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CHAPTER I 

INTRODUCTION 

The proteins of cereal seeds have been customarily divided 

into three classes, based on their solubilities. (1) Water and 

sali.ne soluble proteins which during fractionation are generally 

accompanied by the free amino acids. (2) Alcohol soluble prolamines. 

(3) Glutelins, generally soluble only under the more extreme condi

tions of higher pH and/or denaturing conditions. 

In terms of absolute amount, the first group ~ the saline 

and the water soluble proteins ~ is of limited significance, 

contributing less than 10% to the total endosperm nitrogen. Func

tionally, it is of major importance because of its enzyme content. 

The converse is true of the other two protein groups, where the bulk 

of the protein is found in the prolamine and glutelin fractions. 

Their primary functlonal role apparently is to act as a repository 

of nitrogen for the subsequent benefit of the embryo at the time 

of germination. The proportion of protein in the prolamine fraction 

to that in the glutelin fraction is a characteristic of each species. 

In maize, wheat and sorghum, the prolamine fraction accounts for 

more than half the storage protein (Paulis et al., 1975; Mosse, 1966). 

In rice, however, most of the storage protein occurs in the glutelin 

frnctlon with 1-12% ln the prolamine fraction (Cagampang et al., 

IC)(,(,) • 
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The glutelin and prolamine fractions so far examined are all 

heterogeneous. Glutelin fractions from wheat and maize have generally 

been extracted by alkali. Glutelin is highly insoluble in the most 

potent protein-dissociating solvents, but upon reduction of its disul

fide hoods, it yields polypeptides which are soluble in 8 M urea, 6 M 

guani<line hydrochloride, or SDS solutions (Moureaux et al., 1968; 

Paulis et al., 1971; Paulis et al., 1969) ~ Using these solvents it has 

been possible to demonstrate heterogeneity of these reduced glutelin 

polypeptides by starch gel urea electrophoresis (SGUE) (Mita et al., 

1971; Dimler, 1974), and sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) (Bietz et al., 1973; Wasik et al., 1974). 

Where 10-20 bands are routinely observed in glutelin fractions from 

wheat and maize, only three components could be detected in rice 

glutelin (Sawai et al., lC)(,8). 

Mature corn endosperm contains protein bodies in a protein matrix 

(Wolf et al., 1967). The protein body contents are soluble in 70% 

ethanol, hence are zein; whereas the matrix is not ethanol-soluble. 

The protein matrix was isolated from immature corn endosperm by means of 

density gradient sedimentation (Christianson et al., 1974) and has 

electrophoretic properties, and an amino acid composition quite sugges

tive of glutelin. 

The prolamines are proteins with characteristics similar to zein 

in all cereal grains. Their name derives from the fact that they are 

all rich i.n the amino ;1cid proline and in amide nitrogen (McKinney, 

1958). Zcin Js generally restricted to designate the prolamine of the 

genus Zea (Paulis ct al., 1977a). Prolani.ines are dissolved by 

aqueous solutions of urea, detergents, and many polar organic, solvents 

2 



including alcohols, kc>to1ws, and ether (Mosse, 19(,J). Zein is unique 

among proteins, since; it can he dl.ssolved in high concentration in 

many purely organic solvents, primarily glycols or amines (Evans et 

al., 194la) or in mixtures of organic solvents (Evans et al., 194lb). 

Zein from corn cannot be dissolved in either dilute acetic acid or 3 M 

urea as can wheat gliadin, probably because of zein's lower level of 

basic amino acids and polar amino acids (Wall, 1964). Zein hydrates 

to a lesser degree, and is more compatible with organic solvents 

than gliadin as a result of its greater content of hydrophobic amino 

acids, such as leucine. Numerous workers have concluded that prola

mines consist of a group of heterogeneous proteins as evidenced by 

moving bou11dary electrophoresis for gliadin (Laws et al., 1948), zein 

(Foster, 1949), and hordein (Waldschmidt-Leitz, 1959). However, lack 

of symmetry of the ascending and descending patterns indicated that 

extensive interactions of the proteins occurred in some buffer systems 

which also frequently included alcohols or detergents to promote 

solution (Jones et al., 1959). Aluminum lactate-lactic acid buffers 

when used in electrophoresis gave several peaks with symmetry between 

ascending and descending patterns, from which it was clearly demon

stratl'd tltat gllnclln consisted of several components. 

The prolam1.1ws of wheat, rye, and oats are highly heterogeneous. 

3 

At least four zones were detected on moving boundary electrophoresis 

(Waldschmidt-Leitz et al., 1963). Similar fractionation of wheat 

prolamines has been obtained on sulfoethyl cellulose columns (Heubner et 

al., 1968). Some of these fractions can be further separated into sub

fractions, possibly reflecting the hexaploid genetic constitution of 

wheat (Wrigley et al., 1972). The data suggest that within a fraction of 



prolamine, subfractions contain very closely related proteins. About 

two-thirds of the chymotryptic peptides of three subfractions of SP-2 

gliadin are shared by all three subfractions (Booth et al., 1969). 

The first 10 amino acids in alpha, and alpha 2 gliadin are identical 

in sequence (Kasarda et al., 197Lf). Similarity among omega gliadins 

has also been noted (Charbonnier, 1974). SDS-PAGE of gliadin 

fractions (Bietz et al., 1973) show the presence of main bands of 

44 and 36 kilodaltons. Bands of omega gliadins are found at 69 and 

4 

78 kilodaltons. Different sulfoethyl cellulose fractions have slightly 

different mobilit.ies. 

The prolamines of maize, millet and sorghum are much less hetero

geneous. Only one fraction was seen in moving boundary electrophoresis 

(Waldschmidt-Leitz ct al., 1%2; Scallet, 1947). By SDS-l'AGE on 10% gels, 

zein was resolved into two bands having mol. wt. of 22,000 and 24,000 

(Paulis et al., 1977a). It has been demonstrated that zein contains 

greater number of components in the (PAGE) polyacrylamide gel elect~o

phores is, by using aluminum lactate-lactic acid buffer (Paulis et al., 

1977b). The number of bands could reach 7-8 bands. Each sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) band 

has been suggested to consist of several proteins varying in charge 

and amino acid content. 7.ein has been reported to be very hetero

geneous with respect to molecular weight (Turner et al., 1965), and 

11et chargp (Scallet et al., l947; I~oster et al., 1950; Sodek et al., 

1971). However, on SDS-PJ\GE gels there are only two bands. These 

two components do not correspond to a and 13 zein (McKinney, 1958) which 

are separated on basis of solubility, probably reflecting changes in 

secondary or tertiary structure and possibly covalent modifications 
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(Hurr et al., lCJ79). Heterogeneity of zein was also demonstrated by 

the. f inJing of two N-terminal and three C-terminal amino acids 

(Waldschmidt-Leitz et al., 1%2). Recently, SDS-PAGE revealed that zein 

prepared from normal maize inbred contains six separable components (Lee 

et al., 1976). The two major polypeptides, Zein A and B, have molecular 

weights estimated by various laboratories as between 21,000 and 25,000 

and between 19,000 and 22,000, respectively (Difonzo et al., 1977; 

Melcher, 1979). Amino acid analysis of these two components show they 

are similar. This was deduced from SDS-PAGE gel analysis, or from the 

effect of the opaquc-2 gene, which strongly represses the Zein A chains, 

wh Llc leaving unaltered the total amino compo·sition of the Zein I 

fraction (Sodek et al., 1971; Misra et al., 1975). 

Zeins are very rich in glutamic acid (::: 20%), leucine (::: 18%), 

praline ("' 11%), alanine ("' 11%), and extremely deficient in the 

essential amino acids lysine and tryptophane (Wall, 1964). The 

minor polypeptides which although present in classical zein extracts 

are more prominent in extracts of the residue remaining after the 

extraction of zein with ethanol containing a reducing agent (Landry et 

al., 1970) •. From the amino acid analysis, the minor bands appear to be 

zei11 chai 11s (<: lanazza ct al., 1CJ77). This is confirmed by the fact 

that such chains arc present in zcin protein bodies and that in IEF 

they give a distribution pattern which is a subset of that of higher 

MW chains (Gianazza et al., 1976). It has been speculated that such 

low MW chains have partly reduced the overall strong hydrophobicity 

typical of zein molecules, with a marked decrease in the levels of 

leucine, isoleucine and phenylalanine. Also they are very rich in 

S-containing amino acids as compared to the higher MW chains,.particu-
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larly in methionine present at the level of 4-5%. 

Extraction of the defatted corn endosperm meal with 70% ethanol 

and 0.5% sodium acetate removes Zein [ (ZI). However variable amounts 

of zein remain in the residue which contains the glutelin fraction. A 

fraction has been isolated which is soluble in alcohol containing 0.1 M 

B-mercaptoethanol, this fraction has been referred to as glutelin-1 

(Moureaux et al., 1968), Zein II (ZII) (Sodek et al., 1971), or alcohol

soluble reduced glutelin (ASG) (Paulis et al., 1971). It is very 

different from the alcohol-insoluble fraction of reduced glutelin which 

has a much higher lysine content and lower leucine level. It has 

zein-like properties, being soluble in alcohol, but its amino acid 

composition and gel filtration pattern show that it is composed of 

unique proteins. Because of its deficiency in lysine, its quantitative 

extraction has heen used in fractionation schemes for studying proteins 

of high-lysine corns (Misra et al., 1972; Misra et al., 1975a). By 

dialyzing the ASG preparation against water, it can be separated into 

two fractions, distinctly different from each other by amino acid 

analysis, SDS-PAGE, and PAGE. 

The ASG contain 20% of the total nitrogen. As reported by the 

authors (Paulis et al., 1977b) and others (Landry et al., 1970), ASG 

is different from zein in amino acid composition. It contains much 

more histidine, proline, glycine, and methionine and less aspartic 

ac:ld, glutami.e acld, lso1euclne, leucine, and phenylalanine than zein. 

• Fract1onatlon of J\S(; hy dialysis against water produces a soluble 

protein that represented 33.0% of the total ASG. Except for the amount 

of lysine, this protein had an amino acid composition different from 

total ASG, zein, or water insoluble ASG. The biggest differences 
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were in its high histidine, praline, and valine contents and low 

aspartic acid, alanine, tyrosine, phenylalanine, and methionine (Misra 

et al., 197Ci). Although water-insoluble ASG is closer in amino acid 

composition to zein than to that of soluble ASG, it exhibits large 

differences from zein in content of praline, glycine, methionine, 

isoleucine, leucine, and phenylalanine. There is 4 times as much 

methionine in this fraction as in zein. The water-soluble ASG may be 

soluble in both water and alcohol since its amino acid composition 

contains less nonpolar-amino acids than zein. The high methionine 

portion of ASG precipitates readily upon dialysis against water and 

therehy separates from the rest of ASG. This fraction contains mainly 

low Ml.J compo11t•11ts. [11 earlier studies of the fractionation of glutelin 

by gel filtration (Paulis et al., 1971) ancl SDS-PAGE (Paulis et al., 

1969), the high methionine protein was also shown to be low MW. The 

same studies show that zein appears to be cross linked to alcohol 

soluble glutelin through disulfide bonds. 

Isoelettric focusing (IEF) in polyacrylamide gels gives resolution 

of zein into 8 to 15 bands according to the genotype. An extensive 

analysis of various maize lines, shows that at least 28 positions 

appear to he occupied by ~pecif ic zein bands in the pH range 6 to 9 

(Soave et al., 1976). 

The possible band posl tions were codified by progressive numbers 

from the more alkaline to the more acidic components. The charge 

heterogeneity was found to be independent of the developmental stage of 

the endosperm or of environment interaction and to be due essentially 

to amino acid substitutions among the IEF zein components (Righetti 

et al., 1977a). The study of several inbred lines of maize proved 



that the IEF pattern of zein was characteristic of the genotype and 

most of the strains gave different patterns (Gentinetta et al., 1975). 

In crosses between inbreds with different zein patterns, the two 

reciprocal F1 generations showed additive patterns and the amount of 

each components correlated with the gene dose present (Righettiet al., 

1977h). Wht•n seeds from tlw F generation were analyzed, simple 
2 

Mendelian segregation of IEF bands was observed. In recent work, Soave 

et al. (1978) showed that three zein bands (n° 1, 2 and 3) appeared to 

be always associated together and with the zein regulatory element 

opaque-2 (chr. 7, pos. Hi); two other components (n° 6, 12) segregated 

independently of themselves and from the three bands linked with the 

opaque-2 locus. These data indicated that factors responsible for 

the synthesis of some zein components were located in at least three 

different regions of the genome and suggested an evolutionary pattern 

of op;iquc-2 (02), the overall zei11 regulatory element, and of the 

gt•1wtic factors spt~clfic for each hand. 

Pernollet (1978) reviewed protein bodies and mentioned that 

cellular organelles containing storage proteins are found in storage 

tissue, within the animal as well as the vegetable kingdom, particu-

larly in reproductive organs. They are found in haploid, diploid and 

triploid tissues not only in angiosperm seeds, but also among gymno-

sperms and in animal oocytes. The main storage tissue of monocots 

is a triploi<l tissue (the endosperm) which is constituted of the 

starchy endosperm and the aleurnnc layers (outer layers). Both these 

tissues contain protein bodies which present some differences which 

can be correlated with the difference in function. The starchy 

endosperm is merely a storage tissue while the aleurone layer has an 

8 
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important role in enzyme secretion during germination processes. 

According to Pernollet (1978), protein bodies were named 'aleurone 

grains' after the Greek word for flour. He confirmed the protein 

nature of these organelles and the presence of internal inclusions 

within protein bodies, the globoid (phytin) and the crystalloid 

(proteins). 

As mentioned by Pernollet (1978) protein bodies are small, more 

or less spherical organelles. They vary in size: diameters have been 

reported from 0.1 to 25 µm, the average value being a few microns. 

Protein bodies are bound by a membrane which seems to be single in 

most cases. 

Small electron dense particles containing protein bodies have 

been identified in the endosperm tissue from corn (Khoo et al., 1970; 

Wolf et al., 1967), developing wheat kernels (Graham et al., 1962; 

19G3a; Jennings et al., 19(i3), rice (Mitsuda et al., 1967), sorghum 

(Seckinger. et ;1 l., 1973; llos('lley et al., 1974) and-· setaria (Rost, 

1972). Various internal structures of protein bodies can be distin

guished according to Pernollet (1978). Some (e.g. pea cotyledon, 

Pisum sativum) have a homogeneous or granular structure without 

inclusion embedded within a homogeneous proteinaceous matrix, while 

others (e.g. rice endosperm, Oryza sativa) show a granular concentric 

pattern of electron density with minute granules 150 ~ in diameter. 

Other protein bodies exhibit internal inclusions which can be of two 

types; the globoi<l an<l the crystalloid as in castor bean (Ricinus 

communis) endosperm. The g]oboi<l is a phytic acid storage inclusion, 

while the crysta1lo1d is proteinaccous. The proteinaceous inclusion 

is only present when a globoid is seen within a protein body. In case 
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of Craminea seeds, it is now clear that two d.Lffcn•nt ktnds of protel 11 

body exist: .ln the aleurone cells these orgi1ncl les have inclus.lons, 

while in the starchy endosperm no such inclusions have been found. 

According to Pernollet (1978) a granular concentric structure has been 

found in the starchy endosperm, in case of barley, wheat, rice, 

sorghum and various millets. Only maize exhibits a homogeneous protein 

matrix. It has been possible to purify protein bodies after their 

separation from other cell organelles. Purified protein body fractions 

have been isolated from maize, rice, wheat and sorghum. There are 

numerous differences in biochemical composition between protein bodies 

from various species. On the average, however, protein bodies are 

composed of storage proteins (ca 70-80% of dry wt), salt of phytic 

acid (ca 10% of dry wt), hydrolytic enzymes, cations and ribonucleic 

acid. Less important and more variable is the presence of such 

compounds as carbohydrates, oxalic acid salts, lipids and tocopherol 

as reported by Pernollet (1978). 

The protein body contains primarily storage protein. In rice, 

only 11% of thl' protein body protein is extr:ictable with NaCl whereas 

83% can lw recovered with dilute acid. In malze, the protein bodies 

are isolated in both a free and a matrixed form. The free protein 

bodies are composed entirely of zein proteins. This can be extracted 

from the matrixed protein by aqueous alcohol. The protein bodies are 

almost completely dissolved, leaving behind an insoluble matrix 

containing components of the glutelin fraction. Glutelin components 

are found.unassociated with the protein bodies, although this glutelin 

has a different amino acid composition than total glutelin. A similar 

distribution of prolamJne and glutelin has been noted in sorghum 
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(Seckinger et al., 1973). 

Protein bodies can be fr~gile (Mitsuda et al., 19G7). Wheat 

protein bodies do not survive the dehydration associated with matur

ation, since they can only be identified in immature kernels (Seckinger 

et al., 1970). Protein bodies in the soft endospenn of sorghum may 

rupture on drying (Hoseney et al., 1974). Two sizes of protein bodies 

have been identified in wheat (Jennings et al., 1963) and there is 

evidence of a different protein composition in the two fractions 

(Jennings, 19(18; Jennings ct al., 19G3a). Small protein bodies 

replace the large ones in the 02 mutant of maize (Wolf et al., 196 7). 

It is thus possible that glutelin is formed in small protein bodies 

which readily disrupt soon after formation. 

Are storage proteins synthesized in the cytoplasm and then trans

ported into protein bodies which would be then considered as vacuoles 

or arc they synthesized within the storage organelles which would then 

be considered as plastids? The general view of a single membrane 

binding the protein body would support the first hypothesis, while 

the pn•sc•ncl' of functlonal ribonucleic acids, associated with them 

would support the second. 

Using electron microscopy, as reported by Pernollet (1978), 

evidence was obtained that proteins were synthesized in the endoplasmic 

reticulum or the Golgi apparatus. On the other hand, it was found that 

wheat aleurone layer protein bodies develop close to the Golgi appara

tus. In cotton a relationship was found between protein bodies and 

cytoplasmic proteosynthesizing structures and evidence of a relationship 

between the lamellar endoplasmic reticulum and protein bodies of lima 

bean cotyledons was estahllshed. Bailey et al. (1970) showed in broad 
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hcnn, by auton1dlographlc HtudleH, that proteoHynthesls was :issoc.iated 

with cndoplasm.lc reticulum and that the storage proteins were quickly 

transported into protein bodies. Bain and Mercer (1966) have also 

shown in the pea that storage proteins are synthesized by the endo

plasmic reticulum surrounding vacuoles, in which they accumulate along 

the external single membrane. Righetti et al. (1977b) described an 

analogous scheme for maize endosperm protein body ontogeny. In protein 

bodies with gloholds, the early storage protein deposits are located 

around this inclusion which is formed first. Morton et al. (1964a) 

showed that isolated protein bodies are able to synthesize storage 

protein in vitro and that there are two different proteosynthetic 

systems, one for storage proteins and one for cytoplasmic proteins. 

The same authors (in 1964b) showed that there are specific ribosomes 

strongly bound to protein bodies. 

This new concept has been criticized. Wilson et al. (196 7) could not 

reproduce Morton's experiments with maize endosperm and claimed that 

the results were due to bacterial contamination. By contrast, some 

authors sltlccee<led in reproducing Morton's results. Larkins and Dalby 

(1975) obtained in vitro zein synthesis with isolated protein bodies 

from maize endosperm. Burr and Burr (1976) showed clearly by electron 

microscopy that in ma1ze endosperm, ribosomes are bound externally to 

the single membranes of protein bodies. As they are isolated with the 

protein bodies, storage proteins can be synthesized in vitro using 

protein body isolates. These ideas have been supported by Khoo and 

Wolf (1970) and Righetti et al. (1977b). Isolation and characterization 

of rihonucleic nclds from protein bodies arc in f alrly good agreement 

wlth this concept as reported by Pernollet (1978). 



It is not clear if protein bodies are plastids or if they are 

formed from the endoplasmic reticulum. As reviewed by Pernollet 

(1978), results with rice endosperm make the second hypothesis more 

probable. It has been shown that the protein body double membrane 

might be an artifact. It was discussed that protein bodies develop 

within an endoplasmic reticulum lumen and so are surrounded by ER 

membranes. If th is hypothesis is true, the membrane of protein bodies 

would he initially :m EH membrane which would explain the ribosomes 

xurroundi11g the protein body. Recent work on protein body development 

has indicated an important role for the Golgi apparatus in protein 

synthesis. As mentioned by Pernollet, there could be three kinds of 

protein bodies which are quite different from proteoplasts. In 

orchid root or in bean root tips, these organelles exhibit a typical 

structure with double membrane, starchy inclusions and internal ribo

somes. Seed protein bodies can no longer be compared with oocyte 

protein bodies, which are not synthesized within the cell where they 

arc xtored, since they are transported into the oocyte by a process 

aklu to plnocytocl.R. 

13 

The processes in protein body development fit in with the hypo

thesis of an origin from endoplasmic reticulum by accretion of protein 

synthesized on the rough endoplasmic reticulum ribosomes and vectorially 

transported to the lumen (Khoo et al., 1970). 

Synthesis of the protein of the developing seed is regulated: two 

phases of protein accumulation occur (Graham et al., 1963b). The salt 

soluble proteins accumulate during the first phase. The storage 

proteins are made during the early stage, but the primary accumulation 

occurs later in developml•nt (.Jennings et al., lq(iJb; Palmiano et 
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al., 1968). 

In maize, the saline soluble nitrogen which contains albumins, 

globulins and non-protein nitrogen increases in the initial and middle 

stages of maturation and decreases in later stages (DiFonz.o et al., 

1977; Soave et al., 1975). Zein synthesis begins around the 14th day 

and then proceeds linearly until the 35th day after pollination 

(Righetti et al., 1977b;Soave et al., 1975). Glutelin-proteins are 

synthesized linearly until the late stages. In wheat, the accumulation 

of alkali soluble storage proteins begins before the accumulation of 

acetic acid soluble proteins occurs (Jennings, 1968). 

Some mutants of maize, Opaque-2, produce a nutritionally favorable 

effect by lowering the level of lysine-poor protein, zein, and per

mitting a secondary increase in non-zein proteins, notably the glutelin · 

fraction (Mertz et al., 1964; Jimenez, 1966). Subsequently, several 

other mutant genes in maize, i.e., floury-2 (fl2) (Nelson et al., 1965), 

opaque-7 (0-7) (McWhirter, 1971), opaque-6 (06) and floury-3 (fl3) (Ma 

and Nelson, 1975) have been found to reduce zein content and to increase 

lysine and tryptophane levels. Similar genes have been found in barley 

(Munck et al., 1970; Ingversen et al., 1973) and in sorghum (Singh and 

Axtell, 1973). These genes reduced the level of prolamine and increased 

the amount of albumin and globulin. 

In a high lysine maize double mutant, sugary-l/opaque-2, 12 out of 16 

amino acids showed higher concentration per endosperm in all three stages 

of development (17, 24, 47 days after pollution (DAP)) (Arruda et al., 1978). 

Significant differences were found for alanine, glutamic acid, aspartic 

acid, glutamine and asparagine with each showing higher concentration 

in the high lysine double mutant. As these amino acids are important 
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components of zeln (Sodek et al., 1971; Christianson et al., 1969; 

Paulis et al., 19G9), their data suggest that sugary-1/opaque-2 genes 

depress zein synthesis with consequent accumulation of alanine, glutamic 

and aspartic acid, glutamine and asparagine. 

The o2 mutant severely suppresses the synthesis of ZA as well 

as the total zein. The non-allelic mutant, fl 2 , appears to reduce the 

synthesis of the six zein polypeptides in the same proportion (Lee et 

al., 1976). In addition, several starch-forming mutants were reported 

to reduce total zein content (Dalby et al., 1975; Glover et al., 

1975; Misra et al., 197Sb). Starch-forming mutants may be·separated 

into two groups: starch modified and starch deficient. When o2 was 

combined with each of the starch-modified mutants, zein content was 

further reduced, whereas non-zein protein was not affected (Tsai et 

al., 1978). These results suggested that there.was accumulative 

effect between o2 and the starch-modified mutants gene in altering zein 

synthesis. On the other hand, the combination of o2 with each of the 

starch-deficient mutants produced a synergistic effect, and the double 

mutants accumulated very little zein. The interaction of a starch-

def icicnt-type mutant gene with o2 appeared to differ from the combina

tion of starch-deficient-mutants with another zein-deficient mutant, 

The double mutants bt2o2 were almost completely deficient in z1 

and z11 at maturity. The biochemical lesion of this double mutant was 

examined by preparing membrane-bound polyribosomes from 22-day old 

kernels and _!_!!_vitro-translation (Tsai et al., 1978). The results 

showed that less 10% of the cth;rnol-soluble protein was synthesized 

and the total RNA directed the synthesis of such protein was only a 



trace amount. These observations suggest that the inability of the 

double mutant to synthesize z1 and z11 is the consequence of lacking 

functional z1 and z11 mRNAs. It is not clear whether the lack of zein 

mRNAs is the result of a specific postranscriptional modification of 

these RNA molecules or a transcriptional block of zein genes resulting 

from the interaction of o2 with starch-deficient mutant genes. 

It was shown that the o2 mutant had much higher RNase activity 

than the normal counterpart (Dalby et al., 1967; Wilson et al., 1967). 

On this basis it was speculated that RNase was degrading zein mRNA 
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more rapidly in the mutant than in normal. However, it was demonstrated 

later that the maize inbred B37 showed little difference between normal 

and o2 RNase activities until much later (25 days after pollination) 

in development (Cagampang et al., 1972). These observations suggested 

that an elevated RNase activlty might not be the key to the reduction 

of zeJn synthesis in maize endosperm. The double mutant bt2o2 con

tained high RNase activity, about 7.5 times greater than normal. 

Also, at this stage of kernel development (22 days), this double 

mutant had a high sucrose content. It is speculated that high 

sucrose.concentration may alter the interaction between polysomes 

and endoplasmic reticulum. The double mutant contained less mem

brane-bound polyribosomal material than the normal (Tsai et al., 

1978). The inabillty of ze:in mRNAs to associate with endoplasmic 

reticulum (membrane-bound polyrlhosomes are the principle site of zein 

synthesis) may make them more susceptible to hydrolysis by soluble 

RNase activity. The mRNAs associated with free polyribosomes are pre

sumably more stable because of their active engagement in translation. 

Amplification of RNase activity in the bt2o2 double-mutant may 



completely prevent the synthesis of z1 and z11 by preferentially 

degrading zein 111RNAs (Tsai et al., 1978). 
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Cell division (Buttrose, 1963; Jennings et al., 1963) and increase 

in DNA content (Graham et al., 1962; Ingle et al., 1965) are complete 

early during development. The synthesis of storage proteins is there

fore not dependent on concomittant cell division. The level of soluble 

amino acids reaches a maximum shortly after the cessation of cell 

division (Ingle et al., 19G5). The decrease in level beyond this time 

is probably due to the more rapid utilization for the synthesis of 

protein which begins during this time (Cruz et al., 1970; Murphy et al., 

1971). The level of most amino acid activating enzymes reaches a peak 

at the fifth week after flowering of wheat and then declines (Norris et 

al., 1973). The level of these enzymes could play a role in the regula

tion of the bulk of reserve protein synthesis since deviations from the 

general pattern were noted with some synthetases. Ri~A undergoes its 

most rapid accumulation before or close to the time that reserve protein 

synthesis becomes maximum (Cruz et al., 1970; Graham et al., 1962; Ingle 

et al., 1965; Jennings et al., 19G3c). The level of RNA declines during 

the maturation of maize so that only 10% of the maximum level is left at 

maturity. 

The Interest or thls laboratory in this study is to find out how 

the zein protelns are different in heterogeneity. It is important to 

know whether such heterogeneity is due to differences in primary amino 

acid sequences or post-synthetic modifications. Such knowledge is 

required to understand the possible multiplicity of mRNAs coding for 

zein. Estimation of the number of genes responsible for zein synthesis 

is necessary towards an understanding of the protein synthesis in corn 



endosperm, and may lead to a site of regulation of the storage protein 

synthesis. 

The previous description of ~ein proteins and its extraction can 

be summarized as shown in Figure 1. 
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Figure 1. Classification Scheme of Zein. 
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CHAPTER II 

MATERIALS AND METHODS 

Materials 

llydroxylapatite (Bio-Gel HT) was obtained from Bio-Rad Laboratories, 

alpha-chymotrypsin and trypsin were obtained from Worthington. Dansyl 

chloride and iodoacetamide were obtained from Pierce Chemical Company. 

Sodium dodecyl sulfate was a Serva Product, while dithiothreitol was 

obtained from Sigma. Corn meal was obtained locally through a retail 

grocer. Arnpholine carrier ampholytes for the pH range 3.5 to 10 were 

purchased from LKB Producter. Coomas.sie Brilliant Blue R-250 was a 

Serva product, Ultra pure urea was purchased from Schwarz/Mann. 

Agaro:,;c and El'.oHI wen• purchased rrom Sigma. Pancreatic RNase 

was a Worth I 11gto11 product. Nitrocellulose filters BA 85 w0re obtained 

from Schleicher and Schuell. Self adhesive plastic (Seal-N-Save) was 

obtained from Sears. 

Methods 

Zein Extraction 

Corn meal was defatted by stirring overnight in n-hexane. Zein 

[ractlon:,; were obtalne<l by extracting the defatted meal with 70% 

Pthanol, 0. 5% sodium acetate (ze i.11 I) (PauliH et al., 1975). After 

two further extractlonH with the same solvent the zein II fraction 
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was obtained hy extraction with 70% ethanol, 0.5% sodium acetate, 0.6% 

2-mercaptoethanol (Sodek et al., 1971; Paulis et al., 1975). All 

extractions were with 10 ml solvent per g of meal at room temperature 

for (,O min. Albumins and globulins were not pre-extracted from the 

meal. The extracts were dialysed extensively against water and the 

precipitate which formed was dried in a vacuum dessicator. 

SDS-Polyacrylamide Gel Electrophoresis (Tubes) 

Hydroxylapatite Chromatography 

Zein was complexed with dodecyl sulfate by a 2 min incubation at 

100° of L1 mg zein in 1.0 ml 0.01 M sodium phosphate, pH G.4, 2 g/100 

ml SDS, 2 g/100 ml 2-mercaptoethanol. Samples were then dialyzed 

overnight against 0.01 M sodium phosphate, pH G.L1, 0.1 g/100 ml SDS, 

l mM dithiothrcltol (starting buffer) (Moss et al., 1972). A slurry 

of hydroxylapatite was poured into a 1 cm x 50 cm column over a 0.3-0.7 

cm layer of Sephadex G-25 medium. The column was equilibrated with 

starting buffer. Protein samples of 3 to 5 ml in volume were applied 

and the column was then washed with 2 column volumes of starting 

buffer. Linear gradients (0.25 M to 0.42 M sodium phosphate) were 
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formed with a simple two chambered device and flow rates of 5-10 ml 

per hour were obtained by gravity. Ninety drop fractions of approxi-

mately 1.5 ml were collected and their absorhance at 280 nm determined. 

Amino Acid Analysis 

Fractions from the hydroxylapatite chromatography were dialyzed 

against water and lyophilized. The protein was hydrolyzed in evacuated 

sealed tubes at ll0°c for 22 hr in 0.20 ml 6 N HCl. Amino acid analysis 

was performed on a modified analyzer of the Spackman et al. (1958) type 

in a 7.8 mm diameter column (Liao et al., 1973). 

N-Terminal Analysis 

l~ract lons from hydroxyapati te chromatography were dialyzed against 

water and lyophllized and dissolved in 0.1 g/100 ml SDS, 0.2 M NaHC03 , 

pH 8. Dansylation and hydrolysis was performed according to Gray (1972). 

The hydrolyzate was spotted on 15 cm x 15 cm polyamide sheets and f luor-

escent spots were identified under ultraviolet light after chromatograpy 

as described by Woods and Warig (19G7). 

Cyanogen Bromide Cleavage 

Prior to treatment with CNBr, some zein fractions were treated 

w I th /10% nwrcapto:icet.1 c acid (Alfagame et al., 1974) at room tempera-

ture for l(, hours, then dlaly:u~d against water. About 0.10 mg of zein 

from selected column fractions were cleaved with a 40-fold weight 

excess of CNBr in 0.25 ml of 70 g/100 ml formic acid. 

reaction was allowed to proceed for 25 hours at 25°C. 

was lyophilized at the end of the reaction. 

The cleavage 

The mixture 



Digestion with Proteolytic Enzymes and 

Peptide Mapping 

Fractions from hydroxylapatite chromatography containing· zein

dodecyl sulfate complexes were dialyzed against water overnight and 

then lyophilized. Samples were redissolved in 1 g/100 ml NH4Hco3 , 
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pH 8 and trypsin and chymotrypsin were added at an enzyme to protein 

ratio of 1:40. Digestion proceeded for 5 hr at 37°c (Salnikow et al., 

1973). 

Approximately 20 nmoles of protein were transferred to a spot no 

larger than 0.5 cm in diameter on Whatman 3MM chromatography paper. 

Descending chromatography in 1-butanol:acetic acid:water:(200:30:75) 

wns used !11 the first dimension for 9-12 hours. After drying, electro

phoresis in the second dimension was carried out at 44 volts/cm for 

45 min on a flat surface or in tanks (Savant Insturments) containing 

Varsol as coolant and formic acid:acetic acid:water, pH 1.9 (25:100:875) 

as solvent. Papers were dried and stained with n1nhydrin-cadmium 

reagent (Dreger et al., 1967). Photography was by transillumination. 

Isoelectric Focusing 

Zein extraction and chromatography of.zein-SDS complexes on 

hydroxylapatitc were as previously descrihed. lsoelectric focusing 

was done in vert lea 1 gel tu hes and gel slabs. The slabs were of 16 x 9 

x 0.7.5 cm in a home made apparatus. Tube gels were of 11.5 x 0.6 cm. 

The gels (either the tubes or the slabs) contained 5% acrylamide and 

bis (25:1 ratio), 2% ampholines (pH 3.5-10) and 8 M urea. 

Samples containing lyophilized protein-SDS complexes either from 
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column fractions or from whole zein complexed with SDS were dissolved 

in 2.5 g urea in 2.5 ml deionized water and 80 µl NP-40. Zein-samples 

containing SDS were dialysed against O.Ql M sodium phosphate overnight 

and then against distilled water. This procedure was necessary to 

remove most of the SDS. The samples was then lyophilized. The 

addition of NP-40 was necessary to avoid precipitation of the protein 

at the top of the gels, at the anodic side. 

Other samples, not containing SDS were dissolved in 8 M urea and 

Nl'-40, and stlll others in(, M urea, 10 mM Tris-glycine, pH 8.5 and 

2% 2-mercaptoethanol. The gels were pre-run by applying lOOV for 15 

min and then 250V for 1. hr before application of sample. The slots 

were dried with strips of filter paper and the samples were applied. 

Focusing proceded for 1 hr at lOOV and then at 220V for 20 hr (20V/cm). 

Cathode solution (bottom) and anode solution (top) were prepared 

according to Righetti et al. (1977b) except that sorbitol was omitted 

from the solutions. For tube gels cathode solution (top) contained 

') mM NaOll pll > lO and anode solution (bottom) contained 5 mM n3P4 or He 

pl!< 3). After focusing, the gel was washed with distilled water and 

then stained with Cuso4 :Coornassie Brilliant Blue:ethanol for 3 hrs 

then destained in ethanol:acetic acid:water overnight according to 

Ost.cwsky and Drysdale (1Cl75). Bands were photographed by transillumin-

ation. 

Staining for carbohydrate was with periodic acid-Schiff reagent 

(Fairbanks et al., 1971). 

/\lkylation with lodoacetamide and Acrylonitrile 

Protein w;l8 rt>dUCl'd overnight in 0.1 ml of 1% v/v 2-mercaptoethanol 
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at room temperature (Paulis et al., 1975) in deionized 8 M urea. The 

protein was alkylated by the addition of 20 ml of 8.1% w/v acrylo-

nitrile-8 M urea. incubation was for 1 hour at room temperature. 

li'or alkylation with iodoacetamide, samples were dissolved in 0.01 M 

sodium phosphate, pH (, .4, 2% SOS, 2% mercaptoethanol by placing in a 

boiling water bath for 2 min. An excess of iodoacetamide over 

stilfhydryl was added and the mixture left for 1 hr. 1 M NaOH was 

added as needed to maintain the pH greater than 8. It occasionally 

dropped belou pH 6. After alkylation with either acrylonitrile or 

iodacetamide, the samples were dialyzed against water and the samples 

then lyophilized. 

Alkylation with 14c-iodoacetate 

0.4 mg of Zll was dissolved in 0.2 ml of 8 M urea, 0.1 M Tris-HCl 

{pll 8.0) and 120 mM 2-mercaptoethanol. After 30 min 25 µCi of 

14 [ C]iodacetate (50 mCi/mmole, Amersham) was added. After a further 

30 min of reaction the mixture was dialyzed against 250 ml of 10 mM 

Na-phosphate (pH 7), 0.1% SDS overnight. 

In Vitro Product - Isoelectric Focusing 

Poly A (+) !{NA was extracted from developing corn endosperm as 

prcv:LouHly deHl'rihcd (Melcher, 1979). The lrnA was translated in wheat 

germ extractH (Marcu and Duclock, 1971~) containing 100 mM KCl, 2.5 mM 

MgC12 by :Lncubatlon for 60 min at 25°C. The total in vitro products 

were prepareq for IEF by precipitation with 10% cold trichloroacetic 

acid. After heating to 90° for 15 min, the samples were centrifuged 

and the pellets washed with ether. Ethanol soluble in vitro,products 
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were prepared for IEF by addition of 150-200 µg of native zein to the 

in vitro incubation mixture. The sample was then adjusted to 70% 

ethanol {total volume:l.O ml). The tubes were heated in a 65°C water 

hath for 90 min with occasional shaking (Dalby, 1974). The mixture 

was then centrifuged at 1,000 x g for 10 min and the supernatant 

dialyzed against distilled water for 5 hrs. The sample was then 

lyophilized. A similar extraction was also performed including 1% 

2-mercaptoethanol in the ethanolic extraction solution. All dried 

samples were dissolved in 10 inM Tris-glycine pH 8.5, 6 M urea. 

mRNJ\ Isolation 

Corn (Zea mays cv. Weathermaster Ex 2) was grown in fields in 

Cooclwell, Oklahoma in 1975 and ln Perkins, Oklahoma in 1976 and 1977. 

At tlw parly mi 1 k stage of dcvc 1 opmcnt, approximately 20 to 25 days 

a[ter sllk emergence, the (•ars were removed a11d quick frozen in +iquid 

N2 and transported to the laboratory on dry ice, then stored at -7o0 c. 

Kernels were removed while frozen. Using the procedure of Larkins et 

al. (1976) frozen kernels were homogenized in 3 volumes of buffer A (0.2 

M Tris-HCl (pH 8.5), 0.2 M sucrose, 60 mM KC!, 50 µM MgC1 2, 1 mm DTT), 

the extract was strained through cheesecloth and centrifuged in 

Beckman rotor .JA 20 at 500 x g for 5 min. Total membrane-bound 

polyribosomes in the son g supernatant (which contained a mixture of 

protein bodies and rough endoplasmic reticulum (RER) were obtained 

by centr.I [ugat I.on at 17 ,00() x g for 10 min according to Larkins et al. 

(l9U,). The memhr:1nous pellet was suspended ln buffer A containing 

1% Triton X-100, and detergent-insoluble material was removed by 

centrifugation at 37,000 x g for 10 min. The supernatant fraction 



28 

was layered over 4 ml of 2 M sucrose in buffer B (40 mM Tris-HCl 

(pH 8.5), 20 mM KCl, 10 mM MgC12) and polyribosomes were pelleted by 

centrifugation at 50,000 rpm in 75 Ti rotor of a Sorvall OTD-50 ultra-

centrifuge. The polyribosomal pellet was suspended in 0.5% SDS, 

10 mM Tris, 1 mM Na2EDTA, 0.5 M NaCl (pH 7.5) and adjusted to a con-

centration of 20 to 25 A260 . A volume not exceeding 10.0 ml was 

applied to 0.5 g Oligo(dT)-cellulose at room temperature. Poly (A)-

containing molecules were eluted with 10 mM Tris pH 7 after washing 

hy the procedure of Aviv and Leder (1972). The sample was heated to 

0 0 
(,0 C for 3 min and rapidly chilled to 4 C, the sample was then brought 

to 0.3 M NaCl and the RNA was rehybridized to oligo(dT)-cellulose 

according to Me le her (1979,). This procedure was repeated three times, 

and the RNA was precipitated with 2-3 volumes of ethanol after adjusting 

to 0.3 M NaCl. Yield was generally between 20 and 50 mg poly (A) IrnA/ 

100 g kernels. The mirnA was dissolved in 200 µt sterile distilled 

0 
water and stored at -70 C. 

In Vitro Protein Synthesis 

A standard cell-free protein synthesis system according to Marcu 

and Dmlock (1974) was prepared from wheat germ. The complete system 

ln 11 volume or ')() pL contained: 15 p9, of wheat germ supernatant 

(I A2f,O un It), 20 mM llEPES (pH 7 .11), 2 mM DTT, 1 mM ATP, 20 mM GTP, 

40 mg/ml creatine phosphokinase, 8 mM creatine phosphate, 2.5 mM Mg-

Acetate, 100 mM KCl and addition of 0.1 mM spermine according to Melcher 

(1979). At this point 0.25 µCi of c14cJLeucine (Amersharn) or 0.25 µCiof 

[4,5-3HJ-Leucine (Amersham and ICN) and 25 µM 19 unlabeled amino acids 

were added. Samples were incubated at room temperature after addition 
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of 2-3 mL of poly (A) RNA in H2o or 2-3 ml of Tobacco Mosiac Virus 

(TMV). A third sample was left without RNA addition and was as a blank 

for radioactivity incorporation background. RNA extract from TMV 

(obtained from E. Fowlkes, Bishops College, Dallas, Texas) according 

to the procedure of Marcus and Dudock (1974), was used as standard f6r 

the actlvlty of wheat germ. The samples were incubated for 1 hr. 

Protein synthesis was terminated by the addition of 1 ml 10% trichloro-

acetic acid to 5 mL aliquots of the incubation mixture for 10 min. Then 

the samples were heated at 95°C for 15 min; then chilled in ice for 10 

min. The precipitated protein was collected on glass fiber filters 

for counting in toluene ppo in a Beckman 13150 T Liquid Scintillation 

Counter. 
0 

The rest of the samples were stored at -20 C. 

SDS-Polyacrylamide Gel Electrophoresis 

(SlabH) and Flw>rography 

Ra<l:I.oactive samples were analyzed on slab gels with a SDS-poly-: 

acrylami<le gel electrophoresis system similar to that described by 

Laemmli (1970). Gels were 1. 5 mm thick and consisted of 10 cm running 

gel of 12.5% acrylamide (acrylamide/bis acrylamide = 30:0.8) in 3.75 

mM Tris-HCl (pH 8.9), 0.058 mM TEMED, and 0.075% SDS. The running gel 

was overlaid with a 2.5 cm stacking gel of 5% acrylamide. Freshly 

prepared ammonium persulfate solution was added immediately before each 

gel ·1ayer was poun~<l. Samples were applied in sample buffer (0.024 M 

Trl:-:-llCl (pll 8.]), ]/.'. SDS, 1% 2-mercaptoethano.l, 0.002% bromophenol 

blue and 10/.'. glycerol). Electrophoresis was carried out at room 

temperature at 15 mamp constant current through the stacking gel and 

30 mamp constant current through the running gel until the stacking 
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dye reached the bottom of the gel. Gels were stained in a solution of 

0.1% Coomassie blue, 25% isopropanol, 10% acetic acid for 3 hrs and 

destained in 10% acetic acid for 5 hrs. Zein I isolated by ethanol ex-

traction from the corn meal was used as a marker of the native protein. 

Some zein I was labeled with 14c iodoacetate and used as radioactive 

marker for the in vitro zein products. Slab gels which contained radio-

active samples were impregnated with ppo, dried, and exposed to pre-

flashed (Saskey et al., 1975) Royal X-omat film according to the 

procedures of Bonner and Laskey (1974) and Laskey and Mills (1975). 

DN/\ Extractlon and Purification 

DN/\ was prepared from sweet corn seeds. Homogenization was 

carried out in 1 volume /gm corn of 1 M NaCl, 0.1 M EDTA (pH 8). Some 

acid-washed sand was used to improve homogenization. 0.1 volume of 

20% SDS was added to make 2% SDS final concentration. 

The homogenate in some experiments was made 1 M NaCl04 by adding 

solid or solution of 5 M stock sodium perchlorate (this step improved 

the extraction of pigments into the CHC1 3 layer, but interferred with 

spooling and thus lowered the yield). The mixture was heated to 70-72°C 

for ') min and then cooled in ice. One volume chloroform:octanol (8:1) 

was added to thP homogc11:1tc and the mixture stirred for 1 hr at room 

temperature. The aqueous phase was recovered by centrifugation at 

(12,000 x g) for 20 min and re-extracted with chloroform:octanol for 

1 hr at room temperature. The aqueous phase was again recovered as 

described above and the nucleic acids precipitated by the addition of 

2-3 volumes of cold ethanol. 

The precipitate was collected by spooling and resuspended in 10 
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ml of O.Ol M NnCl, 0.01 TrlH-llC:l (pll 8.0) and incubated with 1 mg 

pnncreatlc RNaHc was heated to H0°C for 20 min prior to use. 1 mg of 

proteinase K was added and the mixture incubated for 1 hr at 40°c. An 

equal vol. of chloroform:octanol was added and stirred for 30 min. The 

aqueous phase was removed by centrifugation at 12,000 x g for 10 min. 

2 volumes of cold ethanol was added and the DNA fibers were respooled 

and dissolved in 0.01 M NaCl, 0.01 M Tris-HCl (pH 8). Solid NaCl 

was added to make 0.3 M total. After ethanol precipitation, the DNA 

was recovered by spooling. The dissolution and spooling step was done 

twice before the DNA was dissolved in the Tris~saline (0.01 M NaCl, 

0.01 M Tris-HCl (pH 8)) and stored at 4°c over a few drops of chloro-

form. 

Iodination of RNA 

Iodination of 75-100 µg of rRNA or 20-40 µg of mRNA was performed 

in 185 µL of 0.05 M sodium acetate (pH 4.5), 7 x 10-4 M thallium 

-5 trichloride (dissolved immediately before use), 0.5% SDS and 1.4 x 10 

125 . 
Nal (including 100 µCi I, Amersham, England) by a modification of 

the procedure of Commerford (1971). Since traces of free 125I are 

easily released during the labeling procedure, incorporation was 

performed in the hood. The tube was capped and sealed with parafilm 
,, 0 

and incubated at 60 C for 20 min, then chilled in ice and opened in 

the hood, 2 volumes 0.1 M Tris-HCl (pH 9) were added and the mixture 

was incubated at 40°c. After 10 min the mixture was chilled and made 

40% ethanol, 0.3 M NaCl and then loaded onto a small column containing 

O. 5 g cellulose (Whatman CFll) equilibrated with 150 mM NaCl, 10 mM 

Tr.is-HCl (pH 7.9), l mM EDTA, 0.5% SDS, 35% ethanol and washed with 
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thl' equlllhr;1tlug huffpr until 110 further radioactivity wm1 Pl11ted. 

Sm11ll RNA fragmt•11tH (::0 'i S) wt•n• not l'fflch•ntly hou11d by this column 

125 
and were discarded. I RNA fragments bound to the cellulose was 

eluted quantitatively with 0.01 M Tris-HCl (pH 7.9), 100-150 µg yeast 

tRNA was added, then solid NaCl was added to 0.3 M and 2-3 volumes of 

ethanol was added and stored at -7o0 c for 24 hrs. The 1251 RNA was 

recovered by centrifugation at 12,000 x g for 20 min, dried in a 

vacuum <lessicator and dissolved in water before storage at -70°C. 

DNA Restriction and Gel Electrophoresis 

Restriction endonuclease with EcoR1 :Digestion reaction contained 

10-15 µg corn DNA and 1 unit per µg DNA in 0.05 ml reaction mixture 

containing 100 mM Tris-HCl (pH 7.5), 5 mM MgC1 2, 50 mM NaCl, 100 

µg/ml Bovine Serum Albumin. After incubation for 3-4 hr or overnight 

incubation at 37°c. 5 µl of stop solution (equal volumes of 20% SDS, 

0.1 M EDTA) and 15 111 of sucrose-Bpll were added and incubated at 65°c 

for '; mln. The sample was then applied to a vertical slab gel of 

<l lmcnslons 17 x U x 0. 3 cm of 1% agarose in (EC apparatus). Electro-

phorcsis was for L~ hrs at lOOV. 

Molecular weight of the restriction fragments was estimated by 

comparison to EcoR1 restriction fragments of cabbage mosaic virus 

(CaMV). Buffer for electrophoresis was 30 mM Tris-base (pH 7.8), 

36 mM sodium phosphate and 2 mM Na2EDTA. 

Transfer of DNA from Agarose Gels to 

Nitrocellulose Filters 

Corn DNA digested wlth gcoR1 and fractionated on agarose gels was 



transferred directly to 17 cm strips of nitrocellulose filters by 

the method of Southern (1975). 

RNA-DNA Hybridization 
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Radioactive RNAs was hybridized to DNA on nitrocellulose filters 

ln two ways: RNA in 2 x SSC (SSC is 0.15 M NaCl, 0.015 M sodium 

citrate) was used to wet DNA-containing filter strips. The filters 

were wrapped in self-adhesive plastic and incubated at 65°C for 24 

hr. Alternatively RNA in 1. 2-1. 5 ml of 2 x SSC along with filter 

strips were placed in a vessel made from perspex (internal dimension 

of 0.8 mm deep by 2 cm high and about 1 cm longer than the strip of 

nitrocellulose) according to Southern (1975). The vessel was filled 

with 2 x SSC and incubated at 65°C for 10 minand the strip was fed 

In through the narrow·opening in the top. The solvent was then 

drained off and the RNA solution 2 x SSC was introduced and incubated 

at 65°C for 24 hr. After the incubation period, strips were washed 

exhaustively in 1 SSC for 30 min at 65°C and treated with a solution 

of RNase A (20 µg/ml in 2 x SSC) at room temperature for 1 hr. After 

a final rinse in 2 x SSC the filter was dried in air. Autoradiography 

was performed for 15-20 hr at -70°C or -20°c with X-ray film and a 

fluorescent intensifier screen according to Swanstrom and Shank (1978). 



CHAPTER III 

RESULTS 

Unfractionated Extracts 

The predominant polypeptide in zein I extracts is zein B (Lee et 

al., 197G; Burr et al., 1978; Misra et al., 1975a), whose molecular 

weight as examined by SDS-polyacrylamide gel electrophoresis in several 

concentrations of gels and percentage crosslinks was 19,GOO. Zein A, 

molecular weight of 21,GOO, although present in zein I extracts, was 

more prominent in zein II extracts (Figure 2). Another band with 

24,000 MW appeared only by discontinuous SDS-PAGE and this zein was 

called ZA1 • Uy densitometry it was estimated that the ratio of zein A 

to zein B was 0.4 in zein I extracts and 1.5 in zein II extracts. Zein 

C, although present in zein I extracts is only detectable when·substan

tially more protein is applied to the gels. It is readily detectable 

in zein II extracts. When zein II was reduced and alkylated with 

iodoacetamide and acrylonitrile, zein A and zein B were shown clearly. 

In addition ~ein C and zein c1 were seen staining in good amount 

(Figure 3). If the samples were not alkylated zein C and c1 appeared 

<ls streaks (Figure 7- - tube 3); thus the alkylation resulted in better 

reso]utlon and sepnrntl.on. Zcin c1 is probably composed of smaller 

polypeptides {a dlmer of ?.ein E), since when fractions from Sepharose 

CL-ltl~ column contn:ining zein c1 were r<~duced again and then ran on SDS-PAGE, 
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Flgure 2. SDS-Polyacrylamide Gel Analysis of Total Zein I Extracts. 
Samples in both slots contained equal amounts of protein 
(100 mg). A1: is zein A, with 24,000 daltons; A: is 
zein A with 21,600 daltons; B: is zein B with 19,600 
daltons and C: is zein C with 14,400 daltons. 
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Figure 3. SDS-Polyacrylamide Gel Electrophoresis in 12.5% Tube Gel. 
1: Zein II reduced with 2-mercaptoethanol (2-ME) and 
alkylated with iodoacetamine. 2: Zein I reduced and 
alkylated as in 1. 3: Zein II reduced with (2-ME) but 
not alkylated. 4: Zein II reduced with (2-ME) and 
alkylated with acrylonitrile. 5: Markers contains 
from bottom to top: cytochrome c, 13,370 daltson, 
a-chymotrypsinogen, 23,140 daltons; bovine serum 
albumin, 65,400 daltons; 8-galactosidase, 135,000 
daltons. A: is zein A; B: is zein B; c1 : is uncom
pletely reduced zein polypeptides containing dimers of 
zein E. C: is zein C and D,and E belongs to the faint 
color bands of zein D and E. 
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zein c1 was converted to a low molecular weight band (zein E) 

(unpublished observation by Melcher). Another unreduced band can 

be seen occasionally on the top of the gels. This is due to the 

difficulty of reducing zein C. However, another two bands could be 

seen on the gel in faint color and were called zein D and E with 

estimated MW of 10 and 9 kilodaltons. These low molecular weight 

zeins were reported to be rich in sulfur containing amino acids and 

it was speculated by Gianazza et al. (1977) that these chains could 

play a role in the formation of zein granules in the cell, by stabil

izing macromolecular aggregates via formation of disulfide bridges. 
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Generally, zein A and B are the dominant polypeptides in zein I 

as appeared in SnS-PAGE; while zeln A1 andC are less dominant. In 

zcln II, In addition to zein A and B, zeins C, D and E are present in 

considerable amounts. 

Hydroxylapatite Chromatography 

In view of the insolubility of zeins in the aqueous and salt 

solutions commonly used for chromatographic separations of proteins 

and the similar size and amino acid composition of zeins A and B, it 

was anticipated that separation would be difficult to obtain. A 

successful partial separation of zein A from zein B was achieved by 

chromatography of SDS complexes on hydroxylapatite (HT) according to 

Moss and Hc>senhlum (1972). A successful partial separation of zein B 

from zein A was also obtained by gel filtration of SDS-complexes on 

Sephadex G-200. This latter approach was abandoned because it was 

too tedious. For hydroxylapatite chromatography, zein I either was 

reduced or reduced and alkylated with iodoacetamide then complexed 
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with SDS in 0.01 M sodium phosphate and applied to a column of hydroxyl

apatite. Zein-dodecyl sulfate complexes bound to the column under 

these conditions and were then recovered by elution with a gradient of 

sodium phosphate. Figure 4 shows the elution profile of zein I reduced 

and Figure 5 shows the elution profile for zein I reduced and alkylated. 

The profiles shows the broad and irregular protein elution; this is 

suggestive of the elution of several different molecules. The reduction 

and alkylation of zein spread out the elution profile and gave better 

separation. Patterns obtained by electrophoresis of aliquots of 

selected fractions in polyacrylamide gels containing SDS are shown in 

Figure 6. The zein B polypeptides eluted first and are the sole 

components of the first peak. As the salt concentration increased, 

zein A polypeptides also eluted resulting in fractions containing 

both bands. These fractions were pooled and treated again with .J% 

2-mercaptoethanol in order to reduce the disulfide bridges, and then 

applied to a new column. Despite such treatment, it was not possible 

to separate this fraction of zein A and zein B polypeptides further. 

Finally, the proportion of zein B polypeptides in the elutes 

decreased drastically so that the last fractions contained only the 

larger zein A polypeptides. 

Amino Acid Analysis 

Purified zcin A and ze:l.11 B obtained by hydroxylapatite chromato

graphy were l~drolysed and submitted to amino acid analysis. The 

results (Table I) are expressed as residues per mole, ignoring the 

contribution of tryptophan and cysteine to the molecular weight. The 

amino acid compositions resemble one another and also the co~position 



Figure 4. Elution Profile of Reduced Zein I Polypeptides. 
7 mg of zein I was reduced with ME and complexed with SDS 
then applied to hydroxylapatite (HT) 1 x 50 cm column. 
The protein was eluted with a gradient of sodium phos
phate. Fractions were assayed for absorbance (left 
ordinate) and for conductivity (right ordinate). 
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Figure 5. Elution Profile of Reduced or Alkylated Zein I Polypeptides. 
7 mg of zein I was reduced with (2-ME) and alkyla.ted with 
iodoacetamine then complexed with SDS and applied to the 
hydroxyapatite column (as in Figure 4). 
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Figure 6. 12.5% Polyacrylamide Tube Gel Electrophoresis in SDS. 
Sample numbers correspond to the gradient fractions and 
were aliquots of selected fractions in Figure 5 used 
for the analysis. The photographs show the distribu
tion of the two major polypeptides. A: is zein A; 
B: is zein B, in these fractions. 
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TAHLE 

AMINO ACID COMPOSITION OF SEPARATED ZEINS* 

Zein A Zein B 

Asp 11.G 9.4 

Thr 6.5 5.4 

Ser 16.1 13.7 

cau 39.3 35.8 

Pro 18.1 17.4 

Cly 8.9 7.1 

Ala 25.3 24.4 

Val 8.7 6.4 

Met 1.9 0.9 

Ile 7.0 6.5 

Leu 32.8 31. 7 

Tyr (1. 2 6.3 

l'lll' 8. ') 9.8 

11 l 8 2. ') 1.8 

Lys 1. ') 0.8 

i\rg 3.4 2.2 

*Expressed as moles of amino acid residue per mole of polypeptide 
assuming mol. wt. of 21,600 for Zein A and 19,600 for Zein B. 

l~ 7 
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of total 7.e ln :rn reported hy Sodl'k et al., 1971 and Waldschmidt-Leitz 

ct al., 19G2. The compositions are characterized by a low lysine 

content, and high content of glutamic acid (most likely as its amide, 

glutamine) leucine, and alanine. For both zeins, the content of the 

hydrophobic amino acids, leucine, alanine, proline, tyrosine, phenyl

alanine, valine, isoleucine and methionine is approximately GO/~, con

sistent with the hydrophobic properties of these proteins. Zein A has 

one to three additional residues of each of the analyzed amino acids 

except tyrosine, phenylalanine, histidine, and lysine. Only in the 

case of phenylalanine are there fewer residues ·in zein B than in zein 

A. The difference in arginine content (two for zein B and three for 

zein A) could account for the more basic pI's on isoelectric focusing 

of zein A bands (see below). The presence of two methionines in 

zein A as opposed to one in zein B is consistent with the results of 

in vitro incorporation of radioactive methionine and leucine into zein 

hands in response to zcin mRNA. 

Lee et al. (197G) have also determined the amino acid compositions 

of zein A and zein B by hydrolysis of slices of stained bands from 

polyacrylamide gels. Their composition for zein B agrees closely with 

that reported here except for a higher content of proline (23 residues 

as opposed to 17). Larger differences are seen in zein A, particu

larly in glycine and proline where the estimates of Lee et al. (1976) 

are about twice the present estimates. It is unclear whether these 

differences are due to the method of protein separation, the genetic 

source of the zein or the method of analysis. Due to the presence of 

SDS ln the samples, formation of sulphate from SDS during acid hydroly

sis is possible. The content of serine and threonine may be: changed 



due to modification which occurred by the sulfate ions which were 

formed. 

N-Terminal Analyses of Zein Fractions 
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The result.s of N-terminal analyses of zein extracts and column 

fractions, as shown in Table II, are consistent with the above inter

prctntions. Zein I extracts contain two predominant N-terminal amino 

acids, phenylalai1ine and threonine, while the zein II extract is very 

heterogeneous containing phenylalanine, threonine, alanine, isoleucine, 

leucine, methionine, serine, glycine and valine as distinguishable 

N-terminal amino acids. The threonine N-terminal is associated with all 

fractions of the hydroxylapatite column that contain zein B, both the 

early fractions of pure zein B and the later fractions where a mixture 

of zein A and zein B is present. Phenylalanine is not present as an 

N-terminal amino acid in fractions containing only zein B but is present 

when zci.n A begins to appcnr in these fract:Lons. The very last 

fr11ctlonH of till' l'olumn did not prodUCl' any l<lentlfl:ihle N-tcrmlnal. 

In thn•p ~1t·p11r11tt• 11ttl•mpts. l•:nm1gh protein was present in these 

n•:ict Lons as Judged by the intensity of 0-dansyltyrosine spots to 

give an identifiable N-terminal dansyl amino acid, thus raising the 

possibility that polypeptides in this region of the column had 

blocked N-termini. Our results differ from those of Waldschmidt~Leitz 

et al. (1962) in that· they detected serine instead of phenylalanine 

as the second major amino acid in addition to threonine. 

C:y11nogt•11 l\romlde Clcavagti 

It w11s <>hHt'rVPd hy M(• I dwr that when ze:Ln I. am.I zein II protein 



TABLE II 

N-TERMINAL AMINO ACIDS OF ZEIN FRACTIONS 

Fraction N-terrninal Residue 

Zein I Phe, Thr 

* Zein Al Phe 

** Ze;in Az None 

Zein B Thr 

Zein II Phe, Thr, Ala, Ile, 

Leu, Met, Ser, Gly, 

Val 

*Zeln A1 : The early fractions of the 21,GOO moL wt. band. 

*,~ze in A2: The late fractions of the 21,(,QO rnol. wt. band. 
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extract were treated with cyanogen bromide and the products electro

phorcscd on SDS-PAc:g, the zeln A hand almost completely disappeared 

(fo'ralJ ;111J Mclehcr, 1979). Despltc repeated attempts to obtain 

complete cyanogen bromide cleavage of zein A, a small amount was 

left unaltered in molecular weight. The zein B band remained. 

Burr et al. (1978) reported that cyanogen bromide fragmented 

the zein A into peptides of 17,0QO, 4,000 and 1,000 daltons. They 

suggested that zein A was cleaved at two methionines. On the other 

hand, Melcher (1979) has reported that cyanogen bromide treatment 

of a mixture of in vitro products results in the replacement of the 

ze1n A in vitro product with a hand at 19,(100 daltons. No 17,000 

dalton product was found. 
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To clarify these results and to investigate further the structure 

of the fractionated zein polypeptides, fractions from the hydroxylapa

tite chromatography containing both bands in approximately equal 

amounts (as described by densitometry) were submitted to cyanogen 

bromide clenvngc after reaction with mcrcaptoacetic acid (Figure 7, 

tulw '\). Tilt> slowt•r 7.('(11 A lwml dlsnppcnr.cd on cy:111ogen bromide 

tn•ntmt>11l. /\ dt>ni-wly st11(11l11g hand :it thl'.• po~dtlon of zeln B was 

found :1H WPll ;rn 1ww h;1nd:-1 nt about 17,0')() molpculnr welp,ht and three 

l>;111ds (11 t(H• lllOlt•nil;ir W(.[ght rt~l!,[Oll heJOW 5,()00. ()f these latter 

three, tlw middle one (suspected to he of 2,000 daltons) was the most 

intense. A small amount of zein A was left unaltered. 

Other fractions which contained both bands (Figure 7), were 

treated with CNBr. Tube number 8 showed that zein A remained 

uncleaved while with later fractions from the same column run also 

containing hoth hands (tuhe 7), zcl11 A was totally cleaved and a 



Figure 7. SDS-Polyacrylamide Tube Gel Electrophoresis (12.5%) of Zein 
Fractions From Hydroxylapatite Column Chromatography and 
Cyanogen Bromide Cleavage Fragments. 
Tubes 2, 4, 7: are intermediate fractions containing 
zein A and B mixture used as standard for the cleavage 
with CNBr. Tubes 2, 5: zein B treated with CNBr, was 
not changed. Tube 3: equivalent amount of zein A and 
zein B from the immediate fraction cleaved with CNBr. 
In addition to faint remnant zein A and dense, heavy 
bands of zein B, another band at~ 17,000 daltons and 
three bands below 5,000 daltons. Tube 6: pure zein A 
treated with CNBr, the cleavage product is zein B. The 
other cleavage product was undetected. Tube 8: differ
ent intermediate fractions contain zein A and zein B 
treated with CNBr. Zein A was not cleaved as well as 
zein B. Tube 9: zein A pure was treated and the cleaving 
product is the 19,000 daltons and another band around 
5,000 daltons. The three sets of tubes are from different 
runs. 
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clenrly stained hand at the position of zein 8 was found and faint 

b;mds nt about 17, 000, and below 5, 000 daltons were seen. 
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When fractions containing exclusively zein B (Figure 7, tubes 1 

and 5) were treated with cyanogen bromide, no cleavage products were 

detected, thus confirming that zein B is resistant to cyanogen bromide 

treatment even though it contains one methionine. This methionine 

might be so close to a terminus of the molecule that cleavage would 

not result in a change in size or it might be present in a met-ser or 

met-thr sequence, sequences which have been shown to be resistant to 

cyanogen bromide cleavage as reported by Shame et al. (1971) • 

When protein from the fractions which contained only zein A polypep

tides was cleaved with cyanogen bromide the zein A band disappeared 

and was replaced by a major band in the position of zein B (tube 6), 

thus confirming the hypothesis that zein A was cleaved at a methionine 

approximately 2,000 from one end. In addition to this major band a 

mlnor hnnd :1t about 17,000 mo]. wt. wns cletectecl, corresponding to the 

1· l l':tv:1g<' oh!wrvt>d by nurr 0t ;11. (l 97H). Thl• 1 ow mo] ecular weight 

prodt11·Ls fnrmvd tlin•t> bamls, the middle one of whlch was most stained, 

The result suggests that the slow band (zein A) consists of at 

least three polypeptides. The first polypeptide has one cyanogen 

bromide sensitive site generating fragments of 19,600 and 2,000 daltons. 

The second polypeptide has two cyanogen bromide sensitive sites gen

erating fragments of 17,000, 4,000 and 1,000 mol. wt. as identified by 

nurr ct al. (1978). And the third polypeptide has no cleavable 

mcthioni.ne. 
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Pcptlde Mnpptng 

In order to examine whether zein A and zein B polypeptides were 

similar in structure as suggested by the amino acid analysis, fractions 

from Sephadex G-200 chromatography which contained only zein A, and 

those that contained zein B and some total zein I was complexed in the 

same manner with SDS. The samples were dialyzed against distilled 

water, lyophilized and digested with trypsin and chymotrypsin as 

described in the methods. The peptides produced were separated by 

two dimensional chromatography and electrophoresis on paper. Initial 

experiments were done using pH 3.5 and 6.5 for electrophoresis. At 

these pH's only few peptides moved and these moved toward the cathode. 

The absence of anodically migrating peptides despite the high glutamic 

acid values in amino acid analysis (Table I) may indicate that most, 

if not all, of the glutamic and aspartic acid residues detected are 

present in the protein as their amides. Righetti et al. (1977) 

concluded that at least 90% of the glutamic and aspartic acids were 

present as glutamine and asparagine residues. Wall (1964) reported 

also such a high value for asparaglnc and glutamine. 

l'rel lml1mry !H!ptl<ll' mnps for zcln A and zcin B (Figure 8) were 

from Sephnd<·X c:-200 l'Ol11m11 frnC'tlo11H. F.lal Hurface ltlgh voltage 

Plecl"rophon•1-1ls was UHl'd ln the second dlmenHion. 20-30 spots 

w<>re detectpcJ hy Htillning wl.th ninhydrin. About 2'J spots are 

expected from the known amino acid composition assuming a monomer 

molecular weight of 20,000. 

Zein A and zein B peptides have three similar electrophoretic 

mobi.lity patterns: 



Figure 8. Peptide Maps of Zein Fractions. 
Top is zein A and bottom is zein B. Purified zein A and 
B were from Sephadex G-200 column. The proteins were 
digested with trypsin and chymotrypsin and spotted on 
3 mm paper. Chromatography is butanol:acetic acid:water 
preceded electrophoresis at pH 1.9 in flat surface high 
voltage apparatus. 
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n - spots (1-9) with dark intensity staining, moved in similar pattern 

for both zein A and zein B. 

b - spots A-A7 and B1-B6 had a lesser staining intensity, but moved in 

another pattern. In addition there were 4 spots unique to zein A 

(10, 11, 12, 13), and 4 spots unique to zein B (14, 15, 16, 17). 

Spots in the first series (1-9) are shared between zein A and 

zein B judging from the identical staining intensity and mobility 

patterns. For the other two series of spots it was hard to distin

guish which are shared between zein A and zein B. However, it is 

likely that most of them are shared between the two zeins. In Figure 

8 a total zein r·digest contains clear spots of the first series (spots 

1-8), except spot 9 was missing. The other two series in this digest 

appeared as long streaks and diffuse spots, indicating larger peptides which 

resulted probably from incomplete digestion of zein I polypeptides, or 

a different separation mobility either in first or second dimension. 

This could be as a result of disulfide bonds connecting the resultant 

peptides or presence of some pigments and/or lipids components with 

wholp zpf11 I t•xtrnctH. IUp;hcttlt•t al. (1.977) found 3-5% of the total 

z<• I 11 protl' lnH co11tll I ned J Ip ids. Such l ipoprotein contains a carotenoid 

covalently bound to the polypeptide backbone and was found to be a 

.component of the membrane that envelopes the zein protein bodies in the 

endosperm. They speculated that such lipid moiety is bounded to the 

polypeptide chain, since it was not released by alcohol, Triton X-100, 

or urea treatment. Presence of such components could hinder the enzy

matic digestion and/or the separation in the peptide mapping for zein I 

extracts, while Ln the fractionated zein I components (zein A and zein 

I~), It ts very 11.kely that thci-w components were sepnrated in some 
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other fractions. 

In Figure 9, zein I was reacted with cyanogen bromide,dialyzed and 

lyophilized and then digested in the same manner. There are two 

differences from zein I peptide maps: 

a - Spots (2, 3) in zein I disappeared and two spots (M1 , M2) appeared. 

Spot M1 could be the same as spot 3 in location, and spot M2 could 

result from a new fragment peptide of the diffuse spots or the streaks. 

b - Most of the streaks and the diffuse spots did not show clearly and 

it is possible they were faint so it was not possible to distinguish 

them from the background stain. Another possibility is they were lost 

because of their small size after CNBr cleavage followed by dialysis. 

For the main spots (1-8) which are shared in zein I, zein A, and zein B, 

only two spots have methionines reactive to CNBr cleavage, these are 

indicated by spots (2, 3). The other major spots remained untouched. 

This agrees with the amino acid analysis for zein A and zein B and 

with the results which will he discussed later, which show that only 

zcln A contains cleavahlc methlonine (one or two). 

Another peptide mapping was done on fractions from hydroxyl.apatite 

chromatography. Some fractions contained zein A; those that contained 

a mixture of zein A and B together, and those that contained only zein 

B and some total zein 1 were complexed with SDS in the same manner and 

treated as mentioned before, were digested and separated as above, 

except the second dimension was in an electrophoresis tank. Total spots 

detected hy Htnlnlng with nlnhydrln 11umlwrcd 2(,, 32, and 28 [or zein 

I\, thl' mixture, 1111d zcln A, respect lvely. 

Spots were numbered on tlw map of the intcrmed.iate fraction 

polypeptides (l•'igure 10). Wlth a few exceptions (spots 32, 33, 34, and 



Figure 9. Peptide Maps of Tot.al Zein I in the Top and Total Zein I 
Cleaved with Cyanogen.Bromide Dialyzed Then Digested 
and Separated as in Figure 8. 
Unnumbered spots belong to diffuse spots or long streaks 
and does not match with the peptide mapping of zein A and 
zein B. 
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Figure 10. Peptide Maps of Zein I From the Intermediate Fractions of 
Hydroxylapatite Column Containing Both Zein A and Zein B. 
Proteins were digested with trypsin and chymotrypsin and 
spotted on 3 nun paper. Chromatography in butanol:acetic 
acid:water preceded electrophoresis at pH 1.9 in tanks 
electrophoresis apparatus. The top of the figure is a 
photograph of the chromatogram and the bottom is illus
trating drawing. 
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Yl) all peptides of digests of zein A and of zein B corresponded to 

peptides in the zein A-zein B mixture. Peptides 1 through 10 of Figure 

13 have an artefactually higher mobility than the other peptides 

probably due to uneven voltage distribution during electrophoresis. 

Not all spots were of equal intensity, suggesting that some peptides 

are present in less than molar amounts per mole of polypeptide. From 

20 to 21 zein B peptides and 17 to 21 zein A peptides were judged to 

be major peptides. Based on the amino acid analyses reported above 

18 to 21 spots would be expected for polypeptides of 20,000 and 22,000 

daltons. The number of major spots observed is thus entirely con

sistent with the presence of single polypeptides of the size and 

composition of zeins A and B. The minor spots could be due to the 

presence of additional unrelated polypeptides or to heterogeneity 

within limited regions of the peptide sequences of zeins A and B. 

Of the major peptides, 13 to 16 are shared between zein A (Figure 

11) and zein B (Figure 12). Four peptides (28, 29, Yl, Y2) are unique 

to zein Band two peptides (7, 31) although major in zein Bare only 

present in mi.nor amounts in zein /\. Conversely, four major peptides 

(16, 17, 20, 27) are found only in zein A and not in zein B. Most of 

the minor peptides are not shared between zein A and zein B. The 

comparison of peptide maps of zein A and zein B is consistent with 

the idea that zein A and zein B polypeptide chains share identical 

sequences for over half of their polypeptide structures. 

Comparison of peptide maps for zeins A and B with those of digests 

of the mixture derived from intermediate column fractions yields 

indications of heterogeneity.within zein A and zein B. Zein B peptides 

32 and Y2 arc not found in the map of fractions containing both bands 



Figure 11, P~ptiyo Mapa of Zain I From the Lat~ Fr~e.tione of th~ 
Hydrn1'yl.apatite Colmnn Which Contairuii Pure Zllin. A, 
ProtPin wn~ dl1e~ted and ~eparat~d 3~ in Figur~ 10, 
'J'he top of the figyre b a phgtograph of the c:hro~t"' 
ogr&m and th~ bott:om b U.luetrgi.t.:f..ng drawing. 
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Figure 12. Peptide Maps of Zein I From the Early Fractions of the 
Hydroxylapatite Column Which Contain Pure Zein B. 
Protein was digested and separated as in Figure 10. 
The top of the figure is a photograph of the chromat
ogram and the bottom is illustrating drawing. 
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and peptide 6 is only faintly detected in this map. Two zein A pep

tides (33 and 34) are not found in digests of intermediate fractions. 

Although the minor spots (32, 33, 34) may have gone undetected because 

of staining sensitivity, spot Y2 was a densely yellow staining peptide 

definitely absent from the zein A-B mixture. This implies the 

existence of at least two zein B polypeptides, one containing Y2 and 

6, eluting early, and the other lacking Y2, eluting later. Two minor 

spots (18 and 19) were only detected in the zein A-B mixture. 

Figure 13 shows peptides in the total zein I digest which were 

separated in tank electrophoresis. The pattern looks different from 

the separated zeins and the same explanation mentioned before (see 

above) is applicable here again. 

Isoclectric Focusing of Native Zeins 

Preliminary isoelectric focusing of zeins using tube gels and no 

urea in the buffer gave a few bands (5 to 8) with poor resolution. 
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This was most likely due to precipitation of the protein in the top of 

the gels due to insufficient detergent to keep the protein soluble. In 

spite of that, zein fractions from the hydroxylapatite column gave 

separations which showed that the zein A components focused in the basic 

region. Thls is consistent with the higher arginine in zein A as shown 

hy amlno ncld a11:1ly1-1ls (seep. 11!1). Also, different fractions contained 

dlffprt•nt handH l11dlc11tlv<' of elution of 1wver11l polypeptldcs whlch are 

dlffpre11t 111 thl'lr pI'H. When urea was .u:-~ed ln the buffer system (as 

Ln Materials and Methods) uslng slab gels and pH from 3-10 in order to 

focus all zein polypeptides on the same gel, better separation and 

resolution was obtained. Figure 14A and 14G show the IEF pattern 



Figure 13. Peptide Maps of Total Zein I Extract Which Was Complexed 
with SDS and Dialyzed, Lyophilized Then Digested and 
Separated as in Figure 10. 
The top of the figure is a photograph of the chromato
gram and the bottom is illustrating drawing. The 
unnumbered spots are either diffused spots or streaks. 
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Figure 14. lsoelectric Focusing Profiles of Modified and Unmodified 
Zeins. 
A) zein I, B) zein J in the presence of SDS, C) zein 
T alkylated with iodoacetamide, D) zein I alkylated 
with acrylonitrile, E) zein II alkylated with acrylo
nitrile, F) zein II alkylated with iodoacetamide, 
G) zein II unmodified. 
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obtained with zein I nnd zein II extracts, respectively. In accord 

with the results of others (Righetti et al., 1977) approximately 17 

bands could be distinguished and these are numbered beginning with 
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the most acidic in the zein I profile. Within the resolution of the 

method, most of the zein I bands can also be found in zein II. In the 

acidic region there are six diffuse faint bands (1-6) in zein I. Two 

of these (5 and 6) are more prominent in zein II. Zein II also con

tains two acidic bands (la and 3a) not found in the zein I profile. 

In the neutral to basic region, there are three further differences 

between zein I and II profiles, excluding differences in relative 

staining intensity. The faint zein I band 16 could not be detected 

in zein II. Zein I band 14 appears in zein II as a closely spaced set 

of two bands (14a and 14b). There are two bands (10 and 11) between 

the dark zein I bands 9 and 12 in zein I, but only one in zein II. 

Some bands appear bowed while others are straight. The cause of this 

bowing is unknown, but it was reproducibly observed and thus used to 

distinguish these bands. 

Covalent Modification of Zeins 

The low ·molecular weight zelns are known to be rich in methionine 

(<:lnnnzzn Pt al., 1977) whllt• zelnH A :ind B have nn average of only 2 

or 1 methlonl.nl' residues per ch:tin, rc•spectlvely (FraiJ and Melcher, 

1978). In an effort to test whether bands in the acidic region are 

components of the low molecular weight zeins we have examined the IEF 

pattern of zeins after modification with iodoacetamide. Alkylation 

of cysteine residues with iodoacetamide should not alter the iso

electric points of polypeptides (as reported by Scott et al., 1973), 
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unless these are very basic, since a neutral group is replaced by a 

neutral group. Alkylation of methionine residues, however, creates a 

non-titratable positive charge out of a neutral moiety and should thus 

cause molecules to focus at a more basic point. 

Alkylation of zein I and zein II with iodoacetamide was performed 

under neutral to slightly acidic conditions. Figure 14C shows that 

the IEF pattern of zein I polypeptides was not altered by alkylation. 

On the other hand, the zein II pattern was altered considerably 

(Figure 14F). Bands 7-17, those also present in zein I, have not 

changed, but bands la and 3a have disappeared. There is also a 

diminished relative intensity of bands 5 and 6. The pattern of acidic 

bands in zein II after iodoacetamide alkylation is indistinguishable 

from the pattern of zein I bands in this region. There are a series 

of new bands focusing in the region on the basic side. Bands 15 and 

17 appeared as two closely new bands and below band 17 there are at 

least 5 bands. An interpretation of this is to mean that bands la, 3a, 

5 and G contain residues that are susceptible to alkylation.under these 

conditions while bands 7 through 16 do not contain susceptible 

residues. The large shift observed could be due to the presence· of 

several methionine residues per chain in the acidic zeins (Gianazza 

et al., 1977). 

When zein I was modified with acrylonitrile (Figure 14D), bands 

In the nclcll.c region were not affected. The pattern of the hands in 

Lh1• 111•11tr:ll to h:iHll' rt•glon WllH, howevPr, 11ltl•red conHldernhly. 

'l'h(!Hl' appl'ared to shl ft to more acidic isoclectric points. Since the 

mohlllty changes of isolated bands were not examined definite conclu

sions as to which bands were modified are not possible. The simplest 



interpretation, however, is i11ustrated in Fig~re 15 where the 

modified and unmodified zein I lanes have he~n cut from a photograph 

and reposltioned to align bands 9 and· 12 of the unmodified zein with 

the two darkest modified bands. This alignment resulted also in an 

alignment of bands 13 and 15. The shift in mobility of bands 14, 16 

and 17 was greater than that of 9 and 12. Whether bands 10 and 11 

shifted could not be determined since the modified band 13 obscures 

this area of the gel. 

The result implies that most of the zein I bands contain acrylo-

nitrile modifiable residues and that some of the more alkaline bands 
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(14, Hi and 17) may contain more such residues than others (13 and 15). 

The results of alkylation of zein II are shown in Figure 14E and 

re:tligned :ts the zein I photographs were in Figure 15. Bands J and G 

have not shifted while bands la, 2 and 3a have undergone a shift to 

more acidic pH. For the most part the positions of the modified zein 

II bands in the alkaline half of the gel correspond to those of 

modified zein I bands. It was unable to explain the higher relative 

intensity of the modified bands 5, 6 and 8. 

Zein I and zein II were also alkylated with radioactive iodoacetate 

under conditions where alkylation of cysteine is favored. Such alkyla-

tion should introduce negative charges into cysteine containing 

molPculeH and thuH shift their lfo:F posltionH to the acidic side. lf 

1ilkyl11tton of llll'thlonlm· rt•Hldue:-i occurn•d It Hhould not affect the pl 

Hince both 11 posltlVP and n 1rng11tlvc~ charge wlll be Lntroduced. The 

14 pattern of l C)-iodoacetate modified zein I bands (Figure 16c) is 

similar to that of acrylonitrile modif:f.ed b&nds (Figure 16d). Acidic 

bands corresponding to modified bands la and 3a are visible in zein I 



Figure 15. Comparison of IEF Profiles of Unmodified Zeins with Zeins 
Modified with Acrylonitrile. 
Lanes were cut from a photograph of the gel shown in 
Figure 2 and the acrylonitrile modified zeins reposi
tioned to show the correspondence between modified and 
unmodified bands. Identification of lanes as in 
Figure 2. 
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Figure 16. Comparison of IEF Profile of Zeins Modified with 14c -
iodoacetate, (band c) and with Acrylonitrile (a and d). 
A and b) zein II; C and D) zein I. 14c bands 
detected by fluorography. 
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whereas they could not be detected in that extract by Coomassie blue 

staining (Figure 16a). The greater fluorographic intensity relative 

to Coomassie blue staining of these acidic bands in both zein I and 
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II is consistent with a higher content of cysteine of low molecular 

zeins since the specific radioactivity of these bands should be higher 

than that of bands containing low amounts of cysteine. Bands corres

ponding to stained bands 5, 6 and 9 are noticeably absent among the 

radioactive zeins (Figure 16b and 16c). The absence of labeled bands 

S and 6 is consistent with the inability to detect a shift in IEF 

position after acrylonitrile treatment. Band 9, however, was shifted 

after the latter treatment (l~igure 1.5) suggesting that a residue other 

than cystelne had reacted with acrylonitrile. 

Hydroxylapatite Chromatography 

It has been shown that chromatography of zein dodecyl sulfate com

plexes on hydroxylapatite produces some fractions that contain only zein 

A and others that contain only zein B when judged by SDS-PAGE (see above). 

Hydroxylapatite chromatography followed by IEF should thus permit the 

assignment of some of the TEF hands to zein A and others to zein B. 

'l'IH•rv ls, howevPr, cn1H't•r11 that IEF of zeln <lo<lecyl sulfate complexes 

nmy lead to artifnctual results due to the negative charge of dodecyl 

sulfate. Flgure 17C shows the TEF profile of zein-dodecyl sulfate 

complexes. The pattern ls basically similar to that of zein in the 

absence of <lodecyl sulfate. It is, however, less distinct and less 

intense. A precipitate, probably containing protein, formed in the 

slots of lanes to which SDS-protein complexes were applied. The 

addition of NP-40 to the zein-SDS complexes prevented this precipi-



Figure 17. IEF Profile of Fractionated Zein. 
Zein fractionated by hydroxylapatite chromatography was 
submitted to IEF. Numbers refer to chromatographic 
fractions. a) unfractionated zein II; b) unfraction
ated zein I; c) unfractionated zein I with SDS and 
NP-40. 
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tation (Figure 17b). The pattern of zein peptides was the same with 

or without SOS (Figure 17c and 17b, respectively) except that the 

presence of SOS caused the whole pattern to shift by about 2 mm to the 

more basic side. Similar reports that the use of NP-40 makes possible 

the IEF separation of SOS protein complexes have recently been pub

lished (Tuzynski et al., 1979). 

Figure 5 also shows the IEF pattern of selected fractions from 

hydroxylapatite chromatography. By SOS-PAGE it was determined that 

fraction 62 contained only zein B and that fractions 77 and 79 con

tained only zein A. Intermediate fractions contain mixtures of zein 

A and B. Several of the IEF bands could thus be assigned to zein B: 

bands 7, 12, 13 and 17 (some of these are not visible on the photo

graph but were clearly seen in the gel). Similarly four bands (11, 

14. 15 and 16) can be identified as zein A polypeptides. Peptides 5, 

6, 8 and 9 are found predominantly in intermediate fractions and can 

thus not be assigned, although it is probable they belong to the zein 

B group since members of this group are predominant in zein I. It is 

of interest that although on the average zein A bands are more basic 

than zein B bands, the most basic band (17) is associated with zein B 

and that a zein A band (1) is found among the central bands in the IEF 

pattern. The more basic pI values for zein A are consistent with their 

higher content of arginine (as shown In the amf.no acf.d analysis). 

Ca rhohyd ra tP 

It hm; been reported that zef.n preparations contain carbohydrate, 

an observation that has been confirmed by Melcher (Fraij and Melcher, 

1979). However, Burr et al. (1978) speculated that a covalent bond may 
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exist between the sugar moiety and the polypeptides. To further inves

tigate the possible presence of sugar, an IEF g.:.~s was staine<l with 

periodic acid-Schiff reagent, which reportedly stains zein peptides on 

SDS-PAGE (Burr and Burr, 1979). None of the zein bands in Figure 15 

were stainable, however, one band that stained with periodic acid

Schiff reagent in the acidic region of the gel about 1 cm from the 

origin when NP-40 had been added to the sample was detected. It is 

thus possible that the carbohydrate observed in zein preparations 

remains associated with zein during SDS-PAGE but is dissociated from 

it under the conditions of IEF. A similar absence of carbohydrate 

staining of IEF zein bands has been reported by others (Righetti et 

al., 1977b). 

In vitro Products 

When mRNA extracted from polysornes of a protein body enriched 

fraction of developing corn endosperm is translated in a cell free 

extract of wheat germ, the products detected can be identified as 

precursors to zein polypeptides (Burr et al., 1978; Melcher, 1979; 

Wlennnd and Felx, 1978; Larkins and llurkman, 1978). 

Zl•ln mtrnA was i:-iolated and translated ln ~1_!_!":2_ (as described in 

M11tl•rlal H and Method8). The translntion products were applied to 

Sl>S-l'AGE. The radloautograph of the product is shown in Figure 18. 

Tlw polypeptide formed from the isolated message was identified as 

precursors to zein A, B and C which is in agreement with published 

results by Melcher (1979). 

So far, all the results support that zein is indeed a heterogene

ous protein and such heterogeneity is due to primary amino atid 



Figure 18. Discontinuous SDS-PAGE of in vitro Products of Zein mRNA 
with a Running Gel of 12.5% Detected by Fluorography. 
Tube 1 contains 2 µi of mRNA and tube 2 contains 3 µi 
mRNA from the same extract. Tube 3 contains 3 µi of 
another extract mRNA. A, B and C are zeins A, B and C. 
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differences. To gain more results supporting this conclusion and to 

examine such heterogeneity at the molecular level in an effort to 

estimate the number of genes responsible for zein biosynthesis, two 

approaches have been made: First, studying the in vitro product by 

isoelectric focusing to see whether such a product is as heterogeneous 

as the native zein. The second approach was the hybridization of the 

isolated zein mRNA to the extracted corn seed DNA cleaved with restric

tion endonuclease (EcoR). 

Isoelectric Focusing of Zein in vitro Products· 

The ~n vitro translation products were submitted to IEF and the 

radioactive products were detected by fluorography. In the pH range 

from 3.5 to 10 there were at least 18 di8tinguishable bands distributed 

among a wide range of isoelectric points (Figure 19). To ascertain 

whether all of these in yitro products were zein polypeptides, the 

incubation mixture was extracted with ethanol or ethanol and a reducing 

agent. Figure 20c and 20f show th~se extracts and Figure 20d and 20e 

the residue remaining after these extractions. Identical patterns were 

obtained in the two kinds of extracts. Approximately 90% of the 

radloactivity was extractable with ethanol. The polypeptides remaining 

In tlw residue for the most part foctrnc.d to the same positions as those 

l'Xtracted with ethanol. There were, however, two acidic bands present 

In tlit• resldlll' which wen• not extracted with ethanol. These two poly

peptides may be zcin precursors which are not ethanol.soluble, other 

storage proteins, or membrane components coded for by minor mRNA 

molecules in the preparation. It is unlikely that they are wheat germ 

polypeptides since this cell free extract has a very low background 



Figure 19. Isoelectric Focusing Profiles of in vitro Zein Products 
Detected by Fluorography. 
a - To 50 µ~ incubation mixture 1 ml of 10% cold TCA was 
added, then suspension was centrifuged and the pellet 
washed with 1 ml of 0.2 M Na acetate (pH 4.5). The final 
pellet was resuspended in Tris-glycine buffer and applied 
to the gel. b - As in a, except the wash step was sub
stituted by ether. 
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Figure 20. Comparison of IEF Profile of Products of in vitro Protein 
Synthesis Detected by Fluorography (c-f"")"°with Coomassie 
Blue Stained Proteins (a, b). 
a) Zein I; b) Zein I + wheat germ extract; polypep
tides extracted with c; ethanol, f) ethanol and 2-
mercaptoethanol; d) and e) residues of extractions 
c) and f), respectively. 
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incorporation of amino acids in the absence of added mRNA. 

Also displayed in Fi.gur:e 20 are the Coomassie blue staining pat-

terns of th ls gel. Figure 20a shows zein without any wheat germ 

extract while the Figure 20b shows the whole incubation mixture to 

which unlabeled zein had been added. The multiple bands in the 

neutral to acidic region can be seen to arise from components of 

the wheat germ extract. The pattern of the in vitro products were 

detected by fluorography. Although one or two fluorographic bands 

may align with stranded bands, the alignment may be fortuitous. The 

possibility that genetic differences in the source of the RNA and of 

the standard zein were responsible for this difference was considered. 

Zein extracted from the same variety of corn as that from which the 

RNA was obtained showed an IEF profile identical to that shown in 

Figure 14a except for a diminished intensity of band number 13. The 

difference in IEF pattern must therefore be due to the lack of post-

synthetic modiflcation (removal of the signal peptide) of the zein in 

this in vitro incubation. 

Hybridization of the Isolated Zein mRNA 

To the Restricted Corn DNA 

Zein mRNA was isolated and labeled with 125iodine. Extracted 

corn seed DNA was cleaved with restriction endonuclease (EcoR ) 
1 

and the fragments were separated by agarose gel electrophoresis 

before being transferred to nitrocellulose strips (as mentioned in 

Materials and Methods). Hybridization of the immobilized DNA fragments 

wlth the labeled mRNA gave 15-20 distinct bands (Figure 21). It was 

reported by Wienand et al. (1978) that the molecular weight for zein 



Figure 21. Agnrose Gel Electrophoresis of ImA Cleaved with EcoR1 • 
a - CaMV markers: CaMV DNA cleaved with EcoR1 : M.W. 
(megadaltons); b - radioautograph of hybridization 
strip of corn DNA/mRNA; c - radioautograph of hybrid
ization strip of corn DNA/rRNA. 
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A mRNA is 500,000 while zein B mRNA is 330,000. In Figure 21A 

standard markers range from 5 million MW to 0.3 million of double 

stranded CaMV DNA. Since zein A mRNA has a MW 500,000 the double 

standard DNA coding for this mRNA is equivalent to 1 million MW. Over 

one half of the radioactive bands can be seen with MW higher than 1 

million. Thus over one half of zein genes are located in DNA sequences 

with a MW higher than needed for zein A mRNA. For all bands that were 

seen on the strip, it is not possible to know whether each band is a 

complete zein DNA sequence or zein DNA sequence plus some other 

sequences which were fractionated as one band on the gel. 

It is possible that the large number of sequences in corn DNA 

which hybridized to the zein mRNAs could be considered as single genes 

which codes for a large number of polypeptides. Alternatively each 

band could represent a sequence of a split gene, where intrans separated 

extrons (the sequences which codes for the polypeptides). From the 

radioautograph (Figure 21) some bands are seen more intense in radio

activity than others. This is seen especially in the bands from top to 

bottom where the top bands are more .intense and such intensity becomes 

fa 1.nter. Tlrls means that the sequence which ~ave more intense hands were 

lnrger tlwn tlw fainter hands :ind this ls ln agn•cmcnt with the 

111olt•c11l.ar wl'lght r1111gt• Huch h;in<ls movt•d. Zeln A and B ;in• the dom.I.nant 

polypeplld<.•s l.n zeln protel1m as llll'lltloncd above. The existence of 

other corn MW polypeptides like zeln C, D and E also were mentioned. 

Thus it is expected that there are major zein mRNAs for the major zeins, 

zein A and B. Such mRNAs may give the intense bands, while the fainter 

bands may come from smaller zein mRNAs belonging to the low MW zein 

polypeptides. 
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The results discussed above are in good agreement with the 15-20 

bands found in electrofocusing results. Such results would eliminate 

or make unlikely that a post-synthetic modification which might alter 

the electrophoretic mobility and such variation in this process would 

lead to apparent heterogeneity. 

The possibility of the existence of other than zein mRNAs in the 

extract is possible, since two minor bands out of eighteen bands of 

the in vitro products that we·rc shown in the IEF results were not ethanol 

soluble and hence possibly not zein proteins. Such minor mRNA could 

have some sequences which gave some of the bands on the hybridization 

strip, but the numbers must be very limited and should not be a major 

source of raising the number of the detected bands. 

Another possible RNA sequence which could give a radioactive band 

in this system is contamination of mRNA with rRNA. To be certain 

labeled rRNA also was hybridized separately on another strip from the 

same gel run (Figure 21). Comparing rRNA labeled bands with rnRNA 

labeled hands revenls that these bands do not match. This proves that 

the lalw ll•d mHNA was fr('(' from any rHNA contaminat Ion. 



CHAPTER IV 

DISCUSSION AND CONCLUSION 

Zein I and zein II fractions have some similarities and some 

differences. The closest similarities are seen in the IEF patterns 

of zein I and zein II (Figure 14) whe~e most of the zein I bands can 

also be seen in zein II. In the acidic region there are six different 

faint bands in both zein I and zein II; two of these (5 and 6) are more 

prominent in zein II. In addition zein II contains two additionalacidic 

bands (la and 3a) not found in zein I. Another two bands in the 

neutral region also differ between zein I and zein II (bands 16 found 

only in zein I, and band 14 in zein I appears as a closely spaced set of 

two bands in zein II). However, SDS-PAGE demonstrates in zein II two 

new polypeptide chains (zein D and E) absent in zein I. Zein C also 

was most prominent in zein II and very faint in zein I (Figure 3). 

From the point of view of solubility, zein II behaves differently 

from zein I since it is only soluble in alcohol containing 2-ME. It 

could be that zein II is linked into supramolecular complexes by disulfide 

bridges formed either among zein II chains, or among zein II chains and 

other non-zeln componentH like glutelln as reported by Paulis et al. 

(1969). The alcohol soluble polypeptides consist of a few components 

·represented in zein I as zein A1 , zein A and zein B. The residual 

part of zein (zein II) has indeed polypeptides with mobilities equal 

to those present in zein I. There are zein A1 , zein A and zein B 
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chains represented, however, in absolute terms, a minor part of the 

zein II since this fraction contains a considerable amount of other 

subunits with lower MW (zein C and zein D). This is in agreement 

with results reported by Salamini et al. (1977). 

Zein A1 , zein A and zein B of zein II possibly represent a part 

of zein which has lost its typical solubility through linking with 

other components by disulfide bridges. 

The most prominent difference between zein I and zein II as 
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shown in both the SDS-PAGE and TEF is the presence of the low MW 

polypeptides (zeln r., ()and E). Such pnlypeptid(•s have lwen reported 

to be typJcal zcin polypeptides containing 4-5% sulfur-containing amino 

acids particularly methionine (Gianazza et al., 1977). The above 

mentioned bands in zein II (Figure 14) are reported to belong to the 

low MW polypeptides (Gianazza et al., 1976). 

When zein II was alkylated with acrylonitrile bands la and 3a have 

disappeared and a series of at least five new bands focusing in the 

basion region appeared. This means that the acidic bands contain 

residues that are susceptible to alkylation with acrylonitrile. The 

large shift observed could be due to the presence of several methionine 

residues per chain ln the acidic zeins (Gianazza et al., 1977). 

The present results establish that the large heterogeneity 

in zein I polypeptides can be demonstrated by several methods: 

by column chromatography on hydroxylapatite, CNBr cleavage, 

N-terminal analysis, and by isoelectric focusing. By hydroxyl

apatite column chrom~tography the profile of zein I elution was 

much broader than that obtairted when a homogeneous protein is · 

chromatographed (Moss et al.,1972) under identical conditions. 
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This suggests that perhaps the profile observed is a collection of 

peaks due to a collection of molecules with only very slight differences 

from one another. Zein A differs from zein B in molecular weight 

(21,000 vs 19,600). The profile results from the elution at slightly 

differing salt concentrations of the various zein polypeptides. By 

size analysis it was demonstrated that, in general, the zein B poly

peptides elute at lower salt concentrations than the zein A polypep

tides. However, some zein B polypeptides elute at the same salt 

concentration as some zein A polypeptides resulting in fractions that 

contain both size classes of zein polypeptides. Such fractions were 

applied to a new column after reduction for the second time at 5% 2-ME 

although it was not possible to achieve further separation between 

those particular zein A and zein B polypeptides. This implies that the 

two zeins in these fractions have a different ability to bind the 

hydroxylapatite from the rest of the separated zein A and zein B. 

This means that there are differences existing in their structure. 

This was proved by lEF (see below) and by peptide mapping where two 

spots were unique to such fractions. 

The separation on hydroxylapatite column was evidenced by the 

observation that certain tryptic-chymotryptic peptides are localized 

to particular regions of the column. 

Two different zein B molecules can be distinguished on the basis 

of peptide mapping. For example, peptide Y2 is found only in early 

fractions from the hydroxylapatite column where zein B is uncontaminated 

by zein A. The spot is absen.t from peptide maps of fractions containing 

polypeptides of both molecular weights. Two differ~nt zein A poly

peptides can be distinguished on the basis of N-terminal analysis, one 
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pqlypeptide with phenylalanine and the other with blocked N-termini. 
,. 

However, by cyanogen bromide cleavage, three zein A can be distin-

guished, first polypeptide with no cleavable site, the second with one 

cleavahle site and the third with two cleavable sites. Although only 

five different zeins A and zeins B could be distinguished structurally 

by the mentioned techniques, it was likely that these polypeptides 

were still more complex as we will see later. 

Zein A and zein B polypeptides are very similar not only to 

members of the same class but also to members of the other class. 

Ze:ln A fract1ons had only minor differences in amino acid composition 

when compared with zein B contai.ning fractions. Peptide maps of zein 

A and zein B fractions show that of the 21 to 24 major peptides, 13-16 

occur in both maps. Based on the sizes and amino acid compositions of 

zein A and B, approximately 20 tryptic-chymotryptic peptides are 

·expected. 

Three-fourths of the major spots are shared between zein A and B. 

This means that the polypeptides of the zein A and B size classes 

have a common core structure accounting for approximately three-fourths 

of the length of the polypeptides. The existance of such common core 

structure is also reflected in the similarity of the amino acid compo-

sitions of the separated zeins. Such similarity in amino acid composi-

tion is due to selective pressure on the seed to store only certain 

amino acids (the hydrophobic), almost 60% of the amino acid residues 

in.zein are hydrophobic. Such forces are~ functional requirement for 

zein accumulation to maintain their ability to be packaged into 

granules. Also certain amino acids to be stored in seeds have to be 

compatible wi.th the metabolism of .the developing and the germinating 



seeds. The observatlon that zein polypeptides have a cmmnon core 

structure is consistent with similar observations on gliadin (Bietz 
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et al., 1970), the analogous protein fraction of wheat. The hetero

geneity of the zein polypeptides results from two kinds of variation. 

A limited variation results in the distinction between zein A and zein 

B polypeptides. In addition to the common core peptides there is a 

series of eight major peptides, four of which are found only in zein A 

containing fractions, and the other four found only in zein B containing 

fractions. It is very likely that the four zein A and zein B peptides 

form variable pe~tides and probably such variable peptides are the 

source of differences in the four polypeptides for each zein A and zein 

B. This conclusion is based on the existence of four bands for zein A 

and another four bands for zein B from the purified hydroxylapatite 

fractions on the IEF as will be discussed later. 

The middle fractions of the column which contains both zein A and 

B together gave 3-4 more peptides than the pure zein A or B. In addi

tion there are two major spots found only in this fraction which are 

absent from the pure A or B peptides. From IEF results (see below) 

there are four barn.ls in this fraction which are different from the 

zeln A or zeln B bane.ls. Tn the peptide maps of the tryptic-chymo

tryptic dlgests of all fractions examined there were peptide spots 

that were not as intense as others. These peptides were different for 

each fraction. They could originate from polypeptides other than 

zein A or zein B, such as zein A1 or the low MW zein, zein C, D and E. 

Alternatively, the minor spots could come from a hypothetical zein A 

and zein B variable region. As if there are several zein A polypep

tides differing in sequence in only few peptides and it is very likely 
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this is the case for most of these faint peptides where all the results 

prove the existence of several polypeptides for each zein A and zein 

B. Such variable region may be the structural basis for the hetero-

geneity observed by IEF and hydroxylapatite chromatography. 

It can be concluded that some of the variation so far detected 

is due to sequence differences. The difference between zein A and 

zein B must be due to differences in sequence since zein A is 

cleaved by reaction with cyanogen bromide while zein B is unaltered. 

Furthermore; the observation of three different cyanogen bromide 

cleavage patterns with zein A must indicate that there are at 

least three different amino acid sequences in zein A. Common core 

sequences cannot be at the N-terminal end of zein polypeptides since 

two different N-terminal amino acids were found for zein A and zein 

B polypeptides. That only one amino acid could be identified as 

N-terminal for each zein A and zein B polypeptides suggests that the 

variable region sequences may be at the N-terminal end. Consistent 

with this hypothesis is the observation that in vitro synthesized 

prezein A is cleaved by cyanogen bromide to generate a large frag-

ment of the same size as the 19,600 dalton fragment generated by 

cyanogen hromlde treatment of native zein A as reported by Melcher 

(1979). Since the precursor bears an extra stretch of polypeptide 

presumably at the N-terminal ehd, the methionine ~t which cleavage 
I 

occurs must also be near the N-terminal end of the chain. The 

minor cleavage pattern of zein A to generate a large fragment of 

17,000 daltons suggests, also, that the variable sections can be 

located near the N-tenninus, perhaps interspaced with common core 

sequences. 
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Additional evidence wh:i,ch estahl.ishes that the heterogeneity in 

zein polypeptides is due to differences in amino acids in the primary 

sequence came from chemical modification of zein proteins. Protein 

modification reactions are seldom specific for any one particular 

kind of residue. Nonetheless, if the same residues are present 

in the same environment in two polypeptide chains, they should 

be equally modified. Thus differences in the modification of a 

population of polypeptides implies a difference in the content of 

modifiable residues or a difference in the primary amino acid sequence 

around these residues. Thus the observations presented here that some 

polypeptides change in isoelectric point while others do not and that 

some polypeptides are shifted more or less than others can be taken 

as evidence that the polypeptides differ in amino acid sequence. 

Of the modifications attempted here, the modification with iodo

acetamide was probably the least specific. Under the conditions used 

modifications of cysteine, histidine and methionine residues are 

possible. Alkylation of amino groups are probably not significant 

because most of the amlno groups were in the non-reactive protonated 

form ~urJng the experiment, and because the reaction rate of amino 

groups .ls much slower than with the other residues (Means and Feeney, 

1971). Although alkylation of cysteine residues probably occurred it 

cannot be responsible for the basic shifts in isoelectric point that 

were observed since the modification should not change the charge 

except at fairly basic pH (Stott and Feinstein, 1973). Since reaction 

with histidine residues is fairly slow., it is likely that the shifts 

observed are due to alkylation of methionine residues. Consistent 

with this interpretation, only the acidic bands shift positidn to 
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more basic pH. These polypeptides are known to contain considerable 

amounts of methionine (Gianazza et al., 1977). 
I 

Acrylonitrile modifies sulfhydryl and amino groups creating 

the cyanoethyl derivatives. Since modified polypeptides focus at 

more acidic pH values, we believe. that the cyanoethyl groups have 

been converted to carboxyethyl groups by the strong acid present 

in the electrode solution of the IEF apparatus. The modification 

of amino groups proceeds much less rapidly and at higher pH than 

the mod:if ication of sulfhydryl groups (Means and Feeney, 1971). 

It is thus likely that the shifts observed with this reagent are 

due mainly to modification of cysteine residues. Since in the 

14 ' 
radioactive labeling of zeins with [ C]-iodoacetate an excess of 

iodoacetate over sulfhydryl was not used, it is likely that only 

cysteine residues have become modified with carboxymethyl groups. 

That the pattern of 14c labeled bands is similar to that of acrylo-

nitrile modified bands argues that acrylonitrile also modifies only 

cysteine under the conditions employed. Band 9, modified by acrylo-

14 nitrilc but not hy [ C]-iodoacetate is the exception to this 

gcnerallzation. It is interesting to speculate that band 9 may 

contain lysine residues which react with acrylonitrile but not 

with iodoacetate. 

These considerations lead to certain conclusions about zein A, 

zein B, and low molecular weight zeins. Zein A of 22,600 daltons, 

consists of at least four polypeptides that generally focus in the 

basic region of IEF gels, although at least one of them (band 11) is 

considerably less basic than the others. The basic behavior is 

consistent with the arginine content.of this fraction (Fraij and 
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Melcher, 1978). The IEF positions of zein A bands are not modified by 

reaction with iodoacetamide although amino acid analysis suggests the 

presence of two methionines per chain. The observation of methionine 

incorporation during in vitro synthesis and the susceptibility of zein 

A chains to cyanogen bromide cleavage supports the presence of methio

nine in these chains (Melcher, 1978). All zein A bands, with the 

possible exception of band 11 probably contain cysteine. Mobility 

shift analysis of modified polypeptides has been shown to be a reliable 

method of estimating relative contents of cysteine (Stott and Feinstein, 

1973). Thus, the larger shift in mobility of bands 16 and 14B when 

compared with 15 ls an indication of a difference in amino acid 

composition, namely a higher cysteine content. Such a difference must 

derive from a difference in coding sequences of the mRNA. 

Zein B of 19,600 daltons consists of at least four polypeptides 

that generally focus in the neutral to basic region of IEF gels and 

include the mos.t basic band detected in unfractionated zein. The IEF 

positions of zein B polypeptides, like those of zeins A, are not 

modified by reaction with iodoacetamide. This observation is consistent 

with the lack of cleavage by cyanogen bromide, but contrasts with the 

observation of one methionine per chain in amino acid analysis. This 

meth:ionine may derlve from small amounts of low molecular weight zeins 

which may be present in these fractions. All the identifiable zein B 

polypeptides appear, from their shift in mobility upon acrylonitrile 

and iodoacetate reaction to contain cysteine, with band 17 containing 

more cysteine than the others. 

The low molecular weight zein polypeptides are most prominent in 

the zein II extract, contain methionine and cysteine, and electrofocus 
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in the acidic region of IEF gels. It should be pointed out, however, 

that not all polypeptides that focus in this region share these 

properties. There are a series of faint diffuse bands that do not 

become modified with iodoacetamide. There are 4 bands (S, 6, 8 and 9) 

which because of their elution in the middle of the hydroxylapatite 

elution profile cannot he assigned to a molecular weight. Of these, 

bands 8 and 9 whose IEF positions are not modified by iodoacetamide 

reaction but are modified by acrylonitrile. Band 9 may contain lysine 

since it does not react with iodoacetate. On the other hand, bands 

5 and 6 are not modified by acrylonitrile or iodoacetate reaction. 

Reaction of zein with iodoacetamide reduces the relative intensity of 

bands 5 and 6 raising the possibility that each consists of both 

modifiable and unmodifiable polypeptides. 

The products of in vitro translation of zein mRNA in wheat germ 

extracts have previously been shown to be precursors of zein polypep

tides. TIIBy are longer by 10 to 20 amino acids than the final poly

peptides (Burr et al., 1978; Melcher, 1979; Wienand and Feix, 1978; 

Larkins and Hurkman, 1978). It has also been shown that when membranes 

are included in an in vitro zein protein synthesis reaction these 

precursors are trinuned to their native size (Larkins and Burkman, 

1978). It has been suggested that in such incubations glycosylation 

can also occur (Burr and Burr, 1979). The number of zein precursor 

products formed in the wheat germ system is similar to the number of 

zein polypeptides detectable by Coomassie blue staining of IEF gels. 

l~wever, the lsoelcctrlc focusing pattern ls quite different. The 

polypeptides detected ~an be confidently identified as zein precursors 

for two reasons. First, on SDS-PAGE zein precursor molecules are 
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almost exclusively detected. Second, the bands extractable with 

ethanol are the same as those seen without extraction. Ethanol extrac

tion is the criterion used to define zeins. The possibility that the 

efficiency of translation of the different mRNA species in the wheat 

germ extracts differs from that in vivo is ruled out by the observation 

that IEF patterns identical to mature zein are obtained when in vitro 

products are made in the presence of membranes (Viotti et al., 1978). 

In most animal (Schecter et al., 1975; Devillers-thiery et al., 

1975) and some bacterial proteins (Inouye et al., 1977) made on mem

branes for transport or secretion have mRNAs which, when translated in 

cell-free systems without membranes, serve as templates for larger

than-authentic sized products. This is also the case for zein which 

also passes through a membrane during or after synthesis. It is also 

larger when made in a cell-free system (Burr et al., 1978; Melcher, 

1979). The additional length has been called the signal peptide 

(Blobel and Dobberstein, 1975) and is thought to be cleaved as the 

amino terminus traverses the membrane on which it is made. 

Another plant protein which is also proteolytically cleaved is the 

light chain of ribulose diphosphate carboxylase (Dobberstein et al., 

1977; Cashmore et al., 1978). The altered IEF behavior of zein pre

cursors can thus be attributed to the properties of the signal peptides. 

These must be also heterogeneous in sequence, since a single signal 

sequence present on all precursors ought to produce a uniform mobility 

shift for all bands. 

The initial products of translation in this processing system are 

heterogeneous. It is concluded that the primary amino acid sequences, 

and thus the genes coding for these polypeptides are also heterogeneous. 
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This conclusion is strengthened by the mRNA/DNA hybridization 

results, where zein mRNA sequences are found on 15-20 different sizes 

of EcoR, restriction fragments of mDNA. 

The presence of such a large number of sequence coding for 

the zein polypeptides raises two possibilities. The first is 

that the similar polypeptides of zein are coded by diverging 

genes derived from a common ancestral gene when a mutation (e.g. 

point mutations lead to a new gene which codes for a new polypep

tide; hence, in a few amino acid(s) in the sequence). Polydisperity 

in storage proteins has been reported in wheat gliadins (Wrigley 

and Shepherd, 1973) and in potato storage proteins (Stegeman et 

al., 1973). 

The second is a process ~f splicing different small gene segments 

to a core gene for the common sequence. Such a process is possible 

:lf the structural differences among zein polypeptides were localized 

to one region of the polypeptJdc, leaving a region of shared sequence. 

Although the intensity of the restrlction bands are different, some 

bands are darker than the others, which implies that the dark bands 

came from longer sequences of the message which exists in a predominant 

form. Such results cannot favor one of the mentioned possibilities, 

but indeed explain that zeins are polypeptides and are heterogeneous 

because the zein genes are also heterogeneous and thus excluding the 

postmodiflcation effect on the heterogeneity observed. It is not 

possible to estimate the exact number of zein genes from the present 

results, but the results demonstrate that the heterogeneity observed in 

the present study of zein proteins must he due to primary differences 

in the amlno acid sequence. Thus the number of genes coding for such 
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a large number of polypeptides have to be large in number as well. ' 

Supporting such a conclusion is the observation of 18 different poly

peptides which are seen by IEF and such number corresponds to the 15-20 

bands seen in the restriction fragments of the corn DNA. 
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