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CHAPTER I 

INTRODUCTION 

l. l General 

During the last decade reinforcing soil with tension-resistant 

material has been widely implemented into practice. Generally it is 

used for strengthening a soil foundation, and most experimental and 

theoretical studies have been devoted to evaluating the strength of re

inforced soil-filled foundations. Model tests (16) have shown that re

inforcement increases both strength and rigidity of a soil foundation .. 

Now, metal is generally used for the reinforcement but the writer be

lieves that synthetic materials will soon be widely applied for this 

purpose. Reinforcement made of films of different, non-woven material, 

possesses such favorable qualities as low cost, chemical stability, 

light weight, easy transportability (for example,in rolls), easy join

ing (by means of heat or glue), high mechanical strength, etc. Chemical 

stability of these materials permits the manufacture of very thin sheets 

that provide for much larger surface areas without increasing the weight. 

This is important because larger surface area means larger contact area 

with soil that in turn contributes to better soil-reinforcement perfor

mance. 

Recently, synthetic reinforcement has been widely implemented into 

construction en soft saturated soils especially for road construction 
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(14) (17) where non-woven synthetic type materials have been used. Ap

plication of such reinforcement also provides for better subgrade drain

age. 

1.2 Scope 

The goals of this study are: 

1. To explore the mechanics of reinforced earthwork. 

2. To develop a mathematical model. 

3. To suggest a design procedure. 

4. To develop a statistical model. 



CHAPTER II 

REVIEW AND DISCUSSION OF PREVIOUS WORK 

2. l Experimental Analysis 

2. 1. l General 

Because ~he behavioral mechanism of the soil/fabric system is not 

yet well understood, extensive experimental work has been performed dur-

ing the last decade to explore the system interaction. 

These experiments can be divided into two main groups as follows: 

1. Tests performed in the field. 

2. Model-type tests. 

2. 1.2 Tests Performed in the Field 

An investigation (14) was made concerning the influence of the in-

clusion of nonwoven synthetic fabric between a "soft" silty soil and an 

overlying gravel layer with respect to cornpactibility and bearing capac

ity. Figure 1 is a diagrammatic representation of the test. 

Investigation of the deflection and the modulus of elasticity in 

both loading and unloading (E 1, E 2) during a plate load test included v v . 

tests of both reinforced and unreinforced systems. Variables included 

the thickness of the gravel layer and the water content of the soft silt. 

The conclusions can be summarized as follows: 

1. The benefits of fabric inclusion can be expressed by an 

3 
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11 improvement factor 11 : 

Improvement factor= Modulus of elasticity after inclusion 

• Modulus of elasticity before inclusion 

5 

It was found that fabric inclusion is more beneficial if the subgrade is 

softer. 

2. Within certain limits, it is more beneficial to include fabric. 

than to increase the subbase thickness (gravel layer). 

2. 1.3 Model-Type Tests 

The stress-strain behavior of a unit cell of sand, when tested under 

plane strain conditions with and without a fabric membrane inclusion, has 

been investigated by McGown and Andrawes (16) at the University of 

Strathclyde in Glasgow. 

The variable parameters were: 

1. Placement void ratio. 

2. Existence of fabric. 

3. Fabric maximum strength. 

4. Fabric orientation~ 

It was found that when the nonwoven fabrics were placed along the major 

principal plane (horizontal) they generally increased the strength of 

the system-although when the sands were placed at their minimum void 

ratio, a slight weakening was observed. The peak strength of the fabrics 

appeared to have some influence, but system strengthening was not direct

ly proportional to it. More important than the strengthening was the 

fact that the strains to the peak strength were increased and the post

peak brittleness of the system was markedly reduced. 

Such behavior, in fact, is in stark contrast to the influences of 



metals and fabrics of low extensibility which inhibit strains. Thus, 

the fabric-included systems tested in this particula~ research are con-

6 

sidered to have particular characteristics and have therefore been terrred 

11 ply-soil 11 systems to indicate their capability of accepting deformati ans~ 

without disruption, above those which the soil media alone could accept. 

It was also found that when the fabrics were inclined to the major prin-

cipal plane, i.e., to the horizontal, a definite anisotropic pattern of 

behavior could be established. At certain inclinations, essentially where 

the fabrics were inclined at an angle close to that of the shear failure 

plane, weakening of the system at all void ratios of sand was observed. 

This was a result of the soil/fabric friction being a little less than 

soil-soil friction and highlights the importance of surface properties 

of the inclusions. 

2.1.4 Footing Model 

The apparatus consists of a very strong narrow box; the front and 

back are composed of thick glass platens to permit photography. 

Three groups of tests were conducted in this apparatus. The first 

group was with a single inclusion at various depths within a single layer 

of dense or loose sand. The second group was with two separate inclu-

sions of fabric within either a layer of dense or loose sand. The third 

group involved inclusions of fabric placed at the interface of dense 

sand over either loose sand or rubber with the depth of dense sand varied 

between tests. The following parameters have been used: 

1. Depth ratio = De~th of inclusion 
Width of footing 

2. Spacing ratio = SQacing of inclusions 
Width of footing 



3. 

4. 

Settlement ratio = Settlement of footing 
Width of footing 

Improvement factor (at any settlement ratio) 

= Vertical footing stress with inclusions 
Vertical footing stress without inclusions 

7 

The model footing tests on dense or loose sand in general confirmed the 

findings of the unit cell tests previously stated, particularly when the 

load-deformation behavior of the footing was considered in association 

with interface deformation patterns observed through the glass sides of 

the model. In almost all cases, as with the unit cell, the inclusion of 

fabric increased the strength of the system. Indeed, the most critical 

factor tested appeared to be the positioning of the fabric membrane in 

the system, the depth ratio. When the internal major principal strain 

directions within the sand without inclusions are considered, it is evi-

dent that the best performance of fabric-included systems occurs when 

the fabric membrane lies across those strain directions and the least 

improvement or weakening occurs when the fabric lies along them. Thus 

the depth ratio is comparable in its effect, to the fabric inclination 

in the unit cell. 

In those tests where dense sand overlaid loose sand or rubber, the 

critical influence of the depth ratio was borne out. In addition, the 

differences in improvement factors due to the inclusions at the inter-

face of the dense sand with the loose sand and the rubber subsoils were 

shown to be in keeping with the relative improvements due to the dense 

sand overlays alone. 

The deformation mechanisms without fabric were different; there-

fore, the influences of fabric inclusion were different. The very low 

friction or adhesion at the fabric rubber interface was also thought to 
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be an improvement factor in these tests. Finally, double fabric inclu

sions showed that the deformation modifications induced by an individual 

layer might interact with those induced by another individual layer to 

produce a greatly enhanced overall improvement, but as might be expected 

there was a critical positioning for the two layers in the system. Con

siderations of this positioning lead to the same conclusions as before 

with respect to the relative orientation of the inclusion with respect 

to the internal principal strains. Hence, the inclusion of highly ex

tensible nonwoven fabrics in various essentially granular soil systems 

has been shown to somewhat strengthen but more particularly alter the 

deformation behavior of the systems and possibly make them subject to 

less disruption at higher strains. Thus, the use of extensible nonwoven 

fabrics would appear to be most advantageous in soil systems such as 

roads or embankments on very soft clays or peats which can accept or 

will inevitably be subject to large strains. 

2.1.5 Pull-Out Tests 

Pull-out tests have been performed by Schwab (20) and others using 

the model shown in Figure 2. In each test the pull-out force, normal 

and shear stresses, and displacement vectors have been measured. It has 

been found that: 

1. The friction angle between the fabric and the sand is 10 per

cent lower than the angle of internal friction as determined by direct 

shear tests. 

2. The friction angle between sand and fabric calculated from the 

results of the pull-out tests depends to a large extent on the deforma

tion of the fabric, the relative density of the sand, and the surcharge. 

The calculated friction angle varied between wide limits. 
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3. The deformation at which the maximum frictional resistance was 

mobilized depends on the relative density of the sand and on the vertical 

pressure. The peak values for loose sand were larger than those for 

dense sand. 

4. The pull-out tests indicate that the entire mass of sand above 

included fabric is affected by the reinforcement during the pull-out 

test. Below the fabric the zone of influence depends on the relative 

density and on the value of vertical pressure. 

5. The shear and normal stress as against the wall increase with 

increasing pull force. At the start of a test the normal stress against 

the wall corresponded to the earth pressure at rest. The direction of 

the shear stress, initially downward, changed into an upward direction 

during loading, except when the vertical pressure was large. 

2.2 Design Aspects of Earth Dams 

Reinforced with Fabrics 

Recently, a few papers have been written about design aspects of 

earth dams reinforced with fabrics, and these papers analyze the design 

problem in a conventional way. 

Christie and Echadi (7) suggested four possible modes of failure: 

l. Sliding of base. 

2 .. Failure of reinforcement in tension. 

3. Shear failure through the reinforced embankment. 

4. Failure of reinforcement through inadequate bond length. The 

first mode failure has nothing to do with the dam being reinforced. The 

other three failure modes are discussed hereafter. 
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2.2.1 Failure of Reinforcement in Tension 

It is assumed that the reinforcement has to withstand a horizontal 

force created by active earth pressure. Thus, as shown in Fig. 3: 

where 

KA is the coefficient of active earth pressure. 

z is the vertical distance from the embankment crest. 

s is the side slope angle. 

~H is the vertical distance between fabrics. 

The tension T should not exceed the maximum tensile strength of the fab-

ric Tl. 

It is evident that the horizontal force has been underestimated be

cause of considering active earth pressure with the smallest horizontal 

pressure that a mass of soil can mobilize. However, they said that this 

may be countered by the overestimate in the assumption of an infinite 

slope. 

2.2.2 Shear Failure of Reinforced Embankment 

The conventional slip circle analysis (slice method) was used, mod

ified to take account of the tension provided by the reinforcement. 

It should be mentioned here that it is doubtful to consider full 

tension in the fabric sheet for both splitting and shear failure modes, 

that is because there is a possibility of a 11 coupled 11 failure mode. 

2.2.3 Bond failure of Reinforcement 

It has been mentioned that failure of reinforcement through 
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Figure 4. -slice Method in Reinforced 
Embankments 
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inadequate bond length should be checked at various points around the 

critical slip circle. 

Two expressions for driving and resisting forces has been given. 

Driving force 2 = KAyZcos f3(11H) 

Resisting force = 2LyZtamjJ 

where 

L = extension distance of the fabric sheet from the point considered; 

~ = angle of friction between the earth embankment soil and rein-

forcement. 



CHAPTER III 

MECHANICS OF REINFORCED EARTH 

3.1 General 

A reinforced earth mass might fail either by rupture of the rein-

forcement or by slippage between the reinforcement and the soil. Rein-

forcement of an earth mass can be seen as producing an intrinsic pre-

stress, or lateral restraint, when failure conditions are approached. 

If the lateral pr~stress has a constant value related to the strength of 

the reinforcement, a cohesion intercept results. If it is proportional 

to the initial vertical stress, an increase in the angle of friction re-

sults. 

3.2 Development of Active Earth Pressure 

For geostatic stress conditions (referring to a homogeneous soil 

mass of large extent and horizontal surface) the horizontal stress a3 ' u 
is usually expressed as 

a3u =Ko alu (3.1) 

where K0 is the coefficient of lateral stress at rest. Values normally 

range from 0.3 to 0.7; higher values are typical of overconsolidated 

soils. If a soil is allowed to expand horizontally, the lateral stress 

reduces to a minimum value, aa' the active earth pressure. The soil 

mass is then in a state of failure, also referred to as a Rankine state 

15 
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of plastic equilibrium. The Mohr circle defining this condition touches 

the Mohr envelope, defined by the Mohr-Coulomb failure law as 

T = C + otanqi (3.2) 

The same state of plastic equilibrium could be reached in a standard 

triaxial test, where o1 is increased while o3 remains constant. This is 

shown in Figure 6. 

For simplicity and because in practical applications reinforcement 

is mainly used in sandy soils, the effect on soil strength is analyzed 

for the case of a cohesionless soil only. 

3.3 Lateral Restraint 

3.3.1 Constant Prestress or 

This case corresponds to conditions when failure of a reinforced 

soil mass occurs by·rupture of the reinforcement. Lateral expansion of 

the soil mass creates prestress statically equivalent to a frictional 

force developed between the soil and the reinforcement with a maximum 

value determined by the tensile strength of the reinforcing material. 

For a constant prestress, or' the increased strength is exhibited by add

ing 11 cohesion 11 C to the soil, as shown in Figure 7. An expression for r 

Cr may be derived as follows: 

- 1 
0 1 u - Ka 0 3u 

l l 
= Ka o3 + Ka or 
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But 

Now, since o1 = olu' 

(3.3) 

For one-dimensional expansion over a horizontal interval B, with a verti-

cal spacing Hof reinforcement having a cross sectional area As and 

strength os' as shown in Figure 8, the prestress is 

A 
- s 

0 r - 0 s BH 

3.3.2 Prestress or Proportional to 

Vertical Stress 01 

(3.4) 

This case corresponds to conditions where the failure of the rein

forced soil mass occurs by .slippage between the reinforcement and the 

soil. Friction along horizontal reinforcement is directly proportional 

to the vertical stress 

a =Ca r l 

This has the effect of increasing the friction angle,as shown in Figure 

9. From Figure 9 we can write 

o3 + or = Ka ol 

03 
- + C = K 
al a 



H 

EXPANSION_. 

Figure 8. Constant or Related to Strength of 
Reinforcement 
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since 

But 

the coefficient of active pressure of the reinforced soil 

K + C = K ar a 

K = Ka - C ar 

l - sincfir 
-=----,--- = K - C 
l + sin¢r a (3.5) 

where <fir is the angle of internal friction of the reinforced soil mass. 

Figure 10 illustrates how resistance to lateral expansion (= pre

stress) is developed by friction •s on the surface of the reinforcing 

material. The magnitude of •swill depend on the skin friction angle, 

o, between the soil and reinforcement. It can be expected that Ts is 

zero at midpoint and at the ends of the strip, and reaches maximum value 

equivalent to o1tano in between. Considering equilibrium (Figure 10) 

.. L 
orBH = 2(•smax f) B 2 

where f is an averaging factor to account for the effect of the uneven 

distribution of Ts 

or 
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Figure 10. Variable or Related 
to Vertical Stress 
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B'L c = tano BH f (3.6) 

3.3.3 Combined Cohesion and Friction 

Angle Effect 

It is apparent that at low stress, failure in the reinforced soil 

mass tends to occur by slippage and at higher vertical stresses by rup~ 

ture of the reinforcement. This is illustrated by Figure 11. Circle 

(a) describes the failure state for slippage, and circle (b) describes 

that for rupt~re of reinforcement. Prestress or is assumed to increase 

proportionally to 0 1 up to a maximum value crrmax; thereafter it remains 

constant. 

3.4 Finite Element Method 

In order to estimate the dimensions of the soil mass affected by 

fabric inclusion, the soil-fabric .media needs to be solved. One of the 

most powerful methods that may be used to analyze the mechanism of soils 

with fabric inclusion is the finite element method. The use of the 

finite element method in conjunction with a high-speed digital computer 

provides an effective means for obtaining a reliable solution. However, 

the finite element model must be chosen carefully to satisfy material 

properties and boundary conditions. For example, most soils are consid-

ered to be incapable of resisting tension for sustained periods. It is 

therefore important to modify the finite element model in such a manner 

that no tensile stresses occur except in the fabric membrane. While the 

finite element method will not be used in the analytical procedure to be 

later recommended, it is useful to examine, briefly, some aspects of its 

application to this problem. 



26 

r, O-r 

Figure 11. Combined Cohesion and Friction Effects 
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3.4.1 Nonlinearity 

Since the deformations are large, the small deformation assumptions 

are not valid. For small deformations the displacement-strain relation 

is given by 

au 
e:x =-

ax 

e:y =~ ay 

Yxy =~+~ (3. 7) ax Cly 

For large deformation problems a nonlinear term should be included in 

Equation (3.7). 

3.4.2 Compatibility 

It is known that the assembly of the stiffness matrices of the ele-

ment into one global stiffness matrix implies that compatibility among 

adjacent elements is satisfied. However, it is also known that the 

transmission of shearing stresses from cohesionless soil elements to the 

fabric membrane, which causes tension in the fabric, occurs only after a 

relative 11 slip 11 deformation between the soil and the fabric. This indi

cates that there is a relative movement between nodes which violates the 

compatibility principle. Hence, special elements which allow relative 

mov~ment at the interface nodes should be used. 

3.4.3 Simulating the 11 No Tension" Condition 

As mentioned previously, a special provision should be taken to 

simulate the actual inability of the soil to transmit tension. Bell (4) 

tried to simulate the no-tension condition by: 
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1. Assuming the embankment is a linear orthotropic elastic material 

with Poisson's ratio equal to zero; and 

2. Assuming that the elastic modulus in a horizontal direction is 

very small compared to the elastic modulus in a vertical direction. 

The author disagrees with the above assumptions for simulating the 

no-tension property. The drastic reduction of the elastic modulus in the 

horizontal direction implies that the material is very 11 soft 11 in the 

horizontal direction, i.e., not capable of transmitting either tension or 

compression, which is not true. The assumption that Poisson's ratio is 

zero is also incorrect, because a given vertical stress or strain must 

induce stress or strain in the horizontal direction. 

Without these assumptions, iterative methods must be used to obtain 

a solution. Two such procedures are: 

Method 1: 

l. Solve the problem without any provisions. 

2. Assign zero modulus of elasticity at the particular elements 

that have tensile stresses from step 1, and solve the problem again. 

3. Repeat step 2 until a stable solution is obtained. 

Method 2: 

l. Apply a small portion (5 to 10%) of the applied loads. 

2. Assign zero modulus of elasticity to those elements where ten

sion exists before the next portion nf the load is applied. 



CHAPTER IV 

METHOD OF ANALYSIS 

4.1 General 

For small deflection (w < 0.2t) classic plate theory gives suffi

ciently accurate results. When the magnitude of the deflections in

creases beyond a certain level (w < 0.3t), large deflection theory must 

be used. 

Although the large deflection theory of plates assumes that the de

flections are equal to or larger than the plate thickness, the deflec-

tion should remain small relative to the other dimensions of the plate. 

The strain in the middle surface must be considered for the large 

deflection analysis of thin plates. These supplementary strains (mem

brane strains) are expressed by nonlinear equations, and the solution of 

these equations is available for only a limited class of problems. Be-

cause of the curvature of the deformed middle surface of the plate, the 

supplementary tensile stresses, which resist the applied vertical loads, 

are completely transmitted by membrane action of the plate. 

4.2 Plate Equilibrium Equations 

From a plate element shown in Figure 12, equilibrium equations of 

forces in the X-Y plane are 

( 4. l) 

29 
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dx 

( oNyx ) 
Nyx + oy dy dx 

( N x + ~~x dx) dy 

( Nxy + o~xxLdx) dy ( oNy ). 
Ny+ a-dy dx 

y . 

Figure 12. Membrane Forces on PJate Element 
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(4.2) 

In considering the equilibrium of the dxdy element in the direction 

of the Z axis, for the sake of simplicity it is assumed that the far 

sides of the plate element are fixed and lie in the X-Y plane (see 

Figure 13). The projection of the membrane forces on the Z axis gives 

aN 2 aN 2 
(N + ~ dx) dy a ~ dx + (N + -Y dy) dx a ~ dy 

x ax ax y ay ay 

aN a 2 aN a2w 
+ (Nxy + 3 ~Y dx) dy ax:y dx + (Nyx + 3;x dy) dx axay dy 

= Pz(x,y) + kw(x,y) (4.3) 

which, after neglecting small quantities of a higher order, becomes 

(4.4) 

where k is the subgrade reaction coefficient. 

Equation (4.4) is applicable in both small and large deflections. 

If the Airy stress function ¢ is defined so that 

Nx = h t 2 
ay 

Ny = fi t 2 
ax 

Nxy = Nyx = 
_D_ 

-t axay (4.5) 

then it is clear that Equation (4.4) contains two unknowns (w, ¢). Hence 

an additional equation, which relates the deflections and the stress func

tion, is required. This is obtained in the form of a compatibility 
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Figure 13. Membrane Forces on Deformed Plate Element 
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equation, in which the nonlinear terms in the large deflection strain

displacement expression (Figure 14) are also considered. 

2 
_ au + l (aw) _ 1 (N N ) £x - ax 2 ax - Et x - y (4.6a) 

2 
= 2J__ + l (aw) = _l ( N _ Nx) 

£Y ay 2 ay Et y (4.6b) 

= ~~ + av + aw aw = 2(1 + µ) Nxy 
Yxy ay ax ax ay Et (4.6c) 

If we eliminate, by successive differentiation, the displacement compo

nents and replace membrane forces using Equation (4.5), then the perti

nent compatibility equation is 

( 4. 7) 

Using Equations (4.4) and (4.6), the governing differential equa-

ti ons of the large deflection theory can be written in a more condensed 

form: 

(4.8) 

In addition to the use of a discrete element model, which discussed 

in the following sertions, the most important methods for solution of 

nonlinear plate problems are: integration of differential equations 

(exact solution), variational methods, finite different methods, itera-

tive techniques, and numerical integration. 
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4.3 Discrete Element Model 

4.3.l General 

The general theory of plates discussed in the preceding articles 

are based on infinitesimal calculus. Close-form solutions for the large 

deflection problem, and for the majority of complex engineering problems, 

are not available. Numerical methods are most often used to solve com

plex engineering problems, in which the governing differential equations 

can be mathematically approximated by the substitution of finite differ

ence form for derivatives. Numerical methods are applied using a physi

cal model, in which the problem is represented by a system of finite or 

discrete elements whose behavior can properly be described with alge

braic equations. The physical model facilitates visualization of the 

problem and the formulation of proper boundary and loading conditions. 

In this study a discrete element model developed by Hrennikoff (13) 

will be used. 

4.3.2 Membrane Model 

The model shown in Figure 15 is utilized to represent the membrane 

behavior of the plate. This model is composed of ball and socket joints 

and elastic bars. The elastic bars transmit membrane forces by stretch

ing and contracting. The properties of elastic bars and the strain rela

tion between bars and plates are discussed in Appendix A. The stiffness 

matrix for the membrane resembles that of the space truss and has been 

presented by Przimieniecki (19). 

The equilibrium equations of this membrane model are summarized 

into matrix form as 
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where 

[S]{u} = {F} 

[SJ= stiffness matrix for the membrane model; 

{u} = displacement vector of the membrane model j_; and 

F =force vector of the membrane model. 

4.3.3 Model Stress Resultant 
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(4.9) 

Membrane stresses are calculated from.the forces in the elastic bars 

of the membrane model. Bar forces are calculated from the vertical and 

in-plane displacements of the membrane model, as discussed in Appendix A. 

Membrane stresses are expressed as: 

ax = [FA+ FB + (FH + FE) cose]/thy 

a = y [Fe + FD + (FY + FE) sine]/thx 

'xy = [FH + FE] cose/thx 

(4.10) 

where ax,ay are normal membrane stresses; 'xy''yx are membrane shearing 

stresses; and FA' F8, Fe, FD' FE' and FH are forces in elastic bars of 

the model (see Figure 15). The derivation of Equation (4.10) is given 

in Appendix A. 

4.4 Nonlinear Analysis 

Since the fabric is horizontal before the application of the verti-

cal loads, its membrane resistance is zero. To overcome this difficulty, 

a very small bending rigidity will be assumed and a very small part of 

the load will be applied first. It will cause the fabric {plate) to 
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deflect and membrane resistance wi 11 be mobilized. Equilibrium, then, 

is evaluated by calculation of the vertical and in-plane resistance of 

the membrane model. If equilibrium is not satisfied, the joint deflec

tion is adjusted and the equilibrium equation is checked again. In 

other words, the solution is obtained by an iteration technique in which 

static equilibrium of the joints of the model is achieved. 



CHAPTER V 

DESIGN PROCEDURE 

5.1 General 

It is important in any design problem to provide a practical way to 

satisfy design criteria. To develop this the mechanical behavior must 

be postulated. Since the interaction between fabrics and soil is not 

fully known, it is necessary to assume mechanisms which are believed to 

resemble those of the actual interaction. 

In this section some design assumptions will be suggested for dif

ferent soil mechanics problems. 

5.2 Footing Design 

5.2.1 General 

It has been shown that the fabric below a footing acts like a plate 

with no bending rigidity and, hence, the more the membrane displaces ver

tically from its initial position the more vertical resistance it will 

mobilize. This can be shown by comparing the improvement factor for dif

ferent settlement ratios corresponding to the same depth ratio (16). 

For this reason it is reasonable to start design (or check of 

stresses) by choosing the maximum allowable vertical displacement. 

39 



5.2.2 Suggested Design Procedure 

Let us assume that it is required to design the isolated footing 

shown in Figure 17. The procedure is as follows: 

40 

1. First of all, the depth ratio should be assumed. As shown in 

Figure 16(b), it is desirable for the depth ratio to be between 0.4 and 

0.6 (16), to effect the greatest improvement in performance. 

2. Next it is necessary to assume a certain displacement configura-

tion for the fabric membrane. Let us assume the deflection surface,shown 

in Figure 18, described as follows: 

0 < x,y < na 

( 5. l ) 

na < x,y < A 

where 

/). 

Cl = __ o---=- [ l - r - 2rAJ 
(A- na)2 na 

c2 = (na) 2 c1 

3. Utilize an expression for static equilibrium to obtain the mini

mum lateral dimensions of the fabric inclusion. 

IF = 0 2 

P = KV 
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where K is the coefficient of subgrade reaction, and V is volume between 

deformed and undeformed positions of the fabric. Substituting for V, we 

get 

IT Kb 2 
P ==T[2(na) (3+r) + (1-r) (A-na) (A+3na)] (5.2) 

Several problems were solved using the method explained in Chapter 

IV, and it was concluded that the following values for n and r can be 

assumed without introducing significant error. 

r = .0.65 to 0.8 

n = 1.00 

Substituting these values for r and n, the unknown value of A can be ob-

tained from Equation (5.2). 

4. After determining the required dimension of the fabric, tension 

in the membrane needs to be checked. Considering Figure 19 and writing 

the equilibrium equation in the vertical direction, we get 

T(2rra) sine==(~) (K) (b0 ) (1-r) (A-a) (A+3a) 

Since e is small, 

2b 
0 sine = tane = - a 

Substituting into the above equation, we get 

K T = 80 (A - a) (A+ 3a) 

5.3 ·Slope Stability 

5.3.1 General 

(5.3) 

It was mentioned in Chapter II that Christie and Hadi (7) considered 
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an embankment reinforced with horizontal fabric membranes using conven-

tional slices method. Fawzy (9) proposed using radial reinforcement to 

mobilize maximum stabilizing moment. However, neither one considered 

membrane deformation which is the cornerstone of fabric-soil interaction. 

Again, that is because the resistance that will be offered by the mem-

brane is proportional to its vertical displacement. In this section ver

tical displacement of the membrane will be investigated, and a correla

tion between fabric deformation and design aspects will be obtained. 

5.3.2 Design _Criteria 

In an isolated footing analysis, a displacement criterion should be 

determined before going into design steps. It is more convenient to con

sider a relative displacement between elements along the perimeter of the 

slip circle (see Figure 21). It will be assumed that there is a permissi-

ble maximum relative displacement of ~o along the slip circle, and that 

no slippage is permitted between fabric and the surrounding soil. 

5.3.3 Pullout Test 

A pullout test should be performed in order to calculate the resist-

ance coefficient, pr' which represents the friction force per unit length 

of the surface (see Appendix B). 

The apparatus to be used is shown in Figure 20. A complete discus

sion is given by Holtz (3). To find the magnitude of the pullout force 

T that is compatible with the design displacement ~o' the following rela

tion will be assumed. 

(5.4) 
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where 

LIO = displacement of the strip tested in the laboratory; 

6 = design d"isplacement; 
0 

TL = pullout force measured in the pullout test; and 

TF = force compatible with the design displacement, 60 

5.3.4 Design Steps 

The following design steps should be followed: 

1. Conduct a pullout test and calculate Pr· 

2. Assume a reasonable value for 60 . 

3. Using Equation (5.4), find the corresponding TF. 

4. Design the minimum anchorage length as given in Appendix B. 

5.3.5 Equilibrium 

It is interesting to note that the fabric membrane resisting force, 

T, will not be mobilized before some deformation occurs. This implies 

that the fabric will be ineffective if it has been placed in a 11 safe 11 

embankment. 

Let us assume that the slice method of analysis (without fabric re

inforcement) has led to a factor of safety F1 <1.0, and it is required 

that it be improved to a factor of safety F2 using fabric reinforcement. 

Thus the required additional stabilizing moment is 

(5.5) 

where Msf is the stabilizing moment mobilized as a result of fabric inclu

sion, and MD is the driving moment. Referring to Figure 21, it can be 

readily seen that for n sheets of fabric placed in the embankment, 



n 
M f = l T.R s 1 l 
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(5.6) 

Provided that the resulting T does not exceed the strength of the 

fabric, the required factor of safety will be provided if the length of 

anchorage is sufficient. 



CHAPTER VI 

UNCERTAINTY AND PROBABILISTIC DESIGN 

6.1 General 

In soil mechanics, as in any physical problem of interest, there is 

an element of uncertainty, unpredictability, or randomness associated 

with the variations in the physical properties of soil. For example, no 

matter how many samples were tested in consolidation, it is almost im

possible to predict exactly the settlement behavior of a soil mass. 

In the reinforced earth problem there are different degrees of cer

tainty involved in defining the pertinent physical properties of the 

soil and of the reinforcement. This suggests that there is an element 

of probability associated with the design, and that design procedures 

could be adopted which take this into account. That is, it is possible 

to state the probability with which a predicted result will fall within 

a specified range of results. 

Although the analytical method recommended as the principal result 

of this study is not a probabilistic one, it is useful to provide the 

background for making such an analysis, and to present a simple numeri

cal example related to soil properties. Properties such as strength, 

density, water content, compressibility, etc. are assumed to follow a 

normal distribution. 

52 
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6.2 Gaussian Distribution 

If x1 , x2, ... , Xn are the results of tests on random samples, 

where X. indicates the result of the ith experiment (for instance, cohe-
1 

sion, compression index, etc.), and the samples have been taken from a 

population which has a normal (Gaussian) distribution n(e, o2), as indi

cated in Figure 23, where e is the mean, a2 is the variance, and 

1 2 -- (X. - e) 
2 2 1 

1 er 
(X;, e) = ;-· _ e 

2rrcr 2 
( 6. 1 ) 

6.3 Estimation 

Suppose it is agreed that a certain soil characteristic, say rela

tive density, is a random variable, and that it follows a normal distri-

bution. It is now necessary to estimate the relative density, Dr' with 

some specified degree of reliability. There are two main approaches to 

estimate the expected relative density: the classical statistical solu

tion which considers the mean (expected relative density) to be a con

stant, and a modern solution (Bayesian Solution) which treats the mean 

itself as a random variable. In this study, the second approach will be 

examined. This approach takes into account any prior knowledge of the 

property under consideration. 

As mentioned before, let us consider a random variable Dr that has 

a distribution of probability that depends upon the symbol e, where e is 

an element of a well-defined set r. If the symbol e is the mean of a 

normal distribution, Q may be the real line. The probability density 

function (p.d.f.) of e shall be denoted h(e), and h(e) = 0 when e is not 

an element of Q, Let Drl, Dr2' or3' ... , Orn denote the relative 
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Figure 23. Gaussian Distribution Curve 
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densities of random samples from this distribution of D , and let Y de-. r 

note a statistic that is a function of Drl, Dr2' .... , Orn· The p.d.f. 

of Y can be found for every given e; that is, the conditional p.d.f. of 

Y can be found, given e = e* which will be denoted by g(y/e). Thus the 

joint p.d.f. of Y and e is given by 

k(e, y) = h(e) g(y/e) (6.2) 

As e is a random variable of the continuous type, the marginal 

p.d.f. of Y is given by 

k1 (y) = I: h(e) g(y/e) d(e) (6.3) 

The conditional p.d.f. of a given Y = y is 

(6.4) 

In Bayesian statistics, the p.d.f. h(e) is called the prior p.d.f. 

of a, and the conditional k(e/y) is called the posterior p.d.f. of e. 

This is because h(e) is the p.d.f. of e prior to the observation of Y, 

whereas k(e/y) is the p.d.f. of e after the observation of Y has been 

made. In many instances h(e) is not known, yet the choice of h(e) 

affects the p.d.f. k(e/y). In these instances one should take into 

account all prior knowledge of the property and assign the prior p.d.f. 

h(e). This, of course, injects the problem of personal bias or subjec

tive judgment. Define w(y) to be that function of the observed value of 

the statistic Y which is the estimate of·e and let w(g) be called a de

cision function. A decision may be correct or it may be wrong, and it 

would be useful to have a measure of the seriousness of the difference, 

if any, between the time value of e and the estimate w(g). Accordingly, 

with each pair, [e, w(y)], GsQ, we associate a non-negative number 
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L[G, w(y)] that reflects this seriousness. We call the function L the 

loss function. The expected (mean) value of the loss function is called 

the risk function, stated as follows 

R(G, w(y)) = E{L[e, W(Y)]} (6.5) 

In general, how would an experimental value of any random variable, 

say W, be predicted if the prediction is to "reasonably close" to the 

value to be observed? Many statisticians would predict the mean, E(W), 

of the distribution W; others would predict a median (perhaps unique) of 

the distributipn of W; some would predict a mode (perhaps unique) of the 

distribution W; and some would have other predictions. However, it seems 

desirable that the choice of the decision function should depend upon the 

loss function L[G, w{y)]. One way in which this dependence upon the loss 

function can be reflected is to select the decision function w in such a 

way that the conditional expectation of the loss is a minimum. A Bayesi-

an solution is a decision function that minimizes 

00 

E{L[e, w(y)]/Y = y} = f L[e, w(y)] K(e/y)de 
00 

(6.6) 

The conditional expectatfon of the loss, given Y = y, defines a random 

variable that is a function of the statistic Y. The expected value of 

that function of Y is given by 

00 00 

f {f L[e, w(y)J k(e/y)de} k1(y)dy 
-oo -co 

00 00 

= f J L[e, w(y)] g(y/e)dy} h(e)de (6. 7) 
-co -oo 

The integral within the braces in the latter expression is, for every 

given Gi::Q, the risk function R(e, w(y)); accordingly, the latter expres

sion is the mean value of the risk, or the expected risk. Because the 

Bayesian solution minimizes 
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00 

J L[e, w(y)] k(e/y)de 
00 

for every y for which k1(y) > 0, it is evident that a Bayesian solution 

w(y) minimizes this mean value of the risk. 

6.3.l Example 

Let c1 , c2, ..• , en denote the cohesion of random samp 1 es from a 

distribution that is n(e, cr 2), 00 <8< 00~. Let Y = C, the mean of the 

random sample distribution. e is an observed value of the random vari

able e that is normally distributed (µ, T2), where T2 andµ are known 

numbers. If it is required to find the Bayesian solution w(y) for a 

point estimate of e, the loss functions should be known. Two different 

loss functions will be assumed. 

l. L1(e, w1(y) = [e - w(y)J 2 

2. L2(e, .w2(y) = le - w(y) I 

The Bayesian solution w(y) is that which minimizes the risk function. 

Since 

where 

·--L(c.-e)2 
l 20 2 1 

f ( C / e) = 2rra e 

k(G/y) 

-n l ( )2 - -r- c. - e 
2 2 2 2 1 

= ( 2rrcr ) e 0 = g (y I e) 

= h(e) g(y/e) = C(y) h(e) g(y/e), 
kl(y} 

C(y) = l/kl (y), 



l 2 l - 2 --2 (e- µ). 
( ) l 2T 

= C Y 2Jh e 

--2 ~[(C. - C) - (e - C)] 
2 l • e a 

= C(y) 

l ( 2 l -2 -2 --2 8-µ) --2 [~(C.-C) + n(e-C)] 
2T 2cr l 

e e 

2 2 -
_ _Q_ + Gµ _ ne + nee 

2 2 2 2 
e 2 T T • e 2cr a = C(y) 

8 2[- _l __ __!!__] + e[ L + nC_] 
2 2 2 2 2 2 e T Cf T Cf = C(y) 

= C {y) e 

-2 
_H_ + .of 

2 2 
_ l (-1 + _!l_) [ G _ T Cf J 

2 .. 2 (12 _l + _!l_ 
2 2 

= C (y) e T Cf 

(l) K(e/y) 

L + nf 
2 2 l 

= n(Tl an ' l n) 
-+- -+-2 2 2 2 
T Cf T Cf 
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First, consider loss function number (1). It can be shown that 

w(y) = E(e/y) minimizes the risk function. Hence the Bayesian Solution 

is E(e/y), where 

(2) E(e/y) 

L + nC 
2 2 

T Cf = -=----
_l + _!l_ 

2 2 
T Cf 

Second, consider loss function number (2). It can be shown that 

w{y) = median (e/y) also minimizes the risk function, but since K(e/y) 
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is a normal distribution function, the median is equal to the mean, and 

(3) 
_ µ nc 

w(y) - 2 + 2· 
1 0 

6.3.2 Remarks 

The following remarks apply: 

1. The conditional posterior mean E(e/y) is a linear combination 

of the prior mean (µ) and the sample mean r. 
2. The first term (µ/1 2) indicates the confidence of the prior 

assumption; that is, if one is confident about the prior assumptionµ, 

this term will contribute to E(e/y) more than the second term (nC/02), 

because 1 2 will get smaller as confidence in µ increases. If we are 

certain about (µ), then 1 2 + 0 and E(e/y) + µ. 

3. The second term indicates the contribution of the sample to the 

estimate. Hence, if the prior assumption (µ) is not close enough or T2 

is big, the second term plays the main role in estimation. In other 

words, as 1 2 + ro, E(e/y) + C. 

A complete numerical example is given in Appendix C. 



CHAPTER VII 

CASE STUDY 

7.1 Statement and Description of the Problem 

The general location of an embankment test section described by 

Haliburton, Douglas, and Fowler (22) is shown in Figure 24. As may be 

noted in the figure, the test section was constructed across an inter

tidal area, with existing ground elevations over most of the alignment 

ranging between El. 1.5 Mean Sea Level (MSL) and El. -1.0 MSL. 

7.2 Embankment-Foundation Data 

The embankment was constructed of Mobile Sand, a fine, poorly grad

ed, semi-angular, fairly clean material with 100 percent passing the 

U.S. No. 10 sieve, 83 percent passing the U.S. No. 40 sieve, and 2 per

cent passing the U.S. No. 100 sieve, with a uniformity coefficient of 

1.3. This material may be classified SP by the Unified Soil Classifica

tion System. These data were obtained from samples taken at the borrow 

area location shown in Figure 24. 

The sand was placed in the embankment in a loose relat·ive density 

state, for which the friction angle ~ is assumed to be 30 degrees. 

The unit weight of the embankment material is taken as 100 pcf 

above the permanent water table and 60 pcf below the permanent water 

table, with the latter value used in computing effective bearing pres

sures for future dike raising after foundation consolidation and 
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settlement. The permanent water table was assumed to exist at El. 0.0 

MSL. 
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Based on the results of field vane shear tests and strength tests 

conducted by the Soils and Pavements Laboratory (U.S. Army Engineer 

Waterways Experiment Station [WES], Vicksburg, Mississippi) on undis

turbed samples of foundation material at the west end of Pinto Pass, 

assumed minimum unconsolidated, undrained (Q) soil strength conditions 

at the time of test section construction consisted of material with ¢ = 

O, C - 50 psf from the surface to El. -10 MSL, ¢ = 0, C - 100 psf from 

El. -10 MSL to El. -20 MSL, and¢= 0, C - 150 psf from El. -20 MSL to 

El. -40 MSL, where medium-dense to dense clean sand is found. In pre

dicting available foundation strength for future dike raising, results 

of consolidated undrained (R) shear strength tests conducted by the WES 

on the material indicated a cohesion of 0.15 an a friction angle¢ of 

11 degrees. 

7.3 Fabric Data 

In their evaluation of civil engineering fabric for use as embank

ment reinforcement, Haliburton, Anglin, and Lawmaster (23) recommended 

four civil engineering fabrics: Nicolon 66475, Nicolon 66186, Advance 

Type I, and Polyfilter-X, plus one fiberglass fabric, Bay Mills 196-380-

000. 

Test data for these five fabrics developed from Reference (23) are 

summarized in Table I. 



Fabric 

Nicolon 66475 

Nicolon 66186 

Polyfilter-X 

Advance Type I 

Bay Mills 196-380-000 

TABLE I . 

SUMMARY OF FABRIC WRAP DIRECTION 
LABORATORY TEST RESULTS 

Tensile Stress Ultimate 
at 10%E Tensile Stress 

lb/in.-width lb/in.-width 

362 902 

109 226 

103 311 

108 252 

318 (8%E) 318 

Creep Tendency 

Nil 

Nil 

Moderate 

High 

Zero 

Wet Strength 
Loss 

Nil 

Nil 

High 

Moderate 

Not Tested 

O'l 
w 



64 

TABLE II 

TYPE AND LOCATION OF FABRIC REINFORCEMENT 
IN EMBANKMENT 

Place North Edge Place North Edge 
of Fabric Strip Fabric of Fabric Strip Fabric 

at Station To Be Used at Sta ti on To Be Used 

0+60 Advance Type I 4+20 Nicolon 66475 
0+75 Advance Type I 4+35 Nicolon 66475 
0+90 Advance Type I 4+50 Nicolon 66475 
1+05 Advance Type I 4+65 Nicolon 66475 
1+20 Advance Type I 4+80 Nicolon 66475 
1+35 Advance Type I 4+95 Nicolon 66475 
1+50 Advance Type I 5+10 Nicolon 66475 
1+65 Advance Type I 5+25 Nicolon 66475 
1+80 Advance Type I 5+40 Nicolon 66475 
1+95 Advance Type I 5+55 Nicolon 66475 
2+10 Advance Type I 5+70 Nicolon 66475 
2+25 Advance Type I 5+85 Nicolon 66475 

6+00 Nicolon 66475 
2+40 Polyfi lter-X 6+15 Nicolon 66475 
2+55 Polyfi lter-X 6+30 Nicolon 66475 
2+70 Polyfi lter-X 6+45 Nicolon 66475 
2+85 Polyfi lter-X 
3+00 Polyfi lter-X 6+60 Nicolon 66186 
3+15 Polyfi lter-X 6+75 Nicolon 66186 
3+30 Polyfi lter-X 6+90 Nicolon 66186 
3+45 Polyfilter-X 7+05 Nicolon 66186 
3+60 Polyfi lter-X 7+20 Nicolon 66186 
3+75 Polyfilter-X 7+35 Nicolon 66186 
3+90 Polyfilter-X 7+50 Nicolon 66186 
4+05 Po lyfi l ter-X 7+65 Nicolon 66186 

7+80 Nicolon 66186 
7+95 Nicolon 66186 
8+10 Nicolon 66186 

NOTE: All fabric strips 200 ft long. 
Polyfilter-X and Advance Type I 18 ft wide, 1. 5-ft overlap . 

at each end. 
Nicolon 66186 and 66475 16.4 ft (5 m) wide, 0.7-ft overlap 

at each end. 
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7.4 Location of Fabric in Embankment 

The following data describe the location of the various fabrics in 

the embankment: Advance Type I fabric is used for reinforcement from em-

bankment Sta 0+60 to Sta 2+40; Polyfilter-X fabric from Sta 2+40 to Sta 

4+20; Nicolon 6675 fabric from Sta 4+20 to Sta 6+45; and Nicolon 66186 

fabric from Sta 6+45 to Sta 8+00. Table I! gives the specific installa-

tion instructions. 

7.5 Results of Analysis 

Because of a lack of data, the following assumptions were used in 

the analysis (Table III). 

TABLE III 

ASSUMPTIONS .USED IN ANALYSIS 

Fabric Pr X 10-3 TL 
Type (Kip/ft) Uo u· (kip/ft) 0 

Advance Type I 30 0.25 0.05 0.73 

Polyfil ter-A 30 0.27 0.05 0.71 

Nicol on 66475 30 0.12 0.05 0.91 

Ni colon 66186 30 0.26 0.05 0.82 

The analysis described in Chapter V yields the following results (Table 

IV). 



Fabric 
Type 

Advance Type I 

Polyfilter-X 

Nicolon 66475 

Nicolon 66186 

TABLE IV 

RESULTS OF ANALYSIS 
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Estimated 
Safety Factor 

0.92 
0.97 
1.09 
1.27 
1.62 

0.92 
0.95 
1.03 
1.18 
1.53 

0.92 
1.03 
1.25 
l. 74 
2. 11 

0.92 
0.94 
1.07 
1.21 
1.57 

The expected deformations are those corresponding to a safety fac

tor of 1.0. Those deformations obtained by interpolation from the above 

res·ul ts are: 

l. Advance type I : 60 = 7. 8 in. 

2. Polyfilter-X: 60 = 8.8 in. 

3. Nicolon 66475: 60 = 4. 1 in. 

4. Nicolon 66186: 60 = 7. 4 in. 
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The observed deformations were: 

1. Advance type I: be. = 
0 

7. 1 in. 

2. Polyfilter-X: be. = 
0 

7.8 in. 

3. Nicol on 66475: t,o = 3.9 in. 

4. Ni colon 66186: t,o = 6.8 in. 

7.6 Conclusions 

The following can be concluded from the previous article: 

1. The four reaches are safe, and have probably deformed to a sta

ble configuration. 

2. The embankment would have failed without reinforcement. 

3. The proposed method of prediction produced results that are in 

very good agreement with the observed behavior of the only test embank-

ment presently available for comparison. 
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CHAPTER VIII 

SUMMARY AND RECOMMENDATIONS 

A fabric membrane was modeled using the Hrennikoff model with no 

bending rigidity. It was shown that special provisions should be taken 

in order to enforce compatibility and simulate the no-tension property 

of soil when using the finite element method of analysis; however, this 

method was not used in the proposed method of analysis. The excellent 

agreement between the proposed method of analysis and the numerical solu

tion explained in Chapter IV, and between the results of the analysis and 

the actual Alabama dike observations, implies that the design procedure 

suggested in Chapter V provides a practical and reliable way for solving 

a reinforced earth problem. 

The mechanics of reinforced earth work discussed in Chapter II may 

be fully investigated eith~r experimentally or analytically. The finite 

element methods seems to be appropriate for this purpose, but load tests 

on soil masses· of different dimensions provides a reasonable way to esti

mate the dimensions of the soil mass that will be affected by the rein

forcement. 

The statistical model presented in Chapter VI is simple and funda

mental, for it considers only soil parameters as random variables; hence, 

a more general model where the safety factor is considered a random vari

able as well needs to be explored. 
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Bar Cross-Sectional Areas 

The in-plane behavior of a plate problem is represented by a mem-

brane model shown in Figure 15. This membrane model is composed of 

elastic bars connected by ball and socket joints. The areas of these 

bars are related to the increment lengths, plate thickness and material 

properties. The evaluations of these areas are presented elsewhere 

(13), but are included in these work for the benefit of the reader. 

The areas of the elastic bars must permit the model to represent 

the in plane behavior of a thin plate subjected to normal and shearing 

stresses. The resisting in plane stresses and deformations must agree 

with the plane stress problem, the following conditions must be investi-

gated: 

1. When the model is subjected to uniform normal load of p per. 

unit length in the x direction aod up in the y direction deformations 

should correspond to those found by conventional methods of elastic 

analysis. The strains of the model in the x and y directions must be 

E x 
= p (l-v2)Et 

Sy = 0 (A. 1 ) 

2. If the load pis applied in they direction and up in the x 

direction the strains in the model 9re 

(A. 2) 

3. For a uniform tangential load s per unit length, the shearing 

strain of the model must be 
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Yxy = 2(1 + v) s/Et (A. 3) . 

The discrete-element model representing the plane stress problem 

is shown in Figure 27 with joint loads which are the loads applied to 

the element in Figure 26. Taking section of a joint, equilibrium of 

the joint forces of the discrete-element model can be written as: 

and 

where 

Fa' Fb' Fe = forces in bars a, b, and c, respectively; 

e = angle between bar a and bar c; and 

hx' hy' h2 = lengths of bars a, b, and c, respectively 

(A.4a) 

(A.4b) 

The deformation of the model must correspond to the strain found 

by elastic analysis, as shown in Equation (A.l). Since the strain in 

they direction is zero, the force in bar b must be zero. From Equa

tion (A.4) the forces in bars a and c are: 

Fa= phy/2 - p(hx) 2/2hy 

Fe= phxh2/2hy 

The strain in bar a is 

(A.5a) 

(A.5b) 

(A.6) 

where Ea' Aa are elastic modulus and cross section area of bar a. The 

strain of bar a must be the same as that given in Equation (A.l). By 

equating these two strains and rearranging, the cross-sectional area of 

bar a is found to be 
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2h (l-v2) y 
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(A.7) 

To determine the cross-sectional area of bar c, the deformations of 

bars a, b and c are related as follows: 

h 2 = 
y 

h 2 - h 2 
2 x 

Differentiating yields 

h dh = h2dh2 - h dh y y x x 

Substituting dhx = Eahx' dhy=Ebhy and dh2=Echz 

into the above equation yields 
2 2 2 

h yEb = hz EC - hx Ea 

Since the strain in bar b is zero for the load condition under 

investigation, therefore 
2 2 

hz Ee = hx Ea 

Replacing the strains by forces in the bars, bar areas and elastic con-

stants, the area of bar c is related to the area of bar a by 

A = h22F A E /h 2F E c c a a x a c (A.8) 

The forces Fa and Fe were evaluated in equation A.5 and letting Ea 

equal Ee' the area of bar c is found to be 

3 
Ac = vtH2 

~~~~2-

2 h x h y ( l -v ) 
(A.9) 

The cross-sectional area of bar b can be calculated by the same pro

cedure. The loading described in the second condition will cause bars b 

and c to deform while the length of bar a remains unchanged. 

The area of bar b is found to be 
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(A. 10) 

In the case when the tangential load s per unit length is applied 

to the plate element as shown in Figure 26 and equivalent joint forces 

applied to the model as shown in Figure 27, all horizontal and vertical 

bars of the model must be unloaded. This is necessary to insure zero 

normal strain in the norizontal and vertical directions. The forces in 

the diagonal bars are equal in magnitude but opposite in sense and are 

Fe = (shx cos e = shy sin e)/2 (A. 11 ) 

The change in length of the diagonal bars, Figure 28, wi 11 be 

o = Fch/AcEc 

= sh 2;2A E z c c (A.12) 

The deformation of the element is shown in Figure 29 and the 

shearing strain is shown to be 

2 tan (w) = 2osine/h x 

= sh h /h A E y z x c c 

Equating the shearing strain in the model of theoretical shearing 

strain yields 

if 

Yxy = sh h /h A E z y x c c (A. n) 

Equating equations A.3 and A.13, the area of bar c is found to be 

(A. 14) 

The area of bar c can satisfy both equations A.9 and A.14 only 
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Figure 28. Shearing Deformation of Discrete Element 



Figure 29. Deformation of an Elastic Bar 
of the Discrete Element 
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H2 

(A. 15) 

Therefore, the Poisson's ratio depends on the ·geometry of the 

discrete element model given by Equation A.15. The Poisson's ratio will 

vary from 0.09 to 0.473 as the ratio for hx/hy varies from 3.0 to 0.333. 

However, it has been found (13) that the value of Poisson's ratio has 

little effect on the vertical displacement of the plate due to either 

vertical or inplane loads. 

Force in an Elastic Bar 

To calculate the forces in the elastic bar of a discrete element 

model, displacement, both vertical and in plane, are combined and include 

second order effects as described below. The original length of a bar 

in the x-y plane (Figure 30) is 

( h. 2 + h 2) l /2 
x y 

(A; 16) 

Following joint displacements, the final length of the bar is 

(A. 17) 

-where h2 = final length of the bar 

t.u = u2 u1 

t.v = v2 v1 

t.w = w2 w1 

The axial strain of the bar can be written as 

= 

or 

(h £ + h ) z z (A. 18) 

Equating equations A.17 and A.18 and rearranging terms gives 
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s = + (A. 19) 

-
sx = (hx + Liu)s/hz (A.20a) 

Sy = (hy + Liv)s!f\ (A.20b) 

s = Liws/hz z (A.20c) 

Therefore the force of this bar in each principal direction is 

PX = EAs x (A.2la) 

p = EAsy y (A.2lb) 

Pz = EAsz (A.2lc) 

The same procedure can be applied to bars that lie in the x and y 

directions. Equation A.21 is used to calculate the membrane forces. 

Stresses from the Membrane 

Model 

To calculate the membrane stresses, consider a plate element in 

Figure A.5 subjected to inplane forces, the normal and shearing stresses 

are 

Cf = F /th (A.22a) x x y 
Cf = F /th (A.22b) y x y 

Txy = vxy/thy (A.22c) 

Tyx = Vy/thx (A.22d) 

A membrane element in Figure 31 is used to represent the plate 

element are applied directly to the joints of the model. 



(Fy+Vxy)/2 (Fy-Vxy)/2 

~--~---
(Fx+Vyx)/2 (Fx-Vyx)/2 

hy 
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------~--- ... 

(Fy-Vxy)/2 (Fy+Vxy)/2 

I- hx -I 
Figure 31. Discrete Element Representation 

of Plate Element 
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The axial force of each bar is calculated as described before and 

identified by the letters in Figure 32. The forces are calculated 

from the known joint displacements. The joint equilibrium equations for 

the model are 

[F8 + FH cos 8] = [Fx + Vyx]/2 

[Fe + FH sin 8] = [FY + vxy]/2 

[FB + FE cos 8] = [F x - V y)/2 

[FD + FE sin 8] = [F y - V xy]/2 
(A.23) 

[FA+ FE cos 8] = [F - V ]/2 x yx 
[Fe + FE sin 8] = [FY - vxy]/2 

[FA+ FH cos 8] = [F x + Vy)/2 

[FD + FH sin 8] = [F + V ]/2 Y xy 
Solving these equations yields 

Fx = [FA+ FB] + [FH + FE] cos 8 

F = [Fe + FoJ + [FH '. FE] sin 8 y 

vxy = [FH - FE] sin 8 (A.24) 

vyx = [FH - FE] cos 8 

Substituting these values ~nto equation A.22 gives 

ax = [FA + FB + (FH + FE) cos 8]/thy 

a = rFe + FD + (FH + FE) sin 8]/thx y 
(Ai25) 

TXY = [FH - FE] sin 8/thy 

TYX = [FH FE] cos 0/th x 
where FA' F8, Fe, FE and FH are shown in Figure 32. 



Figure·32. Forces in Elastic Bars 
of Membrane Element 
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Consider the rheological model shown in Figure 33. This model has 

been formulated to represent the interaction of three physical quantities 

in the pullout test, the pullout force, the displacement and the strain 

of the reinforcement. In this model, this interaction is characterized 

by the length of reinforcement required to accommodate the input force. 

The results of the laboratory pullout tests were used to evaluate the 

resistance coefficient and displacement and strain of the fabric for a 

given pullout force. These parameters were then used in the solution to 

the soil-reinforcement interaction equation to predict the length of 

fabric required for a given pullout force. Comparisons between lengths 

of fabric measured and lengths of fabric predicted were excellent, con

sidering the simple linear model utilized. Derivation of this simple 

soil-reinforcement interaction equation is as follows: As shown in 

Figure. 33, one element of reinforcement is broken into p parts. Each 

part is acted upon by friction force, Ri (1-1, p), and is connected to 

its neighbor by a spring with a spring constant K. The external force 

Fp to the p part causes a displacement, u0 , on the p part. 

Considering the summation of forces on the nth part it follows that 

and hence 

u +l 2u + u 1 Rn 
-K6x[ n - n ~-=-] = 6x2 AX 

taking limits 

( B. l) 

The tensile force at each spring is dependent upon the friction 

force acting on the surface of each part of an element of reinforcement. 



r-
ro 
u 

•r-
en 
0 
r-
0 
QJ 

...c:: 
0::: 

. 
CV') 
CV') 

90 



91 

The friction force, R, acting on each part is dependent on the displace-

ment u of each part. From Equation B.l it follows that: 

2 
K' .Q__J! + R' = 0 where K' = Fu 

dx2 
(B.2) 

The parameter, R~ represents the friction force which is dependent 

upon displacement. The parameter K~ which contains the externally applied 

force, F, represents how a tensile force in each spring is dependent on 

displacement and therefore varies along the length of an element of 

reinforcement. 

The expr~ssion now becomes 

(B. 3) 

Solution of this equation is as follows: If R' is dependent on 

displacement and is taken to be equal to some resistance coefficient, pr' 

times the displacement, u, Equation B.3 becomes, 

2 
Fu.Q__J! + p u = 0 

dx2 r 

\· 

where pr is defined as ~~ 

Integrating Equation B.4 
2 

twice, it follows that 

-p x r u = 2F + c1 x + c2 

2 x u = -p - + r2F 

(At X=O 

u' x + u 
0 0 

(B.4) 

(B.5) 

Where pr is a resistance coefficient which represents the friction 

force per unit length on the surface of the nth part of an element of 

reinforcement; F is the external force applied to an element of reinforce-

ment; x is the distance along the element of reinforcement from the point 
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of application of the applied force; u~ 0 is the strain of a point at the 

application of an applied force and u0 is the displacement of a point at 

the application of an applied force. 

Design Considerations 

To evaluate the length of reinforcement, L, the following procedure 

is suggested. 

1. Evaluate the design pullout force F. 

2. Perform a laboratory test on a reinforcement strip having the 

same material and geometric properties as the strip to be used 

in the field. The length of the strip can be equal to the 

length of the strip used in the pullout tests. 

3. Using the pullout force FL required to slide the test strip 

from the pullout test apparatus, the displacement u0 , and the 

strain, u' 0 , of the reinforcement, evaluate the resistance 

coefficient pr, using Equation B.5. 

4. Design the strip for a displacement u0 , and strain u' 0 , that is 

compatible with the pullout force F. 

5. Evaluate the required length of reinforcement, L, by using the 

displacement, u0 , the strain, u' 0 , and the resistance coefficient 

Pr' in Equation B.5, and 

6. Apply a reasonable factor of safety to the length of reinforce

ment, ~and/or accept an allowable probability of failure of the 

reinforcement. 
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Example Problem No. l 

A column foundation is to be designed. The data and solution fol-

low. 

Data: 

Column load = 50T 

Soil configuration: deep sand deposit 

Standard penetration test: N = 15 

Foundation level: -2 ft 

Tensile strength of fabric = 1000 lb/in. 

Allowable maximum fabric deformation = 0.5 in. 

Solution: 

Try 4 1 x 4 1 footing. 
3 . 

a = 4', K = 10 T/ft , depth ratio = 0.5 

Substituting into Equation (5.2) (see Figure 34): 

A = 8.3' 

Solving for t (Equation (5.3)): 

T = 45 lb/in. 

Example Problem No. 2 

Given a homogeneous embankment, the slope is 100 feet high, and 

rises at an agle of 35° with the horizontal. The properties of the 

soil are as folJows: 

s = 850 + atan¢ psf 

om = 115 lb/cu ft, ~o = 12 in. 

amax = 1000 lb/in. 
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Figure 34. Deformed Fabric 



Solution: 

F to f f t _ RE [C6L + Wcosatan~] 
ac r ~ sa e Y - RE Wsina 

319.3 = 342 .4 = 0.93 unsafe 

Now to change the factor of safety to 1.00, the stabilizing moment 

should be equal to: 

But, 

M = 1.00 x 342.4R = 342.4R kip-ft. 

M = 319.3R + ETiR 

ETiR = 23.lR kip-ft 

.". ET = 23. l kip 

Assuming the pullout test was conducted and yields the following 

results: 

and 

-3 r = 40xl0 kip/ft 

u0 .= 0.55 in., u~ = 0.05 in., TL= 1.21 kip/ft 

6 

2°=6in. 

l. 21 x 6 T - = F - 0. 55 

1. Using: 

11 kip < 1000 lb x 12 = 12 kip/ft 

o = 6.0 in., u~ = 0.05, TF = 11 kip, 

-3 Pr= 30xl0 kip/ft 

ir = 41 ft {Equation (B.5)) 
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From Equation (5.7)~ 

o = 5. 50 in. 

2. Required: 

liM = 23.lxlO.O = 3234 kip-ft 

liM for one fabric = 11x135 = 1485 kip-ft. 

3. Use three fabrics as shown in Figure 35. 

Example Problem No. 3 

Solve Example Problem No. 3 using the following data. Cohesion 

and angle of internal friction gave the following results: 

Test C (12si) _p_ 

1 834 12 
2 845 14 
3 862 13 
4 870 16 
5 840 18 

Fabric Tests a (lb/in.) 

980 
1100 
1080 

Solution: 

C Analysis 

Assume: 

1 
2 
3 

1 
h(e) = 2rr x 1000 e 

From the sample we have: 

C = 850.2 psi 

1 ( c - 880) 2 
2 x 1000 
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100' 

Figure 35. Reinforced Embankment 



-2 
s2 = !JJ:__:JJ_ = 231.2 

n - l 

E(e/y) = 

_§80 + 5 x 850.2 
1000 231.2 

l 5 
1000 + 231 

p Analysis 

Assume: 

= 851.5 psi 

l 2 -.-- (<J>-11) 
l 2 x 240 

h(e) = 2rr x 240 e 

From the sample we have: 

~ = 14.6 in. 

s2 =5.8 

R+ 5 x 14.6 
240 5.8 E(e/y) = --1~--'--5--· = 14.5 in. 

240 + 5.8 

cr Analysis 

Assume: 

l 2 
2 x 100 ( (J - l 000) 

l 
h(e) = 2rr x 100 e 

From the sample we have: 

a-= 1053 

s2 = 5180 

1000 + 3 x 1053 
100 5180 E(e/y) = ----'------- - 1003 lb/in. l 3 

100 + 5180 

Thus the expected values are: 

99 



C == 851.5 psi 

cf>== 14.5° 

a == 1003 lb/in. 

100 
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