A%y
P\ ARy A0 A 2p|sin@]|
Ayl | | ,(3-46)

or /"'——_—""'2 |
4—4pCOS@+p N . (3_47)

IS()\k"L\o)l - 2p|sino]|

where the supremum is obtained by setting Ax=-Ay.
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Matrix K:

For the matrix

K = ‘ (3-48)

dy = -kyko-l ‘ (3-49)

d, = k1+k2 .(3-50)
For this matrix only two elements are subject to variation. Therefore
(3-25) is given by

Ad] -k

= .(3-51)
Ad, 1 1 Ak ’

Substituting (3-51) and (3-28) into (3-27), and using kqsko=pcose *
J]-pzsinze, results in the sensitivity matrix ﬁ for the matrix K being
given by
1 20%5ine-1
A(K) = .(3-52)
2025in0-1 1

Using (3-52) in (3-15) with al = [Ak1 Akz] results in

2 2 .2 2
ISR = lim 1 sup A k]+2(2p sin O-])Ak]Ak2+A k2 (3-53)
k> A0 A 2p[sino| ?
|af; 51<8

or
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- -

1 if 2p%sinZ031
Is(y K] = . (3-54)

/= 1 — -1 if 2025in0<]
p-sin @

The sensitivity expressions derived in this section have been pre-
sented by Singer [9] for all the system matrices except the matrix K
introduced in this thesis. The method of derivation, however, is new
and follows the manner presénted in Section 3.2. Al1l of the expressions
thus far have given the supremum, or maximum, sensitivity that can be
expected for a given eigenvalue. While it is beneficial to compare the
worst case sensitivity of matrices, it is also interesting to compare |
the sensitivity obtained without taking the supremum. In some cases
this might be the actual sensitivity experienced, depending on the di-
rection in which each element varies, and could affect the choice of a
system matrix to realize a given set of complex poles. For all the

matrices considered, this sensitivity is obtained when the variations of
the elements are all in the same direction. Under this condition, the
feigenvg1ue sensitivity of Ac’ AS, Ao’ and K are obtained from (3-38),
(3-40), (3-46), and (3-53), respectively, and are given as ‘

/1+2pcos@+p2'

2p|sind|

|51 (A >R /2, 151 (A = ,(3-55)
1

2]sino|

ls](xk,K)l 1, ls](x A = ,(3-56)

k>0’
where the subscript 1 is used to differentiate these sensitivities from
those obtained using the supremum.

The sensitivity of the matrix K is shown to be one for parameter .

variations in the same direction. This is an important product of the

introduction of the matrix. Using this matrix, complex poles can achieve
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a constant sensitivity, for all pole locations, equal to the sensitivity
of real poles realized by a diagonal matrix. In Chapter II the rationale
behind choosing the structure of K included the desire to have the varia-
tional elements on the main diagonal since diagonal matrices realized
real poles with a sensitivity of one. It is evident that the sensitivity
properties of the diagonal matrix have been carried over to complex poles
due to the structure of K.

The results obtained in this section are summarized in Table I.
These results will be used in section 3.3.3 in a comparison of the eigen-

value sensitivities of the matrices.

3.3.2 Normalized Variations

" The sensitivity expressions derived in the last section allow the
computation of the eigenvalue sensitivity in terms of the absolute vari-
ations of matrix elements. In many caseé, however, informafion on the
variational elements is given in terms,of tolerances rather than absolute
variations. In these cases, the vector a in (3-15) should be expressed
as normalized values Afij/fij‘ Since aT = [Af]...Afm], where m is the
number of elements subject to variation, and the normalized variation
Af

N Afi/fi (i=1, ..., m) then

a = 06yD (3-57)

where u; = [Af]N...Ame] and D is a diagonal matrix with main diagonal

elements f],...,fm. |
Substituting (3-57) into (3-15) without the supremum or 1limit oper-

ation, the matrix eigenvalue sensitivity in terms of normalized varia-

tional elements is given by



TABLE I
SYSTEM MATRIX EIGENVALUE SENSITIVITIES

As AC AO K
2 .2
1S(AF)| /2 /1+2p|cosel+p2 /4-4pCOS@+p2 1, (2p"sin"e21)
; 2p{sino| 2p|sino| ] o o
: IR —1,(20 sin @f])
' p sin~0
2 —+
1S, (A, 5F)] Y2 | /1+2pcosetp 1 |
1k ‘ 20[sTne] HEGIE 1

6v
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.(3-58)

Eigenvalue sensitivity expressions utilizing the tolerance descrip-
tion of element variations have not been previously presented for the
matrices under consideration. Using (3-58) these expressions are now

developed.

Matrix A_:

For As’ (3-57) is given by
[Aa AB] = [AaN ABN] pCcosO 0 ,(3-59)
0 psing

~ where a=pcosO, B=psino.

Using (3-59) as_aTD and A given in (3-35), (3-58) gives the sensi-

N
tivity in terms of element tolerances as
IS(A,,A)| = YoPcos®enay+olsin®onlp | .(3-60)
k>"'s N N
Matrix A _:
For Ac’ (3-57) is given by
- A -n2 -
[Ad] Ad2] [Ad1N AdZN] o 0 ,(3-61)
0 2pc0s0

where d]=—p2, d2=2pcos®.

Using (3-61) as uﬁ

tivity in terms of element tolerances as

D and A given in (3-28), (3-58) gives the sensi-

2 2 2.2
Jo*a2d, a0 cosPond, ady, a0 cos?orla.

IS(Ak’AcH: 2]psino]

.(3-62)
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Matrix A_:

For Ao’ (3-57) 1is given by

[Ax Ay] = [AxN AyN] X 0 : ,(3-63)
)
where x = 2pcosO—1—p2 and y = 2pcos@-1.

Using (3-63) as a;D and A given in (3-45), (3-58) gives the sensi-

tivity in terms of element tolerances as

/&zAzx +2xy(pcosO-1)Ax,Ay -xyzAzy
Sy o) | = —— A
k*o 2p[sin0] .(3-64)
Matrix K:
For K, (3-57) 1is given by
[k1 k2] = [ k.IN k2N] k] 0 ,(3-65)
0 k2

where k] = pcosO+Ji—pzsin26, k2 = pcosO- J]—pzsinze.

Using (3-65) as GLD and A given in (3-52), (3-58) gives the sensi-

tivity in terms of element tolerances as

Sk 202k 4k, (20851n6-1) Ak Ak K, 202K
st = Tt ke INAkantka 2 Koy (3-66)
k’ 2p|sino| _ :

3.3.3 Matrix Eigenvalue Sensitivity Comparison

Singer's definition of eigenvalue sensitivity, given in (3-15), is
convenient in that it allows the sensitivity characteristics of different
system matrices to be compared and summarized in a geometrical manner.
Figure 5 and Figure 6 summarize the eigenvalue sensitivity expressions
listed in Table I. They indicate the proper choice of a system matrix

in order to provide minimum sensitivity for complex eigenvalues Ak. In



COORDINATES

k -(0.0,-0.378)
1 -(0.911,-0.411)
m- (0.725,-0.689)
n - (0.528,-0.577)

o - (0225,-0.707)

p - (0.500,-0.866) -

q - (-0.500,-0.866)
r - (-0.225,-0.707)

s - (-0.528,-0.577)
t - (-0.816,-0.577)

Figure 5. Minimum [S(A .F)| Regions

COORDINATES

a -(0.0,0.378)
b - (0.911,0411)
¢ —-(0725,0.689)
d -(0528,0577)

e - (0.225,0.707)
f - (0.500,0.866)
g - (-0.500,0.866)
h - (-0.225,0.707)

i -(-0.528,0577)
j -(-0.816,0577)

25



jiIm(z)

10 Re(z)

Figure 6. Minimum |S, (X, ,F)| Regions

COORDINATES

a -(0.866, 0.500)
b -(0.866,-0.500)
¢ - (-0.500,0.866)
d - (-0.500,-0.866)

e -(-0.500,0.288)

f -(-0.500,-0.288)

€9
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Figure 5 the areas indicate regions of pole locations in the unit circle
for which the matrices As’ Ac’ Ao’ and K offer the minimum, worst case

sensitivity given by IS(Ak,F)I in Table I.  The comparison shown in Fig-
ure 6 has nof been given before. In this figure the areas 1nd{cate re-

gions of pole locations in the unit circle for which the matrices Ac’ A

]

()
and K offer the minimum sensitivity when the supremum is not taken and

the element variations are in the same direction, as given by IS](Ak,F)I
in Table I. The matrix As is not shown since the sensitivity of K is
a]waysbless than that of As’ as shown in Table I. The striking differ-
ence between Figure 5 and Figure 6 points to the importance of the direcf
tion in which the matrix elements vary. As explained previously, taking
the supremum of the sensitivity is, in effect, p]acing the requirement
that the elements magnitude varies in the same or opposite directions de-
pending on pole location. For example, the supremum of the sensitivity
of Ac requires that the element variations be in the same direction for
pole angles © such that cos® is positive, and that they be in the oppo-
site direction when cos© is negative. |

In comparison with the other matrices, the newly introduced matrix
- K does fairly well. 1In the wbrst case it offers minimum sensitivity for
pole locations close to the unit circle where the stability of a digita1-
fi]tef.is of great concern. This is an imporfant fattor in digital fil-
‘ter design since optimal filters have poles very close to the unit circle.
In the design of digital resonators Gold and Rader [25] point out a com-
mon practice of moving pole locations inside fhe unit circle by an amount

20 20

e ~ 27°Y so that the radius is given by p=1-2"°" and stability problems

due to coefficient quantization can be avoided. When the element
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variations are in the same direction, K offers minimum sensitivity for

~pole locations near the real axis.

3.3.4 Example

As an example of the use of Table I and Figure 5, consider a six

pole digital filter with pole polynomial given as

5 4 3

£(2)=25-2.7782°44.6222%-1.81223+3. 682%-1.4502+0. 306 . (3-67)

The poles of this filter are located at A] 5 = 0.3+j0.935, A3 4=

0.5+j0.707, A = 0.589+j0.276. Utilizing second order filters as

5,6
building blocks, determine which matrices offer minimum worst case sen-
sitivity for each complex pole pair.

Placement of the poles on Figure 5 indicates:the following choices
for realizations: Ac for A]’z; K for A3’4; and AS for X5,6'

Eva]uétion of lS(Ak,F)I in Table I for each matrix gives the

following results:

|52, oA )| = 0.85 [s(x3 4R =107 15(%5,6,AC)| =2.92
|S(2q 25As =181 SOy 4R = 1.41 S(Ag oA = 1.41
ls(x1 2oR)| = 1.04 |s(x3’4,Ao)| = 1.95 |s(x5’6,Ao)l = 2.60
IS(X]’Z,K)I = 1.00 |S(A3’4,K)| = 1.00 1s(x5’6,K)| = 3.48

The results of calculating the sensitivities in Table I confirm the orig-
inal choice of realizing each complex pole pair based on pole location

in Figure 5.
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3.4 Radial and Angular Sensitivity Expressions

for Second Order System Matrices

In many cases, the magnitude of the eigenvalue Sensitivity may not
give enough information. Although it is a good basis for comparing dif-
ferent system matrices, it does not give any information as to the nature
of the variation. For filters with poles very near the unit circle, the
radial change in po1e location is very important from stability consider-
ations. For filters with stringent resonant or cut-off ffequency speci-
fications, the angular change in pole location is of most importance. |
For filter requirements where it is possible to sacrifice sensitivity
qué]ities in either the radial or the angular direction in order to
achieve the best sensitivity in the more critical of the two directions,
a dffferent systeﬁ matrix might be chosen than one chosen based on sen-
sitivity magnitude alone.

In this section radial and angular sensitivity expressions in terms
of absolute and normalized element variations are developed for each of
the second order matrices under consideration. Rader and Gold [30] and
Mitra and Sherwood [29] have presented the expressions for AC and ASA
previously. The expressions for A0 and K have not been presented pre-
viously. Mitra and Sherwood [29] present a method for détermining radial
ahd angular sensitivities for thé poles of an n-th order polynomial that
involves the partial fraction expansion of the pole pb]ynomia]. The
method used here for determining the expressions for Ac follow the more
direct approach of Rader and Gold [30]. Following the procedure of
section 3.3, the expressions for the matrices As’ Ao’ and K are derived

from those of the matrix Ac' The sensitivities of the matrices are
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compared by showing regions of the unit circle where they dffer minimum
angular or'radial sensitivity. |

Radial and angular variations are the components of the change in
eigenvalue location. It is shown that the sensitivity matrix A of sec-
tion 3.3 can be obtained from the radial and angular sensitivity expres-

sions.

3.4.1 Absolute Element Variations

For the companion matrix Ackin (3-1) to realize the complex poles

Ak=peije, the elements d1 and d2 are given by
dy = -p° - (3-68)
d, = 2pc0s0 - .(3-69)

Assuming small variations,

3d1
Ad1 = ?ﬁ;zAp (3-70)
Adz =~3—p—Ap+~86A@ .(3—71)

Which results in

Ad -2pAp (3-72)

1

Ad, = 2c0sOAp-2psin6AO v | .(3-73)

Solving (3-72) and (3-73) for Ap and A© yields,

b = -t | (3-74)
Ay Ady
M8 = e  Zpsino -(3-75)
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These.are the results obtained by Rader and Gold [30]. They can be con-

veniently presented in matrix format as

Matrix Ac:
80]  [-L o 1 [ad,]
2p .
= .(3-76)
AO -1 -1 Ad2
i _2p2tan9 2p51n9_ L

As mentioned previously, the elements d] and d2 of the companion
matrix are in one-to-one correspondence with the coefficients of the
pole polynomial and are, therefore, functions of matrix elements for
which this one-to-one correspondence does not apply. Using this rela-
tionship in the same manner as was presented for the derivation of the
sensitivity magnitude equations, the radial and angular sensitivity
expressions for the matrices As’ Ao’ and K are obtained as fo]iows:

For matrix A: Substitution of (3-34) into (3-76) results in
Matrix AS:

Ap cosO sin® Ao
= ,(3-77)
Ji(¢) -sin@ cosO AB
o p

which agrees with the results of Rader and Gold [30].
For matrix A Substitution of (3-44) into (3-76) results in

Matrix AO:
Ap -1 i Ax
- 2p 2p .
= < .(3-78)
A© -1 cosO-p | |AYy
|| [20%tane  2p%sine
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For matrix K: Substitution of (3-51) into (3-76) results in

Matrix K:

[ 1 [ kq T
= 3(3'79)
kzcose-p k]cose—p
20 —— 5 Ak,
2p sind 2p sin@ {

where k1, k2 = pcoso+ J]-pzsinze.

The sensitivity expressions in (3-78), to present knowledge, and

certainly (3-79) have not been presented before.

3.4.2 Normalized Element Variations

To obtain radial and angular sensitivity expressiqns utilizing the
tolerance of -the elements as the element variation information, the same
procedure as used in section 3.3.2 is employed. Expressing the varia-
tional vector as given in (3-57), the following radial and angular sensi-
tivity equations result:

' For matrix As: Substitution of the transpose of (3-59) into (3-77)
yields

Matrix As:
Ap pc0520 psinze AaN

= : .(3-80)
A0 -c0sO0sin® cosOsind ABN ‘

For matrix AC: Substitution of the transpose of (3-61) into (3-76)

results in
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Ad]N
= . . (3-8.I )

A® 1 -1 AdZN
2tan® tan@

>

©
NS

o

For matrix Ao: Substitution of the transpose of (3-63) into (3-78)

yields
Matrix Ad:
] [ 2 ' T aw
Ap p -2pcosO+] 2pc0sO-1 AxN
4 20 2p
= .(3-82)
Ji%¢] p2-2pcose+] (2pcos0-1) (coso-p) Ay
L4 L 20°tane | 20°5in0 L]

For matrix K: Substitution of the transpose of (3-65) into (3-79)

results in
Matrix K:
ol [ o2 0%-1 rAk] .
2p 2p
= .(3-83)
¢} -cos@-in-pzsinzo -cos®+p¢1—pzsin26 AkZN
o i 2pzsine 2p25in2® It ]

3.4.3 Radial and Angular Sensitivity Comparison

'Using the radial and angular sensitivity expressions-just presented,
the sensitivity characteristics of the second Qrder matrices under consid-
eration can be compared in the same manner as was presented for the total
magnitude of the eigenvalue sensitivity in section 3.3.3. Figure 7 and
Figure 8 show a summary of the comparison for the minimum, worst case

sensitivity for angular and radial pole variations, respectively. In
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Figure 7.

COORDINATES

a - (0.242,0.970)
b - (0.250, 0.433)
¢ -(0493,0.296)
d - (0992,0.122)
e - (0.992,-0.122)
f -(0.493,-0.296)
g - (0.250,-0.433)
h - (0.242,-0.970)

i —-(-0.122,0.993) .

j -(-0.438,0.758)
k -(-0.707,0.707)
1 - (-0.707,-0.707)
m - (-0438,-0.758)
n -(-0.122,-0.993)

Minimum Worst Case A® (Normalized Variations)

L9



LCOORDINATES
r - .816

Figure 8.

a - (0.500,0.645)
b- (0.500,0.000)
c- (0.500,-0.645)

Minimum Worst Case Ap (Normalized Variations)

29
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these comparisons, the normalized element expressions of (3-80), (3-81),
(3-82), and (3-83) are used. The element tolerances have been assumed

to be equal in magnitude and the direction has been chosen to achieve the
maximum sensitivity. The regions indicate areas of pole locations in
which the matrices offer the minimum, worst case radial or angular sen-
sitivity. | »

In Figure 7, a good property of the matrix AS that has been comment-
ed on by Rader and Gold [30] is shown. As the sampling rate of a digital
filter is increased, the poles tend to move towards z=1. As shown in
Figure‘7, under these conditions the matrix AS offers the minimum angular
éehsitiyity to element variations. .

In section 2.2.2 a qualitative analysis of the sensitivity proper-
ties of the matrix K for pole locations near the unit circle was made
based on the dynamic relationship between the matrix elements. The
radial sensitivity expression in (3-83) shows the quantitative confirma-
tion of that analysis. As shown in Figure 8, the matrix K offers the
minimum radial sensitivity to element variations, among all the matrices,
for pole locations near the unit circle. Most of the pole variation is
due to changes in the angular location of the pole. For pole locations
near the unit circ]e; insensitivity in the radial direction has a very
good effect on the stability property of the fi]tef due to parameter
variations. The introduction of the matrix K has resulted in an in-

approved realization for critical pole locations near the unit circie.

3.4.4 Relationship Between Magnitude and

Radial, Angular Sensitivity

Since radial and angular variations are components of the change in

eigenvalue location, there must be a relationship between the radial and
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angular sensitivity expressions and the expression for the magnitude of
the eigenvalue sensitivity. In this section, it is shown that the sensi-
tivity matrix R of section 3.3 can be obtained from the radial and angu-
lar sensitivity expressions.

jo

For complex )\=pei subjected to small changes in p and © due to

matrix element variations, the change in eigenvalue location is given by
by

= 9 Ap 93X AG ’ ' -
A 50 * 55 | : ,(3-84)

which results in

e*39: 5500090 ,(3-85)

1]

AN = Ap

(8ptjpr0)e™® .(3-86)

or AX

The square of the magnitude of (3-86) is given by

|ax|? = A%p+p%a% ,(3-87)

which can be written as

|an)% = [a0 2611 07 [ao
2 .(3-88)
0 o AO '
From (3-15) the square of the magnitude of AX can also be written
as _
T4 | '
IA}\IZ = _r_)_Q...AQL__ (3-89)
2
I DWW
j=1 K
i#k

For radial and angular sensitivity expressions given in matrix format
as

A o= Fo ,(3-90)
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ft is clear from (3-88) and (3-89) that

A _ TIn

n I lz = FDF | ,(3-91)

I A=A
5= k 9

itk

where
. 1 0 '
D = 2 .(3“92)
0 o

Equation (3-91) gives the relationship between the sensitivity matrix R
and the radial and angular sensitivity expressions.

For an example consider the matrix A.. From (3-76) and (3-90)

SR 0
2p
F = .(3-93)
-1 -1
_2p2tano 2psino |

Substituting (3-93) into (3-91) yields

1 pcoso

pCcosO p2

,(3-94)

=>
]

which is the same as the sensitivity matrix A” defined in (3-28) for the
cpmpanion matrix Ac'

A geometric analysis of a change in eigenvalue location clarifies
what is given in (3-87). Figure 9 depicts what is happening when an
eigenvalue changes due to small variations Ap and A®. Due to small
+jo

parameter variations, an eigenvalue A=pe changes to

A+AA=(ptap)etd (6+40) ’ . (3-95)

In Figure 9 the old location is depicted by the vector OA and the new
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Figure 9.

Re(z)

Eigenvalue Change Geometry

66



67

location by the vector OB. For small variations it is assumed that the

vector AC with magnitude pA® is perpendicular to the vector 0B. Then

1a8]% = |Ac|? + |cB|? | (3-96)

or |A1|2¥A2p+p2A2®, as was given in (3-87).

3.5 General Extension to A-th Order Systems

Although the sensitivity analysis technique presented in section 3.3
is applied, in this thesis, to the analysis and comparison of second order
matrices with two variational elements used to realize digital filter poles,
the procédure is general and may be applied to 1arger}systems. Any Tinear
analog or digital system'that can be represented by a state-model can
utilize the technique to determine the effecté of‘parametek variations on
the poles and zeroes of the system. For any system specified by a state-
model, there exists an equivalent input/output state-model with a com-
- panion matrix as.the system matrix [11] [12]. Singer [9] has presented

the sensitivity matrix A for an n-th order companion matrix. It is

given by
5 2 n-1 7]
1 pCoSO p°cos20 ... p 'cos(n-1)o
pcosO p2 p3c059 ... p"cos(n-2)0
A°= .(3-97)
pn']cos(n-1)@ o"cos(n-2)0 pn+]cos(n-3)e . p2n-2 J

‘With this matrix, the sensitivity matrix A for any other n-th order

system matrix can be obtained from (3-27) which gives 3 as
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A= MTA"M .(3-98)

For any n-th order system, the system matrix must have at least n
variable é]ements in order to realize all possible poles of the system.
In general, it is clear that the fewer the number of variable elements,
the better the representation in terms of implementation. However, in
a completely general case all matrix elements can be variable. Then if
m is defined as the number of variational elements, it can assume values
in the range nsmsnz. The matrix M in (3-98) would then have dimension
nxm and Af, the variational vector, would be an mx1 vector. As an ex-
ample, consider the more general case of a second order matrix with all
four elements subject to variation. The dimensions of M and Af would
then be 2x4 and 4x1, respectively. Note that the dimension of the sensi-
tivity matrix is a1ways equal to the number of variational elements. As
m changes, that change is reflected in the dimension of the matrix M
since it is associated with the variational vector Af.

Singer's definition of sensitivity as given in (3-15) app]iés to the
n-th order case. As shown previously, when the 1imit is applied, (3-15)
.resh]ts in |
SO P = —n%ﬂ—ﬂ— , .(3-99)

i=1
itk

where the elements of the variationq] vector, aTé[a]aZ...am], have been
normalized to aj=i]. A problem that is encountered early in the appli-
cation of (3-99) is the determination of sup aTﬁa where aj=il. For n=2
- this is a simple problem solved by inspection. When the general n-th

order problem with m variational elements is considered, where n is
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large, the determination of the vector o to maximize aTAa is more complex
and requires a systematic procedure.

The problem

max o Aa (3-100)

aj=i-'| j=1, ..., m

is a member of a general class of integer nonlinear programming problems

(iNLP). The general INLP is characterized by [42]

max f(x)
g;(x)s0 i=1, ..., p .(3-101)

x = integer

where f(x) and gi(x) are real-valued functions. A subset of the problems
defined in (3-101) that are more closely related to that of (3-100) are
those problems when x takes on binary values 0,1. In fact (3-100) can be
translated to a binary problem by defining y such that

o+

v == J=T,..m .(3-102)

Then (3-99) is given by

max[yTﬁy+§y+C] (3-103)

’ yj = 0,1 j=1, ..., m

where B is a row vector and C is a‘scalar. Since the function of ihterést,
o'Aa, is quadratic in form, a solution to (3-100), translated to (3-103)
through (3-102), can be obtained by employing techniques developed for :
solving quadratic binary programming problems. :

Much of the work done in developing solution techniques for these

types of problems comes from the disciplines of Operations Research and
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Management}Science. Under these disciplines the quadratic binary prob-
lem may arise in many situations including the classical Traveling
Salesman Problem, the Candidates Problem, and Capital-Budgeting Problems
[43] [44].

A procedure that has been used to solve (3-103) is known as pseudo-
hoolean programming [45]. A pseudo-boolean function is a real-valued
function of a binary n-vector. Any pseudo-boolean function can be rep-
resented by a polynomial to which an enumerative algorithm is applied
to eliminate one variable, yj, at a time until a trivial problem in one
variable is solved. The eliminated variables are then obtained from
recursive relationships involving the solved variable. Once these
. are solved for, the elements a. in (3-100) are

J J
obtained from (3-102) as

binary variables y

oy = Zyj—l j=1, ..., m ,(3-104)

and the sénsitivity of the n-th order matrix F with m variational elements
is obtained from (3-100) and (3-99).
To obtain expressions for the magnitude of the eigenvalue sensi-
: fivity in terms of the tolerance of the variable elements the same pro-
cedure is used as in section 3.3.2. As discussed previously, for an
n-th order matrix with m variational elements the vector'a has. dimension
mx1 where nsnsnz. Therefore the matrix D as given in (3-57) has dimen-
sion mxm which, when substituted into (3-58) givés the desired expression.
The technique used in section 3.4 of deriving radial and angular
sensitivity expressions for second order matrices with two variational
elements from the corresponding expressions for a second order companion

matrix is also applicable to the general case of an n-th order matrix
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with m variational elements. For such a general case, the radial and

angular expressions for the n-th order companion matrix may be written

as
= Ad ,(3-105)

where Ad is an nx1 vector composed of the variations of the companion ma-
trix elements and where Sp and SO are 1xn radial and angular sensitivity
vectors, respectively, that have been presented by Mitra and Sherwood

[29]. For the second order case, S, and Sg are given in (3-76) as

Sp = [- 7 0] (3-106)
R (a0
20°tane P

From (3-26) and (3-105) the radial and angular sensitivity expres-

sions for an n-th order matrix F with m variation elements is given as

= MAT »(3-108)

where Sp and SO are the 1xn sensitivity vectors for the companion matrix
and M is an nxm matrix relating the mx1 variational vector, Af, of ma-
trix F to the nx1 variational vector, Ad, of the companion matrix. Ex-
pressions in terms of tolerance information for Af are obtained in the

same manner as was discussed for the sensitivity magnitude expressions.
3.6 Summary

The newly introduced second order system matrix K is compared to

other second order system matrices on the basis of the eigenvalue
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sensitivity of the matrices. A re]ationship between fhe‘sensitivity ma-
trix A” of the companion matrix Ac and the sensitivity matrices R for
the other system matrices is shown to exist. Based on this relationship,
a method for determining the eigenvalue sensitivity of system matrices
from the sensitivity expressions for an equivalent companion matrix is
presented.' Expressions for the magnitude of the eigenvalue sensitivity
and the corresponding radial and angular components of that sensitivity
are derived for absolute and normalized matrix element variations. It
is shown that the sensitivity matrix of a given system matrix can be
obtained from the radial and angular sensitivity expressions for that
matrix. Minimum pole sensitivity regions within the unit circle of the
z-plane are shown for each matrix. The system matrix K is shown to
exhibit very good sensitivity properties for critical pole locations
near the unit circle where the stability of a filter subject to element
variation is of great concern. Extension to the general case of an n-th
order matrix with m variational elements is discussed and the proposed
procedure of determining eigenvalue sensitivity of system matrices from
the sensitivity expressions of an equivalent companion matrix is shown

to apply.



CHAPTER IV

COEFFICIENT WORDLENGTH REQUIREMENTS, REALIZABLE
POLE-GRIDS, AND OTHER DATA ON SECOND
ORDER SYSTEM MATRICES

4.1 Introduction

There are other propérties of a matrix besides eigenvalue sensiti-
vity that can bé'examined in the process of selecting a system matrix
for digital filter applications. One criteria that is useful for deter-
mining hardware requirements for the implementation of a filter is the
number of bits required for each coefficient in order to insure accept-
able performance. Closely associated with the coefficient wordlength
is the Tocation and density of the discrete pole grids which can be
realized with a given number of bits.

Another effect of finite wordlengths in fixed point recursive digi-
tal filters is the introduction of overflow oscillations. The tendency
of a filter to sustain overflow oscillations depends on the manner in
which it is realized. In state-model realizations it has been shown
that certain kinds of system matrices will not sustain oscillations re-
gardless. of pole position [7]. This lessens the requirement of using
Stringent signal scaling, the use of which usually results in higher
“roundoff noise, in order to avoid the effects of such oscillations.

The realization of the filter also determines ifs roundoff noise

73
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properties [34]. As explained in Chapter I, roundoff noise results from
- the quantization of the results of multiplications in the filter and is
therefore an unavoidable source of error. Jackson [28] has claimed that
realizations with good coefficient sensitivity properties also have Qood
roundoff noise properties.

In this chapter the second order system matrices under consideration
are compared with regard to the properties mentioned above. Expressions
for determining the coefficient wordlength necessary to keep pole varia-
tions within prescribed bounds are developed for each system matrix.

For a given set of bounds on pole movements, tabular data representing
the required wordlengths necessary for the fractional part of each matrix
element is presented for comparison. Realizable pole grids are shown for
each of the matrices when the coefficient wordlength is restricted to
five bits, ihc]uding the sign bit and one magnitude bit. From these

pole grids, the effects of increasing the size of the wordlength can be
evaluated.

A cursory examination of the tendency of each system matrix to
sustain overflow Timit cycles is made by applying the criteria of Mills
et al [7] to each matrix. Using the'techniques described by Gold and
Rader [25], the mean squared value of .the roundoff noise for the reali-
zation of é.common transfer function by each system matrix is computed
and compared.

For each of the properties considered in these comparisons, results
have been given in the literature for the matrices AS and Ac’ To pre-
sent knowledge, none have been presented fdr AO and certainly not for

the matrix K.
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4.2 Coefficient Wordlength Requirements

While an analysis of various state-model formulations for digital
filters based on eigenvalue, or pole, sensitivity provides a useful basis
for comparing system matrices, the ultimate criteria for the realization
of the filter might be the number of bits required for each coefficient
in order fo insure acceptable performance. Typically a digital fi]ter
will be realized in one of two ways. Either the filter will be imple-
mented on a computer or a minicomputer with fixed wordlength, or a
special purpose hardware will be built with the possible advantage of
using different wordlengths for each coefficient with the intention of
obtaining lower cost and/or higher speed. For fi]terS implemented on
computers, determining the coefficient wordlengths for a particular
rea]ization.will indicate whether or not the poles can be realized within
a given accuracy. For special purpose hardware implementation, the
wordlengths necessary for a given pole location accuracy directly deter-
mines the hardware reduirements. |

Thé method used for determining coefficient wordlength has been
presented by Mitra and Sherwood [29] for thé general case of an n-th
order matrix with m variational elements. For cbmp]eteness, a brief
discussion of this general case will be presented later. For second
order matrices with two variational elements, the procedure is more
direct since it allows the matrix element variations to be directly
solved for in terms of the maximum allowable pole movements.

The minimum number of bits required for a coefficient y is deter-
mined by the maximum quantization step size Ay allowable to insure speci-

fied performance, which, in this case, is the realization of a pole
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location within a specified distance of the ideal location that could be
realized with infinite precision. The radial and angular sensitivity
expressions presented in section 3.4 relate complex pole movements to
small variations in the matrix e]ements of the second order matrices of
interest. If the radial and angular changes are given as the maximum
allowable changes in pole location, then the corresponding element vari-
ations constitute the quantization step sizes for those elements. There-
fore, solving the sensitivity expressions of section 3.4.1 for the matrix
element variations in terms of maximum allowable changes in the radial
and angular 1eeations of the pole results in expressions for the quanti-
zation step size of each matrix element.

For the companion matrix Ac’ solving (3-76) for the parameter

changes yields

-2p 0 1 Ap v
= . | S (a-1)
2¢c0s0 -2psSinB} | Ap

It is c]eer from (4-1) that the element variations are a function of

~ pole Tocation and/or the direction in which the pole moves. For a worst
case solution, the wordlength should be based on the minimum quantization
step size encountered for a given pole location regardless of the direc-
tion of pole movement. For the companion matrix, the worst case para-

meter quantization step sizes are, from (4-1),

‘minlAd]! = |2pMp| . (4-2)

min|ad,| = |[2cos0Ap|-|2psineAe]| . (4-3)
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For the matrix As’ solving (3-77) for Ao and AB yields
% cos®  -psinb | Ap

AB sin® pcosO || A0 ?

which results in

min|Aa| = ||cos0Ap|-|psineAd] | | (4-4)
min|AB| =||sin@Ap|-|pcosoro] | : .(4-5)
For the matrix AO, solving (3-78) for Ax and Ay yields

Ax 2(cos0-p) -2psin® { | Ap

Ay 2c0s0 -2psin0d { | AO

which results in

min|Ax|=]]2(cos0-p)Ap|-|2psinoAo] | (4-6)

min|Ay =]|2cos0Ap]|-|2psin0AG] | .(4-7)

For the matrix K, solving (3-79) for Ak, and Ak2 results in

— ~ bl o
Ak] 2(k]cose—p) -2k2psine Ap
- 1 '
k-l"k2 ’
LAkZ-J ‘2(p-k2cqs®) 2k2psin6 A®

which results in

. 1 » .
min|akq[= E;:EE1|2(k]cose—p)Ap!-|2k2ps1nOAe|] (4-8)

minlAk2|= E;%EEIIZKO‘kZCOSG)AOI'IZkZDSTHGAOIl .(4-9)
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If pole movements due to coefficient quantization are specified to
remain within the Tlimits Ao=Dp, o and AO=00, - radians, then (4-2)-(4-9)
give the necessary quantization levels for each matrix element that will
insure such a constraint under worst case conditions of matrix element
variations. An important point to remember is that since the original
sensitivity expressions assumed small parameter variations, the matrix
element variations resulting from employing the quantization levels
given by (4-2)-(4-9) must be small enough so that second and higher-order
factors in the relationship between pole location and parameter variation
can be ignored.

When the filter is implemented, the coefficients will be stored in
finite-length binary form. If n is the number of bits to the right of
-the binary point, then the coefficient quantizatioﬁ step size Ay is

given by

Ay = 27" . (4-10)
So]viné for n results in

n = [-Tog,Ay] | ,(4-11)
if coefficient quantization is done by roundihg, and

n = [—JogéAy]+1 | ;(4-12)

if coefficient quantization is done by truncation, and where [x] stands
for the largest infeger in X.

Using equations (4-2)-(4-9) and (4-11), the wordlength required to
the right of the binary point in order to constrain movements of complex

poles within the Timits Ap___=.001 and Aemax=.001 radian were computed

max



79

for each matrix element of the second order matrices of interest. The

values of Ap and Aemax that were used were chosen in order to insure

max
that the matrix element variations were small with respect to the nominal
values of the elements for each pole location and also to provide a com-
mon basis for comparing the requirements of the matrices. The results

are given in TableII-Table XI for various pole locations.

The data presented in the tables show general trends of wordlength
requirements as pole locations vary throughout the unit circle of the z-
plane. For example, as the radius of the pole Tocation becomes smaller,
the matrix K requires an increased wordlength to maintaiﬁ pole variations
within the prescribed limits. This is a characteristic of the other
matrices also but not to the same degree as it is for K. Also apparent
is the cyclic nature of the wordlength requirements of a given matrix as
the pole angle varies on a given radius. This is true of all the matrices
except Ao. Recall from Figure 3 in Chapter II that, as p approaches one,
one or the other of the parémeters k] and k2 of the matrix K maintains a
constant value close to zero for particular angular regions of pole loca-
tions. This cyclic nature is also shown in the tables. The element x
of the matrix A0 is shown to require dramatically increasing wordlength
reﬁuirements as O approaches ninety degrees. The dash entry at that
point indicates a very high wordlength requirement. Examination of (4-6)
shows this to be true for any equal bounds placed on Ap and A®. Element
d1 of the matrix AC shows a constant word]ength requirement for a given
pole radius. Since d] determines the pole radius and not the angle this
is not surprising.

The extent to which the wordlength requirements of the elements of

a particular matrix change as © varies is not indicated in the tables.



TABLE II

WORDLENGTH WHEN p=.99

N

® @ B (7T N B A S k
1 9 | 10 8 8| 16 8 10 9

9| 10| 10 8 9 | 1 9 10 9
181 10 | 10 8 9| 10 9 1 9
27 | M 8 0] 10 | 10 12 9
36 | 12 | 12 8 1m0 10 9
45 | 17 | 17 8 16 | 10 | 16 9 9
54 | 12 | 12 8 MmN 9 9
63 | 11 | M 8 0] 10| 10 10 8
72 | 10| 10 8 9 | 10 9 10 8
81 | 10| 10 8 9 | 11 9 8 7
90 9 9 8 8 | -- 8 7 7
99 | 10 | 10 8 9 | 1 9 7 8
08 { 10 | 10 8 9 | 10 9 8 10
nr |l | n 8 10 9 | 10 8 10
126 | 12 | 12 8 1 9 | N 9 9
135 | 17 | 7 8 16 8 | 16 9 9
44 | 12 | 12 8 11 gt 11 | 9 |10
153 |11 | N 8 10 8 10 9 12
162 | 10 | 10 3 9 8 9 9 11
171 1 10 | 10 8 9 8 9 9 10
179 9| 10 g8 | 8 7 8 9 10

TABLE III

WORDLENGTH WHEN p=.90

A
o Ny | Ng Nd] Nd2 Ne | Ny Nk] Nk2
1 9 | 10 9 8 | 12 8 10 9
91 10| 10 9 9 | 13 9 10 9
181 10| 10 9 9 | 1 9 11 9
27 | M| M 9 100 10/ 10 13 9
36 | 11| 12 9 10{ 10| 10 10 9
45 | 13 | 13 9 12| 10 12 9 9
58 1 12 | 1 9 mi 1| n 9 9
63 | 11| N 9 101 10] 10 10 9
72 1 10 | 10 9 9] 10 9 14 9
81 | 10| 10 9 9| M 9 10 9
90 | 10 9 9 9 | -- 9 9 9
99 1 10 | 10 9 9 | M 9 9 10
108 | 10 | 10 9 9| 10 9 9 14
7 | i n 9 10 9] 10 9 10
126 | 12 | N 9 1 9 | 11 9 9
135 | 13| 13 9 12 9 [ 12 9 9
4 | 11| 12 9 10 31 10 9 10
130 11| N 9 10 8| 10 9 13
162 | 10 | 10 9 9 8 9 9 -
171 ] 10| 10 9 9 8 9 9 10
179 9 | 10 9 8 8 8 9 10

08



TABLE IV

WORDLENGTH WHEN p=.80

TABLE V

WORDLENGTH WHEN p=.70

AO

0 Na NB 1 Nd2 Nx Ny Nk1 Nk2

11 9| 10 9 g | 1 8 9 9

9| 10 | 10 9 | .9 2] 9 | 10 9
181 10 | 11 9 9 {12 9 | 1 9
271 10 | 1 9 9 110 | 9 | 13 9
6| 11 | 14 9 1 10 |10 ] 10 | N 9
45| 12 | 12 9o | 1 [ 10| M 10 9
54| 14 | 11 9 [ 13 10|13 | 10 9
63| 11 | 10 9 | 10 | 10| 10 | 10 9
720 11| 10 9 [ 101010 | m 10
811 10| 10 9 9 | 1 9 | 12 | 10
90| 10 | 9 9 9 | --| 9 | 10 | 10
99| 10 | 10 9 9 | 1 9 | 10 | 12
108) 11 | 10 9 | 101wl 0! 10| n
nz| 1| 1o 9 | 10| 9| 10 9 | 10
126 14 | 1 s | 13| 9| 13 9 | 10
1350 12 | 12 9 | N 9 | 1 9 | 10
1440 1 | 14 9 | 10| 81| 10 9 | m
1531 10 | 11 9 9 | 8] 9 9 | 13
162 10 | 1 9 9t 8| 9 9 | N
1711 10 | 10 9 9 | 8| 9 9 | 10
1790 9 | 10 9 8 | 8| 8 9 9

0 o 8. 1 d2 X y k] k2
1 9 10 9 8 10 8 9 9
9110 10 9 9 11 9 10 10

18 1 10 11 9 9 13 9 10 10

27 | 10 12 9 9 1 9 12 10

364 11 15 9 10 10 10 12 10

45 | 12 12 9 1 9 11 1 10

54 | 15 1 9 14 10 14 10 10

631 12 10 9 11 10 11 10 10

72 | 1 10 9 10 10 10 1n 10

811 10 10 9 9 11 9 17 10

90 | 10 9 9 9 -- 9 11 1

99 | 10 10 9 9 11 9 10 17

108 | 11 10 9 10 10 10 10 1
117 | 12 10 9 1 9 1 10 10
126 | 15 11 9 14 9 14 10 10
135 | 12 12 9 11 9 1 10 1
144 | 11 15 9 10 8 10 10 12
153 | 10 12 9 9 8 9 10 12
162 | 10 1 9 9 8 9 10 10
1714 10 10 9 9 8 9 10 10
179 9 10 9 8 8 8 9 9

L8



WORDLENGTH WHEN p=.60

TABLE VI

AC

o | MM Mo [N, f NNy N TN

11 91 10 9 8 | 10| 8 9 9

9o 1 10 | M 9 9o 10| 9| 10| 10
18 110 | n 9 o | 1| 9| 10 | 10
27 1 10 | 13 9 9ol 14| 9| 1 | 10
6 | 11| 13 9 | 10 {m 0] 18 | 10
5 | 11| N o | 10010 | 11| 10
5 | 13 | 11 9o {12 10| 12| 10 { 10
63 | 13 | 10 9 | 12 10|12 10| 10
72 | 11| 10 9 | 101010 11| 10
81 | 11| 10 9 {10 |0 ] 13|
% | 10| 9 9 9 | - | 9| 12| 12
99 | 11| 10 o {101 | w0l 1|
108 | 11 10 o | 101010 10| M
1n7 |13 | 10 o | 12| 9 12| 10| 10
126 | 13| 1 9 | 12| 9] 12| 10 | 10
135 | 11| 1 9o |10 9 10 ] 10 | m
184 | 1| 13 9 | 10] 8|10 ] 10 | 14
153 | 10 | 13 9 9| 8] 9 | 10 | M
162 | 10 | 1 9 o{ 8| 9| 10 | 10
171 |10 | 1 9 9| 8| 9| 10| 10
179 | 9 | 10 9 g | 8| 8 9 9

TABLE VII

WORDLENGTH WHEN p=.50

0 o B d1 d2 X y k] k2
1 9| 1 9 8 9 8 9 9
9 |10 | M 9 9 | 10 9 10 10
18 | 10 | 12 9 9 | 10 9 10 10
27 | 10| 16 9 9 I'MN 9 " 10
36 | 10| 12 9 9 | 15 9 12 10
45 | 11| 1 9 10 1 11} 10 14 10
54 {12 | 10 9 1M P10 1N n 10
63 | 16 | 10 9 15 | 10| 15 10 10
72 | 12| 10 9 11| N 11 11
81 | 11| 10 9 10 | 11 10 12 1
90 | 1 9 9 9 | -- 9 13 13
99 | 11| 10 9 10 | 11 10 11 12
108 | 12 | 10 9 11 101 1 1 1
117 | 16 | 10 9 15 9| 15 10 10
126 | 12 | 10 9 1 9| 1 10 n
135 | 11 | N 9 10 91 10 10 14
144 | 10| 12 9 9 8 9 10 12
153 | 10| 16 9 9 8 9 10 n
162 | 10| 12 9 9 8 9 10 10
171 | 10} N 9 9 8 9 10 10
179 9 | 1 9 8 8 8 9 9

¢8



TABLE VIII

WORDLENGTH WHEN p=.40

TABLE IX

WORDLENGTH WHEN p=.30

€] a B d] d2 X y k] k2

1 9 | N 10 8 | 9| s 9 9

9 | 10 | 12 10 9 91 9| 10 | 10
181 10|13 | 10 9 l10] 9| 10| 10
27 | 10| 13 | 10 9 10| 9 10 | 10
3 | 10 | 11 10 9 | 1 9 | 1 10
5 | 1| N 10 014 10| 12 10
5 | 1 | 10 | 10 0 | 1110 13 | 10
63 | 13| 10 | 10 | 12 | 10| 12 1 10
72 113 10| 10 12 | 10| 12 n 1
g1 | 12 | 10 | 10 nin|n 12 12
90 | 11 9 | 10 | 10} --| 10| 14 | 14
99 | 12 | 10 | 10 m| | on 12 12
08 | 13| 10 | 10 12 [-10 | 12 n 1
M7 | 13 ] 10 10 12 9| 12| 10 il
126 | 11 ] 10| 10| 0] 9] 10| 10 13
135 | 11 ] N 10 ] 9] 10 ] 10| 12
144 | 10| M 10 9| 8| 9| 10 1
153 | 10| 13 | 10 9| 8] 9| 10 10
162 | 10| 13 | 10 9F 8] 9| 10 | 10
171 | 10 | 12 10 9| 8| 9| 10 | 10
179 | 9| m 10 8| 8| 8 9 9

o [ M| M [N M, N Y Ny Yy

1 9 | 1 10 8 9 8 9 9

9 |10} 12 10 9 9 9 10 10
18 | 10| 15 10 9 9 9 10 10
27 | 10| 12 10 9 |10 9 10 10
36 [ 10| N 10 9 | 10 9 1 10
45 | 10 | 10 10 9 | N 9 1 10
58 | 11 | 10 10 0 | 131 10 13 10
63 | 12 | 10 10 1m 12| n 13 n
72 | 15 | 10 10 14 | 10| 14 il 1
81 | 12 | 10 10 m|in|n 12 12
9 | N 9 10 0| --1] 10 16 16
99 | 12 | 10 10 m| | mn 12 12
108 | 15 | 10 10 14 | 10| 14 1 1
M7 | 12 ] 10 10 il 9. | 1 1 13
126 | 11| 10 10 10 9| 10 10 13
135 | 10 | 10 10 9 91 9 10 1
194 | 10 | N 10 9 9 9 | 10 1
153 | 10 | 12 10 9 8 9 10 10
162 | 10 | 15 10 9 8 9 10 10
171 | 10| 12 10 9 8 9 | 10 10
179 9 | N 10 8 8 8 9 |- 9

€8



TABLE X

WORDLENGTH WHEN p=.20

TABLE XI

WORDLENGTH WHEN p=.10

o | M| M (N [N, [ MYy [Ny [N
1 9 | 12 | 1 g8 | 9| 8 9 9

9 | 10|14 | M 9 9| 9 | 10| 10
18 10 13 | 1 9 | 9 9 | 10 10
27 | 10| n n 9 | 9| 9 10 10
3 | 10 | M n 9| 9| 9 10 10
45 | 10| 10 | m 9 | 10| 9 1 10
5 | 11 10 | M 0 {11 )10 | n 10
63| 11 | 10 | M 1210 | 13 Mn
72 113010 | N 12 |12 ] 12 13 1
g1 | 14| 10| 1 13 1] o3 12 12
9 | 12 9 1 M| -1 n 17 17
99 | 14 | 10 | 1 1301 | 13 12 12
08 | 13| 10 | N 12 ] 10| 12 m o3
nz o ofo ] 0 (10 10 | N 13
126 | 11| 10 ] M 0] 910 | 10 1
135 [ 10| 10| M 9 9 9 0 | 1
144 | 10 | 1 1 9| 9 9 | 10 10
153 | 10 | 11 n 9| 8| 9 10 10
12 |10} 13| N 9 8| 9 10 10
171 110 14 ] N 9| 8| 9| 10 | 10
179 | 9 | 12 n 8| 8| 8 9 9

6] ch NB d-l Ndz Nx Ny Nk] k2
1 9 ] 13 12 8 9 8 9 9

9 |10 | 14 12 9 9 9 10 9
18 | 10 | 12 12 9 9 9 10 10
27 |10 | N 12 9 9 9 10 10
3 | 10 | 10 12 9 9 9 10 10
45 | 10 | 10 12 9 9 9 10 10
54 {10 | 10 12 9 | 10 9 11 10
63 | 11 | 10 12 10 | 10| 10 1 11
72 {12 | 10 12 1M {121 n 13 1
81 | 14 | 10 12 13 ] 13 13 14 12
90 | 13 9 12 12 | --| 12 20 20
99 | 14 | 10 12 13 | 11| 13 12 14
108 | 12 | 10 12 1 0] N 1 13
117 | 11| 10 12 0] 101 10 n A
126 { 10 | 10 12 9 9 9 10 1
135 | 10 | 10 12 9 9 9 10 10
144 | 10 | 10 12 9 9 9 10 10
153 | 10 | 1 12 9 9 9 | 10 10
162 | 10 | 12 12 9 8 9 10 10
171 | 10 | 14 12 9 8 9 9 10
179 9 | 13 12 8 8 8 9 9

¥8
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For example, at p=.9 and 0=48 degrees, the matrix Ao‘requires a twenty
bit wordlength for the element y. The data was taken at generally nine
degree increments in © for a given radius p. This wide séparation made
the amount of data manageable but it’has tended to mask some of the dy-
namics of the changing requirements as a function of 6. Nevertheless,

‘ the tab]es do show the general characteristics of each matrix as was in-
tended. Specific comparisons of wordlength requirements should be ob-
tained through the use of (4-2)-(4-9) at particular pole locations.

The one case where (4-2)-(4-9) énd the data Tisted in the tables is
misleading and does not apply in determining wordlength requirements is
when the nominal values of the matrix elements necessary to realize a
given pole location can be expressed as an integer power of two. In
those cases there are no variations in the matrix e]eménts due to quanti-
‘zation and, therefore, the poles are realized exactly. The set of poles
corresponding to these conditions constitute an exactly realizable pole
grid for the matrix which will be examined in section 4.3. For the mo-
ment, however, it is important to realize that, if the nominal value of
the matrix'e1ement is an integer power of two, then Ap and A® are zero.
Application of (4-2)-(4-9), with assumed Timits on Ap and A©, will result
in a wordlength from (4-11) and (4-12) that is misleading. As an example,
“consider the complex pole pair 21,22=0.5ij0.5. In po1ér coordinates,
this pole pair is gfvén by p=.707, 0= 45 degrees. Each of the matrices
AS; A.. and A, can realize these poles exactly. For A the matrix ele-
ments are: o=0.5, B=0.5. For Ac the matrix elements are: d1=—0.5,
d2=1.0: The matrix elements of Ao are given by: x=-0.5, y=0.0. It is
é]ear that, with the exception of d2 and y, only one bit to the right‘of

the binary point will realize these elements, and therefore the poles,
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exactly. The elements d2 and y don't require any fractional bits. If,
however, Ap and AO are assumed to be .001 in (4-2)-(4-7), the resultant.

fractional wordlengths are: Na=N =12; Nd =9, Nd =11; and Nx=9, Ny=11.

B
1 2
For an example of the utilization of the wordlength equations, the

following example is presented.

{

4.2.1 Example

Determine the necessary word]engthé to the right of the binary point
for k] and k2 in order to realize the pole pair given by p=0.9, 0=%27 -
degrees (.471238898 radians) within the Timits Apmax=.001, A@max=.001
radians.

For these poles, k; and k, are giVen by k1=1.714623258"and ky=
-0.1108115145, and the resultant pole polynomial is given by

22-1.6038117442+.81=0 | . (4-13)
Applying (4-8), (4-9), and (4-11) with Ap 2y =00,, =+ 001 results in Nk]
=13, N, =9.
ko

The values of k1 and k2 realized with 13 bits and 9 bits, réspec-
tive]y, with rounding, are given by k]R=1.7]4599434 and k2R=~O.111328125.

The resulting pole polynomial is given by

2-1.60327]3092+.809]168599=0 ,(4-14)

z
which realizes poles given by

. 8995092328

©
It

© = .4708296436 radians

which are clearly within the prescribed Timits.
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If truncation were the method of quantization, then (4-12) yields
Nk1=]4’ Nk =10. The values k1 and k2 realized with 14 bits and 10 bits
2 . '
respectively, with truncation, are: k]T=1.714600838 and k2T=—0.1103515625.

The resulting pole polynomial is given by

22—1.6042492762+.8107911185=0 »(4-15)

which realizes poles given by

p = .900439403

0 = .4716612977 radians

which are clearly within the prescribed limits.

4,2.2 Coefficient Wordlength Requirement -

General Case

The method used to determine the wordlength requirements of the
various matrix elements made use of the radial and angular sensitivity
expressions. Recall from (3-105) that these expressions for an n-th

order matrix with m variational elements can be given as

{= Af 9(4']6)

“where Af is interpreted here as the mx1 vector of the element variations
and Sp and SO are lxmhradial and angular sensitivity vectors, respectively.
For a second order matrix with two variational elements, Sp and S@ com-
bine to form a square matrix which can be inverted to solve for the para-
meter variations directly. For the general case, however, the matrix is

not square and the parameter variations cannot be obtained as directly.
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Mitra and Sherwood [29] use the following approach to obtain a solution.

For each pole zk=pkeij@k,,an‘expression given by (4-16) exists and .

is given by
Apk Spk
where op 9p 3p
k k ... k
Sk = G 3 7 el .(4-18)
pk af1 afz afm _
30 90 30
k k ... k
- S = [—— — -——-] ’(4"]9)
ek af] af2 afm
= ... T | -
and Af = [Af]. Afz Afm] .(4-20)

For a given»Apk,max and Aekmax’ the allowable pole movement is divided
equally among all the variable elements. Then for each variable element

fd’ d=1,2,...,m, the corresponding variation is given by

1 Apkmax
m | 9oy
afd

Af

" l d=1.2.....m (4-21)

for radial movements of the pole, and by

Af

A0 |
1 kmax _
L ) | a2, (4-22)
5

do

for angular pole movements.

For a given element fd define
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ae? L min Ay, dTZem  (4-23)
o A )
Afy = m;n Afyo d=1,2,...,m .(4-24)

If the variational vector Af in (4-17) was composed of elements Afg
given in (4-23), then the radial variation of all poles z, would be
within the given limits. Similarly, if the variational vector Af were
composed of elements Afg given in (4-24), the angular variation of all
poles Z, would be within the Timits. Therefore;, Af is composed of a
composite of the elements given by (4-23) and (4-24). That composite
is formed by letting the elements Afd of the vector Af be given by

p

A, = min(Afd

0. .
q » Oy ) d=1,2,...,m .(4-25)

It is clear that with Af composed of elements given by (4-25), the radial
and angular variations in pole location will be within the Timits given
for all poles Z

Equal allocation Of’Apma and Aemax among all the variable elements,

X
as used by Mitra and Sherwood [29], is one method of obtaining a solu-

tion for the element variations. If, however, particular matrix elements
are known to be critical in determining the pole location, a more realis-
tic approach would be to apply weights to the contribution of each |

element in proportion to its criticality,
4.3 Realizable Pole Grids

Since the system matrix elements are realized by binary numbers of

finite lengths, there exists only a finite set of possible pole location



90

in the unit circle of the z-plane. Avenhaus [6] used the density of
allowable pole positions in the z-plane as a measure for assessing vari-
ous filter structures. He showed that the distribution of_these poles,
by choice of a suitéb]e structure, may be arranged to provide a higher
density of realizable Tlocations in areas of the z-plane critical to a
particular filter requirement.

A unique example of digital filter implementation requirements that
affect the realizable pole locations is given by Schmidt [46]. In this
-example, the implementation of a high speed digital fi]ter‘on an LSI
chip required that the coefficients be represented in canonical signed
digit (CSD) form. Coefficients represented in this manner have'the
lTeast number of non-zero bits, which ai]ows faster multiplication. By
limiting the number of non-zero bits in each CSD coefficient to three,
multiplier complexity, and therefore multiplier area required on the
chip, was réduced. However, this resulted in the elimination of certain
coefficient values and, therefore, certain pole locations that could not
be realized.

In this section, the effects of coefficient quantization on the
poles of the system matrices of interest are shown in pole grids that
depict thé actua1’po1es that can be realized inside the unit circle of
the z-plane for a given wordlength. Only complex poles are considered.
The realizable pole grids of the matrices AS and Ac have been presented
previously in the literature [35]v[47] [48]. The pole grids for the
matrices A0 and K have not been previously presented. For this compari-
son, the wordlength of the matrix elements is assumed to be five bits
long; consisting of three fractional bits, one magnitude bit, and a

sign bit.
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The realizable pole grids for the matrices As’ Ac’ Ab, and K, for
quantization to three fractional bits, are given in Figure 10, Figure 11,
Figure 12, and Figure 13; respectively. For As’ the poles lie on a grid
defined by the intersection of vertical lines (corresponding to quanti-
zation of o=pcos®) and horizontal 1ine§ (corresponding to quantization
of B=psin@). The separation between these lines is given by the quanti-
zation increment given by 2'3=0.125. As shown in Figure 10, As realizes
a pole grid with uniform density throughout the unit circle.

For the matrix Ac’ the poles 1ie on a grid defined by the inter-

“section of concentric circles (corresponding to quantization of —d]=p2)
and vertical lines (éorresponding to quantization of d2=2pcose). The
separation between the vertical lines is 0.0625 since the real part of
the pole (pcosO) is one-half the quantization increment of d2' As shown
in Figure 11, AC does not realize a uniform density pole grid. The
density of realizable poles increases with the magnitude, or radius; of
the pole.

The realizable poles of the matrix AO lie on a'grid defined by the
1ntefsection of concentric circles (corresponding to quantization of
x—y:pz) and vertical lines (corresponding to quantization of y+1=2pcos@).
Functions consisting of the sum or subtraction of quantized elements
assume discrete values with the same quantization interval as that of
the elements. Therefore, the concéntric cifc]es defining pole locations
for Ao are the same as those for Ac' The vertical Tines defining pole
1ocations are also the same as those for Ac, with the exception of pole
locations .in part of the second and third quadrants. With the assumed
wordlength, the largest negative value of the element y, in magnitude,

is given by y=-1.875. Since y+1=2pcos®, the largest negative real part
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for realizable poles is pcos = -0.4375. So, with only one numerical bit
to the left of the binary point, A0 cannot realize poles throughout the
second and third quadranfs, as shown in Figure 12. In general, A0 will
require an additional bit in wordlength, as compared to Ac’ to realize
poles throughout the unit circle. The emphasis, here, is that the range
of values required by the element y (-3<y<1) in order to realize poles
in all areas of the unit circle is not accommodated by the assumed word-
length. However, y is related to the element d2 of matrix Ac by the ex-
pression y = d2-1. If y is implemented in this matter, the range con-
straint of the assumed wordlength no longer applies and A0 can realize
poles throughout the unit circle. The resulting pole grid would then be
the same as that for AC shown in Figure 11.

The realizable poles of the matrix K assume the same quantized
locations for the real part of the poles as do the matrices AC and Ao’
However, the magnitudes of the pole locations are now determined by a
functiona] relationship with the product of the quantized elements k]
and k, that is given by p =/E;EEITi As shown in Figure 13, this dras-
tically changes the nature of the pole grid. The pole grid shoWs an in-
creasing density as the radius increases towards one, especially at ©=90
degrees. The matrix K clearly has the highest pole density of all the
métricés in this region of the unit circle. With increasing WOrdlenéth,
this characteristic would cover larger areas of the unit circle. This
is another indication of the excellent characteristics of this matrix
for pole locations very c]oée to the unit circle.

Although the assumed wordlength in this comparison is five bits,
the matrix AS only requires four bits, including the sign bit, to rea]ize

the poles shown in Figure 10. This is because the elements o and B are
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less than one. If the matrix K were implemented using the form given in
(2-25), the same comments would apply to it. In general, then, the
matrices AS and K require one bit less in wordlength, for a given quanti-

zation increment, than does Ac’ and two bits less than Ao'
4.4 Overflow Limit Cycle Tendency:

Overflow oscillations, or limit cycles, in fixed point recursive
digital filters are caused by nonlinearities introduced by finite regis-
ter lengths. Most digital filters are implemented using 2's complement
arithmetic for the addition operation. Register overflow can then occur
at the adder and the resulting nonlinearity causes self sustained oscill-
ations of large magnitude that dominate the output of the filter. This

-has justified the use of highly conservative scaling rules which makes
overflows impossible at the expense of increased roundoff noise [34], or
the use of saturation arithmetic in order to not sustain the oscillations
when overflow occurs [49]. |

The tendency of a filter to sustain overflow oscillations also de-
pends on the realization. In state-model realizations it has been shown
that cértain kinds of system matrices will not sustain oscillations re-
gard]ess of pole position [7]. In this section, é cursory examination
of the tendency of each system matrix under consideration to sustain over-
flow Timit cycles is made by applying the criteria of Mills, Mullis, and
Roberts [7] to each matrix. Results for the matrices As and‘AC have been
repbrted previously [7] [49]. The overflow tendencies of A0 and K have
‘not been previously reported.

The criteria given in [7] constitute a sufficient condition for

the absence of overflow oscillations for a matrix A and are based upon
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finding a diagonal matrix D with positive diagonal elements for which
(D-ATDA) is positive definite. For a second order matrix A, there

exists such a D if and only if the elements of A satisfy
(1) a]ZaZ]zO | - ,(4-26)

or if a]2a2]<0 then

(2) layy-a,,| + det(A)<] . (4-27)

The elements of AS are given by a=pcos® and B=psinO. Since a]2=8,

ay1= -8, condition (1) in (4-26) is not satisfied. For condition (2)
given in (4-27), AS yields a2+82<1 which is true for all pole locations
inside the unit circle. Therefore AS will not sustain overflow limit
cyé]es for all stable pole locations. | |

* For the matrix Ac’ application of condition k]) in (4-26) yields
d,20 which is not true since d]= -p2<0. Condition (2) in (4-27) yields
l-dzl-d]<1. ‘Since d;<0, this is the same as [d]|+|d2[<], which is the
result obtained by Ebert, Mazo, and Taylor [49]. Therefore, AC will not

sustain overflow 1imit cycles when

[dy [+]dy <1 . (4-28)

This means that the ability of Aclto sustain overflow limit cycles de-
pends on the pole location.
For the matrix Ao’ the conditions for which poles are realized in-

side the unit circle are given by

T+x-y>0 (4-29)
24+2y-x>0 (4-30)
x<0 .(4-31)
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Applying condition (1) in (4-26) results in x>0 which, from (4-31) is

not true. Applying condition (2) in (4-27) yields
| 1-y|+y-x<1 .(4-32)

If 1-y>0, then (4-32) yields x>0, which, from (4-31), is not true. If

1-y<0, then (4-29) is not satisfied since x<0. Therefore, at no point

in the parameter space of A0 are the criteria in (4-26) and (4-27) satis-

fied. Since the conditions in (4-26) and (4-27) are sufficient and not

necessary, this dqesfnot mean that there are no conditions under which

AO will not sustain overflow oscillations. It does point out, however,

that scaling techniques may be necessary when usfng this matrix.
Application of condition (1) in (4-26) to the matrix K reveals that

it is not satisfied since a]2=1, 351" -1. Applying condition (2) in

(4-27) results in
lk1-k2[+k]k2<0 . (4-33)
Expressing k1 and k2 in terms of p and ©, (4-33) becomes

2/ 1-p2sinlo + po<1 . (4-38)

For no values of p and © is (4-34) satisfied. Therefore, at no point in
the parameter spéce of the matrix K are the criteria in (4-26) and (4-27)
satisfied. As in the case of AO, scaling techniques may be necessary

when using the matrix K in order to avoid overflow oscillations.
4.5 Roundoff Noise Properties

In this section, the roundoff noise that each second order system

exhibits when realizing a common transfer function is compared. Fixed
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point arithmetic and rounding of products prior to summing is assumed.
As discussed in Chapter 1, roundoff noise results from the quantization
of the resu]ts of multiplications in the filter and has been shown to be
a function of the realization. The product of an m bit multiplicand and
an n bit coefficient is an m+n bit product. Due to finite register
lengths in the filter, the mtn bit product will be rounded to m bits.
This quantization introduces errors which can be represented as additive
noise sources after each multiplier coefficient.' For example, the noise
sources due to roundoff quantization in the state-model presented for
the second order matrix K are shown in Figure 4.

The technique used to compute the roundoff noise will follow that
presented by Gold and Rader [25]. The errors due to roundoff noise are
generally assumed to be statistically independent and have a uniform
probability density with zero mean (when quantization is performed by
rouhding). If E0 is the quantization increment, the mean squared value
~of each noise source is given by its variance as
E 2

2 0
92

.(4-35)
Since the noise sources are statistically independent, the total
mean squared value of the output noise of the filter is given by the sum
of the output noise due to each noise input. Therefore, the total output
noise is given by
E 2

2 _Fo

n
1 1y -1

where n is the number of noise sources, and Hi(z) is the transfer function

relating the i-th noise input to the filter output. The integration path



101

is taken around the unit circle [25].

Gold and Rader [25] offer (4-36) as being easy to apply to find the
roundoff noise of filters since evaluation of the integral for linear
~ discrete netWorks is always possible from the Cauchy residue theorem.
For the purpose of comparison, each second order system matrix of

interest will be used to realize a common transfer function given by

H(z) = —2——9—2—— »(4-37)
z —dzz-d]

where G is a constant gain factor and coefficients d]= -p2, d2=2pcos@,
realize the pole pair z],22=pcoseijpsine. Expressions for the roundoff
noise of filters using matrices AC and AS to realize (4-37) have been
presented in the literature [25] [30]. Roundoff noise expressions for
realization of (4-37) using the matrices Ad and K have not beén previ-
ously presented.

The realization of (4-37) through the use of matrfces K, As’ Ao’
and AC is shown in Figure 14, Figure 15, Figure 16, and Figure 17, re-
spectively. From these figures, the transfer functions necessary in
(4-36) can be determined for each of the noise inputs Ei indicated.
| To illustrate the process of computing the roundoff ndise of a re-
alization through the use of (4-36), consider the K matrix realization
in Figure 14. Through standard state-model methods, the transfer func-
tions re]afing the noise sources E](resu1t1ng from multiplication by k2),
' E, (resulting from multiplication by kl)’ and Es (resulting from multi-

plication by G) to the filter output Y(n) are determined to be

Hy (2) = Gz | | ,(4-38)

2
z -(k1+k2)z+k1k2+1
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Figure 14. K-Matrix Realization of (4-37)

—(~B)—
\J.

Figure 15. AS-Matrix Realization of (4-37)
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Y(n)

E, E; —>@—-é—~ Y(n)

U(n) + XZ(n’L)’[Ex”““) @

&

@

Figure 17. Ac—Matrix Realization of (4-37)
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z -(k]+k2)z+k]k2+1
Hy(z) = 1 | . (4-40)
'Then the total output noise is given by
2 2
o = o +022+032 ,(4-41)
h > B 4 1,_-1
where 0'] = _]*2—2_]—H§H](Z)H] (2)2 dz : ,(4-42)
E 2
2 - .
0,2 = Z_‘H_J.gi Hy (2)Hy (12 dz ,(4-43)
,  E
0 1 1,_-1
0,2 = & ﬁ;§ Hy(2Hy (D)2 dz - (4-44)

Through the use of ‘the Cauchy residue theorem, with the integration con-
tour being the unit circle, the expressions in (4-42)-(4-44) are deter-

mined to be

2
2 By q4p2 a2
1 T 12 2 & 2 ,(4-45)
1-p°~ p +1-2p"cos20
2.2 -
s 2 _ E0 é (2pcosOJ1-pzsin26(]—p2)+2p2cosze(p-])+2+p2—p4) . (4-6)
2 12(1-p%) ot +1-20%c0s20
2 B (4-47)
O3 12 -\&-

As the poles of a digital filter approach the unit circle, the
roundoff noise increases very rapidly. For comparison purposes it is
good to look at the roundoff noise of a realization for poles near the

unit circle. Letting p=1-¢ in (4-45) and (4-46) results in, as &0,
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50262
0] =0, T —— .(4-48)
48¢s1in20 .

Substituting (4-48) and (4-47) into (4-41) yields the total roundoff

noise of the K matrix rea1ization'of‘(4—37) to be

) E0262 T 2 ( |
o = - + .(4-49
0 24esin26 12 ‘

In a similar manner, the preceding procedure can be uéed to deter-~
mine the roundoff noise expressions for the matrices As, Ad, and Ac'

The results of such an analysis, for pole locations close to the unit
circle, are summarized in Table XII.

As shown in Table XII, all of the matrices exhibit the same general
roundoff noise properties. The matrix AS clearly has the higheét round-
off noise, with all the other matrices being equal. All of them show
that the noise variance is inversely proportional to the distance of the
poles from fhe unit circle. A1l of them also clearly point out the de-
pendence of the noise on the resonant angle ©. For very low values of ©,
the noise variance is greatly increased. The newly introduced matrix K
compares very well with the other matrices. Although it is nd betfer,
it certainly is no worse than the best of the more commohiy used matrfces.

Since the K matrix is newly introduced, a similar roundoff noise
analysis was done for the realization in Figure 4 of the general transfer
function given in (2-26). The total roundoff noise variance for Figure

4 is given, for completeness, as

2 2

E E
2 _ .2 2.2,%,, )
op = 3 (070" + ) + 45 | »(4-50)



TABLE XII
ROUNDOFF NOISE VARIANCE

(p=1-¢)
A A, A, K
E0262 EO2 E0262 EO2 EOZGZ E02 E0262 |—:o2
9 2N V) —* 77 7~ 17
0 12851'n2 12 24esin"0 24esin0 24esin~0

90!
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where 012 + 022 is given by

2,2

E2 :%h'kil - (52"12 +1%,0) + 281(k k) (1% 50)
012+02 =0 172 , 1°2 . (4-51)
2 12 2 2 2
3 - (k] + k2 ) + (k]k2 + 1)
4.6 Summary

Using the radial and angular sensitivity expressions of section 3.4,
expressions for determining the wordlength required to constrain pole
movements, due to coefficient quantization, to within prescribed Timits
are developed for each second order matrix element. Using radial and
angular variation limits of 0.001, wordlengths are computed and general
trends in wordlength requirements as a function of pole location are
noted. With the method used, wordlengths for second order matrices with
two variational elements can be obtained directly. Extension of the
method to the general n-th order case is discussed.

Realizable pole grids are presented for each system matrix. The
matrix elements have a quantization increment of 0.125 as a result 6f a
word]éngth consisting of three fractional bits, a magnitude bit, and a
sign bit. With this wordlength, the matrix Ao cannot realize poles
throughout the entire unit circle un]eés the element y is implemented
indirectly. In general, the matrices AS and K require one less bit in
wordlength than does Ac and two bits less than A0 in order to realize
poles throughout the unit circle for a given quantization increment.

The matrix K exhibits a very high density of realizable po]e']ocations
for poles near the unit circle, especially for pole angles near ninety

degrees. With increasing wordlength, this characteristic will be more
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pronounced_for all poles with magnitudes close to one and will exceed
the density offered by the other matrices in this critical pole region.
An examination of the tendency of each of the system matrices to
sustain overflow 1imit cycles is presented. The matrix AS will not
sustain overflow oscillations for any pole location while the tendency
of AC to sgstain oscillations is shown to be a function of pole location.
The criteria applied in assessing overflow properties did not show Ao
and K to be free of overflow oscillations for any pole location. Suit-
able scaling techniques must be considered when using these matrices.
As a final comparison, the roundoff noise output of a realization,
by each system matrix, of a common transfer function is derived. The
expressions for each system matrix show the same general properties of
increased noise for poles close to the unit circle and/or close to the
real axis. The matrix K exhibits roundoff noise properties as good as

the best of the more commonly encountered matrices.



CHAPTER V
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY
5.1 Summary

This thesis fnvestigates the effects of coefficient quantization
on the pole locations of digital filters realized through state-equations.
Since the poles of a digital filter are the eigenvalues of the state-model
syétem matrix, the eigenvalue sensitivity of the system matrix due to
variations in the matrix coefficients is used as the method of analysis.
A technique for conducting this analysis, based on the sensitivity ex-
pressions of a companion matrix, is presented. This technique can be
applied to any n-th order linear system, analog or digital, that can be
described by state-equations.

If the eigenvalue sensitivity is expressed in terms of its magni-
tude, it is shown that a sensitivity matrix can be defined for any given
system matrix. Furthermore, it is shown that a relationship exists be-
tween the sensitivity matrix A~ of the companion matrix AC and the sen-
sitivity matrices K of other system matrices. This re]étionship provides
the basis for an easily applied technique for determining the magnitude
of the eigenvalue sensitivity of a matrix from the sensitivity magnitude
of}an equivalent companion matrix.

The same technique applies if the eigenvalue sensitivity of a matrix

is expressed in terms of its radial and angular components. It is also
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shown that the sensitivity matrix R of a given system matkix can be de-
rived from the radia] and angular sensitivity expressions for that
matrix.

Since second order filters are basic building blocks fdr higher
order filters, second order system matrices are the primary concern of
this thesis. A new system matrix suitable for state-model digital fil-
ter applications is introduced. This matrix is the second order form of
a class of tridiagonal matrices that has the variable elements on the
main diagonal while the upper subdiagonal and the lower subdiagonal has
invariant elements of positive or negative one. The mapping of the
element space of the second order matrix K into the unit circle of the
z-plane is discussed and it confirms ;hat the new matrix can rea]ize all
stable pole positions inside the unit‘circ1e. A state-model, using the
matrix K, for the realization of a general second order djgita] filter
transfef function is presented. The general existence of higher order
forms of the tridiagonal matrix, for the realization of stable pole lo-
cations, is not known. For the third order case, however, a new method
is presehted for solving the set of nonlinear equations relating the
matrix elements and the desired poles. For the specific example pre-
sented, where one pole was zero, the matrix is shown to exist. Whether
or not it exists for all pole locations inside the unit circle is not
known. |

The eigenya]ue sensitivity of the new matrix K is compared to the
sensitivity of other second order matrices. All the matkices are simi-
lar in that they have, or can be analyzed as having, only two variational
elements. Using the technique presented in this thesis, expressions for

the mégnitude of the eigenvalue sensitivity, and the corresponding radial



11

and angular components, are derived for eaéh matrix. The expressions are
giveh in terms of absolute element variations and also in terms of ele-
ment tolerances. Minimum pole sensitivity regions within the unit circle
of the z-plane are shown for each matrix. The new matrix K is shown to
exhibit very good sensitivity properties for critical pole locations

near the unit circle, where the stability of a filter subject to coeffi-
cient variatibn is of great concern. |

The wordlength requirements of each of the second order matrices
are compared by deriving expressions for determining the minimum word-
length required to constrain pole movements, due to coefficient quanti-
zation, within prescribed limits. For a specific set of limits, word-
lengths are computed and general trends in requirements as a function of
pole location are noted.l With the method used to determine wordlength,
the requirements of second order matrices with two variational elements
can be obtained direcﬁ]y. Extension of the method to the general n-th
order case is discussed.

As another methbd of comparison, the realizable pole grids obtained
when the matrix elements are quantized to three fractional bits are pre-
~$ented for each system matrix. The matrix K exhibits a very high densi-
ty of realizable pole locations for poles near the unit circle, espedia]-
ly for pole angles near ninéty degrees. With increasing wordlength, this
characteristic will be more pronounced for all poles with magnitude close
to one and will exceed the density offered by the other matrices in that
critical pole region.
| An_examination of the tendency of each of the system matrices to
sustain overflow 1imit cycles is presented. The criteria applied in

assessing overflow properties indicates that the matrix K is not immune
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to overflow oscillations. Suitable scaling techniques must be considered
when using this matrix.

As a final comparison, the roundoff noise output of the realization,
by each system matrix, of a common transfer function is derived. The
expressions for each matrix show the same general properties of increased
noise for poles close to the unit circle and/or close to the real axis.
The matrix K exhibits roundoff noise properties as good as the best of

the other matrices.
5.2 Suggestions for Further Study

In the following, some extensions to the present effort are sug-

gested. Appropriate references are indicated.

5.2.1 ‘n-th Order Tridiagonal Matrix

The second order class of the general tridiagonal matrix introduced
in Chapter.2 has been thoroughly investigated because of the importance
of second order sections in digital filter design. It has been shown to
exhibit very good properties in this application. A]though such a direct
application does not exist for higher order matrices, investigation of
the properties of the general form of this matrix is warranted from a
theoretical nature. The existence of the n-th order form of this matrix
for realization of prescribed eigenvalues is not known and needs investi-
gation. A starting point, of course, is the third order matrix which has
been shown, in this study, to exist for certain eigenvalues and for which
a method of obtaining the matrix elements has been given. Investigation
as tovwhether the proposed solutions always allow real element values to

be determined for any combination of eigenvalues is necessary. -If the
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matrix does not exist for all eigenvalues, for what classes of eigen-

values does it exist?

5.2.2 Quadratic Maximization/Minimization

Procedure

The problem of determinihg the maximum or minimum of aTAa, when the

elements o of the vector a are‘di=i1, is one of determining the signs

of the elements such that a maximum or minimum is achieved. For second
order matrices this is a simple problem solved by inspection. When the
general n-th order problem is considered, where n is large, the determin-
ation of a is more complex and requires an efficient, systematic proce-
dure. Although this problem arises in this thesis for the determination
of the eigenvalue sensitivfty magnitude of an n—th order matrix,

McMillan [50] has shown that this quadratic problem also occurs in delta
modulation communication problems. Therefore, any contribution to the
investigation of this problem could have far ranging effects. As dis-
cussed in section 3.5, so]utions for this type of problem can possibly

be obtained through adaptafion of quadratic binary programming procedures
[44] [45]. A11 of the present methods for analyzing this problem are
basica]]y‘enumerative in nature. Although fhese methods provide a sys-
tematic procedure, their enumerative nature is a disadvantage for high
okder systems. An'efficient analytical method for solving this problem

is needed.

5.2.3 Eigenvalue Sensitivity Minimization

An interesting class of matrices not considered in this thesis is

the second order matrix with all four elements subject to variation.
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This type of'matrix offers the possibility of being éb]e‘to minimize the
sensitivity of the matrix by proper selection of the values of the matrix
elements. If so, it should be realized that the minimization would be
achieved at the expense of more numbers of multiplications required per
iteration of the filter. Although it is usually desirable to minimize
the number of mu]tipiications, it might be more advantageous to employ
such a matrix in order to satisfy more important requirements in other
areas such as stability. One possible approach to this prob]emvis sug-
gested by a transformation given by Ogata [32] in which the é]ements ayy
and Y of a matrix can be expressed in terms of the eigenvalues of the

| matrix and the elements a7 21 For eigenvalues 0],02=dijw, the result
- of this tfansformation»is given by

- 2, 2

a a a
11 121 1 a9y

a5 35, 3y 20-ay,

With the matrix expressed in this manner, the problem now is to find

ay and a5 such that the eigenvalue sensitivity is minimized. Using

either Singer's [9] or Manty's [8] definition of eigenvalue sensitivity,

the observation is that the sensitivity of a four vafiatioha] element

matrix can be expressed in terms of o, w, which are given, and 175 297>

which are to be determined. At this point it might be possible to em-

ploy a minimization procedure, such as steepest descent, to find ay7s

291 (and, therefore, LIPS a22) such that the sensitivity is minimized.
Another approach to the problem of minimizing eigenvalue sensitivity

would be to consider the problem of determining a transformation matrix

T such that a matrix A is transformed to a minimally sensitive matrix A,
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with the same eigenvalues, by the transformation A= T—]

AT. This is an
old problem still awaiting a solution. Recently, Hwang [51] has made

some contributions in this area for the problem of roundoff noise mini-
mization. Perhaps some of his resuits could be'appliedkto the problem

of coefficient quantization.



10.

11.

SELECTED BIBLIOGRAPHY

Bede Liu, "Effect of finite word length on the accuracy of digital
filters - a review," IEEE Trans. Circuit Theory, vol. CT-18
pp. 670-677, 1971. '

S. A. White, "Recursive-digita]—fi]ter accuracy requirements,"
Real Time Digital Filter and Spectrum Analysis NEC Profession-
al Growth In Electronics Seminar, vol. II, 1970.

. L. Jackson, J. F. Kaiser, and H. S. McDonald, "An approach to the

implementation of digital filters," IEEE Trans. on Audio and
Electroacoustics, vol. AU-16, pp. 413-421, 1968.

J. F. Kaiser, "Digital filters," 1in System Analysis by Digital
Computers. F. F. Kuo and J. F. Kaiser, Eds., New York: Wiley,
pp. 218-235, 1966. :

C. T. Mullis and R; A. Roberts, "Filter structures which minimize
roundoff noise-in fixed point digital filters," Proc. IEEE
Int. Conf. Accoust., Speech and Signal Processing, pp. 505-508,
1976. '

E. Avenhaus, "A proposal to find suitable canonical structures for
- the implementation of digital filters with small coefficient
wordlength," Nachrichtentech. Z., vol. 25, pp. 377-382, 1972.

W. L. Mills, C. T. Mullis, and R. A. Roberts, "Digital filter
realizations without overflow oscillations," IEEE Int. Conf.
on Accoust., Speech and Signal Processing, pp. 71-75, 1978.

P. E. Mantey, - "Eigenvalue sensitivity and state variable selec-
tion," IEEE Trans. on Aut. Con., vol. AC-13, pp. 263-269,
1968.

R. A. Singer, "Selecting state variables to minimize eigenva]ue
sensitivity of multivariable systems," Automatica, vol. 5,
pp. 85-93, 1969.

H. W. Bode, Network Analysis and Feedback Amplifier Design, New

York: Van Nostrand, 1945.

W. G. Tuel, Jdr., "On the transformation to (phase-variable)
canonical form," IEEE Trans. on Aut. Con., vol. AC-11, p. 608,
1966.

116



12.

13.

14.

15.
16.

17.
18.

19.
20.
21.
22.
- 23.

24.

25.

26.

117

. S. Rane, "A simplified transformation to (phasefvariable)

canonical form," IEEE Trans. on Aut. Con., vol. AC-11,
p. 608, 1966.

. F. Wilkie and W. R. Perkins, "Essential parameters in sensitiv-

ity analysis," Automatica, vol. 5, pp. 191-197, 1969.

. V. Kokotovic and R. S. Rutman, "Sensitivity of automatic con-

trol systems (survey)," Automatika: Telemekhanika, vol. 26,
pp. 730-750, 1965.

. E. Maley, "The effect of parameters on .the roots of an equatipn

system," Computer Journal, vol. 4, pp. 62-63, 1963.

. C. Reddy, "Sensitivity of an eigenvalue of a multivariable

- control system," Electronics Letters, vol. 2, p. 446, 1966.

. C. Reddy, "Evaluation of the sensitivity coefficient of an

eigenvalue," IEEE Trans. on Aut. Con., vol. AC-12, p. 792,
1967. '

. S. Morgan, Jr., "Sensitivity analysis and synthesis of multi-.

variable systems," IEEE Trans. on Aut. Con., vol. AC-11,
pp. 506-512, 1966. R : ’

. P. Huelsman, Theory and Design of Active RC Circuits. New York:

McGraw-Hi11, pp. 11-58, 1968.

. Daryanani, Principles of Active Network Synthesis and Design.

New York: Wiley, pp. 147-174, 1976.

. K. Mitra, Analysis and Synthesis of Linear Active Networks

New York: Wiley, pp. 161-195, 1969.

. M. Horowitz, "The sensitivity problem in sampled-data systems,"

Trans. IRE, vol. AC-6, pp. 251-259, 1961.

. W. Kerlin, "“Sensitivities by the state variable approach,"

Simulation, pp. 337-345, June 1967.

. M. Golden and J. F. Kaiser, "Design of wideband sampled-data

filters," Bell Syst. Tech. J., vol. 43, pt. 2, pp. 1533-
1546, 1964.

. Gold and C. M. Rader, Digital Processing of Signals. New York:

McGraw-Hil1l, 1969.

. Fettweis, "On the connection between multiplier word length

Timitation and roundoff noise in digital filters," IEEE
Trans. on Circuit Theory, vol. 19, pp. 486-491, 1972,




27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

118

F. Bonzanigo, "Comment on 'roundoff noise and attenuation sensi-
tivity in digital filters with fixed-point arithmetic'," IEEE
Trans. on Circuits and Systems, vol. CAS-21, Pp. 809-810, 1974.

L. B. Jackson, "Roundoff noise bounds derived from coefficient
sensitivities for digital filters," IEEE Trans. on Circuits
~and Systems, vol. CAS-23, pp. 481-485, 1976.

S. K. Mitra and R. J. Sherwood, "Estimation of pole-zero displace-
ments of a digital filter due to coefficient quantization,"
IEEE Trans. on Circuits and Systems, vol. CAS-21, pp. 116-124,
1974. ~

C. M. Rader and B. Gold, "Effects of parameter quantization on the
poles of a digital filter," Proc. IEEE, vol. 55, pp. 686-689,"
1967. ' ' _

S. Y. Hwang, "Roundoff noise in state-space digital filtering: a
general analysis," IEEE Trans. on Acoust., Speech and Signal
‘Processing, vol. ASSP-24, pp. 256-262, 1976. o

K. Ogata, State Space Analysis of Control Systems. Englewood
Cliffs, N. J.: Prentice-Hall, pp. 294-369, 1967.

=

. R. Bennett, "Spectra of quantized signals," Bell Syst. Tech. J.,
vol. 27, pp. 446-472, 1948.

-

. B. Jackson, An Analysis of Roundoff Noise in Digital Filters,
Ph.D. Thesis, Stevens Institute of Technology, Castle Point,
Hoboken, New Jersey, 1969.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing.

Englewood Cliffs, N.J.: Prentice-Hall, 1975.

A Fettweis, "Some principles of designing digital filters
imitating classical filter structures," IEEE Trans. on
Circuit Theory, vol. CT-18, pp. 314-316, 1971.

R. E:‘Crochiere, "Digital ladder structures and coefficient‘séhéi-
- tivity," IEEE Trans. on Audio and Electracoustics, vol. AU-20,
pp. 240-246, 1972.

T. G. Marshall, "Primitive matrices for doubly terminated ladder
networds," Proc. 4th Allerton Conference on Circuit System
Theory, University of ITTinois, Urbana, pp. 935-943, 1966.

R. Yarlagadda, "An app]icétion of tridiagonal matrices to network
: synthesis," SIAM J. Applied Math., vol. 16, pp. 1146-1162,
1968.

S. Y. Ku and R. J. Adler, "Computing polynomial resultants:
Bezout's determinant vs. Collins reduced P.R.S. algorithm,"
.Communications of the ACM, vol. 12, pp. 23-30, 1969.




41.
42.
43.

44,

45.

46.

47.

48.
49.

50,

51.

w

119

. C. Kuo, Automatic Control Systems. Englewood Cliffs, N.J.:

Prentice-Hall, pp. 329-388, 1967.

. S. Garfinkel and G. L. Nemhauser, Integer Programming. New

York: Wiley, 1972.

. L. Law]er, “The quadratic assignment problem," Management

Science, vol. 9, pg. 586, 1963.

. J. Laughhunn, "Quadratic binary programming with application to

capital-budgeting problems," Oper. Res., vol. 18, pp. 454-
461, 1970.

. L. Manner and S. Rudeanu, Boolean Methods in Operations Re-

search. Berlin: Springer-Verlag, 1968.

. S. Schmidt, "Designing programmable digital filters for LSI

implementation," Hewlett-Packard Journal, vol. 29, pp. 15-23,
1978. '

. J. Leon and S. C. Bass, “Designers guide to digital filters,"

Electronic Design News, June 20, 1974.

. R. Rabiner and B. Gold, Theory and Application of Digital

Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall,
pp. 344-346, 1975.

. M. Ebert, J. E. Mazo, and M. G. Taylor, "Overflow oscillations

in digital filters,” Bell Syst. Tech. J., vol. 48, pp. 2999-
3020, 1969. '

. McMi11an, "History of a problem," Soc. Indust. Appl. Math.

vol. 3, pp. 119-128, 1955.

. Y. Hwang, "Minimum uncorrelated unit noise in state-space -

digital filtering," IEEE Trans. on Acoust., Speech and
Signal Processing, vol. ASSP-25, pp. 273-281, 1977.




VITA
James Dale Ledbetter
Candidate for the Degree of

‘Doctor of Philosophy

Thesis: COEFFICIENT QUANTIZATION EFFECTS ON POLE LOCATIONS
FOR STATE-MODEL DIGITAL FILTERS

Major Field:‘ Electrical Engineering .
Biographical:

Personal Data: Born in M1am1, Oklahoma, May 14, 1945, the son of
Mr. and Mrs. J. E. Ledbetter. , ‘

Education: Graduated from Ponca City High School, Ponca City,

Oklahoma, in May, 1963; received Associate of Science degree

- in Engineering from Northern Oklahoma College in May, 1965;
received Bachelor of Science degree in Electrical Engineering
from Oklahoma State University in May, 1968; received Master
of Science in Electrical Engineering from Oklahoma State
University in May, 1969; completed requirements for the

Doctor of Philosophy degree in Electrical Engineering at
Oklahoma State University in May, 1979.

Professional Experience: Engineer in Training, Shell Development
Corporation, summer of 1966; Graduate Teaching Assistant,
Electrical Engineering, Oklahoma State University, 1968-1969;
Graduate Research Assistant, Electrical Engineering, Oklahoma
State University, 1970-1973; Electrical Engineer, Un1ted
States Air Force, 1973.



