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CHAPTER I 

PRELIMINARIES 

Introduction 

The central problem of linear programming: the optimization of a 

linear, real-valued function under linear constraints, is commonly and 

efficiently solved by means of the simplex method. However, the special 

case in which variables of the linear function must take on only integer 

values has not admitted a similar, efficient method of solution. 

In 1958 R. Gomory (24) developed an algorithm for the solution of 

the integer programming problem based on the idea of "cutting off" a 

non-integral, optimal solution by means of an additional constraint. 

Since that time, the focus of research in the area has centered on the 

development of techniques to generate such cut constraints, and upon the 

discovery of algorithms to implement them. 

One objective of this paper is to survey the development of tech

niques for generating cuts. Another is to give descriptions of these 

techniques motivated by their geometry and illuminated by means of ex

amples. A .third objective is to unify these cut techniques by showing 

how they can be developed from a certain class of functions. 

This study will be limited by certain constraints. While several. 

algorithms for solving specific types of integer programming problems 

have been developed, only methods used to solve general integer program

ming problems will be discussed. Also, general-purpose methods other 
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than those using cut techniques will be excluded. Another limitation 

involves the distinction between techniques used to generate cuts and 

the algorithms which make use of these techniques. The literature in

cludes surveys of the earlier algorithms (see (20)(5)(6)) while Ill.lch 

of the later research effort has involved finding new cut techniques to 

be used in these algorithms. Therefore, while the nature of these al

gorithms will be described, the focus of this paper will be upon the 

techniques for cut generation. 

As an illustration and a basis for discussion of the fundamentals 

of integer linear programming consider the following example: 

2 

Example 1.1.1. A small computer training institute is considering 

the addition of two courses to its curriculum. Course 1 requires eight 

hours faculty time and one hour ~chine time per section per week. Course 

2 requires three hours faculty time and one hour machine time per section 

per week. 

The institute has available 27 hours of faculty time and five hours 

of machine time per week. If Course 1 yields a net profit of $700 per 

section (at capacity enrollment), and Course 2 yields a net profit of 

$300 per section, how many sections of each course should be added in 

order to maximize the school's profit? 

This example can be set up as an integer linear programming problem 

with two constraints and two variables. Let x1 represent the number of 

sections of Course 1 added and x2 the number of sections of Course 2 added. 

The problea may then be stated: 

aaxilli.ze 

subject to 3x2 :: 27 

x2 ~ 5, x1 and x2 ~ 0 and integer. 
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Figure l is a graph of this problem. The vectors (x1 ,x2) which 

satisfy the constraints of the problem are the lattice points bounded by 

the axes and the lines: 8x1 + 3x2 = 27 and x1 + x2 = 5. The slope of 

the produced line 700x1 + 300x2 is also shown. 

Definitions and Conventions 

An integer linear program (ILP) is a mathematical model which is 

designed to produce one or more vectors which optimize a given function 

while satisfying a system of constraints. The function to be optimized, 

the objective function, must be linear, and the optimization may be 

either maximization or minimization. The system of constraints consists 

of linear inequality, non-negativity, and integraLity constraints. 

In general any maximum integer linear program with m constraints and 

n variables can be stated: 

maximize clxl + c2x2 + . 
subject to allxl + a12x2 + 

a2lxl + a22x2 + 

and 

. . + c x n n 

. . . + alnxn < bl 

. + a2nxn ~ b2 

. + a x ~ b mn n m 

., x :::o, 
n 

. . ' x integer. 
n 

This maximum ILP can be stated more succinctly iri matrix form: 

maximize xc 

subject to Ax ~ b, x ~ 0 and integer, 

where x = (xl, x2' . . . ' x ), c = (cl' c2' . . . ' c ) ' b "" (hp n n 

A"' (aij)' x :".'. 0 means xi ::: 0' i = 1, 2, . . . ' n, and x integer 

integer, i = 1, 2, . . . . n. 

(1.2.1) 

(1.2.2) 

b2, ••• ,bm)' 

means xi 
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Slope of 700x1 + 300x2 

-----_=--7 

• 
• 
• • 

figure 1. Graph of Example 1.1.1 
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The ILP of Example 1.1.1 can be written in matrix form: 

IMXimize 

subject to 

It is sufficient to consider only the maximum ILP since any miniDJJm 

ILP can be written as a maximum problem. For example, consider the fol-

lowing minimum ILP: 

minimize xc' 

subject to A'x? b', x? 0 and integer. 

By setting c = -c', b -b', and A= -A' this ILP can be written as: 

maximize xc 

subject to Ax ~ b, x ~ 0 and integer. 

The maxillllm ILP with inequality constraints (1.2.2) is said to be 

in standard form. It is sometimes convenient to write these constraints 

as equations rather than inequalities. To accomplish this a non-negative 

variable must be added to the left-hand side of each inequality constraint. 

The ILP resulting from this modification is said to be in canonical form. 

This canonical form of the maximum ILP can be stated: 

maximize c1x 
l 

subject to 8 1lxl 

a2lxl 

and 

+ c2x2 + . +ex n n 

+ a12x2 + • . · + alnxn + xn+l ""b 1 

+ a22x2 + • + a2nxn + xn+2 ... b2 

• • • , xn-kn ::: 0 and x1 , • • • , x integer. 
n 

The non-negative variables, xn+l' x0 +2 , ••• , xn+m' added to each 

inequality of the standard maxinum ILP to form the m equations of the 



canonical form are referred to as slack variables. In the case of the 

minimum ILP the left-hand side of each inequality is greater than or 

equal to its right-hand side. Therefore, in order to transform the stan-

<lard minimum ILP into a canonical problem negative slack variables should 

be added to the left-hand side of each constraint. However, if the stan-

<lard minimum ILP is first transformed into a standard maximum ILP, and 

this standard maxina.tm problem is then written in canonical form, negative 

slack variables can be eliminated. 

The canonical maximum ILP can be written in matrix form: 

maximize x'c' (1.2.3) 

subject to A'x' = b', x' ~ 0 and (x1 , x2, . . . ' x ) integer, 
n 

where x' = x ) c' = n+m ~ . . ' 
c • 0, . 

n 
. . , 0), b' = b, and A' z (A: I). Example 1.1.1 appears in 

this form as: 

maximize 

[: 
3 1 

:J T l7J subject to [xl, x2, x3' x4] = 5 ' 
1 0 

(xl, x2' x3 • x4) ~ 0 and (xl' x2) integer. 

While the coefficients of c', b' ' and A' in (1. 2. 3) may take on real 

values in general, the nature of the problem for which the ILP is a model 

usually requires only rational coefficients. Example 1.1.1 with its coef-

ficients representing hours of time and dollars of profit is typical. Also, 

the digital computers on which almost all ILP problems are evaluated admit 

only rational values for input, output, and computation. Thus, the assump-

tion that the objective function and constraint coefficients be rational 

is not litaiting in any practical sense. 

Further1110re, any equation (or inequality) with rational coefficients 
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can be writlen as an equation (or inequality) in integral coefficients by 

multiplying through by a common denominator. This multiplication does 

not change the nature of the constraints. Their representation is altered, 

but they remain the same. However, multiplying the objective function by 

a constant will change its nature. If the objective function x'c' of (1.2.3) 

is maximized at x = (x1 , x2 , • • • , xn+m) with value xc', then the function 

kx'c', where k is a positive constant, will also be maximized at x, but 

with a value of kxc'. Therefore, multiplying the objective function by a 

positive constant will not change optimal solutions of the maxi'Dllm ILP, 

but will cause a change in the value of the objective function. Since 

this new value will be the constant k times the previous value, the pre-

vious value can be determined with little difficu~ty. 

Thus, it can be assumed that any !LP can be written in the form of a 

canonical maxillllm ILP with integer coefficients: 

maximize xc (1.2.4) 

subject to (A:I)(x; xn+l' • . . ' T 
x ) = b n+m 

and (x; xn+l' ••• , xn+m) ~ 0 and x integer, 

where x and c are n-vectors, b is an m-vector, I is the m X m identity 

matrix~ A is an m X n coefficient matrix, and c, b, and A are integral. 

It may be noted that while the slack variables xn+l' xn+2 ' ••. , xn+m 

are not required to be integer valued, they will take on integer values 

in (1.2.4) when x is integer. 

Several applications of linear programming involve questions for 

which the answers are of the nature "yes" or "no"; for example, an assign-

ment problem asking which worker should be assigned to which job in order 

to maximize productivity. Such problems are usually formulated as linear 

progra111.sin these terms: a "yes" answer corresponds to a value xi"" 1, 
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and a "no" to x1 == 0. For this reason such problems are referred to as 

zero-one or binary linear programs. A maximum binary linear program may 

be stated: 

maximize xc (1.2.5) 

subject to Ax= band xi= 0 or 1, i = 1, 2, ••• , n, 

where x and c are n-vectors, b is an m-vector, and A is m X n. 

It is possible to recast such a maximum binary linear program as a 

standard maximum ILP by including inequality constraints which force the 

x. to be no greater than 1. The binary problem (1.2.5) can then be stated: 
1 

maximize xc 

subject to A'x::: b', x ~ 0 and integer, 

where A' ~ t~~ and b' = (b;u) where u is then-vector (1, 1, ••• , 1). 

The Associated Linear Program 

If the integrality condition on the variables x1 and x2 of Example 

1.1.1 is relaxed the resulting problem is a maximum linear program: 

maximum 700x1 + 300x2 (1.3.1) 

subject to 8x1 + 3x2 ::: 27 (1.3.2) 

xl + x2 ::: 5 

and xl • x2 ~ o. 

The linear program (LP) associated with an ILP is called the associated 

LP~ The associated LP is also referred to as a relaxation of the !LP, 

because the integrality constraint has been relaxed. The ILP, on the 

other hand, is often referred to as a restriction of its associated LP. 

The constraint system of the associated LP (in standard form) consists of 

only the inequality and non-negativity constraints. 
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The collection of all vectors which satisfy the constraint system of 

the associated LP is called the feasible set. A member of the feasible 

set is called a feasible solution of the associated LP or just feasible. 

If ·the feasible set is empty the LP is said to be infeasible. In Example 

1.1.1 the feasible set is the set of all vectors bounded by the axes and 

the lines: 8x1 + 3x2 = 27 and x1 + x2 = 5. An example of a feasible so

lution for Example 1.1.1 is the vector (3/2, 5/2). 

The feasible set of Example 1.1.1 is closed and bounded and thus the 

linear objective function will be bounded on the feasible set and assumes 

its maximum there; that is, there is at least one vector, (x1 , x2), in 

the feasible set such that 700x1 + 300x2 S 700x1 + 300x2 for every vector 

(x1 , x2) in the feasible set. In general, the obj1ective function of any 

LP with a bounded feasible set will be optimal for at least one feasible 

solution. Any such feas:lble solution (Le., one which optimizes the ob

jective function) is called an optimal solution of the LP. 

An LP with an unbounded feasible set may not possess an optimal 

solution. However, the feasible set of an associated LP may.be assumed 

to be bounded. For if the feasible set is unbounded in the direction of 

the unit vector u1 , a constraint: xi SM (M arbitrarily large), may be 

added to the LP. 

Figure 2 shows the feasible set of the associated LP for Example 1.1.1, 

along with a sequence of parallel lines representing various values of the 

objective function. Any vector on a given line will give the same value 

to the objective function. As the objective function increases in value 

the corresponding line is pushed outward from the origin. The outermost 

line passes tlirough the feasible solution x"' (12/5, 13/5). Any line 

representing.a greater value will contain no feasible solution. 



\ \ 
\ \ 
\ \ 
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\ yx1 + x2 = 5 

\ 
\ 

\ (12/5,13/5) 

~/ 

70Dx1 + 300x2 = 0, 700, 2000, 2700 

Figure 2. Graph of Associated LP of Example 1.1.1 

• • (1,3) (2, 3) (3, 3) 

(12/5,13/5) 

-Sx1 =~ 
~ 

Feasible set of 

-Sx2 = ~ 
Associated LP 

• • • (1,2) (2,2) (3,2) 

Figure 3. Graph of Example 1.1.1 with Additional Constraints 
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Thus, -x = (12/5, 13/5) is an optimal solution of the associated LP. In 

this case x is the only optimal solution. However, had the produced line 

been parallel to the line 8x1 + 3x2 = 27 any feasible solution on that 

line would have been an optimal solution. 

In general, the bounded feasible set for an LP with m constraints 
n. . 

and n variables is a convex polytope in R whose faces are contained in 

the hyperplanes which represent the constraints of the LP. It can be 

shown (36, p. 22) that any such LP will possess an optimal solution which 

is an extreme point of this convex polytope. Thus, if only one optimal 

solution to an associated LP exists (as in Example 1.1.1) it must be an 

extreme point of the feasible set; and if an optimal solution is found 

which is not an extreme point, another can be found which is. 

A vector which satisfies all the co~traints pf the ILP (including 

non-negativity and :integrality) is said to be a feasible solution to the ---- ---- -., --· 
ILP or just ILP-feasible. The collection of all such vectors is called 

the ILP-feasible set. Any !LP-feasible vector which optimizes the objec-

live function of the lLP is said to be an optimal solution of the. ILP. 

The ILP-feasible set is, therefore, a subset of the feasible set of 

the associated LP. Thus, the maximum value of the objective function of 

the ILP will be no greater than that of the associated LP. It may occur 

that an optimal solution of the associated LP exists while the ILP-f easible 

set is empty. As an example of this situation consider the !LP of Example 

1.1.l with the additional constraints: 

-Sx < -11 
1 

-5x2 < -11. 

Figure 3 illustrates the feasible set of this associated LP and its optimal 

solution. In such a case no optimal solution to the ILP exists. 
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Approaches to Solving the ILP 

There are two basic approaches to the problem of isolating an optimal 

solution from among the vectors of the ILP-feasible set. The first approach 

is based on the fact that the convex polytope representing the bounded 

feasible set of the associated LP contains only a finite number of lattice 

points (i.e., the ILP-feasible vectors). This approach, called enumeration, 

attempts to list each ILP-feasible vector along with its objective function 

value. An ILP-feasible vector whose objective function value is optimal 

is, therefore, an optimal solution to the ILP. 

To illustrate this approach consider Example 1.1.1. The 17 ILP-

feasible vectors are shown in Figure 1. An examination of these vectors 

reveals that the vector (0, O) gives the minimum value to the objective 

function while the vector (3, 1) ·gives the maximum value. An optimal so

lution to this ILP is thus x = (3, 1) with an optimal value of 24. 

This type of enumeration is primitive in that all ILP-feasible vectors 

are considered explicitly. Obviously, such a procedure would be of little 

use with even a medium-sized problem such as one tested by G• T. Martin (38): 

a 42 city traveling salesman problem (i.e., a problem of finding the short

est route by which a salesman can tour the 42 cities). This problem in-· 

valved 84 constraints and 861 binary variables; and thus, on the order of 

2861 ILP-feasible vectors. As a result most enumeration techniques employ 

methods which implicitly enumerate as many ILP-feasible vectors as possible. 

For example, the fact that the objective function of Example 1.1.1 

has no negative coefficient would imply that the objective function value 

of the vector (2, 2) is at least as great as that of (2, 1), (0, 1), (1, 2), 

(1, 1), (1, 0) or (O, O); and thus, that these vectors need not be listed 

explicitly. 
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The second basic approach to locating an optimal solution to an ILP 

Js based on the concept of generating an additional constraint for the 

associated LP. First, an optimal solution for the associated LP is found. 

If this solution is non-integral an additional constraint is generated 

which eliminates or "cuts off" part of the feasible set including the 

associated LP's optimal solution. This constraint must not, however, 

eliminate any !LP-feasible vector from the feasible set. Thus, a new, 

smaller feasible set results which still contains all ILP-feasible vectors. 

The objective function is now optimized over this smaller feasible set. 

If the resulting LP optimal solution is integral, an optimal solution to 

the ILP has been found; otherwise, the process is repeated. 

Techniques which use this approach are called cutting-plane techniques 

or cut techniques, and any new constr$int added to, the associated LP which 

does not eliminate any !LP-feasible vector from the feasible set is termed 

a valid cutting-plane or simply a valid cut. In general, a cut should be 

deep enough to eliminate the current LP optimal solution, but not so deep 

as to cut off any !LP-feasible vector. In addition, the relationship be

tween consecutive valid cuts should be such that the technique will con

verge to an !LP optimal solution in a finite number of iterations. 

Figure 4 shows the feasible set and an optimal solution of the asso

ciated LP of Examplel.1.1 along with a valid cut: 

2x1 + x2 :::: 7. (1.4.1) 

If this cut constraint is appended to the problem, a new optimal solution 

to the associated LP results. This solution, (3, 1), being integral, must 

be an optimal solution to the !LP. 

The cut (1.4.1) passes through two ILP-feasiblevectors. In general 

this will not be the case; a valid cut need not pass through any ILP-

f easible vector. However, cuts like (1.4.1) are desirable because they 



= 5 

= 7 

(3,1) 

s 
8x1 + 3x2 = 27 

Figure 4. Graph of Example 1.1.1 with a Valid Cut 
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are coincident with a face of the convex hull of the ILP-f easible set, 

and therefore cut as deeply as possible into the feasible set without 

cutting off an !LP-feasible vector. 

15 

It may be noted that (3, 1), the optimal solution found for the.ILP 

of Example Ll.l, is not the closest ILP-feasible vector to the initial 

LP optimal solution, (12/5, 13/5). In fact there are five !LP-feasible 

vectors closer to (12/5, 13/5) than is (3, 1). This situation is not un

typical and demonstrates the need for techniques designed specifically 

for the solution of the ILP. A. Story and H. Wagner (41) list several 

examples of scheduling problems solved by means of an ILP for which the 

!LP-feasible vector nearest the optimal solution of the associated LP 

gives an objective function value far' from the optimal value of the ILP. 

The Simplex Method 

The discussion of cutting-plane methods disclosed the fact that a 

solution to the associated LP is required at possibly several points in 

the process of solving an ILP by means of a cut technique. This is also 

true of several of the enumeration methods. There exists an intimate 

relationship between integer and linear progranuuing. For this reason the 

simplex method, the basic technique used to solve linear programs, will 

be reviewed. 

Consider the associated LP of Example 1.1.1: 

maximize 700x1 + 300x2 

subject to 8x1 + 3x2 + x3 = 27 

xl + x2 + X4 = 5, and x1 , x2 =: o. 
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This canonical maximum linear program can be written in the form: 

maximize x = 0 CB~ + cN~ (1.5 .1) 

subject to BxB + N~ = b 

and XB' ~ ::: 0' 

~\ere B 9
[: ~} N =[: :J. ~ -[::} ~ -[::} CB =[3:0

} °N {:°J. 
and b = [2:]. 

Since B-l exists and equals[: 

be settingxN = 0 and then 

1], a solution to (1.5.1) can be 
-3 

found 

The vector x = (xB; ~) = (x2, x3 ; x1 , x4) = (5,1~; 0, O) is called a basic 

. [3 solution to the linear program, and the matrix B = 
1 ~] 

is called a basis matrix to the LP. In general, when the columns of any 

canonical LP in the form Ax = b are arranged so that A = (B, N) where B· 

is an m X m, non-singular matrix, then B is called a basis matrix for the 

LP. A 1 · ( ) h B-lb and 0 · 11 d so ution x = ~· xN , w ere ~ = ~ = , is ca e a 

basic solution. If the basic solution is also in the feasible set it is 

called a basic feasible solution. The variables of the vector -~ are 

those associated with the columns of the basis matrix B, and are there-

fore called basic variables. Likewise, the variables of the vector ~ 

associated with the columns of N are called nonbasic variables. 

A fundamental result in linear progrannning is the following: If a 

LP has an optimal solution, it has a basic optimal solution. (See for 

example D. Gale (18, p. B'D) . This implies that for a bounded LP, for 
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which an optimal solution exists, a basic feasible solution exists which 

ls optimal. Thus, at least one basic feasible solution exists along with 

its basis matrix B. In most cases more than one basis matrix can be found. 

n In fact it is possible that up to ( ) different basis matrices could be 
m 

found since each basis matrix is made up of ncolumns of A taken mat a 

time. 

Table 1 gives the six basis matrices for the LP of Example 1.1.1 along 

with the inverse of each and the value of xB of the· corresponding basic 

solution. Figure 5 represents a graph of the feasible set of the LP and 

the x1 , x2-coordinates of the six basic solutions. It can be seen that 

the basic feasible solutions on the graph correspond to extreme points 

(0, O), .(0, 5), (12/5, 13/5), and (27 /8, O) of the, convex polytope rep-

resenting the feasible set. In fact it can be sho:wn that a feasible vector 

corresponds to an e.xtreme point if and only if it is a basic solution (see 

D. Luenberger [36, p. 21)). In that light it can be seen that the previous 

statement that the existence of an optimal solution implies the existence 

of an optimal extreme point solution is the geometric.equivalent of the 

statement that the existence of an optimal solution implies the exist~nce 

of a basic optimal solution. 

The plan of the simplex method, in geometric terms, is to find an 

extreme point of the convex polytope of the feasible set of the bounded, 

maximum LP, and then move from extreme point to adjacent extreme point in-

creasing the value of the objective function with each move until an optimal 

solution is reached. The fact that the convex polytope has only a finite 

number of extreme points guarantees a local optimal solution will be reached 

in a finite number of moves. 

The simplex method can also be described in algebraic terms. First 

a basic feasible solution is found; then an "adjacent" basic feasible 
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TABLE I 

BASIS MATRICES AND BASIC SOLUTIONS FOR EXAMPLE 1.1.1 

B 
-1 

B XB 

[: 
3] = B 
1 1 

[ 1/5 
-1/5 

-3/5J 
8/5 

[xj-[12/5] 
x 13/5 

[: ~] = B 0 2 [ : -~] [ ::]= ~1~ J 

[: 
OJ = B 
1 3 

[l/8 
-1/8 :J [ x1J= ~7/8] 

x4 13/8 

[: l] · B 
0 4 [: _: ] [ ::]= ~:] 

[: OJ = B 
1, 5 

~1/3 
1/3 : ] [:j= ~:] 

[: 0] = B 
1 6 [ ~ : ] [::J= [2:] 



B5 

(0,5), B4 

Figure 5. Basic Solutions of the Associated LP to 
Example 1.1.1 Plotted with x1,xr 
Coordinates 
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solution which increases the value of the objective function is found. 

This second basic feasible solution is adjacent to the first in the sense 

that it has the same basic variables but one. The process is continued 

until the objective function value cannot be improved by any adjacent basic 

feasible solution. The fact that there are no more than (n) basic feasi-m 

ble solutions, together with the fact that improvement in the objective 

function value occurs at each iteration implies a local optimal solution 

will be found in a finite number of iterations. 

A result from classical optimization (12), sometimes referred to as 

"The Fundamental Theorem of Convex Programming", states that any local 

maximum (or minimum) of a convex programming problem is a global maximum 

(or minimum). A convex programming problem is one in which a concave 

function is maximized over a convex set or a convex function is minimized 

over a convex set. Since every LP is either a maximization or a minimi-

zation of a linear function (which is both convex and concave) over a con-

vex feasible set, then any local optimum found by the simplex method will 

be global. Thus, the simplex method will converge in a finite number of 

moves. 

While it is true that for each extreme point of the convex polytope 

representing the feasible set of a bounded LP there exists a correspond-

.ing basic feasible solution, the correspondence is not one-to-one. There 

may be more than one basic feasible solution at a particular extreme point. 

This situation, described here in geometric terms, is referred to as 

degeneracy. A degenerate basic solution is one in which at least one basic 

variable has a value of zero. Thus, in moving from a degenerate basic 

feasible solution to an adjacent degenerate basic feasible solution, two 

basic variables with value zero may be interchanged leaving the objective 

function value unchanged. Consider the following example: 
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Example 1.5.1 maximize 2x1 + Sx2 

subject to xl + 2x2 + x3 = 2 

3x1 + x2 + X4 = 6, 

x1 , x2, x3 , x4 ~ 0. 

The two degenerate basic feasible solutions, 

both give a value of four to the objective function, and they both lie on 

the same extreme point of the feasible set, (x1 , x2) = (2, O). The sim

plex method as described algebraically could possibly alternate between 

these two basic solutions without ever getting to a solution which would 

increase the value of the objective function. 

What is needed is a method to prevent the selection of a basic solu

tion with variables of the same value as those of the current basic solu

tion. The method connnonly used is based upon the concept of lexicographic 

ordering. A vector is lexicographically positive if its first non-zero 

entry is positive. A vector x is lexicographically greater than a vector 

y if the vector x - y is lexicographically positive. The simplex pro

cedure can be modified so that choices of departing variables depend upon 

lexicographic ordering of vectors thus preventing the interchange of two 

lexicographically equal degenerate vectors. 

The simplex method can be written in terms of an algorithm. But 

before that can be done some notation must be introduced. Suppose that 

a canonical maximum LP: 

maximize xc (1.5 .2) 

subject to Ax = b, x ~ O, 

is to be solved. If the basis matrix, B, corresponding to a basic feasible 
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solution exists then the LP (1.5.2) can be written: 

maximize XO = CBXB + CNXN 

subject to B~ + NxN = b, xB ~ 0, ~ ~ 0. 

(1.5.3) 

(1.5 .4) 

-1 Since B exists, (1.5.4) implies that ~ 

-1 expression for xB, (1.5.3) can be written x0 = cBB b 

These results can be recorded in matrix form as: 

To simplify this notation define 

-1 
- B NxN. Using this 

-1 
(cBB N - cN)~. 

(1.5 .5) 

yj = [c·:~: :: -cjl = [:t~] ' ~ =XO' (~ ' • .. , ~ )T = ~' 
0 1 m 

ymJ 

a. as the jth column of N, and Ras the index set for the columns of N. 
J 

With this notation (1.5.5) can be written: 

~o Yoo Yoj 

XB 
.1 

Y10 ylj 

• . L: . 
(1.5.6) XB = Yro Yrj . xj" 

.r jER 

.. 
Yaj XB Ymo 

m 

(1.5.6) contains all the necessary information for each basic feasible 

solution to (1.5.2). By setting x. = 0 in (1.5.6) for all j in R (i.e., 
J 

by setting xN = 0) the value of the basic feasible solution corresponding 
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to the basis matrix B can be determined along with x0 , the value of the 

objective function. When a move is made to an adjacent basic feasible 

solution equation ( 1. 5. 6) reflects this by replacing xB (the departing 
r 

variable) with ~ (the entering variable) in the matrix on its left-hand 

side. 

Equation (1.5.6) is usually represented in the form of a table called 

a simplex tableau. Table II is a simplex tableau which represents (1.5.6) 

by assuming an equal sign after the column of basic variables, plus signs 

after each of the remaining columns (except the last), and that each col-

umn with a nonbasic variable above it is multiplied by that variable. 

Given this notation, the simplex algorithm for finding an optimal 

solution for (1.5.2) by means of finding improved basic feasible solutions 

can be summarized: 

STEP 1. (Initialization.) Find an initial basic feasible solution 

with basis matrix B. Go to STEP 2. 

STEP 2. (Test for optimality.) If Yoj ~ 0 for every j in R then 

the current basic feasible solution is optimal. If Yoj < 0 for some 

j in R, go to STEP 3. 

STEP 3. (Choosing an entering variable which will improve the ob-

jective function value.) Select any variable ~' k in R, to enter 

the basis so long as yOk < O. Go to STEP 4. 

STEP 4. (Choosing a departing variable so as to keep the basic 

solution feasible.) If yik ~ 0 for all i = 1, .•• , m then no op

timal solution exists because of the unboundedness of the feasible 

set. Otherwise, find minimum, i = 1, 

If i = r gives the minimum, choose ~ to leave the basis. Go to 
r 
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TABLE II 

TIIE INITIAL SIMPLEX TABLEAU 

Nonbasic Variables 

+ -x -~ 

XO Yoo Yoj Yok 
• 

Basic . . . 
XB 

i·. Y10 yij yik 

Variables • 

+xB Yro Yrj Yrk · 
r . 

I • 

XB Ymo Ymj ymk 
m .-... ,. 

TABLE III 

TIIE SECOND SIMPLEX TABLEAU 

Nonbasic Variables 

-x -~ ' j 
r 

XO . Yoo- (yOky rO/y rk) Yoj- <YokYrj/yrk> -yOk/yrk 

.Basic • • 
• . 

Variables ~. Y10- (yikYro1Yrk) yij- (y iky rj /y rk) -yik/yrk 
l. 

• • 
• • . 

~ Yro I Ytk Yrj I Yrk 1 I Yrk 
• 

• 
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STEP 5. 

STEP 5. (Pivoting to rewrite the tableau in terms of the new set of 

basic variables.) 

(i) 
th 

Divide the r row of the tableau by yrk' the pivot 

element. 

(ii) 
th 

Multiply the new r row by yik and subtract it from 

the ith row for i = O, 1, ••• , m; i # r. 

(iii) Replace the old kth colunm by its negative divided 

by yrk' except that yrk itself is replaced by l/yrk" 

Go to STEP 2. 

Table III represents Table II after one iteration of the simplex algorithm 

(i.e, one pass through steps 1 through 5). 

For an example of the simplex algorithm- applied to an LP recall the 

associated LP to Example 1.1.1. Choose as a basis matrix B =[1 
0 

Therefore, x3 and x4 are basic variables, x1 and x2 are nonbasic, 

~] . 
the 

initial basic feasible solution is (xB; ~) = (x3 , x4 ; x1 , x2) = (27, 5;0, 0), 

and the initial objective function value is x0 = O. 

Figure 6 lists the initial tableau and succeeding tableaux for each 

iteration of the simplex algorithm. Arrows indicate the variables enter-

ing and departing from the basis. The pivot element is the element whose 

row and column both have arrows. The pivot element for the first itera-

tion is yrk = y22 = 1. Basic variables after the first iteration are x3 

and x2 , the corresponding basic feasible solution is (~; ~) = (x3 , x2 ; 

(12, 5; O, 0), and the objective function value is x0 = 1500. 

Since y01 = -400 is negative, the optimal value has not been reached. 

The pivot element for the second iteration is yrk = y 11 = 5. The 

basis variables are x1 and x2 after the second iteration, the corresponding 



+ -x 1 -x2 

XO 0 -700 -300 

X3 27 8 3 

+x4 5 1 1 

Initial Tableau 

+ 
-xl -x2 

XO 1500 -400 300 

+x3 12 5 -3 

x2 5 1 1 

Second Tableau 

-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

x 2 13/5 -1/5 8/5 

Final Tableau 

Figure 6. Tableaux for 
the Simplex Algorithm 
Applied to the LP of 
Example 1.1.1 
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basic feasible solution is(~; xN) = (x1 , x2 ; x3, x4) = (12/5, 13/5; 0,0), 

and the objective funciton value is 2460. Since yOj ~ 0 for j = 3, 4 this 

represents an optimal solution to the LP. 

In terms of the graph of this LP in Figure 2, the simplex algorithm 

corresponds to beginning with the initial extreme point (x1 , x2) = (0, 0), 

moving (by means of the first iteration) to the adjacent extreme point 

(x1 , x2) = (O, 5), and finally to (x1 , x2) = (12/5, 13/5). 

In the previous example an initial basic feasible solution (~; ~) = 

(x3 , x 4 ; x1 , x2) = (27, 5; O, 0) was apparent; but this may not always be 

the case. Fortunately, the simplex procedure itself can be used to locate 

an initial basic feasible solution •. The problem is to find a basic non-

negative solution of: 

Ax = b. (1.5.7) 

This can be set up as a maximization problem: 

maximize w(-u) (1.5.8) 

subject to [A I ~ rm] [ ~] = b I' x, w ~ 0' 

. m 
where w is an m-vector, u is the vector (1, 1, •.. , 1) in R, and A' 

and b' correspond to A and b in .(1.5. 7), but with signs changed so that 

b' =::: 0. This problem (1.5 .8) is called the corresponding problem to 

(1. 5. 7) • 

Now, (1.5. 7) will have a non-negative solution if and only if the 

maximum value of (1.5.8) is zero, in which case the value of w will be 

zero and the value of x will solve (1.5.7), and thus be the desired in-

itial basic feasible solution. 

To illustrate this point consider the problem of finding an initial 

basic feasible solution to the LP of the following example: 
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Example 1.5 .1 

maximize 2x1 + x2 

subject to -2x + 2x2 + 2x3 = -4 1 

5x1 + 3x2 + 2x4 = 15 

and xl' X2' X3' x· 
4 ~ o. 

The .corresponding problem (1.5.8) may be written: 

maximize (wl' w2)·(-l, -1) 

[: 
2 -2 0 1 :J . wz)T=hl subject to (xl, X2' X3' X4' Wl' 
3 0 2 0 

and xl, X2' x3, X4' wl, w2 :::: 0. 

Since b' = [1: J is non-negative, it is seen that taking [~ ~] for a basis 

matrix, and thus, w1 and w2 for basic variables, will result in a basic 

feasible solution for the corresponding problem. Therefore, this corre-

sponding problem can be .solved by the simplex algorithm yielding an opti-

mal solution (x1 , x2 , x3, x4 , w1 , w2) = (2, O, 0, 5/2, O, 0). Therefore, 

the vector (x1 , x2 , x3 , x4) = (2, 0, 0, 5/2) represents an initial basic 

feasible solution to the original LP. 

The standard maximum LP: 

maximize xc 

subject to Ax :S b (1.5.9) 

and x :::: O, 

is related in a special way to the minimum LP: 

minimize vb 

subject to vA:::: c (1.5 .10) 

and v :::: 0. 

The maximum LP (1.5.9) is called the primal problem and the minimum prob-

lem is called the .dual problem. 
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The unique relationship between these two LP 1 s is demonstrated by 

the Fundamental Jheorem of Duality which was first noted by J. von 

Neumann (39). 

If the primal and dual problems both have feasible solutions then 

they both have optimal solutions and their optimal objective function 

values are the same. If either problem has no feasible solution, then 

neither has an optimal solution. 

As an illustration, consider the primal LP associated with Example 

1.1.1: 

The 

maximize (700, 300)x 

subject to [: :J x 
::: 

corresponding dual problem i.s: 

minimize (27, S)v 

subject to 

[2:J and x =: o. 

[
700

] and v =: O. 
300 

If this dual problem is rewritten as a standard maximum LP and solved 

by the simplex procedure, an optimal solution·v = (80, 60) is found. The 

resulting optimal objective function value is (27, 5)v = (27, 5)(80, 60) = 

2460. As indicated by the Fundamental Theorem of Duality this value is 

the same as the optimal objective function value of the primal problem: 

c100, 3oo)x (700, 300)(12/5, 13/5) = 2460. 

It might be observed that the values 80 and 60 appear in the first 

row of the final tableau of Figure 6. This is no accident. Just as the 

current basic feasible solution of the primal problem can be determined 

from the first column of each tableau, a corresponding current basic so-

lution to the dual problem can be determined from the first row. The 

initial tableau of Figure 6 implies an initial dual basic solution 
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(v3 , v4; v1, v2) = (-700, -300; O, 0) with an objective function value of 

0, and the second tableau implies. a dual basic solution (v3 , v2 ; v1 v4) = 

( - 400, 300, O, O) with an objective function value of 1500. Except for 

that of the final tableau, these basic solutions of the dual are not f ea-

sible and their objective function values are both less than the minimum 

of 2460. 

These facts suggest an alternative way of viewing the simplex proc-

ess. The simplex algorithm can be described as a procedure which searches 

for an optimal solution while maintaining feasibility for the primal, but 

the same process from the point of view of the dual problem is one of 

searching for a basic feasible solution while maintaining the optimality. 

Is it possible then to define an algorithm for th~ solution of the primal 

which begins with a basic solutfon which is not necessarily feasible, but 

does satisfy the optimality conditions of the simplex .algorithm (i.e., 

yOj ~ 0 for every j in R) and then searches for a feasible solution by 

bringing new variables into the basis? 

Such a procedure has been developed by C. Lemke (34) and is named 

the dual simplex method. This method can be summarized in terms of the 

previously developed notation: 

STEP 1. (Initialization.) Find a bassis B such that Yoj ~ 0 for 

every j in R (i.e., the optimality conditions of the simplex algorithm 

are satisfied). Go to STEP 2. 

STEP 2. (Testing for primal feasibility.) If yiO ~ 0 for i = 1, 

... , m then the current basic solution is feasible and therefore, 

since it also satisfies yOj ~ O, must be optimal. If not, go to 

STEP 3. 



STEP 3. (Choosing a departing variable to "improve" feasibility.) 

Select any variable xB to leave the basis so long as Yro < o. Go 
r 

to STEP 4. 

STEP 4. (Choosing an entering variable to maintain optimality 
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conditions.) If yrj::: 0 for all j in R then no optimal solution 

exists due to the primal problem being infeasible ... Otherwise, find 

maximum {y0/yrj I yrj < O}. Suppose j = k gives the minimum. Then 

choose ~ to enter the basis. Go to STEP 5. 

STEP 5. (Pivoting to rewrite the tableau in terms of the new set 

of basic variables.) Pivot as in STEP 5 of the simplex algorithm. 

Go to STEP 2. 

As an illustration of the dual simplex method consider the following 

example: 

~ple 1.5.2: 

minimize xl + x2 

subject to 2x1 + x2 ::=:: 4 

xl + 2x2 ::: 5 

and xl, x2 ::=:: o. 

This problem can be restated as a canonical maximum problem: 

maximize -xl - x2 

subject to -2x1 - x2 + x3 = -4 

-xl - 2x2 + X4 -5 

and xl' x2 ::: o. 

The initial basis matrix B = 12 with basic variables x3 and x4 seems 

to be a straightforward choice. However, the corresponding basic solution 

(x3, x4 ; x1 , x2) = (-4, -5; 0, 0) is not feasible. Thus, the dual simplex 
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method may solve this problem more efficiently than the simplex method. 

The initial dual simplex tableau is: 

t 
-xl -x2 

XO 0 1 1 

+x 
3 

-4 -2 -1 

X4 -5 -1 -2 

Note that y01 = 1 and y02 = 1 are both non-negative as required. Since 

y10 = -4 and y 20 = -5 are both negative, either x3 or x4 could be chosen 

to be the departing variable. If x3 is chosen, the entering variable must 

be x1 since the maximum {1/(-2), 1/(-1)} = 1/(-2) implying that the pivot 

element is y11 = -2. After pivoting the second tableaucan be written: 

t 
-x3 -x2 

XO -2 1/2 1/2 

xl 2 -1/2 1/2 

+x4 -3 -1/2 -3/2 

The departing variable chosen is x4 since y20 is negative, and the enter

ine variable is x2 since the maximum {(1/2)/(-1/2), (1/2)/(-3/2)} 

(1/2)/(-3/2). After pivoting on y22 = -3/2 the next tableau can be written: 

-x 
3 -x4 

XO -3 1/3 1/3 

xl 1 -2/3 1/3 

x2 2 1/3 -2/3 

Since y01 ::: O and y 02 ::: 0 this tableau represents. an optimal solution 

(x1 , x2; x3 , x4) ~ (1, 2; O, 0) with objective function value of -3. 
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As in the example above the dual simplex method is useful when an 

initial basic matrix is not apparent. However, its chief use in integer 

programming is as a component in some of the cutting-plane algorithms. 



CHAPTER II 

THE DEVELOPMENT OF THE EARLY CUT TECHNIQUES 

Relationship to Linear Programming 

One relationship between integer linear programming and linear 

programming involves the use of the dual simplex . .lliethod- in certain cut

ting-plane algorithms. To demonstrate this use of the dual simplex method 

consider Example 1.1.1. Figure 4, a graph of this problem, shows the 

feasible set for the associated LP along with a cut (1.4.1). The final 

simplex tableau for this LP (Figure 6) gives an optimal solution (x1 ,x2) = 

(12/5, 13/5). The addition of the constraint (1.4.1) to the LP cuts this 

optimal solution from the feasible set. Thus, the addition of the con

straint (1.4.1) to the final tableau of Figure 6 produces a new LP, and 

an initial basic solution which satisfies the optimality conditions (y0j::::O 

for every j in R) but is not feasible: 

-x3 -x4 (2.1.1) 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

x2 13/5 -1/5 8/5 

sl -2/5. -1/5 -2/5 

The last row of the tableau (2.1.1) is a representation of the con

straint (1.4.1) in terms of the nonbasic variables x3 and x4 and a new 

slack variable s1 . The constraint (1.4.1) can be written in the form 

34 
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(2.1.2) 

where s 1 ~ O. The second and third rows of tableau (2,1.1) represent 

equations for x1 and x2 which can be substituted into (2.1.2) to give 

s 1 = -2/5 + l/5x3 + 2/5x4 (2. L 3) 

Equation (2.1.3) is then represented in the last row of the tableau. 

The basic solution of tableau (2.1.1) suggests the use of the dual 

simplex method because it satisfies the two requisites for an initial 

basic solution of the dual method: the optimality conditions are satisfied 

and the solution is infeasible. After one dual simplex iteration, pivot-

ing on the lower right-hand corner element, tableau (2.Ll) becomes: 

-x3 ...,.sl (2.1.4) 

XO 2400 50 150 

xl 3 1/2 -3/2 

x2 1 -1 4 

x . 
4 1 1/2 -5/2 

The basic solution represented by (2.1.4), (x1 , x 2 , x4 ; x3 , s1) = (3,1,l;O,O), 

satisfies both optimality and feasibility requirements and is consequently 

an optimal solution to the new LP. Furthermore, since the solution is al-

so integral it is an optimal solution of the ILP of Example 1.1.1. · 

The cut (1.4.1) which led to an optimal solution of the example was 

produced by inspecting the geometry of the ILP. In general this will not 

be possible. Thus a question central to this paper arises: Is it pos-

sible to generate cuts like (1.4.1) for any ILP, which will eventually 

lead to a solution of the problem? And, if so, how? The remaining sec-

tions of this chapter sketch the development Qf techniques which generate 

such cuts. 
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Before looking at special techniques to solve the ILP it is reason

able to ask whether it is possible to identify an ILP problem whose opti":"' 

mal solutions are identical to those of its associated LP. Such a problem 

could be solved by the simplex method without additional work. Certainly 

any ILP whose associated LP had a feasible set with itegral extreme points 

(i.e., extreme points with all coefficients integral) would be a problem 

of this class. A. Hoffman and J. Kruskal (31) have given a characteriza

tion of convex polytopes with integral extreme points in terms of the con-

straint coefficient matrix. This characterization involves a property 

known as unimodularity. A square integer matrix is said to be unimodular 

if its determinant is unity. An m X n integer matrix is said to be totally 

unimodular if every square, non-singular submatri* is unimodular. Hoffman 

and Kruskal have shown the following: 

Theorem 2.1.1. Every extreme point of the convex polytope 

P = {x I Ax ~ b and x ~ O} 

is integral if A is totally unimodular. 

Thus, the constraint coefficient matrix of an ILP can be examined to 

determine whether or not special techniques will be necessary in order to 

obtain a solution. G. Dantzig (13) noted t-hat: '8 :particular property of 

the constraint coefficient matrix of the transportation problem permits 

an essential reduction of· the computational procedure. I. Heller and 

C. Tompkins (30) have shown that this particular property of the constraint 

coefficient matrix implies_that the matrix is totallyunimodular, and, 

moreover, that this property also holds for the constraint coefficient 

matricies of the transshipment, assignment, maximum flow and shortest 

path problems. 

Therefore, a large collection of ILP problems can be solved without_ 
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resorting to enumeration or cutting-plane techniques. However, there re-

main many ILP problems whose solution can be found only by resorting to 

methods such as those discussed in this paper. Examples of particular 

types of such problems appear in a later chapter. The remainder of this 

chapter and the next consist of an historical development of the cutting-

plane techniques used to solve such problems. 

Early Uses of the Cutting-Plane 

The idea of adding inequalities to a linear programming problem to 

progress toward an integer solution was first advanced in a 1954 paper by 

G. Dantzig, R. Fulkerson, and s. Johnson (16). This paper dealt with the 

solution of a large-scale (49 cities) traveling s~lesman problem. In a 

traveling salesman problem a linear objective function x0 is to be mini

mized over a finite set F (the ILP-feasible set). The solution proposed 

can be sununarized in the form of an algorithtn. 

Algorithm 2.2.1. (16) 

STEP 1. Choose by guessing an x in F to optimize x 0 • Call it x'. 

Go to STEP 2. 

STEP 2. Formulate an LP with objective function x 0 and feasible set 

C' such that C' contains F. Go to STEP 3. 

STEP 3. Determine by means of the simplex method an optimal vector 

x" for the LP with feasible set C'. If x (x') = x (x") then x' is 0 0 

optimal in C' and a fortiori in F: stop. Otherwise, go to STEP 4. 

STEP 4. If x" is in F then x" is optimal in F: stop. Otherwise go 

to STEP 5. 
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STEP 5. Find a linear constraint not satisfied by x'' but satisfied 

by each vector of F. This constraint used to cut off the non-inte-

gral optimum x" is the first cutting-plane. Go to STEP 6. 

STEP 6. Add the constraint of STEP 5 to C' giving a new LP feasible 

set C11 • Replace C' by C". Go to STEP 3. 

Several comments can be made about this procedure. First, the feasi-

ble set C' is not necessarily the feasible set of the associated LP of 

the traveling salesman ILP. Second, the cutting-plane of STEP 5 is not 

generated automatically from the simplex tableau, but is derived from 

characteristics unique to the traveling salesman problem. Third, no proof 

is given that the algorithm will converge to a solution in a finite number 
I 

of iterations. That is to say, :it is not shown to be .a finite algorithm. 

Finally, the significance of the procedure is its use of the additional 

LP constraint -- the cut. 

The next use of cuts to solve an ILP was given in a 1957 paper of 

H. Markowitz and A. Manne (37). The authors emphasized that the paper 

presented no automatic algorithm for the solution of the ILP problem, but 

rather "a general approach susceptible to individual variations, depend-

ing upon the problem and the judgment of the user". The algorithm pro-

posed by Markowitz and Manne is essentially the same as that of Dantzig, 

Fulkerson, and Johnson. The aspects in which the later method differs 

from the earlier foreshadow those of methods which follow it. One dif-

ference is that the method of Markowitz and Manne is intended to be a 

general algorithm, one which will work for any ILP. A second difference 

is that this method uses both the simplex and the dual simplex methods to 

optimize the LP. (Lemke's [34) dual simplex method had been introduced 
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in 1954.) Finally, this method generates cuts by examining the current, 

non-integral optimal solution in an unsystematic way rather than by using 

characteristics unique to the problem. 

This trial and error metho.d of generating cuts is the weak point of 

the algorithm. As Dantzig (14) noted in a 1957 survey paper on discrete 

programming, "The procedure would be straightforward except that the pro

cedure for generating the complete. set of additional constraints is not 

known." 

The Cutting-Plane Methods of Gomory 

In May of 1958 A. W. Tucker communicated to the American Mathematical 

Society an "Outline of an Algorithm for Integer Solutions to Linear Programs" 

by Ralph E. Gomory (24) of Princeton University. This paper announced an 

algorithm, referred to as Gomory's Method of Integer Forms, which was sim

ilar to that of Markowitz and Manne, but with three fundamental exceptions. 

First, Gomory's method would converge to a solution in a finite number of 

iterations. Second, it began by solving the associated LP, not just any 

LP whose feasible set included the !LP-feasible set. Finally, it provided 

a method of systematically generating cuts using the final simplex tableau 

of the LP. 

Because Gomory's Method of Integer Forms is basic to nearly every later 

cutting-plane algorithm it will be developed in some detail. First, the 

algorithm will be described in detail, along with examples. Next, the basic 

cut will be derived from the geometry of the ILP- and its associated LP. 

Finally, the conditions for a finite algorithm.will be discussed. The 

following theorem will facilitate the discussion of Gomoryts Method of 

Integer Forms and later techniques: 
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Theorem 2.3.1. (Gomory (26)) Given the ILP 

maximize ex (2.3.1) 

subject to Ax = b, x ?:: 0 and integer, 

and a representation (as in a simplex tableau) of the associated LP to 

(2.3.1) given by 

xB. = y10 - '2:: yij xj' i = O, 1, ••. , m 
i. jER 

(2.3.2) 

so that the basic solution determined by (2,3.2) is xB. = yiO' i = 0,1, ••. ,m, 
l. 

x. = O, j in R; then the inequality 
J 

L<fh] yij - [hy1J.]) xj ?:: [h] yiO - [hy10J , 
jER 

where h is any non-zero real number and [d] means the greatest integer not 

greater than d, is a valid cut for (2.3.1). 

Proof of Theorem 2. 3 .1. Multiplying (2. 3. 2) ,by h gives 

hxB. + 2:: hyijxj = hyiO 
i j ER 

and since x ?:: 0 and d ?:: [d] 

[h] xB. + 
l. 

L: 
jER 

(2.3.3) 

(2.3.4) 

Since xis required to be integer in (2.3.1) the left-hand.side of (2.3.4) 

must be integer so that 

[h] xB. + 
l. 

L [hy ij] xj :<:: [hy iO] · 
jER 

Multiplying (2.3.2) by fh] and subtracting (2.3.5) gives 

L ( [h] Y ij - [hy ij] ) xj ?:: [hl y iO - [ hy iO ] • 

jER 

(2.3.5) 

(2.3.6) 

Therefore, any (integral) solution x to (2.3.l) satisfies (2.3.6) making 

that constraint a valid cut for any non-zero value of h. 

If his set to 1, (2.3.6) yields ~ (yij - fy1jJ) xj ?:: Yio - IY10J. 
jER 
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If, in addition, fractions f .. are introduced such that y .. ~ [y1.J.J + f .. , 
l.J l.J l.J 

then the cut (2.3.6) can be further reduced to the form 

L: f .. x.::: f. 0 , 
l.J J l. 

jER 

or in terms of a slack variable s, 

s = :-fiO + L 
jER 

f 1 .x., s ::: O, 
J J 

(2.3.7) 

(2.3.8) 

Gornory's Method of Integer Forms can now be stated in al~orithm form. 

Algorithm 2.3.1. (Gornory [26]) 

STEP 1. Solve thfl' associated LP to (2.3.1) using the simplex method, 

giving the following final simplex tableau: 

-x 
j . 

-x 
k 

(2.3.9) 

• • Yoj • 

Go to STEP 2. 

STEP 2. If the solution of the LP is integral, it is an optimal 

solution to (2.3.1): stop. Otherwise, go to STEP 3. 

STEP 3. Choose any row r of (2.3.9) with fro > 0 and append cut 

(2.3.8) with i = r to tableau (2.3.9) giving the following tableau: 
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-x. (2.3.10) 

s 

Go to STEP 4. 

-f rO -f .. 
rJ 

STEP 4. Optimize (2.3.10) using the dual simplex method. Go to 

STEP 2 • 

. Note that in STEP 3 a row was chosen with fro > OJ This was done so that 

the addition of the cut would cause the tableau (2.3.10) to represent an 

infeasible solution to the new LP. In other words, the optimal solution 

to the initial LP has been cut off from the present feasible set. 

As an illustration consider Algorithm 2.3.l applied to the ILP of 

Example 1.1.1. 

Example 2.3.1. STEP 1. The final simpiex tableau for the associated 

LP of Example 1.1.1 is : 

-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

x2 13/5 -1/5 8/5 

This corresponds to tableau (2.3.9). 

STEP 2. The LP optimal solution (x1 , x 2; x3 , x4) = (12/5, 13/5; O, O) 

is not integral so go to STEP 3. 
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STEP 3. Either row 1 or row 2 could be chosen to generate the cut. 

Choose row 2. Therefore, £20 = 13/5 - [13/5] = 3/5, f 23 = -1/5 - [-1/5]= 

4/5, and £24 = 8/5 - [8/5] = 3/5. The cut (2.3.8) then becomes 

s = 
1 

-3/5 + 4/5x3 + 3/5x4 . The tableau (2.3.10) becomes: 

+ 
-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

X2 13/5 -1/5 8/5 

+s 
1 -3/5 -4/5 -3/5 

STEP 4. One iteration of the dual simplex method yields the tableau: 

-x .. 3 -s 1 

XO 2400 0 :J-00 

xl 3 -3/5 -1 

x2 1 -7/3 8/3 

X4 1 4/3 -5/3 

STEP 2. The solution (x1 , x2; x3, x4) = (3, l; O, 1) is integral and 

thus optimizes the ILP (2.3.1). 

The cut of STEP 3 can be written, following the procedure used to 

generate equation (2.1.2), in terms of the variables x1 and x2 as 

(2.3.11) 

Figure 7 shows how this constraint can be seen to cut off the optimal 

solution (x1 , x2) = (12/5, 13/5), but no !LP-feasible solution. 

The cut for the Method of Integer Forms can be explained in terms 

of the geometry of the problem. A useful cut, such as the one above, is 

one which cuts off the old LP optimal solution while retaining all ILP-

feasible vectors. Such a cut can be generated by producing a hyperplane 
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which (i) contains the current LP optimal solution, (ii) does not contain 

any interior point of the feasible set, and (iii) can be pushed into the 

feasible set parallel to itself and stopped before it cuts off any ILP

feasible vector. Figure 7 shows a hyperplane through the optimal solution 

(12/5, 13/5) and a second hyperplane (the cut 2.3.11) which results from 

pushing the first hyperplane into the feasible set and stopping it before 

it cuts off an !LP-feasible vector. Any such hyperplane, one which sat

isfies (i) and (ii) above, is said to support the feasible set at the 

extreme point representing the LP optimal solution. 

The problem then is to find an equation for a hyperplane, such as 

that of Figure 7, which supports the feasible set at the current LP optimal 

solution and contains some type of indicator which can signal its being 

pushed into an !LP-feasible vector. Furthermore, 'such an equation must 

be obtainable from the LP tableau. 

Consider the equation from row 1 of the final simplex tableau for 

Example 1. 1. 1 : 

(2.3.12) 

From this equation determine another involving x2 , x3 , and x4 which also 

holds at (x1 , x2) = (12/5, 13/5). One possibility is 

x2 + c = 13/5 + [-1/5] (-x3 ) + [8/5] (-x4) (2.3.13) 

where c takes on the proper non-negative value. Eliminate x 2 in equations 

(2.3.12) and (2.3.13) giving the equation 

Note that c = 0 when x3 

terms of x1 and x2 as 

C = 4/5x3 + 3/5x4. (2,3.14) 

x4 = O. Equation (2.3.14) can be written in 

7x1 + 3x2 = 123/5 - c. (2.3.15) 



X1 

FEASIBLE SET • 

• 

7x1 + 3x2 = 24, HYPERPLANE 
CORRESPONDING 'TO · (2 ~ 3 .11) 

= 123/5 

Figure 7. Feasible Set and Hyperplanes (Cuts) for Example 2.3.1 
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The expression on the left-hand side of (2.3.15) is a linear integer form 

in the variables x1 and x 2. When c = 0, as in the optimal solution 

(12/5, 13/5; 0, 0), (2.3.15) represents a hyperplane 

which supports the feasible set at this optimal solution. As the value of 

c increases the hyperplane (2.3.15) moves into the feasible set. 

The right-hand side of (2.3.15) does not become integral until c = 3/5. 

Therefore, because the left-hand side is an integer form, no lattice point 

will be encountered before c = 3/5. In other words the hyperplane (2.3.15) 

can be pushed toward the origin until its right-hand side becomes integral. 

The cut corresponding to c = 3/5 in (2.3.14) is 

4/5x3 + 3/5x4 ~ 3/5. 

This is the same as that found by meaµs of (2.3.7~. 

In general the cut (2.3.7) will correspond to a hyperplane 

~ fi.x. = 0 (2.3.16) 
jER J J 

satisfying the three conditions listed above. The hyperplane (2.3.16) 

will pass through the current optimal solution (i), since at that point 

x. = 0 for all j in R. The hyperplane (2.3.16) is a supporting hyperplane 
J 

at the current optimal extreme point solution (ii). For any vector in-

terior to the feasible set all variables (slack and otherwise) must be 

positive. Therefore, all nonbasic variables, x., j in R, will have pos
J 

itive values at such an interior point. But since fi. is positive for 
Jo 

some jO in R (otherwise f ij = 0 for all j in R and (2. 3 .16) 1fa:ils· toe rep-

resent a hyperplane) no such interior point can satisfy (2.3.16). The 

integrality indicator (iii) is the integer form of the left-hand side of 

the equation which results from equation (2.3.16) being written in terms 

of the basic variables. Gomory (26) has shown that such an integer form 
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will always arise from (2.3.16). As in Example 2.3.1, if the right-hand 

side of (2.3.16) is increased from zero the first possible value to give 

the integer form an integer value is precisely fiO' giving the cut of 

(2.3.7). 

It should be noted that an integer value for this integer form is 

necessary but not sufficient indication that the hyperplane has reached 

an ILP-feasible point. It may stop short of any such vector, but it will 

never cut one off. 

Gomory (26) has shown that the Method of Integer Forms will find an 

optimal solution in a finite number of iterations provided STEP 3 is mod

ified so that: 

(1) the choice of row from tableau (2.3.9) :niaintains the columns 

of tableau (2.3.10) as lexicographically positive (i.e., the first non

zero component is positive); 

(2) the row chosen is the topmost row with f iO > O; 

(3) any row which corresponds to a slack variable from a cut and 

had become non-basic is deleted on becoming basic again. 

The finiteness of this algorithm is of course critical in terms of 

its utility. The Method of Integer Forms uses a type of cut which insures 

that the method will be finite. The same algorithm, but with a different 

type cut may not prove finite . 

. In June of 1958, shortly after Gomory had announced his Method of 

Integer Forms, a paper by George Dantzig (15) appeared. This paper pre

sented a different type of cut for Gomory's algorithm. As Dantzig stated 

in the paper, "The procedure given here is not the same as Gomory's for 

adding additional constraints; indeed it is known to be weaker. It is 

worth noting because it is easy to see why the relationship holds and 



because the relationship has a simple form. 11 

Dantzig's replacement for the cut (2.3.8) was simply 

L xj :'.': 1, or 

jER 

s = -1 + L: x .• 
jER J 
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(2. 3 .17) 

Using (2.3.17) in place of (2.3.8) in the algorithm (2.3.1) for the solu-

tion of Example (2.3.1) gives the following example: 

Example 2.3.2. 

STEP 1. The final LP tableau: 

-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

X2 13/5 -1/5 8/5 

STEP 2. This solution is not integral. Thus: 

STEP 3. Choose row 2 to generate the cut. The cut (2.3.17) becomes 

x 3 + x4 ~ 1 or s1 = -1 + x 3 + x4 . 

The tableau (2.3.10) becomes: 

-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

x2 13/5 -1/5 8/5 

sl -1 -1 -1 

STEP 4. One dual simplex iteration of the above tableau yields; 



-x 3 -x 4 

XO 2400 20 60 

xl 3 4/5 -3/5 

x2 1 -9/5 8/5 

X4 1 1 -1 

STEP 2. This solution is integral and thus optimizes the ILP of 

Example (2.3.1). 

The cut STEP 3 can be written in terms of the variables x1 and x 2 

in the following way: 

9x1 + 4x2 ~ 31. 
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Dantzig explains how the cut (2.3.17) is useful and valid. His reasoning, 

adapted to the ILP of Example (2.3.2), follows. Since x3 and x4 are both 
I 

zero in the current LP solution (x1 , x2 ; x3 , x4) = (12/5, 13/5; O, O) then 

this extreme point obviously cannot satisfy x 3 + x4 ::: 1. Any non-degenerate 

solution of the associated LP other than (12/5, 13/5; 0, O) must have either 

x3 or x4 basic and therefore positive so that x3 + x4 > O. But if the 

solution is required to be integral x3 and x4 must be integer valued so 

that x3 + x4 ::: 1 must be satisfied. 

Ralph Gomory and H. Hoffman (28) show that this cut of Dantzig's will 

not always make Algorithm (2.3.1) finite. To see this consider the follow-

ing example: 

Example 2.3.3. 

maximize xl + x2 

subject to 2x1 + x3 = 3 

2x2 + X4 = 3 

xl' x2' x3' x4 ::: 0, x and x 2 integer. 
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Let x = (xi, x.z, xj, x4) be any non-degenerate basic feasible solution to 

the associated LP of the above ILP. Let x" = minimum {xi, x,2, x3, x)J. · 

Let sk denote the slack variable associated with the kth added constraint 

of the form (2. 3 .17). If x" ::: 1, then sk :=: x" for all k. This follows 

from the fact that if x' and x' are two nonbasic variables associated with 
p q 

the solution x then the cut (2.3.17) becomes x' + x' :=: 1 or s1 = x' + x' - 1. p q p q 

But since x" is no greater than either x' or x' and x" > 1, s1 = x' + x' 1 :=: 
p q p q 

2x" - 1 = x" + (x" - 1) >_ x" • A · " l t h th t > " f · S1ID1 ar argumen s ows a sk _ x or 

any k. 

Now if x = (xi, x.z, xj, x4, s1 , s 2 , •.. , sk) is an optimal solution 

to the above ILP then two of these k + 4 variables must be nonbasic and 

therefore zero. But if x", the smallest of xi, xi, x3, x4, satisfies 

x" '.:": 1, then all the slack variables generated by 'Dantzig ct,its along with 

the three other original variables must be no smaller than x" and thus 

none can be zero. The optimal solution for the above !LP can be seen by 

inspection to be (x1 , x2 ; x3 , x4) = (1, 1, 1, 1) so that x'' :::: 1, and 

therefore no non-degenerate, basic feasible solution generated by a Dantzig 

cut for this problem can be optimal. 

In 1960 Gomory (25) developed two cutting-plane methods distinct from 

the Method of Integer Forms. The first of these was a method for the mixed 

integer linear program. A mixed integer linear program is a linear program-

ming problem for which some but not all of the variables a.re constrained to 

be integer. This type of programming problem is, in a sense, a general-

ization of the ILP. It can be thought of as an LP tacked onto an !LP. 

Gomory derived a generalization of the cut (2.3.8) which when used in the 

algorithm of the Method of Integer Forms (Algorithm 2.3.1) in its place 

solves the mixed integer linear program. 
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The second of these cutting-plane methods is called the All-Integer 

Method. It was first described in the paper (27). This method like the 

Method of Integer Forms is an algor~thm for the solution of the ILP. Its 

chief advantage over the earlier method lies in its exclusive use of in-

teger entries in the tableaux and thus the elimination of rounding errors 

in the machine computation of the problem. 

If an initial solution such as that of Table II is all-integer the 

succeeding tableau will also be all-integer if the pivot element yrk has 

magnitude one. The All-Integer Method uses this fact in the following wa,y. 

An initial solution is found which satisfies the optimality conditions 

(i.e., yOj ~ 0 for j in R in the initial tableau) and is all-integer. If 

this solution is also feasible (~.e., yiO ~ 0 for ~every i) then it must be 
i ' 

an optimal solution to the ILP. If not, a dual simplex iteration is per-

formed yielding a new solution closer to feasibility (i.e., a smaller ob-

jective function value). If the pivot element of this iteration is 

y = ±1 the tableau will remain integral forcing the new solution to be rk 

integral. But the only way a pivot element of y = ±1 can be guaranteed rk 

is by adding a row containing the necessary pivot element. 

Such a row can be generated from the constraint (2.3.6) by choosing 

a proper value for h. If h is chosen so that 0 < h < 1 then (2.3.6) be-

comes 

~ - [ hyrJ· J x. ~ -[ hyrO ] , or 
jER J 

s + L: 
jER 

hy j J x. = [ hy 0 ] . r J r 
(2.3.18) 

In general h tnust be chosen so that some { hy . ] of (2.3.18) has magni
rJ 

tude one and satisfies the conditions for a pivot element in the dual sim-

plex method. Gomory (27) has proved the following theorem concerning the 
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choice of h and its relationship to the final simplex tableau of the 

associated LP. 

Theorem 2.3.2. If the following inequality holds 

(2.3.19) 

where k is the pivot column and R = {j I y j < 0, j in R}, then 0 < h < 1, r r 

[hyrk] = -1, and [hyrk] satisfies the conditions for a dual simplex pivot 

element (i.e., yrO is negative and Yok =minimum {yOj I j in Rr} ). 

These ideas lead to the following algorithm for the All-Integer Method. 

Alsorithrn 2.3.2. (Gomory [27]) 

STEP 1. Begin with a tableau representing a basic solution 

-x. 
. ' J 

. Yoj • 

(2.3.20) 

The tableau must also be all-integer (yij integral for i = O, l, ••. ,m; 

j in R) and satisfy the optimality conditions (yOj ~ 0, for j in R). 

STEP 2. If the solution in STEP· 1 is feasible (i.e., yiO ~ 0, 

i = 1, . . , rn) then it is an optimal solution to the !LP. If not, 

go to STEP 3. 

STEP 3. Choose a row i = r I 0 such that Yro < O, and a column 

j = k I 0 such that Yak= ~i";1imum y0 . Compute h according to (2.3.19). 
J in R J 

r Add the cut (2.3.18) with the computed value of h to the tableau (2.3.20) 



giving the following tableau: 

-f-s 
1 

i-
-x. -xk 

J • 

Yoj • • • Yok • 

• y . 
mJ 

. [hy . ] 
rJ 

i 
STEP 4. Execute a dual simplex iteration, pivoting on the element 
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in the row of s 1 and the column k. The value of h in (2.3.18) was 

chosen so that this pivot element would have a value -1. This will 

produce a new basic solution. Go to STEP 2. 

Note: if the initial basic solution does not satisfy the optimality 

conditions a superfluous constraint of the form s 0 = M - L . x. can be 
· jER J 

appended to the tableau, and a dual simplex iteration performed. This 

constraint with M an arbitrarily large integer constant will not cut into 

the feasible set, but will provide a pivot element with value of 1. Such 

a constraint forces the sum of the nonbasic variables ( L x.) to be large 
jER J 

and positive. Since the top row of the tableau (x0 = Yoo - j~R Y0jxj) 

represents an equation for the objective function value which must decrease 

in a dual simplex iteration, a large value of L x. would tend to eliminate 
jER J 

negative values of the yOj' thus producing a solution satisfying the optimal-

ity conditions. 
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Consider Algoritlun 2.3.2 applied to the !LP of Example 1.1.1. 

Example 2.3.4. 

STEP 1. The initial tableau for this ILP is 

XO 0 -700 -300 

x3 27 8 3 

+x4 5 1 1 

Since this tableau represents a solution which does not satisfy the 

optimality conditions, a constraint of the form s0 = M - (x1 + x2) 

could be appended. But if 5 is a large enough value for M, such 

a constraint already exists in the last row of the present tableau. 

Pivoting on element y 21 = 1., bringing x1 into the basis and removing 

x4 givea the following tableau representing a basic solution, as in 

tableau (2.3.20): 

-x 
4 -x2 

XO 3500 700 400 

x3 -13 -8 -5 

xl 5 1 1 

STEP 2. Since x3 -13 the previous tableau represents an infeasible 

solution. Go to STEP 3. 

STEP 3. Choose row 3 since y10 = -13 < 0 and column 2 since y02 == 

minimum {700, 400}. Compute h ~minimum { (-1/-8) [700/400], (-1/-5) 

[400/400]} = 1/8. Add the cut from (2.3.18): 

s1 + (-8/8) x4 + (-5/8) x2 = (-13/8) , 

to the last tableau of STEP 1 giving the following tableau: 
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4' 
-x 4 -x2 

XO 3500 700 400 

X3 -13 -8 -5 

xl 5 1 1 

+s 
1 -2 -1 -1 

STEP 4. Pivoting on the element -1 of row s1 and column 2 yields:. 

-x4 -sl 

XO 2700 300 400 

X) -3 -3 -5 

xl 3 0 1 

x2 2 1 -1 

STEP 2. The solution of STEP 4 is not feasible. Go to STEP 3. 

STEP 3. Choose row 3 again since y10 = -3 < 0 and column 4 since 

y04 = minimum {300, 400}. Compute h ~minimum {(-1/-3) {300/300]' . 

(-1/-5)(400/300]} = 1/5. Add the cut from (2.3.18): 

s2 + I-3/5J X4 + [-5/5] s = 1 [-3/5J, 

to the tableau of STEP 4 giving: 

"' -x4 -sl 

XO 2700 300 400 

x3 ·-3 -3 -5 

xl 3 0 1 

x2 2 1 -1 

+s2 -1 -1 -1 

STEP 4. Pivoting on the element .-1 of row s 2 column .x4 yields: 
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-s2 -sl 

XO 2400 300 100 

X3 0 -3 -2 

xl 3 0 1 

X2 1 1 -2 

X4 1 -1 1 

This tableau represents a basic solution (x1 , x2, x 3 , x4 ; s1 , s 2) = 

(3, 1, O, l; O, 0). 

STEP 2. Since the solution of STEP 4 is feasible, satisfies the 

optimality requirements, and is integral it must be an optimal so

lution to the ILP. 

The geometry of the cut (2 •. 3.18) is similar to that of the cut (2.2.8) 

of the Method of Integer Forms. An equation is developed for a hyperplane 

passing through the current basic solution. This hyperplane is pushed 

toward the origin until it begins to cut into the feasible set, and stops 

.upon encountering a lattice point after cutting off part of the feasible 

set. This hyperplane passing through the first basic (infeasible) solu

tion of STEP 1 of Example 2.3.4, (x1 , x2 ; x3 , x4) = (5, O; -13, 0), can 

be developed by beginning with the source row 

x3 = -13 + (-8)(-x4) + (-5)(-x2). 

Multiplying by h + 0 gives 

hx3 = -13h + (-8h)(-x4) + (-5h)(-x2). (2. 3. 21) 

(2. 3. 22) 
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is therefore the equation of a hyperplane passing through the current 

basic solution which can be easily derived from the final LP tableau. 

However, the coefficient of x3 might not be an integer. Since [h] S h 

and x3 S 0 before feasibility is reached, [h]x3 ::: hx3 or [h]x3 - c = hx3 , 

where c ::: 0 when x3 S O. So that from (2.3.22): 

[h]x3 - c = -13h + [8h](-x4) + [-5h](-x2). (2.3 .23) 

If 0 < h < 1, as is the case in the All-Integer Method, equation (2.3.23) 

can be written 

c - 13h = [-8hJx4 + [-5h]x2, 

which can be written in terms of the variables x1 and x2 as 

c - 13h - 5[-8h] = -[-8h]x1 + ([-Sh] - [-8h])x2 . 

For h 1/8, equation (2.3.25) b.ecomes 

c - lJ/8 + 5 = x1 

(2.3.24) 

(2.3.25) 

(2.3.26) 

When c = 13/8 this hyperplane (2.3.26) passes through the current 

basic solution as can be seen in Figure 8. When c = 0 (2.3.26) represents 

a supporting hyperplane to the feasible set. And when c = -3/8 (2.3.26) 

will for the first time pass through an !LP-feasible vector. Note that 

when c = 5/8 the hyperplane (2.3.26) contains lattice points, but these 

are not ILP""".feasible vectors since the hyperplane has not yet encountered 

the feasible set (at c = O). 

Thus, the first cut of Example 2.3.4 is generated from (2.3.26) when 

c = -3/8, that is, when (2.3.24) becomes [-13h] = [-8h]x4 + [-5h]x2, the 

equation of the hyperplane corresponding to the cut of (2.3.18). Figure 9 

illustrates this same process generating the second cut of Example 2.3.4. 

A hyperplane is generated from equation (2.3.25) by choosing an appro

priate value for h. This hyperplane passes through the current basic 

solution, (xl'x2;x3,x4.s1) = (3, 2; -3, O, O). The hyperplane is then 



• 

• • 
FEASIBLE SET 

• • 

HYPERPLANES FROM (2.3.25): 
c = -3/8, c = o, c = 13/8 

~/ 
CUT ; I 

\, 
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I I 
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SECOND BASIC 
SOLUTION: (x1,x2) 
= (3,2) 

I 
I 
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I 

Figure 8. Basic Solutions and Cut-Generating Hyperplanes for Example 
2.3.4, First Iteration 

58 



59 

pushed toward the feasible set until it intercepts an extreme point (at 

c = 0). It is then pushed into the feasible set until the integer form 

comprising the right-hand side of (2.3.25) takes on an integer value, 

that is, until the hyperplane has (possibly) encountered a lattice point. 

At this point the hyperplane (2.3.25) with c -2/5 corresponds to the 

second cut of Example 2.3.4: 2x1 + x2 S 7, or in terms of the nonbasic 

variables: s 2 = -1 + x4 + s1 . 

As with the Method of Integer Forms the All-Integer Method is a finite 

algorithm when certain similar precautions are taken. While the All-

Integer Method overcomes the problem of round-off error, it is prone to 

problems with degeneracy; and while degeneracy is itself overcome by the 

use of lexicographic ordering, it can often cause .a marked increase in 

the number of iterations necessary for a solution·(see, for example, 

C. Trauth and R. Woolsey [42)). 

In a letter to the editor of Operations Research dated July 7, 1966, 

Robert Wilson (44) gave a modification of the All-Integer Method cut which 

produces "stronger" cuts than equation (2.3.18) with a value of h chosen 

by means of (2.3.19). The term "stronger" in relation to cutting-planes 

can be defined in the following way: 

Definition 2.3.1. The cut 

is a strengtheni.E:_g of the cut 

Ln~x. > no 
jER J J 

L: 
jE R 

'If. x. ::'.: 
J J 

(2.3.27) 

(2.3.28) 

if Tr~ S ·rr. for every j in Rand 11 01 ~'IT Alternatively, the cut (2.3.28) 
J J . o· 

is a weakenin& of (2.3.27). 



• 

• 
FEASIBLE SET 

• 

HYPERPLANES FROM (2.3.25): 
c = 3/5, c = 0, c = -2/5 

• 

• 

SECOND BASIC SOLUTION: 
(x1,x2)' = (3,2) 

~ 

THIRD BASIC SOLUTION: 
(x1,x2) = (3,1) 

\ 

Figure 9. Basic Solutions and Cut-Generating Hyperplanes for Example 
2.3.4; Second Iteration 
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H x :::: 0 snt.isfies (2.3.27) it will also satisfy (2.3.28) since 

> I f 11 . i R i li L > l: I > I > ·njxj _ 1rjxj or a J n mp es jER 1Tjxj - jER 1Tjxj - 1T0 - 1T0 . This 

shows that any feasible vector t\Thich satisfies a strengthening of a given 

cut will also satisfy the cut itself. For example, the cut (2.1.2) rep-

resented in terms of the variables x3 and x4 is l/5x3 + 2/5x4 ~ 2/5. In 

terms of definition 2.3.1 the cut l/5x3 + l/5x4 ~ 3/5 is a strengthening 

of (2.1.2). This strengthened cut can be represented in terms of x1 and 

x2 as 9x1 + 4x2 S 29. This strengthened cut lops off more of the feasible 

set than does (2.1.2). However, it also cuts off the !LP-feasible vectors 

· (x1 , x2) = (3, 1) and (x1 , x2) = (2, 3) making it unusable for integer 

programming. 

Wilson's refinement of the fJ-1-Integer Method can be demonstrated by 

means of an example: 

Example 2.3.5. (R. Wilson): Consider an !LP problem with the fol-

lowing tableau corresponding to (2.3.20) of Algorithm 2.3.2 

20 1 2 3 4 

-20 -7 -8 -15 18 

Note that r = 5, R = {l, 2, 3, 4}, Rr = R5 = {j I y5j < O, j in R} = 

{l, 2, 3}. Column 1 is the pivot column since 1 = y01 =minimum {yOj j is 

minimum {l, 2, 3}. The All-Integer cut from (2.3.18) is then 

s1 + ~ [hy5j]xj = [hyr0], or in this case 

jER 

s 1 + [-7h]x1 + [-8h]x2 + [-15h]x3 + [18h]x4 = [-20h], (2.3.29) 

where his defined as in (2.3.19). From (2.3.19) h can be calculated: 

h minimum {(-l/y5j) [y0/y01 J I j is in R5} =minimum {1/7, 2/8, 3/15}= 1/7. 
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With h = 1/7 the cut (2.3.29) becomes: 

s1 + [-7/7]x1 + [-8/7]x2 + [-15/7]x3 + [18/7]x4 = [-20/7], (2.3.30) 

or in simpler terlliS 

(2.3.31) 

Note that a smaller positive value of h will not affect the value of the 

coefficient of x1 ; it may reduce the values of the coefficients of x2 and 

x3 and the constant; and it may increase the value of the coefficient of. 

x4 in (2.3.29). Any cut which serves as a strengthening of (2.3.31) must 

have smaller (or equal) values of the coefficients of x1 , x2, x3 , and x4 

and must have a larger (or equal) value for the constant. To accomplish 

this, the values h can assume are (term by term): 
I 

for x1 , x2, x3 : 0 s h s 1/7, 

1/9 s h s 1/7' 

for the constant term: 1/(10 - E) s h s 1/7, where E > 0 is small. Thus, 

h* =maximum {1/(10 - £), 1/9} = 1/9 may produce a stronger cut for (2.3.29) 

than h = 1/7. In fact with h* 1/9, (2.3.29) yields 

In general a choice for h in (2.3.18) which would yield a strength

ened cut would be h* = minimum {h, maximum {h. I j is not in R }}, where 
J r 

his calculated as in (2.3.19), and h. = [hy j]/y ., j ~ 1, h0 = 
J r rJ 

(1 + [hy rO]) I (y rO - £). If all y rj < 0 so that R = Rr' then h* may be 

taken arbitrarily close to zero and positive. Note that while the cut 

(2.3.18) with h* substituted for h may be stronger, it will, unlike the 

cut of the example, remain valid since (2.3.18) is a special case of (2.3.6) 

which is a valid cut for any non-zero h. 



CHAPTER III 

THE DEVELOPMENT OF THE LATER CUT TECHNIQUES 

. Primal Methods 

A major disadvantage of the methods of Chapter II lies in the fact 

that of all the basic solutions involved in the process only the final 

solution is !LP-feasible. Thus, if a machine implementation of the al

gorithm terminates prematurely the non-optimal solution returned is use

less. If, however, an algorithm could be devised which proceeded from one 

· !LP-feasible solution to another with each iteration improving the value 

of the objective function, then premature termination would produce at 

least an approximate to an optimal solution; and one which would be ILP

feasible. 

In a 1962 Belgian paper A. Ben-Israel and A. Charnes (40) presented 

an algorithm they called a "Direct Algorithm" for the solution of the !LP. 

According to H. Salkin (40) this mathod involved cutting-planes and the 

movemant from one !LP-feasible solution to another, but was very difficult 

to implement. Later, in a 1965 paper, R. Young (45) described a "Rudimen

tary Primal Algorithm" for the solution of the !LP. This method, different 

from that of Ben-Israel and Charnes in its details, was similar in that it 

used cutting-planes to move from one !LP-feasible to another. It was de

scribed as a "Primal" algorithm because it was based on Dantzig's (Primal) 

Simplex Method rather than the dual simplex method of the Gomory algorithms. 

In 1967 F. Glover (21) published a paper giving a "pseudo-primal 
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algorithm" for solving lLP's. This algorithm represented a fundamentally 

different approach to a primal ILP method. Building upon this paper and 

Young's 1965 paper, Young (46) and Glover (22) brought out papers simul-

taneously in 1968 describing a simplified primal ILP algorithm. This 

algorithm in its basic form can be seen to be a direct modification of 

the simplex algorithm. 

Algorithm 3 .1.1. (Young and Glover) 

STEP 1. Find an initial basic feasible integral solution. If one 

is not apparent a method similar to that of Example 1.5.1 may be 

used. The only adjustment to that method would be that the cor-

responding LP becomes a corresponding ILP. Go to STEP 2. 

STEP 2. If Yoj ?: 0 for every j in R then the current basic feasible 

(integral) solution is optimal. If yOj < 0 for some j in R, go to 

STEP 3. 

STEP 3. Select any variable ~' kin R, to enter the basis so long 

as. Yok < 0. Go to STEP 4. 

STEP 4. If yik ~ 0 for all i = 1, .•• , m, then no optimal solution 

exists because of the unboundedness of the feasible set. Otherwise, 

find the minimum {y 10/y ik I y ik :: 1, i = 1, • • • , m}. Note that 

yik ::: 0 since the tableau consists of integer entries only. If i = r 

gives the minimum and yrk = 1, choose ~ to leave the basis. Go to 
r 

STEP 6. If i = r gives the minimum and yrk > 1, go to STEP 5. 

STEP 5. Append the cut 

8 + ~ [yrj/yrk]xj = 1Yro1Yrk] ' 
jER 

(3 .1.1) 
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where s ~ O. Choose s to leave the basis. Go to STEP 6. 

STEP 6. Execute a simplex pivot as in STEP 5 of the simplex algo-

rithm. Go to STEP 2. 

The cut (3.1.1) is derived from the cut (2.3.18) by setting h = l/yrk" 

Then 0 < h < 1 since yrk > 1. Since ~ is the variable entering the basis 

and s is the departing variable, the pivot element of the tableau is 

[yrk/yrk]. Since this element has magnitude 1, any all-integer tableau 

will remain all-integer after pivoting. 

To illustrate this algoritlun consider the following example: 

Example 3.1.1. (from Example 1.1.1) 

maximize 700x1 + 300x2 

subject to 

x1 + x2 ~ 5, x1 and x2 ~ 0 and integer. 

STEP 1. An initial basic feasible integer solution is obvious and 

can be seen in the initial tableau: 

-x 1 -x 2 

XO 0 -700 -300 

x . 
3 

27 8 3 

X4 5 1 1 

STEP 2. Since y01 = -700 and y02 = -300 the current basic feasible 

(integral) solution is not optimal. Go to STEP 3. 

STEP 3. Either x1 or x2 may coxoo into the bas.is. Select x1 • 

STEP 4. The minimum {yi0/yik I yik ::: 1, i - 1, ••• , m} = 

minimum {y10/y11 , y20/y21} = minimum {27/8, S/1} • 27/8. Therefore, 



STEP 5. Append the cut: 

s + ~ [y ./y k]x. = [yr0/yrk], that is 
jER rJ r J 

s1 + x1 + 0 = 3, to the initial tableau. 
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This results in the tableau: (the appended constraint is in parenthesis) 

+ 
-xl -x2 

XO 0 -700 -300 

XJ 27 8 3 

X4 5 1 1 

+-s 
1 

3 1 0 

Choose s1 to leave the basis. 

STEP 6. Execute a simplex iteration bringing x1 into the basis and 

taking s 1 out. Since the pivot element is 1, the new tableau will 

also be integral. 

The following tableaux represent the results of iterations one through 

four. The appended cut constraint is shown in parenthesis in its derived 

form and also in terms of x1 and x2 alone. 
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SECOND TABLEAU 

"" -s 
1 -x2 

XO 2100 700 -300 

x3 3 -8 3 

X4 2 -1 1 

xl 3 1 0 

-<-s 
2 1 -3 1 

(s - 3s1 + x 2 = 1 or 3x1 + x 2 ~ 10). 
2 

THIRD TABLEAU 

-!-
-s 

1 
-s 

2 

XO 2400 -200 300 

+x3 0 1 -3 

x4 1 2 -1 

xl 3 1 0 

x2 1 -3 1 

(No cut since the pivot is already 1). 
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FOURTH TABLEAU 

+ -x3 -s2 

XO 2400 200 -300 

sl 0 1 -3 

x4 1 -2 5 

xl 3 -1 3 

X2 1 3 -8 

+s 
3 0 -1 1 

(s3 - x + $2 = 0 or 5x1 + 2x2 ::: 17). 3 

FIFTH TABLEAU 

+ 
-x3 -s3 

XO 2400 -100 300 

sl 0 -2 3 

x4 1 3 -5 

xl 3 2 -3 

X2 1 -5 8 

s2 0 -1 1 

+s4 0 1 -2 

(s4 + x3 - 2s 
3 "" 0 or 2x1 + x2 ::: 7). 
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SIXTH TABLEAU 

-s4 -s3 

XO 2400 100 100 

sl 0 2 -1 

X4 1 -3 1 

xl 3 -2 1 

x2 1 5 -2 

s2 0 1 -1 

x3 0 1 -2 

The third tableau represents an optimal solution. However, the opti-

I 

mality conditions are not satisf~ed until the sixth tableau. One inter-

pretation of this situation is that the solutions represented in tableaux 

three through six are degenerate, and in each case a basic variable with 

value zero leaves the basis and is replaced by a variable with value zero. 

For example, in proceeding from the third to the fourth tableau x3 (value 

zero) leaves the basis only to be replaced by s1 (value zero). None of 

these exchanges causes a change in the objective function value since 

none of the zero-value variables contributed to its value in the first 

place. 

An analysis of the geometry of this example helps t.o explain why the 

method of Young and Glover of ten requires additional iterations after an 

optimal solution is reached. As Figure 10 illustrates, the method runs 

through six different basic feasible solutions while encountering only 

three extreme points. The solution of the first tableau corresponds to 

the extreme point (x1 , x2) = (0, O). Since x1 is chosen to enter the basis 

(and become positive.) the second basic fea.sibJ.e solution to the associated 
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LP would correspond to the extreme point (x1 , x2) = (27/8, 0). However, 

cut 1 (x1 :S 3) is appended to the associated LP before pivoting so as to 

force the second basic feasible solution to be integral. The value of x1 

will now increase from zero to 3 rather than from zero to 27/8. 

In general, if the cut (3.1.1) were modified so that the right-hand 

side were Y. 0/y k instead of [y 0/y k], then it would pass through the 
r r r r 

(possibly non-integral) extreme point solution of the associated LP. But 

the use of [yr0/yrk] causes the cut constraint to be pushed into the feasi

ble set until it encounters an !LP-feasible vector: in this case, the 

vector (x1 , x2) = (3, O). 

The second tableau represents this basic, feasible, all-integer so-

lution. It also shows that x2 s~ould'enter the b~sis. The execution of 

a simplex iteration without the addition of a cut would result in a new 

basic feasible solution (x1 , x2) = (3, 1) which is integral. However, 

since the pivot element y12 = 3 would not have magnitude 1 the method 

could not have predicted this before pivoting. Therefore, Cut 2 Ox1 + x2~ 

10) is appended and a pivot performed. Since Cut 2 does not cut off any 

of the feasible set, it represents a redundant constraint through the 

.extreme point (x1 , x2) = (3, 1), and the pivot operation leads to a de

generate solution as shown in the third tableau. 

Since the pivot element of the simplex procedure is yls = 1 in the 
1 

third tableau, no appended cut constraint is necessary. But since a basic 

variable with value zero is exchanged for a non-basic variable with value 

zero the value of the objective function remains the same. The redundant 

constraint allows the existance of more than one basic feasible solution 

at the given extreme point. Since Cuts 3 and 4 also represent redundant 

constraints through (x1 , x2) = (3, 1) the solutions found in the remaining 
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• 

• 

• 

Tableau 1 

/ 

Cut 4: 2x1 + x2 ' 7 

Cut 3: sx1 + 2x2 < 17 

Cut 2: 3x1 + x2 
. $" 

I 
I Cut 1: Xl 

:____s 
I 

• I 

• 
I 
I 

Tableau 2 I 

~I 

~ 

..:.. -

Figure 10. Solutions and Cuts of Example 3.1.1 
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tableaux are also degenerate. 

The four cuts of this example seem to pivot in a counter-clockwise 

direction about (x1 , x2) = (3, 1) until the last strikes the !LP-feasible 

vector (x1 , x2) = (2, 3). Since the current extreme point solution (x1 , x2)= 

(3, 1) lies on the original constraint 8x1 + 3x2 + x3 = 27, and no other 

ILP-f easible solution lies on this constraint then the only possibility 

for an improved integral solution lies off the line 8x1 + 3x3 = 27, 

that is where x3 is positive. However, x3 must be integral when x1 and 

x2 are integral. Therefore, no possibility of moving to an improved ILP

feasible solution exists until a cut is found which would allow x3 to be 

both positive and integral. For this reason the optimality conditions 

are not satisfied until Cut 4 is: introduced. In a sense, the method can-

not know that its present solution is optimal until is is able to proceed 

to a new !LP-feasible solution. 

Deep Cuts 

In a 1969 paper (9) V. Bowman and G. Nemhauser proposed a method for 

strengthening cuts generated by other methods. The authors referred to 

these strengthened cuts as "deep cuts". While the idea of strengthening 

cuts had been used by Wilson with cuts of the All-Integer Method, no gen

eral cut strengthening method had been produced prior to that of Bowman 

and Nemhauser. Their technique will be illustrated first as applied to 

Gomory's Method of Integer Forms and then in terms of his All-Integer 

Method. 

Recall that the cut of the Method of Integer Forms (2.3.7) can be 

written: 
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While this cut will not exclude any !LP-feasible vector it may contain 

one (i.e., there exists some !LP-feasible vector x such that j~R fijxj = fi0). 

However, if the cut (2.3.7) does not contain an !LP-feasible vector, then 

it may be strengthened in the sense of Definition 2.3.1. That is, there 

will exist some t > fiO such that 

is a valid cut. 

L: fi .x. ::: t 
jER J J 

(3.2.1) 

The strongest valid cut of the form (3.2.1) can be found by locating 

the largest t such that (3.2.1) is valid; or, alternatively, by finding 

the 2: smallest t such that jER fijxj = t is satisfied by some !LP-feasible 

vector. If the !LP-feasible region is non-empty there will always exist 

such a t, call it t*. Thus, * ! mi i { L: f ! I E S} h s t r= n. mum jER ij1Xj x , w ere 

is the !LP-feasible region. Unfortunately, finding t* by means of this 

process is, according to Bowman and Nemhauser "about as difficult as solving 

the original ILP". However, a trade-off can be made between the strength 

of the cut and the ease of finding it. 

Definition 3.2.1. For any finite Q J S, where S is the !LP-feasible 

region, define t(Q) = minimum {j~R fijxj I x E Q}. Since t(Q) is the.·. 

minimum value over a set containing s, then t(Q) ~ t*, and thus while re-

placing t* by t(Q) in (3 .2 .1) will preserve the cut as valid, the cut 

will be weaker. The choice of the set Q is made by balancing the ease of 

finding t(Q) with the strength of the resulting cut. As Q approaches S 

the corresponding cuts will stronger and t(Q) more difficult to find. 

Suppose a canonical maximum ILP 

maximize ex 

subject to Ax = b, x ::: 0 and integer 
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is being solved by the Method of Integer Forms. The basis for the current 

iteration is B, and the index set for the current set of non-basic variables 

is R. 
. th 

Also, the cut (2.3.7) has been derived from the r row of the tableau 

(i.e., i = r). Let Q = Q0 = {x I Ax= b, xj ~ 0 and integer for j in R, 

~ integer}. In other words Q0 is the !LP-feasible region S with the in
r 

tegrality and non-negativity constraints on the basic variables relaxed, 

except for integrality on the basic variable ~ 
r 

straint can be written: 

fi.x. 
J J 

And thus, 

-f + rO I: 
jER 

f .x. 
rJ J 

th The r tableau con-

x .• 
J 

[yi.] '.X •• 
J J 

(3.2.2) 

If x is in Q0 then the right-hand side, and thus the left-hand side of 

L: (3.2.2) is integer valued. Therefore, -fro + jER frjxj = p, an integer. 

Also, since f . ~ 0, x. ::: 0 for j in R, and 0 ~ fro < 1 then p ~ 0. So 
rJ J 

that t(Q0) = minimum { .~R £. .x. I x E Q0 } = f 0 + p*, where p* is the jEl · l.J J r 

smallest non-negative integer such that j~R frjxj p + fro has a non-

negative integer solution in the xj, j in R. Thus, t(Q0) is found with 

much greater ease than is t*. 

Example 3. 2 .1. (from Example 2. 3 .1) In STEP 3 of Example 2. 3 .1 the 

cut j~R frjxj ~ fro was derived from the x2 row giving 4/Sx3 + 3/Sx4 ::: 3/5. 

The constant in the Bowman-Nemhauser cut replacing fro"" 3/5 is 

Let p 

t(Q0) = minimum {p + 3/5 I 4/Sx3 t 3/5x4 = p + 3/5 has 

a non-negative integer solution (x3 , x4)}. 

O, then an appropriate solution exists: x3 = O, x4 = 1. Thus, 

0 + 3/5 = 3/5, and the Bowman-Nemhauser cut is identical to the 
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cut of Example 2.3.1. This situation is implied by the fact, as shown in 

Figure 7, that the original cut of Example 2.3.l contains an !LP-feasible 

vector, and thus cannot be strengthened by increasing the right-hand con-

stant fro = 3/5. 

]i:xample 3.2.2. (from Example 2.3.1) Consider the ILP of Example 

2.3.1 with the constraint Bx1 + 3x2 ::: 27 modified to Bx1 = 2x2 ::: 27. This 

modification gives the ILP: 

maximize 700xl. + 300x2 

subject to· Bx1 + 2x2 ::: 27 

xl + x =:: 
2 

5, x1 and x2 ::: 0 and integer. 

The simplex method applied to the associated LP of this problem gives a 

final tableau: 

-x3 .;.x 
4 

XO 7900/3 400/6 1000/6 

xl 17/6 1/6 -2/6 

Xz 13/6 -1/6 8/6 

Since the LP optimal solution is not integral, a cut of the form (2.3.7) 

can be derived from either the x1 or x 2 rows. If the x2 row is chosen the 

cut ( 2 . 3 • 7) becomes : 

5/6x3 + 2/6x4 ::: 1/6. (3.2.3) 

Now t(Q0) = minimum {p + 1/6 I 5/6x3 + 2/6x4 = p + 1/6 has a non-negative 

integer solution (x3, x4)}. If p = O, it can be seen that no non-negative 

integral solution exists. But if p = 1, a solution (x3 , x4) = (1, 1) exists. 

Therefore, t(Q0) = 7/6 and the cut (3.2.3) is strengthened to : 

5/6x3 + 2/6x4 ::: 7/6. (3.2.4) 

Figure 11 shows the feasible regions along with the cut (3.2.3) and 

the strengthened cut (3.2.4). It can be seen that (3.2.3) does not contain 
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an !LP-feasible vector while (3.2.4) does. Also, the "deeper" cut (3.2.4) 

can be seen to cut off more of the feasible region of the associated LP 

than the cut (3.2.3). The two cuts can also be seen to be parallel. 

If the set Q is further restricted from Q0 to Q1 c Q0 , where Q1 :> S, 

then t(Q1) ~ t(Q0), and a (possibly) stronger cut results. Let 

Q1 = {x I Ax= b, x. ~ 0 and integer for j in RU {B }}. 
J r 

Then Q1 c q0 since Q1 is q0 with the added constraint that xB be non
r 

negative. The set Q1 can be written as {x x satisfies the constraints 

(1.5.6), i.e., ~. 
1. 

integer, j in R}. 

= yiO - j~R yijxj, i = 
But since ~ may take 

0 , • . • , m; and ~ , xj. !! 0 and 
r . 

on any value for i ; r the only 
i 

constraint from (1.5.6) which is binding is: 

Thus, t(Q1) = minimum = yrO; ~ , xj ~ 0 
r 

and 

integer, j in R}. The problem of finding t(Q1) can now be seen to be equiv-

alent to solving a one-constraint !LP whose variables are ~ 
r 

R. Thus, if the coefficient matrix A in the definition of Q1 

and x., j in 
J 

is m X n, the 

number of variables in the one-constraint ILP will be n - m + 1. 

Example 3.2.3. (Bowman and Nemhauser). Suppose the cut corresponding 

to (2.3.7) is derived from the following row of an ILP tableau: 

x3 = 8/10 - 6/10x1 + 13/10x2 • (3.2.6) 

The cut derived from this constraint will be: 

6/10x1 + 7 /10x2 ~ 8/10. (3. 2. 7) 

Now t(Q0) = minimum {p + 8/10 I 6/10x1 + 7/10x2 • p + 8/10 has a non

negative integer solution}. Thus, t(Q0) = 18/10, and the corresponding 

strengthening of the cut (3.2.7) will be: 

6/10x1 + 7/10x2 ~ 18/10. 
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Cut (3.2.4), A "deep cut" 

Cut (3.2.3) 

• 

~ 5 

• • 

• • 

Figure 11. Feasible Region and Cuts of Example 3.2.2 
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Further, t(Q1) = minimum {6/10x1 + 7/10x2 I x3 + 6/10x1 - 13/10x2 + 8/10, 

x1 , x2 , x3 ~ 0 and integer}. Thus, t(Q1) can be found by inspection to 

be t(Q1) = 28/10, and the corresponding strengthening of (3.2.7) and thus 

(3.2.6) will be: 

6/10x1 + 7/10x2 ~ 28/10. 

Bowman and Nembauser have called cuts derived using t(Q0) zero

constrained cuts, and cuts derived using t(Q1) one-constrained cuts. In 

general, k-constrained cuts are possible where k ~ m, the number of con-

straints in the original !LP. However, the problem of finding t(Qk) be

comes increasingly more difficult as k approaches m. 

The one-constraint cut has been applied to Gomory's All-Integer Method 

with the following modification: 

Definition 3.2.2. For any finite Q J S and 0 < h < 1, define s(Q) • 

minimum {f:ER - [hy .]x. Ix in Q}. The object here minimized is the left-
J rJ J 

hand side of the cut (2.3.18) from the All-Integer Method when h is chosen 

as in (2.3.19). 

With s(Q) replacing t(Q) the ct.it of the All-Integer Method can (possibly) 

be strengthened in the same manner as those of the Method of Integer Forms. 

The following example illustrates the procedure: 

Example 3.2.4. (Bowman and Nemhauser). Suppose the following two 

rows are found in the tableau at some iteration in the All-Integer Method: 

(3. 2 .8) 

(3.2.9) 

With h 1/2 the cut (2.3.18) can be derived from the row (3.2.8) as: 

If xB = x6 is required to be a non-negative integer then t(Q1) = 
r 

(3.2.10) 
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minimum {x1 + 3x3 + x4 I -3x1 - 5x2 + 6x3 + 4x4 - x6 • 10, x1 , x2 , x3 , x4 , 

x6 ~ 0 and integer}. A minimum can be found (in this case by inspection, 

although the !LP could be solved formally) with x1 = x2 = x3 z O, x4 = 3, 

and x6 = 2. The resulting value of t(Q1) is 3. Thus, the strengthened 

cut is: 

x1 + 3x3 + x4 ~ 3. 

It may be noted that the strengthened cuts of Bowman and Nemhauser 

are found by increasing the constant in the cut constraint, while those 

of Wilson are gotten be changing the value of h in (2.3.18), thus decreas-

ing the vlaues of the coefficients of the x. while leaving the constant 
J 

unchanged. It therefore may be possible to combine the two methods to 

I produce even stronger cuts for the All-Integer Method. 
I 

The Primal Method of Young and Glover generates a cut containing an 

!LP-feasible vector. Thus, the cuts of that method cannot be improved by 

using the techniques developed by Bowman and Nemhauser. Furthermore, any 

technique similar to that of Wilson for adjusting the value of h in (2.3.18) 

would be limited by the need for maintaining an all-integer tableau. Thus, 

the cuts of Young and Glover's Primal Method are the strongest possible 

given their objective of moving from one !LP-feasible solution to another. 

Intersection Cuts 

A 1969 paper by Egon Balas (2) described a new type of cut which he 

called the intersection cut. Unlike previous cuts, intersection cuts 

were motivated entirely by geometric considerations. In the paper, Balas 

noted that "the message of this paper lies, not so much in the particular 

cuts that it proposes, as in the basically new approach to integer pro-

gramming that these cuts typify." As a result, this work of Balas' was 
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extended in two 1970 papers: one published jointly by Balas, V. T. Bowman, 

F. Glover, and D. Sommer (3), and another by F. Glover(23). 

The concept of intersection cuts will be introduced by an example 

solved by the original method of Balas. After that the concept will be 

discussed in the more general framework of the later papers. Finally, 

an improvement of the original technique which emerges from the general 

discussion will be described. 

Example 3.3.1. (From Example 1.1.1) The ILP 

maximize 700x1 + 300x2 

subject to · 8x1 + 3x2 ~ 27 

x1 + x2 S 5, x1 x2 ~ 0 and integer 

can be solved by Gomory's Method of Integer Forms 1 (Algorithm 2.3.1) with 

the cut of that method replaced by an intersection cut derived in the 

following manner: 

Pass a circle through the four lattice points defining a unit square 

containing the current basic feasible solution. This circle will intersect 

the boundary of the feasible region at two feasible points. The line 

through these two point defines an intersection cut. The optimal solution 

(x1 , x2) = (12/5, 13/5) of Example 1.1.1 is shown in the following tableau 

and in Figure 12: 

-x3 -x4 

XO 2460 80 60 

xl 12/5 1/5 -3/5 

Xz 13/5 -1/5 8/5 

The four lattice points defining a square containing (12/5, 13/5) are (3, 3) 

(2, 3), (2, 2), and (3, 2). The circle passing through these four points 
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2 2 
has the equation (x1 - 5/2) + (x 2 - 5/2) = 1/2. This circle intersects 

the boundary of the feasible region at (2,3) and ( (357 + M45) I 146, 

(362 - s\lf45) /146). The second of the two points can be approximated by 

the rational vector (27/10, 18/10). The intersection cut through the two 

points is therefore 

x2 + 17/10x1 ~ 64/10. 

This cut can be represented in terms of the current non-basic variables 

x3 and x4 and slack variable s1 as 

(3.3.1) 

Appending this constraint to the previous dual simplex tableau gives: 

2460 

12/5 

13/5 

-28 

80 

1/5 

-1/5 

-14 

60 

-3/5 

8/5 

-58 

Ancl after one dual simplex iteration: 

XO 141000/58 3800/58 60/58 

x 1 156/58 20/58 -3/290 

x2 106/58 -34/58 8/290 

x4 28/58 14/58 -1/58 

The new extreme point solution (x1 , x2) = (156/58, 106/58) lies in-

side a square formed by the lattice points (2,1), . (3, 1), (3 9 2) 9 and (2, 2). 

The circle.passing through these four points has the equation (x1 - 5/2) 2 + 
2 (x2 ..:.. 3/2) = 1/2. This circle intersects the boundary of the new feasible 

set at the point (3, 1) and at a point with irrational coordinates which 
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can be approximated by (247/100, 221/100). The resulting cut is 

x2 + 2.283x1 5 7.849. 

Tl1is cut can be represented in terms of the current non-basic variables 

as 

s 2 = 152/((3)(58)) XJ + l/58s1 - 30/58. (3. 3. 2) 

The previous tableau with (3.3.2) appended can be written as: 

-x3 -sl 

XO 141000/58 3800/58 60/58 

xl 156/58 20/58 -3/290 

x2 106/58 -34/58 8/290 

x4 28/58 14/58 -1/58 
I 

s2 -30/58 -152/174 -1/58 

After one dual simplex itreation this tableau is replaced by: 

-x3 -s2 

XO 2400 760/58 60 

xl 3 252/290 -3/5 

x2 1 -115/58 8/5 

X4 1 194/174 -1 

s 
1 

30 152/3 -58 

This tableau represents an optimal solution of the associated LP, and 

since it is integral, an optimal solution to the ILP. 

Balas (2) has shown that when the coefficient matrix A is m by n + m 

(2 by 4 in the example) the intersection cut can be given by 

2: 
jER 

(l/A..)x. :::: 1, 
J J 

(3.3.3) 

where the .A. are computed from the intersections of the hypersphere in Rn 
J 
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intersection cut 3.3.2 

• first LP optimal 

second LP optimal 

• 

• 

Figure 12. Intersection Cuts for :Example 3.3.1 
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with the feasible region. 

The replacement of the Gomory cut with the intersection cut has not 

improved the method. In fact several problems have been created. One 

problem is that the algorithm with the intersection cut is not guaranteed 

to converge. Balas in (2) shows how this problem may be overcome. How-

ever, there are two other related problems. First, the intersection cut 

is difficult to derive from the current extreme point solution; and second, 

the cut coefficients may be irrational. 

These difficulties have led to the modification of Balas' method. 

In these modifications the hypersphere is replaced by some other convex 

set with the hope of getting a stronger, more easily computed cut. The 

following theorem gives conditions under which such a convex set will 

yield a valid cut: 

Theorem 3.3.1. Given an ILP maximization problem with !LP-feasible 

set S = {x I f:ER a .. x. ~ b., x.::: 0 and integer, j = 1, ., n} and an 
J l.J J ]. J 

associated LP with final simplex tableau represented by 

where x = 

x =Yo - L 
jER 

y .x.' 
J J 

(3.3.4) 

.• , y .) for all j, and y0 = 
nJ 

n 
., yn0), and any closed and bounded convex set Kin R satisfying: 

y0 E K - Kb, where Kb is the boundary of K, (3~3.6) 

(K - ~) n S = 0, (3.3.7) 

then for any real Aj > 0 such that y0 - Y/'j E R the cut 

I: 
jER 

(1/1..)x. ::: 1 
J J 

(3.3.5) 

eliminates the current LP optimal solution y 0 while retaining all the vec

tors in S. 
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Proof of Theorem 3.3.1. Let K be a closed and bounded set satisfying 

(3.3.6) and (3.3.7), and let Aj > 0, j E R be given so that P = {pj 

Pj = y0 - y.A., j E R} c K. Let T be the convex hull of PU {y0}. That 
JJ _ L L 

is, T = {x l x - a0y0 + jE::R ajPj, a0 , aj :::: O and a0 + jER aj = l}. Let 

T0 = {x I x E T and jFR aj < l}. Let U = {x Ix= y 0 - j~R yjxj, xj ~ O}, 

and let u0 = {x I x E U and .FR (1/A.)x. < l}. Then T0 c u0 since if 
.. J J J 

x E T0~hen x = a0y0 + j~R aj(y0 - yjAj) = y0(a0 + j~ aj) - j~R ajAjyj • 

y0 - jER yj(aj\>· But (a/'j) ~ O, so that x EU. And since j~R aj < 1, 

then -~R (l/A.)(a.A.) < 1 so that x E u0 . 
]'- J J J 

is a convex combination of y0 and some point y from the convex hull of P. 

Since P c K then y E K. A standard result from convexity theory [43, p.34] 

states that if y0 is in the interior of a convex set K and y is in the 

closure of K, then any convex combination of y and y0 will be in the in

terior of K or will be y itself. Therefore, x E (K - ~) or x = y. But 

if x = y then a.0 = 0 and jt=R aj = 1, contradicting the fact that x E r0 • 

If x E s, then x 'I (K - ~) since the interior of K contains no 

lattice point. But if x E S, then by its construction x E U. Therefore, 

since u0 c (K - ~), x f. u0 • In other words, if x E S then j1R (1/Aj)xj:= 1, 

so that the cut (3.3.5) is valid for S. Also, since Yo= Yo - j~R yjxj, 

where xj = 0 for every j E R, then y0 E u0 and thus satisfies j~R (l/A.j)xj< 1, 

so that the cut (3.3.5) cuts off the LP feasible solution y0 • 
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This theorem shows that an intersection cut of the form (3.3.5), 

where the A.j > 0 are chosen so the (y0 - yjA.j)· E K, can be constructed 

from any closed and bounded convex set K provided K satisfies (3.3.6) and 

(3.3.7). However, a convex set which contains more of the feasible region 

will generally produce a stronger cut. 

n Balas'· original cut is constructed in R from 

llx -( [y0 ] + e/2) 11 2 :5 i/D./2}, where 

the convex closed ball 
n 

llxll2 = cf;l lxil 2>~, 
. . . ' x ), and e = (1, 

n • • • ' 1) • If the .t.1 norm instead of the 

.t.2 in Rn. is used the following convex set is obtained: 

where llxll1 = 

Kl ={xE 
n 
L: Ix. I. 
i=l l. 

!Ix - ( [y0 ] + e/2) 11 1 :5 n/2,} 

I 

The relationship between the two convex sets K2 and K1 can be seen 

with the aid of Figure 13. Each set contains y0 in its interior, and the 

boundary of each set contains the vertices of a hypercube containing y0 • 

But since K2 c K1 the intersection of the (y0 - yjxj) and the boundary of 

K1 will produce a stronger cut than that produced by K2 • In addition, 

since the boundary of K1 consists of hyperplanes, rather than the surface 

of a hypersphere, the coefficients of the cut are eaiser to compute. 

This intersection cut produced by the .t.1 norm in Rn is described in 

the paper (3). Other papers describe intersection cuts developed from 

other norms (10), ellipsoids(ll), polytopes (4), and other convex sets (1). 
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Figure 13. 'Ille Relationship between K1 and K2 
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\ Cut: E (1/J...)x. ~ l 
J•• J J 

\~·~---= 

Figure 14. Illustration for the Proof of Theorem 3.3.1 
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CHAPTER IV 

A CHARACTERIZATION OF CUTS 

Definitions and Examples 

In a 1977 paper R. Jeroslow (33) showed that it could be possible to 

characterize valid cuts in terms of a certain class of functions called 

subadditive functions. The purpose of this chapter is to characterize 

the cuts described in previous chapters using these functions and to show 

how the application of this idea leads to new cutJ. 

Definition 4 .1.1. A monoid is a set together with a binary operation 

on that set which is associative and contains an identity element. In 

n 
the framework of this paper, the set will be some subset of R , the binary 

operation will be vector addition, arid the identity element will be zero. 

Definition 4.1.2. A subadditive function is a real-valued function 

defined on a m:moid, M, such that F(a + b) ::: F(a) + F(b) for every a and 

b in M. 

The following examples wil I. serve to illustrate the idea of a sub-

additive function on a moniod, and also to demonstrate that certain func-

tions appearing in later sections are subadditive: 

Example 4.1.1. Let the monoid M be Rn and define 

F(v) 
JOifv=O, 

l1ifvfO, 
for every v E M. (4.1.1) 

Now, F(a + b) > F(a) + F(b) only if (a + b) I 0 while a = b = O. Since 

89 
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this cannot happen, F(a + b) ::: F(a) + F(b), and thus the function is sub-

additive. 

Exam12le 4.1.2. Let 1 M = R and for any real number·h define 

Fh(v) = [h] v - [vh] (4.1.2) 

for every v E R1 • If h, and y E 1 {hx] and n = (by]. There-x, R let m = 

fore, there exist p and q such that 0 ::: p < 1 and 0 ::: q < 1 and hx = m + p 

and hy = n + q. Since [m + n + p + q] = m + n if 0 ::: p + q < 1, and 

[m + n + p + q] = m + n + 1 if 1 ::: p + q < 2, then [m + n + p + q] ~ m + n. 

Therefore, [hx + hy] = [m + n + p + q] ~ m + n = [hx] + {hyJ, and thus 

-[hx + hy] s -[bx] - [hy]. The addition of IhJ • (x + y) to both sides of 

the previous inequality gives [h](x + y) - fhx + hy]::: (h}x .. [hx] + [h]y -

[hy], so that F(x + y) S F(x) + F(y) for every x and yin M. 

· ExamJ>.le 4.1.3. Let M = Rn and let C be a convex set in Rn containing 

the origin in its interior. Define 

Fc(v) =inf {A> 0 I v/A EC}, (4.1.3) 

for every v E M. This function is known as the Minkowski functional with 

respect to c. As noted in (35) this function has several interesting prop-

erties. It can be seen from the definition that FC(O) = 0, and that FC(v) < 1 

for every v in the interior of C, and FC(v) ~ 1 otherwise. In fact, if C 

is a closed and bounded convex set, FC(v) = 1 for every v on the boundary 

of c. 

It can be seen that'Fc(av) = aFC(v) for every real a > 0 since FC(av) = 

inf { A > 0 I (av) I A E C} inf {A> 0 I v/(A/ct) E c} =inf {a(A/a) > 0 I 
v/(A/a) E C} = a.inf {>·../ct > 0 I v/(>../a) E c} = aFC(v). 

Finally, FC(v) is subadditive for every v E M. Let E > 0 be given 

and let x, y E M. Choose r and s such that FC(x) < r < FC(x) + E and 

Fc(y) < s< Fc(y) + c. From properties listed above, FC(x/r) < 1 and 
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FC(y/s) < 1. And so x/r and y/s are in C. Let q z r + s. Since C is 

convex (r/q)(x/r) + (s/q){y/s) = (x+ y)/q EC; so that FC{(x + y)/q) ~ 1. 

Thus, FC(x + y) .~ q = r + s < FC(x) + FC{y) + 2£. Since E is an arbitrary 

positive real then FC(x +y) ~ Fc(x) + FC{y). 

Example 4.1.4. Let M be the set of lattice points in the non-negative 

orthant of R2 under vector addition and define 

F(v) = 
~l if v1 + v2 is an odd. integer, 

{o if v1 + v2 is an even integer, 

where v = (v1, v2). This function is subadditive since F(v + w) > F(v)+F(w) 

only if v 1 + v 2 + w1 + w2 is odd while both v1 + v2 and w1 + w2 are even, 

which is impossible. 

Jeroslow's Theorems 

The following two theorems of R. Jeroslow (33) show that valid cuts 

can be characterized by a class of subadditive functions in the sense 

that, given an !LP-feasible set, s, any subadditive function of the class 

generates a valid cut for S, and any valid cut for S is a weakening of a 

cut generated by some subadditive function of the class. Statements of 

these theorems (but not the p:toofs) can be found in (33). 

Theorem 4.2.1. Given a non-empty !LP-feasible set S = {x E Rn I AX= b,. 

x ?.: 0 and integer} and any subadditive function on the monoid M • { v I v • Ax 

for some x ?.: 0 and integer} with F(O) = O, then 

n 

L F(aj)xj ::: F(b) 

j=l 

(4.2.1). 

holds for every x E s (i.e., (4. 2 .1) is a valid cut for S). The aj are the 

columns of the matrix A and x = (x1 , . . . ' x ) • 
n 

Proof of Theorem 4.2.1. Since xj is a non-negative integer, then for 
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each j 

x. > 0. If x. = 0, then F(a.)x. ::: F(a.xj) since F(O) = O. Therefore, 
nJ J J J J 

l:1 F(a.)x.:::. 1 F(a.x.). Applying the subadditivity of F to the right-
J= J J J= J J n n 

hand s~de of the previous inequality yields j~l F(ajxj) ::: . F~J;1 ajxj). 

Now, ?:1 a.x. = Ax, and Ax = b for every x E S, therefore, ~l F(aj)xj ~ 
n J= J J n J""' 

?:1 F(a.x.) ::: F( ?:1 a.x.) = F(Ax) = F(b), for every x E s. 
J= J J J= J J 

Theorem 4. 2. 2. If S = { x I Ax = b, x ::: 0 and integer} i·s non-empty 

and bounded then any valid cut 

(4.2.2) 

for S is a weakening of a cut 

n 

L F(a.)x. ::: F(b) 
·-1 J J . J- . 

(4.2.3) 

for a suitable subaddi ti ve furic tion F on the moniod M = { v I Ax = b for 

some integer vector x ::: O} with F(O) = O. 

Proof of Theorem 4.2.2. Given the cut (4.2.2) valid for x E S define 

a function F by 

F(v) inf { 'ITx Ax = v, x ::: 0 and integer}. (4 .2.4) 

Now S =/= ~ and Ax = b for x £ S so that b E M. Since S is bounded and 

finite it follows that F(b) = inf { 1rx I Ax = b, x ::: 0 and integer} is a 

finite real number. 

The next step in the proof is to show that F(O) = O. Let S = 0 

{y I Ay = 0, y::: O and integer}. Choose b0 so that Ab0 =band b0 ::: O_ 

and integer. Then A(b0 + y) = Ab0 + Ay = b for each y £ s 0 • Thus, 

F(b) s '1T(b0 + y) = 'IT b0 + 7ry, and so F(b) - '1Tb0 5 '11)7 for each y E s0 • 

Therefore, F(b) - 'ITbo ::: inf { '11)7 I y £ so} = F(O)' and so F(O) is a finite 

real number. Now since y E s0 implies 2y E s0 , F(O) = inf { 'ITY J y E s0J • 

%inf { 7r(2y) I y E s0 }_ ::: %inf { 7r(2y) I (2y) E s0 } = %F(O), so that F(O) ~ o. 
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But F(O) S 0 since 0 E s0 , so that F(O) = 0. 

The next step in the proof is to show that F(v) is finite for every 

v E M. Let v E M; then if F(v) = r where r '/. { irx I Ax = v, x :! 0 and 

. integer}, there exists a sequence of infinitely many distinct vectors, 

x(i), such that x(i) ::: 0 and integer, Ax(i) = v, and irx(i + l) < irx(i) 

for every x(i) in the sequence. Since there are infinitely many distinct 

n vectors in this sequence from the finite-dimensional space R there exists 

some pair x(p), x(q) with x(p) - x(q) ::: 0 and p > q. Set y = x(p) - x(q). 

Since y ::: 0 and Ay = A(x(p) - x(q)) = v - v = 0 and 1Ty = rr(x(p) - x(q))< 0, 

then F(O) = inf { nx I Ax = 0, x ::: 0 and integer} < 0, which contradicts 

the conclusion above. Therefore, F(v) c r E{1Tx I Ax= v, x::: 0 and 

integer}, so that F(v) is finite for all v E M and the "inf" in the def- · 

inition of F can be replaced by "minimt1m". 

Next, it can be shown that (4.2.3) is a strengthening of (4.2.2). 

Note that a. £ M for every j = 1, ••• , n since the jth unit vector, u., 
J J 

is non-negative and integer and Auj = a .. 
J 

For every j = 1, • •' n' 

F(a.) = min {TIX Ax = a., x ::: 0 and integer} S nu. = 1T.. F(b) = min { nx 
J J J J 

Ax = b, x ::: O and integer} = min { Tix I x ES } ::: 1TO since Tix ::: 1TO is valid 

for every x £ S. 

The final step in the proof involves showing the function F to be 

subadditive on M. Let v' and v" belong to M. Choose x' so that F(v') = 

nx' , and choose nx" so that F( v") = x". Thus, Ax' = v' and Ax" = v", so 

·that A(x' + x") = v' + v". Therefore, F(v') + F(v") = ir(x' + x") ::: 

min { x I Ax = (v' + v"), x ::: 0 and integer} • F(v' + v"). 

These two theorems not only demonstrate how the cuts of chapters two 

and three might be characterized but also provide a method for generating 

new cuts. For example, consider the function 
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F(v) 
jl if v1 + v2 is odd, 

~ 0 if v1 + v 2 is even, 
(4.2.4) 

of Example 4.1.4 applied to the ILP of Example 1.1.1 whose ILP-feasible 

set is described by 

3 1 

1 0 

and integer. The cut (4.2.1) with F as above would be 

F((8, l))x1 + F((3, l))x2 + F((l, O))x3 + F((O, l))x4 ~ F((27, 5)), 

or 

or in terms of x1 and x2 alone 

(4.2.5) 

This cut (as shown in Figure 15) is valid, but not very effective. 

If the subadditive function for the cut (4.2.1) is the function Fh. 

of Example 4.1.2 with h = %. then another cut can be constructed from 

the feasible region of Example 1.1.1. Let F(v) = F((v1 , v2)) = Fh(v1) = 

F%(v1) = [%Jv1 - [%v1 J, for every v E M. Then the cut (4.2.1) becomes 

([%] 8 - [8/4])x1 + ([%] 3 - [3/4])x2 + ([%] - [%])x3 

+ ([%] 0 - [O])x4 ~ [%] 27 - [27/4], 

or, in terms of x1 and x2 : 

x1 ~ 3. 

As these examples demonstrate, a cut generated by a subadditive 

function may not be useful even though it does not cut off any ILP-feas-

ible vector. The problem, then, is to determine which function to use 

given the nature of the ILP-feasible set and the current LP optimal so-

lution. As R. Jeroslow (32) noted, "The key issue of the subadditive 
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figure. 15. Subadditive Cuts .for Example 1.1.1. 
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approach is the conHtructi.on of suitable subadditive functions." In ad-

ditlon to unifying the cuts presented in previous chapters, the character-

ization of those cuts may lead to further insight concerning which types 

of subadditive functions are useful. 

Characterization of the Cuts 

The cuts of chapters two and three can be placed in a unified setting 

by developing them in terms of their associated subadditive functions. 

Theorems 4 .2 .1 and 4. 2. 2 indicate that subadditive functions can be found 

which characterize these cuts. The purpose of this section is to present 

such functions and show how they lead to the corresponding cuts. 

The previous cuts were developed from the constraints representing 

the !LP-feasible region of the given problem (the set { x I Ax • b, x ~ 0 

and integer} Theorem 4.2.2). However, the constraint set actually used 

to get the cut was in the form of 

xB =Yo 

the simplex tableau, i.e., 

- L: y.x., 
jER J J 

(4.3.1) 

Here x8 represents the vector of basic variables (~1 , . 

Yo= (y10 , • · ., yn0), the current LP-optimal solution. 

• • , ~) and 
m 

Also, y. = 
J 

(y1 ., .•• , y .), represents the coluinn vectors of the tableau, and R 
J Ilj 

is the index set of the nonbasic variables. Thus, the subadditive func-

tions used in this section to generate those cuts will be applied to the 

constraints in the form (4.3.1). 

Gomory's Method of Integer Forms (Algorithm 2.3.1) The cut for this 

method can be derived by using the subadditive function of Example 4.1.2 

applied to the constraints (4.3.l) in the form 

x8 + ~ yjxj = y0 . 
jE R 

(4.3.2) 
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In other words, the system of constraints, Ax s b, of Theorem 4.2.2 would 

be 

(4.3.3) 

where the uj are the unit vectors in Rm, theYj are then column vectors of the 

simplex tableau, ~ is the vector of the m basic variables, and ~ is 

the vector of then nonbasic variables. Therefore, the a. of Theorem 4.2.2 
J 

are the u. and y. of (4.3.3) and the b corresponds to y0 • 
J J 

Choose the ith row of the tableau from which to construct the cut. 

Let F(v) = Fh(vi), where Fh = F1 is the function of Example 4.1.2, and 

th 
v. is the i entry of the column v, so that F(v) = v. - [vi]. The cut 

1 1 

(4.2.1) generated by this subadditive function applied to (4.3.3) is 

but since u.j = 0 or 1, this cut simplifies to 
. 1 

L (yij - [yij])xj ~ Y10 - [yiO], 
j<::R 

(4.3.4) 

(4.3.5) 

which is the cut of Gomory's Method of Integer Forms, equation (2.3.7). 

Note that F(O) = 0. 

Gomory's All-Integer Method (Algorithm 2.3.2) The cut for this 

method can be derived by using the subadditive function of Example 4.1.2 

applied in exactly the sane manner as in the derivation above. The only 

difference being that instead of h = 1, h ,.. min { (-1/yrj) [yo/Yok1, J E R} 

as in the algorithm. Since Theorem 2.3.2 notes that 0 < h < 1, the func- · 

tion Fh of Example 4.1.2 becomes 

Fh (v) = [h]v - [vh] • -[vh]. (4.3.6) 

Thus, the cut of the form (4.2.1) generated by applying this function to 

(4.3.3) can be written as 



jER jER 

And since u .. = 0 or 1, the cut can be simplified to 
l..J 

L: - [hyij1xj ~ - [hyiO], 

jER 
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(4 .3. 7) 

which is the cut of the All-Integer Method as in equation (2.3.18). Note 

again that F(O) = O. 

Wilson's }t>dification of the All-Integer Cut (Example 2.3.5) For 

Wilson's modification the subadditive function chosen is (4.3.6) above 

with h* replacing h, where h* is chosen as in Example 2. 3 .5. Since h* 

is chosen in such a way that 0 < h* < 1, (4.3.6) will correspond to the 

subadditive function of Example 4.1.2. 

The Primal All-Integer Method (Algorithm 3.1.1) The cut for Young 

and Glover's All-Integer Primal Method can be derived using the subaddi-

tive function of Example 4.1.2 applied in the same manner as above. How-

ever, as in the Primal algorithm, h = l/y rk. Since y rk > 1 then 0 < h < 1 

and 

F(v) = [h]v - [vh] =-[vb]. 

Thus, this function applied to the constraints (4.3.3) yields 

~ - [huij]xj + L - [hyij]xj ~ - [hy10 J, 
jER jER 

or, since O< h < 1 and h = l/yrk' 

-[yij/yrk}xj ~ - [yiO/yrk]. 

which is the cut (3.1.1) of the Primal Method. 

Dantzig's Cut (Equation (2.3.17)) To construct Dantzig'z cut from 

a subadditive function first write the constraints of the tableau in the 

form 

(4 .3.8) 
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Therefore, the coefficient matrix, A, of Theorem 4.2.2 becomes (y1 , ••• ,yn) 

and b becomes (y0 - xB). Let the subadditive function be that of Example 

4.1.1, i.e., 

if v = o, 
F(v) (4.3.9) 

if v "' o. 
The resulting cut is 

L F(y .)xj :::: F(y0 - ~) • (4.3.10) 
jER J 

Now, (y0 - xB) = 0 only if the current LP optimal solution y0 , is equal 

to ~· and thus integral; in which case no cut is needed~ Therefore, 

F(y0 - ~) = 1 for all but redundant cuts and F(yj) = 0 or 1, so that 

Dantzig's cut, j~R xj:::: 1, is a weakening of (4.3.10). 

Deep Cuts (Chapter 3, section 2) A deep cut of the method of Bowman 

and Nemhauser is found by taking the cut of the Method of Integer Forms 

'). fi .x. :::: fiO' 
4-J J J 

(4. 3.11) 

jER 

where f.. = yi. - (y .. ], and increasing the right-hand side (if possible) 
1J J l.J 

to obtain a strengthened cut. The resulting deep cut can be written 

L fijxj ::: t(Qo>, 

jER 

(4.3.12) 

where t(Q0) 

interger}. 

= min { j~ fijxj I Ax = b, x :::: 0 and integer, j E R, ~ 
r 

This cut can be characterized by a subadditive function similar to 

that defined in the proof of Theorem 4.2.2. Let F(v) - min { j~R fijxj I 
Ax= v, x:::: 0 and integer}. Then F(b) •min { jtR f 1jxj I Ax• b, x ~ 0 

and integer} =:: min { j~ f 1jxj I Ax = b, xj ?: 0 and integer for j E :R, ~ 
integer}, since the second minimum is taken over a set which contains 

r 

that of· the first minimim. Also, F(aj) • min { jtR fijxj I Ax • aj, x =:: 0 
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and . L 
integer} ::: jER fijuj "' fij for every j E R. 

Thus, t(~) ~ F(b) and fij ~ F(aj) for every j E R so that the cut 

(4.3.12) is a weakening of the cut (4.2.1) with the function F taken to 

be that of the proof to Theorem 4.2.2. 

Balas' Intersection Cut (Equation (3.3.3)) As was noted in the 

third section of Chapter 3, Balas' original intersection cut is given 

by 

L (l/),j)xj ~ 1, 

jER 

(4.3.13) 

where the Aj are chosen so that pj = Yo - yj Aj are the (unique) points 

of intersection of ~, the boundary of the closed ball K, and the · · 

Yo - yjxj. 

This cut can be described in terms of a subadditive function on the 

ILP-co.nstraint set (4.3.1) in the form - L: y x • x.. - y Thus, the 
JER j j .is 0° 

Ax = b of Theorem 4.2.2 is given by 

(4.3.14) 

To construct a suitable subadditive function let K be the closed ball 

n 
in R whose boundary ~ contains the vertices of a hypercube containing 

y0 • Let c be the translate of K by y0 , i.e., c ={x Ix+ y0 EK}. 'fuus, 

C is a closed ball containing the origin in its interior (see Figure 16). 

Let Fe be the Minkowski functional of Example 4.3.l with respect to the 

closed convex set C. Then, 

Fc(v) ... inf {A > 0 I x/A E c}. (4.3.15) 

Fe is a subadditive function defined on all of R.n with F(O) • O. Since 

. n he c is a closed ball then for every v £ R t re exists A> 0 such that 

F C ( v) = A., where ( v /f) c Cb t the boundary of C. If v is one of the columns 

of the coefficient matrix in (4.3.14) (i.e., v • -yj for some j ER) then 
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Figure 16. 'lhe Convex Balls K and C in R2• 
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-yj/Aj £ Cb~ But if -yj/Aj £ Cb then (y0 - yj/Aj) E ~· However, the 

unique point of intersection of y0 - yjxj and~ is pj =Yo - Ajyj. 

Therefore, A. = 1/f~, and so l/A. = Aj = FC(-y.) for every j E R. Thus, 
2: J= :EJ _ . J J 
·t:.R (lf)...)x. .ER Fe( y.)x .• In other words, the left-hand sides of. 
J~ J j J J J 

Balas' intersection cut and the subadditive cut formed·using the 

Minkowski functional with respect to C, 

~ Fc(-yj)xj ~Fe(~ - y0), 

jER 

(4.3.16) 

are identical. For the subadditive cut (4.3.16) to be a strengthening 

of Balas' cut (4.3.13) then, it must be true that the right-hand side of 

(4.3.16) be greater than or equal to that of (4.3.13). It can be seen 

that (xn - y0) does not lie in the interior of C, 1 for if.so~' an in

teger vector would lie in the interior of K. But K, byits construction; 

contains no lattice points. Now since, as noted in Example 4.1.3, for 

every point v f (C - Cb), FC(v) ~ 1, then Fc<:xa - y0) ~ 1 so that the 

subadditive cut (4.3~16) is a strengthening of the cut (4.3.13). 

General Intersection Cuts (Theorem3.1.l) As shown in Theorem 3.1.l 

and closed and bounded convex set K satisfying conditions (3.3.6) and 

(3.3.7) can be used to produce a valid intersection cut of the form 

L: 
jtR 

(l/A.)x. ~ 1, 
J J 

(4.3.17) 

where the Aj are such that (y0 - yjAj) £ ~· the boundary of the convex 

set. As in Example 4.1.3, if C is the translate of the convex set K by 

y0 , then there.exists a Minkowski functional Fe associated with the set 

C, and therefore by Theorem 4.2.1, a valid cut 

L Fc(-yJ)xj ~ F(~ - y0). 

jER 

(4.3.18) 
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Since C is closed and bounded there exists Aj > 0 such that FC(-yj) s Aj, 

where (l/;\'j)(-yj) E Cb. Therefore, (y0 - (l/Aj)yj) e: ~· But since the 

(y0 - yjxj) intersect ~ at only one point (as can be seen in the proof 

of Theorem 3.3.1) then l/Aj = Aj. Thus, as with Balas' original cut the 

left-hand sides of the subadditive cut (4.3.18) and the intersection cut 

(4.3.17) are identical. 

Also, as with Balas' cut, the left-hand side of (4.3.18) will be 

. greater than or equal to the left•hand side of (4.3.17) since~'/. (K - ~) 

implies that (xB - y0) t (C - Cb)' and thus Fe(~ - y0) ~ 1. 

Therefore, any intersection cut produced by intersecting a closed 

and bounded convex set whose interior contains the LP-optimal solution 

y0 but no lattice point with the, edges of the LP-feasible region (y0 - yjxj) 

can be characterized as a weakening of a cut produced by applying a (sub-

additive) Mink.owski function to the columns of the simplex tableau. 
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