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PREFACE 

This study is primarily concerned with demonstrating the accuracy 

and ease with which the method of linear combination of atomic orbitals 

(LCAO) is able to calculate bulk crystal properties. The great versatil

ity of the representation of the crystal obtained with this method gives 

it widespread applicability to all areas of crystal related problems. 
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CHAPTER I 

INTRODUCTION 

The calculation of the electronic properties of crystals has always 

been of great interest to solid state physicists. The symmetry proper

ties of crystals when correctly utilized enable an accurate representa

tion of the entire crystal within the limitations of an independent 

particle model. Many techniques have been developed to obtain this 

representation such as the orthogonalized-plane-wave (OPW) (1) method, 

Green's-function (KKR) (2,3) method, and linear combination of atomic 

orbitals (LCAO) (4). 

The method of LCAO was originally proposed by Bloch (3) in 1928. 

It was initially introduced under the name tight binding and as the name 

suggests rather severe approximations were adopted. Because of the dif

ficulty in evaluating the required multicenter integrals, the lattice 

sums were truncated at first nearest neighbor. This turned out to be 

an unphysical approximation and as a result tight binding gained a bad 

reputation in the scientific community. It was not until a historic 

paper by Lafon and Lin (4) in 1966 that tight binding was extended into 

the method of LCAO for which the lattice sums are carried to convergence. 

Their breakthrough was made possible by the advent of modern computers 

and the formulation of the multicenter integrals in terms of reciprocal 

space. 

In this investigation a self-consistent Hartree-Fock-Slater calcu-

1 
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lation for diamond will be performed using the method of LcAO (4,5). 

The objectives of this study will be many-fold. A primary objective is 

to obtain an accurate self-consistent representation of diamond and com

pare the resulting band structure with reliable experimental measure

ments. However, band structure is difficult to verify experimentally. 

There are only a few qualitative features of the band structure for 

which a direct comparison with experiment is possible: such as, indi

rect band gap, location of the minimum of the conduction band and 

valence band width. Beyond this limited analysis and some simple sym

metry checks, little else can be verified about the band structure. 

Additionally, band structure is only an indication of band state ener

gies in the Brillouin zone along high symmetry lines. It does not test 

the band state energies throughout the volume of the Brillouin zone. 

More importantly, examination of band structure reveals little about the 

more sensitive wavefunctions. 

A valid evaluation of a self-consistent calculation would be to 

use the wavefunctions to predict bulk properties already measured ex

perimentally. The resulting direct comparison between theory and ex

periment would test the wavefunctions throughout the Brillouin zone. 

Two ground state properties of diamond for which experimental results 

already exist are x-ray structure factors and Compton profile. Another 

objective of this study then is the accurate evaluation of x-ray struc

ture factors and Compton profiles from the self-consistent wavefunc

tions. 

The choice of diamond as the candidate of study was made because 

of the many interesting properties it possesses. Diamond is unique 

from ·a theoretical point of view because its covalent bonds are well 
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defined (6). The covalent bond model is very important in understand

ing a great many substances, such as silicon and other group-IV materi

als. Also, diamond is interesting because it has a small core. Not 

only does this reduce the computational complexity, but more important

ly, the core states do not tend to dominate the bulk properties. Two

thirds of diamond's electrons participate in the valence band. Further

more, a recent self-consistent Hartree-Fock calculation using the method 

of LCAO (18,23) was completed for diamond. Self-consistent Hartree-Fock 

calculations have been done for very few materials, so a direct compari

son between these two theoretical approaches would be very enlightening. 

The LCAO method has been applied self-consistently within the 

Hartree-Fock-Slater formulation for both metals (7) and insulators (8). 

In this investigation, the desire for a large degree of variational 

freedom will be balanced by the need to evaluate the wavefunctions and 

bulk properties using a large number of low symmetry points throughout 

the Brillouin zone. A generalized method of optimized orbitais which 

provides adequate variational freedom while maintaining a small basis 

set will be introduced. The calculation is carried to self-consistency 

while allowing the optimized orbital basis set to relax with each iter

ation .. The bulk properties are calculated from the self-consistent 

wavefunctions and special emphasis is placed on the comparison of 

ground state properties with experiment. 



CHAPTER II 

LCAO APPLIED TO DIAMOND 

A. Crystal Symmetry 

The diamond symmetry consists of two interpenetrating face-center-

ed-cubic lattices (fee) which will be referred to as sublattice one and 

two. Each sublattice has the same lattice constant a chosen to be 
0 

6.728 a.u. These two periodic arrays of atoms are identically aligned 

but offset from each other by a n~:m-primitive translation of one fourth 

the distance along the main diagonal of the fee unit cell. For con-

venience, the origin is placed on this diagonal midway between the atom 

sites corresponding to an inversion point of the crystal. The coordin-

ates of the.carbon atoms so arranged are given by 

where 

+ + + 
T. = R + t.; i = 1,2, 

V1 . V 1 

+ 
R 

v 

= - a (1,1,1)/8 
0 

(2 .1) 

+ and where v1 , v 2 , v 3 are integers. The primitive lattice vectors a1 , 

+ 4-
a 2, a 3 are.chosen to be 

4 
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-+ 
al = a (1,-1,0)/2, 

0 . 

-+ 
a (0,1,-1)/2, (2. 2) a2 = 

0 

-+ 
a3 a (O,O,l) 

0 

The Wigner-Seitz cell constructed about the origin contains two 

-+ -+ 
atoms with positions given by t 1 and t 2 • It has a volume n equal to 

3 
a /4. Every point outside this volume is related to some point inside 

0 

-+ 
by a translation vector R • 

v 

The reciprocal lattice is derived from the primitive lattice vec-

-+ 
tors and is body-centered-cubic (bee) with lattice vectors K given by 

v 

where 

-+ 
K 

v 

-+ 
bl 

-+ 
b2 

-+ 
b3 

= 

= 

= 

(2. 3) 

27f(2,0,0)/a I 
0 

27f(2,2,0)/a I (2.4) 
0 

27r(l,l,l)/a • 
0 

The Brillouin zone (BZ) centered about the origin in reciprocal space 

contains one lattice point and has a volume nk with the magnitude 

3 -+ 
(27r) /D. It is always possible to write some general point K in recip-

. -+ -+ -+ 
rocal space as a sum k + K , where k lies within this volume or on the 

v 

boundary. 

The rotation-reflection symmetry of the direct lattice together 

with the translation group forms a non-symmorphic space group which has 
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.the point group symmetry Oh. In this investigation extensive use will 

be made of rotation-reflection symmetry in order to eliminate redundant 

calculations. In the Brillouin zone the wavefunctions and eigenvalues 

are calculated directly in a fundamental segment called the irreducible 

wedge (IW) with a volume equal to Qk/48. The irreducible wedge has the 

property that it reproduces the.entire Brillouin zone when operated on 

by the 48 rotation-r~flection operations of Oh. By utilizing this 

symmetry, wavefunctions everywhere in the Brillouin zone can be related 

to wavefunctions calculated in the wedge. The irreducible wedge chosen 

in this investigation consists of all the points 

which lie in the Brillouin zone and for which k1 , k2 and k 3 are greater 

than and equal to zero. 

In the Wigner-Steiz cell a similar fundamental segment exists 

called the irreducible volume (IV) ~it~ thP volume Q/48. The form of 

this volume is slightly more complicated because of the glide plane 

symmetry and is given in Appendix B. By utilizing the space group 

symmetry it is possible to generate band state wavefunctions throughout 

the crystal from knowledge of wavefunctions within the irreducible vol-

ume. 

B. Band State Hamiltonian 

Application of the Hartree-Fock-Slater (9) formulation reduces the 

many-body crystal Hamiltonian to a one electron model Hamiltonian re-

sulting in the following SchrBdinger equation 
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1 2 -+ J -+ + [- - V + V(r) ~ .. (k,r) 
2 n, 1 

-+ -+ -+ 
E (k) ~ . (k, r) 

n n,1 
(2.5) 

-+ -+ 
for any point k of interest in the Brillouin zone. The energy E (k) of 

n 
-+ -+ 

the nth band and the corresponding wavefunctions ~ . (k,r) with degen
n, J. 

eracy label i are obtained from solution of the previous equation. The 

. -+ 
potential energy V(r) is the sum of two terms 

-+ 
V(r) 

-+ -+ 
V 1 (r) + V (r) , 

cou ex 

-+ 
where V .1 (r) is the coulomb potential obtained from solution of 

cou 

(2. 6) 

. -+ 
Poisson's equation and V (r) is the effective Slater exchange potential. 

ex 

Both the coulomb and exchange potentials are written in terms of the 

-+ 
absolute value of electronic charge density p(r) as 

and 

2 -+ 
V V 1 (r) cou 

-+ v (r) 
ex 

-+ -+ -+ 
4TI Z I I 8(r-T .) - 4TI p(r) 

c \) i \)J. 
( 2. 7) 

(2.8) 

Pl/3 (-+r) where Z is the atomic number of carbon and is the positive cube 
c 

-+ 
root of electronic charge density evaluated at r. 

Since the crystal potential and the. charge density have the peri-

odicity of the crystal, it is possible and convenient to re-express 

them in a Fourier series expanded about the origin as 

and 

-+ 
V (r) 

-+ +· 
I(V 1 (K) + V (K) 
v cou v ex v 

-+ -+ 
cos K •r 

\) 
(2. 9) 



+ 
p(r) 

8 

(2.10) 

The Fourier coefficients of both series are real because of the inver-

sion symmetry at the origin and are given by 

and 

-+ 
V .1 (K ) cou. \) 

-+ 
V (K) 

ex v 

-+ 
p (K ) 

\) 

l J -+ -+ -+ 
nr.l nQ Vcoul (r) cos KV•r dTr' (2.11) 

( 2 .12) 

(2.13) 

where n represents, symbolically, the number of unit cells in the crys-

tal. 

The LCAO approach used in this investigation will deal directly 

with the Fourier coefficients of crystal potential. By transforming 

both sides of Eqn. 2.7 into a Fourier representation, Poisson's equation 

can readily be solved resulting in 

2 -+ 
K V · l (K ) \) cou \) 

- 4~[(2Z /Q) cos K •t - p(K )] . 
C Vl V, 

( 2 .14) 

In a similar manner, an expression for Fourier coefficients of the ex-

change potential is eCl.sily obtained and written as 

-+ 
V (K ) = 

ex v 
(2.15) 

1/3 (+ ) . .h . ff' . f 1/3 (+) where p K is t e Fourier coe icient o p r • 
\) 

It is therefore 

possible to obtain ths crystal potential directly from knowledge of the 
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charge density. 

C. LCAO Method 

In the LCAO approach to crystals, basis functio·ns are comprised of 

orbitals centered on each atom site and combined together to satisfy the 

Bloch condition. Two different types of orbitals are used in this in-

vestigation. The first type consists entirely of single Gaussians and 

forms a basis set containing 112 Bloch functions. The second type of 

orbttal used here is a linear combination of single Gaussians called an 

optimized orbital and it forms a basis set containing 18 Bloch func-

tions. Obviously, the second type of orbital is more attractive because 

of the difference in the size of the basis sets. The details of the 

formation of an optimized orbital basis set will be left to a later sec-

tion and we will consider only the first basis set for now. It is 

trivial to extend the formulation that follows to a contracted Gaussian 

basis set. 

A straightforward choice for the single Gaussian Bloch sums is of 

the form 

where 

i + + 
b . (k,r) 
a,J 

ik•it 
~ v + + + 

= n- Le X (S.,r-R -t.), 
v a J v i 

a = s, P , P , P ; i 1,2, 
x y z 

+ 
and where the Ga~ssian orbitals xa(S,r) are given by 

. + 
X (f3,r) 

s 
= e 

-J3r2 

(2.16) 

(2.17) 
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.. 2 
-Sr 

Xe (2.18) 

However, a large simplication can be made by choosing an alternativebut 

equally valid functional form. It is obtained by taking + and - combin

ations of Eqn. 2.16 and introducing a phase FACTOR I 6 res~lting in the 
a 

final expression 

where 

6 -+ -+ 
b . (k,r) 

a, J 

+ 
I 

a 
-iI 

a 

(2.19) 

b, +, -

{ : ::: : ~ : ' p ' p 
x y z 

-b, -+ -+ 
and where Xa is a linear superposition of orbitals centered at t 1 and t 2 

given by 

-b, -+ 
X (S,r) 

a 
(2.20) 

The set of Gaussian exponents S used in this calculation were obtained 

from Huizinga (10) for the free carbon atom and are 4232.61, 634.882, 

146.097, 42.4974, 18.1557, 14.1892, 5.14773, 3.9864, 1.96655, 1.14293, 

0.49624, 0.35945, 0.15331, and 0.1146. The use of exponents from an 

atomic calculation should give sufficient variational freedom in a 

crystal calculation since contracted atomic orbitals basis sets give 

reasonable band structure (11) • It seems justified then to assume that 

adequate relaxation of the crystalline wavefunctions can be obtained, 
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while keeping the atomic exponential set intact. This is particularly 

true in a decontracted calculation composed only of single Gaussians 

for which an exceptionally large amount of variational freedom would be 

expected. 

The wavefunctions which satisfy Eqn. 2.5 will be linear combina-

tions of the basis functions, where the linear coefficients are calcu-

lated by applying the method of linear variation of parameters. By em-

ploying this variational procedure two things are guaranteed, (1) the 

band energies are absolute minimums in energy for the given variational 

basis and (2) the true energy values for given Hamiltonian are lower 

bou.nds to the calculated band energies. 
/::,. + + 

Using the Bloch basis b . (k,r), 
a, J 

++ + 
the wavefunctions iJ.; • (k,r) and associated band energies E (k) for the 

n,i n 
+ 

nth band at a particular point k i:p the Brillouin zone are obtained from 

solutions of the matrix equation 

[H(k) - E (k) S(k}] ~(n,ilk) = 0 
n 

(2. 21) 

and the orthonormality condition 

* ++ ++ 
Jnr. iJ.; , • , (k,r) iJ.; ; (k,r) dT 

~& n ,i n,i r 
0 IQ. , I I nn ii 

+ + + I+ where the iJ.; • (k,r) are given in terms of the eigenvectors a(n,i k) by 
n, i 

++ 
i/! . (k,r) 

n I J_ 
= /::,. '+ b + + ELL: a . (n, i k) b . (k,r) 

a.~j a.,J a.,J 
(2.22) 

+ + 
Normally the matrix components of H(k) and S(k) are complex numbers. 

b + + 
However, the choice of Bloch function b . (k,r), because of the inver

a.,J 

sion symmetry at the origin, results in real matrix elements given by 
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!::it:i' + 
H . I • I (k} 

Cl.,J;CI. ,J 
f:i* + .+ 1 2 + f', I + + 

Inn b . ( k , r) [ - - I/ + V ( r ) ] b , . , ( k , r} d T , ( 2 • 2 3 ) 
~· a.,J 2 a. ,J r 

/':!,,{::,.' 
$ ' I 'I (k) 

a,J;CI. 1J 

/':!,,* ++ /':!,,' -+-+ 
Jn" b . (k,r) b 1 • , (k,r) dT 

~· a,J a. ,J r 
{2.24) 

The only case for which non-trivial normalizable solutions to Eqn. 2.21 

exist is if 

det I H (k) - Eck) S (k) I 0 . (2.25) 

This is called a secular equation and is evaluated to obtain the band 

-+ 
energies E (k) • 

n 

As mentioned previously, rotational symmetry can be used to opti-

mize the computation of wavefunctions and associated bulk properties. 

-+ 
If RY is a member of Oh and TY is the corresponding non-symmorphic 

translation, symmetry demands that 

-+ -+ -+ 
V(R r + T ) = V (r) 

y y 

and 

-+. -+ -+ 
p (R r + T ) = P (r) 

y y 

and the wavefunctions and band energies must transform iike 

and 

. + 
E (R k) 

n y 

-+ -+ + 
~ . (R k, R r + T ) 
n,1 y y Y 

-+ 
E (k) 

n 

n + -+ -+· 
I: C .. (Y,k) ~ .(k,r) 
j iJ n, J 

These relations can in turn be used to show that the eigenvectors 

{2.26) 

(2.27} 

(2.28) 

(2.29) 
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-+ -+ a(n,ijR k) at points outside the irreducible wedge are related to eigeny 

-+ I-+ vectors a(n,i k) within the irreducible wedge by 

~(n,ilR k) 
y 

-+ -+ 1-+ U(Y,k)a{n,i k). ( 2. 30) 

n -+ -+ Both matices C (Y,k) and U(Y,k) represent unitary transformations and 

their explicit derivation for the diamond structure is done in Appendix 

A~ By correct utilization of these symmetry properties integrations 

over all real space (reciprocal space) can be transformed into a sum of 

integrations over the irreducible volume (irreducible wedge). 

D. Self-Consistent LCAO 

Since the wavefunctions which form solutions to matrix Eq. 2.21 

generally produce a charge density which is not consistent with original 

estimates of the crystal potential, an iterative procedure is necessary 

to reach internal consistency. The starting or zeroth iteration poten-

tial is generated from the absolute value of electronic charge density 

p0 (;), where the superscript denotes the iteration. In this investiga-

0 -+ 
tion, p (r) was generated from superposition of the electronic portion 

of the atomic charge densities centered on each atom site. This can 

be written formally as 

-+ 

0 -+ 
P (r) (2.31) 

where pATOM(r) is the electronic charge density associated with a free 

-+ 
carbon atom. The charge density pATOM(r) has spherical symmetry, so 

0 -+ the Fourier coefficients of p (r) are given by 

0 -+ 
p (K ) 

v = (2.32) 
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The Fourier coefficients p 113 (K ) must be calculated numerically and 
v 

the procedure is the same as outlined in Chapter III. The Fourier co-

ff . . 0 (-+- ) "d l/3 (-+- ) th b t . t t d . t 2 14 d e icients p K an p K are en su s i u e in o Eq. . an v .. v 
0 + 

Eq. 2.15 from which the zeroth iteration crystal potential V (K ) is . v 

obtained. The initial potential is used to coristruct the matrix Eq. 

2.21 which is solved to obtain the zeroth order wavefunctions ip 0 . (k,;) 
n,1 

. o+ + 
and band energies E (k). The first iteration charge density p' (r) is . . n 

0 ++ 
calculated from the wavefunctions ijJ . (k,r) and used to create a first n,1 

+ 
iteration potential V' (K ) . This procedure is continued for as many 

v 

iterations as necessary to reach convergence. Self-consistency is ob-

. h d . A+l(+) . . . h h . 1 tained when the c arge ensity p r is consistent wit t e potentia 

A + 
V (r) from which it was generated. A convergence stabilizing technique 

A..+ 
(12) is empioyed for the first few iterations until the p (K ) have 

v 

converged to at least three significant figures. 

A self-consistent crystal calculation generally involves many 

iterations. In each iteration charge density must be evaluated which 

requires an integration over the Brillouin zone. This integration is 

done numerically over an evenly spaced mesh of 912 points (19 points in 

the irreducible wedge). At each of these points eigenvalues and eigen-

vectors must be generated. This requires the solution of a large 

secular equation (112 x 112) for the 19 irreducible wedge mesh points. 

Many numerical difficulties such as linear dependency can make the 

evaluation of a secular matrix constructed from a large single Gaussian 

basis set very difficult.; Such a large basis set is also very expen-

sive in terms of the amount of computational effort required. However, 

a single Gaussian basis set does provide a high degree of variational 

+ 
freedom for all the bands of interest at every k point. A more flexi-
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ble approach would be to incorporate the variational freedom of a large 

single Gaussian basis set into a small manageable basis set. 

It has already been demonstrated (24) that optimized orbitals are 

capable of providing considerable accuracy while limiting the size of 

the basis set to a small number of contracted Gaussian orbitals. Also, 

the accuracy of the results of an investigation can be enhanced by the 

proper selection of this contracted basis set. The method of optimized 

orbitals used in this problem is a two step process. The first step 

employs the general single Gaussian basis set described previously in a 

straightforward calculation of eigenvectors and eigenvalues at selected 

high symmetry points in the Brillouin zone. Optimized orbitals are 

projected out of the eigenvectors obtained in this initial step. The 

second phase utilizes a basis set comprised of a .selection of these 

optimized orbitals. This new projected set of orbitals is then used 

for the rest of the iteration. 

The technique used to form the optimized orbitals is best described 

by rewriting Eq. 2.22 as 

-+ -+ 
i.jJ • (k,r) 
n,i · 

(2.33) 

where 

-t:. I-++ <P (n,i k,r) 
a. 

I++ 
The orbitals <Pat:.' (n,i k,r) are called optimized orbitals and are given 

by 

' + + 
<P a.6. , ( n, i I k, r) = .6. I I-+ -+. 

L: a ,(n,i k) x cs.,r) 
j CX.J a J 

(2.34) 



16 

The contraction coefficients a~~ (n,ij~) are the associated eigenvector 
O.J 

coefficients obtained using the original Gaussian basis set. 

The main criterion used in selecting an optimized orbital basis 

Set is that it should adequately represent all the band states of in-

terest. One of the reasons why a small basis set is able to satisfy 

this requirement so well is that in group IV materials the bonds are 

reasonably well defined and maintain their integrity throughout the 

Brillouin zone. With this in mind, the optimized basis set is formed 

from states from the top, middle and bottom of the valence band. During 

the iterative phase of this calculation, since we are primarily inter-

ested in occupied bands, no optimized orbitals from the conduction band 

are included in the basis set. However, the optimized orbitals taken 

from the top of the valence band are close enough in energy to the bot~ 

tom portion of the conduction band to provide variational freedom for 

lower lying conduction states. As a result reasonably good lower lying 

conduction bands are obtained without any additional optimized orbitals. 

The optimized basis set used for the Ath iteration is 

A-+ A . I-+ 
~ 1 (r) = ~ (1,1 \,r), (core state at\) 

s+ 

A + 
~2 (r) 

A I + . . . . 
~ (3,1 \,r), (bottom of valence band at I) 
~s+ . 

A I -+ ~ (3,1 X,r), (bottom of valence band at X) 
s+ 

~ (3,l!X,;), (bottom of valence band at X) P; 

-+ 
~p _(4,lll,r), (top of valence band at\) 

x 
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A. -+ = y qi4 (r)/X, 

A. -+ . 
Z qi4 (r)/X, 

A. -+ 
<Pg (r) = 

A. -+ 
Z qi 5 (r)/X (2.35) 

As mentioned previously, a new set of optimized orbitals are formed 

for each successive iteration from the original singie Gaussian basis 

set. This is desirable because small changes in the potential will re-

sult in a slightly different optimized orbital basis set and reoptimiz-

ing the orbitals allows them to relax to the new crystalline environ-

ment. A typical example of the effect of this relaxation is shown in 

Figure 1 for qi 5 between the initial and the final iteration. This 

figure also contrasts the difference between an atomic <jl orbital and 
px 

the optimized qi 5 orbitals. This clearly illustrates the i~provements 

possible by employing an optimized basis set rather than a purely 

atomic basis set for representing the band state wavefunctions. 

The variational wavefunction can now be written in terms of the 

optimized Gaussian orbitals for the A.th iteration as 

where 

and 

A. -+ -+ 
ijJ . (k,r) 
n,i 

A.6 -+ -+ 
B. (k,i) 

J 

A. + -+ 
E;. • (k, r) 
n,i 

= 

A.6 . -+ A.6 + -+ = l: I A (niilk) B. (k,r) 
j to j . J 

-+ -+ 
ik·R 

-~ v A. -+ -+ -+ = n L e ~ . (k,r - R ) 
v n,i v 

= 

-~ 6 n I. l: e 
J v 

-+ -+ 
ik·R 

v A.-+-+-+ A.+++, J 
[qi. (r-R -t1 ) + M. (r-R -t2 ) 

J v J v 

(2.36) 

(2.37) 

(2.38) 

(2.39) 
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and where A~~(n,ilk> are the eigenvector coefficients obtained from 
.J . 

solution of the appropriate secular equation. 

The final self-consistent band structure for diamond is presented 

in Figure 2. Since it is desirable to enhance the accuracy of the 

lower lying conduction bands additional optimized orbitals are taken 

f.rom the bottom of the conduction band at x. These orbitals together 

with qi 5 , qi 7 .and qi 9 should provide adequate variational flexability for 

the conduction states. In this context, we are interested in seeing 

what lower lying conduction states are predicted from a self-consistent 

charge density. The band structure predicts an indirect band gap of 

5.2 ev which is in excellent agreement with the experimental value of 

5.4 ev (13). The associated minimum of the conduction band is calcu-

lated to lie at 2n(0.68,0,0)/a as compared with an experimental value 
0 

(14) of 2n(0.75;0,0)/a. The width of the valence band as calculated 
0 

is 21.1 ev which is in excellent agreement with the experimental result 

of 2l·ev reported by Gora et al. (15), but is in substantial disagree-

ment with the result 24.2 ev reported by McFeely et al. (16) • 

. In general the band structure calculated from the initial itera-

tive phase of this investigation is in excellent to good agreement with 

most available experimental measurements. The wavefuhctions and band 

energies obtained from solution of the secular equation constructed 

with the self-consistent crystal potential represent solutions of 

Hartree-Fock-Slater problem for diamond. As mentioned in Chapter I, 

direct comparison of band structure with experiment can only be done 

reliably for a few measureable quantities. Also, examination of band 

structure reveals little about the more sensitive wavefunctions. A -
better test of a calculation then is to use the wavefunction solutions 
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to the Hartree-Fock-Slater problem to evaluate bulk properties which 

can be measured experimentally, such as x-ray structure factors and 

Compton profile. With this objective, the remainder of this investiga

tion will deal with the calculation of charge density and Compton pro

file. 



CHAPTER III 

BULK PROPERTIES 

A. Charge Density and X-Ray Structure Factors 

-+ 
The absolute value of electronic charge density p{r) for the Ath 

A -+ -+ 
iteration can be obtained directly from the wavefunctions 1/J . (k,r) by 

n,1 

performing an integration over the Brillouin zone of the form 

A -+ 
P (r) 

_g_ f A* -+ -+ A -+ -+ 3 
l: 1/J . (k,r) 1/J • (k,r)d k, 

Qk Qk n,j n,J n,J 
(3 .1) 

where the sum over the indices n,j are over all occupied states at the 

-+ 
point k. Unfortunately, this integration can only be carried out nu-

merically. The numerical integration scheme employed for this calcula-

tion is explained in detail in Appendix C. In order to evaluate this 

integral the integrand is first tabulated over a uniform mesh given by 

-+ 
K 

m 
= (3. 2) 

-+ -+ -+ 
where b 1/2, 3b2/8 and b3/2 correspond to the edges of the irreducible 

wedge. Equation 3.1 is then replaced by the approximate expression 

A -+ 
P (r) 

4n " 24 A* -+ -+ A -+ -+ 
/_, l:.k l: l: . 1/J • ( R K , r) 1/J • ( R K , r) , 

Qk m m Y=l n,J n,J y m n,J y m 
(3. 3) 

where /:.k 
m 

is the volume of the fundamental wedge associated with K with 
m 

22 
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the restriction 

/.: '\ 
m m 

and Ry is an element of the Td site group synunetry. The wavefunctions 

-+ -+ -+ -+ w .(R k ,r) are generated from~ . (k ,r) by utilizing the unitary 
n,J y m n,J m 

transformation given in Appendix A. 

The expression given in Eq. 3.3 can be used to obtain the absolute 

• A -+ -+ 
value of electronic charge density p (r) for any point r of interest. 

The iterative process, as mentioned previously, will deal directly with 

p(K) and p113 (K ). 
\) . \) 

What is needed then is an analytic expression for 

>.. -+ 
p (r) of the form 

. A -+ -+ 
= Z.: L: f . ( r-T . ) 

\) i 1 \)1 
(3. 4) 

This equation is very similar to Eq. 2.31 which was used in generating 

the starting potential. However, the functions will not be restricted 

to spherical synunetry aione. The fact that experiment gives a non-zero 

A 

value for the "forbidden" reflection k == 21T(2,2,2)a indicates that 
0 

higher order spherical harmonics are necessary to adequately represent 

the distortions of the crystal charge density due to the crystalline 

environment. Additionally, experiments done on crystal samples report 

different values for the x-ray structure factors associated with differ-

ent stars with the same magnitude, which is another indication of non-

spherical symmetry. These points are discussed in detail by Dawson 

(17). An analysis of the results of inclusion of higher order harmonics 

A -+ 
inf. (r), in direct space, indicates this additional symmetry is used 

1 

primarily in the critical bonding region. An example of this analysis, 
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in reciprocal space, is shown in Table I. In a self-consistent calcu-

lation where wavefunctions are allowed to relax to the crystalline en-

vironment through successive iterations this additional flexability 

might be crucial. In a recent self-consistent Hartree-Fock calculation 

for diamond and silicon by Hall (26), the spherical approximation was 

made and the resulting self-consistent x-ray from factors for the 

-+ 
K == 21f(l,l,l)/a reflection were in both cases substantially different 

a o 

from experiment. The x-ray form factor for this reflection is very 

sensitive to the bonding region and any incorrect representation of this 

region by relaxed self-consistent wavefunctions would be evident here. 

A -+ 
As a result of these considerations, the analytic form chosen for f. (r) 

J.. 

is a multipole expansion centered on an atom site in the first sub-

lattice, which is expressed formally as 

(3. 5) 

The sununation over m is truncated after 2=4. The tetrahedral site 

synunetry excludes 2=1 and 2=2 terms and allows for only one combination 

for each of the remaining terms: £~0, 2=3 and 2==4 referred to as mono-

pole, octopole and hexadecapole, respectively. Because of inversion 

symmetry for diamond, the following restriction between.the functions . 
A +. ·. A -+ 

f 1 (r) centered on atoms in sublattice one and f 2 (r) for atoms on sub-

A -+ 
lattice two is made, f 1 (r) 

functions is given by 

A -+ 
f 2 (-r). The final form of the fitting 

(xy2z) + A 4 4 4 4 3 
g 4 (r) (x + y + z - 3r /5)/r . (3.6) 

r 

After careful consideration of alternative forms, the g~(r) were chosen 



h * Q, 

111 

220 

311 

222 

400 

331 

422 

511 

3·33 

t 

t.ions, 

TABLE I 

SELF-CONSISTENT HARTREE-FOCK-SLATER FOURIER COEFFICIENTS 
OF CHARGE DENSITY FOR DIAMOND, A COMPARISON 

OF VARIOUS COMPUTATIONAL TECHNIQUES 

Q Q Q 
~[p]~ -p -p -p . 

2 0 2 o,3 2 o,3,4 

-2.357 -2.356 -2.356 -2.356 

-2. 013 -2.018 -2.017 -2.017 

-1. 231 -1. 234 -1.235 -1. 235 

0.0 0.071 0.072 0.071 

~1.621 -1. 590 -1.589 -1.589 

1.101 1.105 1.105 1.104 

1.457 1.451 1.452 1.452 

0.993 0.994 0.991 0.991 

0.993 0.988 0.986 o. 986 

25 

%[pJ19 

-2.368 

-2.022 

-1. 236 

0.075 

-1.590 

1.106 

1.452 

0.991 

0.986 

Where [p] 6 and [p]19 correspond to 6-point and 19-point integra-
respectively, over the irreducible wedge. 
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to be 

8 A. 
. Il CJ o • r 

n. 
l 

e 
-N.r 

l. 12 A. 
+ on i·~9 CJ • r 

n, 
l. 

e 
-Nr 

i 
(3. 7) 

1.= 1v,l. 1v 1 0 0 1 1. 

where on = {0 for 9,~o and where the sets. {n.} and {N.} are 
l for i=o i i Iv ,o 

{O,l,2,3,4,5,6,7,0,0,0,0} and {3,3,3,3,3,3,3,3,l0,20,35,lOO}, respec

tively. The linear coefficients cr~ . are determined by a least-squares 
Iv ' J_ 

. A. + 
fit to tabulated values of p (r). Because of the symmetric form of the 

fitting functions, p"-(;) is tabulated only on a uniform mesh over the 

irreducible volume. An additional mesh along two lines from the atom 

+ 
site at t 1 , is used to insure a good fit of the core charge density. 

All together charge density is tabulated at 256 points per iteration 

A. + 
and an excellent analytic representation pf. (r) of the electronic 

it 

charge density throughout the crystal is obtained by performing a linear 

A. + 
least squares fit to p (r) evaluated at these 256 points. Having found 

an analytic expression for charge density in terms of pfA. .. (;) this func
it 

tion can now be inserted into Eq. 2.13 and the Fourier coefficients 

A. + 
p (K ) determined. The details of performing the indicated integration 

v 

in Eq. 2.13 for a multipole representation of charge density is given 

in Appendix D. In order to evaluate the adequacy of the fit and conver-

gence of the multipole expansion, the self-consistent Fourier coeffi-

. A.+ 
cients p (K ) obtained 

v 
A. + 

using only the i=o term, p (K ) both the 9-=o and 
0 v 

A. + . 
9-=3 terms, p 3 (K) and the 

o, v 
A. + 

9-=o, 9-=3 and 2=4 terms, p 3 4 (K ) are pre
o, , µ 

sehted in the second, third and fourth columns of Table I. In this 

A. + 
calculation, the tabulated values of p (r) are obtained from Eq. 3.3 

using a six-point numerical integration over the irreducible wedge. 

Examination of the columns in Table I established the validity of 
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truncating the multipole expansion at hexadecapole terms. It will also 

be shown in the next section that the quality of the fit obtained using 

the multipole expansion and radial fitting functions of the form 

n. -µ.r 
1 1 r e is exceptionally good. 

1/3 -+ 
In order to calculate p (K ) a similar fitting procedure was em-

µ 

ployed. The multipole expansion representing pl/3 (;) was determined 

from a linear least squares fit to the positive cube root of charge 

density tabulated over the same mesh in the irreducible volume. The 

functional form of the multipole expansion was the same with the ex-

ception of the set{µ.} which was changed to {3,3,3,3,3,3,3,3,10,20,35, 
1 

50}. 

An excellent fit was obtained with this choice for the fitting ex

pansion. The multipole representation for pl/3 (;) was substituted ~nto 

an equation similar to Eq. 2.13 and the Fourier coefficients p1/ 3 (K) 
µ 

needed to construct the exchange potential were obtained. 

_One of the objectives of this investigation as set forth in the 

first chapter was the calculation of accurate x-ray structure factors. 

The multipole expansion procedure appears to satisfy this demand. How-

. A. -+ 
ever, it was decided an alternative procedure for evaluating p (r) was 

needed to test the quality of the fit and the validity of six-point 

integration over the fundamental wedge. In order to be a good test, 

this new procedure should b_e capable of more accuracy than the previous 

method and economical enough to be carried out using a larger number of 

integration points. The method that was developed satisfies all the 

above considerations. Using the notation of Eq. 2.37 for the wavefunc-

A. -+ -+ 
tions ~ . (k,r) and the symmetry property expressed in Eq. 2.24, it is 

n,1 

shown in Appendix E that the Fourier components of charge density, 
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p (K ) 

µ 

-+ 
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(3. 8) 

where n is summed over all the occupied bands at point k, the summation 

on Y is over all 48 operations R of the cubic point group Oh and the in
· Y 

A. -+ -+ 
tegration is over the irreducible wedge. The integrand z y(k,K) is 

n, µ 

given by 

>. -+ + 
Z (k,K ) n,Y µ = 

A. -+ -+ -+ 
x t;, . (k,k - R K ) 

n,J y v 

>. -+-+ ·A. -+-+ 
where the t;, . . (k,K) are related tot;, . (k,r) by 

n,J n,J 

-+ 

A. + -+ 
t;, '(k,i<) 
n,J 

( 21i) 

3 
-- -+-+ 

2 A -+ -+ -iK·r f t;, .. (k,r) e dT , 
n,J r 

(3.9) 

(3.10) 

and where T is the non-primitive translation associated with R • The 
y y 

integration is again done numerically over the irreducible wedge using 

the uniform mesh given by Eq. 3.2. 
-+ 

The self-consistent p(K) which re
µ 

sult from a six-point [p(°itµ)] 6 and a nineteen-point [p(°itµ>] integration 

over the irreducible wedge are given in the last t'Wo columns of Table 

I. Comparison of [p(Kµ)] 6 with multipole expansion results demonstrates 

that the multipole expansion is well converged at the hexadecapole 

terms. An examination of the s;ix-point and nineteen-point results re-

-+ ' veals that they compare well for all p(K) and the agreement improves 
. µ 

-+ 
with increasing K • This trend is easily understood since the contri

µ 
-+ 

bution to p(K) from the core states becomes a rapidly dominant effect . µ 



29 

+ 
with the increasing magnitude of K • The core bands are flat with re

µ 

spect to the Brillouin zone and produce an integrand in Eq. 3.8 which 

is insensitive to the number of quadrature points. It is also clear 

from comparison of the last two columns of Table I that the nineteen-

point numerical integration over the irreducible wedge is well converged 

with respect to the number of quadrature points. Even though the errors 

+ 
introduced by the six-point quadrature are minor even for small K , the 

]J 

possibility of a cumulative effect resulting from the iterative pro-

. + 
cedure is eliminated by calculating the first nine p(K) for each itera-

. ]J 

tion directly from Eq. 3.8 using the nineteen-point quadrature. The 

+ 
remaining p(K) are calculated using the multipole expansion and the 

]J 

six-point integration over the irreducible wedge. 

The self-consistent Hartree-Fock-Slater·x-ray structure factors 

SCF + 
FHFS (Kµ). for the· limit of a rigid lattice are presented in the second 

column of Table II and are calculated from the Fourier coefficients of 

the self-consistent charge density presented in the last column of Table 

I using the relation 

SCF (K ) 
FHFS µ 

+ = 4Qp (K ) 
µ 

(3.11) 

SCF -+ 
The self-consistent Hartree-Fock structure factors FH (K ) of Euwema 

F µ 

(18) are given in column three for comparison. The experimental struc-

ture factors of Gottlicher and Wofel (19), corrected for the effects of 

isotropic thermal vibration, are given in column four. The agreement 

between the theoretical results of column two and the experimental re-

sults of column four is good for all reflections, except the 400 reflec-

tion, which is in significant disagreement. It is interesting to note 

that the largest disagreement between experiment and the Hartree-Fock 
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TABLE II 

X-RAY STRUCTURE FACTORS FOR DIAMOND 

FSCF 
HFS 

-18.945 

.-16 .181 

- 9.886 

F~F 
(a) 

-18.657 

-15.445 

- 9.456 

30 

FEXP 
(b) 

-18.787 

-15.778 

- 9.405 

222 0.601 0.689 l.206(c) 

400 -12.718 -12.359 -11. 836 

331 8.847 8.637 8.932 

422 11.615 11. 339 11.547 

511 7.926 8.023 

333 7.884 8.023 

(a) Ref. (8). 

(b) Ref. (18) •. 

(c) Weiss and Middleton in private communication to B. Dawson 
(Ref. 19). 
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results of Euwema is again the 400 reflection. With the exception of 

this reflection, the two theoretical results stand in substantially 

equivalent agreement with experiment. A useful gauge for comparison 

between experiment and theory is the agreement factor given by 

( 3 .12) 

The agreement factors for Hartree-Fock-Slater and Har.tree-Feck are 3.4% 

and 2.7%, respectively. 

A further examination of Table II indicates the Hartree-Fock-Slater 

form factors are generally larger than experiment. This is consistent 

with the conclusions of Dawson (25) that the experimental results of 

GOttlicher and Wofel must be multiplied by a scale factor of 1.007 in 

order to renormalize to absolute intensity. In the present investiga-

tion the scale factor whi~h minimizes the agreement factor between the 

Hartree-Fock-Slater form factors and those of experiment is 1.008, which 

is in excellent agreement with Dawson. 

B. Compton Profile 

Another bulk property which can be calculated from the self-con-

sistent wavefunctions and compared to experiment is Compton profile. 

A method for calculating the theoretical Compton profiles using the 

impulse approximation (20) has been developed and is presentea·in Appen-

dix F. ·Within the impulse approximation, the Compton profile J(q,k) is 

related to the self-consistent wavefunctions by the expression 

J (q,k) 
. A-+ -+ 3 

f o(q-k·K) p(K) d K, (3.13) 

-+ 
where p(K) is the momentum density per atom given by 
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-r 
p (K) = -l * + + . + + d. 3k I Qk J (")k L: 4 ij; . (k I K) ij; . (k I K) 

~· n J n,J n,J 
( 3 .14) 

and where the summations on n and j are over the six occupied band 

A -r 
The ij; . (k,K) of Eq. 3.14 

n, J 

. -r 
states of each point k in the Brillouin zone. 

are the band states in momentum representation and given by 

-r -r 
lJJ • (k,K) = 

n, J 

. -+ -r 
(27r)-3/2 J 1jJ . (°k,°i) e-iK·r dT 

n,J r 
(3.15) 

If the wavefunctions are written in the form of Eq. 2.37, then utiliza-

tion of the transiational symmetry of the Bloch sum reduces the momen-

-r 
tum density p(K) given in Eq. 3.14 to the simple analytic expression 

-r 
p (K) = -r -r 12 I Ils . (K,K) , 

n j n, J 
(3.16) 

-r-r -r 
where !; . (K,K) are given by Eq. 3.10 and are periodic in K-space with 

n, J 

respect to the first index so that 

I -r -r -r 12 
!;· . (K + K I K) = 
n,J µ 

I -r-r 12 !; . (K,K) • 
n, J 

The integral over reciprocal space in Eq. 3.13 is re-expressed as a sum 

of integrals over the Brillouin zone resulting in 

J(q,k) 
A -r-r -r-r 3 

8 (q-k • (k+K ) ). p (k+K ) d k • 
µ µ (3.17) 

A useful symmetry relation involving the momentum density can be de-

rived using Eq. 3 .. 14 and the transformation properties of Eq. 2.29, it 

is 

-r -r 
p (R K) = p (K) 

y 
(3.18) 
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for all operations Ry of the point group Oh. By using this symmetry 

relation and Eq. 3.17 the Compton profile can be reduced to a sum of in-

tegrations over the irreducible wedge of the form 

J(q,k) 
• A -++ -+-+ 3 = I: E f 8(q-(R k)• (k+K )) p(k+K) d k 

µ y IW y µ µ 
(3.19) 

As expressed in this equation, the Compton profile is obtained from a 

series of integrations over a family of planes which intersect some por-

tion of the irreducible wedge. 

A 

A numerical procedure for calculating J(q,k) is obtained by re-

writing Eq. 3.19 as 

J(q,k) 
- A+ A A+ A = I: I: p (q-(Rk)·K ,Rk) xA(q-(Rk)·K ,Rk) 

µ y µ y µ y y µ y 
. ( 3. 20) 

where A(A,;) is the area of the segment of the plane K·; = A which lies 

within the irreducible wedge and A is the distance to the origin along 

then direction: i.e., 

= 

and for this case n and A are given by 

and 

A 

n = R k 
y 

" -+ A = q-(R k)·K 
y µ 

A + 
(R k) •k 

y 

(3.21) 

- -+-+ The term p (A,n) is the average of p(k+K) over this same area segment. 
µ µ 

In calculating the Compton profile for diamond, the areas of the planes 
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intersecting the irreducible wedge A(A.,!'.i.) are evaluated analytically and 

the averages p (~ 1 n) are evaluated numerically by first tabulating 
µ 

.......... 
p(k+K) over the uniform mesh 

µ 

..... 
k' = 

m 

..... 

( 3. 2 2) 

where n1 , n2 , n3 are integers so chosen that k'm lies within or upon 

the surface of the irreducible wedge and N controls the density of 

points. The numerical integration for J(q,k) was done for the five 

different k directions using different values for N. It was found that 

the first three symmetry directions (1,0,0), (1,1,0) and (1,1,1) were 

sufficiently converged with a value of ten for N. However, two remain-

ing directions (2,1,1) and (2,2,1) we.re noisy for. this choice of N due 

to the low density of points per plane. The final calculations were 

performed using an N value of 20 for which all five directions were 

well converged with respect to the numerical integration. 

The self-consistent Hartree-Fock-Slater Compton profile for 

A 

k = (l,O,O) is presented in Figure 3 by the solid line. Evenly spaced 

data points are indicated by solid dots. The experimental measurements 

of Weiss and Phillips (21) are plotted for comparison with open circles. 

The theoretical predictions of the self-consistent Hartree-Fock calcu-

lation by Wepfer, Euwema, Surratt and Wilhite (23) are also plotted 

and indicated by triangles. The other four directions with a similar 

comparison of theoretical and experimental results are shown in Figure 

4. The comparison between the Hartree-Fock-Slater predictions of the 

present work and experiment is very good for all five directions. 

Agreement is generally better in the second half of the Compton profile 

where the core states start to have a major contribution. A similar 
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comparison between the predictions of the present work and Hartree-Fock 

reveals surprisingly excellent agreement. For all the directions pre

sented, the two theoretical calculations agree with each other even 

better than with experiment. 

A more 'illuminating comparison of theory and experiment is obtained 

by examining the anisotropies in the Compton profiles associated with 

different scattering directions. The anisotropies have been measured 

directly by Reed and Eisenberger (22) who referenced their experiment 

results to the scattering direction (l,O,O). These experimental results 

are reproduced approximately in Figure 5 by open circles connected by 

straight lines. The self-consistent Hartree-Fock-Slater results are 

given in Figure 5 by the filled circles and the self-consistent Hartree

Fock results are presented by trian9les. Considering that the aniso

tropies are more than an order of magnitude smaller than the total 

Compton profile, the agreement between the present work and the experi

mental results is exceptionally good. Again, the agreement between 

Hartree-Fock-Slater and Hartree-Fock is quite remarkable. In fact for 

three of the anisotropies the two theoretical results are virtually 

identical for the second half of the anisotropy. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

In this investigation a procedure for doing a self-consistent Har

tree-Fock-Sla ter calculation and obtaining accurate wavefunctions and 

band energies was presented. The use of optimized orbitals provided the 

flexability of utiiizing a large amount of variational freedom while 

maintaining a small basis set. The optimized orbitals were chosen to 

be representative of the valance band and were re-optimized with each 

successive iteration to allow for relaxation to the crystalline environ

ment. The new crystal potential for each iteration was generated 

directly from the previous iteration charge density. Two methods were 

used to calculate the charge density in order to test the accuracy of. 

the evaluation. The first method utilized a multipole expansion which 

was obtained from a six-point integration over the irreducible wedge of 

the Brillouin zone and was found to be well converged at the hexadecapole 

terms. The resulting Fourier coefficients of charge density were found 

to be accurate with the exception of the longest wavelength coefficients 

for which a nineteen-point quadrature was necessary. The second method 

is a procedure of obtaining the Fourier coefficients of charge density 

directly from the wavef-nctions. It is an original and highly useful 

technique of evaluating the Fourier coefficients of charge density and 

was used to insure the accuracy of the more sensitive long wavelength 

coefficients. 
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coefficients. 

The self-consistent Hartree-Fock-Slater band structure predicts an 

indirect band gap which is in good agreement with experiment as to mag

nitude and location of the minimum in the conduction band. The x-ray 

structure factors evaluated from self-consistent wavefunction$ agree 

reasonably well with the experimental results of Gottlicher and Wofel. 

However, a careful analysis reveals trends which tend to support the 

conclusion of Dawson's exhaustive studies on diamond that the measure

ments of GOttlicher and Wofel are not normalized to absolute intensity 

and need to be multiplied by a scale factor of 1.007. In light of some 

of the advances in experimental technique which have been made since 

this experiment was originally done, a re-evaluation of the experimental 

x-ray structure factors for diamond would seem in order. As an addi

tional test of the self-consistent wavefunctions, theoretical Compton 

profiles were calculated and compared to experimetal measurements. In 

all directions examined, agreement between theory and experiment was 

excellent. A sensitive test of Compton profile is obtained by analyzing 

the anisotrophies. The agreement between the theoretical and experi

mental anisotropies was also found to be excellent. 

A comparison between the predictions of the present work and a 

self-consistent Hartree-Fock calculation for both x-ray structure fac

tors and Compton profile was made. Diamond is one of the few crystals 

for which a self-consistent Hartree-Fock calculation has been done and 

very few direct co~parisons of the two methods have ever been made. 

The results of this comparison showed that Hartree-Fock-Slater was in 

slightly better agreement with experiment for Compton profile and the 

situation was reversed for x-ray structure factors. Also, one of the 
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more surprising results is the remarkable agreement between the Compton 

profiles predicted by these two theories. In general, it appears that 

despite the considerable conceptual differences between these two 

theories, they predict bulk properties which are in substantially simi

lar agreement with experiment when carried to self-consistency. This 

is true despite the real differences between the band structures pre

dicted by the two theories. 
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APPENDIX A 

. . 
TRANSFORMATION OF MATRIX ELEMENTS AND EIGENVECTORS 

UNDER SYMMETRY OPERATIONS IN THE BRILLOUIN ZONE 

If the origin is placed on sublattice one, then the Bloch sums can 

be written 

where 

and where 

./1-++ 
b. (k,r) 

1 

11 .l++ 2++ = I. (b~ (k,r) + I.lb! (k,r)) 
1 1 1 

++ 

1 + + -~ 
ik•R .+ -+ v 

b~ (k,r) = r z e 1/J. (r-R ) , 
1 v 1 v 

,+ + 

2 + + .;..,~ 
ik•R 

v + + + 
b~ (k,r) = n· z e ~. (r-(R +t)}, 

1 v 1 \) 

i; + 
11 = ± t = a (1,1,1)/4; i = s ,p; 

0 

{o for i = s Q,, = 
1 1 for i = p 

I~ 
Q,,+Q,11 

{o for 11 + l· ( i) 1 ' Q, 11 = 
1 1 for 11 - 1 

(A-1) 

(A-2) 

(A-3) 

It is straightforward to show that the Bloch sums on sublattice 

one and two trahsfonn according to 

·'o + ++ b. (R k,R r+t ) 
1 a. a. a. = 2 "o. o' ,·+k>. "' R°' b' o' C+k +> L ~6 L. , , , Ir 1 

oi=l ia. j iJ J 
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where 

-+ [ 
1 0 

] • if 
Q, (k) = R = T and T ETd; 
1, a. -ie a. a. a. 

0 e 

0 
-ie e 

-+ [ ] • if Q. (k) = R = t I and Ta.ETd; 
1, a. 

1 0 
a. a. 

and 

-+ -+ + 
8 = T k• (t - T t) 

a. a. 

Now define the matrix A. by the relation 
1 

A. 
1 

= I~ l 
-I. 

1 

= 
!l. [ 1 

(i) 1 

i 

and use it to rewrite Eq. A-1 as 

/j, -+ -+ 
b.(k;r) 

1 
= 

and the reciprocal relationship is expressed 

'8-+-+ 
b. (k,r) 

1 
(A-. 1) M /J. -+ -+ l: b. (k,r) 

/j, 1 1 

_: l 

45 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

Therefore, using the result of Eq. A-4, the Bloch sums must transform 

according to the condition, 

/j, + -+ -+ 
b. (R k, R r + t ) 
10. a. a. 

where 

. /j,f::. I + f::. I -+ -+ = .LA, A .. (a.;k) b. (k,r) 
],~ 1] J 

(A-11) 



/j./j. I -+ 
A .. (a,k) = 
i] 

80 co• -+ . -1 o'b.' a. 
(i-i:

1
i-, A. Q. (k).(A. ) )R .. 

u I) i ia. i i] 
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(A-12) 

-+ 
substituting the expressions for A. and Q. (k) into Eq. A-12 results in 

i ia. 

the equation 

and 

/j./j. I -+ 
A .. (a.,k) 
i] 

/:).6 I -+ 
A. . (a.,k) 
i] 

= 

= 

e cos 
2 

. e 
-sin 2 

e cos 
2 

e 
sin 

2 

. e 
sin 2 

e 
-cos 2 

a. i" f R.. R 
i] a. 

= t" a. 

a. 
R .. if R = 't" I 
i] a: a: 

(A-13) 

(A-14) 

for which 't" c: Td and I is the inversion operator. Now let the operator . a. 

e stand for H or i then consider the following integral 

66 1 -+ 
0 .. ' (k) 
ii 

*6 -+ -+ /j. I -+ -+ = f b. (k,r) 0b., (k,r)dT 
i i r 

and for the corresponding rotated point in the Brillouin zone 

66 1 . -+ 
0 .. I (R k) 
ii a. 

*6 -+-+ 6 1 -+-+ = f b. (Rk,r) 6b. (Rk,r)dT.; 
i a. i a. r 

which is related to the unrotated matrix element by 

b.6 I -+ 
o.; I (R k) 
ii a. 

or in matrix notation 

= 
/.',.b, * -+ '"i.'"i. I -+ ~ e; I '"i. I -+ 

.IA" J.,I,A", A .. (a.,k)O .. ,(k)A.,.,(ct,k) 
],u u iJ JJ J i 

.-+ *-+ -+~-+ 
O(R k) = A (a.,k) O(k) A(a.,k) 

a: 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

Using this symmetr-Y relation in conjunction with the secular equation 



it is easy to show the Eigenvectors are related 

where 

+ 
C (R k) 

n a. 
-+ + 

= U (a.,k) C (k) I 
n 

.e 
+ 12 + 

U(a.,k) = e A(a.,k) 
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APPENDIX B 

THE IRREDUCIBLE VOLUME 

The use of crystal symmetry is a great aid in reducing the number 

of redundant calculations. For example, the electronic charge density 

+ + 
p(r) for diamond evaluated at some point r must obey the condition 

+ 
p(r) 

+ + 
= p (R r + T ) 

y y 
(B-1) 

+ 
where Ry is an element of Td and TY is the corresponding non-primitive 

translation vector. Hence, charge density needs :only to be evaluated 

over an irreducible volume within the Wigner-Seitz unit cell. The 

criterion of irreducibility is that the volume chosen must reproduce 

the entire Wigner-Seitz·unit cell when operated on by all 48 operations. 

Obviously, the voluni.e of the irreducible volume is Q/48. If the glide 

+ + 
plane (r + - r + a (1,1,1)/4) is neglected, the irreducible volume will 

0 

have a volume Q/24 and one possible choice for this volume would be 

x ~ y ~ lzl > 0 , 

x + y ~ a /2 
0 

(B-2) 

(B-3) 

However, use of this volume would still result in redundant calcula-

tions. in order to reduce this volume further, the glide plane symme-

try must be taken into account. When this is done the irreducible 

' ' 

volume chosen in this investigation, consists of three wedges: 
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wedge one consists of the collection of points which obey the conditions 

and 

x, y, z ~ 0 ' 

Ix! ~ !YI > lzl ' 

Ix! < a /4 
0 

wedge two contains points which obey the conditions 

and 

where 

and 

x, y, z > 0 ' 

x > y ::: z 

x < a /4 
. 0 

,., -+ 
n·r :S 13 (a /8) , 

0 

n = (1,1,1)//3 

-+ 
r (x,y,z) 

wedge three contains points which obey the conditions 

x > a /4 , 
0 

x+y < a /z , 
0 

(B-4) 

(B-5) 

. (B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

(B-11) 

(B-12) 



and 

y+z > 0 , 

z < 0 

x-y + z > a /8 . 
0 
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(B-13) 

(B-14) 

(B-15) 



APPENDIX C 

INTEGRATION BY PARALLELEPIPED QUADRATURE 

The numerical integration over the irreducible wedge used in 

evaluating charge density is a technique of partioning the volume of 

integration into equivalent parallelepipeds. The center points of the 

parallelepipeds are given by 

l:i 
+ 

~ 
+ + 

ml + bl m2 + 3b . m3 + ~ b3 + __ 2 + 
k = -+ (C-1) m Nl 2 N2 8 N3 2 

where N1 , N2 and N3 are integers which control the density of points 

and are chosen so that 

+ + + 
The vectors b112 , 3b218 , b312 correspond to the edges of the irreducible 

wedge. The integers m1 , m2 and m3 are chosen so that some of the volume 

of parallelepiped lies within the irreducible wedge. This results in 

the three conditions: 

(C-2) 

This restricts the parallelepipeds from having any volume outside the 

side surfaces of the irreducible wedge; 

2. 
4m1 3m2 2m3 

4 (C-3) -.-+ --+ --< 
Nl N N3 2 
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and 

3. (C-4) 

these conditions insure that at least part of the parallelepiped is in-

side the wedge. The volume of the parallelepiped, b•k' is given by 

= 

3 
3(1T/a ) 

0 
(C-5) 

The integrand contained in each parallelepiped is weighted by the volume 

of the para-lelepiped which lies within the wedge. The sum of the 

weighting factors bk must obey the restriction 
m 

L: bk 
n m 

= 

where ~k/48 is the volume of irreducible wedge. 

(C-6) 



APPENDIX D 

THE FOURIER TRANSFORM OF A MULTIPOLE 

EXPANSION OF CHARGE-DENSITY 

The muitipole expansion representation of the electronic portion 

of the crystal charge density as presented in Chapter III is given by 

A. -+ -+ 
I I f. (r-T . ) , 
\) i 1 \)1 

A. .+ 
where the functional form of f 1 (r) is written as 

(D-1) 

(D-2) 

The corresponding Fourier coefficients of charge density are expressed 

in terms of this representation as 

A. -+ 
p (K ) 

µ = 
. -+ -+ 

-1K ·r 1:._,., A.-+-+ µ 
n ~ L fnn f. (r-T .)e dT 

n~6 v i ~6 1 v1 r 
(D-3) 

It is easy to show that by transforming the variable of integration 

while utiiizing the translational and inversion symmetry the previous 

equation reduces to the expression 

A. -+ 
p (K ) 

µ = 

+ 

.-+ -+ .-+ -+ 
1K •T -1K •r 

µ 1 ·A. -+ µ 
e f f 1 (-r)e 
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dT ] 
r 

(D-4) 
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A further evaluation of Eq. (D-4) will be aided by first examining 

an integral of the form 

. -+ 
x(.Q.,m,k,r) == (D-5) 

where the equation is integrated over the solid angle n. The spherical 

harmonic Y£m(8,</l) can now be expressed in terms of a new coordinate sys-

A -+ 
tem x' ,y' ,z' so chosen that z' is along k. The new coordinate system 

is derived from the old by rotations through Euler angles (a == <Pk' 

£ 
The rotation matrices Dm'm(a,8,y) relate Y£m(8,cp) to 

the rotated Y£m(8' ,</J') according to 

(D-6) 

Rewriting Eq. (D-5) in terms of the new variables and performing the in-

tegral over <P' results in 

-+ . 
x (.Q.,m,k,r) = 

x 

= 

x /rr P ( S') -ikrcos8' . G'dS' 
0 £ cos e sin • 

From Gegenbauer's generalization of Poisson's integral given by 

J. (z) 
n 

== ~(-i)n Jn P (cos8)eizcose sin6 d8, 
o n 

the previous equation becomes 

(D-7) 



++ 
X (J!.;m,k,r) = 
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(D-8) 

Using this general result along with the functional form given in Eq. 

(D-2) results in the reduction of Eq. (D-4) into the final integral 

equation 

A. + 
p (K ) 

µ 
8w + + 51./2 m . · 

= -;:;-cos K •t l:' (-1) l: C 0 Y0 m. (8k,cj>k) 
~G µ . 1 .f!.=2n m N N 

J!.+l 
8w . + + 2 m 

+ ~sin Kµ·t 1 .f!.=2~~1 (-1) ~CJ!. YJ!.m(ek,cj>k) 

x 

where i~2n(J!.=~~+l) is a sum of everi (odd) values of JI.. 

(D-9) 



APPENDIX E 

FOURIER ANALYSIS OF CHARGE DENSITY 

Using the notation introduced in Chapter II, the wavefunctions can 

be written 

-+ -+ 
tjJ • (k,r) 

n, l. = 

-+ -+ 
ik•R 

-~ \) -+ -+ -+ 
n Ev e !; . (k,r-R ). , n,1 v 

with orthonormality req~irement 

* -+ -+ -+ -+ J tjJ ,(k,r)ijJ I .,(k,r)dT = 8 Io .. , 
n,1 n ,1 r nn l.l. · 

(E-1) 

. (E-2) 

The contribution to electronic charge density due to the nth band and 

. -+ 
.ith root for point k in the Brillouin zone is given by 

-+ -+ 
p . (k,r) 
n, l. 

* -+-+ ++ = ljJ .(k,r) ljJ .(k,r). 
n,1 n,1 

(E-3) 

Rewriting the wavefunctions in momentwn representation results in the 

expression 

-+ -+ 
1jJ • (k,K) = 

n, l. 
(E-4) 

and the reciprocal relation is given by 

-+ -+ 
l]J • (k,r) = 
n, l. 

(E-5) 

In a similar manner, the momentwn representation of Eq. (E-3) is given 
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by 

+ + 
+ + 

p .(k,K) -n, J. 

.1._ f + + - iK • r p .(k,r)e di: 
nQ nQ n,1 r 

(E-6) 

+ + 
It is easy to show that substituting the form of p , (k,r) given by n,1 

Eq. (E-3) into Eq. (E-6) and using Eq. (E-4) and Eq. (E-5) results in 

the following expression 

+ + 
p . (k,K') 
n,1 = 

1 * ++ ++ + 3 r:; f 1jJ • (k,K) ijJ . (k,K'+K)d K n•G n,1 . n,1 

+ 
A very useful expression for 1jJ • (k,K) is derived by substituting Eq. n;1 

(E-1) into Eq. (E-4). and performing the integration. The result of this 

evaluation is written as 

+ + 
1jJ • (k,K) 
.n ,·1 

= 
-~ + + + + + n Qk ~ . (k,K) L o(k-K-K\)), 

n,1 " 
(E-8) 

where 

+ + 
~ . (k, K) = 

n I J. 

,+ + 
( 2··~)-3/2 f + + -1K•r " ~ . (k,r)e di: n,1 r 

Substituting this expression into Eq. (E-7) and performing the integra-

tion results in 

++ * + + + + + + + +· 
p (k I K ) 

µ 

Q 2 

=~I 
2 \)'\)' 

n Q 
i; . (k,k-K) .t; . (k,k-(K -K)) xo(K -K -K) n,1 · v n,1 v v v v' µ ' 

(E-9) 

+ + 
where K' was redefined as K • Transforming the Dirac delta function in µ 

Eq. (E-9) to a Kronecker delta function and summing over v results in 

the expression 

++ 
p (k, K ) 

µ 
Qk '<' /;' * ,· [+k + (+ + ) ] /;' (+k +k + ) n ~, ~ ,k- K ,+K ~ . 1 -K 1 n•G v n,1 v µ n,1 v 

(E-10) 
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The contribution to the Fourier coefficient of charge density due to 

the nth band and ith root is given by 

n ++ 
2 ~ JBZ p . (k,K )dTk' (E-11) 

~6k n,1 µ 

where the factor of two is due to two spin oreintations per band and 

n + 
~ is the density of k points in the Brillouin zone. Transforming the 
Qk 

integral over the Brillouin zone in Eq. (E-11) to one over the irreduci-

ble wedge and using Eq. (E-10) results in the equation 

·+ 
p . (K ) 
n,1 µ 

+ + 3 
x (R k) - K )d k, (E-12) a. \) 

where Ra. is an element of Oh. It is easily shown using Eq. (E-12) from 

Appendix F that the following symmetry condition holds 

+ ++ 
+ -1+ + 

-iR (k..;,R K ) °T 

~ . (R k,R k-K ) 
n,1 a. a. v 

a. a. \) a. = e x l 
j 

na. + + + -1+ c .. (k)~ • (k,k-R K) I 
1J n,J a. v 

(E-13) 

. where 

+ ++ 
1jJ • (R k,R r+T ) 
n,1 a. a. a. = 

na. + 
and where C (k) is a unitary transformationmatrix for which 

n + n + 
l C .. (k) c • . I (k) = Q • , I 

i 1J 1J 1J 

+ 
The final expression for the contribution to p(K) for the nth band 

µ 

is found by sUbstituting the symmetry relation given in Eq. (E-13) 
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into Eq. (E-12) and summing over th~ roots i. This finai result is 

written as 

+ 
p (K ) 

n µ 

. + + 
J. (R K ) • T 

2 a. µ a. * + + + + = - L: L: Vt 'iw e ~. . (k,k-R (K +K ) ) 
Q a. j n, J a. v µ 

++ + 3 
x ~ .. (k,k-R K )d k 

n,J a. v 
(E-14) 



APPENDIX F 

COMPTON PROFILE 

Using the notation introduced in Chapter II,_ the wavefunctions can 

be written 

++ 
1jJ (k,r) 

n 
= 

-~ n E e 
\) 

++ 
ik•R 

\) + + + 
i; (k,r-R ) , 

n v 

with the orthonormaiity requirement 

(F-1) 

(F-2) 

+ 
The momentum representation df the wavefunction 1jJ • (k,K) is given by 

n,1 

++ 
1jJ (k,K) = 

n 

-+ + 
(2ir) -3/2 f 1jJ (k,;) e -iK·r dT 

n r 

Using the resuits of Eq. (E-8) from Appendix E, this expression is 

written as 

where 

++ 
1jJ (k,K) 

n 

++ 
~ (k,K) = 
n 

(F-3) 

(F-4) 

The contribution to the momentum density from nth band for a particular 

k point iri the Brillouin zone given by 
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-+ -+ 
p (k,K) 

n 
* -+ -+ -+ -+ = $ (k,K) $ (k,K). 
n n 

It is straightforward to show that substituting Eq. (F-4) into Eq. 

(F-5) results in the expression 

-+ -+ 
p (k,K) 

n = ·1 -+-+1 2 Qk ~n(k,K) 

-+ -+ -+ 
x ~ o (k-K-K) • 

(F-5) 

(F-6) 

The momentum density per unit atom for filled band n can be expressed 

-+ 
p (K) 

n = 

where Qn is the density of k points in the Brillouin zone and l/n 
k 

(F-7) 

normalizes the momentum density to one atom. Substituting Eq. (F-6) 

into Eq. (F-7) and integrating over the Brillouin zone results in the 

equation 

-+ 
p (K) = 

n 
-+-+ -+ 12 I~ (K+K ,K) , n a 

(F-8) 

-+ -+ -+ 
where K is a reciprocal lattice vector for which K + K iies in the a a 

Brillouin zone. Rewriting Eq. (~-8) with the understanding that the 

first argument is to be expressed in the reduced zone scheme results 

in the simple expression for momentUl'il density 

-+ 
p (K) = 

n 
I -+-+ 12 ~ (K,K) • 

n 

The wavefunction must obey the following symmetry relation 

(F-9) 
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+ + + 
ljJ • ( R k, R r+r ) 
n,1 y y y = (F-10) 

where Ry is an element of Oh and Cn(k) is a unitary transformation 

matrix. A similar relation can be derived for the momentum representa-

+ + 
tion of 1/J . (k,r) by first rewriting Eq. (F-3) in the form 

n,1 

+ + 
1/1 • (R k,R K) 
n,1 y y = 

-3/2 + + 
(27r) f 1/1 • (R k,r) e n,1 · y 

+ 

. + + 
-1R K·r 

y dT , 
r 

then transforming the variable of integration r to the new coordinates 

+ + 
R r'+T and making explicit use of Eq. (F-10). 

y y 

The resulting expression is written as 

+ + 
1/1 . (R k,R K) 
n,1 y y = 

. + + 
-1R K•T y + + 

e Y Y l: c~. {k) 1/1 • (k,K). 
j 1J n, J 

(F-11) 

Substituting Eq. (F-4) into both sides of Eq. (F-11) and collecting 

terms results in the equation 

+ + s . (R k,R K) 
n,1 y y = e 

. + + 
-1R K• T 

y y l: 
j 

nY + + + 
C .. (k) s . (k,K). 

1J n, J 
(F-12) 

Using the symmetry relationship given by Eq. (F-12), the momentum den-

sity given in Eq. (F-9) yields the relation 

+ 
p (R K) 

y = P (K) (F-13) 

A 

Within the impulse approximation, the Compton profile J{q,k) is re-

lated to the band states by the expression 

A A + + 3 
J(q,k) = f o(q-k•K) p{K) d K. (F-14) 
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The integral over reciprocal space in Eq. (F-14) can be re-expressed as 

a sum of integrals over the Brillouin zone having the form 

J(q,k) = " + + + + 3 
E frl o(q-k•(k+K )) p(k+K) d k. 
µ k µ µ 

(F-15) 

Combining Eq. (F-13) and Eq. (F-15) permits the Compton profile to be 

further reduced to an integration over the irreducible wedge of the 

form 

J(q,k) = 
. A ++ ++ 3 

EE flW o(q-(R k)• (k+K )) x p(k+K) d k • 
µ y y µ µ 

(F-16) 
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