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PREFACE

This research addresses itself to two areas of variables control
. charts not covered in any textbook on statistical quality control.
These areas are measurement error (bias and imprecision) and econom-
ically designed X- and R-control charts. The purpose of this researgh
is to develop‘and apply appropriate methodology to assess and compensate
for the effects of measureﬁent error on the performance of statistically
and economically designed X~ and‘R—éontrol charts. A new economic model
for both X- and R—controi‘charfs‘is developed. ‘Theleffec; of measure-
ment error is-evaluated 6h both statistidailv and économically designed
X~ and R-control charts. Methodglbgy is preseﬁted which compensates
for measurement error. | |
I wish to express my thanks to my major adviser, Dr. Kenneth E.
Case, for his guidénce,“aésistance and encouragement-throughout this
study and duriﬁg:my doctoral progfam. Appreciation is expressed to
Dr. Joe H. Mize for providing financial assistance to a "mature"
graduate'stﬁdent and serving on my committee. Thanks also to my com—
mittee meﬁbers, Dr. Hamid K. Eldin, Dr. Larry Claypool and Dr. Philip
Wolfe, for_their interest énd assistance during my stay at Oklahoma
State University.
Thanks is extendea to Joyce Gazaway for her excellent typing and
assistance in handling the many details_éssociated with this disserta-

tion while I was in Kansas City. A note of thanks also to Rick Webb
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to Joyce Neal for her assistance in cqordinating computer work in Kansas
City.

This would not be coﬁplete unless mention is made of M. R. Goss and
Dr. David L. Weeks, who along with Dr. Case, have influenced my philos—
ophy both professionally and personally. Also, thanks to my parents,
Russellvand Laverell Jones, who have always encouraged me in my academic
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CHAPTER I
THE RESEARCH PROBLEM
Purpose

Statistical quality control is an area containing several of the
best recognized and most frequently used quantitative techniqﬁes for
improving proauctivity. This research addresses two current areas of
research in statistical quality control--measurement error and econom-
ically based models (9). The objectivés of this reééarch.are to fill
existing voids in Statiétical quality control by: |

1. Assessing the effects of measurement error on the statistical
and~economié design of X- and R—control'charts.

2. .Developing and applying'néw methbdology to compensate for the
effects of measurement error.to provide the most favorable
statistical or econémic design of X- and R-control charts.

These results will contribute to an area of variablés control charts in
which there has been little development; A matrix indicating the current
state-of-the-art for statistical quality control is presented in Figure
1, which contains the primary.contributions'in each categdry. ‘This

figure will be explained below.
Introduction

Quality assurance has had a long history. It is as old as industry

itself, and from the time man began to manufacture, there has been
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interest in the quality of output (24). Today, advancing technology and‘
mass production capabilities require more emphasis on quality. This is
borne out by the passage of the Occupationél Safety and Health Act
(1968), and the creation of the'Consumer Product Safety Commission (1972)
and the increase in product 1iability law suits (55). These events along
with the complexity of produéts have placed additional emphasis on the
role of quality assurance for borh large and small manufacturers (10).
Quulity assﬁrdncé can be divi&ed into several areas, one of which is
statlsricul‘qudlity coﬁtrol.

Acceptance sampling‘énd contrél charté are two major categories of
statistical quality control. . Each of these can be divided into two
classes of measurement——attribﬁtes;and variables. Add to these the
concepts 6f measurement error and cost’ based mo&els, and the result is

the matrix of Figuré 1.

X- and R-Control Charts

Background

The concepr of céntrbl.charté was férmally.iﬁtroducgd in 1931‘(51).‘
It is based on the principle that Variation in measurements pertaining
to the quality of product from a process can be éeparated into:two
sOurces-—inhérent proéess variation and‘yariation duéito assignable
causes. If'rhe inherent variation cén be‘estimated, then using'staﬁis-
tical procedures, it is possible to detect shifts in the mean and/or
variability of the process. The ijeqtiyes éf controi cﬁarts are to
determine whether the process is in a state of statistical contrél, to

assist in establishing a state of statistical control, and to maintain



current control of a process. A state of control results in a reduction
in the cost of inspection, in the cost of rejectioﬁ and the attainment

of maximum benefits from quantity pfoduction (51). The X-control chart
is used to detect shifts in the méén level of a process. The R-control
chart is used to determine when é change‘has occurred in the variation of

a process.

Importance of X- and R-Control Charts

In cheéking-;he statisticai contrél of‘a process, the i; and
R-control charts have only one.sérious édmpetitor—;apalysiS'of variance.
However, the X- ana R—confroi’charts,reqﬁife only simple arithmétic, can
be established quickly'and‘providé a graphical display tﬁat illustrates
more information than a bﬁrely afithmepig aﬁalyéis.of variance‘(l9), A
survey of recent developménfs in control chart tecﬁniqueS~concludes that
", the i—chart'will_coﬁtipue fd receivé further attention because of
its fundamental importance in scientific qhality control" (27, p. 190).
The X-control char; for méans is one of the ﬁost widely used tecﬁniques
for monitoring céntrol of a process (29). .Theréfore, because of their
simplicity, widespread pse; and-fundaméntal importance in process qoh—

trol, X- and R-control charts have been selected as an area of research,

Operating Characteristics of X- and

R-Control Charts

A measure of the effectiveness of a control chart is given by its
operating characteristic curve (0OCC). The-property of a statistical
method generally considered most important by the theoretician is its

operating characteristic (47). Fof the'i— and R-control charts, their



0CC will Indicate the probability of not detecting shifts in the process
means and/or variaeility when these shifts are stated as deViapions from
the estimated process mean and estimated process variability, respec—

tively. Therefore, the OCC is used as one criterion of comparison, when

appropriate, of the methodology developed in this research.

Measurement Error and X- and R-Control Charts

Background

An implicit assumption id the use of X- and R—contfol charts is
that the measufemedes of "the sampled items ere precise and accurate
estimates of the population parameters. The capability of the X- and
R-control charﬁs to provide correct information for judgiﬁg the state
of control of a process is enti?ely dependent upon the'appfopriateness
of that assumption. This was observed by Shewhart (51) when he noted
that in any measuring process, there are two sources of measurement
error--bias and impreeision. ‘If\measurement‘efror is negligible, the
assumption is true.d If net, tﬁe‘capability of the control charts to
provide the correct information regarding the state of control of the

process will be affected.

Bias and Imprecision

Bias and imprecision have been defined as follows:

Bias: The difference between the true dimension of a product
and the average of a long series of repeated measurements made
on that product. This difference is usually due to a system-
atic error in the measurement process. Bias will tend to
cause all readings to be displaced by a fixed amount, either
too high or too low. Bilas cannot be offset by taking several
readings and averaging them together. Such an effort will



“only result in an observed reading which will still be equal
to the true reading plus or minus the bias,

Imprecisfon: The inability to repeat results when measure-
ments on the same unit of product are taken. The dispersion
of thesc measurements may be expressed as the standard devia-
tion of these measurements. Not infrequently this dispersion
equals or exceeds the lot distribution standard deviation.
This type of error is often normally distributed and is
usually treated as independent of the true dimension of the
product. In this case, the error can be reduced to some
extent by taking several readings and averaging them. This,
however, will not eliminate the errors (42, p. 328).

Bias and imprecision can arise from differences in.measuring>e§uip—
ment, inspectqrs, environmental conditions and interpretation of instruc-
tions regarding the determination of a quality characteristic.. This
author has:obserVed,'in industry étudies; that it is common practice to
act as if measurement error is "normal" or "random" and ignore it. How-
ever, bilas -and imp;ecision dd'eﬁisﬁ‘and can be es#imated by the use of

-

statistical experimental design.

Effect of Measurement Error

The problem of measurement error ". . . is an important one which

deserves considerable furthef sfudy .. .h (32, p. 18).. A study of the
effect of measurement error in several manufacturing plants indicates
that these errors led to yearly losses ranging from $109,000 to $844,000
(44). An investigation of the effect of impfecision_on the X-control

", . . the general

chart for a chemical batch process deterﬁined'that
effeqt in the'presénce‘of sdch‘an error is to lower our power to detect
abnormal process vériations e " (3,1p, 185,. Therefore, meésurement
error can have both economic and statistical consequences.

Little has been done to consider the effects of imprecision on the

X-control chart, and no methodolbgy hasvbeen developed to compensate for



its adverse effects. The effect of bias on X-control charts has been
ignored. The R-control chart is of equal importance in maintaining
process control, but the effects of bias and imprecision on this control

chart have not been investigated.

Phase I of Research

The first phase of this research is to assess the effect of measure-
ment error on statistically designed X- and R-control charts; In addi-
tion, methodology is developed and used to compensate for the effect of
measurement error; Tﬁis provides a ﬁethod for adjusting the control
charts for méasurement error to provide fhevsame power of detecting
changes in the medn and/or variébility of a process as in the absence of

measurement error.

Economic Design of X- and

R-Control Charts

Background

Until 1956, the design of X- and R-control charts was based én
statistical criteria. The decision variables invélved are the sample
size (n), sampling interval (h), and the width of the control limits
(k). The sample size usually takeﬁ is féur or five. The sampling
interval is selected as a matter -of convenience; The spfead of the
control limit‘is.oftén taken to be three. 1In 1956, Duncan (22) devel-
opéd an approach to determiﬁe the decision variables (n, h, k) for an
i—control chart which would be optimal in a cost sense.

The role of economic design in‘stéfistical quality control has

been receiving considerable attention (27) (52). Economic models -



account for sampling costs, cost of acceptance‘and cost of rejection.
Only 14 articles have appeared reéarding economic design to control the
process mean, including both X-coritrol charts and cusum charts. This is
far less than the more than 60 érticles regarding the economic design of
acceptance sampling plans. No egonomic’model for the design of an
R-control chart has been published. It has been stated that further
research on control charts should consider the task of formulating the

economlc model for the R-control chart (27).

Joint X- and R-Control Charts

Duncan (22) and Cowden (18) independently developed the concept of
economic design of the i—control‘chart. However, Duncan's model has

become the '"classic."

For this:reason, it is used as a basic model in
this reséarch. Because both if_and R-control chérts provide information
about the state of control ofxaiprocess, a need éxists'for the joinf
determination of an optimum design, This was acknowledgéd by Duncan (23,
p. 112) who stated that "A fﬁturerstﬁdy'éhould consider the joint
determination of optimum X~ and R—charts'. . ;J To date only one
economic modél fo? both X- énd R-control charts has been ﬁroposed (46).
Tﬁe development of an economic model is only one paft‘Of the prob-
lem of determining the optimum controljstrétegf{ A éécénd problem to be
solved 1s that of estimating:the degision variabies‘(n, h, k) which will
result in an optimal cost mbdel. These models are complex and cannot be
optimized easily. The current appfoach is to solve part of the model
aﬁalytically aﬁd then use search techniques (11) (22) (28). This ap-

proach involves detailed mathematics, substantial computer power, and a

knowledge of sOpHisticated optimization techniques. These are



capabilities not possessed by most practitioners. One needed area of
additional research is that of developing statistical computer routines
for analysis and optimization of complex cost functions (27). 1In
response to this, the original intent of one aspect of this research was
to evaluate the use of response surface methodolagy in the optimization
of economic models for joint X- and R-control charts. This approach
would use two statistical techniques--experimental design and multiple
regressionbanalysis.‘ Howevef, unforeseen circumstances required the use
of a search techniqde'to optimize the economic model'developed in this

research.

Model Optimization‘

A pattern search tachniqae developed by Hooke and.JeeQea (38) is
used to determine the values of the decision §ariables which optimize
the economic model.for joint X- and R-control charts developed in this
research; This technique alternates sequénces of local‘exploratory moves
with extrapolation. The basis for this method is that a strategy which
was successful in the past will‘bérsuccessful in the futufe.

One of the atatistical techpiques used in response surface methodol-
ogy, experimantal design, islused in theloptimization process. This
technique permits‘estimation of the effecta and/or'interactiqns of the
decision variables on the ‘cost model. Alao,-the analysis of the exper-—.
imental_deaign data provides an astimate of'initial starting canditions

for the pattern search technique.

Phase I1 of Research

The second phase of this research consists of the development of
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a jolnt cconomic model for X- and R-control charts. This is a new model

similar to the 'classic"

X-control chart model of Duncan but incorporates
both X- and R-control charts. This provides the practitioner with an
economically designed model which considers both change in the mean level

and/or change in the variability of a process. A pattern search tech-

nique is used to determine the optimum values of the decision variables.

-Measurement Error and Economic Design

of X- and R-Control Charts

Background

The significance of measurement’efror and the increasing interest
in the design of economic modeis for cbhfrolling the mean of a process
" has been presented above. :Theré is no documentation in the literature
which considers the effectfbf bias and imprécision on the economic design
of X- and R-control éharts. Neither has there beén any attempt to
economically optimize X- and R-control chart operations in the presence

of measurement. error.

Phase III of Research

The third phase of this research consists of the eQaluation of the
effect of measurement erfor on the econémic design of X- and R-control
charts. Methodology is deveiéped'and used to adjust the design of X- and
R-control charts to provide the préctitioner with,the op#iﬁum cost model

in the presence of measurement error.
Research Objectives

Based .on the above discussion, the scope of this research can be
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stated.
SCOPE: Development and application of appropfiate methodology to
.saésess and compenéate for the effects of measurement error
(bias and imprecision) on the performance of statisticaliy
and economically designed i— and R-control charts.
In achieving the above goals, the following are the.specifié objectives:

1. Determine the effect of measurement error on statistically
designéd X- and Rfcontfol-charts as.meaSUred by their operéting
characteristic curves.

2. Determine factors which adjust'the.control chart parameters to
Acompensate for measurement error to prbvide éssentially the
same operatihg characteristic curve as wheﬁ measurement error
is absent. -

3. Develop a new e?bnomically designed X- and R;coﬁtrol chart

- model similar £d the "classic"'i—modél of Duncan (22).

4. Optimize.the joint economicbmodel“by the use of central compos-—
ite-experimental desighs ana a péttern search»optimi?ation
teghpique.

5. Evaluate the effect of measurement error on economically de—
signed,i— and R-control charts in terms .of coété.

6. Develop a strategy which will compensate for measurement error
to.prpvide'an optimum designrin the presence of measurement

error.
Summary

The results from this research will prévide benefits to both the

theoretician and the practitioner. Theoretically, the accomplishment
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of the objectives of this study fills an existing void in the théory of
X- and R—cqntrol charté with respect to measurement. error and the eco-
nomic design of joint X- and R—contfoi charts (Figure 1). These concepts
are not presented in any textbooks on statistical quality control, but
are of considerable and growing interest in the quality control area.

The practitioner can benefit from this research because it provides
procedures for e&aluating alterna@ive control strategies. Improved
decision making capabilities will result from having the methodology to
compare alternative control sfrategies among statistical modéls (with or
without measuremeqt erfor) and economic models (with or without measure-

ment error). This should result in increased productivity.



CHAPTER 1II
LITERATURE REVIEW
‘Introduction

This chapter reviews developments in the literature pertaining to
the objectives of this research. Support for the specific research
proposed is documented in Chapter I. This Chépter elaborates on this
support. ‘In addition, other sﬁUrces which discuss the general concepts
relating to the oﬂjecﬁives of this stﬁdy aré presénted. This chapter
is divided into four areas. These are:

l..-Statlsthal quality céntrol and X- and R-control charts.

2. Measuremcnt»er¥§r‘and-its effect in statistical quality con-

prél.

3. Design and optimization of economic models in.quality control.

4. Effect>of meésuremen;_error-on the design of economic modeis

in quality control.

Statistical Quality Control and

X- and R-Control Charts

Statistical quality control was introduced by Shewhart (49) (50)
(51) in the 1920's and 1930's. These concepfs have spread throughouf
the world and, according to Dunéan (24), almost all industriaiized
nations use statistical quélity control.. It is a téchniqﬁe that can be-

used by both large and small manufacturers (10). ‘A breakdown of the

13
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categories of statistical quality qontrol is presented in Figure 1. One
of these areas is contrql charts. Indicative of the widespread use of
control charts, a bibliography, contained in Burr's (6) recent book on
quality control, contains 126 references on the application of control
charts. The two most widely used variable control charts are the if and
R~control charts (29).

Tn terms of controlling a process, the X- and R-control charts have
only one serious competitof (19). This competitpr is the analysis of
varlance. The advantage éf the X- and R-control charts over the analysis
of variance .and their fundamental importance in qualifj control have
been discussed-in Chapter I. The X- and R%control charts are as
important téday as they were when established over 40 years ago. For
these reasbns, X- and R-control charts have been selected as a topic for
this research.

When nccessary, variables acceptancejsampling plans and attributes
acceptance sumpling'plans are discussed. They are cited bgcause of the
develobment in thése areas relativé to the effect of measurement error
and the design of economic models, both of.which are important concepts

in this research.

Measurement Error and its Effect in

Statistical Quality Control

Background

Measurement error is presented and defined in Chapter 1. Because
of the importance of measurement error in this research, a brief

discussion is warranted as to its relationship with inspection error.
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Measurement error is usually assoclated with the measuring of variables.
It can occur due to mechanical inaccuracies in the instruments used or
due to human invoivement in pefforming the measuring task. Inspection -
error, on the othér hand, is usually associated with the humaﬁ factors
involved in performing inspectién tasks.‘ While most often associated
with attributes, these same factors aléo affECt results in obtaining
measurements. Thé significance of measurement error and inspection

error is discussed below.

Measurement Error

The magpitude of the effect of measﬁrepent error has béen investi—
gated by Palei (44). This study deterﬁined that‘the use of uncalibrated
instruments resulted in a 107 decrease in service 1ife which was valued
at a loss of $109,000. In another situation, the spécified accuracy of
an Instrument used to weigh certain components was fiye—tenths of 17%.
The actual accuracy uéed was 2 to 3%. ‘This resulted in 1osse§ of
$844,000. These studies indicaté.that measurement error associated with
instruments can result in lérge economic losses.

Methods for estimating‘impfecisioﬁ Qere‘first ﬁoﬁsidered by Grubbs
(31). Techniques, which involve use of two or more'measuring instru-
ments, were presented.forvseparating and estimating process Variation
and precision of meésurements; Hahn and Nelson (355.developed tests of
significance for cOmﬁaring variances in errors of measurement and differ-
ences in levels usihg'two’instruments. ”Grubbs (33) discusses procedures
for detecting the significance of the differences in bias or levelg of

measurement of two instruments, and extends work to the use of three
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instruments. Therefore, methods are available to estimate bias and

imprecision of instruments.

Inspection Error

In the use of attributes, several stﬁdies have been made of the
problem of human error in performing tasks. The most well known are
those of Jacobson (39), Drury and Fox (21), Harris and Chaney (36) and
Murrell (43). Jacobson (39) determined that error rates of 25% or
.‘higher are not uncommon for thenmost experienced personnel. Murrell
(43) has shown that inspection inaccuracies in one study ranged from
35% to 68%. Harris and Chane& (36) consider methods of measﬁring
inspection pérformance and ways to select inspectdrs.v The material
-edited by Drﬁry and Fox (21) considers models of inspector pérformance,
factors affecting inspection performance and some industrial applica-
tions. The above studies indicate tha£ the effect of human error in
performing tasks can be of.considerable magnitude. Also, procedures
are available for estimatiﬁg fhese errors and/or selecting inépectors
to minimize the errors. Because humans .are Involved in variables

measurement , measurement error is affected by inspection errors.

Measurement Error and X- and

R-Control Charts

Bennett (3) has studied tﬁe effect of imprecision on an X-control
chart. The opérating charactgristic curve Qa; used to demonstrate that
the effect of this type of measurement error is to lower.the power of
the control chart to detect abnormal prOceés variations. No effort was

made to study the effect of bias on X-control charts, nor was any work
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done to aseess tﬁe effect of measurement error on R-control charts. No .
methodology has been developed to compensate for the effect of measure-
ment error on X- and R-control charts to provide the desired 0OCC.

Other studies have investigeted the effect of measurement error
associated with X-control charts (20) (25) (32). However, these studies
were concerned with produet aeceptance and specification limits and not
with process control: Fach demonstrates the undesiraBle effects of
imprecision. Euélo (25) considered the relaeionship between the
probability of écceptlng nop—conforming units and imprecision. Grubbs
and Coon (32) developed a procedure to adjust imprecision for a.single
specification When‘ene wishes to maintain the.cdnsumer's risk and
producer's risk (or some linear combination of them) at a certain level.
Diviney and David (20) deait with the same problems as Grubbs and Coon.
None of these studies eensidered=the problem of bias. The effect of

measurement error on R-control charts was not considered.

Mcasurement Lrror and Other Statistical

Quality Control Techniques

The effects of measurement error in the areas df éccepteﬁce sampl-
ing by attributes'and variables~hae'received the most attention in the
literature. 'Collins et el. (17) evaluated the effect of inspection
error on single sampling plans and determined that for a tyﬁe I error
(classifying a conforming item as nonconfdrming) the prebabdlity'of
acceptance is'feduced and that a type II error (classifying a nonconform-
ing item as conforming) the prebebility of acceptance is increased.

These are not desirable events. ’Theee same authors developed methodology

to design plans which explicitly consider the magnitude of inspector
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error to provide the same préﬁability of acceptance desired invthe
absence of inspection error. Cése et al. (7) and Hoag et al. (37) have
demonstrated the:adverse effect of inspectién error in the.area of
~attributes acceptance éamﬁlihg énd sequential sampling plans, respec-
tively.

One study has been méde which considers the effect of bias and
imprecision. This is in the area. of vériables acceptance éampling plans.
Mel ot uJ..(42) demonstrate fhe detrimental effects of bias and impre-
cislon on the 0OCC. Methpdologyfwas deVeloped to-comﬁensate for these
effects to provide thé same OCC.as in the presence.of measurement error

as obtained without measurement error.
Conclusions

An implicit assumption in fhé theory of X- and R-control charts is
that measurement error is negligible. The existence of measurement
error 1s widely écknowledged in thé literature'ahd its adverse effects
have been dcménstrated. Currént quaiity éontrol textbooks do ﬁot dis-
cuss the concept. Because of the importance of i; and R-control charts
control in statistical qualéiy control, the effects of measurement -
error should be evaluate&. In addition,'cdmpensatihg factors should‘Be
developed to provide the séme.power Qf decision making as would occur-in
the absence of measurement error. . The éffect of bias on X-control
charts has not been stﬁdied, The effect of bias and imprecision on
R-control charts has not been assessed. No\geherélAcompensating factors
have been-deveioﬁed.for the effect of measurement error on X- and
R-controlicharté. The_research accompliéhed‘herein'will solve this

problem.
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Economic Models in Quality Control
Background

The dévelopment of the economic design 6f quality control models
occurred in the late 1950's. Duncan (24) developed an economic model-
for an X-control chért in 1956. Guthrie and Johns (34) developed the
theory for economic models for attributes sampling plans in 1959. Since
then the économic design of quality control models has been receiving
much attention in the literatﬁre. This development provides aﬁ
alternative to contrql‘charf models aﬁd acceptance sampling plans that
were formerly determined purely on a statistical basis.

Fconomic models for acceptance sampling plans contain terms. involv-
ing the costs asséci;tcd withvsampliﬁg, acceptance and.rejection. For
a single aftributc acceptance sampling plan, the decision variablés are
the sample size.(n) énd thé acceptance numbér (¢). Duncan's model for
the X-control char; is more_compléx; The costs fdr his model are the
cost of taking and inspecting a sample, the cost of:maintaining the
control chart, the average cost of loqking for an assignable cause:when
none exists, and, if an assignable cause has occurred, the cost per hour
owing to a greater ﬁercentage df unacceptable items. The decision
variables for Duncan's models afe.n, h and k and have been defined in

Chapter 1I.

Economic Design of X- and R-Control Charts

While several models have been propdsed, it is Duncan's model for
the X-control chart which has received the most attention. Goel et al.

(28) developed an algorithm to find the exact optimum of Duncan's model.
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Duncan (23) has extended his single cause model to the situation involv-
ing several assignable causes. Gibra (26) considers a theoretical
basls lor determining the optimal paraméters of the X-control éhart.
Chiu (11) discusses some corrections to results obtained by Duncan (23).
Chiu and Wetherill (12) propose a semi—ecénomic scheme for the design
of a control plan using an i—control_chart. Chiu (13) statés that
Duncan's model, while perhaps lacking generality, is simple, practical,
has received attention and a considerable amount of work has been
devéloped frpm it. For this reéson, Duncan's model is used as a basis
for economic model‘developmeﬁt-in this reséarch.

There has been no work'cited‘in the literature regafding thé
economic design_df a R-control chart. This need has been noted by
Gibra (27). Duncan (23) stétes the need for a joint economic model that
would optimize both X~ and_R4contrpl charts. One article has appeared in
the literature regarding the econoﬁic‘design of both X- and R-control
charts (46). Ihis model doeé not uée'Duncan's_approach'to econémic
modeling for variables control charps.v In addition, this model aées
not consider the situation in which bqth prbcesé parameters are out-of-
control at the same time.‘ Also, the sampliﬁg interval is based on the
number of items producéd rather than a time interval. The use of num-
ber of items.produced as‘a decision Qériable makes'thé application of
this model difficult to use on a continuous process with a high volume
of production.

Four other models have been &eveloped in connection with the
economic design of control charts (X). ‘Cowden's (18) model, according
to Chiu (13), is not suitable for the study of control charts because

he assumes that if an assignable cause is detected and corrected, no
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further trouble will occur during the day. This is not a realistic
assumption. Knappenberger and Grandage (40) developed a model that
would minimize the expected cost per unit produced. Both Chiu (13) and
Gibra (27) comment that this model involves too many assdmptions in
formulating the cost, ene of which is unrealistic. Baker (2) con-
strucfed a model in which the time of "in.eodtrol" depends on the
number of false alarms. This situation is not general enough to
warrant much consideration (13). ‘Taylor (52) developed a model which
permits the process to be sﬁut dpwn when a search for the assignable
cause 1s being carried out and includes the time and cost of repairing
the process if it is found to be out Qf control (two attributes Which'
Duncan's model does not aceount for). Chiu (13) indicates that Taylor
omits the cost of sampling and aesumes the effect of the assignable
cause to be a function;of the sample size--two impractieal assﬁmptions.

None of these models has received much support in the literature.

Economic Design of Other Statistical

Quality Control Techniques

Asdin the case with measufement error, the development of economic
models for X- and R-control charts is dqt as extensive as in other areas
of statistical quality control. A recent survey, by We;herill and Chiu
(54), of the major principles of acceptance sampling schemes with
emphasis on the economic aspect, cites 56 referenees directly concerned
with the economic approach to_ettributes and variables sampling. Add te
this the‘recent work of Ladany (41), Schmidt et al. (4%), Chiu (13),
Case et al. (8), and Ailor et al. (1) and over 60 articles have 5een

written in the last 19 years since Guthrie and Johns (34) developed the
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basic cost model used today in this area. This contrasts sharply to
the 14 articles on the economic charts for control of the process mean

(lq) (14) (15). (27).
Conclusions

The above discussion indicates that designing quality ébntrol
schemes based on economic criteria is gaining support. An economic
approach offers a viable alternative to the design of quality controi
strategies using statistical criteria. Thése two approgches, economic
and stafistical, can be compared on the basis of both costs and their
operating characfgristic curves.

Both X- and R-control charts are important in determining cdntrol
of a process. This research extends the work begun by Duncan (22). A
joint economic X- and R—coﬁtrol chart model is developed. This will
provide a method to minimize the cost of both charts, and overcome the

disadvantages of the model proposed by Saniga (46).

Optimization of Economic Quality

Control Models

Background

Once an economic model has_been deveioped, the problem df determin-
ing the values of the decision yariablés_which will result in optimuﬁ
cost must solved. The most widely used technique.to date has been the
use of varioué search.techniques. - Duncan (22) used a search technique
after making certain assumptions and approximations about his model.

Goel et al. (28) noted that Duncan's method of obtaining the optimum
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solution is complicated and involved. These same authors developed an
algorithm, also employing search techniques, which consists of solving
an implicit equation in the decision variables (n, h and k). This
algorithm, while yielding an exact optimum, is academically interesting
but in practice is very difficult to use, acgording to Chiu (12). The
reason for the use of seafch techniques in the optimization of.economic
based models is that due to the complexity of the models themselves,
classical opfimization techniques cannot be readily appliéd. However,
when they can be used, the resulting,equations do not ordinarily have
exact solutions, so.ghat simplifying assumﬁtions must be made. 'Thus,
search techniques.can,be employed in determining opﬁimum solutions.
Search techniques have also been used in finding the opfimum’decision
variables for acceptanée sampling plans (1) (8) (13) (47).

A problem_with search techniques is that the mbre complek the model,
such as Duncan's.model for i—chart, the more.difficult it becomes to
determine the optimum solution. The greater the.complexity, the mére
computiﬁg power is required, as well as more sophisticated search
.routines. Gibra (27) recommends that additional research in control
chart techniques consider development of s;atistical computer routines
for analysis of data anﬂ optiﬁization'of compiex cosﬁ functions. 1In
responding to this need, ‘the original intent of this research was to
consider a new approach to the optimiza;ipn of the economic design of
X- and R~c6ntrol chart models. Response surface‘methodology (RSM) was
ﬁo have been used to determine the optimum values bf the decision
variables. However, unforeseen'probleﬁs arose which were not apparent
in the beginning. As a result, a search technique is adapted to .deter-

mine the optimum value of the decision variables. Central composite
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design, a statistical technique used in response surface methodology, is
used to aid in locating the area of decision variables in which the

minimum is expected to lie.

Pattern Search Technique

The search routine used in this_reséarch_to determine the optimum
value of the decision variables is a pattern search technique developed
by Hooke and Jeeves (38). This'method, while lacking in mathematical
elegance, has been determined to bé a highly efficient optimization
procedure (30). This technique is baéed on the conjecture that'adjust—
ments of the independent variableé_which have been successfﬁl during
earlier moves are worth‘tfying again. The method begins slowiy with
small steps from the‘ipitial point. If_the step is a success, the'step
size is increased. If the step is not a success, the step size is re-
duced. 1If a change in direction is required, the technique begins again
with a new pattern. |

One of the problems of search techniques is. that of finding a good
initial starting point. The ﬁechnique assumes a unimodel function is
being optimized, so that more thén one set of‘initial conditions is
usually recommended to obtain a.global minimum. To assist in determin-
ing initial conditions, central composite designs afe used tp definé the
area of the decision vériables where the minimum cost is most likely to

occur.

Central Composite Design

Central composite designs were developed by Box and Wilson (4).

These designs consist of a 2k factorial design (or fractional
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replication), axial points and base points. The number of variables be-
ing investigated is denoted by k. The'2k factorial deeign provideé an
estimate of the effects and interactions of the decision variables on the
cost model. This approach has not been taken in previous studies on con-
trol chart models. The base point 1s at the center of the design space
and is used with the axial points.to determine the non-linear effect of
the decision variables on the cost.model. A diecussion of these designs

can be found in Cochran and Cox (16).
Conclusions

A pattern search teehnique is used to determine the optimum value
of the decision variables for the joiﬁt economic model of en X- and
R-control chart. Central composite designs are used to study the design
space. -An analysis of data from these designs provides inforﬁation as .
to the effects and,interaetions of the decision variables on the cost
model developed in this reseafch. The results of this analysis provides

initial conditions for the optimization routine.

Measurement Error and Economic

Models.in Quality Control

The importance of measurement error and the design of economic
models in quality control has Been documeeted above. TheAmethodology
to design a joint X- and R-control chart which would be optimum in the
presence of heasurement error will complete this study. There is no
documentation in tﬁe literature of any effort to stedy this problem.
The nearest approach has been a sensitivity study of the parameters and

decision variables of Duncan's i—chart‘model (14). This study made no
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attempt to develop methodology to compensate for the observed changes.
In the current author's opinién, this study was not thorough, because
it ignores the possibility of interactions between parameters.

There have been two sfudies concerned with the economic effect of
measurement errof. Case and Bennet£ (9) dealt with variables acceptance
sampling plans. Collins et al. (17)‘were concerned with attributes
acceptance samplingrplans. Each‘study illustrates the adverse monetary

effects of measurement error.
Summary

This chapter has presented ‘a survey of the literature on the prob-
lems,bcontributionsiand needs relative to the objectives of this
research. This survey indicateé that measurement error is a serious
problem, both economically and theoretically. This has been clearly
demonstrated in the areas of attributes sampling plans and variables
acceptance sampling plans. Little has been done to study these problems
on X- and R—contrbl charts. This survey has demonstrated the interest
in the economic design of quality control models, particularly‘in the
area of attributes acceptdﬁce samp1ing and variance acceptance sampiing.
There 1s only one work cited toward developing a joint economic model
for X- and R-control charts, and yet the X- and R-control charts have
been shown to be the most widély used metﬁods for éqntrolling the
process mean and.variance. A need has been cited for new methods of
optimizing complex economic modeis in‘quality'control.

This sdrveylindicates, that in the case of X- and R-control charts,

a need exisfs for the following:
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. An asscssment ol the effect of measurement error on X- and

R-control charts.

2. The development of methodology to éompensate for measurement

error on X- and R-control charts.

3. The development of a joint economic model for X- and R-control

.charts.

4. The development of the methodology to aetermine the
economic X- and R-control chartsf

5. To determine the effeét‘of measurement efror on the
désign of a joint X- and R-control chart.

6. The development of the methodology to determine the
economic X~ and R-control charts in the presence of

error.

optimum

economic

optimum

measurement

This author believes that this research completes an important gap that

currently exists .in the theory‘and application of X- and R-control

charts.



CHAPTER ITII

MEASUREMENT ERROR IN X~ AND R-CONTROL

CHARTS: "EFFECTS AND COMPENSATION
Introduction’.

The purpose of this chapter‘is to assess the effects of measurement
error on statistically designed X- and R—control charts. These two
control charts are used'to_éontrol the mean and variance of rebetitive
processes. The R-control chaft is used to indicate when a change has
occurred in the variance (or dispersion) of a process. The X—control
chart is used primarily to detect shifté in the mean level (or central
tendency) of.a process. However, the i—control‘chart can also detect
changes in process variébility, but to a lesser extent than the R-control
chart. The X- and R-control chérts are used togethe? to describe the
state of statistical control of a process with respect to its process
pafameters, the mean and variance. |

The capabilify of X- and R-control charts to indicate the true state
of étatistical control 1is dependent upon gccuratg and precise estimation
of the process parameters. Present devélopment and use of these two
charts assumes that thebmeasurements of.the quaiity aiménsions are made
without error or that the magnifude of efror is negliéible. However,
the existence of‘measufeﬁent‘error is widely acknowlédged in ﬁhe lipera—

ture (Chapter II). 1Its effects have been shown to result in both

28



29

economic losses and a change in the pfobability of the X-control chart
to detect shifts in the mean level of a process. The effect of measuré-
ment error on R-control charts has not been evaluated.

For this study, measurement error will.consist of two types—--bias
and imprecision. The effect on the comntrol charts of each source
individually and simultaneously is determined. Methodology is developed
to compensate for the effects of measurement error to permit the design
of control charts to provide the same probability of detecting changes
in the.process parameters with measuremenf'error as without measurement

error.
Measurement Error -

Common practice is to consider measurement error as "normal,"
ignore it, and inclqde it in calculations. Measurement error, however,
can be estimated through the uée of statistical~experimental designs.
Therefore, it is possible to recognize this concept and to determine its -
effect on decisions regarding the state of;staﬁistical control of the
process. This research will consider the concepts of bias and impreci-
sion and will assume that these éources of measurement error are addi-

tive.
Bias

The concept of Bias can be illustrated as follows. Consider the
. target in Figure 2b. If répeated rifie shots, aimed at the center of
the target hit and cluster together é&ay from the center, it is con-
cluded that the rifle is not properly sighted. When aimed at the "bulls

eye," hits will always cluster about a point a fixed distance from the
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a. Precise/No Bias e b. Precise/Bias

c. Imprecise/No Bias : . d. Imprecise/Bias

Figure 2. Two Types of Measurement Error
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center. This fixed distance is bias. Therefore, for this study bias
is defined.to be the difference between the trué dimension of a quality
characteristic (bulls eye) and the average of repeated measurement;
(clustered points) on that characteristic. Mathematically, bias is
e#pressed as p, = E(é) -0, whéré 6 is the observed dimension and 6 is
the true dimension.
Imprecision

The conéépt of imprécision can also be deséribed by the rifle and
target example; Cénsider Figure 2c¢ in which répeated rifle shots are
aimed at the "bulls eye." 1In the first diagram, the hits are widely
dispersed about the center of the target.. When.this situation exists,
the rifle is said to be imprecise. Therefore, for this research, im-
precision is defined to be thé failu;e to obtain the same measurement
of a quality characteristig when the same unit is measured several
times. Mathematically, imprecision is eXpresse& as 0e2 = Var[é - E(é)] =
Var[é], where 6 ié definéd aBove. (Figure 2a illustrates precise
measurement when points are randomly clustered near the center of the

target. Figure 2d illustrates the combination of Both imprecision and

bias.)
"~ Notation

This section will define the mathematical notation used in this
chapter.

X = true dimension of a qﬁality qharécteristic.

U = standard or desired process mean (measure of central

tendency) .
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true process standard deviation.
true sample average.

number of individual measurements making up a sample.

Oi(OX/JH) = true standard deviation of a sample average based on a

R

]

i

Il

sample of size n.
true bias.
randém variable of imprecision (Xe N N(O,oez)).
observed dimension of‘a quality characteristic.

observed process mean.

observed sample average.

2 2 . . . .
(o, + O ) = observed standard deviation with imprecision.

true sample range which is determined by differencing the
smallest and largest observations in the sample.

true mean range (measure of central tendency).

OR(koX) = true standard deviation of range (k is a constant).

d

2

R
o

]

constant defining relationship between R and ox(oX = ﬁ/dz).
observed sample range.

observed standard deviation of the range.

2 2

/o 7).

ratio of true process variance to imprecision (f = oy /04

magnitude of shift in true process mean. Shift is in multiples
of GX(GGX).

magnitude of increase in true process variance. Increase is

in multiples of oxz(yzoxz).

standard normal deviate (snd).

ratio of range to true process standard deviation (standardized

range).
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probability of»a sample staﬁistic falling within the control
limits.

probabiiity of a sample étatisfic falling within the control
limits when measurement error is present.

a factor used in determiniﬁg the width of an X-control chart
andArepreseﬁts the number of sample average standard devia-
tions separating each cpn;rol 1imit and the center line.

upper conttrol limit for an X-control chart (UCLs = u + k

X 1%%/

lower control limit for an X-control chart (LCLi =qu - klci)'

a factor used in determining the upper control limit for an

+ 3d3, where d, and d, are constants).

2 2 3

a factor used in détermining‘the lower control limit for an

R-control chart (k2 =d

R-control chart (k3 = d2 - 3d3.and k3 = 0 when n < 6).

upper control limit for:an R-control chart (UCLR = k20X .

lower control limit for an R-control chart (LCLR = k3cX).

adjusted process mean to compensate for bias.

sample size necessary to compensate for imprecision such that

P =P .
ae a

= factors used in determining the width of an X-control chart

to compensate for measurement error such that Pae = Pa'

adjusted mean-range to compensate for imprecision.

= factors used in determining the upper and lower limits of an

R—-control chart to compensate for measurement error such that

P =P _.
ae a

"Performance Measure

A performance measure of a control chart is given by its operating



34

characteristic (OC) curve. This is determined by plotting the probabil-
ity of a sample point falling within‘fhé control limits versus changing
process parameter values. This is a theoretical curve which can then be
used to determine the probability of a control chart not detecting
(sample statistics falling within control limits) specific magnitudes of
changes in the process parameters. A generalized OC curve indicating
the probability of not detectipg changes in a parameter 6 is shown in
Figure 3. Another interpretation frequently used is the complemént of
the probability of acceptancg.(P;) denoted by 1 - Pa' This is the

probability of detecting a changé in the process parameter.

1.0

.P_ = probability of not
detecting changes in 6

0.0 — 0

Figure 3. OperatingACharacteristic Curve

The OC curve will be used to provide a quantitative assessment of
the effects of measurement error. An OC curve can be constructed when
bias and/or imprecision are present. This curve can be compared to an

OC curve when these two sources of measurement error are not present.



35

This comparison will permit a determination to be made as to the effect
of measurement error on the capability of the control chart to detect

changes in the process parameters.
Shifts in Process Parameters

This research is concerned with shifts in the process mean and

. : . . 2 2
variance. Changes in the process variance are expressed as Y 0_", where

X
Y will determine the magnitude of the chéhge. For this study,

1 <y <15. When Y = 1, no change has occurred in the process variance

. . ' 2
When Y = 2, the process variance has increased from O

2
X to 40X . Values

of Y are specified to be greater tﬁan or equél to one because in this
research it is assumed that OXZ is the true‘in control process variance
and cannot be reduced. |

Shifts in thé process mean (M) are expressed as multiples of the
process standard deviation (OX). -The mégnitude of the shift is SOX.
The mean will shift from ¥ to WM +‘30X.. The range of § is - 3.0 < § <
3.0. To conform to standard pragticé,;in ﬁhis analysis, n is taken to.

be 4.0 and the width of the X-control limit, k is taken to be 3.0.

l’
However, the approach used in the analysis below can be followed by

the practitioner who wishes to study the effect of measurement error

for any 6, kl and“n.

X—-Control Chart

An X-control chart for a repetitive process is constructed by
determining upper and lower control limits about the mean of the
process. This mean level may be specified or it may be estimated from

process data. If estimated from process data, it is usually over a
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long period of time in whicﬁ the process mean was determined to be in a
state of spatistical coptfol. At predetermined intervals (usually time),
a sample of size n is taken_from.the process, the sample average esti-
mated and plotted on the control ghartQ ,if the sample éverage falls
within the control limits, the pfocess is said to be in a stéte of
statistical control with resﬁect to its mean. If the sample average
falls outside the control limits, the process is said to be out of con-
trol statistically. Thus, deciéibns.regarding the state of control of
the process are made on the_basis;df samples from the proceés and where

they fall with respect to the control limits.

Without Measurement Error

The assumption'in cons;ructing aﬁ‘i—control chart is that the
dimensions of thé‘quality characteristic are.from a normal population.
Let u denote theprOcessn@an and,oX be.the process standard deviation.
These values may either‘be'desiredrﬁalues or established from past
history. An i—COntrol chart based‘oq the above parameters has the form
as shown in Figure 4. For this study, ﬁhe assumption is made that this
control chart is fixed andﬂi;s center iine, upper, and lower control

limits will not change.

UCL)—( ='u + klO)—(

LCLX =u - kloi

Figure 4. X-Control Chart
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The operating characteristic curve for the above control chart is
constructed by determining the probability of acceptance (Pa) as the

mean level of the process shift from p to p + 8o, and the process

X

2 2
variance increases from o to y o

X The probability of acceptance

X

when the process is in control is given by

UCLz - u LCL: - u
P_ = P(z 5_———32————)-+ P(z 3_——533————) . (3.1)
yoe /N 1 you/{n

The pfobability of detecting changes in the‘process parameter is given

by
' UCLg - w LCLy - u
1 —'Pa'= P(_z > -——O—:-—-) + P(z f_—-—-—_—'-'—) . (3.2)
Yo% . Yo%
If the process mean shifts from p to u + dox, equation (3.2) becomes
v+ k,o=z - (p+do,) ‘ - k.oz - (p+8o,)
1—Pa=,1>(zi LX _ X)+P(z_<_; LX X). (3.3)
Yo% / ' Yo%
kl-aJrT —kl—aJE
1-P = P<% > ————————) + P(é < —~—*——————) . (3.4)
a = Y I Y

Equation (3.4) will become tﬁe staﬁdard or base to which comparisons
will be made to assess the effects of measurement error. Since the
process mean can shift in either a positive or negative direction, § is
either positive or negative. Only increases in the process variance
(y > 1) will be considered.

The value for kl‘is taken to be 3.0, This value for kl is used in

this research for the base case. An evaluation of the probability of

acceptance as the mean shifts from_u to pu + GGX is given in Table I.



PROBABILITY OF ACCEPTANCE FOR SHIFTS IN THE MEAN FROM M

TABLE I

TO p + Soyxy AS DETERMINED BY AN X-CONTROL CHART
(k;, = 3.0, n = 4.0, y = 1.0)
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©

6 P(Z s p o+ k1°§(Y;_(u + GGX)) + P(z i‘ no- kl“iY;_(u + 50){)) )
X . X a
-3. P(z > 9) + P(z < 3) = 0.0087 .0013
-2. P(z > 8) +.P(z‘§_‘2) = 0.9972 .0228
-2, P(z > 7) + f(z_g 1) = 0.8413 .1587
-1. P(z > 6) + P(z < 0) ;'0;5060' .5000
-1. P(z > 5) + P(z < -1) = 0.1587 .8413
-0. P(z > 4 + Pa < =2) = 0.0228 L9772
0. P(z > 3) + P(z < -3) = 0.0027 .9973
0. P(z > 2) +P(z < -4) - 0.0028 19772
1. P(z > 1) ; P(z < -5) = 0.1587 .8413
1. p(a > 0) + P(z < -6) = 0.5000 .5000
2. Bz > -1) + P(g15_47) = 0.8413 .1587
2. P(z > =2) + P(z < -8) = 0.9772 .0228
3.0 P(z > -3) + P(z < -9) = 0.9987

.0013
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There Is no change in process varléance (y = 1). The control 1imits are
UCLX = p + 30R and LCLi =.q f-30§. Thg QC curve for these data is
presented in Figure 5 for poéitive-éhifts in .

An interpretation of fhe OC curve for the above values is as fol-
lows. The probability that a point will fall within the control limits
when the process mean has actuélly shifted from Mtou=u + 0.50X is
0.9772. That is, the probability of detecting a positive shift in the
mean of O'SOX units is 0.0228.

Table IT gives  -the prob#bilities of points falling within the con-
trol limits (ﬁ i_3oi) when only tﬁe pﬁoééss variance is changing (8§ = 0).
The values for y are from 1 to 15. A vy of 2.0 implies that the process

2. 2 2.

variance has incereased from o 2 to 40X (y Oy ). The probability of .

X
detecting a change in the pfoéess variance is 0.1336. That is, if the
process variance wefevto increase to four times the original process
variance, it would be detec£ed by this i—control chart appfoximately 13%
of the time. This indicates that the'i;coﬁtrol chart is not particularly

sensitive to changes in process variance. The 0OC curve for these data

is presented in Figure 6.

Effect of Bias

In order to evaluate the effect of bias only on the X-control chart,
let My denote the biasiwhich is constant.and can be either positive or
negative. In the presence of bias only, the observed individual dimen-
sions (Xo) will eéch deviate from the true value (X) by an amount Mge

Then



Magnitude of Not Detecting Changes

in Mean of Magnitude Specified by Abscissa
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‘ch = Shift in Process Mean

Figure 5. Operating Characteristic Curve for an X-Control
Chart (Data from Table I)



PROBABILITY OF ACCEPTANCE FOR INCREASES IN THE PROCESS

 TABLE II

VARIANCE FROM oy
X-CONTROL CHART (k, = 3.0, § = 0.0)

TO y2oy

AS DETERMINED BY

41

o ) |
1. P(z > 3.0) + P(z < -3) = 0.0027 0.9773
1. P(z > 2.05» + P(z < =2) = o.0936 0.9544
2. P(z > 1.5) +P(z < -1.5) = 0.1336 0.8664
2.  P(z > 1.2) % P(z < -1.2) = 0.2302 0.7698
3. P(z > 1.0) +P(z < -1.0) = 0.3174 0.6826
3. P(z > 0.86) +P(z < ~0.86) = 0.3898 0.6102
4. P(z > 0.75) + P(z < ~0.75) = 0.4532 0.5468
4. P(z >.0.67) ‘P < -0.67) = 0.5028 0.4972
5. P(z > 0.60) + P(z‘i_—ozéoj = 0.5486 0.4514
10. P(z > 0.30) + P(z < -0.30) = 0.7642 0.2358
12. P(z > 0.25) + P(z < =0.25) = 0.8026 0.1974
15. P(z > 0.20) + P(z < -0.20) = 0.8418 0.1586




P, = Probability of Not Detecting Changes in Process

Variance of Magnitudes Specified by Abscissa

1.00
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0.60

0.40

0.20
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UXZ = Increase in Process Variance
Operating Characteristic Curve for an

Figure 6.

X-Control Chart (k; = 3.0)
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X X + u

e . (3.5)
Observed True Measurement
Value Value Error (Bias)

Assume that o is distributed N(ue,O). Since the observed dimensions

by convolu-

. Sy s . . 2
are from a normal distribution with mean p and variance Oy

tion of two normal independent variables

2

2
XO v N(p + Hg s 0y ) = N(uo,ox

) | (3.6)
and

X o N0, /dm)

o o’7X "N

If the probability of a sample mean falling within the control
limits in the presence of measurement error is denoted by Pae’ then for

bias only

v+ k oz - u oy -koo= -y
P = p(z < 1)_( 0) + P(z > L )_( °> (3.7)
ae ~‘Y0X . Ygx
p‘+ k,ooz = (u+ p )\ ¢ , u - kooz = (u+ p) .
P =Pz < 1 X ,e'>+P(z> 1 X e). (3.8)
ae - Yoz ' - Yog

For a given Hgo @s the mean shifts from u:to ut+ 8oy equation (3.8)‘can _
be evaluated to dgtérmine'the probability of a sémple mean falling within
the control limits in the presence of bias. The OC curve obtained when
bias is present can.Be éomparedlto the OC curve when bias is zero (base
case).  This compaf%son wili determine the effect of bias only on the
probability of not. detecting shifts in the process mean by an X-control

chart.
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Shifts in the mean can be gither Dositiﬁe or negative. Bias can
also be positive or negative. for this research, the magnitude of bias
is taken to be equal to one processvstgnd;rd deviation (oX).' A
Bias of this magnitude

positive bias is o, and a negative bias is -o

X X
is not restrictive, but will permit its effect to be eﬁaluated. In addi-
tion, some generalizétions of the relatioﬁship betweén Pa and Pae can

be stated for the specific ranges of Mo and §. In order to evaluate

the relationship between Pa and Pae’ it is necessary to consider four
cases. These four cases a?e: ﬂue <0, § <0), (ue <0, S > 0),

(ue >0, 6§ < 0) and (ue >0, § >0).

Expressing the effect of bias in terms of the probability of

detecting a change in the process parameters, equation (3.8) becomes,

u+ kiog - (p+ So, + pu)
L b =P(Zi 1% T v g e)+
ae . Yog

po=K,oz - (u+ 8oy + p)

P(? < X ) (3.9)

=
k, = &fn - u_fn/o
- P(% 5 1 e 'X +
- Y
/. k- §dn - ueJﬁ/cx
Plz < - . (3.10)

- v

To develop the relationship between Pa and Pae compare equation

(3.10) to

ky - 6dnY -k -8l
———f?————)A+,P(% f_f————zr——~—) . (3.11)

1-P = P(% >
a
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For cquations (3.10) and (3.11), a giveh v will not affect the relation-
ship between P and P .
a ae

For the upper control limit, compare

k) - 8 kg - 8da - /oy
Plz > —— ] : Plz > (3.12)
N N Y :
and for the lower control limit; compare
-k <oy -k, = 8dn - u_fn/o,
Pl z i-‘—-—Y—— : Plz < > v . (3.13)

Case 1: Negative Bias (Mg = - Ox < 0)

and Negative Shift (5 < 0)

The relationship between the snds in equation (3.12) for negative
shifts in u 1is
1

’ ' 14
Y:.A< Y (3.14)

k; -6k Kk -8+

so that

P(Z . kg ‘Y‘S/E) R P,(Z 1?1 B ‘?/‘TY“. ”ef‘;/"x) _ (3.15)

| \%Z

For typical kl’ say 3.0, the snds in eqdétionv(B.lS) Qill-tend to be
large so that the probabilities in equation (3.15) will be negligible.
(Note: Wheﬁ the shift in the mean is.in_the“direction of the lower
control limit the‘standard normal deviate assqciated with the upper
control limig willvbe‘positive. Unless Y is large, these snds will be

large and their associated probabilities for practical'purposes will be
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negligible. Ah exception will oécur when the process variance increases
(Y > 1) or if imprecision is present, these terms would then contribute
some probab;lity to Pa and Pae' However, if large variation occursvin
the process,‘it will be detected quickly By the R-control chart. Hencé;
the consequences of the effect of large variatién on the X-control
chart will be-minimized. A similar argument>can be stated for the case
in which the mean shifts toward the upper control limit. The snds for
the lower control limit will be negative and large, the exception occur-
ring when the increase iﬁ process variance is large and/or imprecision
is present. Therefore, for theﬂfollowingianalysis and analyses in
subsequent sections, it will be}assumed that probabilities outside the
control limits opposite the direction of the shift are negligible.)

For the lower.control limit in equation (3.13) for § < O‘the rela-
tionship between the snds is | |

-k - sa - k, - 8¥n+ /n

< = — s (3.16)
Y Y

and

(3.17)

Y Y

P(Z iﬂ) ) P(Z P -8l - “efr_l/ox) .»

The snds associated with the lower control limit will be the primary

contributors to Pa and Pae' Therefore,

1-P <1-7P . ' (3.18)
_ a. T ae

P >P_ . (3.19)

Based on the above, as the mean shifts in a negative direction
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toward the lower control 11m1t, the effect of a negative bias is to
increase the probability of détecting a,shift in the mean. This is
beneficial if the shift were large because the.shift would be detected
earlier. However, if the shift were small such that it would not
adversely affect quality of production, time would be wasted looking
for assignable causes that are not significantly affecting quality.
When there is no shift (6A= 0), the effect of negative bias would be
to indicate an out-of-control conditioﬁ when the -process is actually
in control. That is the number of false alarms would be increased.
Since bias‘is‘a measurement error and not a process related problem,
increased costs and/or lost pfqduction would occur while seérching

for a non-existent assignable cause.

Case 2: Negative Bias (e = - qx'< 0)

and Positive Shift (8§ > 0) .

The relationship between snds in equation‘(3.12) for positive

shifts in 6 is

< . (3.20)

This indicates that for the upper control limit

N k, - 8fn - v_n/o
P<z _>__L._____)> p(Z > -2 e X) : (3.21)

Y Y

For the lowér,control limit in equation (3.13) and for ¢ > 0, the

relationship between snds is
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-k - s/ - ky - &/n + Vn
- <

" - - (3.22)

and

-k, -8mhy\ . -k, - &6/n - p Jn/o
P(; 5__——JL——-——) < P(z 1 Ye X) . (3.23)

<
Y - Y

As § increases in a positive direction, the process mean is out of
control and sample averages will increase and begin to fall outside the
upper control limit. However; a negati#e bias will cancel this increase
in the sample averéges. The‘efféét on the probability of detecting a
positive shift in:the process mean will'depend upon the relationship
between Mg and é§. 1In fact, Wheﬁ Mg < - ZGGX, the probability of detect-
ing a shift is increasea."This'probabiiity is reflected by an increase
in the probability of a‘saﬁple average falling outside the lower control
limit.

When Mg 2 - éGoX, then theiprobabilities in equation (3.23) will be
negligibleband will add little to ﬁhe probability of acceptance. The
probability of acceptance will be.deﬁefmined by the terms in equation

(3.21) which indicates
1-P >1 - Paé (3.24)

PSP ' (3.25)

Based on these results, és the process mean shifts out of control
in a positive direction toward the upper control limit, the probability
of detecting the shift is reduced when bias is negative and n, 2 - Zﬁox.

This implies that the process mean will tend to be declared in a state
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of control when in fact it is operéting out of control because odf the
offsetting effect of the negativé‘bias. This will result in an increase
In the amount of time thejprocesé operates dut of control and will in-
crease the number of defective items being produced.

When Mg < T 280 the prqbability of detecting this shift is in-

X’
creased. This indicates that 1 - P < 1 - P and that P. > P . This
a ae a ae ,
can be beneficial in that an out-of-control condition will be detected
more frequently in the presenée of bias than in its absence. However,
it could give a false indication of what the assignable cause might be
if the direction in which the out-of-control condition is detected is
important in defining the assignable cause. Suppose a sample value

falls outside the lower control. limit due to negative bias, a search

might be undertaken for the wrong type of cause.

Case 3: Positive Bias (Mg = Ox > 0)

and Negative -Shift (& < 0)

For the upper control limit (3.12)'and for § < 0, the relationship

between the snds is

kl-esIE kl—a‘JE—JH
>

Y Y.

) (3.26)

and, therefore,

>
- Y

k., - 8dn Ak'—cSJrT—uJE/o
P(z —'—l—~———-)<P(z 1 e X).~ (3.27)

The relétionship between the snds for the lower control limit in

equation (3.13) is
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-k -8 -k -8h-

> R 3.28
Y . Y : _ ( )

and

| ~ k. - sy -k, - &1 - u Jn/o
PG'i__;L*~—~)> pG_i L e X). (3.29)

Y Y

This sitqatien is similar to that in Case 2. As 6 shifts in a
negative direction, sample averages wili begin to fall outside the lower
control.limit'to indicate that tﬁe procese mean is out of control. As
before, a positive bies'wili-bffSet the negative shift in the procesé
mean. When M > 260X, the prebability of detecting shifts in the
process mean ie ineteased. Thie is reflected in'the probability of a -
sample average falling outside.the upper control iimit, equation (3.27).

When n £ - ZGOX, the snds in equation (3.27) will be latge
positive values aﬁd will‘contribﬁte a negligible aﬁount to Pa and Pae'
The probabilities ofvaccettance will be determined by the terms in

equation (3.29) and the relationship is
1-P >1-P - (3.30)
P_<P . (3.31)

The above analyses indicate that for Mo > - ZGOX, the probability
‘of detecting a negative shift is increased. This implies that
1-P >1-P and that P < P ., This is beneficial if § is large.
ae a ae a : _
Otherwise the process mean is declared to be out of control more
frequently than desired, particularly for Small,shifts which can result

in searching for insufficient assignable causes.
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When My < - 260X, thé probébiiity of detecting shifts in the process
mean is reduced. That is that the process mean is likely to be deter-
mined in control when in’fact it is out .of control. This will result in
an increase in the number of defective items being produced.

When § = 0, tﬁe effect of positive bias is to increase the number
of false alarms. This is undesiréble.becaUSe bias is due to measurement
techniques and not to a process malfunction. The consequences of false

alarms were discussed in Case 1.

Case 4: Positive Bias (Mg = QX > 0)

and Positive Shift (6.3;0)

The relationship between the snds of the upper control limit in

equation (3.12) for s >0 is

> : (3.32)

and indicates that

.n Y -  vk - 8dn - u_In/o
P(% z_”l*?‘f‘——)_<‘P(Z L = X) . (3.33)

For the lower control limit and § > 0, the relationship between the

snds in equation (3.13) is

-k, - o —kl—SE—.E
v > » (3.34)

1

and
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' -k, - & — k. - & - ufa/
P(z-i ———l————-—) > P(; 1 = OX) . (3.35)

- Y

For typical kl, say 3.0, the snds in equation (3.35) will be large
so that the probabilities in equation (3.35) are negligible. The prob-
abilities of not detecting shifts will be determined by equation (3.33).
Therefore,

1 - Pa <1 '— Pae (3.36)

P >P .
a - - ae

Thereforé, if the process méén shifts in a positive direction, the
effect 6f a positive bias is to increase the probability of detecting
this shift. As noted earlier, thié is a benefit fdr large shifts in
that the process is determined to be out of control more frequently
than if no bias exists. If the inqrease‘in‘the shift is small, then
the increase in the defective itgmé beiﬁg'prbdu;ed is ﬁegligible, and
the effect of the positive Biaélﬁay not be béneficial. In fact, more
cost could be incurred by 1ooking for insignifiéant causes than ﬁould
result from the increase in aefegtiye items. |

The results of the'above analyses are summarized in Tabie IIT.-
The bias affects the ability ofvén X-control chart to detect shifts in
the process mean. If the proceséjshifts in fhe difection of the bias,
the effect of bias is to increése’the-probabilit?_of detecting the
shift. If the.shifﬁ is in thevéﬁposite direction of the bias, the
effect of bias depends ﬁpon‘thevrelationship between ue>and §. These

principals are illustrated iniFigure 7.
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TABLE III

RELATIONSHIP BETWEEN Py5 AND P, FOR X-CONTROL
CHART IN PRESENCE OF BIAS ONLY (y FIXED,
ky = 3.0, n = 4.0)

Negative Bias Positive Bias
Mo < Q . 0 < Mo < - ZGGX Mg > - 260X
Negative 11 - P, <1-P | 1-P >1-P 1-P <1-P_
Shift in : a
Mean ((S<O) P >P P <P - P > P
: a ae a — ae _ a ae
Negative Bias Positive Bias
- 260X f_ue‘< (0} Mg < - 260X Mg > 0
Positive 1-P >1-P 4 1-P <1-P 1-P <1-P.
. . a — ae : a ae a ae
Shift in :
Mean (8§ > 0) P <P P > P P >P
a — “ae a ae a ae

When 8§ = 0, the effect of bias (either positive or negative)Ais
to increase the pfobability of detecting shifts in the process mean
which is iﬁ coﬁtrolf Because bias is introduced thfqugh the measurément
process, this will result in searching for assignable causes which do
not exist. This can result in additional costs and if the'process is
shut down while a search for the‘cause is being made; production is
lost.

The probabilities of acceptance‘for the four cases discussed in
this section are given in Table IV. The probabilities for the case of
no biasg (ue‘= 0) are in Table I. The 0C curve to provide a graphical

comparison of the effects of bias are presented in Figure 8.
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TABLE IV

PROBABILITY OF ACCEPTANCE FOR SHIFTS IN THE MEAN FROM
u TO u + dox AS DETERMINED BY X-CONTROL CHART

IN PRESENCE OF BIAS (kj = 3.0,

' n = 4.0, vy

= 1.0)
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Negative

P(z_z

u+klcif(u+6gx+ue))

: u=k. o=—-(p+So +u )
N P(;.i % X Ve )

.0)

Yo% Y% Pae
-3.0 P(z > 11.0) + P(z < 5.0) = 1.0000 0.0000
-2.5 "P(z > 10.0) + P(z < 4.0) = 0.9999 0.0001
-2.0 P(z > 9.0) + P(z < 3.0) = 0.9986 0.0014
-1.5 P(z > - 8.0) + P(z' < 2.0) = 0.9772 0.0228
-1.0 P(z > 7.0) + P(z <. 1.0) = 0.8413 - 0.1587
-0.5 P(z > . 6.0) + P(z < 0.0) = 0.5000 0.5000
0.0 P(z > 5.0) + P(z < -1.0) = 0.1587 0.8413
0.5 P(z > 4.0) + P(z < -2.0) = 0.0228 0.9772
1.0 P(z > 3.0) + P(z <.=3.0) = 0.0027 0.9973
1.5 P(z > 2.0) + P(z < -4.0) = 0.0028 - 0.9772
2.0 P(z > .1.0) + P(z < -5.0) = 0.1587 . - 0.8413
2.5 P(z > 0.0) + P(z < -6.0) = 0.5000 0.5000
3.0 P(z > -1.0) + P(z < -7.0) = 0.8413 0.1587
: Positive Bias (ue = OX)
u+k.oz= (u+So_+u ) u-k.os—(u+So,+u )
PG> 1X x-g)+PG<. 1°X X e)
- YR - Yo% Pae
-3.0 P(z > 7.0) + P(z <. 1.0) = 0.8413 0.1587
-2.5 P(z > 6.0) + P(z < 0.0) = 0.5000 0.5000
-2.0 P(z > 5.0) + P(z < -1.0) = 0.1587 0.8413
-1.5 P(z > 4.0) +P(z < '-2.0) = 0.0228 0.9772
-1.0 P(z > 3.0) + P(z < =3.0) = 0.0027 0.9973
-0.5 P(z > 2.0) + P(z < -4.0) = 0.0228 0.9972
0.0 P(z > 1.0) + P(z < =5.0) = 0.1587 0.8413
0.5 P(z > 0.0) + P(z < =-6.0) = 0.5000 0.5000
1.0 P(z > -1.0) + P(z < -7.0) = 0.8413 0.1587
1.5 P(z > -2.0) + P(z < -8.0) = 0.9772" 0.0228
2.0 P(z > -3.0) + P(z < -9.0) = 0.9986 0.0014
2.5 . P(z > -4.0) + P(z < -10.0) = 0.9999 0.0001
3.0 P(z > -5.0) + P(z < ~11 = 1.0000 0.0000




Probability of Not Detecting Shifts in the

Mean of Magnitude Specified by the Abscissa
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Figure 8. Operating Characteristic Curves When Bias (u_ ) is Positive,
Negative and Zero (Data from Tables I and IV)
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Compensation for Bias

When no bias is present, the QC curve gives‘the probability of the
i—control‘chart to detect shifts in the process meaﬁ and to soﬁe extent
changes in the process variance. The analysis in fhe previous section
determined that in the pfesence of bias, the capability of the X-control ,
chart to describe the true state of contfol of the process 1s affected.
This resulted in incbrrect decisions regarding the state of control of
the process. Methodology is developed below to compensate for bias to
design a control chart tb‘perﬁif correct decisions to be made in regard
to thé true state of control of fhe_prOcess.

There ié a neéd to compensate for bias. In some situations it is
not feasible to eliminate the source of bias at the time it is dis-
covered. SinCe'Bias is causéd By.measurement and not process malfunc-
tion, it is desirable to adjust the éontrol limits for bias sB‘that
actual shifts 'in the.process parameters can be detected with the de-
sired probability. The dgsired.édjustment shoﬁld be such that Pae = Pa'

Consider first, the upper control limit with méasurement error and
without measurement error. The probability of a sample value falling
inside fhe upper control liﬁitvis given in equations (3.1) and (3.7).

If Pae is equal fo Pa,’thesé'probabilities.must be equal as must the
probabilities of a sample value fallihg outside the. lower control limits.
1 1

Let the modified control limit be denoted by UCLi and LCLX‘. Then for

the upper control limit,

UCLy - u UCLz - u
s s ) - 5[z < —1"-—_) . @ae
A Yoz "= oy
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This implies that
! : '
.UCLX ~ o, = UCLi - U. (3.39)
Since y and_oi are constant, the width of the control limit is free to
change. Then

wt kg oop - G + u) = u+ kjog = u (3.40)

]

kl kl + ue/oi . (3.41)

it

For the lower control limit, it can be determined in a similar manner

ky =k - u/og . | O (3.42)

When bias exists apd is kpown, k1' and kl".can be‘uged'in constructing
the adjusted uppér and lower cOntrdl limits. The new control liﬁits
will then prbvide.the same probability of detecting changes in process
parameters as would be obtained when there is no bias.

The result of fhe above adjuétment is to add the ﬁias to the current

control limits. Therefore,

UCLg UCLg + u.- (3.43)

For the lower control limit,

LCLi‘

LCLg + u, . ' . (3.44)

A trivial adjustment, but one that.is necessary, is to'adjust the
process meén, Its adjustment ié frOmAu to p + Mg+

Therefore, compensatioﬁ for bias is'obtained by adjusting the
process mean and the_factors'whichvdetefmine the width of the upper and

lower control limits.
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Effect of Imprecision

" Tmprecision occurs when the observed individual dimension deviates
from the true dimension by an amount Xe’ which is assumed to be a random

variable distributed N(O,oez).' This can be expressed mathematically as

i

XO + X + Xe
Observed  True Measurement Error (3.45)
- Value Value (Imprecision)

Recalling that-X'm‘N(u,oXZ)'and by convolution of the two normal inde-
pendent variables
. ' 2 2 2
Ky W NG+ 0y 00 0 By = NG o

X ) (3.46)
o

and

X n NG, OXOZ/n). | B RY))

Let Pae denote the probability of a sample average falling within

the control limits in the presence of imprecision only. Then

' UCLg - LCLg - u |
Pae = P(z f_-————:———) + P(z > ——‘-—:_—‘——') (3.48)
%% X
o . o -
or
u+ kooz - (u+ Soy)
1-P = P(% — 1X X ) +
ae

(3.49)

( u - kloi - G+ GOX))
Plz < " .

2 2 2
i 0X. ge /ﬁ;

+
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The denominator in equation (3.49) can be expressed in terms of Oy only.

2 2
Let f = Oy %&3’ then

2 2 2 2f2 2/2_ 2Y-f+l) ‘
Y oy + o, = Oy (y + g, _OX ) = oy (———E~—— R (3.50)

so that

p+ koog - (p+ Soy)
1-7P = P(z > 1X X +

ae . -
- e
: X £

b=k

10}'2 - (u + GOX)
o= "Yzf + 1
X - £

Equation (3.51) gives the probability of detecting a change in the

av]
N<
IA

(3.51)

process parameters by the X-control chart in the presence of imprecision
only. This equation reduces to

. ky - 8 R -k, - &/
1-7P =Plz > — |+ Pz < —— |. (3.52)

ae - o ol
' ' Yzf_+l , 2f+1
£ , R

This can be compared to equation (3.4) to determine the effect of impre-
cision on the probability. of aéceptance. Tb‘develop the relationship

between Pa and‘Pae, compare the following terms. For the upper control

limit

(3.53)

i ki - GJ,n) k., - (SJI—I-

1

Flz —F ] ¢ Pz > —/mm
( - Y 2

Y°f + 1

£
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For the lower control 1imit

-k, - 8/ | -kl—ay[5>
P(Z<——_‘———):PZ<“‘“"'—“_‘_'" . (3-54)

- Y

In equation (3.53), the numerators are the same. In the denominators,

2
v < | Y__..__fffl (3.55)

for any f and y. From this

kl-af5>kl-ajﬁ
. .
Y2 41

f

(3.56)

Because the denomingtors iﬁ'tﬁe snds iﬁ equations (3.53) and (3.54).
are different, the analysi54must be made giving consideration to the
algebraic signs of the numeratofs; A switch in signiand magnitude can
cause a difference inlfhé.relationship defined in equations (3.53) and

(3.54).

Case 1l: Negative Shift (8 < 0)

The terms in equation (3.56) wiil-always be- positive, so that for

the upper‘control limit

< Plzg > =———o) . (3.57)
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For the lower control limit the magnitude of &J/n must be considered as
the numerators will change sign as sdn approaches the magnitude of —kl.
There are three situations to be analyzed: (--k1 - sfn < 0, (—kl -

§fn = 0), and (-k; - sdn > 0).

la. Numerator Negative (-ky - s < 0). When the numerator in

equation (3.54) is negativé

—kl—sJH —kl—aJH

< (3.58)
v 2
Y°f + 1
f
so that
-k, - 8o -k, - &/n

= Y z2 = 5
Y°f + 1
: .

For typicél:values of ki and n (say 3.0 and 4.0), the probabilities in
equation (3.57) will contribute negligible amounts to Pa and Pae' The
probabilities in equation (3.59) wili‘determine the relationship between

P and P so that
a ae

1 —_Pa.< 1 _jPaé | (3.60)

Pa § Pae' ' (3.61)

When the shift in the process mean is in a negative direction and
§ > —kl/JH; the probability of detecfing changes in the process mean is
increased due to iﬁprecision. 4The effect of imprecision is to
declare the process out of control more frequently than when no impreci-
sion is.present.‘ As‘with bias, when § = 0 the number of false alarms is

increased when imprecision is present.
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2a. Numerator Zero (-kj - 8/n'= 0). When the situation occurs,

P(z <=5 GE)=P'2'i———'k' e (3.62)
% + 1
£
and
P =P . (3.63)

When the:shift in the process mean is such that 6§ = - kl/JE, the
probability‘of,defecﬁing'chénges in the process parameters'are equal .
with or withoué imprecisionf (An exception will occur when the observed
variance is ektremely large sﬁch that some probability would Be added

from the upper control limit.)

3a. Numerator Positive (-kj .- sén > 0). If the numerator is

positive,
-:ki_;.djﬁ =k - &n
: v > (3.64)
o Y2 + 1 |
. 3
and :
-k -8k -k, - &/n .
P(z < T ) > Plz < (3.65)
L Y2 41
f
so that
1- Pa > 1 - Pae _ : (3.66)
P <P . (3.67)
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When the process mcéh shifts in a negative direction and § <—k1/f;,
the probabflity of deteéting changes in the process parameters is redﬁCed
due to iﬁprecision. The processlwilllﬁé judged.to be in control more -
frequently in the preséﬁce of imprecision than when imprecision is zero.
This will result in -an increase in the number of -defective items being

produced, thereby increasing costs.

Case 2: Positive Shift (5§ > 0).

By a similar analysis for 'a positive shift in the process mean

toward the upper control limit, the following conclusions can be drawn.

la. Numerator Negativé‘(klrf 8/n < 0). When § > kllfﬁ, the prob-

ability of‘detecting.shifts'in the pfocess parameters is redﬁced

(1 - P, > 1 - Pae);_‘This indicates'ﬁhat in'présencé'of imprecision the
procesé is judged to be in control ﬁore frequently than in the absence of
imprecision, when in fact it is out of contrél. ‘This will cause an_in—

crease in the amount of defective items being produced (same as 3a for

Case 1).

2a. Numerator Zero (kl - 8n = 0). When 6 = kl/JH, the probability
of detecting changes in the process parameters is the same with impreci-
sion and when no imprecision is preSeht (1 - Pé =1 - Pae)' (An excep-

tion similar to that of 2a for Case 1 will also occur.)

3a. Nﬁmeraﬁor ?ésitive (kl,; s/n > 0). Whén 6.<.k1//5, the
probability of.aetectiﬁg shifts in the procesé parameters is increased.
The effect of.imprecision ig to judge the process out of control more
frequently than when impfecision is zero-(éame as la fdr Case 1). The

results from the two cases are summarized in Table V.



- TABLE V

RELATIONSHIP BETWEEN P, AND P, FOR X-CONTROL
CHART IN PRESENCE OF IMPRECISION ONLY

65

Mean (§ > 0)

Negative Shift in Mean (8 < 0) Positive Shift in
8 > -k /fn § > k,/Vn
1-P <1-7p 1-P >1-P
a ae a ae
P >P P < P
a ae a ae
6 = -k /{n S8 =k /dm
l1-P =1-P 1-P =1-P
a ae a ae
P . =P P =P
a ae a ae
§ < -k, /{n § < ky/\n
1-P >1-7P 1-P <1-P
a ae a ae
P <P P > P °
a ae a ae
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The general effect of impféciéion 1s to flatten or rotate the OC
curve with the probabilities bein‘g.‘equ‘al when § = |k1l/f—. ' The probabil-
ities of acceptance for the above cases are presented in Table VI. The
OC curves érebdrawn in Figure 9. The magnitude of imprecision is de2 =
oxz (f = l).’ (This choice of the magnitﬁde of dez is realistic and
demonstrates the effect of impreqiéion on detecting changes in the
process parametefs.. Thisiéuthor has observed, in practice, estimates
of imprecision as high ;s 10 times thelproéeés variance, with magnitudes
of two to four common.) Two cases involving a shift in the process

variance are evaluated. The first is when no. change occurs in the

process variance (y = 1). The second is when the process variance has

2

increased from o ) to 40X

X (y = 2). The OC curve for oez =0and vy = 1

is taken from Table I.

Compensation for Imprecision

The detrimental effect of imprecision on the capability of the
X-control chart to describe the true state of control of a process was
evaluated in the previous section. If. the magnitude of imprecision is
known, then adjustments can be made so that the X-control chart will
provide the same probability of detecting shifts in the process
parameters in the presence of imprecision as when there is no ‘impreci-

. - . s 2 2 2 2
sion. Imprecision increases the observed variation (o =~vyo, +0 7).

X X e
o

Intuitively, a précedure to.réduce‘the variation of a sample éverage is
to increése the sample size from which the aQerage is estimated. To
achieve the same ﬁrobability‘of detecting shifts (Pae'% P;) in the
procesé parameters, consider‘an adjustment in the sample size and. denote

this adjusted value by n'.



PROBABILITY OF ACCEPTANCE FOR SHIFTS IN MEAN FROM u TO u + éo
AS DETERMINED BY AN X-CONTROL CHART IN THE PRESENCE OF

TABLE VI
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X

IMPRECISION gNLY (k1 = 3.0, n = 4.0,
2<f 1)
" No Change in Process Variance (y = 1)
U+ kos - (u+ 8o0,) - k,oz - (u + 8o)
pfz > 1°X A X Y i. 17X X
5 o v2E 41 ' R I_:zf +1 p
X f / ‘ X - f ae
-3.0 P(z > 6.36) + P(z < 2.12) = 0.9830 0.0170
-2.5 P(z > 5.66) + P(z < 1.41) = 0.9207 0.0793
=2.0 P(z > 4.95) + P(z < 0.71) = 0.7612 0.2398
-1.5 P(z > 4.24) + P(z < 0.00) = 0.5000 0.5000
-1.0 P(z > 3.53) + P(z < -0.71) = 0.2390 0.7612
-0.5 P(z > 2.82) + P(z < -1.91) = 0.0817 0.9183
0.0 P(z > 2.12) + P(z < -2.12) = 0.0340 0.9666
0.5 P(z > 1.41) + P(z < -2.82) = 0.0817 0.9183
1.0 P(z > 0.71) + P(z < -3.53) = 0.2390 0.7612
1.5 P(z > 0.00) + P(z < -4.24) = 0.5000 0.5000
2.0 P(z > -0.71) + P(z < -4.95) = 0.7612 0.2398
2.5 P(z > -1.41) + P(z < =5.66) = 0.9207 0.0793
3.0 P(z > -2.12) + P(z < -6.36) = 0.9830 0.0170
: Increase in Process Variance (y = 2)
u o+ kloi - (v + doX) u o+ kloi - (u +‘60X)
Plz > + Pz <
e Y2f + 1 ' oe. Y2f + 1 p
X f ' X f ae
-3.0 P(z > 4.02) + P(z < 1.34) = 0.9099 0.0901
-2.5 P(z > 3.57) + P(z < 0.89) = 0.8134 0.1866
-2.0 P(z > 3.13) + P(z < 0.45) = 0.6744 0.3256
-1.5 P(z > 2.68) + P(z < .0.00) = 0.5037 0.4963
-1.0 P(z > 2.24) + P(z < -0.45) = 0.3390 0.6610
-0.5 P(z > 1.79) + P(z < -0.89) = 0.2234 0.77656
0.0. P(z > 1.34) + P(z < -1.34) = 0.1802 0.81938
0.5 P(z > 0.89) + P(z < -1.79) = 0.2234 0.7766
1.0 P(z > 0.45) + P(z < -2.24) = 0.3390 0.6610
1.5 P(z > .0.00) + P(z < -2.68) = 0.5037 0.4963
2.0 P(z > -0.45) + P(z < -3.13) = 0.6744 0.3256
2.5 P(z > -0.89) + P(z < -3.57) = 0.8134 0.1866
3.0 P(z > -1.34) + P(z < = 0.9099 0.0901

~-4.02)
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For I’ . to equal P

e d

UCL)'Z - U UCL)—( - u
Plz < —=——|=P|lz < —— |, ' (3.68)
]
o BT Yoy e
and
« LCLz - u | LCLz - n
-_Pzi———>{———‘—=Pz3—-—L—— . : (3.69)
N 1 .
cXO/Jn \ Yox/fr_x .

Consider the upper control limit,

U+ ko= - (p +>§o ) ‘ b+ k.oz - (0w + 8o,)
1°% e P R X . 3.0

) ( sz_Jr__l_)/f;  voyflm

X f

For this expression to beftrue, the denominators must be equal, which

implies

°x (}Yzf + 1) = Y',-OX i (3.71)

. 2 '
v D (Y £+ 1 .
n' = 2( 3 ) . (3.72)

In a simiiar manner, it can be shpwn’that for the lower éontrol limit,
the compensating factor is thé same aé in equation (3.72).

Imprecision can be chpénséfed for by increasing the sample size,
This magnitudé of increase is-deéefmined by the ratio of the process
variance (qxz) to Fhe amount of impfecision (oez). "This method of

compensation does ﬁdt»change the control limits. This adjustment will
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permit the correct decisions to be made regarding the state of statis-
tical control of the process as defined by the X-control chart. Impreci-
sion has no effect on the measure of central tendency. No adjustment is

necessary for y..

Effect of Bias and Imprecision

The above developments have evaluated the effects and determined
compensating factors for bias.only and imprecision only. However, both
types of measurement error can occur.siﬁultaneously. When both types
are present, the probability of detecting éhifts in the process

parameters is given by

UCLg - .\ - LCLg - u Y

1-p =Pz >—"2 + Py <« —X 0 (3.73)
. % /JH °x /JE
. - O e
UCLz - (u + u) CLCLg - (u+ )
=Pz > X e\t pfz <« —X - 1. 3.74)

2 i - 2 /
YOF + 1 /Yf+1
9% 3 /J‘_‘. 9% £ )

When the process mean shifts from u toyu + GGX,

k, - 8dn - u_Jn/o; 5 -k, - 80 - u_Jn/o,)
1-P =7plz>—= < X\t plz < 1 e X

ae = — (3.75)
,Yzf + 1 - Yzf + 1
f _ N f

To assess the effect of bias and imprecision, compare the probabil-

ities in.equation (3.75) to the probability bf-detecting changes in the

process parameters in the absence of bias and imprecision, which is
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'kl—csfrT —kl—sfﬁ
1-p =P(z'>—~————>+1>(z3—————). (3.76)

Y

As before, consider the relationships between the upper control limits

and the relationships between the lower control limits.: Compare

k, - &dn k, - 8 n - pJdn/o
P(? 3_—ij;——*—) : Pz > L < X\ . (3.77)
4 ‘ Y2f + 1
o _ J. £ -
and compare
-k - §dn -k - 8/n - ”e'E/Ox 4
Plz < ———— ] : Plz < . (3.78)

’ /Yzf + 1
f

Wﬁén.both bias and imprecision are present, generalizations about
the relatioﬁshipé.bétﬁeen éa and Pae cannot be.defined explicitly. When
each type of measufément error was eva1uated individually, the relation-
ships such as eﬁuatibns (3.77) and (3.78) had either the numerator (bias)
or denominator (imprecisién)'fixed whileAthe other could change. This
permitted developﬁent of general relationships for Pa and Pae (within the
range of o and 8). As-equations (3.77) and (3.78) reveal, both
numerator énd denominator. can change,vsb ;hat the relationships that
exist will depend upon W o S, y'and f.x

Examples of the joint‘effect of bias and imprecision on the prob-
ability of acceptance are provided in Tables VII and VIII. The OC curves
are shown in Figures_lO and 11. Tabie VII contain; the probabilities for
the effect of bias (both.positive'andnegative) and imprecision (0X2 =
oez) on the probability of acceptancé for shifts in the process mean.

There is no change in the process variance (y = 1). These magnitudes



TABLE VII

PROBABILITY OF ACCEPTANCE FOR SHIFTS IN MEAN FROM p TO u + 8o
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AS DETERMINED BY X-CONTROL CHART IN PRESENCE OF BIAS AND X
IMPRECISION (kj = 3.9, n = 4,0, 0e? = oxl(f = 1),
Gxoz, = y“oy + cez, vy = 1.0)
Negative Bias (ue = —ox)
nt+k. o= (u+So+u ) u=k,o=—(p+So,+u )
Plz > l X e + Plz < 1 X X _e '
e i+l | o /yzf +1 >
XV f X f ae
-3.0 P(z > 7.78) + P(z < 3.53) = 0.9997 0.0003
-2.5 P(z > 7.07) + P(z < 2.82) = 0.9976 0.0024
-2.0 P(z > 6.36) + P(z < 2.12) = 0.9830 0.0170
-1.5 P(z > 5.66) + P(z < 1.41) = 0.9207 0.0793
1.0 P(z > 4.95) +P(z < 0.71) = 0.7612 0.2398
-0.5 P(z > 4.24) + P(z < 0.00) = 0.5000 0.5000
0.0 P(z > 3.53) + P(z < -0.71) = 0.2390 0.7612
0.5 P(z > 2.82) + P(z < -1.41) = 0.0817 0.9183
1.0 P(z > 2.12) + P(z < -2.12) = 0.0314 ©0.9666
1.5 P(z > 1.41) + P(z < -2.82) = 0.0817 ‘ 0.9183
2.0 P(z > 0.71) + P(z < -3.53) = 0.2390 0.7612
2.5 P(z > 0.00) + P(z < -4.24) = 0.5000 0.5000
3.0 P(z > -0.71) + P(z < -4.95) = 0.7612 _ 0.2398
Positive Bias (ue = 0y

: u—kloz—(u+5ox+ue)

B G >
% £ /. %X £

_u+k10i—(u+§cx+pe)

+
av}
N

ouUvouo Vo VLo Lo 1 O

-7.78)

ae
P(z > 4.95) + P(z < 0.71) = 0.7612 0.2398
P(z > 4.24) +P(z <. .0.00) = 0.5000 0.5000
P(z > 3.53) + P(z < -0.71) = 0.2390 : 0.7612
P(z > 2.82) + P(z < -1.41) = 0.0817 0.9183
P(z > 2.12) + P(z < -2.12) = 0.0314 0.9666
P(z > 1.41) + P(z < -2.82) = 0.0817 0.9183
P(z > 0.71) + P(z < =3.53) = 0.2390 -] 0.7612
P(z > 0.00) + P(z < -4.24) = 0.5000 0.5000 -
P(z > -0.71) + P(z < -4.95) = 0.7612 0.2398
P(z > -1.41) + P(z <.-5.66) = 0.9207 0.0793
P(z > -2.12) + P(z < -6.36) = 0.9830 ‘ 0.0170
P(z > -2.82) + P(z < -7.07) = 0.9976 0.0024
P(z > -3.53) + P(z < = 0.9997 0.0003




PROBABILITY OF ACCEPTANCE FOR SHIFTS IN THE MEAN FROM p TO u + 8o
AS DETERMINED BY X-CONTROL CHART IN PRESENCE_OF BIAS AND

TABLE VIII

IMPRECTSION (k1 = 3.0, n = 4.0, 0e? = oy’ (f = 1),

Uxo‘ = yzox + oez, Yy = 2.0)
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X

Negative Bias (ue = —ox)

Pk os—-(u+do_+u ) " u-k:ozs-(p+Sotu )
ol 1°X X e\, pf, « —_LX X e
e /Yzf +1 - o /Yzf + 1 P
X 3 X 3 ae
-3.0 " P(z > 4.92) + P(z < 2.24) ='0.9874 0.0126
-2.5 P(z > 4.47) + P(z < '1.79) = 0.9633 0.0367
-2.0 P(z > 4.02) + P(z < 1.34) = 0.9099 0.0901
-1.5 P(z > 3.58) + P(z < 0.89) = 0.8134 0.1866
-1.0 P(z > 3.13) + P(z < 0.45) = 0.6744 0.3256
-0.5 P(z > 2.68) + P(z < 0.00) = 0.5037 0.4963
0.0 P(z > 2.24) + P(z < -0.45) = 0.3390 0.6610
0.5 P(z > 1.79) + P(z < -0.89) = 0.2234 0.7766
1.0 P(z > 1.34) + P(z < -1.34) = 0.1802 0.8198
1.5 P(z > 1.19) + P(z < -1.79) = 0.2234 0.7766
2.0 P(z > 0.45) + P(z < -2.24) = 0.3390 0.6610
2.5 | P(z > 0.00) + P(z < -2.68) = 0.5037 0.4963
3.0 P(z > -0.45) + P(z < -3.13) = 0.6744 0.3256
B Positive Bias (ue-— QX)
u+k, o=~ (u+do_+u v~k oz-(u+So +u
pls . 1X ¢ »X e). +plg < 17X X e)
s A R U o S | .
f ‘ ' X - £ ae
-3.0 P(z > 3.13) + P(z < 0.45) = 0.6744 0.3256
-2.5 P(z > 2.68) + P(z < 0.00) = 0.5037 0.4963
-2.0 P(z > 2.24) + P(z < -0.45) = 0.3390 0.6610
-1.5 P(z > 1.79) + P(z < -0.89) =0.2234 0.7766
-1.0 P(z > 1.34) + P(z < -1.34) = 0.1802 0.8198
-0.5 P(z > 0.89) + P(z < =1.79) = 0.2234 0.7766
0.0 P(z > 0.45) + P(z < -2.24) = 0.3390 0.6610
0.5 P(z > 0.00) + P(z < -2.68) = 0.5037 0.4963
1.0 P(z > -0.45) + P(z < -3.13) = 0.6744 0.3256
1.5 P(z > -0.89) + P(z < -3.58) = 0.8134 0.1866
2.0 | P(z > -1.34) + P(z < -4.02) = 0.9099 0.0901
2.5 P(z > -1.79) + P(z < -4.47) = 0.9623 0.0367
3.0 P(z > =2.24) + P(z < = 0.9874 0.0126

-4.92)




P, = Probability of Not Detecting Shifts in

Curve%
1.00 (g, = 0, 0% = 0)
Curve 3 Curve 2
(Ll:O 02=02) (u = -0 0'2=‘
e X’ Te X . e X’ e
@
0
)]
P
@
a 0.80T
=
>
Kal
°
Q
o
Yy
-s .
9 0.60
=%
w0
0]
o
3
u,
o
=,
% 0.40 }
& 0.40
U4
o
a
o
@
=
Q
S 0.20 ¢
3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
GGX = Shift in Process Mean
Figure 10. Operating Characterlstlc Curves for an X-Control Chart When Bias (u )
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of ‘measurement error are realistic and will permit conclusions to be
drawn régafding the combined effect of bias and imprecision on an
X-control chart to detect changes in the process mean.

From Figure 10, and under thg conditions specified, thé following
statements can be made. The effect of‘imprecision and a negative bias
‘is to lower and shift the CC curve to the right (Cﬁrve 1). Biaé shifts
the curve to. the right.aﬁdAimpreéision flattens the curve. Curve 2 and
Curve 1 will intersect at a poiﬂt, say 51', which depends on the amount
~of bias aﬁdbimprecisiOH. To the right of this point (51'), the probabil-
ity of detecting shifts in the process paiameters is reduced. 1If a
positive shift occurs in pbe proceés mean which is greéter than 61',
the éffect of measuremeht error is to lower the frequency with which
thesg shifts wiil be detected by the X-control chart. For»shifts less
than 51',_the effect of measurement error is to increésejthe probabil-
ity of detecting fhis shift. The effect of imprecision and a positive
bias 1is to shift the curve to the left (effect of bias) and to flatten
the curve (effect of imprecision, Curve 3). An interpretation of this
combination of measurgment error is analogous to that of Curve 2.

Table VIII.contains thebprobabilities.of acceptanée when bias and
imprecision exist. In this table, the variance has been increased to
40X2(f = 2).  The OC curves for these»conditions are plotted in Figure
11. Based on these data, the following statement can be made. Thg
effect of bias is tb;shift the curves toithé right (negativefbias) and
to thebleft (positive bias). The effect of‘imprecision is to flatten
the 0OC curve.. Curﬁe 2 (negative bias) intersects Curve 1 (the measure;

ment error) at two points. For positive shifts in the mean, let this

point be §,'. When § > §

2

2', the probability of detecting shifts in the
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process mean is reduced. For shifts:§ < 62', the probability of de-
tecting shifts is increased until Curve 2 intersects Curve i again and
the probability of detééting shifts is reduced. Howevér, this phenomena
is due to the increasé in the variance and is more pronouriced with
increésing variance. For these data, the difference is not of practical
significance. A similar discussion can be made for the case of positive
bias (Curve 3).

While the exact effect of meééuremént error on the capability of
the X-control chart is dependent upén the magnitudé'of the measurement
error and thé shifts in the process paramefers, one definite effect is
noted. This occurs when the process ié in a state of statistical con-
trol (8 = 0). The effect of-bias and imprecision is.to increase the
probability Qfﬁ&etecting_changes‘in the prbcéss parameters. That is,
there will be an increase in the numbef ofjfalse alarms. From these
data, the probability.of a false alarm is increased from .27% to 23%

(y = 1) and from .27% to 33.9% (y = 2). The result of this effect is
costly in that.manpower is used.éearching for assignable causes thét do
not exist and production is lost if.the process is shut down while the
search‘is being conducted.

Another significant effect of.bias occurs when bias is in the

opposite direction of the shift in the process mean and pe AN Yo} When

XI
this situation occurs, the bias is masking the shift, which will result

in an increase in the number of defective items being produced. This

will reduce productivity.

Compensation for Bias and Imprecision

. | 3 o . 3 . 3 3 3
The analysis and discussion in the previous section have indicated
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that.the effect of bias and imprecision will affect the capability of
‘the i—éontrol chart to deScfibeia&equately the true state of statistical
control of the process being monitored. Recalling that measurement
error is not process related, it is desirable to adjust the control
chart so as to reflect the true control state of the process. The
desired result‘is to have Pae = Pa. For this to occur, the control
limits with measurement error must equal the control limits without
measurement grror;

From equations (3.73) and (3.74), this implies that for the upper

"control limits

UCLg' - u UCL - u |
Plz > —=——>\=Plz > —— |, (3.79)
: _
% / o vou [in

LCL=' - LCL= - u
Plz <« ——2)=p[z « —2& (3.80)
. ' :
oy /IrT_ ycX//E
o
For the upper éontrol limit (3.79),
'o— — - -
A S S T o S (3.81)
Y 41 [ = Yoy/ I
wiTE A

To determine kl' and n' that will make (3.81) a true equality, set the

numerators and denominators equal and solve for kl' and n', First,

¥ +k oz - (u+ ue) =y + k (3.82)

1 %% 1%x T ¥
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'= -
kl -kl + ue/cx J (3.83)
For the denominator,
Y2f+l/ '
'=

N fn ycX/Jn (3.84)

n Y2f + 1

v B ¥ r+ o2
n Yz( : . (3.85)

Therefore, the compensation required, when both types of measurement
" error -are présent, such that Pae = Pazis thé adjustment required when
adjusting for each type individually.

| In a similar manner, from equation (3.80), it can be shoﬁn that for

the lower control limit,

v _ _
kl = k14 He/cX > (3.86)

and

2
,=&I__f__+_1_) |
- n Y2(~ : . | ; | (3.87)

Also, the measure of central tendency must be adjusted. Since this
parameter is affected by bias only, the adjustment is from p to u + Mge
Therefore, the adjustments made to compensate for the bias and impreci-

sion are the individual compensation factors for each type of measurement

error when it occurs individually.
R—Controi Chart

The R-control chart is used to judge the state of statistical con-

trol of the process variance (sz). This is accomplished by setting
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upper and lower control limits about a measure bf the dispersion of a
process (usually denoted by Hp oOT its estimate R). This measure can
-Be a standard value or it can be estimated from procesé data (usually
over a long period of time when the process variance was known to be

in control). When a sample is taken from the process, the sample
range (R) is estimated. The range is calculatea by subtracting the
smallest observed dimension froﬁ the largest observed dimension. If
this value falié within the cﬁntrol limit, the procéss variance is said
to be in control. An OC curve is used as a performance measure for an

R-control chart.

Without Measurement Error

The assumption in constructing an R¥control chart is that the
observed dimensions are froﬁ a normal population. An R-control chart
has the form shown in Figure 12; A ﬁrocess is said to be in control
with respect.to.ité.vériatioh if'samplé values of the range (R) fall

within the control limits.

UCLR = kzcx
MR
LCLR = k30X

Figure 12.. R-Control Chart -
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The operéting characteristic curve for the control chart shown in
Figure 12 is constructed by determining the probability of acceptance

(Pa) as the process variation chénges. This is calculated by
Pa =‘P(R i_UCLR) + P(R i,LCLR)- (3.88)

Consistent with earlier notations, let shifts in the process

variance be denoted by yzo 2, where yzﬂis'a constant. The probabil-

X

ities are determined using the distribution of the relative range

w = R/yoX (45) so -that

=
|

. . 'UCLR A LCLR)
= P(R(YOX i—'Y—&;) -+ P(R/YGX > YUX (3.89)

PG < ky/y) + PG > ky/y). (3.90)

As an example of the ability of the R-control chart to detect shifts

in the process variance, let n = 4.0. 'Then k, = 4.70 and k3 = 0.0.

2

(These values of. k, and k3 give R i-SOR‘limits{) The probabilities of

2
a sample range falling within.tﬁevcontrol limits as the process variance
changes from OXZ to 225 OXZ are given in Table IX. The OC curve for
these conditions is plotted in Figure 13.

Compare Figure 13 to Figurel6.' Figure 6 gives tﬁe probability of
not detecting (Pa) changes in the processvvariance usiﬁg an X-control
chart. Supposé‘the process étandard deviation.increased 100% froﬁ Oy to
ZGX. The probabiiity_of detéctiﬁg a1 - Pa)_using the X-control chart is
about 147 compafed to 34% for the R-control chart. The R-control chart
is more sensitive to changes in the.pfocqss variance than is the

X-control chart. This demonstrates the need for using both charts to

properly control the process parameters.



TABLE IX

PROBABILITY OF ACCEPTANCE FOR INCREASES IN PROCESS
VARIANCE FROM oy% TO y20x2 AS DETERMINED BY
R-CONTROL CHART (n = 4.0,

ky = 4.70, kg =-0.0)
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R
shift | P(W‘i"'y_ Fa

" P(w < 4.70) = 0.9951
1. 2.25 « P(w < 3.13) = 0.8804
2. 4.00 P(w < 2.35) = 0.6558
2. 6.25 P(w < 1.88) = 0.4559
3. 9.00 P(w < 1.57) = 0.3168
3. 12.25 P(w < 1.34) = 0.2209
4. 16.00 P(w < 1.18) = 0.1620
4. 20.25 P(w < 1.04) = 0.1172 -
5. 25.00 P(w < 0.94) = 0.0897
10. 100.00 P(w < 0.47) = 0.0168
12. 144.00 P(w < 0.39) = 0.0074
5. 225.60 P(w < 0.31) = 0.0038
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Chart (Data from Table IX)
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Effect of Bias

Now consider the effect>of bias only on the R-control chart. Bias

is a constant and is related to a sample observation as follows:

XOA ‘= X+ My . (3.91)
Observed .True Measurement Error

Value Value _ (Bias)

A value of the range (R) is.estimated from a sample by differencing the
largest and smallest observations._ Let XoL denote the largest observa-

tion in the sample and let XoS denote the smallest observation in the

sample. Therefore, the observed range is

RO = XoL - xoS (3.92)

X+, - K +u) =X - X . (3.93)

Bias does not affect the observed estimate of the range and subsequently
does not affect the mean range (E(RO) = R).
Also, bias does not affect the variability of the range (ORZ). By

definition, o = d30X where ds is a constant determined by the sample

size and Og is the process standard deviation. Bias does not affect the

variation of an observation in the sample. (In a previous section it

2,) The estimate of‘c obtained

was determined that XO v N(p + Hgs O R

X
from the sample will not be affected by bias. Therefore, bias will have

no effect on the capability of an R-control chart to detect changes in

the process variance.

Effect of Imprecision

Imprecision is defined in a previous section as a random variable
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2

Xe which is distributed N (0, Oy ). 1Its effect on an observed dimension

, , ' . L2, .
is to increase the observed variance (oX ). The mean range Hp 1s re-
_ o . .

lated to Og by

=d 6, . (3.94)

o, © = Y o5+ o “ . v (3.95)

Therefore; Hp will be affected'by'imprecisiOn and shifted to-uR , since

woo=do, . o (3.96)

The effect of impreCision will be to increase the estimate of the mean
range.
Imprecision will also affect the variance of the range (GRZ). By

definition, o_ = d

R 30y From equation (3.95), when imprecision exists,

the estimate of CR .will be d3oi . Therefore, imprecision affects both

o %o
the mean range and its variance.

In the absence of imprecision,

UCLRv= kzox (3.97)

o . (3.98)
LCLR f k3cxv..

If Pae is the probability of acceptahce in the presence of impreci-

sion,
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lav]
]

ae = P(R S UCLY) + PR > LCLy) (3.99)

P(R/oXo < UCLIR/OXO) + P(R/oXo LCLR‘/OXO) ' (3.100)

) 2 ‘ : 2
Y f +1 Y f + 1
P (w < k20X /oX ’ F ) + P(w k3oX /OX ’ : ) (3.101)
. 2 2
YOF + 1) /Y f + 1>
P(w < k2 / —F )+ P(w > k3 / £/ (3.102)

w is the distribution of the relative range.

I

| v

To evaluate fhe effect of imprecision on the capability of the
R—control chart tovdetgct increases in the process variénce, determine
the relationship:between P; and Pae by comparing equations (3.90) and

(3.102). For the upper control limit,

. 2_-
P(w < ky/y) : P(w <k, / l—ﬁ—fii> , (3.103)

and for the lower control limit,

2
P(w 2 ky/7) :P(w_>_k3/ Y—f?*——l) ©(3.104)

For sample size greater than or equal to fwo, k2 and k3 will be
greater than or equal to zero. The expressions .in equations (3.103) and
(3.104) will be greater than or equal to zero. Therefore,

2‘ .
YOF + 1 ,
_kZ/Y > k2/ —F (3.105)

and
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| 7
P(w < ky/y) > P(wikz/ 1—%—1) : (3.106)

For the lower control limit,

o / Y2f + 1
k3/’Y > k3 ———?-— N (3.107)

and

2
P(w > ky/y) < P(w _>_»k3/ l—ff—““—l> : (3.108)

Since k2 > k, and the distribution of the range shifts toward .the upper

3
control limit, as the process variance increases, the relationship
between Pa and Pae will be determined by the upper control limit. (In
3 is zero.) For in-

creasing variance, the prbbability calculated from the lower control

most practical applications of the range chart, k

limit will be minimal. Therefore,
P >P . (3.109)

The effect of imprecision on the R-control chart is to reduce the
probability of not‘detecting changes. ‘When shifts do occur this effect
is beneficial. When no chénge occurs in the variance (in control) the
presence of imprecision will:cause an inérease in the frequency of false
alarms. Also, for small changes. in the variance, this increase in the
probability could be harmful. Many times, small increases in the
variance can be tolerated. Since imprecision is due to the measuring
techniques and not related to the pfocess variance, this can result in
lost production and inefficient use of manpower in searching for non-

existent assignable causes.
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The probability of acceptance in the presence of imprecisiop is
given in Table X for increases in the process variance (y). The OC
curve for these data is dféwn in Figure 14, with the OC curve when no
imprecision is present (Figﬁre 13). A cbmparisén of these two curves
indicates that for small incréases in the process variance (y < 3),
there is a high probability of detecting an out-of-control condition.
However, for y > 3, there 'is ﬁo'practical difference between the two
curves, due to the magnitudé of the increased variance as cémpared to

the amount of imprecision.

Compensation for Imprecision

In the above section. it wés determined that the effect of impreci-
sion on an R-control chért is to increasé the probabilit? of declaring
the process variance to be out bf control. If the magnitude of impreci-
sion (oez) is kﬁo&n, ﬁethodology’can be ‘developed to design a control
chart to provide the-same'probability of detecting changes in the
process variance wheﬁ imprecisiohgéxisfé és when no imprecision exists.
As before it is desirable to have_Pae =fPa. Denoted the adjusted gontrol
limits by UCLR' and LCLR'.

Then for the upper control limit and since o, is constant, let k,'

X 2
become the variable of adjustment, so.that
P(R > UCL,") = P(R > UCLy) (3.110)
' — :
P(R/qxé 3-k2,OX/QXO) P(R/OX Z_kzox/yox) (3.111)

. : 2 - ;
P(w >k, //L%L’-L): P(w > ky/v). (3.112)



TABLE X

PROBABILITY OF ACCEPTANCE FOR INCREASES IN PROCESS VARIANCE
FROM 0y2 TO y20y? AS DETERMINED BY R-CONTROL CHART
IN PRESENCE OF IMPRECISION (n = 4.0, kp = 4.70,
ky = 0.0, 0,2 = og?(f = 1)) :

89

10.

12.

15.

Shift P(W <k /f(—z—f;:) = Pae
P(w < 3.32) = 0.9124
. 2.25 P(w < 2.61) = 0.7480
.00 P(w < 2.10) = 0.5534
6.25 P(w < 1.74) = 0.3926
9.00 P (w __1.49) = 0.2823
12.25 P(w < 1.29) = 0.2017
16.00 P(w < 1.14) = 0.1485
$20.25 P(w < 1.02) = 0.1115
25.00 P(w < 0.92) = 0.0847
100.00 P(w < 0.47) = 0.0168
144.00 P(w < 0.39) = 0.0074
225.00 P(w < 0.31) = 0.0038
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(Data from Tables IX and X)
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For these probabilities to be equal,

k '/\/’.’Y_Z_I.-_._u.z
2 . f

kz/Y

In addition to adjusting the

‘adjusted. Let the adjusted value be denoted by pR'.
it is desirable to have uR' = uR, where
'
Wp T d30% o
“o
and
Mg = d3voy
Therefore,
' =
MR Ox ”R/ch
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(3.113)

(3.114)

adjustment is

(3.115)

control limits, the mean range must be

For this situation

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)



92

Compensation for imprecision on the R-control chart is provided by

adjusting the measure of the mean range and. the factors detéermining the

: I
upper and lower control limits. The adjustment factor, (%.,X_£¥i;l>’

is the same for each.

The above development has considefed the R-control chart independent
from the X-control chart in terms of developing compensation.factors. 1In
a previous section, it was determined thét imprecision affected the
capability of an i—controllchart to detect changes in the process mean
and variance. To compensate for the effect of imprecision on the
X-control chart, an adjustment is made in the sample size. If the X- and
R-control charts are operated together, the adjuéted sample size must be
used to detefming new values of k2 and k, for the R-control chart.

3

Therefore, to adjust the R-control chart for imprecision, useé the com-

2 3

to determine kz' and k3'. This approach does not result in the same

probability of detecting shifts in the process variance using a sample

pensating factors developed above using>the new values for k, and k

size of n. This approach,doéé’provide administrative convenience (and~
i_30R limits) By»using fhe sgme_sample size fo; bbth X- and R-control
charts. If the samé prébability.ofvdetecting shiffs in the process
variance is desired as when no-imprecision is present, then from the

'

n' items use only n items to judge the state of statistical control for

the range and determine kz' an&'k3' from the old k, and kj.
Summaryl

. Based on the analyses in this chapter, the following statements

can be made about the effect of measufement error (bias and imprecision)
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on the capability of the X- and R-control charts to detect changes in

the process parameters:

1.

For process mean in control--Bias and/or impreoision causée an
increase in the pfobébility of detecting changes in the process
mean.

For process mean out of control——If the bias is in the same
direction as the shift in thé mean, the probability of detect-
ing this shift is increaéed. While this appears to be benefi-
cial, fhis effect will occur even when the shift invthe mean is
relatively small and is -acceptable. Bias in fhe opposite
directiop of the shift:tends to affect the effect of the shift.
If the shift and thé“bias are of the same magnitude; the con-
trol chart will indicoté'that the mean is in control. The ef-
fect of imprecision‘is'to incfease the probability of detection
when the sample average is within the control limits. If the
sample average is ootoide the control limits, the effect of
imprecision is to reduce the probability of detection.

For process varioooe in cohtfol—-Bias has no effect on the
capability of the R—oootrol ohart to detect changes in the
process variance. The effect of imprecision is to increase the
probability of detéctiﬁgta change in the p?ocess variance.

For proceos vafiancelout of‘oontrol—~The effect of imprecision
is to increase the proBabilipy of detection. This is true even
when the increase in the variance is small enough to be accept-
able. |

Methodology is doveloped to design X- and R-control charts that

will have the same probability of detecting changes in the
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process parameters In the presence of measurement error as well
as when measurement error is not present. Two situations are
considered for the R-control chart wﬁen sample size has been
adjusted to compensate for imprecision on X-control charts.

This methodology is summarized in Table XI.



TABLE XI
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SUMMARY OF COMPENSATION FACTORS TO ADJUST X- AND R~CONTROL
CHARTS FOR MEASUREMENT ERROR

Control Limits

X-Control Upper Control Limit Lower Control Limit
Chart Sample Size k Factor Sample Size k Factor
. Y _ N " - _ _
Bias Only n kl = kl + ue/oX n kl kl ue/cX
Imprecision| n (Yzf +~]> K n_ (Yzf + l\ K
Only V2 £ 1 ) !
Bias and n Y2f+l)k,_-k e jol D (Y2f+1)kn;k o
Imprecision| 2 f 17 %1 TR v2 \ £ . 1 - %17 Mk
Control Limits
R-Control Upper Control Limit Lower Control Limit
Chart Sample Size k Factor Sample Size k Factor
Bias Only n k n k3
N Tk, [}2
Imprecision| f ) - ﬁg f + ot k' =3 [Yf+1
Only n Y 3 y
n —
Bias and + k2 jY * ' k3 jYzf + 1
A n = —= n k,' = — |[————
Imprecision Y 3 Y f

Measures of Central Tendency
Bias Only Imprecision Only Bias and Imprecision
X-Control Chart u' = u + He None u' = u + g
u 2 2
_ v _ R JYTf +1 ' R‘/Y f+1
R-Control Chart None uR Y . 3 uR Y f

T . . z
It sample size has been adjusted to compensate X—control chart for

imprecision, sample size for R-control chart will be n'.

k, for n'
for imprecision.

Determine k, and

before applylng compensation factors to adjuqt R-controi chart



CHAPTER IV

ECONOMIC DESIGN OF A JOINT X- AND R-CONTROL
CHART AND ASSESSMENT OF EFFECT

OF MEASUREMENT ERROR
" Introduction

The purpose of this.chapter is to develop a joint economic model
that will optimize both X~ and R—contro% charts. Control charts de-
signed from economic criteria ﬁrovide the practitioner with an alter-
native to control charts designed from statistical criteria. These
two approaches can be compared on the basis of both costs and their
operating characteristic curve. A choice can be made as to which is
preferable in’a specific situation., The economic model developed in

this research is similar to the “classic X cost médel proposed by
Duncan (22). The optimization of the joint X-control chart economic
model will be carried out in Chapter V.

vAn assessmgnt will bé made as to the effect of measurement error
(bias and/of imprecision) on an economic model of i; and R—control
charts. Methodology that was developed in Chapter IIT is used to pro-
vide the same probability of detecting shifts in the process parameters
(mean and variance) with meaéurement’error as without measurement error.

A proposal is made for a procedure to optimize the economic model in

the presence of measurement error. An analysis of the effect of

96
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measurement error and an optimum design in the presence of measurement

error is determined in Chapter V.

Current Economic Model of X- and

R-Control Chart

A cost model for both X- and R-control charts has been proposed by
Saniga (46). This model permits only one process parameter to be out-
of-control at any given time. No consideration is given to the pos-
sibility of the second process parameter going out of control before the
assignable cause for the firSt‘oﬁt—of—control parameter has been iden-
tified. The model formulated in this research will encompass these
situations.

Saniga's proposed model does not use Duncan's approach to éost
model formulation. The acceptance of Duncan's cost model has been
presented in Chapter II. The model developed in this research extends
Duncan's approach to include the consideration of both X- and R-control
charts. Duncan's original model for only an X-control chart is a

special case of the model developed in this research.
Approach to Model Formulation

Model Components

The components of this model are composed of the cost of out-of-
control conditions, the cost of false alarms, the cost of finding an
assignable cause and the cost of sampling and inspection. The key
element in these components is average cycle time. Cycle time is defined

to be the time from which the process begins in a state of statistical
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control until an out-of-control condition is detected and the assignable
cause found. That is, cycle time is cdmposed'of the time the process is
in control, the time the processbis out of control, the time to evaluate
the sample and the average time ;akén to find the assignable caﬁse.
Cycle time is illustrated in Figure 15.

The major portion of the modél development in this research in-
volves estimation of the expected time the process will be operati;g in
an out-of-control condition._bThis is important because it is aésumed
that when a process is odf of.péntrol the resultant effect is an increase
in the number of defective itéms'produced. ~This results in additional
economic losses. These losses aré dependenﬁ upon.the type of out-of-
control condition and the length of time in which the process is per-
mitted to remain in that condition; When the in-control out;bf-control

times are estimated, the average cycle time can be determined. This is

used to estimate the cost components on a per hour of operation basis.

In-Control Out-of-Control Conditions

The model developed in'tﬁis reséarch4assumes that, at any given
time, the process is in ope'of éwo conditions. The process is either in
control or out of control. fhe in-control condition is defined as the
expected time the process parameters (mean and variance) are in control.
There are three out-of-control conditions that can exist. These occur
when only the process mean is outvof control, when only the process
variance 1is out of control, and when both the process mean and variance
are out of control. fhese four conditions are brought about from several
different states in which the process can be observed. These are

referred to as system states. ‘The in-control out-of-control conditions



Evaluation of ' Process stopped

‘sample and detection while assignable
Process begins - of out-of-control cause is corrected
in a state of . condition
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An In—-Control Out-of-Control Cycle

Figure 15. Cycle Time (h is the Frequency in Hours in Which Samples are Taken)
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are defined to be the expected times in which the process is in one of

the system states.

System States

The path of the decision tree (Figure 16) represents the possible
in-control out-of-control cycles that are permitted by the model devel-
oped in this research. The nodes represent the various states of the

system. These states are defined as follows:

S

0 the state in which both_the process mean and variance are in

control.

S, = the state in which the process mean is out of control and the
process variance is in control. In this state an out-of-
control condition has not been detected.

S, = the state in which the process variance is out of control énd
the process mean is in control. In this state an out-of-
control condition has not been detected.

S, = the state in which.both thé process mean and variance are out
of control. In this‘étate an opt—of—control condition has
not been detected.

S, = the state in which the process mean is out of control and the

process variance isvin control. Iq this state an out-of-
control coﬁdition has beeh detected.

S. = the state in whichvthe_process variance is out of control and
the process mean is in control. In this state an out-of-
control condition has been detected.

S, = the state in which the process mean and variance are both out

of control. In this state, an out—of-control condition has
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L J

Figure 16. Decision Tree Illustrating System States and
the Alternative Paths for the Model
Developed in this Research



102

been detected.

S_7 = end of cyclé state. The state denotes the identification of
the assignable cause(s). Its inclusion is for notational pur-
poses and does not represent an aétual state of the system.

The system can be in one of eight states. There are four "states"
that the progeSs can be in. These are in-control and three out-of-

control states (conditions). A process "state'" can consist of one or

more system states. If the process is in-control, it is in system state

SO' However, if the process mean is out-of-control, the process would
be in state Sl'or state SA' Process ''states'" are referred to as process
conditions. States S4’ S5 and S6 are also 'detection'" states. These

states represent the situatibnkwhén a sample value has fallen oﬁtside
the control limits and is dealt with differently than the other system
states in subsequent analyses.

An interpretation of a path in Figure 16 follows. Consider the

path S This indicates that the process is in control (SO)

0—51—84—57.
until the process mean goes out of control (Sl). The system remains in
this state (Sl) until an out-of-control condition is detected (SA)' The
system remains in this state (SA) until the assignable cause of the

out-of-control condition is found (S7). The process then returns to

an in-control condition (SO) after the assignable cause is corrected.

Advantages of Proposed Approach

The paths in Figure 16 represent actual in-control and out-of-.
control cycles in which a process being monitored by an X- and R-control
chart can be observed. Because of the real time domain in which sampling

occurs, every h hours, it is possible for each of the states to occur in
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the sequences depicted in Figure 16. For the model developed in this
research, it is assumed that a shift to an out-of-control condition
occure through a single assignable cause. This model doee permit an
assignable cause of another type to occur after the first. For example,
from Figure 16, consider the path 86—54-56—87. In 54,bthe mean is out-
of-control and an out-of-control condition has been detected. However,
it is possible for the variance tobgo out of control before the assign-
able cause assoclated with the process dean is identified. This concept
s important because, as noted above, costs are based in part on the
length of time the process is out of control and on the type of out-of-
control condition. Permitting an assignable cause of another type to
occur after the first will enable the model to describe.the true condi-
tions of the procese. |

The model developed in the literature (46) considers only‘single
assignable causes and considers only two of the paths in Figure 16
(SO—S4—S7 and SO—SS—S7). The model developed in this research is more
flexible and incorporates'the_stafes that can actually occur in practice
when both X- and R-control charts are used to control the process mean
and variance respectively. 'Duocan's model is represented by the path
SO-S4—S7. |

The model developed in this research does not permit the occurrence
of "multiple" assignable causes. These denote several causeé of the
same type that result in a shift in theesame process parameter before
detection. Earlier studies have shown that good approximation to
multiple cause models can be obtained from a single cause model (22)

"(23).
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Assumptions

To develop the theory used in modeling the X- and R-control charts,

it will be necessary to state the assumptions employed:

1.

The X- and R-control charts are maintained to detect the occur-
rence of an assignable cause(s) that occur at random and results
in a change in the process of known proportions. The assump-
tions regarding construction of the X- and R-control charts
hold.

The occurrence timeé for the assignable causes are independently
exponentially distributed with mean times l/%l for the process
mean and l/)\2 for the process varianée.

The time at which the process goes out of control is distributed
as the minimum of two independent exponentials with means l/A1
and l/)\2 and thus has a négative exponentialkdistribution with

mean time of S - .

A Al + AZ
When an assignable cause of one kind has occurred, no other
assignable cause of the éamé kind caﬁ occur.
When an assignable cause of_one kind hés occurred, it can bev
followed by thé oﬁcurrence of‘an assignable cause of another
kind.
At any time the process is in one of two conditions, in-control
or out-of-control.
When a process parameter is out of control and an out-of-
control condition is detected, then if the second process

parameter goes out of control, all assignable causes will be

identified regardless of which process parameter was detected
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to be out of control. The process will be kept running until
the assignable cause(s) is (afe) found.

8. The rate of productioﬁ is sufficiently high so that the pos-
s1bility of a change in the process occurring durigg the taking
of a sample can be neglected.

9. The cosf of adjustment or repair (including possible shutting
down of the process) and the cost of bringing the process
back to a state of control after discovering the assignable
cause will not be charged against the operation of the control
chart.

10. The risk of occurrence of an assignable céuse, cost and income
parameters are known.

Additional assumptions will be made in the development of the cost model.
Notation

The following symbols will be employed in the model development of
this chapter:

number of individual measurements making up a sample.

n=
h = interval between samples measured in hours.
kl = a factor used in determining the width of an X-control chart

and represents the number of samplé average standard devia-
tions separating each control limit and the center line.

k2 = a factor .used in determining the upper control limit for an
‘R—control chart (k2 ='d2 + 3d3, where d2 and d3 are con-
stants).

k3 = a factor used in determining the lower control limit for an

R-control chart (k3 = d2 - 3d3 and k3 = 0 when n < 6).
?
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rate of occurrence per hour of failure due to changes in the

process mean.

= rate of occurrence per hour of failure due to changes in the

process variance.

standard or desired process mean (measure of central
tendency) . |

true process standard deviation (measure of dispersion).
magnitude of sﬁift in fhé true process mean. Shift is in
multipies of oy (ﬁox)..

magnitude of increase in the true pfocess standard deviation.
Increase is in multiples of cxz(yzcz).

the probability of a single sample value falling.outside the
control limits when the process is in Si’ i=20,1, 2, 3.
These ére the only stétes in which there is concern about the
probability of one or both céntrol charts indicating an out-
of-control conditioniv | "

the probability of switching from state Si to state Sj.

the probabiiity oﬁ switching from a detected state Si to a
detected staﬁe Sj.

the average time between the sample.takenvjust prior to the
occurrence of the ith assigﬁable cause and the occurrence
itself (i = 1, 2).

the averagé time of occurfence of the ith assignable cause,
given a previous assignable cause of ancther type (i'), dur-
ing a time period of length gn + D, d+#4i") 4 =1, 2, 3).
the averagefnumber-of false alarms before the occurrence of

an assignable cause.
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the cost per occasion of looking for an assignable cause when
none exists.‘

the expected time the process parameters are in control.

the expected time the process operates in the ith out-of-
control condition (i = 1, 2, 3).

1 indicates the prOcess.mgan only is out of control..

2 indicates the process variance only is out of control.

3 indicates that both the process mean and variance are out
of control.

the average time of finding the 1ith out-of-control condition
after it has been detected (i = 1, 2, 3).

the average cost of finding the ith-out—of—control condition
when it occurs (i = 1, 2, 3).

the increased loss per hour of operation due to the ith out-
of-control condition (1 = 1, 2, 3).

the cost per sample of sampling, testing and plotting that is
independent of sample size. :

the variable cost per item of sémpling, testing and plotting.
the rate af which the time‘beﬁween taking a sample and
plotting a point on the X- and R-control chart increases
with n. |

the average cost per hour of operating a given X- and
R-control chart for»the joiﬁt economic model de&eloped in
this research.

standard normal deviate (snd).

ratio of range to process standard deviation (standardized

range).
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Probability Definitions

As noted above, average cycle time is determined by the length of
the in-control out-of-control times. 1In order to evaluate these times,
it is necessary to determine the expected times that the in-control
out—of-control condition will occur. Two types of probabilitiés are
needed to estimate these times. These are the probability of detecting
shifts in the process pafameters and the prdbabiiity of switchiﬁg from

state S, to staté S..
i J

Detection Probabilities

The detection probabilities (P,, 1 =0, 1, 2, 3) are the probabil-
ities of a sample value falling outside the control limits of the X-
and/or R-control chart. (It is assumed that the observed measured dimen-

. 2
sions from the process are distributed N(u,o Assume no measurement

X )
error is present.) Let the process mean increase from p to u +'60X and
2

. ' 2
the process variance increase from ¢ to vy Og *

X

Let Pli denote the probability of a sample average falling outside

the lower control limit of an X-control chart for the ith control condi-

tion. Then,

LCL: - (u + Soy)
Pli = P(z < LX - X ) (4.1)
-k, - &¥n
= P(Z.i'——‘*f?"_—“> . (4.2)

Let Al denote this event.

Let P2i denote the probability of a sample average falling outside
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the upper control limit of an X-control chart for the ith control condi-

tion. Then

UCL= - (u + 8o0y)
P, - P(z , X X ) (4.3)
1 - 'YO)'('
kg - s{n
= P(Z Z_—r—) . (4.4)

Let A2 denote this event.

Let P31 be the probability of a sample range falling outside the

lower control limit of an R=control chart for the ith control condition.

Then,
: P3i = P(R‘j_LCLR) : (4.5)
= P(w §_k3/y). (4.6)
Let A3 denote this event.
Let P41 be the probability of a sample range falling outside the

upper control limit of an R-control chart for the ith control condition.

Then,

Pl‘i = P(R‘i UCLR) 4.7)
= P(w i.kz/Y)' (4.8)
Let A4 denote this event.
Al and A2 are mutually exclusive as are A3 and A4, since . a sample

mean and/or range cannot fall outside both control limits at the same
time. Therefore, the probability that the ith condition will be

detected is;
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+ A4)

P, = P(Al + A, + A, (4.9)
= P(A)) + P(A) + P(Ay) + P(A,) = P(A[*A;) — P(A %)) =
P(AZ*A3) - P(AZ*AA)' (4.10)
Since Al and A3 are independent events, as .are Al and A4, A2 and A3 and
A2 and AA’ equation (4.16) may be written as
Pi = FPpa oy ¥ Py TPy TPy T PPy T Py Py -
PZi*P4i' (4.11)
Let P0 be the p?obability of'detecting state SO. This is;the prob-

ability that a sample mean will fall outside the limits of an X-control

chart and/or the sample range will fall outside the limits of an

R-control chart when the process;pérameters are in control.

when no change has

P

Therefore, P i

0 1
Let Pl be the

probability that a
an X-control chart

There is no change

when i 1, § # 0,

Let P2 be the

probability that a

an R-control chart

2
Y

P, when 1 = 2

2 i

Let P3 be the

ability of detecting a shift in both the process mean and variance.

oxz (y > 1). There is no shift in the mean ($

That is

occurred in the mean (8 0) and/or variance (y 1.

when i 1.

0, § = 0 and vy

probability of detecting state S This 1is the

1
sample mean will fall outside the control limits of

when the mean shifts from p to p + 60X (8§ # 0).

=P

Therefore, P1 i

in the process variance (y 1).

and vy 1.

probability of detecting state S This is the

9
sample range will fall outside the control limits of

when the process variance has increased from o to

X

0). Therefore,

, 6 =0, and vy > 1.

probability of detecting state S This is the prob-

3
It
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is the probability that a sample mean will fall outside the control

limits of an X-control chart when the mean shifts from u tou + 60X

(6§ # 0), and the probability that a sample range will fall outside the

control 1limits of an R-control chart when the process variance has in-

creased from OXZ to yzcxz (y > 1). Therefore, P

§#0 and y > 1.

3 = Pi when 1 = 3,

Transition Probabilities

Transition probabilities arevthelﬁrobabilities of sWitching from
state Si to state Sj. They are used in this'study to estimate the ex~
pected time that a process will be in an in-control out-of-control
condition. These probabilities are expr;ssea as elements in a transi-
tion matrix, and are denoted by pij. This terﬁ, pij’ is the conditional
probability that if the system is now in state Si’ it will be in state
Sj at the next time period. For this research, time periéds will be
expressed in h hours, which are the times between Samplés. Therefore,
pL,| 1s interpreted as the probability that just prior to taking the

sample, the system is in:state S Just prior to taking the next sample

i
(after a time of h hours), the system is in state Sj’ having '"switched"

states between samples. This is illustrated in Figure 17.

/ %
I . l

nh ' (n+1)h
Time—m

Figure 17. States Just Prior to Sampling
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The first check mark indicates that just prior to taking the nth
sample the system is in state Si and is still in Si when the sample is
evaluated. The second check mark indicates that just prior to the
(n + 1) sample the system is in state Sj’ having switched states within
the interval. The probability of this switch occurring is pij'

A transition matrix satisfies the foliowing requirements:

1. Each element must be a probability, that is,

0 5-pij <1 for all i, j. : (4.12)
2. Each row must sum to exactly one, that is,

m
Zp..=1 j=1, 2, ...y m (4.13)

j=1
where m dénotes the number of states.
" The rows represent all possible states that can occur.
From the assumption regarding the failure rates for the process
mean and process varianée, the following probabilities will be defined

where time is expressed in h hours:

' e_xlh = probability that the process mean is in control over
an interval of length h.
e—Azh = probability that the process variance is in control

over an interval of length h.
e—o‘l + b probability that both the process mean and process
variance are in control over an interval of length h.

The relationship between system states is illustrated in Figure 16. To

develop the transition probability, begin with state So and determine
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the probabilities of switching from S0 to the various states. These

probabilities are determined from those defined above and the detection
probabilities.
Glven that the current state is S0 and define pOj (j=0,1, 2,

.e., 6) as follows:

Poo = the probability that the system is now [time (n + 1)h] in
state S0 given that the system was determined to be in state
S0 at the last sample (time nh).
= probability that both the process mean and variance remained
in control during the current sampling interval.
-(A; + A,)h
- 1 2 A
Poo = © . (4.14)
Pop = the probability that the system is now [time (n + 1)h] in
state Sl given that the system was determined to be in state
S0 at the last sample (time nh).
= (probability that the process mean has shifted) * (probabil-
ity that the shift is not detected) * (probability that the
process variance is in control).
: —Alh , —Azh
= - * - *
Po1 (1 e ) (1 Pl) e . (4.15)
Pooy = (probability that the process variance has shifted) * (prob-

ability of not detecting the shift in the variance) * (prob-

ability that the process mean has not shifted).

_Azh —Alh
Pop = (L-e ) * (1-P) *e . ; (4.16)
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Similarly,
—th —Azh .
= - * - % -

P03 (1 e ‘) (1 e ) (1 P3). (4.17)
—Alh _ —Azh

Posy = (1 --e ) * Pl * (e ). (4.18)
—Azh —Alh

Pos = (1 -e ) * P2 * (e ) (4.19)

, -Ah -\,h

Pog = (L-e ") *@-e ) *ep,. (4.20)

Given that the current state is S

6) as follows:

Pio = 0:0- | (4.21)

This indicates that the process cannot 'repair' itself. That is, once
the process mean has shifted to an out-of-control condition it cannot

shift back to an in-control condition. Similarly,

0.0. o (4.22)

il

P12

Pys = 0.0. _ (4.23)

= the probability that the system is now [time (n '+ 1)h] in

state S, given that the system was in state S, at the last

1 1

sample (time nh).
= (probability of not detecting a shift in the process mean) *

(probability that the process variance has not changed).

—Azh
pj; = (L-P) *e (4.24)

Similarly,
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. -Ah
Py = 1-e ) * (1 - 93). (4.25)
-A,h
p14 = (e ) * Pl' (4-26)
A h ,
Pig = (L —e 7)) * P, (4.27)

Following the same interpretation as above, the following transition
probabilities can be determined.

Given that the current state is S

9 define p2j (3 =0,1, 2, ..., 6)

as follows:

Poo = Pp1 T Pgq 7 0:0- (4.28)
-A;h
Py, = (e 7 ) * (1 -P). (4.29)
-Ah
Pyg = (L —e =) % (1-Py. (4.30)
~A;h
Pypg = (e 7 ) * P,. (4.31)
-Ah
Pyg = (L - e ) * P, (4.32)

Given that the current state is S,, define p3j (G=0,1,2, ..., 6)

as follows:

Pyp = P3p = P3y = Py, = Pgg = 0.0. o (433
Pyqy = 1 -'p3. - (4.34)
Pyg = P3. (4.35)

These probabilities are presented in Table XII.



TABLE XII

TRANSITION PROBABILITIES FOR SWITCHING FROM STATE Si TO STATE Sj

State Sj )
T T 1 T 2 T 3 i 2 ! 5 I 6 7
| S ! | } H 1
: | A h | -ah »oh ' Ash A h ' Ak oLk | -hh Aho A;h :
. I ) Iy ) i Ay Thy i A - [ - I = —* i
0 e Toe fappie Da-e Pha-pia-e Tha-e PHa-py e T Zipje Ve Zopy e Dha-e Torg
1 1 i L ! I ! i
! 1 i } | .. I | :
1[ | h(]__p , i 0 | L —th - i -,nznP i 1 —Azh 1
i i 1 | | ( —e ) (1-Py) | e 1 | 0 | (1~e )P, ;
| | | ! ! | | i
T T T T T T T
l J ! -%,h ! - h [ ! -\ h ! -Ah !
| ! i 1 { a ’ 1 1
- 2 0 i e a-e,) (1-e ) (1-P5) ! ] , e P, ! (1-e )P, i
@ [ I [ [ | ! > i
s _l L Il L l T I i
s | | . | | | l i
a3 l 0 l 0 | 1-P | 0 b0 l P !
! I I ! | L o '
|
4 " Once the system is in either state SA or S5 or S6‘,'~‘states in which an out-of- :
|
5¢ control condition has been detected, State Transition Probabilities are no ;
i .
6 longer governed by the sampling interval, h. They are treated separately in :
! . : »
7 the text. State S7 is end of cycle state and is not an actual system state. 1
| . . i

91T
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Once the process is in one of the three out-of-control conditions
and an out-of-control condition has been detected, further system transi-
tion probabilities are no longer governed by the sampling interval, h.
States S&’ S5 and S6 represent the system in which an out—-of-control
condifion has been detected by a sample value falling outside a control
1imitf The probability of switching from‘one éf these states to another
state is determined differently than those listed in Table XII. For
example, let the current state be SAQ From Figure 16, there are two
states into ﬁhich S4 might switch. 1If a switch occurs to S7,

will remain in S4 until the assignable cause is located (S7). The time

for the search and identification of the cause is gn + D

the system

1°
However, under the aésumptions for the model, it is possible that

before the assignable cause is located, the process variance will go out

of control. When this occurs, the system wthd_switch from S4 to S6.

The probability that this occurs is the probability that the process

variance fails before time gn + D Denote the probability of switching

1
p ’ 1
from 84 to S6 by P46 . Therefore,

gn+D

1 —Azt —Az(gn+Dl)
p46' = ) >\2e . dt = 1.0 - e (4'36)

and the probability of switching from S, to S_ is

4 7
—Az(gn+Dl)
L - _ v _
Ps7 , 1.0 Pu6 e | . (4.37)
A similar situation exists when the system is in state SS' A switch
can occur to either S7 or 86. If gn + D2 is the time to search for and
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identify‘the assignable cause associated with SS’ the probability of

switching to S6 is

'= X e dt = 1.0 - e . (4.38)

The probability of switching from 55 to‘S7 is

‘ '—Al(gn+D2)
= 1.0-pg' = e . (4.39)

)
Ps7
Expected Times for In-Control

Out-of=Control Conditions

The probébilities developea in the previous section are qsed in
determining the expected times for the four in-control out-of-control
conditions. The pufpose of this section is to estimate the amount of
time that the pfocess is in éithef the in—contrpl condition or one of
the out—of—coﬁtrol conditions, given the possible states and paths in
Figure 16. First, it is necessary.to determine the average time of

occurrence and the expected time in S, before switching to Sj'

i

Average Time of Occurrence

If a switch from state Si to state Sj occurs between the nth and
the n + 1lst sample, the average time of occurrence is that portion of
the time interval in which the system is in state Si' This is illus-

trated in Figure 18.
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Assignable Cause Occurs

5 | / , s,

Ao /
L
nh T | ' h-t (n+1)h

Time (h hours) —

Figure 18. Average Time of Occurrence

Let the system be in state Si when the nth sample is taken. Suppose
at time t, an assignable cause occurs so that when the n + lst sample is
taken the actual state is Sj' Part of the time in the interval [nh to

(n + 1)h], the state 1s in S, and part of the time the state is in S,.

i

I1f T is the average time the system is in state S ‘then h - 1 is the

i)
average time in state_Sj. The average time of occurrence (t) of the
switch has been shown to be (22)
(n+l)h
Ae—xt(t - nh)dt
(nt+l)h ' -xh ’ :
—>\t )\(l - e )
Ae " dt '
nh

where A is the appropriate failure rate, and- the assignable cause follows
an exponential diétribution.

In this research, the failure rate is A, for the process mean, A

1 2

for the process variance, and A = A, +. X, for both the mean and variance.

1 2
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Therefore, the average time of occurrence in a sampling interval (h) for

the assignable causes creating these situations is

—Alh
1-Q@Q+ Alh)e
Ty = —Alh s (4.41)
Al(l - e )
—Azh
1 -1+ Azh)e
T, = —Azh -, (4.42)

Ayd-e 7))
and

~Ah
0, = L=+ e O (4.43)

Al - e_Ah)

Expected Time in State S4i Before Switching

The process always begins with both the process mean and variance
in control. Samples are taken at fixed intervals of time (every h hours)
and the condition of the process-is judged by the relationship of the
sample mean and range to their respective controlAcﬁarts. Sampling
continues until an out¥of—céntrol condition is detected and until the
assignable cause(s) is identified. Following correction of the assign-
able caﬁse, the process begins again with both the process mean and
variance in control. |

Assume that the current state is Si' This probability of switching
from Si to S, is pij' Let Piy be the probability df remaining in Si'
After the first sample, the expected number of sampling intervals in

which a switch occurs from state Si to state Sj is 1 - pij' After the



121

second sampling the expected number of sampling intervals is 1 ° pij +

2p..p The Py denotes the probability that there was no out-of-

ii¥ij”

control condition indicated on the first sampie. Continuing in this man-

ner, the expected number of sampling intervals until a switch occurs can

be expressed mathematically as

® g-1
i = : % %
L(Ni_j) 2112 Pyj ¥ Pyq (4.44)
~ 2
= * *
1 * pij + 2 pij Py + 3 * pij * Pig + . .. (4.45)
2
= * * *
pij (1L + 2 Piy + 3 Pig + . ..) (4.46)
=p,. * (1/(1 -p '))2 : (4.47)
1] ii . .
P, .
ij ) 1
E(N, ,) = ( ) * ( ,) . (4.48)
i-]j (1 -pyy) L-pyy |

The expression (pij/(l - pii)).is the proportion of time that a switch

occurs from S, to.Sj. The expression 1/(1 - pii) is the mean number of
samples from S, to S,.
1 J

If h is the length of time between samples, the expected time in Si

before switching to Sj is
BT, ) = h % B ) = (g /(L= py)) * (/L= py)).  (4.49)

Given the results in equation (4.49), the probabilities of detection.and
the average time of occurrence, the expected times for the in-control
out-of-control conditions can be determined. When these have been

estimated, the average cycle time can be determined.
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State S, indicates that both the process mean and variance are in

0

control. From Figure 16, there are six states that can be switched to

from SO. (As noted previously, S7

is an end of cycle state and is not

counted as an actual system state. It is used for notational purposes.)

The probability of switching from SO

. 1s the probability of switching from S

pOJ 0

SO until a switch occurs to another state is

|
MOy

h(lo—j)<—

i

j=1

Ch g .
- 2 .7.F05 T
(1 poo) j=1

From the properties of transition probabilities

™Mo

j 1 pOj =1- pOO'

Therefore,

B(Ty_i) = B/(L = pyo)-

Poo

to Sj is given in Table XII.

))

If

to Sj’ the expected time in

(4.50)

(4.51)

(4.52)

(4.53)

The expected time in equation (4.53) is the total time from when the

process begins in-control until a switch occurs.

From Figﬁre 18, the average length of time in state Sj after a

switch occurs from Si is h = 1. The average time of occurrence for a

failure in the mean and/or variance is 1 = T3.

control before switching to state Sj and let A = A, + A,.

1

Let TI.

0

2

be time in-
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E(TI,) = E(To_j) - (h-1y) _ (4.54)
- ~Ah |
1 -e A(L - e )
_ah = (h@ - e M 1 4 T e 4.56)
~Ah :
AL - e ) :
. 1 1

E(TT,) = == —— , (4.57)

S0 A A A,

Expected Time Out-of-Control

The expected time for the three out-of-control conditions will be
determined in the following manner. There are six states into which a

switch can occur from S Each of these switches (SO to Sj) will be

0
. analyzed to determine the expected times for out-of-control conditions
that follow each switch. Different paths can occur following each

0

the results will be combined as follows. All expected times that only

switch from S, to Sj (see Figure 16). When all pathé have been analyzed,

the process mean is out of control will‘be totaled together. All ex-
Pected times that only the process variancé is out of control will be
added together. All the expected times that both the process mean and
variance are out of control will be summed together. These will be the
three out-of-control conditions that can be combined with the in-control
condition to determine the average cycle time.

The following analysis to détermine the expected out—of—coﬁtrol
times 1s composed of six analySés, one for each of the states into which

a switch can occur from S For these analyses, TX denotes the expected

0

time that only the process mean is out of control, TR denotes the
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expected time that only the process variance is out of control and TXR
denotes the expected time that both the process mean and variance are
out of control. Subscripts are used to denote which particular path is

being analyzed. For example, TX indicates the path S

0—34—87.

TiO—(4—7) indicates the expected time the process mean is out of control

0-4-7

-S,. The expression TX is a conditional ex-

4 77 0-(4-7)

pected time. The condition being that the system is in state S

along the path S
4

System Switches from Sg to S4. When a switch occurs from S0 to S4’

the alternative paths and states from S4 are presented in the following

figure.

L]

Figure 19. Alternative Paths and States When System

Switches from SO to S4

The above sequence is interpreted as .follows. The process is
operating with the mean and variance in control and switches to S4.

State S, is the one in which the process mean is out of control and

4

an out-of-control condition has been detected by a control chart. Once
in 54, a search begins for the assignable cause. For this study the

length of the search is gn + D In 34, either the system remains in

1
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S4 until the assignable cause is found (84—57) or before the search is

completed, a switch will occur to S6' This state (S6) is the one in
which both of the process parameters are out of control. This indicates

that the variance has gone out of control before time gn + Dl has

elapsed. This last path concedes the possibility of more defective
material being produced before all assignable causes are identified.

It is assumed that after gn + D. hours, all assignable causes are found

1

occurred.

4

Since the switch has occurred from S0 to S4,‘the process mean is

regardless of which of the paths from S

out of control for h - T hours (see Figure 18). The probability that

this particular switch occurs is given by p04/(l —'poo). The expected

time that the process mean is out of control from S, to S4 is

0

(Probability of switching from S

X . : * i
1X(0_4) 0 to SA) (Time
process mean 1s out of.control) = (p04/(l - poo))
* (h - Tl)" ‘ (4.58)
From S4,.there are two paths: . SA—S7 and 84—86—87. The probability
that the path S,4 to S7 occurs is the probability that the process
variance will stay in control for gn + Dl hours. This was developed
earlier (equation 4.37) and is
-\, (gn+D,)
ree 2001 (4.59)

Pyy .

The time in which the process mean is out of control for this path is

gn + D Therefore, the expected time given S, is

1° 4
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X = i %*
TXO—(4—7) (Probability of taking the path S, to S7)

4
(Time in the path)
—Az(gn+Dl)‘
= (e ) * (gn + Dl). (4.60)

Now consider the path S4~S6—S7. The probability of taking this
path is p46'-= 17 b47'. The expected time that the process mean only
is out of control is determined by finding the expected time to failure

of the process variance in this time period given that a shift occurs.

This is

| l‘gn+Dl —th 'e—xzt gn+Dl
h('14_6/p46 ) = tr,e dt =2 (—————— (= rt - l)) (4.61)

2 2
0 ) 0
‘ *Xz(gn+Dl) : —Al(gn+Dl)
= l/Az(l - Az(gn + Dl)e -'e (4.62}
: —Az(gn+Dl) ‘
! = -
E(T, ¢/Pug') = l/>\2(1 (1 +2, (gn+Dj))e (4.63)
By definition,
E(T,_¢/P,q') = (Probability of taking this path) * (Time in
the path) .
— ‘ . 1 :
= t
B(T,_¢) = BT, ¢/py6")
' —Xz(gn+D1)
(l - (1 + Xz(gn'+ Df)e ) :
E(T4—6) = . (4.64)

-\, (gn+D.)
Az(l - e 2 1 )
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This is just the average time of occurrence of an assignable cause (for
the process variance), given that an assignable cause occurs, during a

period gn + D, in length. "Denote this as 1,' = E(T4—6)' The average

1 2

time that both the process mean and variance will be out of control,

]

given that a switch from S, to S, occurs is (gn + Di) - 12 .

4 6

From this andlysis the expected time the process mean is out of

control is given by the (probability of taking the path) * (time in the

path). For the path 54—57, the expected time is
_ 4A2(gn+Dl) : '
= *
TXO—(4—7) | (e v ) (gn + Dl) (4.65)
and for the path 84—86—87, this is -
. -, (gn+D.)
= - * :
'TXO—(4—6)—7 (l e | / T, (4.66)

The expected time that both the process mean and variance are out of
control for the path 84—86—57 is

. —Az(gﬁ+Dl)
TXRO_(4;6._7) = (1 - e ) & ((gn + Dl) - Tz'). (4.67)

The expected times for the above out-of-control conditions when the

to-S4.are summarized in Table XIII. Each of

the above has been multiplied by the probability of switching from S

process switches from]SO

0

to 84. This will then determine the expected time for the out-of-control

0 to state 84.

conditions that occur when the system switches from state S

System Switches from Sg to S7. When the system switches from S

0

to Sl’ the alternative paths are shown in Figure 20. An interpretation

of the sequence 1s as follows. The system is operating with the mean and



Table XIII

EXPECTED TIME OUT OF CONTROL WHEN SWITCHING
OCCURS FROM So.to S4

128

Expected Time Process Mean is Out of Control Path
- * - T -
(boy/ (1 = Py)) * (b = 7)) (0-4)
—Kz(gn+Dl)
- % * —(4-
(ppy/ (1 = pyg)) * (e ) * (gn + D) 0-(4-7)
-1, (gn+D.) '
2 1 0-(4-6)
- * - *
(Pps/ (L = pyg)) * (1 - e | ) * T,
Expected Time Process Mean and Variance are Out of Control Path
.—Az(gn+D1) :
(Pos/ (1 = pyg)) * (L - e ) *((gn + D)) - 1,") 0- (4-6-7)
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varlance In control (SO) and then switches to S, (process mean out of

1
control but no out-of-control condition has been detected). Given that
the process mean is out of control, the system can switch to one of
three states. If a sample value falls outside a control limit, a
switch occurs to 84' If the process variance goes out of control, but
no out-of-control condition is detected, the system has switched to 83.

If the process variance goes out of control and an out-of-control condi-

tion is detected the system is in state S6'

% ,

Figure 20. Alternative Paths and States When Systém

Switches from SO to Sl

When the switch occurs from SO to Sl’ thevaverage time that the

process mean will be out of control is h - Ty

hours (see Figure 18).
The probability that this switch occurs is pOl/(l -

pOO)' The expected

to S, is

time that the process mean 1s out of control from S0 1
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3 - . SPI %
Tx(O—l) (Probability of switching from S0 to Sl) (Time

in the path)
= (pgy/ (1 = pyg)) * (b - 7). (4.68)

Now consider the path from S1 to 84' Let P14 be the probability of

switching from S, to S, and let p,, be the probability of remaining in
g 11 .. .

1 4
§,- From equation (4.49),
TR (1oq) = E(Ty_g) = (/= py)) * /(L =ppy)). (4.69)

There is no adjustment for the time to failure because the process mean

is out of control (Sl)' The paths from S, have been analyzed previously.

4
However, the expected times for 84—87 and'Sa—S6-S7 must be multiplied

by the probability of switching from S, to S, and by the probability of

0 1

switching from S, to S, to obtain the expected times for the out-of-

1 4

control conditions when the. system switches from S0 to Sl' The expected

times for the out-of-control condition from S0 to Sl to S4 and subsequent

paths are given in Table XIV.

The second étate into which Sl could switch is S3. That is while
the process mean is out of control, but undétected, the process variance
goes out of control but neither is detected. Let P13 be the probability

of switching froﬁ S, to S, and let P11 be the probability of remaining

1 3
in Sl' From equation (4.49),
B(T; ) = (py g/ (L = py)) * (B/(1 - p ). (4.70)

This 1is the expected time until 83 is reached. The time that the

process mean is out of control is given by (h/(1 - pll) - (h - 12)),



TABLE XIV

EXPECTED TIMES FOR QUT-OF-CONTROL CONDITIONS

Expected Times for Out-of-Control Conditions when System

Switches from Sg to S3

Expected Time Process Mean is Out of Control Path

(Pg/ (X = pyg)) * (b - 19) (0-1)
(pgy/ (1 = pgg)) * (01,/(1 = by )) * (W/(L = p ;) 0-0-4)
(b /(1 = bgg)) * (py,/ (L = p ) * (728D x (gn 4 1)) 0-1-(4-7)
(pgy/ (L = Pgg)) * (py, /(A = py ) * (1 - & 2Dy s o s 0-1- (4-6)
(pgy/ (1 = Bg)) * (Pye/ (L = py)) * (B/(L = py) = (b = 1,)) 0-(1-6)
Expected Time Process Mean and Variance is Out of Control Path

(Py/ (1 = pog)) * (py,/ (1 = py )Y * (1 = 28Dy w ((gn + py) - 1,7) 0-1- (4-6-7)
(Ppy/ (X = pgg)) * (py3/(1 = pyp)) * (h - 1)) 0-(1-3)
(Pg1/ (X = ppg)) * (py3/(1 = py1)) * (gn + Dy) 0-1-3-(6-7)
(Pp1/ (@ = pgg)) * (/1 = pyq)) * (b = 1y) 0-(1-6)

TET



TABLE XIV (Continued)

Expected Times for Out-of-Control Conditions when System

Switcheg from S0 to 83
Expected Time Process }ean is Out of Control Path
-(Aa1+22)h
-Xoh - - e
/2 * (- (ryhe 2 dayra-eMy (/) B (0-3)
2 2 A 2" "1 Ay A
(Po3/ (1 = Pog)) * TN by —
(1 -e MY % (1-e A2 )
Expected Time Process Variance is Out of Control Path
-(A1+x2)h
* - -Athy _ _ ~)Mh 1-e ~
| /3% = @+ e T = @/ * @ - e + /) =50 (0-3)
(Pg3/ (1 = Pog)) * Thih Tigh —
: (1 -e My x 1 -2
Expected Time Process Mean and Variance are Out of Control Path
A/a) % (- L+ e ™) o G0) % (1= (1+ (g + aphye” (IFAN,
(pgs/ (1 = Pyy)) * 2 2 —= - + (0-3)
(1-e M -2
- ' -(A1+22)h
WHp * - @+ ame ™M - G x - @+ G + ame TN
@ - e M x @ - e
(py3/ (1 = pyg)) * (B/(L = pyy)) 0-(3-6)
- * 0-3-(6-7
(Pg3/ (1 = Byy)) * (gn +Dy) (6-7)

CET



TABLE XIV (Continued)

Expected Times for Out-of-Control Conditions when System

Switches from S, to S

0 "6

Expected Time Process Mean is Out of Control Path
. ~(A1+A2)h
. _ -Aghy _ _ _—Agh 1 e 1
(Wap) * (L= @ 2ge™2H = AN * (A= 72 + 0y ===
(Pne/(1 = pyy)) * ' - = (0-6)
06 00 a-e /11’1) £ (1-e th) o
Expected Time Process Variance is Cut of Controcil Path
-(x1+tx2)h
3 % - -)\]_h _ _ -Alh 1 -e
(l/Al) 1 1+ Alh)e ) (1/A2) * (1 -e ) + (AI/AZ) : Xl T Az
(pn /(1 = py)) * — — (0-6)
06 00 a-e llh) £ (1-e Azh)
Expected Time Process Mean and Variance are Out of Control Path
A/A) * (L= (L+ame 2y o oy % (- 1+ (O + A hye” A1FA2)hy
(Ppg/ (1 = Pyg)) * 2 2 2 2 N (66)
Q- x -2
A/ * - @+ame™P) - ) * @ - @+ 6+ apme PP
@ - eMBy - e

€eT
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where h/(1 - ) is the average time from S, to S, and h - 1, is the

P11 1 3 2

average time that the process variance is out of control in a sampling

interval.
From this, the expected time that the process mean is out of control

from S, to S3, given the system is in S is

1 1°

T)—(0—(1—3) = (p3/(Q = py0) * W/ - py) = (b =-1y)).  (4.71)

Given the system is in S the expected time that both the process mean

1’

and variance are out of control is
X = - * _

When these expected times are multiplied by the probability of switching

from S0 to Sl’ the expected times for the above out-of-control conditions

will be determined. These probabilities are presented in Table XIV,
From S3, the system can switch te S6' This implies that for this

path both the process mean and variance are out of control and that an

out-of-control condition has been detected. If p36'is the probaeility

of switching from S3 to S6 and P33 is the probability of remaining in

S3, then from equation-(4.49)
TXR)_1_(3-6) = E(Ty_g) = (Pye/ (1 = p33)) * (W/(1 - pyy)) =

h/ (1 -

p33). _ | (4.73)

(Note that P36_= 1 - P3, so that (p36/(1 - p33)) = 1, Prob-

Pys P3g =

ability of taking path § is one.) This is the expected time until

3756

S, is reached and also is the expected time that both the process mean

6

and variance are out of control since S6 is a detection state.
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Multiplicatfon by the probability of switching from S0 to Sl and the

probability of switching from Sl to S3 gives the expected time this

out-of-control condition occurs for this path when the system switches

from S0 to Sl' This is given in Table XIV.

Once the process has reached S,, there is only one path. The

6

process remains in this state until the assignable cause(s) is found

(S7). This takes gn + D hours.‘ The probability of this path is one.

3

The time that the process mean and variance are out of control is gn +

D3. Multiplication by the probabilities of switching from SO to Sl and

from Sl to S3 will give the expected time that the mean and variance

will be out of control for the path S, to S This is presented in

6 7°

Table XIV.

1 éan switch to is S6' Since S6 is a detec-

tion state, at some time t in the interval prior to detection the

The final state that S

process variance goes out of control. Thus, for some period of time in
the sampling interval prior to.the detection of an out-of-control condi-
tion, the process mean is out of control énd part of the time both the

process mean and variance are out of control. From equation (4.49), the

expected time from Sl to S6 is

B(T,_¢) = (/1 = pyy)) * (B/(L - ) (4.74)

From prior analysis, h - Ty denotes the average time in the interval in
which both the process mean and variance are out of control (sée Figure

18). Therefore, for the path S, to S6’ the expected time that only the

1

is

process mean is out of control given Sl

T§07(1—6) = (pl6/(l - Pll)) * (h/(l - pll) - (h - -TZ)). (4.75)
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Glven Sl’ the expected time both process mean and variance are out of
control from Sl to S6 is
3z - - . * -

Multiplication of these expected times by the probabilities of switching

to Sl from SO will provide the expected times for out-of-control condi-

tions for the path S These probabilities are given in Table XIV,

0—81—86.
The expected time from S

6 to_S7 was estimated above. This was found

to be gn + D Multiplication by the probabilities of switching from S

3

to Sl and from Sl to S6 gives the expectéd time that both the process

0

mean and variance are out of control from S6 to S7 given the path
SO—Sl—S6. The expected times for the out-of-control conditions for the

path S are presented in Table XIV.

075175675,

System Switches from'SO'to'S3. This path is shown in Figure 16.

When the system shifts from S0 to S3, the determination of the out—of-

control times is much more difficult. State S, is the state in which

3
both process parameters have gone out of control in the same sampling
interval. Two situations arise. ©One is that the process mean can go
out of control first, followed by tHe process variance going out of
control. The secoﬁd is that the process variance goes out of control,
followed by the process mean going ;ut of control. Each of these situa-
tions will result in differegt expected'times for out—of—controi condi-
tions.

Suppose the process mean gées ou; of control at time t1 followed

by the process variance going out of control at time t For the time

9*

t the process mean is out of control and both the process

2 Tty
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Let the process variance

parameters are out of control for time h - t2.

go out of control first at time tl' followed by the process mean at time
t2'. Then t2' - tl' represents ;he time that the process variance is
out of confrol and h - t2' is the time that both are out of control.

Since there 1s no assurance that one parameter will always go out
of control before the other, consideration must be given to each of the
situations described above. The expected times that the process mean
is out of control, the process variance is out of control and that both
are out of contrél have been determined in Appendix A. These are given
below.

When the process switches from S0 to S3, the expected time that the

process mean is out of control 1is

-(A1+A2)h

A A A
1 oM (1), [ TRP 2) [1-e
) (7;)*(1”(1“2}‘)"' )(Al)*(l e )+(>\1)*( A A, )

X0-3) 7 3, h =X h
(1L -e ) ¥ (L -e )

(4.77)

The expected time that the process variance is out of control is
-+
(A;+2,)h

N N S W R

(—A—l—)*(l—(lﬂlh)e 1 )—(%)*(l—e 1 )+(—i>'*(l"; — )

= _ W | W ) 1 "M
(0-3) - B “xoh -

(l-e Yy*x(@-e 2)

. (4.78)

The expected time that the process mean and variance are out of control

is

1 ~x,h —(A1+A2)h
(X;)*(l-(1+x2h)e )—(Az)*(l—(1+(xl+xz)h)e )
(0-3) =0 | , —.h .h

(1 -e 1 Yy * (1 - e 2

TXR

)
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' -).h —(A,+A >h
(r]?)*(l"(l'f'}\lh)e )"()\1)*(1-(1"'(}\1"'}\2)}1)6 )

-).h -\.h *
(L-e Yy*(-e 2)

(4.79)

The expected time that both the process mean and variance are out of

control from 83 to S6’ given that the system is in S3, is (h/(1 - p33)).
The time that both process parameters are out of control from S6 to S7
is gn + D3. So,

my U - ) *

FXR0_3_(6_7) (h/(1 P33)) (gn + D3)- (4.80)

Multiplication of the above expected times in the specified paths

by the probability of switching from So'to 53 gives the expected out-of-

control times for paths when the.system switches from S, to S,. These

0 3
are presented in Table XIV.
A detailed intérpretation and analysils of the remaining states

into which the process can switch from S, is not presented. The inter-

0
pretation and subsequent analyéis to determine the expected times for -

out-of-control conditions is similar to those above.

System Switches from Sg to Sg. This path is shown in Figure 16.

When the process switches from S, to S6’ situations like those described

0

0 3

go out of control in the same interval and an out-of-control condition

from S, to S, occur. In this switch (S0 to S6), both process parameters

is detected. Again, the expected times in states are difficult to
determine. However, the expected times in the path are identical to

those described above (S0 to S6). So that.TX(0_6) = TX(0_3), TX(0—6) =

TR(O—3) and TXR(0—6) = TXR(0_3). When multiplied by the probability
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0

of-control conditions. These are presented in Table XIV.

of switching from S, to S6, the expected times are obtained for the out-

Once in state 56’ there is no switch. The expected times that

both process parameters are out of control from S, to S7, given S is

6
)) * (gn + D3). This is presented in Table XIV.

6’

System Switches from Sgp to Sp. When the process switches from SO

to 82, the possible paths and states are shown in Figure 21.. Figure 21

shows the identical paths and states as in Figure 16, but has been
redrawn to have the same.eoﬁfiguration as Figure 20. The only differ-
2 replaces

denotes the state in which the

ence between Figure 20 and Figure'21 is that in Figure 21, S

S, and S. replaces S (Recall that S

1 5 4° 2

process variance is out of control. State S5 occurs when the sample

value falls outside the control limits and the process variance is out

of control.) The analysis of expected times for the switch from S, to

0

82 will be similar to those from S0 to Sl' The difference being that

the switch from S0 to 52 involves the process variance, while the switch

from S0 to Sl involved the process mean.

1 2’ "2

with Al, and the appropriate pij's, the expected times out of control

By replacing 1 with Tos T2' with Tl', gn + D, with gn + D A

when switching from S0 to 82 are written directly from those expected

times in Table XIV. The derived expected times are presented in Table

XV.

System Switches from Sy to S5. When the process switches from S0

to SS’ the possible paths and states are shown in Figure 22. Figure 22

shows the identical paths and states as in Figufe 16, but has been re-

drawn to have the same configuration as in Figure 19. The difference
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being that S_ has replaced SA' By using the proper substitutions, the

5
expected time in out-of-control conditions for the various paths de-

plcted in Figure 22 are derived from the expected times in Table XIII.

These expected times are presented in Table XV.

S

S S

S6 ' S7

Figure 21. Alternative Paths and States When System

Switches from S, to S
0 2

S5 S

S

Figure 22. Alternative Paths and States When System

Switches from S0 to S5

.
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TABLE XV

EXPECTED TIME OUT OF CONTROL WHEN A SWITCH OCCURS FROM

SO TO‘S2 AND FROM S0 to S5

Expected Time Out of Control When a Switch Occurs From S0 to 82

Expected Time Process Variance is Out of Control Path

(Pyy/ (1 = pye)) * (h = 1)) ‘ (0-2)
(hgo/ (1 = Pgg)) * (pys/ (1 = By))) * (W/(L = ,,)) 0-(2-5)
(P! (1 = Pyg)) * (pys/(L = pyo)) * (e 1E™P2)y w (g 4D ) 0-2-(5-7)
(P! (1 = Pug)) * (pys/(1 = pyp)) ¥ (1= e B v 0-p-(5-6)
Expected Time Process Mean and Variance are Qut of Control Path

(D! (1=pgg) ¥ (pys/ (19 )0 * (1-e 1B yx (grinyy v 1) 0-2-(546-1)

(Byy/ (1 = Bg)) * (pyal (1 = Byp)) * (b = 1) o 0-(2-3)
(Pgy/ (1 = pyg)) * (pyg/ (1 = pyy)) * (W/(L = pyy)) - 0-2-(3-6)
(Pgp/ (L = pgg)) * (pyg/(1 = py,)) * (gn + Dy) ' 0-2-3-(6-7)
(bgy/ (1 = Pg)) * (byg/ (L = Byp)) * (b = 7)) 0-(2-6)
(Ppo/ (L = o)) * (pog/(1 = pyy)) * (gn + Dy) 0-2-(6-7)
Expected Time Out of Control Wﬁen a Switch Occurs from S0 to S5

Expected Time Process Variance is Out of Control Path
(Pys5/ (L = pyg)) * (b = 1,) . (0-5)
(pgs/ (L = pyg)) * (M LEPDy % (gn 4 p,) 0-(5-7)
(pgs/ (1 = pyg)) * (1 - e 1(EMD2)y 0-(5-6)
Expected Time Process Mean and Variance are Out 6f Control Path

(pos/ (1 = pgg)) * (1 = e MLEMP2)y & ((gn + D)) - 1)1) 0-(5-6-7)
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Model Formulation

The methodology developed in the prévious section is now used to
formulate a joint economic model for X- and R-control charts. The model
consists of four components. These components are the cost of searching
for a non-existent assignable cause (false alarm), the cost of an out-
of-control condition due to an assignable cause, cost of finding the
assignable cause when it occurs, and the cost of sampling and inspection.
The cost model (and components) is-exﬁressed'on a per hour of operation
basis. To accomplish thié, the expected times in the in-control out-of-

control times are determined and used to estimate average cycle time.

In-Control Out-éf—Control Times

In the previous section, it was proved that under the'assumptiohs
regarding the occurrence of assignable causes, the expected times that
the process is in control is equal to TIO (Equation 4.57). For con-

sistency of notation, let I, denote the expected time the process

0

operates in control, so that

I =l/(xl+_;\

0 (4.81)

2) ’

Let Il denote the expected time that only the process mean is out

of control. Therefore,

Il = sum of the expected times in Table XIII and Table XIV that

the process mean is out of control.

Let 12 denote the expected time that only the process variance is

out of control. Thus,

I2 = gum of the expected times in Table XV that the process

variance 1is out of control.
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Let 13 denote the expected time that the process mean and variance
are out of control simultaneously. Therefore,
13 = sum of the expected times in Tables XIII, XIV, and XV that the

process mean and variance are out of control.

Average Cycle Time

The cycles defined under the assumptions of this study are presented
in Figure 16. These are 14 possible in-control out=-of-control cycles,
where a cycle is determined by passing through one or more system states.
The expected times, in Tables XIII, XIV, and XV, were obtained from the
paths and summed above (Ii); These are the average times that the
process is in coptrol (Io), and out of controi (Ii’ i=1, 2, 3). The
out-of-control times developed are weighted inherently by.the probabil-
ity of their~occurrence}. Therefore, the average cycle time (ACT) is

ACT=1I,+1I.+1I,+1I,6 = . (4.82)

0 1 2 3

o~ w
[}

i=0

The weighting factor for I, is one since the process always begins in

0
control. The weighting factors in Ii (1 =1, 2, 3) are the probabil-
ities used in determining the expected times for the ith out-of-control

condition.

Cost of False Alarms

A false alarm occurs when a sample value falls outside the control
limits, when in fact the process parameters are in control. This action
results in costs being incurred while searching for the non-existent

assignable cause. Duncan (23) has shown that the expected number of
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false alarms before the process parameters go out of control to be the
probabllity of a sample value falling outside the control limits (PO)
times the expected number of samples taken while the process is in con-

trol. Let A be the expected number of false alarms.

o ~(i+1)h -<x1+x2>t
A = po( 7 jﬂ A0+ Ae dt) (4.83)
» i=0 Yih
| (A 42 )h ~ (AN )R
A ='(PO xe 1 2 )/«} —e 12 ) . (4.84)

Let T be the cost of searching for a false alarm when the process is in
control. The expected cost per cycle is AT. The expected cost per hour

of operation is

| N
Ly = AT /( z 11) . (4.85)

Cost of Out-of-Control Conditions

Three out-of-control conditions are defined in this study. When a
process switches to an out—-of-control condition due to the occurrence of
an assignable cause, it is assumed that there will be an increase in the
- number of defective items being produced. It is assumed that the
magnitude of the increase will be directly related to the specific
assignable cause(s). Therefore, the additional loss depends upon the
particular out-of-control condition. Let Mi (i =1, 2, 3) denote the
additional loss per hour due to the ith out-of-control condition. The

expected additional loss per cycle (LPC) is
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E(LPC) = (4.86)

o~ w
-
=

where Ii is the expected time the process is in the ith out-of-control

condition. The expected loss per hour of operation is

L, = E(LPC)/ACT =

2 (4.87)

Cost of Identifying Assignable Cause

When an assignable cause occurs and an out-of-control condition is
indicated by a sample value falling. outside the control limits, a search
is initiated to identify the cause. It is assumed that the cost of
identifying each assignable cause is dependent upon the specifié cause.

i
associated with the ith out-of-control condition; If Bi d“=1, 2, 3)

Let W, (1 = 1, 2, 3) be the cost of searching for the assignable cause.

is the proportion of time that the ith assignable cause is identified,
3 . , ,

the expected cost per cycle is I B.W,.

In order to determine Bi'consider thé 14 cycles in Figure 16.
State S7 occurs when an assignablé cause is identified. There are
three assignable causes expected to occur in the process described by
Figure 16. There are causes for only the process mean to be out of
control, for only the prdcess variance to be out of control, and for
both the process'mean and variance to -be ouf of control. Consider the

paths that represent the identification of the assignable cause for the

process mean to be out of control. These are SO—Sl—S4-S7. The
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probabilities associated with the identification of this assignable
cause is the probability of arriving at S7 along these two paths. Con-

sider the path §,-§,-S.. Thg probability of 85-8, 1s pOA/(l - poo).
—Az(gn+D1)

The probability of 84—87 is e (Equation 4.59). Therefore,

this probability of identifying an assignable cause for the process

' ~\2 (gn+D1)
mean to be out of control is (p04/(1 - poo)) * (e ) when the
path 80—84-87 is taken. Another probability of identifying an assign-

able cause for the process mean to be out of control is the probability

of the path S.-S =5,-S,. This probability is (pOl/(l - )) *

0 °1 Poo
-lz(gn+D1))

(plA/(l - pll)) * (e . The sum of these two probabilities is
the probability of identifying the assignable cause when only the
process mean is out of control.

The probabilities of ﬁhe'two ﬁaths above are the probabilities
associated witﬁ the expected.times for the paths SO—SA_S7 and
SO—Sl~54—S7. From Table‘XIII,.the probabilities above can be obtained
directly from the paths 0-4-7 and 0-1-4-7. Therefore, the probabilitiesb
associated with the assignable cause for the other two out-of-control
conditions can be obtained from Tables XIII, XIV, and XV when the paths
end in state S7. These probabilities are presented in Table XVI.

Let Bi be the probability of identifying the assignable cause

associated with the ith out-of-control condition. Therefore,

sum of the probabilities along the paths that end in an

By

identification of an‘assignable cause associated with the
process mean out of control.

B, = sum of the probabilities along the paths that end in an
identification of an assignable cause associated with the

process variance out of control.



TABLE XVI

PROBABILITY OF THE ASSIGNABLE CAUSE ASSOCIATED WITH OUT-OF-CONTROL CONDITION

Assignable Cause Path Probability,of_Assignable Cause
For Process Mean Out 0-4-7 (p04/(1 - pOO)) * (e—kz(gn+D1))
of Control
' 0-1-4-7 (o /(L = po)) * (oo /(L = p, ) % (e '2(8WDP1),
Po1 Poo P14 P11’
For Process Variance 0-5-7 (pOS/(l - pOO)) * (e—kl(gn+D2))
Out of Control ) -A1(gn+D2)
O.—2—5-7 (poz/(l - poo)) * (p25/(1 - ‘p22)v) * (e ; )
For Process Mean and 0-4-6-7 - (p04/(1 pOO)) * (1 - e—kz(gn+Dl))
Variance Out of ) ) -x2 (gn+D1)
- _ _ _—Xx2(gntDp)
0-1-3-6-7 (pp/ (1 - Pyg)) * (py3/(1 = pyy))
0-3-6-7 p03/ 1 Pyo’
0-6-7 p06/(1 Pgo)

- _ ~A(gntD2)
0-2-5-6-7 (Pga/ (1 = Ppg)) * (pyg/(1 = pyy)) * (L - e )
0-2-6-7 - (Ppa/ (1 = pyp)) * (Pyg/ (1 = pyy))-

-2 +D
0-5-6-7 (ys/ (1 = pgg)) * (1 - e '1(E%PD))

AN
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B, = sum of the probabilities along the paths that end in an

3 p
identification of an assignable cause associated with both
process mean and variance out of control.

Also,
3
r B8, = 1. (4.88)

The expected cost per cycle of finding the assignable cause for the

3
ith out-of-control condition is I eiwi and the expected cost per hour
i=1
of operation is
(o)l 2 5)
L, =\.Z B,W, T I . (4.89)
3 Map P 0

Cost of Sampling and Inspection

Every h hours a sample 1s taken and evaluated. Let b be the fixed
cost of taking the sample that is independent of the sample size. Let
c be the variable cost per item of sampling, testing and plotting. The

cost per hour of operation is
L4 = b/h + en/h . (4.90)
Joint Economic Model for X- and R-Control Chart

Based on the above cost components, the total expected loss-cost

per hour of operation is

L=L +L,+L,+ L

I IR LT (4.91)
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3 3
AT + & IM,  + I B.W,
j=1 11 =1 11
L = 3 + b/h + en/h . (4.92)
T I
1=0 1
This model is a function of the decision variables--n, h, kl, k2, and

k3' The optimum design of the joint economic model for the X- and
R-control chart will be determined when values of the decision variable

are estimated which will minimize L. The optimization of the above

model will be discussed in Chapter V.

Measurement Error and Economic Design of

X- and R-Control Charts

The effect of measurement error (bias and imprecision) on statis-
tically designed X- and R-control charts was evaluated in Chapter III.
These effects were detérmined to be detrimental in terms of judging the
actual size of statistical control of a repetitive process. Measurement
error was shown to affect the prdbébility of the control charts to
detect changes in the process parameters (mean and variance).

The purpose of tﬁis sectibn”is to consider the affect of measure-
ment error on the economic model develobed in the previous section. The
assumptions and notation.in_fheAfollowing analyses are the same as sfated
in this chapter and Chapter III. The analysis will proceed as follows.
First, the effect of méasurement error on the detection probabilities
will be examined. Secondly, the methodology developed in Chapter IITI,
necessary to provide the same probability of detection as when np

measurement error is present will be discussed. Finally, the economic
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consequences of measurement error will be presented. Numerical evalua-

tion of the economic effects will be presented in Chapter V.

Effect of Measurement Error on

Detection Probabilities

In Chapter III, measurement error was‘shown to have an adverse
affect on the probability of detecting shifts in the process parameters.
In the development of the joint economic model (L), four detection prob-
abilities (PO, Pl’ Pz,lP3) wére defined. These probabilities reflected
the capability of the control.charts to detect changes in the process
parameters. Thus, meaéurement error will directly affect these prob-
abilities. The transition ﬁrbbabilities will be affected Because the
detection probabilities are used in these calculations (see Table XII).
This will affect the exﬁected time ouf of control because the transition
probabilities are used in this calculation (see Tables XIII, XIV, and
XV). From this, three of  the four cdst components (Ll’ L2 and L3) will
be affected by measurement error. This will be demonstrated below.

The detection probabilitiés without measurement error were defined

earlier as

p,., -P__, *P i (i =0, 1, 2, 3). (4.93)

Where,

-k - sdn
P, = P(z < —————-—) R (4.94)
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ky - §¥n
PZi = P(Z > —'—Y——-) , (4.95)
P3i = P(w §_k3/y) . (4.96)
and
P41 = P(w 2.k2/Y) . : (4.97)

In the presence of measurement error (both bias and imprecision)

-;k - Jn (5 + u /o)
P.. =Pz <« —% e X7\, (4.98)

lie —_
-

k- fn (8 + ue/ox)

PZie = Plz > = . (4.99)
| ’ fl—f?i—l- | (4.100)
. / 2 41
Py, " P(g <k ———?;———>>, (4.101)
and
/-Yzf + 1
oo - v 2 [ 2L e

Now consider the effect of measurement error on each of the four detec-

tion probabilities.

Effect of Measurement Error on Pq. Earlier P, was defined as the

0
probability of a false alarm and Pb = Pi when i = 0, § = 0 and vy = 1.

Therefore, when measurement error is present,
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(4.103)

(4.104)

(4.105)

(4.106)

Given the above expression, an analysis similar to those in Chapter III

could be made to determine the probability relationship between PO and

POe'

error will have on the economic model (L).

error on PO will affect L

However, in this section, interest 1s on the effect measurement

The effect of measurement

, equation (4.83), which gives the expected

cost of searching for a false alarm.

Effect of Measurement Error on Pjq.

1

Earlier P, was defined as the

probability that a sample mean will fall outside the control limits of

an X-control chart when the mean shifts from p to u + 8o

P, =P, wheni =1, § # 0, vy =

1 i

ment error,

=k =0 (8 + /o)

f+1
f

Therefore,

1, so that in the presence of measure-

(4.107)
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ky - Jon (6 + n/0y)

P, =Pz > , (4.108)
21e F+ 1
f
) F T 1
Pl = P(y < Ky / ' ), (4.109)

and

P (4.110)

4le =

I

lae]
/E\

| v

=

(&
T
-
H,I+
H
S—

The above four equations indicate that the bias and/or imprecision will

affect Pl. From Table XII, this will affect the calculations of Pg1»

Pos> P11 and P14 These will then affect the expected time wheﬁ the

mean only is out of control and the expected time when both the mean and
variance are out of control (see Tables XIII and XIV). This will af-

fect the components Il and 13 in average cycle time which is used to

L, and L,.

calculate Ll’ 2 3

Effect of Measurement Error on Pj. Previously, P2 was defined as

the probability that a sample range will fall outside the control limits

2

. 2 2
of an R-control chart when the variance increases from o to vy CX

X

(y > 1). Therefore, P

9 = Pi when i = 2, § = 0, and vy > 1, so that in

the presence of measurement error,

< B kl B /E.“e/cx
“12e — 5
{Y f +1
f

k., - Jnu_/o
P.. =Pz > % e X\ (4.112)

22e -
Y2 + 1
f

la]
N

lae]

N

, (4.111)
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it

2 , '
, . Yof 4 1
"32¢ ‘] (w S ly /[ f ) » (4.113)

and

I

2
/Y £+ 1
LI - Pévikz/ ——-—f———-> (4.114)

These four equations indicate that measurement error will affect
P,. From Table XII, this will affect the calculations of Pg2s Pos® Poo
and Pos- The effects that this will have on expected times out of con-

trol can be judged by examining Table XV. As with P, this will affect

1

the components 12 and I3 in average cycle time (which is used to deter-

L, and L3).

mine Ll’ 2

Effect of Measurement Error on Pa. The probability of a sample

value falling outside the control limits of either the X-control chart
or the R-control chart when a change occurs in both the process mean and

variance is denoted by P Therefbre, P, = Pi when i = 3, 6 # 0, and

3°

vy > 1, so that when measurement error is present,

3

-k, - Jn (5 + u foy)
P =plg < —* e X\, (4.115)

13e —
Y%f + 1
‘ f

k. = Jfn (8§ +u /o)
Plz » 1 e X s , (4.116)

23e -
Y% + 1
£
p._ =P <k//f—‘5—”—l (4.117)
33e T\ 2 %3 £ ’ :

d
I

and
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2
_ e + 1
Pyae = P(w > k2/ — ) (4.118)

An examination of these equations indicates that bias and impreci-

sion will affect P3. From Table XII, this will affect the determination

of Pg3* Pge® P13 P1g° P33 and P3ge These in turn will affect some of

the expected,timeé in Table XIV., As with P, and P

1 29 the effect on ex-

pected times will affect the component I3 in average cycle time which is
L2 and L3.

Therefore, the above analyses indicate that measurement error in

used in determining Ll’
the form of bias and/or imprecision will affect the joint economic

model developed earlier. The optimum cost model as defined by the deci-
sion variables--n, h, kl’ k, and k,--will not be the optimum model when

2 3

measurement error exists. This will be 'demonstrated in Chapter V.

Assessment of Compensation for Measurement

Error on Detection Probabilities

The results of Chapter III can be directly applied to Plie’ PZie’

c ] : 8 = P = = B =
P3ie and IAie such that Plie Pli’ 2ie PZi’ P3ie P3i and P41e
PAi' lHowever, the brobabiiities.of detection are joint probabilities

and the consequences of the adjustments in Table XI will depend upon the
type of measurement error. First, consider the .case of bias only. 1In

the presence of bias, only k, is affected. The adjustments determined

1

in Chapter III, kl' = kl + “e/oi for the upper control limit and kl" =

kl - ue/oi for the lower control limit will result in Plie = Pli and

P3ie = P3i and PAie = p4i because bias does

not affect the R-control chart. Therefore, the probabilities of detec-

PZie = PZi' For bias only,

7 pd ol
tion (Ili’ PZi’ I3i and P41) will be the same as in the absence of
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measurement error. The optimum cost model adjusted for bias only will
be the same as when bias is not present. The only value of the decision
variables that will change will be kl'
The adjustments for imprecision will not result in the same prob-
abilities of detection. Impfecision affects both the X- and R-control
charts. Two procedures are presented in Chapter III for adjusting the
R-control chart for imprecision. The first does not consider n' in
determining the R-control chart. From Chapter III, the adjustments to’

2
Ci4ggt—l> for the X-control chart

k 2 k 2
and k,' = —g-’1—£4t~l and k,' = —Q-/I—i—i;l- for the R-control chart.
2 Y f 3 Y f ‘

Now consider the joint effect of these adjustments. The adjusted sample

compensate for imprecision are n' =

=7

size will make P =P and P = P

lie - P14 2ie = Toi° Pjjand P,y =

P31e = P31 bie
P41 with kz' and k3' when sample size does not change. .But, sample size

has changed for the adjustment for the X-control chart. The new deci-

Also,

sion variables are n', kz', k3', k1 and h., Therefore, with the adjust-

ments in n, k2 and k3, P3ie # PBi and P4ie # P4i so that the adjusted

probabilities of detection will not be the same as the probabilities of

detection without measurement error. (The probabilities, PBi and P4i’

are determined by n, k, and k The optimum cost model adjusted for

2 3')
imprecision only will not be the same as the optimum cost model in the
absence of imprecision. If the original sample size is retained for the
R-control chart, then P3ie = P3i and P4ie = P4i' This would make the
detection probabilities the same, however the cost model would not be
the same as in the absence of imprecision due to the increase in sample

size for the X-control chart from n to n'. (An area of future research,

in the joint economic design of variables control charts, would be to
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modify the joint economic model developed in this research to consider
two sample sizes—-one for the X-control chart and one for the R-control
chart.)

The second procedure considers the adjusted sample size (n') ob-
tained to compensate the X-control chart for imprecision. Determine a
new R-control chart by selecting a new k, and k, that provides i_30R

2 3

control limits with n'. Let PBi' and P4i' be the probabilities of a

sample value falling outside the R-control limits using n'. Let P, '
3ie

and Péie' denote these probabilities in the presence of imprecision.

| ' Ky v 41
The adjustments to. compensate for imprecision are k2' = ;7- - F and

k3 2% 41
;- —F > where k2 and k3 are the new values obtained with n'. Thus,

v ' (- N ' '
P3ie P31 and Péie P41 , but note that P31 # P3i and P4i # P4i’

where PBi and P41 are.the probabilities associated with n. Even though
the probabilities of detection will now be the séme (using n'), thé cost
model in the presence-of imprecision will not-be the same as the cost
model in the absence of imprecision and with sample size of n. This is
due to both the increase in sample size from n to n' énd because P3i' #
Pay and PAi’ =P,

Similar arguments to the above can be made when bias and impreci-
sion occur simulFaneously. The above results indicate two approaches

that can be used to determine the economic design for measurement error.

These are discussed in the next section.
Economic Design for Measurement Error

Suppose that for a set- of cost parameters, technical time parameters

and failure rate parameters, an optimum set of decision variables have
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been determined when no measurement error is present. Denote these by
n s ho’ klo’ k20 and k30. Denote the optimum cost by LO. Consider the
case for bias only. From above, bias will affect the detection prob-
abilities which in turn affect the various components that determine L.
Let the cost model evaluated in the presence of bias be denoted by Le
and Le > LO. This increase will probably result from an increase in
the number of.false alarms and/or a masking of shifts (by bias) in the
process mean.

From the above discussion in the previous section, adjusting the
upper and lower control limits of'the X-control chart by k. ' =%k, +

1o lo
- LA -— —_ i = = .
ue/oX and klo k ue/oX will cause P P.., and P P... The

lo lie 1i 2ie 21
resulting probabilifies of detection will be the same. The cost
components of L will be thevsame, so that the cost adjusted for bias
LO' will equal LO. Therefore, given an optimum design, to optimize in
the presence of bias, adjust the upper and lower coptrol limits for the
X-control chart by the compensating factors determined in Chapter III.
The remaining decision variables will not be affected.

For the case of imprecision only, a different approach must be
taken to determine the optiﬁum design. Evéluation of the optimum
economic model in the presence of imprecision will result in Le which

2

and k3'are not "independent' because the sample size is used in deter-

is expected to be greater than Lo. From the previous section, n, k

mining the probability of detecting values outside the limits of the
R=control chart. Therefore, an evaluation of the cost model for the

adjusted decision variables, n', k,' and k3' (or k2' and k,' determined

3

which is expected to be

2

from new k, and k !

9 using n'), will result in LO

3

larger than Lo. The approach used to determine the optimum design in
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the presence of imprecision is the same as the approach used to deter-
mine the optimum design when imprecision is not present. The optimiza-
tion is discussedlin Chapter V.

In the case 6f bias and imprecision, the approach to determine the
optimum design variables is a combination of the two approaches above.
First, ignore bias and determine the optimum design in the presence of
imprecision. Given the optimum design in the presence of imprecision,
adjust k1 to compensate for bias. This will result in an optimum de-
sign for bias and imprecision and the cost will be the same as that
obtained when for the optimum design in the presence of imprecision only.

This will be demonstrated in Chapter V.

Summary -

An economic ﬁodel has been developed which will determine the design
of a joint X- and R-control chart to minimize cost. This model was de-
veloped using Duncan's approach to the economic design of control charts.
The new model has two advantages over a current proposed model for the
economic design of X- and R—coptrol charts. The model developed in this
research entertains the possibility of both process parameters being out
of control simultaneously. Also, it considers the possibility that a
second process parameter can go out of control after the other has gone
out of control but undetecteé.

A discussion was presented which indicates that measurement error
will affect the economic design of X- and R-control charts. Application
of the methodology in Chapter III tb adjust for biés only will provide
the minimum cost design. When imprecision is present, the adjustment

factors developed in Chapter III will not provide the minimum cost
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design. The minimum cost design is the design which minimizes the cost

model in the presence of imprecision.



CHAPTER V

OPTIMIZATIOﬁ AND EFFECTS OF DECISION VARIABLES
AND MEASUREMENT ERROR.ON THE JOINT

ECONOMIC MODEL
Introduction

The purpose of this chapter is to present methodology to optimize
the joint economic model for the X- and R-control cbarts developed in
Chapter IV. The optimum is obtainéd when values for the decision
variables--n, h, kl, k2 and k3—fare obtained that minimize the joint
economic model subject to specified shifts in the proceés parameters
and for a specific set of cost, technical time and failure rate
parameters. The approach to'optimization consists of the use of cen-
tral combosite experimental designs and a pattern search technique.

The experimental designs are used to provide estimates of the effects

of decision variables on costs generated from the joint economic model.
These estimates are used to assist in obtaining a set of starting values
for the pattern search technique.

The effects of measurement error on the optimum design is deter-
mined. Three cases of measurement error are evaluated. These are the
bias case, imprecision case and bias/impreéision case. Optimum designs

are obtained that minimize cost in the presence of measurement error.

161
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Determination of Cost Parameters

The cost parameters used in this analysis are:

T = the cost per occasion of looking for an assignable cause when
none exists.

b = the fixed cost per sample of sampling, testing and plotting.

¢ = the variable cost per item of sampling, testing and plotting.

wi (4 = 1, 2, 3) = the average cost per occasion of finding the ith
out-of-control condition when it occurs.
Mi (i =1, 2, 3) = the cost per hour of operation of operating in

the ith out-of-control condition when it occurs.

The valués for T, b‘and c are taken from Duncan (23). These are
used by Duﬁcan as a reference set and have the values: T = $25.00, b =
$1.00/sample and ¢ = $0.10/item. This determination of Mi and Wi is
similar to the approach used b? Dunéan (23). These parameters are
determined below.

It is assumed that the product specification limits are set at
i_3.50x from the desired nominal dimension. As 1ong as items being
produced are within this range,bthere is no loss incurred. If the
process shifts to an out-of-control condition, there will be an increase
in the number of items pfoduced which fall outside the specification
limits. This will result in an ec&nomic loss. For this research, it
is assumed that each 0.001 increase in the fraction defective will re-
sult in a loss of $1.00 per hour. It is assumed that the amount of loss
is the same regardless of which dut—df—control condition results in an
increase in the fraction defective outside'the specification limits.

Therefore,
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Mi = §1,000.00 * FD i=1, 2, 3), (5.1)

i

where FDi is the fraction defective outside the specification limits due
to the ith out-of-control condition.

In determining Wi, it is assumed that when an assignable cause
does occur, the time required to discover the cause is less than the
time required to search for a false alarm. This implies that when the
process is out of control, the cause can be determined in less time than
when there 1is ﬁo assignable cause and less cost is incurred. Consistent
with Duncan (23), the assumption is ﬁade that the more severe (larger
fraction defective) the assignable causé, the‘more.quickly it will be
discovered. For this research, T is uséd as a basis for determining Wi.

Let
wi =T % (1.0 - FDi) d=1, 2, 3). (5.2)

As the fraction defective (FDi) increases, the cost of searching for the
ith out-of-control condition decreases. No attempt is made in this
research to determine the effect of signifiéant changes in the cost

parameters on the optimum design.
Determination of Technical Time Parameters

Two parameters used in this research are designatéd as technical
time parameters by Duncan‘(23). These are:’
D, (i = 1, 2, 3) = the average time in hours to find the assignable
cause for the ith out-of-control condition.
g = the rate at which the time between taking a sample and plotting
a polint on the X- and R-control chart increases with n. For

this research g = 0.05 hours.
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From Du;can's (23) study of multiple assignable causes, a relation-
ship existed between Di and Wi. In the previous section, it was deter-
mined that the cost, Wi, decreased as the severity (large fraction
defective) increased. While not staﬁed explicitly by Duncan, if the
cost of searching for the assignable cause decreases, it is reasonable

to expect that the time spent searching for the assignable cause de-

creases. Therefore, Di is related to Wi. For this research,

D, =W /$4.75 (i=1, 2, 3). (5.3)

In Duncan this constant is $4.74 per hour. Since wi is in dollars and

$4.75 is dollars per hour the units of Di are hours.

Failure Rate Parameters

The values used ‘in this research for the failure rate parameters

are A, = 0.01 for the process mean and )

1 = 0.0025 for the process

2
variance. This indicates that the mean is expected to go out of control
on the average every 100 hours. Thé variance is expected to go out of
control on the average every 400 hours. These values have been selected
because it is reasonable that the mean of a process may go out of con-
trol more frequently than the process variance. No attempt is made in
this research to determine the effect of changing failure rate param-
eters. However, it is a reasonable assumption that significant changes

in these parameters will yield different results than those obtained in

this research.
Operating Conditions to be Optimized

An "optimum'" design of a control chart is defined in this research
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as the values of the decislon variables which will minimize the cost of
operating a joint X- and R-control chart. The control charts are de-
sfgned to detect shifts of magnitude S?X in the process mean and YOy in
the process standard deviation. An optimum design to detect changes in
the process parameters 1s consistent with the approach used in the
literature to determine the optimum eéonomic design of variables control
charts. For example, Duncan (22) seeks the optimum for a shift in the
process mean of GOX = 20X and Saniga (46) considers 6 = 2 and 3 and in-
creases in the procéss variation with vy = 2, 3 and 4.

For this reseérch, the basé case 1s to consider the design of an
X- and R-control chart to detect a shift in the process mean of two
standard deviations ZUX (8§ = 2) and‘an increase in the process variance
from oxz to 40X2 (y = 2). Three additional cases are analyzed to deter-
mine the effect of measurement error on the optimum design of the base
case. These three cases.are denoted as the bias case, imprecision case

and bias/imprecision case. These cases are discussed as they arise in

the analysis.
" Analysis and Optimization Techniques

Analysis Technique

The Analysis of Variance (AOV) technique is used along with central
composite designs to determine the range in which the values of the
decision variables are expected to lie that will minimize the cost model
(4). This apprpach nét only aids in determining the optimum values of
the decision vafiables by use of a pattern search technique, but in addi-

tion permits a quantitative evaluation of the effect of the decision
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variables on costs generated from the joint economic model. The use of
experimental designs will permit an evaluation of a "cost space" over the
ranges of the decision variables. An analysis of these data can aid in
determining if there 1s more than one combination of decision variables
which would have a minimum cost. This analysis will provide a good set
of initial values to be used in the pattern search technique. This is
important, because in most applicatioﬁs of search techniques several
different initial values must be used to assure convergence. The use

of experimental design will indicate the ranges of decision variables
which contain the minimum cost. Tﬁis approach can reduce the amount of

computation time required'to optimize the model.

Optimization Technique

Because of the complexity of the joint economic model developed in
Chapter IV, a search algorithm is used to optimize the model. The
technique used to determine the values of the decision variables which
minimize the cost is a pattern search technique developed by Hooke and
Jeeves (38). The algorithm is discﬁssed in Appendix B. A critical
factér in employing this technique is the selection of initial condi-
tions for the variables to be searcﬁed. Rather than selecting several
initial starting conditions (as is common practice) and determining if
the same optimum is obtained, the use of central composite design and
the subsequent use of the AOV teéhnique provides an analytical approach

to determine initial starting conditions.
Analysis Procedure

The procedure to be used in this analysis and optimization of the
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four cases is as follows. First, an experimental design (central
composite) will be determined for each case. Data will be generated
from the Jolnt cconomic model in Chapter IV, The analysis of variance
technique will be used on the factorial portion of the data. From the
AOV, the effects and/or interactions of the decision variables will be
determined. The results of this analysis will indicate if the optimum
(minimum cost) can be determined adequately from the current set of
experimental points or if an additional experimental design is necessary
fo obtain a better estimate of the rangé of the decision variables in
which minimum cost occurs.

The "significance'" of the effects and/or interactions in the AOV's
are determined in a subjective manner. The purpose for the use of AOV's
in this research is to determine '"trends" in the data in a systematic
manner. The effects and/or interactions which contribute the largest
amount of variation in the data are the prime candidates for "signif-
icance." Also, from a practical viewpoint, the amount of total varia-
tion in the data must be considered when making judgments on
"significance." 1In each analysis, the reasons for determining the
significant effects and/or interactions are stated.

Data for the analysis and optimization is obtainéd from the joiﬁt
economic model developed in Chapter IV. A FORTRAN program was written
to evaluate this model at specified operating conditions and for specific
values of the decision variables. A sourcé listing of the program is

presented in Appendix C.
Notation and Definitions

This section will define notation and definitions used in this
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chapter that have not been defined previously.
CSTl--denotes cost data for base case and is expressed in dollars
per 100 hours of operation.
CST2--denotes cost data for imprecision case and is expressed in
dollars per 100 hours of operation.
nL——depotes the smallest value of n in the factorial part of the
central composite design.
hL’ le, kZL’ k3L——the subscript L with these remaining decision
variables is interpreted in a similar manner to that for n .
nH——denotes the largest value of n in the factorial part of the
central composite design.
hH’ le, kZH’ kBH——the subscript H with these remaining decision
variables is interpréted in a similar manner to that for N
V--denotes subjective significance of a variable effect and/or
interaction between decision variables in the subsequent
AOV's. '"Significance" in this research does not mean statis-
tical significance.‘

APL——denotes the smallest value of a decision variable in the
central composite design. This value occurs in the axial
point part of the design.

APH——denotes the largest value of a decision variable in the
central composite design. This value occurs in the axial
point part of the design.

Lo——dénotes the cost in dollars per 100 hours of operation for
the optimum design.

Le——denotes the cost in dollars per 100 hours of operation for

the optimum design in the presence of measurement error.
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Lo'--denotes the cost in dollars per 100 hours of operation and is
obtained by adjusting the optimum decision variables for
measurement error and then evaluating the joint economic model
using the adjusted values.

Loe——denotes the cost in dollars per 100 hours of operation and is
obtained by optimizing the joint economic model in the

presence of measurement error.
Analysis of Base Case

The base case will be the economic design of a joint X- and
R-control chart to detect a shift of ZOX (6§ = 2) in the process mean

2

and/or an increase in the process variance from o,  to 40X (y = 2).

X
There is no measurement error present (ue = 0.0 and oe2 = 0.0). The
values of the decision variables are to be determined which minimize the
cost from the joint economic model developed in Chapter IV. For this
research, the value of the cost model is multiplied by 100 so that the
cost is expressed in terms of 100 hours of'operation. (The components

in the model are expressed on a per hour basis.) This is consistent

with Duncan (22) (23). The cost for the base case is denoted by CSTL.

Analysis I for Base Case

The first experimental design is a 25 factorial arrangement of
decision variables. Two values of each decision variable are evaluated
at each combination of the remaining decision variables. This generates
32.data points. A base point is also evaluated. This is a point at the
average of the highvand low values of the factorial points for each

variable. Ten additional points, called the axial points are evaluated.
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An axial point is a single variable traverse on each variable while the
other variables are held fixed at their base values. The smallest value
in the traverse is denoted by APL and the highest value is denoted by
APH. The base and axial points are used to determine if non-linearity
exists for the variables being evaluated.

The cost data generated from the joint economic model for the first
design are presented in Table XVII. The AOV for the 25_factorial
arrangement of decision variables is given in Table XVIII for CST1l. A
study of the analysis indicates that se?en effects and/or interactions
accountbfor 99.7% of the variatioﬁ in the data. On this basis, n, h, nh,

k2’ nkz, hk2 and nhk2 were judged to be "significant." Two of the deci-

sion variables, kl and k3, were not in those effects/interactions judged

to be "significant." This indicates that for the range (low to high)

over which the decision variables were moved, the effect of kl and k3 on

This does

CST1 is not of the magnitude of the effects of n, h, and k2'

not imply that kl and k3 have no effect on CSTI1.

If an interaction is significant, then the effects of the variables
involved in the interaction must be estimated at the different levels of
the variable(s) with which they interact. From the AOV table (Table

XVIII), n, h and k, interact with each other. Therefore, the effect of

2

n must be estimated at all levels of h and k2' Similarly, h must be

estimated at all levels of n and k2? and k2 must be estimated at all

levels of n and h. These estimated effects are presented in Table XIX.
The interpretation for the effetf of n on CST1l is as follows:

sample size, n, interacts with h and kz. The effect of n must be

estimated at each combination of levels of h and k,. Frbm Table XIX,

2
as n is increased from n, (8.0) to ny (18.0) at hL (2.25) and kZL (3.0),
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TABLE XVII

COST DATA GENERATED FROM THE JOINT ECONOMIC MODEL AT THE
SPECIFIED VALUES FOR THE DECISION VARIABLES
(§ = 2.0, y = 2.0, u_ = 0.0, 082 = 0.0)

j g
~
oy
=

CST1 ($/100 hours)

1 2 3
8.0 2.25 2.0 3.0 0.5 1016.74
8.0 2.25 2.0 3.0 1.5 1050.81
8.0 2.25 2.0 5.0 0.5 644 .89
8.0 2.25 2.0 5.0 1.5 678.90
8.0 2.25 4.0 3.0 0.5 993.11
8.0 2.25 4.0 3.0 1.5 1028.55
8.0 2.25 4.0 5.0 0.5 610.68
8.0 2.25 4.0 5.0 1.5 645.98
8.0 6.75 2.0 3.0 0.5 825.76
8.0 6.75 2.0 3.0 1.5 836.48
8.0 6.75 2.0 5.0 0.5 726.64
8.0 6.75 2.0 5.0 1.5 737.30
8.0 6.75 4.0 3.0 0.5 829.04
8.0 6.75. 4.0 3.0 1.5 839.58
8.0 6.75 4.0 5.0 0.5 746.23
8.0 6.75 4.0 5.0 1.5 756.60
18.0 2.25 2.0 3.0 0.5 1481.11
18.0 2.25 2.0 3.0 1.5 1481.23
18.0 2.25 2.0 5.0 0.5 . 749.47
18.0 2.25 2.0 5.0 1.5 749.58
18.0 2.25 4.0 3.0 0.5 1472.15
18.0 2.25 4.0 3.0 1.5 1472.28
18.0 2.25 4.0 5.0 0.5 705.9<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>