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CHAPTER I
INTRODUCTION

Solvent extractionvof ion pairs and liquid-liquid and ligquid-solid
chromatographic separations involving ion-pair formations are well
recognized tools in analytical chemistry. For some chemical species
(e.g. drugs and some other organic species) the efficiency of extraction
and selectivity are improved with respect to other extraction systems
involving the partition of molecular (uncharged) séécies (1) . Inorganic
anions (2,3) and hydrophilic organic compounds (4) have been success-
fully extractedband separated after ion-pair formation. Ion-pair forma-
tion and distribution between two immiscible phases has particular
advantages for aprotic ions (e.g., quaternary ammonium ions, organic
suifonates) and for compoundé that are difficult to extract in uncharged
form (e.g., amino acids and aminophenols) (5). A variety of ion-selec-
tive electrode membranes show responses based on ion-pair formation
(6,7).

The purpose of the work reported in this thesis was the evaluation
of 8-hydroxyquinoline (in the form of hydroxyquinolinium ion) as an
ion~pair extractant of anionic species and its use in the liquid-solid
chromatographic separation of such anions. A brief incursion in the
area of ion-selective electrodes is also part (Appendix D) of ;he re~
. ported work.

8-Hydroxyquinoline and some of its derivatives were first intro-~



7 duced in analytical chemistry by Berg (8) in 1926. Since then
8-hydroxyquinoline has become one of the most commonly used reagents in
chemical analysis (9,10).

8-Hydroxyquinoline is also known as 8-quinolinol or as oxine (an

abbreviation for oxyquinoline), structurally represented as OH .

)

A symbol of Hox is commonly used for simplicity. Its protonated form

is called 8-hydroxyquinolinium ion (11), og H ’

|+
N.
00

+ . .
and is simply symbolized as Hsz. At sufficiently high pH, 8-hydroxy-

quinoline exists as the 8-hydroxyquinolinate jor oxinate anion, = ’

18
symbolized as O;. It follows then that 8-~hydroxyquinoline is an
amphoteric species in aqueous solution as a result of the weak acid
character of the phenolic group and weak basic characteristics of the
pyridinic nitrogen. Several workers have studied the acid-base proper-
ties of 8~hydroxyquinoline and a selection of reported values for the
two acid dissociation constants is presented in Table I.,'8-Hydroxy-

quinoline is only slightly soluble in water (3.56 x 10--3

M at 18°c)

(15), but as a result of base properties, is readily soluble in aéueous
solutions of mineral acids (e.g., normal solutions of HCl or HC104)(22)
as well as in a variety of organic solvents of a broad polarity spectrum
(butanols and higher molecular weight organic alcohols, benzene, chloio-

form, carbon tetrachloride, etc.).

The light-absorbing characteristics of the three species of

8—quinolinol in ethanolic solutions are shown in Figure 1. It is of



TABLE I

DISSOCIATION CONSTANTS OF 8-HYDROXYQUINOLINIUM ION

Authors pKal pKa2 Method Reference
Fox 4.8 10.36 ~ Solvent Extraction (12)
Kilthoff 4.5 9.7 Colorimetry (13)
Stone and Friedman — 10.38 Solubility in alkaline (14)
buffer
—-——— 10.37 Spectrophotometry
Lacroix 5.23 9.70 Potentiometric Titration (15)
Irving, Ewart, and Wilson 4.88 9.89 ‘Spectrophotometry (16)
5.13 9.82 Solubility Measurement
Phillips, Elbingef, and Merritt 4.91 2 ————- Spectrophotometry (17)
Sandell and Spindler 4.92  e———- Potentiometry (18)
Nasanen, Lumme, and Mukula 5.02 9.81 .Potentiometry (19)
———— 9.81 Spectrophotometry
Dyrssen 5.00 9.62 Potentiometry (20)
4.85 9.95 Solvent Extraction (21)

Mottola and Freiser




interest to note that the B8-quinolinium ion shows significant absorp-
tion around 360 nm, a wavelength at which 8-hydroxyquinoline itself

shows negligible absorption.

0.600} 3
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Figure 1. Absorption Spectra of 8-Hydroxy-
, quinoline in 95% Ethanol

1. 0.01 M HC1

2. Neutral
3. 0.01 M NaCH

This permits the determination of the prot@nated form in presence of
the neutral species in acidic solutions. These light-absdrbing charac-
teristics are paralleled in aqueous solutions.

8~Hydroxyquinoline is widely used in metal ion separation and de~
termination as a result of its chelaté—forming properties. By adjust-
ment of the pH of aqueous solutions (23-26), 8-hydroxygquinoline is
capable of reacting with sixty metal ions (27(a)). This reactivity has
led to a large number of methods for separation and also gravimetric,
titrimetric, and colorimetric (photometric) determination of metal- ions

in solution. More recent analytical applications of 8-quinolinol record



its use as a functional group in chelating ion-exchange resins (28-33),
or as separation agent chemically bonded to controlled-pore glass beads
(34,35) and porous silica (36). From this brief overview, it is mani-
fest that 8-hydroxyquinoline is one of the most useful reagents in
chemical analysis.

As early as 1952, Dyrssen (20) investigated the distribution of
8-hydroxygquinoline between acidic aqueous solutions and oxygen-containing
organic solvents. His work was focused on the use of methyl isobutyl
ketone as organic phase and constitutes the first report that the
hydroxyquinolinium ion can pair with anions (perchlorate in this partic-
ular case) and permit their extraction into highly polar organic solvents.
Dyrssen proposed a simplified model to account for such behavior and
with the aid of Egquation (1), derived from the model, estimated the

distribution constant for the ion-pair species:

Ka, K
1 D(HOx)

D = K + -+
D(HZOX’A ) [H+]

(1)

in which D is the distribution ratio for 8-hydroxyquinoline; K + -
: D(HZOX'A )

. . . . + -, . .

is the distribution constant for the (HZOX,A ) ion-pair; Kal is the

first dissociation constant of 8-hydroxyquinolinium ion; KD(HO ) is the
X

distribution constant of 8-hydroxygquinoline; and [H ] is the equilibrium

. \ . . + .
concentration of hydronium ion. Since D and [H ] can be determined ex~-

will give a straight line with

perimentally, a plot of D versus
[(s7]

. + - . . .
Ka1 KD(HOx) as slope and KD(Hzox,A ) as intercept (For details on the

model and derivation of Equation (1), see Appendix A).



Dyrssen's model and approach was later applied by Mottéla and'
Freiser (21) to the extraction of the same ion pair into isopentyl
alcohol. Their value for the distribution constant of the ion pair,

0.8 against 0.11 in methyl isobutyl ketone, shows the expected increase
in solubility as the basic (polar) characteristics of the solvent are
increased and pointed to the potential use of 8-hydroxyquinolinium ion
in anion separation in chromatographic systems. These earlier works by
Dyrssen and Mottola and Freiser motivated the studies reported in this
thesis. These studies were initiated with a systematic determination
of distribution constants for a variety of anionic species between
aqueous acidic solutions and isopentyl alcohol or l-butanol. Organic
and inorganic anions were included in these batch extraction studies.
From the results of such studies, aliphatic and aromatic sulfonates of
industrial interest were selected for further work involving 8-hydroxy-
quinoline immobilized (by chemical attachment) on controlled-pore glass.
Both batch equilibration experiments and chromatographic separations
were performed to explore the potential of immobilized 8-hydroxyquinolin-
ium ion for the separation of aliphatic and aromatic sulfonates. The
rationale to pursue these studies was based on the encouraging results
coilected in batch experiments, the industrial aﬁd environmental impor-
tance of sulfonates, and the fact that the inorganic (silicate) backbone
of cohtrolled—pore glass bearing immobilized 8-hydroxyquinoline should
offer excellent mechanical properties for its use in liquid-liquid
(liquid-solid) chromatography.

As a result of the batch equilibration studies, which have shown a
larger distribution constant for aliphatic suifonates than for aromatic

ones, a brief excursion on the potential use of immobilized 8-hydroxy-



quinolinium ion in membranes for ion-selective detection of ethanesul-

fonate was performed.



CHAPTER II

SOME OBSERVATIONS ON PARAMETERS THAT AFFECT

ION PAIR FORMATION

This chapter deals with some theoretical considerations about para~

meters that affect ion pair formation.
A. Liquid-Liquid Systems

The ion pair extraction technique may be‘applied to all compounds
that can appear in an ionized form (1). In liquid-liquid systems, all
ionic compounds may be extracted with different extent into an organic
phase as ion pairs. The value of the extraction constant (which quanti-
tatively describes the process) depends on the solvation in the organic

phase and in the aqueous phase (4).

1. Two Postulated Models

Usually, there are two models (37) which are_pioposed to describe
the extraction of an ion pair. They may be depicted as shown in Figure

2.

+ + -
Q, + Al — Q .,a),
1 i
+ Kf N +

- -
Q t B, T—/]/—— :(Q Z

. + -
Figure 2. Ion-Pair (Q ,A ) Forma-
tion and Extraction



+ . . - . + o= . .
Here Q is a cation; A is a counterion; (Q ,A ) is the ion-pair; o re-
fers to species in the organic phase; w refers to species in the aqueous

A + -
rhase; Kf is the formation constant for (Q ,A )w; and K is the

+ -
D(Q ,A )
+ - .
partition constant for (Q ,A ) between the organic and aqueous phases.
+ - . . .
The first model assumes that the ion-pair, (Q ,A )w' is formed first in

the aqueous phase and then partitions between the organic and the agqueous

' bhases, as represented by Equation (2).

K K. + -
of + a7 —EN (o) DA N ohy (2)
® w e w o
where
[(QfA')m] !
Kf = T ' (3)
[e"],[a ],
and

Tt ]

K, .+ -
D@D T gt ]

. : +

While the second model assumes that the cation, Qm' and the counterion,
A;, are first transferred from the aqueous into the organic phase,
simultaneously and then associate in the organic phase, as represented

by Equations (5), (6), and (7).
9" —— of (5)
AL — a” (6)

QL+ A —> @), . (7)
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Since heither of the ﬁwo models alone satisfactorily deécribes
real extraction systems, the trﬁe mechanism may involve both models.
Hence, oniy the first model (Equation (2)) is considered here.

If an overall net reaction is used, Equation (2) can be expressed

as follows:

E,+ ~
+ _ (Q,A) + -
Qw + Aw ,:___._______—-—‘—‘5 (Q,A )0 (8)
where E(Q+A_) is the extraction constant defined as
[ian ]
E,+ - = —— (9
(Q'A ) + -
"] 2]

Incorporating Equations (3) and (4) into (9) yields

E, 4+ - = K_K_, + - 10
(Q7A) £ %o (gta") (10
When no reactions except that of Equation (8) occur, the distribution
. v
ratio of Q , DQ+' between organic and agueous phases may be expressed as
follows:
+ ' +_ -
ilo"l,  [wan ]

D = = . ' (11)
ot + +
2lo*), o],

Incorporating Equation (9) into (11):

D [a7] (12)

ot T Eota) w

Hence, the distribution ratio, DQ+' varies not only with the nature and
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the concentration of the counterion, A_, but also with the extraction

constant, , which depends on the solvation interaction in both

B

phases.

2. Parameters That Affect the Extraction

Constant (E )

(ota")

a. Nature of the Anion (A-)

Ion hydration depénds not only on the charge and radius (38) of an
anion but also on the.attractability (39) of the anion toward water.
Generally speakihg, an anion with a small charge, large radius, and
poorly hydrated characteristics tends to form ion pairs which are more
soluble in organic phases than in aqueous phaces (27(a)). Hence, a
large extraction constant will ce obtained. Anions which contain
hydrophilic (such as hydroxyl, carboxyl, and amino) groups will give
low extraction constants (4,40) because these hydrophilic ions will be
vpreferably bonded to'water through hydrogen bonding decreasing tﬁe possi- l
bility of ion-pairing.. Anions containing alkyl or aryl groups show more
hydrophobic characteristics (4) ; hence, their extraction constcnts are
comparatively larger.. Generally, the extraction constant increases
linearly with increasing number of carbon atoms in the alkyl group or

benzene rings in the aryl group.

b. Nature of the Organic Solvent

Since all ion pairs have a more or less pronounced polar character
(5), the polarity of the organic solvent has a very strong influence on

the value of the extraction constant. Generally, the more polar the
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solvent, the larger the ion-pair extraction. The relative polarity of
an organic solvent may be expressed in terms of the solubility para- |
meter, §, as defined by Hildebrand and coworkers (41,42) in their regu-
lar solution theory for nonpolar solvents. Later, the solubility para-

meter was modified by Hansen (43) and expressed as in Equation (13).

2 2 2. % .
= + +

é (Gd Sp Gh) (13)
where Gd is a contribution due to dispersion interactions; 6p is due to
permanent and induced dipole orientations; and Gh is due to hydrogen
bonding contribution. Hydrophilic organic anions are difficult to ex-
tract into an organic phase of low polarity, and only very hydrophobic

|

counterions (such as, large quaternary ammonium ions) are sufficiently

extracted to be useful.

c. Side Reactions

Since side reactions (e.g., dimerization, protolysis, etc.) will
affect the concentrations of free anions and/or cations in the aqueous
phase, or that of the ion pair in the organic phase, the extraction
constant of the ion pair will vary. The tendency to dimerization in-
creases with decreaéing polarity and solvating ability oflthe organic
phase, but this will not be included in this thesis because the extent
of dimerization is expected to be very 16w beéause of the high polarity
 of the solvents used in this work. While protolysis in the aqueous
phase for some ions does often occur during ién—pair formation, these

cases will be discussed as follows.

(i) Case a. If protolysis of A is represented as follows:
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+ . - ‘ KD(HA)
——— N —————— N
H +A (HA) (HA) (14)
w A I w o
a (HA)
where Ka(HA) is the acid dissociation constant of HA and KD(HA) is the

partition constant of HA. They are expressed as

alrel .
K = S ———————— ) 1

Ky HA) EHA;]C’- (16)
[ma]

. . . + . .
The distribution ratio of Q has the same‘exﬁre351on as that of Equation

- |
(12). However, the [A ]w may be expressed in terms of total analytical

concentration, CA" as follows:

cy- = [A7] + [ma] + [ma] +[ea] - an

or rearranging Equation (17):

- - [ea’], = ¢ = [a7] + [mal + [ma] - (18)

where CA is the total concentration of A which has not been extracted
as ion pairs. Incorporating Equations (15) and (16) into (18), one ob-

tains

[1"]

ct = [a7] 1+
A w Ka(HA)

(1 + KD(ﬁA)) ' (19)

Hence, Equation (12) can be expressed as
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E - C!
Qi) A E' c (20)
D = - '
Q* (6] (eta™) "a |
1+ (1 +K )
K_(HA) D(HA)
where E2Q+A') is the conditional (44) extraction constant. Equation
14

+
(20) shows that when Ka >> [H ], or HA is a strong acid, the distri-

(HAR)

bution ratio (or the conditional extraction constant) is the same as if

. . +
there were no side reaction. However, when the Ka << [H ], or HA

(HA)

is a weak acid, then the conditional extraction constant is lowered
+ - -

owing to the competitive reaction of H + A ——> HA as shown in

Equation (14).

+
(ii) Case b. If Q is a protonated spec¢ies and is symbolized as
. - + .,
HX+, and besides the protolysis of A , a dissociation of HX in the
aqueous phase and a partition of X between the organic phase and the

aqueous phase can occur, the condition may be expressed as follows:

E

- Hxta~ -
@ax’) + @) (XA )y (Exta’) (21)
w w << (o]
. Ka, N '
(HX') ————> H + (X) (22)
w w
K
D (X) .
x), —> (0 (23)
w T (o]
B+ @) ——N (m) (24)
w T‘E‘—__‘—— W
a(HA)
where
.
[ a )o]

E - = -——— = extraction constant of the (25)
HX a + - =z
(HX7A7) [ax ]w[A ]m @mxTa) ion-pair
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+
[ 10x] .
K N = ———f:——— = acid dissociation constant of HYX (26)
2 [ax"]
w

[x1,

KD(X) = f;i_ = partition constant of X (27)
w

The distribution ratio of X, Dx,lcan be expressed as

2[x]_ Laiany 1+ X1 -
b = - _ (28)
X zx1, [ax"] + [x](u

Incorporating Equations (25), (26), and (27) into (28) gives:

['10x], .
Eaxta) Xa, (a1, * X X,
D, = : (29)
(a"1[x]
_..____‘__.9.. + [x]w

Kal

ox

+ -
Egxrasy 11+ Ky Kay

[£'] + xa

(30)
1

On the assumption that Ka_, << [H+] by a factor of ~103, Equation (30)

1

can be simplified as follows:

K
p(x) X21

(31)
[u*]

x = Eaxtay 31,

I is expressed in terms of ~ and K as in uation
P b (mcta) £ .

£ E mxta)
(10) , then Equation (31) can be rewritten as:



le

KD(X) Kal

[u"]

Dy = Xy uyxtaT) Kf[A ]w + (32)

where

Laian ]
K 4o- — o (33)
D(HX,A ) [(HXTA )m]

[(HxTA')m] | . |
Ke = —————— ©(34)
[ex] [

or,
- [aian) ]
K_[A = —— (35)
£ [mx],

For the case that Kf[A_]w is close to 1, then, Equation (32) can be

simplified further:

K Ka
b = D(X) 1

x T fomxta) ['] (36)

Equation (36) corresponds to the Dyrssen's model which has been detived
in Appendix A, where HQx = X.

If a more general term of Kf[A_]w is used instead of assuming a
vélue of 1, Equation (32) can be rewritten incorporating the total
analytical concentration of A_, CA-, as follows:

The mass balance equation for A can be expressed as in Equation

(37).
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- F -
Cp- = [a7] + [ma] + [axa) ] (37)
or,
: - [H+] +
c,- =[], a~+ EZ:;;;_* Ko axta) KelEX 1) (38)

Incorporating Equation (38) into (32) gives

K
N Ko xtan) Ca- Xe , DO ka, (39)
Ka(HA) D(HX A7)
or,
K Ka !
D (x)
W Kpxtamy e Ca- 7 Ka * Kp 0¥ g (aytam) K [HX 1
D =
X 6] +
te——+ K + - K_[H
'] X om) b(Exta’) LX)
(40)
If Ka(HA) >> [H+] by a factor of ~103 for a strong acid, Equation (40)
can be simplified as
b oo —pada) A oo a1)
X +
1+ Ky gty K [Hx ] 1]

—=— , in Equation (41), will give a straight line

A plot of D_ versus n
X [H

with KD(X) Kal as slope and

Ko mxta™) Ca- ¥¢

+
Kf[HX ]m

1+ Ky mxtar)
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as intercept. For weak acids, Equation (40) is complicated to solve

K -
for Kp vy 394 Kp yta”)

(iii) Case c¢. Another modified model can be considered as follows:
+ - - .
In addition to case b above, the term of [HX,A ]w is also included in

Z[X]w of Equation (28). Then the distribution ratio of X, DX' is ex-

- pressed as

Canah 1+ [X]
D = — - (42)
X Lagan) 1+ [mx7] + [x])

Assuming that [X]w is much smaller than those of [(HXTA_)m] or [HX+]w

and incorporating Equations (25), (26), and (27) into (42) yields

1

K -k _[a K
5 pancta”) Xel? 1, s S % (@3)
X - - +
+
Kf[A ]w + 1 Kf[A ]w 1 [w]
Equation (43) indicates that a plot of Dx versus + will give a
(1]
Xa; %) Ko acta) Kel2']
straight line with —=————— as slope and L — w as inter-
+ +
Kf[A ]w 1 Kf[A ]w 1
v cept. Hence, theoretically KD(HXfA_) and KD(X) can be calculated using

the mass balance eguations for X and for A, respectively, and the charge
balance equation.

Equation (43) may also be considered as follows:
.. - » +o=1 + .
Case (i). 1If Kf[A ] " >> 1, or [HX,A ]m >> [HX ]m' Equation (43)
can be simplified as

C x4 2 %m0 2
. HX, -
O 1 S

(44)



19

Comparing Equations (44) with (1), a plot of DX versus will give

(']

a straight line with the same intercept of KD(HX+A_) but a different
14
ka, % X)
slope of —=———= . Hence, the intercept should correspond to the
Kf[A ]w

distribution constant for the ion pair but the slope should correspond

to Kal KD(X) divided by Kf[A ]w' a factor greater than 1.

Case (ii). 1If Kf[A-]w << 1, or [HXTA-]w'<< [HX+]m, Equation (43)

can be simplified as

- - - 1 o
v = Xoaxtan) el 1+ Xay Xy ey (45)

|
Comparing Equations (45) with (1), a plot of Dx versus

i

will yield
(7] .

a straight line with the same slope but different intercept. That is

the slope should correspond to Ka and the intercept should cor-

1 %px)

respond to K multiplied by Kf[A-]w' a factor smaller than 1.

+ -
D (HX,A )

Case (iii). 1If neither‘Kf[A-]w is not much greater than 1, nor
much smaller than 1, but close to 1. Then Equation (43) can be rewritten

as

+ -
. fpeday i s
D = > + 5 [+] (46)
H
By comparing Equations (46) with (1), a plot of D versus [:t] will
: H

give a straight line with twice the values for both intercept and slope

as those obtained from Equation (1).
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B. Liquid-Solid Systems

In liquid~solid systems, two types are considered. They are batch

system and chromatographic system.

1. Batch System

If one considers that an ion pair is formed on a resih, R, in an
acidic solution with a sample of X and a competing species Y-, then

ion-pair formation may be expressed as follows:

K

R +H + X LN (®RETX) (47)
r w w ' r
K
+ - 2 4 -
R +H +Y —m (RH,Y ) (48)
r w w r

where r refers to the resin, w refers to the agueous solution,

-
[ayx )] |
Ky =—F———-= formation constant of the species of interest (49)
(] X1,
+ -
ey )],
= = formation constant of the interferent species (50)

)

Equations (47) and (49) indicate that the (RHtX-)r ion-pair formatiqn
increases with increasing [H+] and [X—]w if an excess of sites are
available in the resin. This is related to the surface area as well as
the "acidity" of the resin. Equation (48) shows that competition for
ion-pair formation of (RHTY_)r will consume H:. That should lower the

. + - . -
formation of (RH,X )r’ especially, when [Y ]w becomes large.
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2. Chromatographic System (45-47)

In a chromatographic system, the stationary phase is first con-

ditioned with the mobile phase as expressed in Equation (51).
+ - oy
R_+H +A —————> (RH,A) (51)
r m mn r

“where r refers to the resin; m refers to the mobile phase; and A; is
the anion component of the mobile phase. After the sample (Y) is in-
troduced to the column, the adsorption of Y requires displacement of

the anion A  from the resin as shown in Equation (52).
(RHJA ) +Y ————> (RH)Y ) + A | (52)
A < n < e m

Since the sample is eluted by the mobile phase, the sample goes through
the column with sorption-desorption steps and the reverse step in
Equation (52) occurs. The whole process is a combination of ion-pair
formation, liquid-solid adsorption, and anion-exchange chromatography.
The following parameters are generally considered to affect the ion-pair

formation on the resin.

a. Affinity of Anions for the Resin

If the packing material (resin) has a greater affinity for the
sample (Y—) than that for A~ in the mobile phase, then the sample will
replace the A which adsorbed on the resin, and Y will be retained on
the resin.” With two mobile phases, the stronger the affinity for the
resin, the faster the sample is displaced and thus eluted from the
sample. Among sample anions, the larger the affinity for the resin,

the longer the retention on the column. The affinity of an anion for
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the resin may be expressed in terms of the molar distribution coeffi-

cient, Kd’ which is defined (48) in batch experiment as

_ millimoles of anion on the resin per gram of resin
d millimoles of anion remaining in solution per ml of solution

(53)

where the anion is the species studied. The larger the affinity of an

anion for the resin, the larger the value of Kd.

b. Type of Adsorbent

(1) Polarity. Since separations by liquid-solid chromatography

are usually carried out on polar adsorbents, relative adsorption in-
creases as the polarity increases because th? total interaction between

the molecule and the polar adsorbent surface !is increased.

(ii) Surface Area. The sample retention volumes and adsorbent
linear capacity are proportional to the specific area of the adsorbent.
.Hence, the surface area of the adsorbent has an important effeqt on the
chromatographic properties. The surface area is a function of pore
diameter and pore volume (35). As pore volume increases, so does sur-

face area, but as pore diameter increases, surface area decreases.

(iii) Particle'Size and Geometry. Generally, smaller particle

size gives a smaller height equivalent to a theoretical plate (HETP),

according to the relationship: HETP ~dp1'4-1'8 (49). Hence the column
, d 2 1.4-1.8
efficiency, N, will be improved by a factor of qga-) . where dpé
Pl

and dpl are diameters of the larger and the smaller particles, re-

spectively. Since the rigid adsorbent fixes the positions of the
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reactive groups or adsorption sites on its surface, the interaction of
the functional group in a sample varies with the geometry of the ad-
sorbent, being stronger when the positions of groups and sites are

matched.

(iv) Acidity of the Adsorbent. Since the hydronium ion is involved
in ion-pair formation (Equation (51)), the acidity of the adsorbent will
have large effect on adsorption. The more acidic the adsorbent, the

more favored is the ion-pair formation.

c. Solvent Composition

For ion-exchange systems, the degree of retention of a sample de-
| N
pends on the pH of the mobile phase. For gradient elution, the separa-
tion (or selectivity) is improved by varying the concentration of the

mobile phase because the optimum retention times will be obtained.

d. Net Adsorption Energy

The net adsorption energy, AEa, for Equation (52) can be expressed

as

AE =

a E(Rth-)r + E E, - ' (54)

- - B +_ - -
(a )m (BH,A )r (Y )m

Assuming that

=
(1]
td

N (v7) (33

then Equation (54) is simplied as
(56)

AE E - =-E, 4.~
a (Ruty ), (RH,A )
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The interaction energies are determined by the interaction of either
Y or A with the adsorbent surface. If the same solvent (mobile phase)
'is used, larger positive values of AEa for Y favor adsorption on the

resin.



CHAPTER III

LIQUID~LIQUID DISTRIBUTION STUDIES OF
8-HYDROXYQUINOLINIUM-ANION

PATIR SYSTEMS

This chapter reports some studies of liquid-liquid extraction of
8-quinolinium cation by batch extraction. 8-Hydroxyquinoline was used
in solutions with isopentyl alcohol or l-butanol as solvents. Salts of
the ;nions to be studied were dissolved in:aqueous solutions at pH's
between 1 and 2.

The perchlorate anion was studied in isopentyl alcohol/ﬂzo syétem.
A partition constantbvalue of 0.76 was obtained. This value is compar-

able with the 0.80 reported by Mottola and Freiser (21). Several other

PO, and

inorganic anions‘containing hydroxyl group (such as HSOZ, H
HSeOS), halogens (such as C1~ and I-), and oxygen (such as Asog and
Io;) were also included in the.study. Organic anions containing
carboxylate group (such as benzoate and acetate) and some of intereét
in pharmacology (such as'penicillinate) or in industrxy (such as
p-toluenesulfonate) were also studied.

| This part of the work was concentrated on the estimation pf the
8~hydroxyquinolinium-anion pair partition constant for each system and

on the pH profile of distribution ratios. The data collected was later

used in the design of separation schemes.

25
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A. Partition Constants of 8-Hydroxyquinolinium-
Anion Pairs Between Isopentyl Alcohol and

Aqueous Phases in Low-pH Region

1. Experimental

a. Reagents

-CH_OH, (Baker Analyzed'Reagent) was

| Isopentyl alcohol, CH 2 5

~CH-CH

CH3

purified by shaking 250 ml of isopentyl alcohol with 100 ml of 0.01 M

3

sodium hydroxide solution and then rinsing four times with 125 ml of
deionized~distilled water in order to removeloxidants from the solvent
(22).

The following chemicals of analytical-reagent grade were used

without further purification.
OH

8-Hydroxyquinoline, [ﬂ:]gi) , Eastman Organic Chemicals. -

'Baker Analyzed' Reagent.

- Sodium hydrogen sulfate, NaHSO4,

- Sodium iodide, NaI, 'Baker Analyzed' Reagent.

- Sodium dihydrogen phosphate, NaH2P04, 'Baker Analyzed' Reagent.

- Glacial acetic acid, CH_COOH, DuPont Reagent.

3
- Sulfuric acid, HZSO4, DuPont Reagent.

- Hydrochloric acid, HCl, DuPont Reagent.
- Sodium arsenite,-NaAsoz, General Chemical Company.

- Sodium selenite, Na25e03, Pfaltz Bauer, Inc.

- Benzoic acid, C COOH, 'Baker Analyzed' Reagent.

| 6's
- - Sodium hydroxide, NaOH, 'Baker Analyzed' Reagent.

- Sodium meta-periodate, NaIO 'Baker Analyzed' Reagent.

4'
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- Sodium perchlorate, NaClo4, G. Frederick Smith Chemical Co.

- Perchloric acid, HCl0,, DuPont Reagent.

4’
All aqueous solutions were prepared using deionized-distilled
water which was obtained by distilling laboratory deionized water,

through a Corning AGla boiler.

b. Apparatus

A Corning Model 7 pH meter, equipped with a Sargent miniature com-
binationAelectrdde'(S—3OO70—10), was used for all pH measurements. The
pH readings were estimated to 0.0l units. When measuring pH, solu-
tions were maintained at a constant temperature (25 + 0.2 oC) by use
of a water bath equipped with a temperature yegulator (Brinkmann IC-2).

Spectrophotometric measurements wére regorded on a Bausch and Lomb
Spectronic 505 spectrophotometer. A pair of matched quartz cells (1 cm)
were used and the absorbance readings were estimated to * 0.001 units.
A modified shaker with 31 strokes/min was used for shaking in all of
the batch experiments. The shaker is based on an &ir—driven mechanism
provided by a vacuum motor for a windshield wiper of thé type commonly

‘used in cars before the advent of electric motérs for the same purpose.

A picture of the shaker is shown in Figure 3.

c. Procedure

(i) Calibration Curve for 8-Hydroxyquinolinium Ton in Acidic Solu-

tions. A stock solution containing 6.50 x 10-4 M of 8-hydroxyquinolin-

ium ion was prepared by dissolving a suitable amount of 8~hydroxyquino-
line in an acidic solution (such as: 0.10 M hydrochloric acid or 0.10 M

perchloric acid) at pH about 1.0. A series of solutions in the range
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of (0.50 - 5.0) x 10-4 M were prepared by diluting the stock solution
with the corresponding acidic solution. Since the color of 8-hydroxy-
quinolinium ion is yellow, the absorption spectrum (Figure 1) shows
that 8-hydroxyquinolinium ion has a maximum absorbance around 360 nm;
this wavelength was chosen for measuring the 8-hydroxyquinolinium
species. Readings of absorbance were obtained spectrophotometrically
Jusing the corresponding blank solution as reference, A calibration
curve was made by plotting absorbance §ersus concentration and by 1eést-
square fitting, tﬁe molar absorptivity of the 8-hydroxyquinolinium

species was calculated.

(ii) Distribution Studies of 8-Hydroxyquinolinium-Anion Pairs

Between Isopentyl Alcohol and Aqueous Phases (21). A suitable amount of
8-hydroxyquinoline dissolved in isopentyl alcohol (in the range of
(1-3) x 10_3 M) was used as organic phase. Anions being studied were

prepared in aqueous solutions. Ionic strengths were adjusted to 0.1 M

by the addition of salts (such as NaHSO4

, NaCl, NaC104, and Na SO4) and

2
pH was adjusted to 1-2 by addition of H_SO,.

2774
Distribution studies were performed at room temperature (~25 oC) by

pipetting equal volumes (10-15 ml) of the organic phase and_aqueous.
solution into 35-ml vials, which were stoppered with plastic caps. The
mixture w