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CHAPTER I 

INTRODUCTION 

One of the most challenging problems in statistics is estimating 

the variance components of mixed linear models. This study presents a 

Bayesian estimation procedure for estimating these parameters, as it 

describes a general solution for balanced and unbalanced designs. 

The mixed model considered in this study is 

y x0 + ub + e (1.1) 

where: 

y is an Nxl random vector whose observed values comprise 

where 

the data points, 

x is a Nxp full rank (N > p) known design 

e is a pxl unknown real parameter vector, 

u is a Nxm known design matrix, 

b is a mxl unknown random vector, and 

e is a Nxl unknown random error vector. 

The matrix u is partitioned as 

, u ) 
c 

matrix, 

is a full rank, and b' is partitioned as 

b ') , c 

1 



where bi is a mi x 1 normal random vector with mean vector 

zero and dispersion matrix 

D(bi) = CJ 2 I 
i mi 

i=l,2, ••• ,c 

and 
c 

The error vector e is normal with mean vector zero and dispersion 

matrix 

D(e) = u2 ~~ 

The random vectors b 1, b2 , •.. , be are assumed to be independent 

and each to be independent of e. 

The components of the parameter vector e are called the fixed 

effects, and the components of the random vector b are called the 

2 

random effects. The error variance is CJ 2 and the variances components 

are 2 2 
CJ 1' u 2'' 

2 ..• , a 
c 

The objective of this study is to estimate the parameters of the 

mixed model 1.1, as well as t and t . , where 
1 

-2 
t = a 

-2 
i 1, 2, ti = CJ i = ... , c 

The following Bayesian approach will be used. 

1. Determine an estimator for the random effects, b. The least 

square estimator, * b , will be used as a conditioning value 

in the following stages. 

2. Determine the conditional posterior distribution.of the fixed 

effects 8, given b*. The conditional posterior mean of 0 



KiVPll b* wf] l bt' denoted hy 0* 

·1. Jlt'll'rm·Jm• t:lic comlltlonal poHtcr1or tf'l.Htr1hutlon of the vari

ance components given b* and e*. The conditional mean of 

3 

this conditional distribution will be considered as an estimate 

of the variance components. 

The organization of this thesis is as follows: the literature 

pertaining to classical and Bayesian approaches for estimating variance 

components is reviewed in Chapter II. In Chapter III, the general 

derivations concerning the posterior distributions are presented. The 

thesis is then briefly summarized and recommendations for further 

research are presented in Chapter IV. A.discussion of a simple numeri

cal algorithm using SAS(l) is presented in the appendix. 



CHAPTER II 

LITERATURE REVIEW 

In the non~Bayesian methods for estimating the variance components, 

one must find the sampling distribution of the estimators, which is not 

always an easy task. Also, computational difficulties are the disad

vantage of some non-Bayesian as well as Bayesian approaches. 

Analysis of Variance 

The most popular non-Bayesian methods for estimating variance com

ponents are methods I, II, and III; by Henderson (8). Searle (14) gives 

an excellent description of Henderson's methods and indicated various 

generalizations. In these methods, mean squares associated with various 

analysis of variance tables are set equal to their expectations and the 

estimators are obtained by solving the resulting equations. These 

methods yield translation invariant quadratic unbiased estimators. 

However, these quadratic forms are functionally independent of the var

iance components, the expectations are ~inear, and negative estimators 

of variance components can be realized. 

With Henderson's method I for unbalanced data, expressions for the 

sum of squares are established by analogy with the analysis of variance 

of balanced data. Next the expectations of all such analogous expres

sions are computed and are equated to their expectations and solved for 

the unknown variances. This method can be used only for random models 1 

4 
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lH•c11wH• In mllwd mndt•ls the t!XfH•cU'd vnhwt-1 nr tlw HumA of sqmtres terms 

contain funct:ions of the fixed effects. Thei:w funct Ions cnnnot be 

eliminated by considering linear combinations of the analysis of vari

ance sums of squares. 

In Henderson's method II, one first estimates the fixed effects by 

least squares assuming that the overall mean of the model is zero and 

that the random effects are fixed. Then, the data is corrected accord

ing to the estimates of the fixed effects, and using the corrected data 

in place of the original data, on~ proceeds as in method I. This method 

provides unbiased estimators, but as has been shown by Searle (15), the 

method is not uniquely defined and it cannot be used whenever the model 

includes interactions between the fixed and the random effects. 

The last of these methods is the method of fitting constants or 

Henderson's method III. The method uses reductions in the sums of 

squares to fit the full and reduced models. The reductions are used 

in the same manner as the sums of squares terms, namely estimating 

variance components by equating each computed reduction to its expected 

value under the full model. This method yields unbiased variance 

component estimators. 

Maximum Likelihood 

Unlike least squares, maximum likelihood estimation uses some 

assumptions about the distribution of the random error term in the 

model. In general, the maximum likelihood estimates, are obtained by 

taking the partial derivatives of the likelihood function or its 

logarithm with respect to the components of the parameter vector, and 

by equating them to zero to obtain the likelihood equations. If these 



j ..• _ ~ 

equations have a unique solution, it must be the true maximum likeli-

hood estimate. In some complicated estimation problems, the likelihood 

equ11t1.onA mAy have multiple roots, and/or the roots may or may not lie 

in the parameter space. In such cases, it is necessary to obtain 

solutions along the boundaries of the parameter space and compare their 

values to obtain the maximum likelihood estimators. This method 

received little attention until recently because the complexity of the 

likelihood equations. Numerical techniques for the solution of the 

likelihood equations have been discussed by Hartly and Rao (5). They 

proposed a computational algorithm for the solution of the likelihood 

equation and proved that under certain restrictions the estimates were 

consistent and asymptotically normal as the size of the experimental 

design increased. 

Restricted Maximum Likelihood 

Patterson and Thompson (10), considered the general linear model 

y = x8 + e 

in which 
2 . 

e "' N(o, a H) ., They partitioned the data vector y into 

two vectors which produces two logarithmic likelihoods, L1 and L2 . 

Then, they estimated the variance components by maximizing L1 and 

estimated 8 by maximizing L2 . The two vectors can be represented 

by Sy and Qy with the following properties: 

1. The matrix S, which may be represented by 

-1 I - x(x'x) x' 

is of rank N-p , where x is at full rank p. This implies 

6 



thnt 

Sx "" 0 

and therefore 

E(Sy) = o. 

2. The matrix Q, which may be represented by 

x'H-l 

as well as the matrix Qx is of full rank p. Every 

linear function of the elements of Qy estimates a linear 

function of the elements of e. 

3. The two vectors, Sy and Qy, are statistically independent, 

because 

SHQ' = 0 

Corbeil and Searle (3) adapted Patterson and Thompson's procedure 

and developed another procedure which is applicable to mixed models for 

any mix of fixed and random effect. They avoid the singularity of SHS 

by deleting some rows from the matrix S to get another transformation 

matrix, T. The matrix T has the following properties: 

1. Tx = 0 , and therefore 

E(Ty) 0 

2. = s 

Minimum Norm Quadratic Unbi~sed 

Estimators - MINQUE 

Rao (11) suggested estimating a line~r function of the variance 

components 

Q = 

c+l 

~ 

i=l 

7 



by a quadratic function 

y'Ay 

of the random varl.able y • He proposed the estimator 

'A* y y 

where A* minimizes the norm 

11 oo' Aoo - !:i.. 11 

for A such that y'A*y is a translation-invariant quadratic unbiased 

estimator of Q. Here 

. 00 = (b I ' e I ) 

e'e + (b' , e') and 

II • 11 denotes a matrix norm. 

Minimum Variance Quadratic Unbiased 

Estimator - MIVQUE 

Rao (12) developed the MIVQUE theory. He considered the MIVQUE 

of a linear combination of the variance components as a quadratic form 

y' Ay , which is similar to that in MINQUE, where A is chosen to 

minimize the variance of y'Ay. The MINQUE of Q (based on Euclidean 

norm) is the same as the MIVQUE (derived on the basis of the normality 
I 

assumption). Swallow and Searle.(16) obtained a MIVQUE of variance 

components from unbalanced and balanced data obtained for the one-way 

classification random model under normality. They also made a compar-

ison between the MIVQUE and the analysis of variance estimators. 

8 
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Bayesian Approach 

Lindley and Smith (9) argued, within the Bayesian framework, that 

prior information is available about the parameters of a model. Their 

technique amounts to expressing the fixed effects in the original model 

as a deviation from hyperparameters, expressing the hyperparameters 

as deviations from hyper-hyperparameters, or second-order hyperparam-

eters; expressing second-order hyperparameters as deviations from 

third-order hyperparameters, etc. In the redefined model, the highest 

order hyperparameters comprise the components of the fixed effects and 

the components of the random effects. They considered the model 

E(y) = 

The likelihood function is 

and the marginal distribution of is: 

where 

and 

This leads to the posterior distribution of 9 1, given {Ai}, {Ci} , 

0 J and y , which is N(Dd, D) with 

and 

d = 



10 

TI1e mean of ci1is po~terior distribution is considered to be a point 

estimate of 9 1. That estimate is the weighted average of the least 

squares estimate 

and the prior mean 

with weights equal to the inverse of the corresponding dispersicin 

ma.trices, 

for the least squares values, and 

for the prior distribution. They also considered the estimation 

problem with unknown covariance structure; i.e. {Ci} unknown. Because 

of the integration difficulties they considered, as an estimator, the 

mode of the joint posterior distribution of the parameter of interest 

and the nuisance parameters, which include the dispersion matrices c. . 
1 

Box and Tiao (2) considered the problem of estimating the variance 

components for some balanced designs. They obtained an approximate 

posterior distribution of a linear function of the variance components. 

Their procedure depends on obtaining the posterior distribution of the 

expected mean square in the analysis of variance procedure and they 

considered an improper prior distribution for the variance components. 

Their method is restrictive because numerical integration must be 

employed to norm the distributions and to compute any posterior moments. 



CHAPTER III 

POSTERIOR DISTRIBUTION FOR THE 

VARIANCE COMPON~~TS 

Some Distribut·i9n Theory 

Consider a mixed linear model 

y xO + uh + e, (3.1) 

where y is N x 1 random vector whose observed values comprise the 

data points; x is a N x p (N > p) full rank known design matrix, 

8 is a p x 1 vector of real unknown parameters called the fixed 

effects; 

bl 

u = . . . ' 

full rank known design matrix; 

b' 

u ) 
c 

c > 1 

random vector distributed as N(~, tiI ), where 
. mi 

<I> is a null vector and ti I is the precision matrix; e is N x 1 
mi 

error vector distribi.:ted as N(<P, t IN), where t IN is the precision · 

matrix. The parameter space is 

!l {(0,t,t 1 , ••. ,tc): 0eRP;t >O;ti>O, l<i<c} 

The variance l'.omponentA are: 

11 
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i 

and the fixed effects are the elements of e. 

Considering Bayes theorem, that is multiplying the likelihood 

function 

where 

L(e, b, t, p/y) = p(ylb, e, t, p)p(bjp) 

p = (t 1' t 2' • ' t ) c 

by the prior densities p0 (e), p0(t), and p0 (p) ; assuming that e, 

t' and p are independent, the joint posterior density of e, b, t' 

and p is given by 

N 
2 t 

p(S, b, t' p IY) a: t exp{ - 2 (y - xe - ub)'(y - xe - ub)} 

( e, b, t , p) e n (3.2) 

Completing the square on 0 in the above joint density, and letting 

constant 0 e RP, (3.2) can be written as 

12 



N 
2 ~ p(O, b, t, Ply) a: t I vi exp{-~b'vb} 

1 -1 } x exp{2'1'((y - ub)' x(x'x) x'(y-ub) - z] 

where 

x p(8jb, y)p0 (T)p0(o) 

(9, b, t, p) e n 

v = Diag{ t l I , t 2 I , • 
ml . m2 

z = (y - ub)' (y - ub), 

. . ' 

and 

t I } 
cm 

c 

(3. 3) 

p(Olb,y) is the conditional posterior distribution of e given b 

which is normal with mean vector 

* -1 0 = (x'x) x'(y ub) 

and variance covariance matrix -1 (tx'x) . Thus, the joint posterior 

density of b, t, and p can be obtained by integrating the right 

hand side of (3.3) with respect to 9, which leads to 

N-p 

P <b, t , PI y) 
2 . ~ T A . -1 A 

a: t lvl exp{2[(y-x8)'u(v+A) u'(y-x8) -z]} 

13 

1 x exp{- 2h'vb}p0 (T)p0 (p) (3.4) 

as 

m 
p > 0, T > 0, b € R 

Now, by completing the square on b in (3.4), it can be written 

N-p 2 

p(b, t, PIY) a: t 2 !vi~ exp{I (y - xS)u(v + A)- 1u'(y - x8) 

L A A 

- z<Y - x8) I (y ..,. x8) }p(b IT' p, y)po(T) Po (p) (3. 5) 



where 

" e -1 (x'x) x'y 

A = tu'[I - x(x'x)- 1x 1 ]u and 

14 

p(b!t, v, y) is the conditional posterior distribution of b given 

r , and v , which is normal with mean vector 

* b 
-1 " t(v +A) u'(y - xe), 

variance covariance matrix -'-1 
(v + A) • 

and 

The joint posterior density of t and p can be obtained by 

integrating the right hand side of (3.5) with respect to b, namely 

~_::£_ 

p(t' PIY) ex: 
2 ~ 2 t I v 1 ~ t 

---~exp{-
! v +Al~ 2 

(y - xe)'u(v + A)-lu'(y - xa)} 

x exp{- I (y - xB)'(y - xS)} p0 (r)p0 (p) (3. 6) 

T > 0, p > 0 

ex: P~iy)p(plr • y) 

where p(t I y) = c(t) exp{- I (y - xfo I (y xe)} Po(t)' T > 0 (3. 7) 

00 

c(r ) f ~ 2 
= p (p) I vi k: exp{ !__(y 

0 Iv + Al 2 . 2 
(J 

- xG) 'u(v + A)-lu' (y- - xfo} dp, 

and 

p(plr ,y) 
I I~ 2 " -1 " a:v . exp{!__ (y - x8)'u(v +A) u'(y - x8)}p0 (p). 

Iv +Al~ 2 

p > 0 (3.8) 
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Since the conditional posterior distribution of 9 given t and 

b is normal with mean vector 

-1 e - (x'x) x'ub, 

and variance covariance matrix 
-1 (tx'x) , and the conditional posterior 

distribution of b given t , and p is normal with mean vector 

-1 A -1 t (v + A) u' (y - xO), and variance covariance matrix (v + A) , then 

E(9!t,p,y) = Ehl .. E(8!t, b, y) t ,p ,y 

A -1 -1 A 

= 9 - t (x'x) x'u(v +A) u'(y - x9), (3. 9) 

and v(B!t ,p, y) = Ehl [v(9lt, b, y) + v I E(9!t, b, y) 
t ,p ,y v t ,p ,y 

1 1 -1 -1 = (tx'x)- + (x'x)- x'u(v + A) u'x(x'x) 

(3. 10) 

i.e., the conditional posterior distribution of e given t and p 

is normal with mean vector defined in (3.9) and variance covariance 

matrix given in (3.10). 

In the above discussion, the matrix (v + A) is a positive definite 

matrix due to the fact that the maxtrix v is positive definite and the 

matrix A is a positive semi-definite. Also, the quadratic form 

A -1 A 

(y - xO)'u'(v +A) u'(y - x9) 

can be computed without inverting the matrix (v +A). That can be 

done using the following fact introduced by Searle (13): 
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= 

for any vector x and positive definite matrix p. 

There are certain practical difficulties in the above procedure: 

1. The marginal posterior distribution of t must be determined 

numerically because of the factor c(t). 

2. The conditional posterior mean of t given p must be 

determined numerically. 

3. The choice of the improper prior distribution of t and p. 

One way to make inferences about all the parameters is in the 

following sequential fashion: 

1. Determine the posterior distribution of t , namely (3. 7) , then 

2. Find the conditional distribution of p given t, namely 

(3.8). 

3. Determine the conditional posterior distribution of 8 given 

p and t . 

One way to avoid the difficulty of determining the factor c(t) 

numerically is to first find the conditional mean of p given 

-1 
t = 

" (y - xB)'(y - x8) 
N - P 

(3.11) 

N - p which assumes c(T) = constant and p0 (T) = T Then one uses the 

posterior mean of t as the conditioning value of t • Once this is 

achieved one can use the conditional mean of 0, namely (3.9), to 

estimate 9. The conditional posterior mean of p is substituted 
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into the diagonal elements of v, and (3.11) is used as the conditional 

value of o 2 • 

Another more profitable approach for this problem is to assume 

that the prior distribution of ti be gamma with parameters 

and pi(> O); and that t is also gamma with parameters a(> O) and 

P<> 0). Therefore the joint posterior density (3.2) can be written as 

way. 

p(t ,p,0, bly) 

N+2a -l 
2 o:: t exp{-t [J3+ ~(y - x0 - ub) '(y - x0 - ub)]} 

x (3.12) 

r ,p ,e, b e .n 

The joint posterior density 1(3.12) can be written in the following 

N+2a -l 

p(t ,p ,8, b ly) o:: t 2 exp{-t [p + ~(y - x9 - ub) '(y - x9 - ub)]} 

m.+2a. 
]; ]_ 

C I 

x n <Pi+ ~bib.) 
i=l l. 

2 
p(t./b., y) 

l. ]_ 
(3. 13) 

r ,p ,e, b e .n 

is the conditional posterior distribution of t . 
]_ 

given bi (i = 1, 2, .••• , c), which is gamma with parameters 
I 

~(mi+ 2ai) and (J3i + ~ bibi). The joint posterior density of 

t ,9, and b can be obtained by integrating the right hand side of 

(3. 13) with respect to p. Thus, the joint posterior density of 

t ,8, and b can be written as 
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N+2a 
--2-C I 

p(t ,8, bl y) 0:: [p + ~(y-x8-ub) I (y-x8-ub)] rr [p.+~bib.] 
. 1 1 1 1= 

:x p(t I 0,b,y) t ,8, b e n (3.14) 

where p(t 18,b,y) is the conditional posterior distribution of t 

given 8 and b, which is gamma with parameters ~(N+2a) and 

[p + !~(y - x8 - ub) '(y - x8 -ub)]. Integrating (3.14) with respect 

to t • the joint posterior density of b and 8 can be written as 

* * _ m+(N+2a-m-p) 
m.+2a. 

1 1 

p(b,8ly) ex: [1 + (b-b )'u'Ru(b-b )] . 2 IT [1+2. ~ b'.bi] 
2p+s i=l ~i i 

2 

x p(8lb,y), (3.15) 

* where e -1 (x 'x) x' (y - ub) 

-1 R = I - x(x'x) x' 

s = y'R[I - u(u'Ru)-u']Ry, 

and p(Olb,y) is the conditional posterior distribution of 8 given 

b, which is a p-variate. t distribution with ~(N+2a-p) degrees of 

freedom, location vector 9* and precision matrix 

(N+2a-p) (x 'x) 

2p+(b-b*) 1 u'Ru(b-b*)+s 
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Integrating (3.15) with respect to 9, the marginal posterior 

distribution of b is as follows 

m +(N+2a-m-p) 

p(bly) ex [l + (b-b*~~~:u(b-b*)] - 2 

b B Rm (3 .16) 

In order to compute the conditional posterior means of t , 

ti (i=l, ... ' c), and the fixed effects e, it is required to have an 

estimate for the random vector b. Since the marginal posterior dis-

tribution of b, given in (3.16), is not easy to handle in order to 

compute the posterior mean of random vector b, then it will be more 

convenient to consider b as a constant unknown parameter vector. That 

can be done considering the model (J.1) after multiplying both sides 

by the matrix R; namely, 

Ry Rub + Re 

Then, the least square estimator of b, namely 

* b = (u'Ru)-u'Ry (3.17) 

will be considered as a conditioning value of b. Although b* is a 

biased estimator of b, the variance covariance matrix of b* is 

Var(b*) = (u'Ru)-o2 
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The proposed approach to estimating t and p can be summarized 

in the following sequential fashion: 

1. Determine the estimator of b, namely, 

= (u'Ru)-u'Ry 

2. determine the mean vector of 9 conditional on b=b*, namely, 

9* = -1 * (x'x) x'(y-ub) 

3. determine· the expected value of t or a 2 , cond1tioned: 

* * on b=b and 0=9 , namely, 

or 

E(a2! 9*,b*) = 

N+2a 

2(3+(y-x9*-ub*)'(y-x9*-ub*) 

2{3+(y-x9*-ub*)'(y-x9*-ub*) 
N+2a-2 

4. determine the expected value of ti or ai2 

(3.18) 

(i = 1, 2, •.. , c), conditional on is the 

ith subvector of dimension 

or 

E (a 2 I b*) 
i i 

= 
2(3i + b * 1 b * 

i i 

2A + b *'b * 
t-'i i i 

mi + 2ai - 2 

in b*), namely 

(3.19) 

The remainder of this chapter will concern some balanced layouts. 

The main object of the above approach was estimating the vector b 

which dependA on the generalized inverse of the matrix u'Ru. The gen-

e~alized inverse of a singular matrix z will be considered to be that 



matrix z such that 

1. zz is symmetric, 

2. z z is synunetric, 

3. z zz = z and 

4. zz z z 

One-way Random Model 

For this particular model, using the notation of (3.1), pages 

11 and 12, p = l, c ... 1, m1 = a, and N = an, where a is the 

number of observations in each group. The matrix u'Ru has the 

structure 

nl - !!. J 
a a a 

where I 
a 

is the identity matrix of order a , and 

matrix of ones. Then, 

(u 'Ru) = 1 (I - _l J ) 
n a a a 

The vector b is estimated by 

b* = 
y 2• - Y. • 

• 
• 
• 

ya• - Y. • 

J a 
is axa 

21 
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Whl'fl' y (• (I. .. I, :l, ••• , 11) is 

the overall menn. The conditional posterior mean of 0 (given b "" b~) 

is given by 

e* Y. • 

One more quantity which has special importance in computing the 

conditional posterior mean of t (given 

(y - xe* - ub*)'(y - xe* - uh*) = 

* b = b 

a n 

i=l j=l 

* and e = e ) 

where is the jth observation in the ith treatment. 

Two-fold Nested Random Model 

is 

Consider the first treatment with a levels, the· second treatment 

with b levels in each of the a levels of the first treatment, and 

n observations in each treatment combination. Then using the notation 

of (3.1), the model takes the form yijk = e+o1+y1j+eijk' i = 1,2, ••• a, 

j = 1,2, ••. ,b, k = 1,2, ••• ,n; therefore p=l, c=2, m1=a, m2=b, and N-abn. 

Now the matrix U'RU has the structure 

bl b A 1 . j I - - J - - J a a a a a ab 

n 

A' - ! jabj~ 1ab 
1 - -J 

ab ab 

where I and J as defined before, and j is a x 1 vector of ones. 



Then 

(u'Ru) 1 

n(b+1) 2 
b(I 

a 
1 

- -J ) 
a a 

where A is axab matrix of the form 

• 

• 

• 

23 

(b+1)2 lab - (b+2)A'A - a~ Jab 

The following quantities are those which one needs in computing 

the conditional posterior means. 

a 

= 
- 2 

- Y. • •) 
(b+1) 2 

a b 

b*'b* b - 1 - 2 
= L L (y ij• - b+l y i•. - b+ 1 Y. • • ) ' 2 2 

i=l j=l 

e* = 
Y. • • and 

a b n 

(y - xe* - ub*)'{y - * * - 2 
x9 - ub ) = L L L (y ij k - y ij~ ) 

i=l j=l k=l 



Two-Way Random Model (with Interaction) 

Considering the first random factor of r levels and the second 

random factor at t levels. Then, using the notation of (3.1), 

the model takes the form 

y ij k = 8 + a i + B j + y ij + e ij k 

i = 1, 2, . . . • r j = 1, 2, . . . • t 

therefore, p = 1 c = 3 ' -ml = r 
' m2 = 

where n is the number of observations in 

combinations. The structure of the matrix 

tn(I - .!_ J ) 
r r r 

0 

0 

k = 1, 

t ' 
m = 

3 

each of 

u'Ru 

n (A, 1 j . ') - r rtJr 
n(B 1 _.!.. j 1 ) 

t Jrt t 

where A is rxrt matrix of the form 

• 
• 

• 

2, , n 

rt and N = rtn 

the rt treatment 

is of the form 

(A 1 • • I ) 
n - - J J r r rt 

1 n(I - - J ) 
rt rt rt 

and 

24 
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R is txrt matrix of the form 

[It l t • • • It] 

The generalized inverse is found to be 

__ t_(I - _!_ J ) 
n(t+l)2 r r r 

0 (A 1 , , I ) -----JJ 
n(t+l)2 r r rt 

1 

(u'Ru) 0 r (I - .!:_ J ) 
n(r+l):.i t t t 

(B 1 , , I ) --- --J J 
n(r+l)2 t t rt 

1 

1 (A I 1 . . I) - - J J 
n(t+l)2 r rt r 

1 I 1 I ---(B - - j j ) 
n(r+l)2 t rt t 

D 

where 

D = _!_ I 
n rt 

t+2 A I A 

n( t+l) 2 

r+2 B'B + r= 1 + .1 
n(r+l):.i ~r( t+l) 2 nt(r+l) 2 

The quantities of interest 

*I * t! 
bl bl = --

( t+ 1):.1 

b* 1 b* 
r2 

= 2 2 
(r+l) 2 

in this 

r 

:E (y i•. 

i=l 

t 

:E (y. j• 

j=l 

rt-1 ] 
+ nr(r+l) ( t+l~ 

case are 

- 2 
- Y. • •) 

- 2 
- Y. • •) 

J 
rt 



* e 

= 

= 

r t 
I: :E t - r - rt-1 - 2 

(y ij• - t+l y i• • - r+l Y. j• + (r+l) (t+l) Y. • •) 
i=l j=l 

Y... and 

r n 

* * * (y - xe - uh )'(y ub ) = 
t 

:E 

i=l j=l k=l 

Two-Way Random Model (Without Interaction) 

Assuming th~t the first random factor has r levels, and the 
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second random factor has t levels, then using the notation of (3.1), 

the model takes the form 

= 

i=l, 2, . . • ' a , j = 1, 2' • . . ' b ' k = 1, 2, • ' n ; 

therefore, p = 1, m1 = r, m2 t, c = 2, and N = rtn where n 

is the number of observations in each of the rt treatment combina-

tions. The structure of the matrix u'Ru has the following symmetric 

structure, 

u'Ru tn(I 1 
0 = - - J ) r r r 

rn(I 1 
0 - - J ) 

t t t 

Thus, 1 .!. J ) (I - 0 tn r r r 
(u'Ru) = 

1 1 
0 rn (\ - - J ) t t 
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r 

I *I 1 * ) l ) 1 = ~ (y i•. - Y-••• )2 

i=l 

t 

* * - 2 
b2 'b2 = l: (y•j• - Y. • •) 

j=l 

* e = Y ••• and 

r t rt 

( _ _a* * I * * y-xo -ub ) (y-x0 -ub ) = l: l: l: (y ijk -y i•. -Y-. j• + y~ •• )2 

i=l j=l k=l 

Two-Way Mixed Model (with Interaction) 

Consider the fixed effect with p levels, the random effects 

with a levels and n observations for each of the ap treatment 

combinations. Then using the notation of (3.1), the model takes 

the form yijk = ei +a.j + y ij + eijk ' i = 1' 2, p ' 

j = 1, 2, a k = 1, 2, . . n; therefore, ml = a, c = 1, . , , . , 
and N = apn. Also, 

np(I 1 (A 1 . . I ) - - J) n - - J J a a a . a a ap 

u 'Ru = 

n(A 1 1 , , I) n(I - l B'B) - a JapJa ap a 

where B is pxap matrix of the form 

and • • • 



A is axap matrix of the form 

Thus, 

(u'Ru) • 

[I I • • • I ) a a a 

_ _,.P_(I _ _l J ) 
n{p+l) 2 a a a 

__ l_(A 1 _ _!. j j 1) 
n(p+l)2 a ap a 

* * b 'b 
1 1 

* e 

= 

= 

a 

y l•. 

-y 2•. 
• • 
• • 

yp•. 

1 (A 1 . . I ) - - J J 
n(p+l)2 a a ap 

_l(I - _l B'B) - p+2 (A'A- _l J ) 
n ap a N(p+l)2 a ap 

- 2 
- Y. • • ) 

arid 

p a n 

(y-x0*-ub*)' (y-x0*-ub*) = :E :E :E ( - -y + - )2 
y ij k -y i• • - • j• Y. • • 

i=l j=l k=l 

Two-Way Mixed Model (Without Interaction) 
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Consider the fixed effect with p levels, the ~andom effects with 

a levels and n observations in each ap treatment combination. 

Then, using the notation of (3.1), the model takes the form 

Y ij k 0 i + a j + e ij k, i = 1 , 2 , ••• , p , j = 1 , 2 , ••• , a 



k = 1, 2, ..• , n; therefore, c = 1, m1 =a, and N 

Thus, 

u'Ru = np(I - _!_ J ) 
a a a 

(u 'Ru) 1 1 . 
(Ia - - Ja) np a 

a 

b*'b* = - 2 
- Y. • • ) , 

y l•. 

y 2•. 
e* = and 

• 
• 
• 

_Ype• 

p 

(y-x0*-ub*)'(y-x0*-ub*) = ~ 

i=l 

a n 

~ ~ (yijk y i•. 
j=l k=l 
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apn. Also, 

- Y •. j• + - )2 
Y. • • 

In the case of having unbalanced design, the problem of computing 

the generalized inverse of the matrix u'Ru will not be a simple one. 

However, in one-way layout with unbalanced data, the problem is less 

complicated than other types of design. Consider a levels of the 

treatment effects each has ( i = 1, 2, ..• , a) observations. Then, 
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p = 1 

ml = a and 

a 

N = ~ ni 
i=l 

Also, 

nln2 nlna 
• • • 

N N 
u'Ru nl (1 

nl 
- -) 

N 

n2(1 
n2 n2na 
-) . • • N N 

nlna 
---N 

• • • 
• • 

• • 

n2na n 
• • . na (1 - ~) N N 

nlna 
N 

Thus, 

-1 • • • -1 

(u'Ru) 1 = 
N N-n 

1 
-1 

nl 

N-n 
-1 2 -1 • . • -1 

n2 
• • • • • 
• • • • • 
• • • • • 

• N-n 
-1 -1 -1 

a • • • --
n 

a 

a 

b*'b* = ~ (y i• 
- 2 

- Y. • ) 

i=l 

e* = Y. • and 
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a 

(y-x0*-ub*)'(y-x8*-ub*) -
In the appendix a description for a computer program using a SAS 

routine is given, by which one can compute any of these quantities 

required for the result of Chapter III. 

Example: 

Box and Tiao (2) generated a set of data for a one-way random 

model design. The within groups variance component a2 , and the 

between groups variance component a 2 
1, have been estimated using their 

analysis as well as the analysis introduced in this chapter. They 

found that (12.133, 0.0) is a joint model estimate of (a2 , a 12 ), also 

they found that the marginal posterior means of a2 

14.95 and 3.0, respectively. 

Equations (3.18) and (3.19) shows that 

E(a2 j 9*, b*) = 12.8108, 

and 

E(o/J b*) = 2.0841 

The analysis of variance procedure shows that 

<J2 = 14.9459 

and A 2 
01 = -1.3219 

" A 

and a 2 
1 are 

where 02 and 0 2 
1 are estimates of the within groups and between 

groups variance components. 

The true values were 

o2 = 16 

and 
01:.1 = 4 



CHAPTER IV 

SUMMARY 

The main objective of this thesis is t:o develop a Bayesian 

methodology, which produces point estimators for the parameters of 

mixed linear models. This methodology is based on a new theoretical 

analysis which finds the exact conditional posterior distribution of the 

variance components, given the random and fixed effects, and the poster-

ior distribution of the random and fixed effects. 

Instead of employing the marginal distribution of the variance 

components, but using their conditional distribution, one is able to 

provide inferences for the variance components from independent gamma 

distributions. It has been shown that the conditional posterior distri-

-2 
where 'P' (t 1' ..• ' t ) ' where bution of t (= a ) and p, = t 2' c 

-2 
ti = ai given e and b, is that of c+l independent gannna 

variables. Also it is shown that the conditional posterior distribution 

of e given b is a general t with location vector 
-1 (x 'x) x' (y-ub) 

and that the marginal posterior mode of b is approximately 

All the developments in Chapter III assumes that 9, t, and p 

are independent and that a priori, e has a constant density, t has a 

gannna density and ... ' t 
c 

are independent and have gamma 

distributions. The conditional posterior means of t and ti given 

e and b are 
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E(t le, b) = (N + 2a)[2p + (y-x9-ub)'(y-x9-ub)]-l , 

E(t ii e, b) = 

The error variance and variance components 
-1 

t . 
l. 

are esti-

mated from the above conditional means by conditioning with 

e = 9* 
-1 (x'x) x' (y-ub) 

and 
b = b* = (u'Ru)-u'Ry 

These estimators are algebraically derived for some special random and 

mixed models, including the one-way, two-fold nested, two-way crossed. 

random, and two-way crossed mixed·. models. 

The proposed estimators are just one of many that could have been 

considered and no attempt has been made to justify their use. If a 

square error loss function is appropriate, then these estimators are 

approximately Bayes estimators. 

The principal goal of a Bayesian analysis is to know the joint 

posterior distribution of all the parameters in the model and this 

dissertation has made a substantial contribution in that direction. 

The goal of additional researchwill be to find and completely 

determine the marginal posterior distribution of the variance compo-

nents, error variance, and fixed effects. Also, to find convenient 

algebraic formulas for the moments (means and variances) of these 

parameters is an essential component of a satisfactory solution. 

From the non-Bayesian viewpoint, further investigation into the 

sampling properties of the conditional posterior means of the variance 
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components could be attempted. An i.nteresting question is what values 

of a, p, ai and p1 , i = 1, 2, ..• , c produce minimum mean square 

estimators, and how do these compare to some of the non-Bayesian 

estimators such as maximum-likelihood, MIVQUE, and Henderson's 

techniques? 

Another possibility for further work is to generalize the results 

of this dissertation to multivariate mixed models; i.e., those which 

include multiple measurements on each sampling unit and to models which 

contain correlated random factors. Multivariate mixed models are quite 

useful in quantitative genetics, where one is interested in variance 

and covariance components. It appears that these generalizations are 

quite feasible. 
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APPENDIX 

The following computer routine is designed according to SAS User's 

Guide (1976). The inputs requred are: the vector y, the number of 

variance components c, the mi values (i = 1, 2, ..• , c), the design 

matrix x, and the design matrix u. The out-put contains the vectors 

b*. e*, d h i i b*'b* an t e quant t es 
i i 

(i = 1, 2, •.• , c) and 

(y - xe* - ub*)'(y - xe* - uh*). 
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PROC MATRIX; 

Y = (The data vector in the form y 1/Y1/. • .) 

IC = (The value of c); 

MB = (m/m2/ ••• /me) 

x = (The design matrix x written row at a time, and a "/" separating 

the rows) ; 

U (The design matrix u written in the same format as X) 

XT = X1 

XTX = XT * x 

XTX = INV(XTX) 

N = NROW(X) ; 

R = I(N) -x * XTX * XT 

UTR = U' * R 

UTRU = UTR * u 

BHAT = GINV(UTRU) 

FREE UTR 

PRINT BHAT 

UBHAT = U * BHAT 

FREE U 

*UTR*Y 

THETA = XTX * XT * (Y "".' UBHAT) 

PRINT THETA 

RESID = Y - X * THETA - UBHAT 

FREE THETA 

RES = RESID' * RESID 

FREE RESID 

PRINT RES 

MI = 0 



HB "" J{IC, l, O) 

I -= 0 

INC = 0 

LOOP! I = I + 1 

MI = MI + MB(I + 1) 

j INC 

LOOP2 j = j + 1 

BB(I, 1) = BB(I + 1) + BHAT(j, 1) 

IF j <MI TlIEN GO TO LOOP2 · 

INC = INC + MI 

IF I< IC THE':N GO TO LOOP! 

PRINT BB 

*The elements of BB are the values of b~ 1 b{ * 

*The vector THETA equivalent to e* * 

* BHAT(j, 1) 

*The value'of RES equivalent to (y-xO*-ub*)'(y-x0*-ub*) * 

*The vector BHAT equivalent to b* * 
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