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CHAPTER I 

INTRODUCTION 

It has been recognized for many years that immune responses are of 

two general types, broadly termed cell-mediated immunity- (delayed type 

hypersensitivity responses, transplantation immunity and immunity to 

some viral, bacterial and parasitic infections) and humeral immunity-

(the production of circulating antibody molecules). In all types of 

immune responses, lymphocytes play a central role in both the initiation 

and development of the response (Gowans and McGregor, 1965). Lympho-

cytes are comprised of two discrete cellular populations. A class of 

bone marrow derived lymphocytes migrates to the thymus where these cells 
.. 

develop the ability to respond to antigen. These thymus-processed 

lymphocytes, generally referred to as T cells, are responsible for the 

various phenomena of cell-mediated immunity. The second lymphocyte 

population also arises in the bone marrow and settles ultimately in the 

peripheral lymphoid tissues where these cells give rise to the precur-

sors of antibody secreting cells (Davies, 1969). This review is 

concerned primarily with immunoglobulins as antigen receptors located on 

the surface of precursor cells to antibody secreting cells and their 

involvement in the activation of the humoral immune response. 

The idea of an immunoglobulin as an antigen receptor on the surface 

of lymphocytes is not a new one; in fact, it was first clearly enun-

ciated by Ehrlich in 1900 (Ehrlich, 1900). The concept of specific 
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preformed receptors for antigen was not followed up in the ensuing 

decades, since the instructional theory of antibody formation was 

popular (Pauling, 1940). It was thought that the antigen itself in 

some manner directed the formation of complementary structures using 

the protein synthesizing system of the cell. In the 1950's, the 

selection theory of immunity (Burnet, 1959) proposed the concept 

of precommitment of immunocompetent cells for antigen. It was 

considered that precursor cells exist bearing receptors for antigen on 

their surfaces. Each precursor cell carries antibody receptors with 

only one specificity, which is identical to the antibody whose synthe

sis is induced when the cell is triggered to divide and differentiate 

by interaction with a specific antigen. Antigen receptors therefore 

form the central hub of the selection theory and are operationally 

defined as membrane bound molecules with the following properties: 

. 1) a binding site with stereochemical complementarity for the corres

ponding ligand, and 2) the capacity to initiate the transmission of 

a signal, resulting from the binding of the ligand, to the interior of 

the cell. The nature of the signals involved in lymphocyte activation 

has been the subject of much speculation. Ions, cyclic nucleotides and 

other hormones have been implicated (Wedner and Parker, 1976). 

Existence of Membrane Receptors 

2 

The existence of membrane immunoglobulin (Ig) has been established 

by many methods. Membrane Ig was first demonstrated by Raff (1970) who 

mixed fluorescein or radioactive iodine tagged anti-lg with intact cells. 

Bound anti-lg was detected by fluorescence microscopy or autoradiography. 

Radioactive membrane Ig has been demonstrated by immunoprecipitation 



with anti-lg from lysates of cells whose surfaces had been labeled with 

1251 (Vitetta et al., 1971; Marchalonis et al., 1972) by the techniques 

of Phillips and Morrison (1970). Other methods, such as inhibition of 

anti-lg-lg precipitation by whole cells (Rabellino et al., 1971); 

binding of anti-lg to cells as detected by various techniques including 

peroxidase coupling (Gonatas et al., 1972); ferritin coupling (dePetris 

and Raff, 1912) and rosette formation with red blood cells (Paraskevas 

et al., 1971) have also been used. 

General lg Structure 

A basic feature of all inununoglobulins is a four chain structure: 

two heavy (II) and two light (L) chains, see Figure 1. The heavy and 

light chains are usually covalently linked by a single disulfide bond 

while one or more inter-heavy disulfide bond(s) are present. Reduction 

of the inter:chain disulfide bends yields H and L chains. 

Each H and L chain consists of distinct stretches of amino acids 

called domains. A domain is approximately 110 amino acid residues in 

length. The domains are termed variable (V) or constant (C), an 

implicit defi.nition denoting the variability of amino acid sequences 

within the H and L chains. The H chain has one variable and three to 

3 

four constant: domains while the L chain has one variable and one con

stant domain. The variable domains of the H and L chains contribute 

amino acid residues which constitute the antigen binding site. The high 

degree of antibody diversity, that 1s the ability to recognize and bind 

a multitude of antigens, is a function of amino acid changes within 

the H and L chain variable domains. The three dimensional structure 

of immunoglobulins obtained by the folding of V and C domains has been 



Figure 1. General Structural Features of the Immunoglobulin Molecule 
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reviewed (Davies et al., 1975). 

Structural features of serum Igs were first characterized by 

fragments obtained upon treatment with proteolytic enzymes. The 

structural features of serum Igs also apply to membrane Igs. 

Porter (1959) reported that cleavage of IgG by papain gave rise to 

large fragments with distinctive properties. The products of this 

cleavage are also shown in Figure 1. Papain selectively attacks each 

heavy chain at a site just N-terminal to the inter-heavy chain 

disulfide bond(s). This liberates three fragments. Two are called Fab 

fragments (for antige~ binding) and the third is called the Fe fragment 

(c for crystallizable). Each Fab fragment contains a complete L chain 

and the N-terminal half of the H chain covalently linked by a disulfide 

bond. The third fragment, Fe, consists of the C-terminal half of the 

two H chains also covalently linked by disulfide bond(s) • 

. Pepsin attacks on the C-tenninal side, rather than the N-terminal 

side of the inter-heavy chain disulfide bond(s). Cleavage yields a 

large bivalent fragment (Fab) 2 and a partially degraded Fe fragment. 

Because of the susceptibility of a particular area in the middle 

of the H chain to attack by papain, pepsin and other enzymes, it is 

generally thought that this region must be loosely folded. This region 

has been designated as the hinge and is found between the first and 

second constant domains of the H chain. 

Membrane Immunoglobulins 

Membrane IgM has been identified as the major class of irnmuno

globulin on the surfaces of B lymphocytes (Vitetta et al., 1971; 

Marchalonis et al., 1972). Hembrane IgD has been identified as the 
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second major class of lg on the human lymphocytes (Knapp et al., 1973; 

Kubo et al., 1974; Fu et al., 1974; Finkelman et al., 1976), rat 

lymphocytes (Ruddick and Leslie, 1977) and rabbit lymphocytes (Pernis 

et al., 1975; Wilder et al., 1979). The presence of an additional 

class of lg molecule, in addition to IgM in mice, was first reported 

by Melcher et al. (1974) and subsequently confirmed by others (Abney 

and Parkhouse, 1974; Haustein and Goding, 1975). 

In the mouse, cell surface IgM and IgD can be precipitated from 

cellular lysates of externally labeled B lymphocytes with anti-Igi.'1 and 

anti-light chain sera respectively. Cell surface IgD is not precipi

tated by reaction with anti-µ, y, or a sera at normal concentrations 

(Abney and Parkhouse, 1974; Melcher et al., 1974). However, it has 

been reported that the lack of precipitability of cell surface IgD 

by anti-µ sera can be overcome when sufficient amounts of purified 

. anti-µ sera are used (Lisowska-Bernstein and Vassalli, 1975; Pernis 

et al. , 19 7 5) • 

Tissue Distribution 

Using external labeling procedures, a marked difference is 

observed in the relative recovery of surface IgM and IgD from various 

lymphocyte populations. IgM and IgD were observed to be in approxi

mately equal amounts in spleen, but in lymph nodes and Peyer's patches 

IgD accounts for 70-90% of the total cell surface Ig (Abney and 

Parkhouse, 1974; Melcher et al., 1974; Vitetta et al., 1975). 

Ontogeny of Membrane Immunoglobulins 

Lymphocytes bearing IgM, IgD or both IgM and IgD have been 

7 
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demonstrated in a variety of species. Early studies in humans suggested 

that IgD was the primordial cell surface receptor on B lymphocytes 

(Rowe et al., 1973). In the mouse however, IgM was readily detectable 

on the surface of splenocytes from 4-day old mice, whereas IgD first 

became detectable at 10-15 days after birth (Vitetta et al., 1975). 

By three months of age, IgD is the preponderant cell surface immuno

globulin on peripheral mouse lymphoid tissues. That IgM, and not lgD, 

was detectable on bone marrow cells suggests that lgM rather than lgD 

was first in ontogeny, since bone marrow cells are precursors of 

peripheral cells. 

Demonstration that IgM and IgD are present on the same cell sup

ports the hypothesis that a differentiation step, in which the cells 

switch from IgM to IgD production takes place (Goodman et al., 1975). 

B lymphocytes from athymic mice and mice harbored in a germ free 

environment also bear both IgM and IgD (Vitetta et al., 1975). It 

appears that the class switch is independent of T cell influence and 

may also be independent of antigenic stimulation. 

Fluorescent staining techniques have been used to demonstrate 

the independent movement of IgM and IgD on the surface of lymphocytes. 

The binding of surf ace immunoglobulin by polyvalent antigen or divalent 

anti-lg induces the surface lg to redistribute to initially form patches 

and finally a polar cap on the cell. Experiments have been performed in 

which surface IgM was first capped with rhodamine-labeled anti-IgM after 

which a diffuse staining pattern was observed when the cells were reacted 

with fluorescein-iabeled anti-light chain (Ligler et al., 1977). The 

capping process is energy and temperature dependent (Knapp et al., 1973) 

and is followed either by shedding of the membrane lg-ligand complex 



or by endoc.ytosis of the complex. If surface IgD and IgM are capped 

and internalized simultaneously, their rates of reappearance on the 

cell surface are approximately the same (Ligler et al., 1977; Rowe et 

al., 1973). Fourteen to twenty hours after internalization newly 

synthesized IgM and IgD have reappeared on the cell surf ace. 

Turnover 

Several studies have recently been reported on the turnover of 

cell surface immunoglobulin. Studies so far (Vitetta and Uhr, 1972; 

Andersson et al., 1974) suggest that immunoglobulins on B lymphocytes 

have a half life between two to eight hours. This half life is of the 

same order of magnitude as turnover of other cell surface proteins. 

Biosynthesis of Membrane Immunoglobulins 

Secreted immunoglobulins are synthesized by ribosomes bound to 

the endoplasmic reticulum of plasma cells and some B lymphocytes 

(Bevan et al., 1972; Uhr, 1970). The immunoglobulins are modified 

during passage through the smooth endoplasmic reticulum and the ele

ments of the Golgi apparatus and are finally released from the cell 

by exocytosis. During IgM biosynthesis in mouse cells, the heavy and 

light chains are assembled early into monomer IgM (H2L2). Assembly of 

the monomers into a pentamer takes place at or near the time of 

secretion (Parkhouse and Askonas, 1969) and may involve the rearrange

ment of disulfide bonds and the addition of J chain (Della Corte and 

Parkhouse, 1973). 

Glycosylation appears to have a role in the intracellular trans

port and secretion of irnrnunoglobulins. Hickman et al. (1977) have 
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studied the secretion of lg in the presence of tunicamycin, a compound 

that selectively prevents the glycosylation of newly synthesized 

proteins. Inhibition of lg secretion, in the presence of tunicamycin, 

increases as the carbohydrate content of the lg increases. At or near 

the time of secretion, the lg acquires the terminal sugar residues on 

its carbohydrate side chains (Melchers, 1973). 

10 

The biosynthesis of membrane Igs has not been well studied. It 

has been hypothesized that lg destined for the cell surface is synthe

sized and initially transported along a pathway similar to that of lg 

to be secreted (Vitetta and Uhr, 1974). In the Golgi complex the 

precursor to membrane lg becomes attached to the Golgi vesicle and the 

secreted lg does not; After exocytosis of the Golgi vesicle, attached 

lg becomes membrane lg and released lg becomes secretory lg. This 

hypothesis has received some experimental support from pulse-chase 

studies (Sherret al., 1971; Vitetta and Uhr, 1974). lg synthesized on 

membrane-bound polyribosomes is confined to the microsomal compartment; 

in addition, a period of 1-2 hours is required after the addition of 

label before membrane lg can be detected on the outer surface of the 

cell. This period is similar to that required for the secretion of 

newly-synthesized IgM and is probably occupied by intracellular transit. 

Physical Properties of Immunoglobulins 

Table I summarizes pertinent information concerning physical 

characteristics of membrane and secreted Igs. This topic has been 

extensively reviewed (Metzger, 1970; Nisonoff et al., 1975). Infor

mation concerning IgG, IgA and IgE has been included in the table to 

provide a comparative view of the five lg classes. 



TABLE I 

PHYSICAL PROPERTIES OF MEMBRANE AND SECRETED IMMUNOGLOBULINS 

H chain chain M.W. intact No. domain M.W. % CHO serum references d 
Ig designation structure moleculeb H chain H chainb H chain conc.c 

a sigG1_4 yl-4 H2L2 146 4 51 3-4.S 9 1 

(H2L2)5 + J 956-970 5 72-73 13.3 1.5 2 
sigM µ 

(H2L2)1 or 2 + S.P.f 160-390 4 52-58 7-11 0.5 1 slgA1_2 a 1-2 

slgE (H2L2) 188-196 5 72-76 12 3 x 10-4 1 
E 

sigD 0 (H2L2) 172-184 4 63 15 3 x 10-s 3 

e 
(H2L2) 192 5 74+ unk 0 4 

mlgM µ 

migD 0 (H2L2) 178 4 66 unk 0 
5,6 

a 
s = secreted; b -3 c mg/ml; e fS.P. = secretory piece. molecular wt x 10 ; m = membrane; 

d references: 1-Nisonoff et al., 1975; 2~Robinson et al., 1973; 3-Spiegelberg, 1977; 4-Melcher and Uhr, 
1976; 5-Melcher et al., 1974; 6-Abney and Parkhouse, 1974. 

f-' 
f-' 
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Secreted IgM (19S) is a pentamer consisting of ten heavy chains 

and ten light chains covalently linked by disulfide bridges. In the 

secreted molecule there is at least one additional polypeptide chain, 

the J chain, disulfide bonded to the C-terminal region of the H chain 

(Mestecky and Schrohenloher, 1974). The J chain functions in the 

maintenance of the pentameric structure. The molecular weight of human 

secreted IgM(Ou) calculated from the known amino acid sequence and 

estimated carbohydrate content is 956,000 (Putnam et al., 1973). The 

molecular weight of mouse myeloma secreted (MOPC 104E) IgM H chain has 

been reported at 73,000 (Robinson et al., 1973). This molecular weight 

supports an H chain structure containing five domains (i.e. one variable 

and four constant domains) •. 

Serum IgD always exists as a monomer whose sedimentation rate is 

6-7S (Spiegelberg, 1972). Employing the equilibrium sedimentation 

method, molecular weight values of.172,000 (Spiegelberg, 1972) and 

184,000 (Rowe et al., 1969) have been obtained. The discrepancy in 

the molecular weight determined by these two groups was a result of 

different values employed for the partial specific volume (v) in the 

molecular weight calculation. The average molecular weight of the 

serum o chain was determined by three independent methods to be 63,000 

including carbohydrate (Spiegelberg et al., 1970; Goyert et al., 1977). 

The intact secreted IgD thus has a molecular weight of 172,000 assuming 

a molecular weight of 23,000 for the light chain. These data suggest 

that the o chain has one variable and three constant domains and might 

have a relatively extended hinge region. Recent studies by Lin and 

Putnam (1979) have proven this to be the case. Myeloma IgD (WAS) has 

an extended carbohydrate-rich hinge region of at least 40 amino acid 
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residues. 

In contrast to secreted IgM, cell surface IgM is a monomer (7S) 

consisting of two heavy and two light chains covalently linked by 

disulfide bonds. This has been demonstrated by SDS-PAGE and sedimen

tation in SDS-sucrose solutions (Vitetta et al., 1971; Kennel and Lerner, 

1973; Melcher and Uhr, 1976). Under certain conditions it is possible 

to find two chain molecules (HL) (Abney and Parkhouse, 1974). These 

half molecules probably arise through breakdown of membrane IgM during 

the experimental procedure. The molecular weights of human, rat and 

mouse membrane IgM H chains have been reported as 73,000, 73,000 and 

74,300 respectively (Ruddick and Leslie, 1977; Melcher and Uhr, 1976). 

Comparison of membrane and secreted IgH H chain molecular weight yields 

a reproducible 1700 dalton difference, the membrane species being the 

larger. The additional size of membrane H chain has been implicated 

in cell surface attachment and will be discussed in a subsequent 

section. 

Like serum IgD, membrane IgD exists as a monomer covalently linked 

by disulfide bonds. The molecular weight of mouse membrane o chain 

has been estimated at 65,800 (Melcher and Uhr, 1976). Although the 

mouse membrane o chain as usually identified is smaller than the human 

membrane o chain (Warr and Marchalonis, 1976), there is evidence that 

this o chain may be a proteolytic fragment of a 'native' o chain with a 

size equal to that of mouse membraneµ chain (Sitia et al., 1977). 

Sitia et al. detected a mouse membrane o chain with a mobility comparable 

to human membrane o chain of molecular weight 73,000. Further degrada

tion products were observed, one of which corresponds to the normally 

isolated mouse membrane o chain of molecular weight 65,800. The actual 
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size of mouse membrane o chain remains for the most part unclear. 

Integral Nature of Membrane Imrnunoglobulins 

Membrane proteins have been classified as integral or peripheral 

based upon their solubilities (Singer and Nicolson, 1972). Proteins 

.that can be extracted with moderate salt concentration, changes in pH, 

EDTA and other mild reagents are peripheral proteins. While integral 

membrane proteins require organic solvents or the presence of detergent 

for extraction and solubility, membrane immunoglobulins are extractable 

with n.onionic detergent and 811 urea (Vitetta et al., 1971), but 

are not extractable with a variety of salts including potassium chlo

ride, sodium sulfate and sodium trichloroacetate (Kennel and Lerner, 

1973). 

Evidence to support the integral nature of cell surface lg has come 

from the examination of their solubilities in the presence and absence 

of detergent. Melcher et al. (1975) have reported mouse membrane Igs 

require the presence of detergent for solubility. In contrast, mouse 

secreted Igs do not require detergent for solubility. 

Proteolytic Fragmentation 

Like most Igs, membrane IgM and IgD can be cleaved by treatment 

with proteolytic enzymes. The proteolysis of mouse membrane IgM and 

IgD, with the enzyme papain, has been investigated (Vitetta and Uhr, 

1976; Hough et al., 1977). Cell surface IgD was considerably more 

susceptible than cell surface IgM to papain cleavage when the cleavage 

was performed with the molecules attached to the cell surface. However 

in cellular detergent lysates treated with papain, no difference in 
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susceptibility to enzyme cleavage was observed. The major site of 

enzyme attack was in the hinge region of the H chain. These observa-

tions suggest that attachment to the plasma membrane affects the 

accessibility of IgM to papain. 

The susceptibilities of detergent released mouse membrane IgM 

and IgD to trypsin cleavage have been compared with their human counter-

parts (Bourgois et al., 1977; Spiegel berg et al., 1970). The fragments 

released in both species had similar molecular weights; however the 

conditions required to cleave the IgM and IgD were quite different. 

Eighty percent of the IgD molecules could be effectively cleaved by 

0 trypsin in 10 minutes at 0 C, and a complete cleavage was obtained at 

2s0 c. To cleave the IgM, digestion for several hours at 37°c was 

necessary. The differences reported in the susceptibility of detergent 

released mouse membrane IgM to papain and trypsin have not been explained 

. but may have been due to the extent of denaturation of the IgM in solu-

ti on. 

The increased susceptibility of the IgD molecule to enzymatic 

proteolysis has prompted investigation of the structural basis for this 

phenomenon. The Stokes radius and the sedimentation coefficient for 

the intact serum IgD and its proteolytic fragments have been determined 

(Griffiths and Gleich, 1972). Their results suggest that intact IgD is 

less compact than either IgG, IgE or IgM. Further, the IgD Fe fragment 

is less compact than that of IgG. The latter observation could be a 

result of the additional carbohydrate present on the Fe portion of the 

IgD. An apparent difference in conformation was proposed to account, 

in part, for its marked susceptibility to enzymatic cleavage. 

The amino acid sequence of IgA1 has been determined (Liu et 
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al., 1976). In the IgA1 , the hinge region is comprised of 30 amino 

acid residues, 12 of which are praline. Five 0-linked carbohydrate 

moieties are also located in the hinge region (Baenziger and Kornfeld, 

1974). The hinge region polypeptide structure of IgD is very different 

from that of IgA1 • The IgD hinge region is 40 amino acid residues in 

length and is also rich in carbohydrate (Lin and Putnam, 1979). How

ever unlike the IgA1 hinge region, the IgD hinge has a relatively low 

praline content (three for 40) and a high concentration of glutamic 

acid, lysine, arginine and no hydrophobic residues (Jefferis and 

Matthews, 1977; Lin and Putnam, 1979). The length of the IgD hinge 

and its chemical characteristics suggest an open structure readily 

accessible to cleavage, especially by trypsin and papain. 

Spontaneous Degradation of IgD 

Among the different classes of Igs, IgD is unique in that it is 

highly susceptible to degradation during conventional isolation 

procedures and storage (Fahey et al., 1968; Goyert et al., 1977). This 

degradation has been termed 'spontaneous' because the enzyme(s) respon

sible for it are unknown. It has been suggested that serum enzymes 

with trypsin-like activity could be responsible for the fragmentation 

of IgD (Spiegelberg, 1972). This proteolytic degradation can be 

inhibited by the addition of <:-amino caproic acid (EACA), an inhibitor 

of plasminogen-plasmin activation (Alkjaersig et al., 1959). Thus it 

has been suggested that plasmin may be responsible for the so-called 

'spontaneous' fragmentation. There is some experimental evidence to 

support the role of plasmin in the proteolytic process. Panero et al. 

(1978) studied the effect of maternal serum on the cell surface IgD of 



neonatal human lymphocytes in the presence of protease inhibitors. 

Contact with maternal serum caused a significant reduction in the 

percentage of neonatal IgD-positive cells as determined by the binding 

of fluorescein conjugated anti-IgD serum. The addition of either EACA 

or aprotinin, a trypsin inhibitor, significantly reduced the action of 

maternal serum. These data suggest that serum enzymes, like plasmin, 

could be responsible for the proteolysis. 

The sites of 'spontaneous' cleavages of serum IgD have been 

investigated and found to occur first in the hinge region and second 

near the carboxy-terminal of the IgD H chain (Goyert et al., 1977). 

17 

In the former instance, 'spontaneous' fragmentation parallels enzymatic 

action by trypsin and papain, in that proteolysis at the hinge yields 

Fab and Fe fragments. A similar susceptibility to 'spontaneous' frag

mentation has been reported for human IgE (Bennich and Johansson, 1971). 

Spontaneous fragmentation of cell surface IgD has yet to be 

investigated in the mouse. The possibility of fragmentation is real 

since mouse membrane 8 chain as usually identified is smaller than 

human membrane 8 chain (Warr and Marchalonis, 1976). The report of a 

mouse membrane 6 chain larger than normally isolated (Sitia et al., 

1977) adds support to the possibil'ity of a proteolytic event. One 

might speculate that degradation at the C-terminal of the mouse membrane 

8 chain might remove peptide sequences important in the attachment 

process. The answer to this question awaits further experimentation, 

however. 

Membrane Immunoglobulin Carbohydrate 

Immunoglobulins are glycoproteins and typically the complex oligo-
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saccharides attached to immunoglobulins are asparagine-linked branched 

structures comprised of N-acetylglucosamine and mannose core sugars. 

The branched structures are completed by the addition of the terminal 

sugars (galactose, fucose and sialic acid) to the core sugars. In 

addition, IgD contains 0-linked (i.e., serine and threonine) oligo

saccharides and the carbohydrate N-acetylgalactosamine (Clamp and 

Johnson, 1972; Grey et al., 1971). The biosynthesis of these complex 

oligosaccharide units has been reviewed by Kornfeld and Kornfeld (1976) 

and the oligosaccharide structures defined for a number of the immuno

globulins (Baenziger and Kornfeld, 1974). 

Information concerning the carbohydrate attached to cell surface 

lg is lacking. However, carbohydrate contents and structures have 

been reported for their secreted counterparts (Robinson et al., 1973; 

Baenziger and Kornfeld, 1974). The H chain carbohydrate for MOPC 

104E secreted µ chain is 13.3%. This figure translates into 9700 g 

carbohydrate per 73,000 g protein. The carbohydrate content of mouse 

myeloma IgM (MOPC 104E) is 11.7% for the H2L2 • There is some dis

crepancy as to the number of oligosaccharide units per heavy chain. 

Five oligosaccharide units have been reported (Hickman et al., 1977), 

however the possibility of an additional oligosaccharide unit in the 

variable region has been reported (Anderson, personal communication, 

1979). 

Melcher and Uhr (1977) have shown that immunoglobulin buoyant 

density is an indicator of carbohydrate content. Buoyant density 

determinations were used to compare the carbohydrate contents of 

intracellular, membrane and secreted immunoglobulins. These deter

minations were performed in the presence of detergent. Membrane IgM 
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from detergent lysates of spleen cells was less dense than either intra

cellular or partially reduced secreted IgM. Underglycosylation or 

detergent binding could account for the decreased density observed in 

membrane IgM. The former explanation was discounted since incorporation 

of terminal sugar has been demonstrated in membrane IgM (Vitetta and 

Uhr, 1974) and the electrophoretic mobilities of membrane and secreted 

µ chains are similar. The low density of membrane IgM was thus attribu

ted to detergent binding. Detergent binding is a property of integral 

membrane proteins (Helenius and Simons, 1975). Information regarding 

the content, structure, and placement of carbohydrate on mouse membrane 

lgM has not been reported. 

Carbohydrate analysis of IgD myeloma proteins has been reported 

(Spiegel.berg et al., 1970; Jefferis et al., 1975). The absolute amounts 

of carbohydrate varied in these studies. However, both reports agreed 

. that the 8 chains are rich in carbohydrate and have on the average 15% 

carbohydrate. The calculated carbohydrate content for the intact IgD 

molecule is 11% using a median molecular weight of 184,000 daltons of 

which carbohydrate is 20,000 daltons (Jefferis et al., 1975). IgD has 

a high sialic acid content which seems to be variable when compared to 

other immunoglobulin classes (Jefferis and Metthews, 1977). 

Only three glycopeptides were recovered from peptide maps of 

serum o chains (Spiegelberg et al., 1970) suggesting that all the 

carbohydrate is attached at three sites. One site was localized in 

the hinge region and contained all the galactose and N-acetylgalactos

amine. The other two sites were located in the Fe fragment of the H 

chain and contained N-acetylglucosamine, mannose and the terminal 

sugars. 



The structure, content or placement of carbohydrate on mouse 

membrane IgD has not been reported. However in the buoyant density 

gradient experiments previously described, mouse membrane IgD had a 

higher density than mouse membrane IgM indicating that IgD has appre

ciable amounts of carbohydrate or that IgD binds much less detergent 

(Melcher and Uhr, 1977). These data are consistent with the fact that 

human IgD is known to have a higher percentage carbohydrate content 

than does human IgM (Perry and Milstein, 1970). 

Mouse membrane IgM has a lower functional affinity for lentil 

lectin than does mouse membrane IgD (Kubo et al., 1970). The observed 

differences in functional affinity for lectin binding have been 

attributed to the number of oligosaccharide units or to differences 

in carbohydrate sequences. Differences in carbohydrate sequences are 

supported by binding studies of membrane IgM and IgD to Concanavalin 
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A Sepharose, a mannose binding affinity adsorbent (Hunt and Marchalonis, 

1974). In these studies IgD was retained less well by the affinity 

adsorbent. 

Antigen Receptors and Lymphocyte Triggering 

Interaction of an antigen with a lymphocyte leads to division and 

differentiation and culminates in the formation of an antibody-secreting 

plasma cell. The mechanisms by which antigen binding is translated 

into a functional response remain to be determined. There are two 

theories to explain the induction of antibody secreting precursor 

cells; these are the one signal hypothesis and the two signal hypothe

sis. In the one signal hypothesis, the lg receptor on the surface of 

the B cell lymphocyte binds the antigen. However, this binding does 



not lead to an intracellular signal. The bound antigen serves as a 

site for binding of a T cell factor, or T cell. The bound T cell 

factor, thus concentrated on the surface of the responding lympho-

cyte binds another molecule on the surface of the cell. It is this 

latter binding that provides a single intracellular signal, which 

is sufficient for stimulation (Coutinho and Moller, 1975). In the 

two signal hypothesis, the binding of antigen to an lg receptor on 

the surface of the B lymphocyte leads to the production of one 

intracellular signal. A second intracellular signal is generated 

when a factor derived from a T cell interacts with some molecule on 

the surface of the B cell undergoing stimulation. The simultaneous 

presence of both intracellular signals is necessary for division and 

differentiation to occur (ibid). One of the basic unanswered questions 

of cellular immunology concerns the process of activation of the B 

cell lymphocyte following antigenic stimulation. 

In the above hypotheses, the roles. for the Ig receptor are quite 

different. In the two signal hypothesis, the Ig is directly involved 

in generating a signal. The Ig receptor must undergo some change 

upon binding antigen, which can be translated to a membrane alter

ation either through a permeability change or by altering the activity 

of membrane proteins on the inner surface of the membrane. In the 

one signal hypothesis the lg serves only to provide a site for 

focusing of binding of the T cell factor, or T cell. All that is 

required of this model is that the lg be attached in some manner to 

the cell surface. 

21 
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Membrane Attachment 

There are three mechanisms by which membrane attachment might 

occur (Ramasamy, 1976). First, it is possible that the membrane lg 

differs in structure from its secreted counterpart in such a way that 

only the membrane species develops a stable interaction with the plasma 

membrane. Structural differences could be manifested through changes 

in the primary amino acid sequence or perhaps through differences in 

the carbohydrate content or composition of the membrane and secreted 

Igs. In the former, one might envision a membrane H chain with a 

different or additional amino acid sequence at the C-terminal. A 

sequence with hydrophobic character could directly anchor the membrane 

species into the lipid bilayer. Such a mechanism has been invoked to 

explain the binding of other proteins, such as glycophorin, to the 

plasma membrane (Marchesi et al., 1976). 

Studies with anti-lg sera and enzymatic surface labeling techniques 

support C-terminal involvement in the attachment process. Fu and Kunkel 

(1974) have reported that the C-terminal portion of the H chain of cell 

surf ace IgM on human B lymphocytes is buried in the membrane. Their 

conclusion was based upon the observation that specific antigenic 

sites of the cell surface IgM were not available for reaction with the 

anti-sera. Using the lactoperoxidase surface labeling technique, H to 

L chain labeling ratios have been used as an indicator of the availabil

ity of specific amino acid residues (i.e., tyrosine) for iodination. 

Marchalonis et al~ (1972) have reported that at least part of the C

terminal end of the membrane IgM H chain is buried. In more recent 

studies (Seon and Pressman, 1979), the H to L chain ratio for cell 



surface IgM was smaller than that of a number of partially reduced 

secreted IgMs, further indicating that a portion of the membrane IgM 

is not readily available for iodination. 

The mobilities of mouse membrane and secreted lgM H chains have 

been compared utilizing polyacrylamide gel electrophoresis in the 

presence of SDS (Melcher and Uhr, 1976). The mobility of mouseµ 

chain is slightly less than that of the secreted µ chain. The mobility 

difference is highly reproducible. A 1700 dalton molecular weight 

difference has been estimated between mouse membrane and secreted µ 

chains. Membrane µ chains have been shovm to be larger than their 
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serum counterparts in other species as well. Haimovich (1977) has 

reported a 10,000 dalton difference between bovine membrane and secreted 

µ chains. In addition, human membrane o chains are also larger than 

their serum counterparts (Finkelman et al., 1976; Warr and Marchalonis, 

1976). Cell surface o chain has been identified on both human cord 

blood and peripheral lymphocytes, and it appears to have a mobility 

similar to mouse membrane IgM H chain with a molecular weight at or 

near 73,000. In comparison, the molecular weight of human serum o 

chain is 63,000 (Spiegelberg, 1977). Further, membrane o chains from 

several other species are larger than o chains from human serum (Ruddick 

and Leslie, 1977; Finkelman et al., 1976; Warr and Marchalonis, 1976). 

Rat membrane o chain has an apparent molecular weight of 73,000 daltons 

and exhibits a minor 65,000 molecular weight species which is probably 

a partially degraded o chain. 

That the size difference could be related to membrane attachment 

has prompted i.nvestigation of membrane and secreted C-terminal sequences. 

Secreted IgM H chains have been found to terminate in an extra domain 
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sequence of 19 amino acid residues (Watanabe et al., 1973; Milstein et 

al., 1975) which is not sufficiently hydrophobic to act as an integral 

membrane component. Membrane H chains could possibly carry a hydro

phobic C-terminal polypeptide section instead of, or in addition to, 

the C-terminal stretch present in secreted H-chains. Based on computer 

analysis of possible nucleic acid sequences coding for serum H chains, 

mechanisms have been proposed for the attachment of membrane active 

amino acid sequences to the serum H chain (Melcher, 1978a). 

Mcllhinney et al. (1978) have investigated the possibility of 

C-terminal differences between membrane and secreted H chains by 

exploiting the fact that a tyrosine residue is present at the C-ter

minus in all examined secreted IgM H chains. The general structure 

of a C-terminal octapeptide released by CNBr cleavage is (ser-asp

thr-ala-gly-thr-cys-tyr-COOH). Since it is improbable that a 

hydrophobic extension on the membrane H chain would coincidently carry 

a C-terminal tyrosine residue, surface and secreted H chains were 

examined to see whether a C-terminal tyrosine could be cleaved from 

membrane H chain by treatment with carboxypeptidase. Their finding 

that both membrane and secreted H chains have a C-terminal tyrosine 

residue led them to conclude that it is unlikely that there is an 

extra C-terminal hydrophobic piece. 

In contrast, Williams et al. (1978) have presented evidence for 

a difference in C-terminal amino acid sequences between membrane and 

secreted H chains. In similar experiments, carboxypeptidase digestion 

and peptide analysis have been applied to compare the C-terminal 

primary structure.· As expected, the release of C-terminal tyrosine 

was seen with internally labeled secreted H chains, however only a 



small amount of tyrosine was released from internally labeled non

secreted H chains. Instead other hydrophobic amino acids - phenylala

nine, valine and leucine - were released. This data suggested that 

tyrosine was not the C-terminal residue of the membrane H chain. Their 

inability to isolate the C-·terminal octapeptide of the cell surface H 

chain also indicated that these chains possess a different C-terminal 

structure from those that are secreted. 

Yuan et a_L (personal communication, 1978) have compared the 

trypsin chymotcypsin digests of H chains isolated from cell associated 

and secreted IgM. At least two peptide differences were demonstrated 

between cell associated and secreted IgM H chains. The location of the 

polypeptide differences are not known and can only be elucidated fully 

by primary sequence determinations. However, these results are con

sistent with those of Williams et al. suggesting an extra peptide may 

be present at or near the C-terminal of the membrane-bound H chain. 

Membrane a:nd secreted structural and size differences could also 
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be manifested through differences in carbohydrate content or composition. 

Carbohydrate differences might very well influence the attachment to 

the plasma membrane. There is a report suggesting that membrane Ig is 

deficient in or lacks altogether terminal sialic acid and the branch 

sugars fucose and galactose (Melchers and Andersson, 1973). Others 

report the detection of branch sugars via the incorporation of radio

active sugars, although at low levels (Vitetta and Uhr, 1974). Melcher 

(1978b) has determined that newly synthesized mouse IgM is membrane 

active within 15 minutes after synthesis. This finding indicates that 

the attachment of the intracellular precursor to membrane lg to cell mem

branes may be an early event in the ontogeny of the plasma membrane species. 



It is thus unlikely that the terminal sugars are involved in membrane 

attachment since these are added later (Melchers, 1973). The extent 

of involvement of carbohydrate in membrane attachment remains for the 

most part unexplored. 

A second possible mechanism for attachment is that membrane lg is 

anchored to the plasma membrane either by a covalent or non-covalent 

interaction with another integral membrane protein. There is some 

evidence to support the latter of these contentions. Fe receptors, 

proteins that bind the Fe portion of many Igs, are present on many 
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cell types of the immune system. It has been suggested that the Fe 

receptor of IgG may serve as the attachment protein (Ramasamy et al., 

1974). Lymphocyte membrane receptors recognizing IgM have been reported 

in normal and malignant cells (Moretta et al., 1975; Ferrarini et al., 

1977; Hardin et al., 1979). It is possible that one of these receptors 

functions as an attachment protein~ A model for this type of inter

action has been described for the binding of IgE to a protein in the 

membrane of rat mast cells and basophilic leukocytes (Conrad et al., 

1975). 

The final mechanism proposes that the membrane lg is synthesized 

on a different subcellular site to secreted lg and that this governs 

the localization of the receptor on the plasma membrane. To date there 

is no evidence to support this mechanism. 

Scope of Study 

The following questions remain to be answered concerning cell 

surface Ig. First, the mechanism by which lg is attached to the plasma 

membrane remains to be determined. A number of pertinent differences 
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between cell surface and secreted lgs have already been observed. Among 

these is a difference in size of the two lg molecules (Melcher and Uhr, 

1976) which has been attributed to either carbohydrate content differ

ences or peptide sequence differences (Ramasamy, 1976). The use of 

isopycnic density gradient centrifugations in CsCl detergent containing 

gradients has been shown to be sensitive to lg carbohydrate content 

differences (Melcher and Uhr, 1977). The carbohydrate content 

differences of mouse membrane H chains and mouse and human secreted 

H chains of various classes have been compared using modifications of 

the technique previously described by Melcher and Uhr. Using buoyant 

density, the carbohydrate content of mouse membrane lgD H chain was 

estimated. 

The size of mouse membrane lgD H chain remains unclear. As 

normally isolated, mouse membrane o chain is smaller than mouse membrane 

µ chain. However, there is a recent report suggesting that the smaller 

o chain may be a proteolytic fragment of a larger 'native' o chain with 

a size comparable to that of mouse membrane µ chain (Sitia et al., 1977). 

An increased susceptibility to proteolytic degradation has been reported 

for human o chain (Spiegelberg, 1972). To test whether mouse membrane 

o chain is a proteolytic fragment of a larger 'native' o chain,proteoly

sis inhibitors were incorporated into the spleen cell preparation, 

labeling and membrane lg isolation procedures. The mobilities of the 

mouse membrane µ and o chains were compared by SDS-PAGE. 

The fragmentation of mouse membrane lgM and lgD by chemical or 

enzymatic methods has not been thoroughly studied. The conservation 

of cleavage sites between cell surface lgM and lgD and secreted lgs 



was studied by examining the fragment sizes upon treatment with 

chemical and enzymatic cleaving agents. 
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CHAPTER II 

MATERIALS AND METHODS 

Materials 

Materials used in these studies were obtained from the following 

sources: Sigma Chemical Co. (lactoperoxidase, a-chymotrypsin, papain, 

2,5-diphenyloxazole (PPO), cytochrome c and guanidine-HCl); Fischer 

Scientific Co. (2-amino-2-(hydroxymethyl}-1,3-propanediol (Tris) and 

CsCl); Particle Data Laboratories Ltd. (Nonidet P40); Pierce (CNBr); 

Beckman Instruments Inc. (Bio-Solv™ solubilizer); Kodak (Royal X-Omat 

x-ray film, KLX DEV x-ray developer and FIX x-ray fixer); and Worthington 

(pepsin). Six to twelve week old inbred Balb/c mice were purchased from 

the Jackson Laboratory. 

Minimal essential medium (MEM) ingredients and fetal calf serum 

(FCS) were purchased from Grand Island Biological Company. MEM for 

in vivo radio-labeling incubations was prepared as previously described 

(Melcher and Uhr, 1973; Vitetta and Uhr, 1972). 

The following radioisotopes were obtained from the Amersharn/Searle 

Corporation: . f N 131I . carrier ree; a , carrier 3 free and L-[4,5- H]-

leucine, specific activity 48 Ci/mmole. [14c]-lactoperoxidase was pre

pared by the acetylation of lactoperoxidase with [14cJ-acetic anhydride. 

MOPC 21 y-globulin was purchased from Bionetics. MOPC 104E IgM 

and MOPC 315 IgA were prepared from ascites fluid obtained as a gift 
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from Drs. M. Boesman-Finkelstein and D. Hart. Human myeloma IgD (Delio) 

was obtained as a gift from Dr. J. D. Capra. 

Rabbit anti-mouse IgM (raised against MOPC 104E IgM, with µ and ;i, 

activities) and rabbit anti-mouse IgA (raised against TEPC 15 IgA with 

a and K activities) were obtained from Drs. M. Boesman-Finkelstein and 

J. Uhr respectively. Goat antiserum specific for the Fe portion of 

rabbit IgG was obtained as a gift from Dr. D. Hart. 

Proteolytic inhibitors used in these studies: phenyl methyl 

sulfonyl fluoride (PMSF), aprotinin (10-20 TIU/ml), ethylene glycol 

N,N'-tetraacetic acid (EGTA), s-amino caproic acid (EACA) and L-l-tosyl

amide-2-phenyl ethyl chloromethyl ketone (TPCK) were obtained from Sigma 

Chemical Co. PMSF and TPCK solutions were prepared by first making a 

10 mM solution of each inhibitor in 95% ethanol; these solutions were 

then diluted into phosphate buffered saline (PBS) (0.15 M NaCl, 0.015 

sodium phosphate, pH 7.2) to obtain the final concentration used in the 

experiments. 0.1 mM EGTA was prepared by dissolving the appropriate 

amount of solid into PBS, then the pH of the solution was adjusted to 

slightly alkaline with 2N NaOH to facilitate solubilization. £-amino 

caproic acid solutions were 1-2% in PBS. 

Methods 

Preparation, Surface Iodination and Lysis of 

Mouse Spleen Cells 

Six to twelve week old Balb/c mice were sacrificed by cervical dis

location. The spleens were perfused with cold PBS. After removal, 

spleens were trimmed of excess connective tissue and teased into PBS to 



make a single cell suspension. The spleen cell suspension was trans-

ferred through a clean prewetted 100 mesh stainless steel screen into 

a 50 ml polypropylene centrifuge tube. The volume in the tube was 

brought to 20-30 ml with cold PBS and the suspension was spun at 3,000 

rpm in a Beckman J-21 centrifuge (Palo Alto, Calif.) for 10 minutes. 

The cell pellet was resuspended in cold PBS, diluted and respun. The 

washed cells were resuspended in 1.0 ml of cold PBS. Ten µl of this 

cell suspension was added to 1.0 ml of 0.04% trypan blue/PBS and an 

aliquot of this mixture placed in a hemocytometer to determine cell 

concentration and cell viability with a microscope. 

8 To surface label a cell suspension of 1 x 10 cells/ml with 1 mCi 

Of ei.ther 1251 or 13 l1 h f 11 · · 1 dd d · d t e o owing materia s were a e in or er: 

100 µg lactoperoxidase in 100 µl PBS, 5 µl of 1 mM NaI, 1 mCi 

Na125r or Na131r (SO µl of 0.02 mCi/µl in 0.1 mM NaOH), 25 µl of 0.03% 

H2o2 in PBS. The labeling mixture· was allowed to react for 5 minutes, 

then a second addition of 25 µl of 0.03% H2o2 was made. The 5 minute 
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incubation was repeated. During the second incubation period the count 

rate at a known distance from Geiger-Mtiller (G-M) tube was observed. 

At the end of the second 5 minute incubation the labeled cell suspension 

was diluted to 20-30 ml with cold PBS and spun at 3,000 rpm for 10 

. t Th d d . the 1251 or 1311 d" · minu es. _ e supernatant was ecante into ra ioactive 

waste and the cells were resuspended in 2-5 ml of cold PBS. The count 

rate was measured again using the G-M tube. Sufficient cell surface 

iodination yielded a count rate approximately one ·third of the rate 

previously measured. The cell suspension was then diluted to 20-30 ml 

with cold PBS and centrifuged. The cells were washed two additional 

times with PBS. 
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Cells were lysed by resuspending the final cell pellet in 1.6 ml 

cold PBS and adding 0.4 ml of 5% (v/v) Nonidet P40 (nonionic detergent). 

Cells were allowed to lyse for 15 minutes at room temperature and were 

then spun at 5,000 rpm for 15 minutes. The nuclear pellet was discarded. 

125 131 . 
The supernatant (lysate) was the I or I labeled surf ace protein 

preparation. 

Radioiodination of Myeloma Proteins 

and Cytochrome c 

MOPC 21 lgG, MOPC 104E IgM, MOPC 315 IgA and human myeloma IgD 

(Delio) were radioiodinated with either 1251 or 1311 in solution with 

lactoperoxidase (Melcher and Uhr, 1977). The labeling mixture was 

prepared by addition of the following materials in order to a 12 x 75 

mm plas-tic tube (Falcon): 200 µg of the protein to be radioiodinated, 

20 µg lactoperoxidase in PBS, 1 mCi Na 1251 or Na131 r (50 µl of 0.02 

mCi/µl in 0.1 mM NaOH), 25 µl of 0.03% H2o2 in PBS. The labeling mix-

ture was adjusted to a final volume of 0.25 ml with PBS. The reaction 

mixture was incubated for 15 minutes, then an additional 10 µg lacto-

peroxidase in PBS added. After 20 minutes, the reaction mixture was 

chilled. The labeling reaction was stopped by adding 50 µl of 10 mM 

NaN3 followed by the addition of 500µg unlabeled carrier protein (gen

erally human y-globulin) and 0.2 ml PBS. 

The radioiodinated myeloma proteins were precipitated by the 

addition of 0.60 ml saturated Na2so4 . The precipitate was spun down 

at 2,600 rpm in a Sorvall GLC-2 for 10 minutes. The supernatant was 

discarded and the pellet resolubilized in 0.5 ml PBS. The precipitation 

was repeated by the addition of 0.5 ml saturated Na2so4 and centrifuged 
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as above. This step was repeated two more times. The final pellet was 

dissolved in 1.0 ml 8 M urea, 0.2 M Tris-HCl, pH 8 in preparation for 

reduction and alkylation. 

Cytochrome c was radioiodinated in solution as described for the 

myeloma proteins. 500 µg of cytochrome c was added as unlabeled carrier 

protein after the initial labeling reaction. The reaction mixture was 

dialysed against 0.125 M Tris-HCl (pH 6.8), 2% sodium dodecyl sulfate 

and 10% glycerol at room temperature overnight. After dialysis the 

labeled cytochrome c was applied directly to polyacrylamide gels as a 

size marker. 

. 3 
Incubation of Mouse Spleen Cells with H 

Amino Acid(s) 

Incubation medium was prepared as described in the materials 

section. Mice were sacrificed and·the spleens removed as previously 

described; however the spleens were not perfused. Spleens were trimmed 

in medium and a spleen cell suspension was prepared, washed and counted 

as previously described. 7 The cell concentration was adjusted to 4 x 10 

cells/ml. A tube containing the radioactive amino acid (s) at twice the 

final concentration (for 3H, 20 µCi/ml was used as the final concentra-

tion) was prepared in medium. The cells and the radioactive amino 

acid(s) were preincubated separately at 37°C for 10 minutes. Cells 

were added to the radioactive amino acid(s) at time zero. The cells 

plus amino acid(s) were incubated.at 37°c for 4 hours. At two hours 

into incubation, the mixture was made 10% in FCS to maintain the 

viability of the cells. At the end of the incubation period the cell 

suspension was spun at 1,000 rpm for 10 minutes. The supernatant 
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contained the 3n labeled secreted immunoglobulins. 

lmmunoprecipitation of Membrane and Secreted 

Immunoglobulins 

The 1251 or 1311 labeled membrane IgM in the 1% Nonidet P40 lysate 

3 
and H labeled secreted IgM were reacted with rabbit anti-mouse IgM. 

Typically 5 µl of rabbit anti-mouse IgM per 1 x 107 cells/ml in the 

labeling procedures was used. The required amount of rabbit anti-mouse 

lgM was added to 0.25 ml 0.1% BSA, in 10 rriM Nal/PBS prior to the reaction 

3 with the iodinated or H-labeled lgMs. After addition of antiserum the 

samples were incubated at 37°c for 15 minutes. Complexes were recovered 

by precipitation with goat anti-rabbit lg serum. The ratio of goat 

anti-rabbit lg to rabbit anti-mouse lgM was 9:1. 

Radiolabeled membrane IgD was recovered from the supernatant of 

the IgM precipitation by the addition of rabbit anti-mouse lgA and goat 

anti-rabbit lg. The membrane IgM, IgD and secreted IgM immunoprecipi-

tates were washed once with 0.1% BSA, in 10 mM NaI/PBS, twice with cold 

PBS and dissolved in 1.0 ml 8 M urea, 0.2 M Tris-HCl, pH 8 in prepar-

ation for reduction and alkylation. 

Imrnunoprecipitation with Staphylococcal 

Protein A Antibody Adsorbent 

Preparation of the staphylococcal adsorbent has been described 

previously (Kessler, 1976). Shortly before use the adsorbent was 

centrifuged (2000 x g, 20 minutes), resuspended and incubated for 15 

minutes in NaCl-EDTA-Tris (NET, 150 mM NaCl, 5 mM EDTA, 50 mM Tris-HCl, 

and 0.02% NaN3) buffer, pH 7.4, containing 0.5% (v/v) Nonidet P40. 
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Then the adsorbent was washed once in NET buffer containing 0.05% 

Nonidet P!+O and finally resuspended to a 10% (v/v) suspension in the 

latter buffer. In the irnmunoprecipitation, 0.2 ml of the 10% suspension 

was used per 5 µ1 of antiserum. As in the sequential immunoprecipita

tion of labeled mouse membrane IgM and IgD, the required amount of 

rabbit anti-mouse IgM was first added to the iodinated spleen cell 

lysate and incubated on ice for 5 minutes. The required amount of 10% 

(v/v) staphylococcal suspension was added, incubated for 10 minutes on 

ice, and spun at 2,600 rpm in a Sorvall GLC-2 for 10 minutes. The 

adsorbent pellet contained the mouse membrane IgM. The supernatant was 

immunoprecipitated with the required amount of rabbit anti-mouse IgA 

and staphylococcal adsorbent as above. The pellets from the centri

fugation step were washed three times with 0.5% Nonidet N-0 NET. 

Labeled membrane immunoglobulins were released from the adsorbent 

by treatment with electrophoresis sample buffer, in the presence or 

absence of 2-mercaptoethanol. The innnunoglobulins were recovered by 

pelleting the adsorbent (2,600 rpm, 10 minutes) and removing the super

natant. The adsorbent released samples were ready for gel electro

phoresis. 

Reduction and Alkylation of Membrane and 

Secreted Immunoglobulins 

The labeled Ig samples were reduced with 0.15 mM 2-mercaptoethanol 

for 1 hour at room temperature and ·alkylated with 0.27 mM iodoacetamide 

for 30 minutes at room temperature. Samples were dialysed against 1 M 

prop ionic acid at 4 °c overnight in preparation for purification of the 

heavy chains by gel filtration chromatography. Dialysis solutions 
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contained 0.1 mM PMSF in order to retard proteolysis. 

Immunoglobulin Heavy Chain Purification By Gel 

Filtration Chromatography 

Individual reduced and alkylated Ig samples, in 1 M propionic acid, 

were layered on a Sephadex G-100 gel filtration column (60 cm x 1 cm) 

(Pharmacia) to effect separation of imrnunoglobulin heavy (H) and light 

(L) chains. The column was eluted with 1 M propionic acid; 0.5 ml 

fractions were collected using an ISCO model 328 fraction collector. 

Th 1251 1311 . . f . d p k d A e or . containing ractions were counte on a ac ar uto-

gamma scintillation counter to determine the position of the heavy chain 

peaks. 
3 

The H labeled H chain-containing fractions were determined by 

counting an aliquot of each fraction dissolved in toluene/Bio-Solv™/PPO 

in a liquid scintillation counter. 

CsCl Gradient Centrifugation of Immunoglobulin 

Heavy Chains 

Individual H chain peaks in 1 M propionic acid from the gel 

filtration chromatography step were pooled and dialysed against 6 M 

guanidine-HCl, 0.2 M Tris-HCl, pH 8. These solutions were 0.1 mM in 

PMSF. Polyallorner centrifuge tubes were filled with 2.0 ml of 2.32 M 

CsCl in 6. 0 M guanidine-HCl. The samples used were purified 3H, 1251 or 

1311 labeled H chains. The H chains to be compared (one labeled with 

125I, the other with 131I) were mixed. 3H labeled spleen cell secreted 

µ chain and 1251 MOPC 104E secreted µ chain were added to separate 

polyallomer centrifuge tubes. Included in each of these latter tubes 

was a r14c]-lactoperoxidase marker. All samples were brought to 2.0 



ml with 6.0 M guanidine-HCl, 0.2 M Tris-HCl, pH 8 and layered on the 

CsCl solution. A layer of paraffin oil was laid over the aqueous 

sample. The tubes were centrifuged for 65 hours at 35,000 rpm in an 

SW 50.1 rotor (Beckman Instruments, Palo Alto, Calif.) at 5°c. The 

tubes were then punctured at the bottom and 4 drop fractions collected 

from the middle of the gradient. 
. 125 131 

For analysis of I and I cpms, 
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fractions were counted directly. . d f 131 · 11 Correction was ma e or I spi over 

into the 1251 channel; virtually no spillover was seen in the reverse 

direction. The [14cJ-lactoperoxidase marker and 3H labeled H chain 

radioactivities were recov~red from the gradient fractions by 10% TCA 

precipitation. The 14c and 3H containing precipitates were collected 

on glass fiber filters by vacuum filtration, dried, added to 10 ml of 

toluene/FPO and the filters counted in.a liquid scintillation counter. 

3H counts were corrected for spillover of 14c. Densities were deter-

mined on fractions of a dummy gradient by pycnometry. 

The differences in peak position, expressed as the number of 

fractions between the peaks, were determined by fitting the data (cpms) 

to a Gaussian distribution by computer. To avoid distortion of the 

peak positions, due to trailing on the less dense side of the gradients, 

only the dense half of the distribution plus five fractions past the 

observed peak position were fit. Actual data were normalized to % 

radioactivity in the peak fraction and are plotted as such on the 

figures. A minimum of sixty data points were taken for each gradient, 

but only every fifth data point is shown in the figures for purposes 

of clarity. 



Incorporation of Proteolysis Inhibitors Into 

Preparation and Isolation of Mouse 

Membrane H Chains 

Preparation of inhibitor solutions has been described in the 

materials section. The inhibitors (PMSF, aprotinin, EGTA, EACA, and 

TPCK) were used either singly or in combinations. Inhibitors or a 

combination of inhibitors were introduced at the earliest point in the 

preparation of spleen cells by perfusing the intact spleen(s) with PBS 

containing the inhibitor(s). Once inhibitor(s) were introduced into 

an experiment, all subsequent solutions involved in the procedure con

tained that inhibitor or combination of inhibitors. 

SDS-Polyacrylamide Slab Gel Electrophoresis 
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Electrophoresis in the presence of the detergent, sodium dodecyl 

sulfate, followed that described by Laemmli (1970). Lyophilized 

samples or immunoprecipitation pellets were dissolved in 0.125 M Tris

HCl (pH 6.8), 2% sodium dodecyl sulfate, 10% glycerol, 5% 2-mercapto

ethanol and 0.001% bromphenol blue as a tracking dye. Samples 

electrophoresed under non-reducing conditions were dissolved in the 

above sample buffer in the absence of 2-mercaptoethanol. Prior to 

electrophoresis samples were heated at l00°c for 2-3 minutes. Slab gel 

electrophoresis was carried out with a current of 3 mA until the brom

phenol blue dye marker penetrated the running gel, then increased to 

15 mA until the bromphenol blue reached the bottom of the running gel. 

Fluorography and Autoradiogral??Y 

Radiolabeled proteins were visualized on polyacrylamide slab gels 
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by fluorography as described by Bonner and Laskey (1974). The volume 

(in cm3) of the slab gel was calculated. The slab gel was soaked in 20 

volumes of dimethyl sulfoxide (DMSO) for 30 minutes. This step was 

repeated with fresh DMSO. The slab gel was then soaked in 4 volumes of 

a 22.2% solution of 2,5 diphenyloxazole/DMSO for 3 hours. The volume of 

this solution was critical since it determines the final % of 2,5 di-

phenyloxazole in the slab gel. 

The slab gel was soaked in 20 volumes of distilled water for 1 

hour, and then soaked overnight in a 1% aqueous solution of glycerol 

before drying. Drying of the slab gelwas performed at room temperature. 

The dried slab gel was placed on flashed Kodak Royal X-Omat x-ray film 

(Laskey and Mills, 1975) and incubated at -70°c for an appropriate 

exposure time. The fluorogram was developed using Kodak x-ray developer 

and fixer. 

In preparation for autoradiography, slab gels were fixed in a 

solution of 25% isopropanol/10% acetic acid/water for 1 hour. The 

slab gel was stained with a solution of 25% isopropanol/10% acetic 

acid/0.1% Coomassie Brillant Blue/water for 1-2 hours and destained 

with 10% acetic acid. Before drying the slab gel was soaked overnight 

in a 10% methanol/1% glycerol/water solution. The slab gel was dried 

at room temperature. For autoradiography, the slab gel was placed on 

flashed x-ray film, incubated and developed as described for fluoro

graphy. 

CNBr Cleavage of Immunoglobulin 

Heavy Chains 

The CNBr reaction and cleavage procedure has been described pre-
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viously (Gross, 1967; Cahnmann et al., 1966). Individually labeled 

mouse membrane and mouse and human secreted heavy chain peaks from gel 

filtration chromatography were lyophilized and resuspended in 1.0 ml 

70% formic acid in a glass stoppered test tube. Crystalline CNBr was 

added to each sample for a final concentration of approximately 0.15 M. 

The samples were incubated in the dark at room temperature for a 

minimum of 24 hours. The cleaved heavy chains were then diluted 3 fold 

with distilled water and lyophilized. The samples were resuspended in 

electrophoresis sample buffer in preparation for gel electrophoresis. 

Enzymatic Cleavages of Membrane and 

Secreted H Chains 

Procedures for peptide mapping on polyacrylamide gels have been 

reported (Cleveland et al., 1977). Individual labeled mouse membrane, 

secreted, and human secreted heavy chain peaks from gel filtration 

chromatography were lyophilized and resuspended inlOO µl of electro

phoresis sample buffer containing 0.125 M Tris-HCl (pH 6.8), 0.5% SDS, 

10% glycerol and 0.0001% bromphenol blue. For chymotrypsin cleavage of 

heavy chains, a 1 mg/ml solution of the enzyme in the above sample 

buffer was also prepared. Cleavage with chymotrypsin was performed at 

37°c for 1 hour using an enzyme concentration of 100 µg/ml. After 1 

hour the cleavage reaction was stopped by making each sample 10% in 

2-mercaptoethanol, 2% in SDS and boiling for 2-3 minutes. The samples 

were ready for polyacrylamide slab gel electrophoresis. 

Pepsin and papain cleavages were performed on intact mouse membrane 

Igs released from Staphylococcal Protein A by treatment with electro

phoresis sample buffer as described for chymotrypsin cleavage. Pepsin 



and papain solutions of 1 mg/ml were also prepared in the above sample 

buffer. Samples to be cleaved with pepsin were loaded into the sample 

wells of a polyacrylamide slab gel, enzyme was added for a final con

centration of 100 µg/ml and the samples were electrophoresed. Papain 

cleavage was performed in a similar manner, however enzyme was added 

to a final concentration of 50 µg/ml. 
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CHAPTER III 

ISOPYCNIC DENSITY GRADIENT 

CENTRIFUGATION EXPERIMENTS 

Introduction 

Isopycnic density gradient centrifugation in non-denaturing solu-

tions has been used previously to investigate the properties of 

proteins (Cox and Schumaker, 1961), to investigate the de novo 

biosynthesis of enzymes (Filner and Varner, 1967) and to estimate 

II 
the carbohydrate content of glycoproteins (Melcher and Uhr, 1977). 

Isopycnic density gradient centrifugation under denaturing conditions 

has been used in the separation of proteins and nucleic acids from 

chromatin (Sonnenbichler et al., 1977) and preparatively to isolate 

glycoproteins (Robinson and Mousey, 1971). It has not, however, been 

used as an analytical tool, despite the use of buoyant density in 

estimating changes in the extent of glycosylation of proteins. 

The studies described here utilize isopycnic density gradient 

centrifugation performed in the presence of a strong denaturant, 

guanidine-HCl. The buoyant densities of labeled immunoglobulin mem-

brane and secreted heavy chains have been compared in order to answer 

several questions concerning membrane immunoglobulins. First, are 

there differences in the carbohydrate contents of membrane and·secreted 

immunoglobulin heavy chains? 
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The mobility of mouse membrane IgM H chain is slightly slower than 

that of secreted IgM H chain on sodium dodecyl sulfate containing poly

acrylamide gels (Melcher and Uhr, 1976). A 1700 molecular weight 

difference has been estimated between mouse membrane and secreted IgM 

H chains. The observed molecular weight difference could be due to 

either primary amino acid sequence differences or carbohydrate differ

ences (Ramasamy, 1976). The extra size of the membrane H chain has 

been implicated in membrane attachment. 

Second, what is the carbohydrate content of mouse membrane o 

chain? The carbohydrate content of mouse membrane o has not been 

estimated although the molecule must have appreciable amounts of 

sugar (Melcher and Uhr, 1977). 

The d~nsity relationship of membrane and secreted inununoglobulin 

heavy chains in the absence of detergent is a third consideration of 

these experiments. In non-denaturing, detergent containing gradients 

partially reduced secreted irnmunoglobulin was more dense than its 

membrane bound counterpart (Melcher and Uhr, 1977). The decreased 

density of membrane imrnunoglobulin was attributed to its ability to 

bind detergent strongly, thus lowering its density. Membrane bound 

immunoglobulins are integral membrane proteins (Melcher et al., 1975) 

and detergent binding is a property of integral membrane proteins 

(Helenius and Simons, 1975). The buoyant density comparisons described 

here have been performed in the absence of detergent. Although 

nonionic detergent was used in the preparation of cellular lysates, 

repeated extensive dialysis and gel filtration purification of the 

heavy chains is thought to·have removed any residual detergent. 
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Results 

A typical Sephadex G-100 gel filtration column profile for the 

separation of labeled heavy chains from light chains is seen in 

Figure 2. In order to determine the resolution of the gel filtration 

step, selected fractions from the G-100 profile were lyophilized and 

electrophoresed on a 7.5% SDS-polyacrylamide slab gel. The labeled 

proteins on the gel were visualized by fluorography. As seen in 

Figure 3, the gel filtration separation of the reduced and alkylated 

labeled immunoglobulins yielded adequate separation of the heavy and 

light chains. Reduced and alkylated mouse membrane IgM is shown. 

Fractions taken from region A of the G-100 profile yielded a single 

heavy chain band on the slab gel. An intermediate region (B) was 

observed before the light chain containing region (C) of the profile 

appeared. Only those fractions located in the heavy chain peak region 

(A) were used in the heavy chain buoyant density comparisons. 

The H chains to be compared were centrifuged to equilibrium in 

the same tube containing 6.0 M guanidine-HCl, 0.2 M Tris-HCl and CsCl 

at pH 8. The use of two isotopes was advantageous in the comparison of 

peaks in the gradient. 1311 and 1251 labeled H chains in the same 

centrifuge tube could be counted directly after fractionation of the 

gradient via gamma scintillation counting. Initial experiments were 

done to determine if any isotope effects were present when using the 

double labeling technique. Mouse membrane µ chains were labeled in 

. . h 1311 d 125 b' d . h b separate reactio~s wit an I, com ine in t e same tu e, 

centrifuged to equilibrium in a CsCl gradient under denaturing condi-

tions, fractionated and counted. As seen in Figure 4, the membrane µ 



Figure 2. Sephadex G-100 Column Profile of Reduced and Alkylated 
1251 Mouse Membrane IgM 
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Figure 3. 1251 Mouse Membraneµ and Light Chain Separated on a 7.5% 
SDS-polyacrylamide Slab Gel. a, b and c represent fractions 
from Sephadex G-100 column purification step applied to the 
slab gel. 
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Figure 4. Comparison of Densities of 1251 Labeled Mouse Membrane µ 
Chain- (Closed Circles) and 1311 Labeled Mouse Membrane 
µ Chain (Open Circles) in CsCl Guanidine-HCl 
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chains, although labeled with different isotopes of iodine, have the 

same positions on the gradient. 
131 125 

Interchange of I or I labels 

does not affect the equilibrium density of the protein in the gra-

client. 

The buoyant density of a hydrodynamic particle is a function of 

.the buoyant densities of its component parts (Ifft and Vino grad, 1966). 

For lg, these parts include the polypeptide chains, the oligosaccharide 

chains, and the water and ions bound to these components. In order to 

make useful comparisons among immunoglobulins it is necessary that the 

buoyant density of the polypeptide (with its associated water and ions) 

not be significantly different from one immunoglobulin to the other 

(Melcher and Uhr, 1977). To determine if the method used in these 

experiments is sensitive to changes in H chain carbohydrate content, 

mouse membrane lgM and IgD H chains have been compared with secreted 

myeloma MOPC 104E lgM, MOPC 315 lgA and MOPC 21 lgG H chains. The 

carbohydrate contents of these myeloma proteins have been estimated. 

The H chain carbohydrate content of MOPC 104E lgM is 13.3% (Robin-

son et al., 1973). Based on the hexose content of several mouse myeloma 

lgA proteins and the total carbohydrate content of human IgA (Underdown 

et al., 1971, Jaffe et al., 1971), the a. chain carbohydrate content can 

be estimated to be 10.5%. The carbohydrate content of y chain has been 

calculated to be about 4% based upon IgG sugar content of 3% (Nieder-

meyer et al., 1971). 

125 In the first determination, l membrane µ was compared with 

131 1 MOPG 104E secreted µ. As seen in Figure SA, the densities of 

membrane µ chain and secreted MOPC 104E µ chain are indistinguishable. 

A - h . d (. 1311 b s a controJ_, t e isotopes were reverse i.e. mem rane µ versus 



Figure 5. Comparison of Densities of Mouse Membrane and MOPC 104E 
µ Chains in CsCl Guanidine-HCl 

A. 1251 
1311 

B. 1311 
1251 

membrane µ chain (closed circles) versus 
MOPC 104E secretedµ chain (open circles). 

membrane µ chain (open circles) versus 
MOPC 104E secretedµ chain (closed circles). 
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1251 MOPC 104E µchain), and the same result was observed (Figure 5B). 

In order to determine if myeloma secreted µ chain is a valid 

analogue of normal secreted µ chain, the densities of these two H 

3 
chains were compared. H-labeled µ chain secreted by normal spleen 

cells and 131I MOPC 104E myeloma µ chain were centrifuged to equili

brium in separate tubes. Included in each gradient tube was r14cJ-
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lactoperoxidase, as reference protein. After centrifugation and 

fractionation, the [14cJ-lactoperoxidase profiles of each gradient were 

superimposed and the density profiles of the H chains were plotted 

together (Figure 6). The densities of normal versus myeloma secreted 

µ chains appear to be quite similar and thus MOPC 104E secreted µ chain 

seems to be a valid analogue of the normal secreted chain with respect 

to carbohydrate content. Some error is inherent in the use of marker 

alignment for peak comparisons. In addition there may be a different 

ff h b d • f 3H b . . d 125I lJlT e ect on t e uoyant ensity o - . su st1tut1on an or .L 

substitution. 3 The specific activity (atom H/labeled molecule) of the 

secreted H chains could not be determined; thus whether a density dif-

ference was expected cannot be predicted. 

Next, 131I membrane µ chain and 1251 membrane o chain were 

compared. Membrane o chain is more dense than membrane µ chain with 

a two fraction difference in the observed peak positions (Figure 7). 

A gradient density distribution is also shown in Figure 7. Since 

membrane µ and MOPC 104E secreted µ chains have equal densities 

(Figure 5), membrane o should be mo.re dense than MOPC 104E secreted µ 

chain. This result is confirmed in Figure 8, in which 
125 

I membrane o 

chain is compared with 131 I MOPC 104E secreted µ chain. A two fraction 

difference is observed, with the membrane o chain being more dense. 



Figure 6. Comparison of Densities of 125r MOPC 104E µ Chain (Closed 
Circles) and 3H Secreted µ Chain (Open Circles) in 
Separate Tubes in CsCl Guanidine-HCl. The arrow repre
sents the point of alignment of the two gradients using 
cl4c)-lactoperoxidase as marker. 
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Figure 7. Comparison of Densities of 125r Membrane µ Chain (Closed 
Circles) and 131 r. Mouse Membrane tJ Chain (Open Circles) 
in CsCl Guanidine~HCl 
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Figure 8. . f. . . f 125 Comparison o Dlns1t1es o I 
Circles) and 311 MOPC 104E µ 
CsCl Guanidine-HCl. 

Membrane o Chain (Closed · 
Chain (Open Circles) in 
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The results of a comparison of 1251 mouse membrane o chain and 

131 I human myeloma o chain are seen in Figure 9. The membrane o chain 

of mouse and human o chain peaks appear to be coincident. The carbo-

hydrate content of this particular human o chain is not known. A 

variation in the carbohydrate content of human IgDs has been reported 

_(Spiegelberg, 1972; Perry and Milstein, 1970). 

The sensitivity of the method in detecting carbohydrate content 

differences among H chains was most readily seen in the comparisons of 

membrane proteins against MOPC 315 a and MOPC 21 y chains. In the 

comparison of 131 r membrane µ chain with 1251 MOPC 315 a chain, the 
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greater density of membrane µ is seen as a two fraction difference over 

the secreted a chain (Figure lOA). With an estimate of membraneµ chain 

carbohydrate (13.3%) and the knowledge of secreted a chain sugar content 

(10.5%), the two fraction difference reflects a carbohydrate content 

difference of approximately 3%. As expected the comparison of 1311 

membrane o chain with 1251 MOPC 315 a chain yielded a four fraction 

difference, with membrane o being the denser of the two immunoglobulin 

heavy chains (Figure lOB). 

Pronounced density differences were observed in the comparisons of 

131 
. membrane µ and o chains with MOPC 21 y chain. I membrane µ chain 

125 
was more dense than I MOPC 21 y chain by three to four fractions 

(Figure llA). A seven fraction difference was observed in the 1311 

membrane o chain versus 1251 MOPC 21 y chain comparison (Figure llB). 

Considerable trailing of radioactivity on the less dense side of the 

y chain peaks occurred. The trailing was not investigated. Trailing 

could be caused by (1) breakdown of iodinated y chains, (2) dilution of 

y chains by IgG antibodies used in the isolation of membrane µ and 6 



Figure 9. Comparison of Densities of 1251 Mouse Membrane o Chain 
(Closed Circles) and 13lr Human Hyeloma Secreted o Chain 
(Open Circles) in CsCl Guanidine-HCl 
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Figure 10. Comparison of Densities of Mouse Membrane H Chains with 
MOPC 315 a Chain iri CsCl Guanidine-HCl 

A. 

B. 

~~il MOPC 315 a chain (closed circles) versus 
l mouse membraneµ chain (open circles). 

1251 MOPC 315 a chain (closed circles) versus 
1311 mouse membrane o chain (open circles). 
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Figure 11. Comparison of Densities of Mouse Membrane H Chains with 
MOPC 21 y Chain in CsCl Guanidine-HCl 

A. ~~~I MOPC 21 y chain (closed circles) versus 
I mouse membraneµ chain (open circles). 

B. ~;~r MOPC 21 y chain (closed circles) versus 
I mouse membrane 8 chain (open circles). 
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chains, (3) deterioration of resolution near the top of the gradient. 

The latter explanation is favored since the density distribution curve 

(Figure 7), as expected (Ifft and Vinograd, 1966), tends to flatten out 

near the top of the gradient. 

The percentage carbohydrate content, the estimated densities and 

peak position differences expressed in number of fractions for the H 

chain comparisons are summarized in Table II. It should be pointed out 

that the precision of determining densities is considerably less than 

the precision obtained by comparison of two proteins in the same 

gradient. The difference in observed densities of the H chain prepa

rations are in the order predicted from the knowledge of their carbo

hydrate contents. The H chain preparations are seen to increase in 

density in the order y, a, secretedµ equal to membrane µ, membrane '8 

equal to human o. 

The buoyant densities of immunoglobulins have been determined in 

phosphate-buffered CsCl gradients (Melcher and Uhr, 1977; Lifter and 

Choi, 1978). An apparent decrease in the H chain densities relative 

to lg densities in non-denaturing gradients was observed in these 

experiments. The decrease in observed protein density was presumed to 

be due to binding of the guanidine-HCl to the protein. The increases 

in partial specific volume upon denaturation of proteins with guanidine

HCl, due to binding of guanidinium ion to peptide bonds and aromatic 

side chains (Lee anci Timasheff, 1974) are sufficient to account for the 

decreased densities observed. 

When the reciprocal of the peak densities determined from the CsCl

guanidine-HCl gradients are plotted versus the carbohydrate content of 

the respective heavy chains (Figure 12), a linear relationship is found. 
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TABLE II 

HEAVY CHAIN DENSITY COMPARISONS 

% Carbohydrate Density a 
Peak b 

Fractions 
Difference 

A. Compared with 
membrane µ 13.3 1.270 

MOPC 21 y 4.0 1. 260 3-4 

MOPC 315 a 10.5 1.268 2 

MOPC 104E µ 13.3 1. 270 0 

Mouse Membrane 0 15.5c 1.272 2 

B. Compared with 
membrane o 15.5c 1.272 

MOPC 21 '( 4.0 1.260 7 

MOPC 315 a 10.5 1. 268 4 

Human o Delio 15.5c 1.272 0 

a -3 Gram/cm , MOPC 21 y density has -3 an uncertainty of ± 0.002/gram cm 
density estimations of remaining 
0.001 gram cm-3. 

H chains have uncertainties of ± 

bApproximate peak fractions difference from peak positions determined 
by computer fitting gradient data to a Gaussian distribution. 

cEstimated from Figure 12. 



Figure 12. Plot of H Chain Carbohydrate Contents Versus Reciprocal 
Densities 

Densities detennined by equilibrium gradient centrifu
gation in CsCl guanidine-HCl. H chains of IgG (open 
square), IgA (closed circle), secreted IgM (open triangle) 
and mouse membrane IgD (open circle) are plotted. Hori
zontal error bars reflect the uncertainty in assignment 
of values of carbohydrate content. Vertical error bars 
reflect error in density measurements. 
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The vertical error bars reflect the error in density measurements; the 

horizontal error bars reflect the uncertainty in the assignment of 

values for the carbohydrate content of the respective heavy chains. 

This relation can be used to estimate the carbohydrate content of H 

chains for which this is not known. From Figure 12 the carbohydrate 

. content of murine membrane o chain was estimated as 15.5%, that of 

human o chain Delio as 15.5%,and that of murine membraneµ chain as 

13.3%. 
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CHAPTER IV 

PROTEOLYSIS OF MOUSE MEMBRANE IgD 

Introduction 

The actual size of mouse membrane o chain remains, for the most 

part, unclear. Mouse membrane o chain as normally isolated has a 

molecular weight of 65,800, as determined by SDS-polyacrylamide gel 

electrophoresis, compared to 73,000 determined for mouse membrane µ 

chain (Melcher and Uhr, 1976). Sitia et al. (1977) have reported 

a mouse membrane o chain with a mobility similar to that of human 

membrane o chain of molecular weight 73,000 on SDS-polyacrylamide gels. 

The possibility that the normally isolated mouse o chain is a proteo

lytic fragment of a larger 'native' membrane o chain has been 

postulated by this same group. The proteolytic fragmentation of 

human IgD has been well documented (Fahey et al., 1968; Spiegelberg, 

1972; Goyert et al., 1977). Membrane µ and o chains of several other 

mammalian species have comparable mobilities on SDS-polyacrylamide 

gels (Ruddick and Leslie, 1977; Finkelman et al., 1976). In contrast, 

Warrand Marchalonis (1976) have reported that the mobility of mouse 

membrane o chain is significantly faster than that of human membrane 

o chain on SDS-polyacrylamide gels. 

My approach to this problem, that is investigating the possibility 

that mouse membrane o chain is larger in size than normally isolated, 
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has been the incorporation of various proteolytic inhibitors into the 

preparation and isolation procedures of mouse membrane Igs. The 

mobilities of the mouse membrane µ and o chains were then compared by 

electrophoresis on SDS-polyacrylamide gels. 

Results 

Prior to studying the degradation of mouse membrane IgD,the effect 

of the various proteolytic inhibitors on the lactoperoxidase labeling 

reaction was determined. Individual samples containing bovine serum 

albumin (BSA) were iodinated via the lactoperoxidase method as pre-

viously described for the myeloma proteins in methods. The iodination 

was performed in the presence of proteolysis inhibitors (or combinations 

thereof) used in the subsequent experiments. The iodinated BSA samples 

were precipitated with 10% trichloroacetic acid, collected on glass 

f .b f"l h d d · d d d f 125I d" · · 1 er 1 ters, was e , rie an counte or ra 1oact1v1ty. 

Recovered radioactivities of BSA samples iodinated in the presence of 

proteolytic inhibitor(s) were equal to the radioactivity of a BSA 

sample iodinated in the absence of proteolytic inhibitor(s) (data not 

shown). It was concluded that the proteolytic inhibitor(s) used in 

these experiments had no effect on the labeling reaction. 

Sulfonyl halides, e.g. phenyl methyl sulfonyl fluoride (PMSF), 

react with many of the serine proteases such as a-chymotrypsin and 

trypsin. These compounds sulfonate the hydroxyl group of a specific 

serine residue in the active site·and thereby inhibit enzymatic 

activity. PMSF has been shown to be an effective inhibitor of serine 

proteases in the concentration range of 0.1 to 1.0 rnM (Fahrney and Gold, 

1963). In the initial experiment 0.1 mN PMSF was included in the pre-
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paration of 1251 mouse membrane µ and 8 chains. The mobilities of 

mouse membraneµ and 8 chainswerecompared, in the presence and absence 

of PMSF, on a 7.5% SDS-polyacrylamide slab gel (see Figure 13). The 

presence of PMSF (lanes a and b) did not affect the mobility of the 

mouse membrane o chain. The membrane H chains prepared in the absence 

of PMSF are shown in lanes c and d. The membrane 8 chain moved faster 

than the membrane µ chain and had an apparent molecular weight of 

approximately 66,000 as compared to 73,000 for mouse membrane µ chain. 

Secondary bands of approximately 70,000 and 63,000 were observed in the 

µ and 8 lanes, respectively, in the presence and absence of PMSF. These 

bands were thought to be degradation products of the higher molecular 

weight species. In addition to the major heavy chain bands, a band of 

40-45,000 molecular weight and the 23,000 molecular weight L chain were 

observed. The 40-45,000 molecular weight band has been tentatively 

identified as lymphocyte actin. Actin has been shown to be a major 

component of mouse spleen cells and also appears as a nonspecific con

taminant of immune precipitates (Barber and Delovitch, 1979). Although 

the actin is a cytoplasmic component and the cells have been surface 

iodinated, the appearance of labeled actin can be explained by the 

iodination of cytoplasmic contents· of ruptured cells. This experiment 

was repeated with an increased concentration of PMSF (1.0 mM) and 

identical results were obtained (data not shown). 

Next, 0.1 mM EGTA was incorporated into the preparation and 

isolation of the mouse membrane H chains. EGTA, a chelating agent, was 

added to bind divalent metal cations since these are required for some 

enzymatic activities (Webster and Prado, 1970). As in the PMSF experi

ment, the relative mobilities of the membrane µ and o chains remained 



Figure 13. SDS-PAGE Analysis of Mouse Membrane H Chains Prepared in 
the Presence' of 0.1 mM PMSF 

a. Mouse membrane µ chain + PMSF 
b. Mouse membrane 0 chain + PMSF 
c. Mouse membrane µ chain - PMSF 
d. Mouse membrane 0 chain - PMSF 
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' unchanged (data not shown). 

Aprotinin is a naturally occurring inhibitor isolated from bovine 

organs of serine proteases. The inhibitor is a peptide of 58 amino 

acid and structural analysis suggests that it is ideally shaped to 

cover the active site of serine proteases (Kassell, 1970). The 

addition of aprotinin to reagents used during the preparation and 

isolation procedures did not change the relative mobilities of the 

membraneµ and o chains (data not shown). The concentration of 

aprotinin used was 100 kallikrein inhibitor units/ml. By definition, 

900 kallikrein inhibitor units (KID) are equal to one trypsin inhibitor 

unit (TIU), where one trypsin inhibitor unit will decrease the activity 

of two trypsin units by 50%. 

The aprotinin experiment was repeated using an increased concen-

tration of inhibitor. Panero et al. (1978) have reported that aprotinin, 

at high concentrations, increased the percentage of human neonatal 

IgD-positive lymphocytes in the presence of maternal serum. The con-

centration of aprotinin was increased to 1000 KIU/ml in PBS for the 

initial preparation of mouse spleen cells then further increased to 

3000 KID/ml for the preparation of the detergent lysate and the 

immunoprecipitation steps. The mobilities of the membrane µ and o 

chains are compared, in the absence (A) and presence (B) of the in-

creased concentration of aprotinin, as shown in Figure 14. Lanes a in 

Figure 14A and B represent reduced membrane IgM recovered from a 

detergent lysate by reaction with rabbit anti-mouse IgM (RAM-IgM), 

as described in Methods, in the absence or presence of aprotinin, 

respectively. In order to insure complete clearance of membrane IgM, 

the detergent lysate was reacted a second time with RAM-IgM. As seen 



Figure 14. SDS-PAGE Analysis of Mouse Membrane H Chains Prepared in the 
Presence of Aprotinin 

A. a. Mouse membrane µ chain - aprotinin 
b. Second RAM-IgM clearance ~ aprotinin 
c. Mouse membrane o chain - aprotinin 

B. a. Mouse membrane µ chain + aprotinin 
b. Second RAM-IgM clearance + aprotinin 
c. Mouse membrane o chain + aprotinin 
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in lane b, the membrane IgM was completely cleared since a molecular 

weight band of 73,000 was not observed in the reduced preparations with 

or without aprotinin. In Figure 14A and B, lane c represents reduced 

mouse membrane IgD recovered by reacting the lysate with rabbit anti

mouse IgA after clearance of membrane IgM in the absence or presence 

of aprotinin. The increased concentration of aprotinin did not affect 

the relative mobilities of the membrane o and membrane µ chains. The 

major membrane o chain bands were 66,000 and 63,000 with no trace of 

a heavy o chain. The 23,000 molecular weight band is L chain. 

A combination inhibitor experiment is shown in Figure 15, lanes 

a and b. 1.0 mM PMSF, 0.1 mM EGTA and 100 KIU/ml aprotinin were intro

duced into the experiment at the onset. No change in the relative 

mobilities of the membrane µ and o chains was observed. 

TPCK at a concentration of 1.0 mM was the next proteolytic 

inhibitor incorporated into the preparation procedure. TPCK is an 

.irreversible inactivator of proteolytic enzymes with chymotrypsin-like 

activity. Trypsin is not affected by the inhibitor. Inhibitor studies 

with chymotrypsin suggest that TPCK alkylates a histidine residue 

located at the active center of the enzyme irreversibly inactivating 

it (Schoellmann and Shaw, 1963). The mobilities of the membraneµ and 

8 chains are compared in Figure 15, lane c and d. The presence of 

TPCK did not alter the mobilities of the membrane H chains. 

The incorporation of s-amino caproic acid (EACA) into the prepara

tion procedure was of special interest since it has been reported that 

EACA prevents the 'spontaneous' degradation of human myeloma IgD 

(Spiegelberg et al., 1970; Goyert et al., 1977). EACA has also been 

shown to be effective in preventing the degradation of surface IgD on 



Figure 15. SDS-PAGE Analysis of Mouse Membrane H Chains Prepared in 
the Presence of PMSF, EGTA, Aprotinin and TPCK 

a. Mouse membrane µ chain + PMSF, EGTA, aprotinin 
b. Mouse membrane 0 chain + PMSF, EGTA, aprotinin 
c. Mouse membrane µ chain + TPCK 
d. Mouse membrane 0 chain + TPCK 
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human neonatal lymphocytes by maternal serum (Panero et al., 1978). A 

1% solution of EACA in PBS was used in these experiments since this 

concentration was effective in preventing 'spontaneous' degradation of 

human myeloma IgD. Several experiments were done with 2% EACA in PBS, 

however the 1% increase in concentration had a marked effect on mouse 

spleen cell viability. Generally a greater than 90% cell viability 

was observed with 1% solutions of EACA, as determined by trypan-blue 

exclusion. In the presence of 2% EACA spleen cell viability dropped 

to less than 50%. 

In the initial experiment, 1% EACA seemed to produce a mouse 

membrane o chain with a mobility comparable to that of mouse membrane 

µ chain, see Figure 16, lanes c and d. Preparation of mouse H chains 

in the absence of EACA is shown in the same figure, lanes a and b. The 

presence of EACA also seemed to be effective in preventing the H chain 

degradation products normally observed at least in this particular 

experiment. However, this experiment was repeated several times and a 

membrane o chain with a mobility comparable to that of membrane µ 

chain was not reproducibly observed in the presence of EACA. The 

results of two repeat experiments are also seen in Figure 16. The 

most likely explanation for the 73,000 molecular weight band in the 

membrane o lane would be incomplete clearance of the spleen cell 

detergent lysate of all membrane IgM prior to the inununoprecipitation 

of the membrane IgD. 125 Lanes e through h in Figure 16 are I-labeled 

MOPC 104E µ,human o (Delio), MOPC 315 a and MOPC 21 y heavy chains 

used as molecular weight markers. The literature molecular weight 

values for the marker proteins are 73,000, 64,000, 55-58,000 and 

51,000, respectively including H chain carbohydrate (Robinson et al., 



Figure 16. SDS-PAGE Analysis of Mouse Membrane H Chains Prepared in the 
Presence of EACA Plus Myeloma H Chain Markers · 

. 
a. Mouse membrane µ chain - EACA 
b. Mouse membrane cS chain - EACA 
c. Mouse membrane µ chain + EACA 
d. Mouse membrane cS chain + EACA 
e. MOPC 104E µ chain 
f. Human 0 chain (Delio) 
g. MOPC 315 a chain 
h. MOPC 21 y chain 

1. Repeat experiment + EACA 
2. Repeat experiment + EACA 

I 



86 

"'C 

' N 

"'C 

(,) 

\ 

-

"'C I 
(,) 

.c· 

1 i 

~ ll J ' ~ ti) COM ti) ...... coco N 



87 

Spiegelberg, 1977; Nisonoff et al., 1975). The estimation of molecular 

weights, especially those of glycoprotein, via SDS-polyacrylamide gel 

electrophoresis has been shown to be less than reliable. Melcher and 

Uhr (1976) have shown that the molecular weights observed for membrane 

H chains on SDS-polyacrylamide gels are a function of the acrylamide 

concentration used in the gel. At acrylamide concentrations of less 

than 10% observed molecular weights of membrane heavy chains were higher 

suggesting a slowing effect due to attached carbohydrate. However, the 

slowing effect is overcome at acrylamide concentrations of 10% or 

greater. Some disparity was seen in the apparent molecular weights of 

the marker proteins on the 7.5% acrylamide gel when compared to 

literature values. Observed molecular weights for MOPC 104E µ, human 

o (Delio) and MOPC 21 y heavy chains were consistent with their litera

ture values. MOPC 315 a chain had an observed molecular weight of 

approximately 65,000, somewhat higher than the generally accepted 

value of 55-58,000. 

The possibility that the degradation of mouse membrane IgD could 

result from the method used in the isolation of the membrane species was 

also tested. Generally iodinated mouse membrane IgM and IgD were 

recovered from a mouse spleen celi detergent lysate by reaction with 

rabbit anti-mouse IgM and IgA sera respectively followed by goat anti

rabbit Ig serum. The ratio of goat serum to rabbit anti-serum was 

9;1.. Thus for every 50 µl of rabbit anti-serum introduced 0.45 ml of 

goat serum was added. The addition of rabbit serum and large amounts of 

goat serum in the recovery of the membrane Igs could possibly introduce 

serum proteases into the experiment as well. In order to determine if 

the degradation of mouse membrane IgD could be related to the use of 



rabbit and goat serum in the isolation procedure an alternative isola

tion method was used. 

Protein A, a polypeptide found on the surface of Staphylococcus 

aureus that binds rabbit Ig (Langone et al., 1977), was substituted 

for goat serum in the recovery of the membrane Igs; An experiment 

done in the presence of 1% EACA using Protein A in the recovery of 

the membrane proteins is shown in Figure 17. Intact membrane IgM and 

IgD recovered from a mouse spleen cell detergent lysate by reaction 

with rabbit anti-mouse IgA and Protein A are shown in lane a. The 

recovery of intact membrane IgM from a spleen cell detergent lysate 

by reaction with rabbit anti-mouse IgM and Protein A is shown in lane 

b. After clearing the lysate of membrane IgM, the intact membrane 

IgD was recovered by reacting with rabbit anti-mouse IgA and Protein 
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A, as seen in lane c. The intact membrane proteins were removed from 

the Protein A in the absence of reducing agent as described in Methods. 

Treatment. of the recovered intact membrane Igs with reducing agent 

yielded H and L chains. Lane d contains membrane µ and o chains, a 

secondary o band and L chain with observed molecular weights of 73,000, 

66-63,000 and 23,000, respectively. Molecular weights of the intact 

membrane IgM and IgD were assigned simply by totaling molecular weights 

of H and L chains. Membrane µ chain and L chain are seen in lane e. 

Membrane o chain, the secondary o fragment and L chain are seen in 

lane f. Important to note is the comparison of the H chains in lanes 

e and f. In the presence of 1% EACA and in the absence of goat serum 

the relative mobilities of the mouse membrane µ and o H chains remain 

the same. One must conclude that recovery of the membrane IgD with 



Figure 17. SDS-PAGE Analysis of Mouse (Unreduced and Reduced) Membrane 
H Chains Prepared in the Presence of EACA and Isolated 
Using Heat Killed Staphylococcus aureus 

a. Unreduced mouse membrane IgM and IgD 
b. Unreduced mouse membrane IgM 
c. Unreduced mouse membrane IgD 
d. Reduced mouse membrane IgM and IgD 
e. Reduced mouse membrane IgM 
£. Reduced mouse membrane IgD 
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goat serum does not contribute to proteolysis of membrane 8 chain.if 

indeed it does occur. One might also conclude that the use of rabbit 

anti-mouse .serum in the recovery of membrane IgD does not contribute 

to proteolysis of membrane 8 chain since only small amounts of this 

antiserum are used. 
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CHAPTER V 

CHEMICAL AND ENZYMATIC CLEAVAGE OF MOUSE 

NEM.BRANE AND SECRETED IMMUNOGLOBULINS 

Introduction 

H chains from several myeloma lg classes have been completely or at 

least partially sequenced. The complete amino acid sequence of MOPC 21, 

a mouse myeloma IgG, has been reported (Adetugbo, 1978). The amino acid 

sequences of IgM H chains from two different mammalian species have been 

reported (Putnam et al., 1973; Capra and Mccumber, 1979). In addition, 

the partial amino acid sequences of mouse MOPC 104E and ABPC 22 IgM H 

chains are also known (Hood, personal communication, 1979; Capra, per

sonal communication, 1979). The partial amino acid sequences of MOPC 

315 and MOPC 47A IgA H chains and the complete amino acid sequence of 

human IgA1 H chain have been reported (Robinson and Appella, 1977; 

Francis et al., 1974; Liu et al., 1976). 

Capra and Mccumber (1979) have compared the overall amino acid 

sequence homologies of human, mouse and canine IgM H chains. The µ 

chains from the three different species displayed a remarkably high 

overall sequence homology (80%). In addition, when particular sequences 

in the constant domains were compared a greater than 95% sequence 

homology was observed. Some amino acid sequences are also preserved in 

variable regions as well. For example, in the comparison of the first 
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150 N-terrninal amino acids of three IgA H chains (human a1 , mouse 315 and 

47Aas) a 45-60% sequence homology is observed. In contrast, the amino 

acid sequences of different Ig classes are not as highly conserved. 

Putnam et al. (1976) have compared the structural homology of human IgA, 

IgG, IgM and IgE H chains. A 25-30% sequence homology was observed 

between a, y, µ, and s chains. Partial amino acid sequences have been 

reported for human myeloma IgDs (Spiegelberg, 1975; Perry and Milstein, 

1970). No sequence information is presently available for mouse mem

brane IgM or IgD. 

Possible similarities in the placement of cleavage sites on mouse 

and human H chains have been explored utilizing chemical and enzymatic 

cleavage techniques. If cleavage sites are conserved between two lg 

classes one might expect peptide fra~nents of similar sizes. Similar 

fragmentation patterns thus could be used as an indicator of identical 

lg class since it appears that amino acid sequences of a single lg class 

are conserved, even among different species. In contrast, one might 

expect different cleavage patterns from two different lg classes since 

it has been shown that amino acid sequences are not as highly conserved 

between classes. A high overall amino acid sequence homology between 

two H chains does not necessarily imply a conservation of specific 

cleavage sites however. If one examines the amino acid sequences of two 

human IgM H chains (Ou and Gal) a 96% sequence homology is observed 

between residues 122 and 567. Of the four methionine residues present 

from 122 to 567, four are conserved in both chains. In contrast, if 

one examines the amino acid sequences of human IgM (Ou) and canine IgM 

(Moo) H chains an 80% sequence homology is observed between residues 

122 and 567. However, none of the seven methionine residues present in 
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the canine H chain are conserved in the human H chain. 

The number of cleavage fragments would also be an important consid

eration. If a single coincident fragment was observed between the 

cleavage patterns of two H chains, it would probably not indicate con

servation of cleavage sites since fragments of similar size could 

originate from different parts of the H chain. As the number of coin

cident fragments increased the probability that the fragments were 

derived from different parts of the H chains would become less. In 

addition, even if fragments of two H chains have similar mobilities on 

SDS-polyacrylamide gels, conservation of cleavage sites could not be 

positively concluded. The resolution of the fragments on polyacrylamide 

gels is not good enough for one to be absolutely sure the fragments are 

of the same size. In the experiments reported here, the cleavage 

patterns of mouse membrane IgM and IgD H chains have been compared with 

those of mouse myeloma IgM, IgA and IgG H chains as well as those of 

human myeloma IgD H chain. 

Results 

CNBr Cleavage of H Chains 

Mouse membrane µ and 8 chains, mouse myeloma µ, a, and y chains and 

human 8 chain (Delio) were labeled, column purified and cleaved with 

cyanogen bromide (CJ>TBr), electrophoresed on a 15% polyacrylamide slab 

gel and the resulting fragments visualized by fluorography. The results 

of a CNBr cleavage of the membrane and secreted H chains are seen in 

Figure 18. In order to facilitate direct comparison of the fragmenta-

. tion patterns, the individual lanes of a CNBr fluorogram were scanned 



Figure 18. SDS-PAGE Analysis of CNBr Cleavage Fragments of Mouse Mem
brane, Mouse Myelorna and Human Myeloma H Chains 

a. MOPC 104E µ chain 
b. Mouse membrane µ chain 
c. Mouse membrane o chain 
d. Human 8 chain (Delio) 
e. MOPC 315 a chain 
£. MOPC 21 y chain 
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with a Quick Scan densitometer (Helena Laboratories) (Figure 19). Also 

shown in Figure 19 are size estimates assigned to the H chain cleavage 

fragments. 

Size estimates for the H chain CNBr fragments were obtained by 

using cytochrome c dimer and monomer as size markers, electrophoresed 
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in lanes adjacent to the cleaved FI chains, and available amino acid 

sequence data. Size estimates seen on Figure 19 are in units of amino 

acid residue equivalents. The amino acid sequence data available were 

first used to calculate the size of the CNBr fragments or fragment 

combinations possible for the mouse myeloma H chains. Single or combi

nation fragments were searched to determine which fragments contained 

carbohydrate moieties. In the event a fragment contained carbohydrate, 

the molecular weight of the carbohydrate was obtained using oligosac

charide structures reported by Baenziger and Kornfeld (1974). The 

molecular weight(s) of the oligosaccharide(s) per fragment were then 

divided by 120, the average amino acid molecular weight, to obtain amino 

acid residue equivalents. The amino acid residue equivalents for the 

carbohydrate were then added to the number of amino acid residues 

present in the CNBr fragment to obtain the final size estimate. Of 

the H chains examined in these experiments, MOPC 21 y chain is the only 

one whose complete amino acid sequence is known. MOPC 104E µ chain has 

been partially sequenced and the sizes of its CNBr fragments are known. 

The approximate sizes of the myeloma y and µ fragments were first 

estimated by using the cytochrome c size markers. Then the amino acid 

sequence data were searched for a possible fragment, corrected for 

sugar present, of approximately that size. 

In order to obtain the best size estimates for mouse membrane µ 



Figure 19. Densitometer Tracings of a Fluorogram of Fragments Produced 
by CNBr Cleavage of Mouse Membrane, Mouse Myeloma and 
Human Myeloma H Chains 

A. MOPC 104E µ chain 

B. Mouse membrane µ and o chains. Solid line represents 
µ chain, dashed line represents o chain 

C. MOPC 315 a chain 

D. MOPC 21 y chain 

E. Human o chain (Delio) 
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and 6 chains, and in part MOPC 315 a and human o chains, a plot of amino 

acid residue equivalents assigned to the fragments of MOPC 104E µ and 

MOPC 21 y chains versus fragment migration into the gel was made. This 

plot was used to estimate the sizes of the membrane µ and o chain frag

ments without the aid of amino acid sequence data. In addition, the 

.plot was used to assign the best size estimates to MOPC 315 a. chain CNBr 

fragments (in conjunction with amino acid sequences for mouse MOPC 315 

and 47A and human a chains) and to human 6 chain CNBr fragments (in 

conjunction with limited CNBr cleavage data reported by Kocher and 

Spiegelberg (1979) )·. It was assumed that some homology exists between 

mouse and human a chains. Proof of this assumption awaits the com

pletion of either of the mouse a chain sequences. 

In Figure 18, the fragmentation pattern of MOPC 104E µ chain is 

shown in lane a. The fluorogram densitometer tracing and estimated 

fragment sizes are seen in Figure 19, panel A. According to the partial 

amino acid sequence, complete CNBr cleavage should yield nine fragments 

of 164, 109, 84, 62, 62, 47, 20, 14 and 8 amino acid residues in length 

respectively. The cleavage of the MOPC 104E µ chain was not complete 

since eight to nine fragments with estimated sizes of 314, 235, 199, 

157, 109, 84, 77 and 60 amino acid residue equivalents respectively were 

detected. Only a few of these correspond to products expected from 

complete cleavage. 

The cleavage patterns of mouse membrane µ and o chains are shown in 

Figure 18, lanes b and c respectively. The fragments are compared in 

the fluorogram densitometer tracing displayed in Figure 19, panel B. 

The mouse membrane H chains have similar fragmentation patterns, although 

like MOPC lOlt.E µ chain, the cleavage of these H chains was incomplete. 
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Coincident fragments are observed at greater than 429, 331, 210, 138, 

109 and 84 amino acid residue equivalents. A possible area of non-cor

respondence exists at 199. The background in the membrane µ chain 

pattern, especially from 199 to the bottom of the gel, makes the 

assignment of possible differences in this area uncertain. 

The sizes of the coincident membrane µ and o fragments deserve 

additional consideration. Peptide fragments can be derived from variable 

domains alone; they can be a combination of variable and constant 

domains; or they can be completely derived from the constant domains 

of the H chain. It is impossible to pinpoint the origin of the frag

ments observed, however some generalization can be made. CNBr fragments 

of 110 amino acid residues or less can be derived completely from 

variable or constant domains, since a domain is approximately 110 amino 

acid residues in length, or can be a combination of variable and constant 

domains. Consider for example the two fragments of MOPC 104E µ chain at 

109 and 84, which also happen to be seen in the membrane µ and o chains. 

The 109 fragment can be completely derived from the constant region of 

the H chain (residues 391 to 500) or can be a combination of variable 

and constant domain peptides (residues 34 to 143, no cleavage at 

methionine 81). It is unlikely that the 109 fragments are derived 

solely from the H chain variable region since three methionines (residues 

20, 34 and 81) are present in this region. The fragment seen at 84 could 

originate completely from the constant region (residues 143 to 227) or 

be an incomplete cleavage fragment of the variable region of the H chain 

(residues 1 to 81, no cleavage at methionines 20 and 34). One would 

expect to see some degree of homology in peptides derived from the 

variable region of two different lg classes since different lg classes 



derive their variable regions from the same population of variable 

region sequences. 
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Fragments greater than 110 amino acid residues have only two 

possible sources. First the fragments may be a combination of variable 

and constant domains or second they may originate entirely from within 

the constant region of the H chain. The fragments seen in the MOPC 104E 

µ chain at 314, 235 and 199 amino acid residue equivalents could fit 

either of these possibilities. Fragments 314 and 199 originate entirely 

within the constant region of the H chain (residues 227 to 500 and 391 

to 562 respectively, plus amino acid residue equivalents for carbohy

drate). Fragment 235 originates from a combination of variable and 

constant domains (residues 20 to 227, plus amino acid residue equivalents 

for carbohydrate). That fragments coincident in the mouse membraneµ 

and o chain patterns are larger than 110 amino acid residues indicates 

that they are at least in part derived from constant domain sequences. 

The homology implied by these coincidences is greater than one would 

expect for H chains of two different classes. Proof of structural 

homology requires a comparison of the amino acid sequences of the 

coincident membrane µ and o fragments. Sequence information on mouse 

membrane H chains has not been reported however. 

The comparison of the fragmentation patterns of mouse membrane and 

MOPC 104E µ chains is of interest. Although some similarities exist in 

the fragments at 235, 109 and 84 amino acid residue equivalents, for 

the most part the patterns are less similar than one would expect for H 

chains of the same Ig class. 

·The cleavage pattern of mouse MOPC 315 a chain is seen in Figure 

18, lane e and Figure 19, panel C. Seven MOPC 315 a chain fragments 
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were observed, size estimates were assigned to six. The estimated 

fragment sizes assigned were 314, 288, 280, 235, 205 and 53. Fragments 

314, 288, 280, 235 and 53 originate entirely from within the constant 

region of the H chain sequence used to estimate the sizes (estimates 

include amino acid residue equivalents for carbohydrate). Fragment 205 

is a combination of variable arid constant region sequences plus carbo

hydrate. A fragment with an approximate size of 138-109 was observed. 

However, based upon the amino acid sequence data used to assign the 

fragment sizes, a fragment of this size was not expected. The mouse 

and human a chains apparently have differences in the placement of 

methionines along their H chains. The fact that Igs of different 

classes yield different cleavage patterns is most readily seen in the 

comparison of MOPC 104E µ and MOPC 315 a chains. Although coincident 

fragments are seen at 314 and 235, the patterns are otherwise very 

dissimilar. The MOPC 315 a chain fragment pattern is also different 

from those of mouse membrane µ and o chains. The a and membrane µ 

chains do have coincident fragments at 235 and 138-109 while the mem

brane o chain only shows a coincident fragment with the a chain in the 

138-109 area. The positions of the cytochrome c dimer and monomer of 

208 and 104 amino acids in length are also shown in panel C. 

The incomplete CNBr cleavage pattern of MOPC 21 y chain is seen in 

Figure 18, lane f and Figure 19, panel D. · Ten CNBr fragments with sizes 

of 161, 49, 49, 48, 35, 34, 30, 14, 10 and 10 were expected from a 

complete cleavage of the mouse y chain. However, the six major frag

ments with estimated sizes of 358, 325, 257, 210, 138 and 88 amino acid 

residue equivalents were observed. Several minor fragments were also 

observed as shoulders of the 325, 257 and 210 y chain fragments. The 



difference in the CNBr cleavage patterns among different classes are 

again readily apparent in the comparison of MOPC 315 a and MOPC 104E 

µ fragments with MOPC 21 y fragments. 

The cleavage patterns of mouse membrane µ and o chains show some 

similarities when compared to MOPC 21 y chain. Coincident fragments 

are seen at 210, 138 and near 84, the remaining membrane µ and o 

fragments are different from those of y chain. 

104 

The CNBr cleavage pattern of human myeloma o (Delio) chain (Figure 

18, lane d, Figure 19, panel E) shows five major fragments and three 

minor fragments. The estimated sizes assigned to the major fragments 

were 331, 317, 145, 120 and 88 amino acid residue equivalents. The 

minor fragments were assigned values of 429, 77 and 60. There are some 

similarities between the mouse myeloma H chains and human o chain, but 

for the most part the cleavage patterns are different. The comparison 

of the human o chain cleavage pattern with those of mouse membrane µ 

and 8 chains are nearly the same. Similarities do exist in the patterns 

at 331 and 88-84, however the remainder of the fragments are different. 

There are several possible pitfalls in comparing fragmentation 

patterns that are incomplete. The fact that smaller fragments are not 

observed in some of the H chain cleavage patterns (e.g., MOPC 315 and 21) 

could be a consequence of incomplete cleavage or a lack of label in those 

peptides. Whether complete CNBr cleavage of mouse membrane, mouse mye

loma and human myeloma H chains would yield fragmentation patterns more 

or less similgr to one another than those displayed here is not known. 

In repeat experiments, the H chain CNBr fragmentation patterns were also 

incomplete and were similar to those shown. The reason complete cleavage 

of the H chains was not obtained is also unknown since cleavage condi-
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tions were essentially the same as those used by others to effect 

complete cleavage of IgHchains (Anderson, personal communication, 1979). 

Human y chain was cleaved with different CNBr concentrations (0.15 to 

7.5 mM) and varied cleavage times. Regardless of the concentration of 

CNBr at all times tested, the cleavage patterns remained unchanged. 

Thus it seems unlikely that an insufficient concentration of CNBr caused 

the incomplete cleavage of the membrane and myeloma H chains. 

Chymotrypsin Cleavage of H Chains 

The similarity of mouse membrane µ and o chains is further supported 

by cleavage patterns obtained by limited proteolysis with chymotrypsin. 

Mouse membrane µ and o chains, MOPC 104E µ and MOPC 315 a chains were 

subjected to limited proteolysis with the enzyme chymotrypsin as 

described by Cleveland et al. (1977). Limited proteolysis was used 

because of the high number of possible chymotryptic cleavage sites 

present within lg H chains. If the partial amino acid sequence data 

for MOPC 104E µ chain is examined for possible chymotryptic cleavage 

sites (i.e., phenylalanine, tryptophan and tyrosine residues), 48 such 

sites exist and would yield a large number of fragments upon complete 

enzymatic digestion. However, only those fragments containing a 

tyrosine residue would be detected by fluorography. 

The results of the limited chymotryptic cleavage of mouse H chains 

are seen in Figure 20. The cleavage patterns of the mouse H chains are 

displayed as densitometer tracings of a fluorogram. The limited chymo

tryptic digest of MOPC 104E µ chain is seen in panel A. Approximately 

15 bands were seenin the cleavage pattern of thisµ chain. The 

positions of the size markers (cytochrome c dimer and monomer) have 



Figure 20. Densitometer Tracings of a Fluorogram of Fragments Produced 
by Limited Chymotrypsin Proteolysis of Mouse Membrane and 
Mouse Myeloma H Chains 

A. MOPC 104E µ chain 

B. Mouse membraneµ and O·chains. Solid line represents 
µ chain, dashed line represents o chain 

C. MOPC 315 a chain 
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also been indicated in panel A. No attempt was made to assign sizes to 

the chymotryptic fragments other than the size in relation to the size 

markers. Fragments with mobilities faster than cytochrome c dimer are 

probably 208 amino acid residues in length or less, while fragments 

slower than the dimer are greater than 208 amino acid residues in length. 

The composition of mouse membrane µ and o chain chymotryptic frag

ments is shown in panel B. Although the cleavage of the µ and 6 chains 

is not complete there is more conservation in the chymotryptic cleavage 

sites than one would expect from two lg H chains of different classes. 

Near the origin there is a fragment observed in the membrane µ chain 

pattern that is not present in the membrane o chain pattern. However 

after this initial fragment difference, nearly all of the fragments seen 

in membrane µ and o chains are coincident. An area of non-correspondence 

exists in a region near the cytochrome c marker. Fewer chymotryptic 

peptides were seen in the membrane H chains than in the MOPC 104E µ 

chain. The smaller number of membrane H chain fragments could reflect 

a difference in the iodination of cell surface Igs as compared to 

iodination of myeloma Igs in solution with lactoperoxidase. The smaller 

number of membrane H chain peptides could also be due to a different 

conformation of the membrane H chain in solution that restricts the 

cleavage by ch)'1notrypsin. A few of the membrane µ and o chain and MOPC 

104E µ chain fragments are of similar mobilities. 

The chymotryptic cleavage of MOPC 315 a chain is shown in panel C. 

The cleavage pattern of the MOPC 315 a chain is different from that of 

the myeloma H chain from a different class. There are more fragments 

present in the MOPC 104E µ chain. This could be partially explained by 

the extra domain present in the µ chain however. Differences in the 



chymotryptic patterns of the membrane H chains and MOPC 315 a chain 

also exist. 

As in the CNBr experiments, the comparison of incomplete chymo

tryptic cleavage patterns has its pitfalls. Whether the H chains 

compared would appear to be more or less similar to one another if 

completely cleaved at all sites is unknown. If the H chains were 

completely cleaved, the ability to detect the fragments would depend 

upon how completely the H chain was iodinated. The fact that all H 

chains were processed and treated in an identical fashion suggests 

that the similarities and/or dissimilarities seen among the H chains 

reflect actual differences in structure. 

Pepsin Cleavage of Mouse Membrane IgM and IgD 

Mouse membrane intact IgM and IgD molecules were cleaved with 

pepsin. Pepsin attacks and cleaves intact Igs on the C-terminal side 
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of the inter-heavy chain disulfide bond(s) and produces an (Fab) 2 

fragment and an Fe fragment. After cleavage the fragments were electro

phoresed on a 7.5% SDS-polyacrylamide slab gel and the fragments visual

ized by fluorography. Figure 21, lanes a and b show unreduced mouse 

membrane IgM and IgD that have been cleaved with pepsin respectively. 

The reduced mouse membrane IgM and IgD H chains, 42K (actin) and L chain 

bands used as molecular weight markers (not treated with pepsin) are 

shown in lanes c and d respectively. Cleavage of intact membrane IgM 

produced three fragments with estimated molecular weights of 170K, 130K 

and 97K. The pepsin fragments expected have molecular weights of 130K 

for the (Fab) 2 fragment and 65K or 33K for the Fe fragment. The size 

of the Fe fragment depends upon its ability to remain intact. The 130K 



Figure 21. SDS-PAGE Analysis of Fragments Produced by Pepsin Cleavage 
of Intact Mouse Membrane IgM and IgD 

a. Mouse membrane IgM + pepsin 
b. Mouse membrane IgD + pepsin 
c. Reduced mouse membrane IgM - pepsin 
d. Reduced mouse membrane IgD - pepsin 
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fragment could be the (Fab) 2 fragment. A 65K or 33K fragment was not 

observed. The Fe fragment was probably further degraded. This is con

sistent with reports of the further degradation of the Fe fragment of 

IgG by pepsin (Porter, 1959). Likewise the 97K fragment probably repre

sents a degradation product of the 130K fragment. The 170K band is 

probably intact membrane IgM or a degradation product of the intact 

IgM. The lack of appropriate molecular weight markers in this area 

does not allow positive identification of this band. 

Pepsin cleavage of intact membrane IgD produced five fragments with 

estimated molecular weights of llOK, 73K, 66K, 63K and 23K. Estimated 

sizes of the fragments expected by treatment of membrane IgD with pepsin 

are unknown. The llOK and 73K fragments likely represent the (Fab) 2 

fragment and its degradation product. The size of the Fe fragment seen 

for IgD would be smaller than that expected for IgM since the latter has 

an additional constant domain. Although additional bands were observed 

at 66K, 63K and 23K, these were attributed to reduction of the intact 

molecule to H and L chains. If the 130K and llOK fragments represent 

intact (Fab) 2 fragments of membrane IgM and IgD respectively, one must 

conclude that the pepsin cleavage sites are different for the two 

molecules. 

Papain Cleavage of Mouse Membrane IgM and IgD 

Mouse intact membrane IgM and IgD were cleaved with papain. The 

papain fragments were reduced and electrophoresed on a 15% SDS-poly

acrylamide slab gel and the fragments visualized by autoradiography on 

flashed x-ray film. Papain attacks and cleaves intact Igs on the 

N-terminal side of the inter-heavy disulfide bond(s) and produces two 
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Fab and one Fe fragment. In the mouse membrane Ig11, the three fragments 

would have similar molecular weights of approximately 65K. Reduction of 

the Fab fragment would produce an L chain and the H chain portion of the 

Fab fragment (the Fd fragment) having molecular weights of 23K and 24K 

respectively. The Fe fragment when reduced would produce two similar 

fragments of approximately 33K each. The mouse membrane IgD would be 

expected to yield similar Fab and reduction fragments. The Fd fragment 

could vary in size depending upon the length of the IgD H chain hinge 

region however. The Fe fragment of the membrane IgD and its reduction 

products would likely be smaller since the 6 chain lacks the extra 

domain seen in the membrane µ chain. Experiments have been reported 

in which mouse membrane IgD was more susceptible than membrane IgM to 

papain cleavage when the molecules were cleaved while attached to the 

cell surface (Vitetta and Uhr, 1976; Bazin et al., 1978). In solution, 

the membrane Igs were equally susceptible to cleavage by papain however 

(Vitetta and Uhr, 1976). 

The fragments produced by papain cleavage and reduction of mouse 

membrane IgM and IgD are shown in Figure 22 as densitometer tracings of 

an autoradiogram. A set of standard molecular weight markers were used 

to estimate the sizes of the fragments on the slab gel. Labeled mem

brane H and L chains, not treated with papain, were also used as 

molecular weight markers. 

Six major fragments were produced from mouse membrane IgM (panel A) 

with molecular weights of 73K, 45K, 28K, 23K, 12.SK and 8K. The 73K and 

23K bands are probably H and L chains. The 45K fragment is probably the 

reduced Fe fragment while the 28K fragment is the Fd portion of the H 

chain. The 12.SK and 8K fragments are probably further degradation 



Figure 22. Densitometer Tracings of an Autoradiogram of Fragments 
Produced by Papain Cleavage and Reduction of Mouse 
Membrane IgM and IgD 

A. Mouse membrane IgM 

B. Mouse membrane IgD 
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products of the Fd and reduced Fe fragments. 

The papain cleavage pattern for mouse membrane IgD is seen in panel 

B. Five major fragments were produced with molecular weights of 35K, 

23K, 15.SK, 13.SK and 9.6K. Lin and Putnam (1979) have reported that 

papain cleavage of human myeloma IgD produces two Fab fragments and an 

Fe fragment of 47K and SOK respectively. Reduction of these fragments 

would produce the Fd fragment (24K), L chain (23K) and two fragments 

from the reduced Fe (about 40K each). In contrast, the Fd fragment for 

mouse membrane IgM and IgD of molecular weight 37K has been observed by 

others (Vitetta and Uhr, 1976). The Fd fragment thus has a size range 

of 24K to 37K, while the only estimate of the reduced Fe fragment is 

40K. The 35K fragment seen in the cleaved and reduced membrane IgD 

could either be the Fd or the reduced Fe fragment. If the 35K fragment 

is the reduced Fe fragment, then the Fd fragment would have a similar 

mobility on the gel to that of L chain and not be detected as a discrete 

band. The possibility also exists that either one of these fragments 

could be further degraded to produce the lower molecular weight frag

ments seen at 15.SK, 13.SK and 9.6K. 

An observation when comparing the reduced papain cleavage products 

of the membrane IgM and IgD is the lack of intact H chain and of the 

larger '•SK IgM-like fragment in the IgD. The membrane proteins were 

treated in solution with the same concentration of enzyme and for equal 

times then reduced. It appears that the membrane IgD is more susceptible 

to cleavage in solution. These results are in conflict with data 

reported previously by Vitetta and Uhr (1976). 



CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

CsCl buoyant density centrifugation uncle~ denaturing conditions is 

capable of distinguishing molecules with slightly different carbohydrate 

contents. Of the heavy chains tested the µ and a chain were closest to 

one another in carbohydrate content, having 13.3 and 10.5% carbohydrate, 

respectively. The difference of 2.8% in carbohydrate content was suffi

cient to produce a two fraction difference in peak position after centri

fugation in CsCl containing guanidine-HCl. The technique is capable of 

distinguishing distributions. whose peaks differ by less than one fraction 

when both polypeptides are included in the same gradient. When they are 

in separate tubes, the error in aligning markers or density measurements 

substantially increases the error in carbohydrate content estimation 

(Table II and Figure 12). With both polypeptides in the same tube, a 

difference of 1% in carbohydrate content is detectable, but molecules 

that differ in carbohydrate content by less than 0.5% can not be distin

guished. This technique may prove useful in the density comparisons of 

other proteins, such as cell surface glycoproteins of normal and malig

nant cells (Sherblom, Buck and Carraway, ms in preparation, 1979). It 

has the advantage of very small requirements of material, but does re

quire that the molecule be radiolabeled and be capable of being freed of 

other labeled material such as by irnmunoprecipitation. 

The sensitivity of the technique is sufficient to allow certain 
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conclusions to be drawn about membrane µ and membrane o chains. First 

a higher carbohydrate content is not the cause of the larger size of 

membrane µ chains when compared with their secreted counterparts. For 

polypeptides of low carbohydrate content, such as lg H chains, the mol. 

wt. determined by comparison with non-glycosylated polypeptides in SDS

PAGE is indistinguishable from that obtained by summation of the mol. 

wt. of peptide and carbohydrate portions. Thus, under these conditions 

an equal weight of carbohydrate or protein will contribute the same to 

the mobility of the chain. Therefore, the apparent 1700 dalton differ

ence (calculated as peptide) may also be a 1700 dalton difference in 

carbohydrate content. Assuming that the apparent 1700 dalton difference 

in size of membrane and secreted µ chains is entirely due to a difference 

in carbohydrate content, the membrane µ chain should contain 15.0%. The 

serumµ chain is known to have 13.3% carbohydrate. The difference, 1.7% 

is within the capability of the method for distinguishing density dis

tributions. On the other hand, if the extra size is due to peptide 

sequence, then the membrane µ chain should have 13.0% carbohydrate. The 

small 0.3% difference should result in a difference of peak position of 

less than a quarter of a fraction, a difference not able to be deter

mined. 

Since the densities of membrane µ and secreted µ chains were indis

tinguishable, they must be very similar in carbohydrate content. An 

alternate interpretation, that membrane µ contains extra carbohydrate 

and also components of low density, such as lipid or detergent is deemed 

unlikely. First the two components would have to fortuitously counter

balance each other exactly in their effect on the density. Second 

undenatured mouse (Melcher and Uhr, 1977) and chicken (Lifter and Choi, 
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1978) membrane inlmamoglobulins had lighter densities than their secreted 

counterparts probably due to the binding of detergent molecules to the 

immunoglobulins. If this detergent had not been removed by the pro

cedures used, then the resultant .heavy chains should have had a substan

tially lighter density in guanidine-HCl-cesium chloride gradients. 

Since this was not: observed, it can be concluded that dialysis against 

propionic acid, gel filtration in propionic acid, and dialysis against 

guanidine-HCl were effective in removing the material responsible for 

the lighter dens:i.t:y. 'This suggests that the material was non-covalently 

bound detergent or lipid and further supports the concept that membrane 

immunoglobulins are integral membrane proteins. Although the carbo

hydrate contents olf membrane and secreted µ chains are thus similar, the 

carbohydrate compos:itions and the peptide sequence location of carbohy

drate chains need inot be the same. 

Not only do t:Ihe present results imply that membrane IgM does not 

have substantially more sugar than secreted IgM, but they also suggest 

that membrane IgM does not have substantially less sugar than the sec

reted IgM. Based on incorporation studies with radioactive sugar pre

cursors, it has been suggested that membrane IgM lacks the terminal 

sugars, fucose and galactose (Melcher and Andersson, 1973). This raised 

the possibility that this IgM was attached to the membrane because it was 

not fully glycosy1ated. Other workers (Vitetta and Uhr, 1974) were 

however able to d.emonstrat:e the incorporation of radioactive fucose into 

membrane IgM, albeit at low levels. Since no substantial under-glycosy

lation of the membrane IgM was detected, the lack of full glycosylation 

canno·t be responsible for anchoring of IgM to the membrane. It is, 

however, entirely possible that full glycosylation plays a role in the 
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exteriorization of the membrane IgM. It has been observed that the 

addition of inhibitors of glycosylation such as 2-deoxyglucose and 

tunicamycin inhibits the secretion of some, but not all, immunoglobulins 

(Eagon and Heath" 1977; Hickman and Kornfeld, 1978; Hickman et al. , 1977). 

Whether glycosyla.tion plays a role in the exteriorization of membrane IgM 

awaits further experimentation. 

An important: correllaryof the conclusion that there is no difference 

in the sugar content of membrane and secreted IgM is that they may differ 

in the length of t:he µ chain. Independent experiments of Yuan et al. 

(personal communication, 1978) have shown that there are differences in 

chymotryptic trypt:ic peptide profiles between membrane and secreted µ 

chains. It is likely that the putative extra peptide sequence is at

tached to the C-terminal end of the µ cha:i,n. The C-terminal ends of 

heavy chains appear to be attached to the membrane (Fu and Kunkel, 1974; 

Hough et al., 1977). Further, Williams et al. (1978) have reported 

amino acid sequence differences at the C-tenninal end of human membrane 

and secreted µ chains. On the other hand, it has been reported 

(Mcilhinney et aL, 1978) that both membrane and secretedµ chains have 

tryosine as the G-t:erminal amino acid. A likely position for the attach

ment of a different: and longer C-terminal sequence has been identified 

(:Melcher, 1978b). Tuo possible roles for this postulated extra C-termi

nal sequence can be suggested. One, it may provide a structure that can 

be strongly bound by some integral membrane protein. The interaction 

imagined could be similar to the binding of IgE to a protein in the mem

branes of rat mast: cells and basophilic leukocytes (Conrad et al., 1975). 

The possibility that the extra peptide sequence is itself hydrophobic and 

provides a structure capable of direct interaction with membrane lipids 
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is favored. The preliminary data of Williams et al. (1978) are consis

tent with a hydrophobic stretch of amino acids. 

Mouse membrane cS chain has a greater percentage carbohydrate (15.5%) 

content than membraneµ chain (13.3%). These results are consistent with 

the findings that human IgD has a greater percentage carbohydrate content 

than human IgM (Perry and Milstein, 1970) and thus further support the 

identification of this mouse immunoglobulin as IgD. The density of mem

brane IgD in non-denaturing detergent containing gradients is 0.005 g/cm3 

lighter than that of MOPC lO!+E IgM, an IgM that bears a glycostylated 

light chain and thus has a carbohydrate content of 11.7%. Based on the 

present estimate of the cS chain carbohydrate content of 15.5%, it is 

calculated that the intact IgD should have a carbohydrate content of 

11.5%, very close to that of MOPC 104E IgM. The large difference in 

density between these two molecules in non-denaturing detergent-con

taining gradients suggests that IgD, like IgM, must bind appreciable 

quantities of detergent, a characteristic of integral membrane proteins. 

A 'native' mouse membrane cS chain of a size comparable to that of 

mouse membrane µ chain or human membrane o chain was not observed in 

experiments in which various proteolytic inhibitors were incorporated 

into the preparation and isolation of mouse membrane H chains. These 

results are consistent with reports from other laboratories in which 

mouse membrane cS chain has a faster mobility on SDS-polyacrylamide gels 

than either mouse membrane l1 chain of human membrane 8 chain (Melcher 

et al., 1974; Abney and Parkhouse, 1974; Lisowska-Bernstein and Vassalli, 

1975; Pernis et al., 1975; Finkelman et al., 1976; Warr and Marchalonis, 

1976). However these results are in direct conflict with work reported 

by Sitia et al. (1977) in which mouse membrane cS chain had a mobility 
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comparable to that of mouse membrane µ chain and human membrane o chain 

on SDS-polyacrylamide gels. 

The experimental procedures used in preparation, radioiodination and 

lysis of mouse spleen cell suspensions in both studies were essentially 

the same. The techniques used to recover the mouse spleen cell surface 

IgM and IgD from cellular detergent lysates were different. In the ex

periments reported here, the membrane Igs were recovered by sequential 

immunoprecipitation with rabbit anti-mouse IgM and IgA sera respectively, 

followed by goat anti-rabbit lg or heat-killed bacteria. Rabbit anti

mouse IgM and IgA sera immobilized on a Sepharose affinity adsorbent were 

used to recover the membrane Igs by Sitia et al. (1977). It is unlikely 

that the method of recovery is important in maintaining a 'native' mem

brane o chain, if indeed one does exist. Affinity adsorbents used by 

others to isolate mouse membrane H chains from detergent lysates (Warr 

and Marchalonis, 1976), resulted in membrane H chains of sizes comparable 

to those reported here. It is also unlikely that the use of rabbit and 

goat antisera in the recovery of the membrane H chains is involved in 

proteolysis of a 'native' membrane o chain. The substitution of Protein 

A, a Staphylococcal adsorbent? for goat antiserum in the recovery of the 

membrane H chains failed to produce a membrane o chain with a mobility 

comparable to that of membrane µ chain on SDS-polyacrylamide gels. 

The possibility exists that the proteolytic inhibitors used in these 

experiments were completely ineffective in preventing the degradation of 

membrane o chain. The failure to prevent proteolysis could be related to 

the concentration of the inhibitors used, although the concentration of 

PMSF and TPCK were on the same order as those shown to be effective by 

others (Fahrney and Gold, 1963; Hart and Streilein, 1976). Of special 
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interest were the experiments in which aprotinin and EACA were incorpo

rated into the preparation and isolation procedures of the mouse membrane 

H chains. 1% EACA, the same concentration used in these experiments, 

has been shown to be effective in preventing the proteolytic fragmenta

tion of human IgD (Goyert et al., 1977). Further, it has been reported 

that aprotinin and EACA reduce the proteolytic effects of maternal serum 

. on human neonatal lymphocytes (Panero et al., 1978). Both aprotinin and 

EACA used at concentrations effective in preventing proteolysis in the 

human system were not effective in producing a 'heavy' mouse membrane o 

chain. In one EACA experiment a mouse membrane µ-like H chain did appear 

in the membrane o lane on the SDS-polyacrylamide slab gel. However, it 

was attributed to the failure to clear all of the mouse membrane IgM from 

the cellular detergent lysate and was not observed in subsequent repeti

tions of the same experiment. 

There is a possibility that the 'so called' fragmentation of mouse 

membrane o chain could be prevented by a proteolytic inhibitor since not 

all proteolytic inhibitors available were tried. Further, proteolytic 

enzymes not affected by the proteolytic inhibitor(s) used might also 

exist. It is important to note that in the experiments of Sitia et al. 

(1977) the 'heavy' mouse membrane o chain was observed in the absence of 

any proteolytic inhibitors incorporated into the experimental procedures. 

Diisopropylfluorophosphate has been incorporated into membrane H chain 

preparation procedures (Finkelman et al., 1976); however results were 

similar to those reported here. That secondary bands were generally ob

served in the mouse membrane µ and o chain lanes on the polyacrylamide 

gels might also support the ineffectiveness of the proteolytic inhibitors 

used. 
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If the fragmentation of the mouse membrane o chain does occur, it 

must be confined to the N or C-terminal of the H chain. If the mouse 

membrane 8 chain were cleaved at the hinge, one would expect at least two 

fragments with molecular weight of approximately 30-33K on SDS-polyacryl-

amide gels under reducing conditions. The 8 chain observed in these 

experiments was always in the 66-63K range. 

Whether proteolysis of the mouse membrane 8 chain occurs naturally 

in vivo has not been determined. If it did, incorporation of proteolytic 

inhibitors into the preparation and isolation procedures of the membrane 

H chains would probably not be effective. 

In contrast, if the protease inhibitors used were effective in in-

hibiting all proteolytic enzyme activities and mouse membrane 8 chain 

does have a size larger than normally isolated, the larger 'native' mem-

brane 8 chain should have been det:ected. That the larger 'native' 8 

chain was not detected leads to the conclusion that the 66K membrane 8 

chain could be the 'native' species on mouse spleen cell membranes. An 

important piece of information that is not as yet known is the size of 

mouse serum 8 chain. Serum IgD has only recently been reported in the 

mouse (Woods et al., 1979). One would expect that mouse membrane 8 chain 

would be larger than its serum counterpart. This would be consistent 

with bovine and mouse membrane and serum µ chains and human membrane and 

serum 8 chains (Haimovich, 1977; Melcher and lfur, 1976; Finkelman et al., 

1976). 

A possible explanation for why Sitia et al. (1977) have been able to 

detect the 'heavy' mouse membrane 8 chain and others have not is that two 

forms of mouse membrane µ chains exist, one being serologically different 

from the other. One form of mouse membrane µ chain would be cleared from 
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detergent lysates with rabbit anti-mouse µ chain serum. The other form, 

not being reactive with the rabbit anti-mouse µ chain serum, would be 

detected in the rabbit anti-mouse IgA immunoprecipitation. The fact that 

'heavy' mouse membrane o chain was observed when anti-mouse IgD serum was 

substituted for rabbit anti-mouse IgA serum (Sitia et al., 1977) does not 

support the possibility of two membrane µ chain forms. However, class 

identification using antisera that are thought to be class or species 

specific may be less than reliable. Mouse membrane o chain must possess 

some antigenic determinants in common with mouse membrane µ chain since 

increased amounts of anti-µ chain serum will immunoprecipitate mouse mem

brane IgD (Lisowska-Bernstein and Vassalli, 1975). It has also been 

shown that chicken anti-human o serum recognizes an immunoglobulin on the 

surface of rat lymphocytes (Ruddick and Leslie, 1977). More recently, a 

rat myeloma line has been found to secrete an IgD-like protein, antiserum 

to which recognizes a membrane pro~ein on the surf ace of rat and mouse 

spleen cell lymphocytes (Bazin et al., 1978). 

I sought to explore the conservation of specific cleavage sites on 

mouse and human H chains utilizing chemical and enzymatic cleavage tech

niques. If the placement of cleavage sites along two H chains is con

served, similar fragmentation patterns wot1ld be expected. Of course 

sjmilar fragmentation patterns, at best, would indicate possible conser

vation of cleavage sites and further structural homology would only be 

implied. Specific cases can be cited in which conservation of chemical 

cleavage sites (e.g. methionine residues) parallels a high amino acid 

sequence homology between two H chains of the same class (Putnam et al., 

1973; Watanabe et al., 1973). A high amino acid sequence homology 

between two H chains of the same class does not insure the conservation 
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of chemical cleavage sites however (Capra and McCumber, 1979; Putnam et 

al., 1973). 

Mouse membrane µ and o chains produced similar cleavage patterns 

when treated with CNBr and chyrnotrypsin (which cleave at methionine and 

aromatic amino acid residues respectively) even though in both cases the 

cleavage was incomplete. The number and sizes of the coincident frag

ments in the membrane µ and o cleavage patterns indicate more homology 

than one would expect for two H chains of different Ig classes. Although 

the origins of the coincident fragments are not known, it seems unlikely 

that many coincident fragments could be derived from different parts of 

the two H chains cleaved. In addition, the sizes of the coincident frag

ments in the membrane µ and o chain patterns indicate that they are at 

least in part derived from constant domain sequences. Some degree of 

homology would be expected between two H chains through fragments derived· 

from their variable regions sequences. However, only a few fragments of 

110 amino acid residues or less were observed due to incomplete cleavage. 

The fragment patterns of H chains of the same class that should 

have produced the most similar cleavage patterns, in fact, did not. The 

fragment patterns of mouse membrane and MOPC 104E µ chains did produce 

some fragments that appear to migrate in identical positions but for the 

most part the patterns were different. The possibility exists that mouse 

MOPC 104E µ chain is not typical of the IgM class. The MOPC 104E µ chain 

is unusual among mouse VH sequences in that it has a methionine residue 

at position 20. Analysis of the partial amino acid sequence information 

available for mouse MOPC 104E and mouse ABPC 22 µ chains produced an 85% 

sequence homology however (Capra, personal communication, 1979; Hood, 

personal communication, 1979). Ideally, the cleavage patterns of mouse 
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spleen cell secreted and mouse spleen cell membrane µ chains should have 

been compared. 3 The inability to observe the H labeled spleen cell sec-

reted µ chain versus iodinated spleen cell surf ace µ chain cleavage f rag-

ments via fluorography made this comparison not possible. The cleavage 

patterns of mouse membrane and human secreted o chains were different. 

This may be expected since the placement of methionine residues in lg 

constant regions have not been highly conserved during evolution (Putnam 

et al., 1973; Capra and Mccumber, 1979; Adetugbo, 1978; Cunningham et 

al., 1970; Rutishauser et al., 1970). That the cleavage patterns of 

mouse membrane µ and o chains were different from those of myeloma µ and 

o chains does not rule out the possibility that the membrane H chains are 

actually of the IgM and/or IgD classes however. 

Whether or not the class distinctions assigned to the mouse membrane 

IgM and IgD H chains are entirely correct remains unanswered. It is pas-

sible that the two mouse membrane H chains could be almost identical in 

structure yet not react equally with antiserum raised against one of 

them. Mouse membrane IgM and IgD H chains apparently have similar anti-

genie determinants since increased concentrations of anti-µ chain serum 

will immunoprecipitate IgD (Lisowska-Bernstein and Vassalli, 1975). This 

suggests that when an antiserum is raised against a mouse µ chain, a 

heterogeneous population of antibodies reacting to that µ chain are pro-

duced. Further, the concentrations of individual antibody activities 

within that population are different. One might envision several major 

antigenic determinants to which a majority of the antibodies are made and 

also minor antigenic determinants toward which only small amounts of 

antibodies are made. Thus as the anti-µ serum concentration is increased 

in the recovery of mouse µ chain, more antibodies directed towards the 
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minor antigenic determinants are available to react with o chain 

(similar toµ chain in minor antigenic determinants). The determination 

of major and minor antigenic determinants and the ability to raise anti

body against them could depend upon the content and/or distribution of 

carbohydrate on the H chain or perhaps the conformation of the molecule. 

The similarities observed in the membrane H chain cleavage patterns 

along with the fact that the two H chains are serologically alike suggest 

that only a single class of Ig is found on the surface of mouse spleen 

cells. A new class called IgB, due to its restricted appearance on the 

surface of B cells could be proposed. The differences seen in the anti

sera reactivities would be consequence of changes in conformation. IgB 

would exist in two conformations, one which cross reacts with anti-11 

serum and the other with anti-a serum. The o cross reactive conformation 

of the S heavy chain would have to be susceptible to proteolytic cleavage 

in the mouse, partly so in the rat, and not at all in the human and other 

species. Proof that cell surface H chains are of one class would require 

the comparison of their amino acid sequences and/or carefully controlled 

serological characterization. 

H chains from different lg classes produced CNBr and chymotrypsin 

cleavage patterns that were different. This was expected since a search 

of existing amino acid sequence information yielded little or no conser

vation in the placement of at least methionine residues. 

Cleavage of mouse membrane IgM and IgD with pepsin produced two 

(Fab) 2-like fragments of 130K and llOK respectively. These results are 

surprising when compared with the CNBr and chymotrypsin cleavage frag

ment homology in that if the amino acid sequences of the two membrane 

H chains are nearly identical, one would expect pepsin fragments of 



similar sizes. That either 130K or llOK fragments were not produced 

does not rule out a similarity of the two membrane H chains. Confor

mational differences between the two molecules could account for the 
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exposure of a different pepsin cleavage site on either the membrane IgM 

or IgD. The pepsin cleavage of the intact molecules was performed in 

SDS, thus the difference sizes of the membrane IgM and IgD fragments may 

reflect the extent of denaturation of the membrane proteins. This 

rationale has been used in the past to explain differences observed 

in the susceptibility of detergent released membrane IgM to papain and 

trypsin cleavage (Vitetta and Uhr, 1976; Bourgois et al., 1977). The 

possibility that the llOK fragment seen in the mouse membrane IgD 

represents a degradation product of a larger (Fab) 2 fragment cannot be 

ruled out. 

The papain cleavage of mouse membrane IgM and IgD produced fragments 

of s-imilar size to those expected. The fragments have not been well 

characterized, thus no conclusions as to their origins can be made. As 

in the pepsin cleavages, one would expect similar fragment sizes if the 

membrane H chains were nearly identical in structure. That similar sized 

fragments were not observed may be a consequence of the conformation of 

membrane IgM and IgD or may reflect actual structural differences. 

IgD is more susceptible than IgM to papain cleavage when the mole

cules are attached to the lymphocyte surface (Vitetta and Uhr, 1976; 

Bazin et al., ·1978). In contrast, it bas been reported that de.tergent 

released membrane IgM and IgD have equal susceptibilities to papain 

(Vitetta and Uhr, 1976). In the papain cleavages shown here, the mem

brane IgD appeared to be more susceptible to cleavage in solution than 

IgM. Similar results have been seen for the cleavage of mouse membrane 
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IgM and IgD in solution with trypsin (Bourgois et al., 1977). Again the 

difference in papain cleavage fragments may reflect the extent of dena

turation of the membrane proteins since the cleavage was performed in SDS. 

The molecular weights of papain released Fab fragments from mouse 

membrane and human rnyeloma IgDs have been reported at 60K and 47K respec

tively (Vitetta and Uhr, 1976; Lin and Putnam, 1979). Thus there appear 

to be some structural differences between the mouse and human o chains. 

Whether differences observed in the fragment sizes between the mouse mem

brane IgM and IgD reflect structural differences is not known. 

I feel that some significant information has been gained in these 

studies concerning mouse membrane Igs. Much more needs to be done. The 

advances to be made in this area of research will indeed be of interest 

in the years ahead. The role of membrane lg in the activation of the 

humoral immune response is still, for the most part, a mystery to me and 

I am sure to many others. 
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