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CHAPTER I 

INTRODUCTION 

The research reported in this diss.ertation is divided into seven 

chapters. Each one is a manuscript prepared for publication in the 

Agronomy Journals after minor modifications. The second chapter deals 

with analysis of variance. The third chapter deals with regression · 

analysis, while the fourth and the fifth deal with the canonical cor-
1 

relation, The sixth and seventh deal with factor analysis, while the 

eighth deals with numerical taxonomy. Appendix A includes simple 

statistics for both areas. 

Soil is a three dimensional body that results ·from the integrated 

effect of many external and internal factors. Any change in one or 

more of these factors causes changes in the make up of the soil body. 

The systematic examination of soil is. necessary for better agricul-

tural and non-agricultural uses, This is usually done in the field by 

delineating similar soil together on soil maps. These delineations are 

called the mapping units. Dissimilar soilwithinthe mapping units are 

called soil inclusions. The percentage of the soil inclusions vary 

depending on the precision of the mapping. The quantitative charac-

terization of these units gives some insight on how soil properties 

vary within the soil mapping units. This helps to provide a better 

definition of the soil mapping units for better mapping. 

1 
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The objective of this research is to study the variation of soil 

properties within the mapping unit. A total of 18 and 23 soil pedons 

from two areas were described and sampled for this study. This objec­

tive is approached through different statistical analysis on the 41 

soil pedons as follows: 1) variation of the soil properties within 

the different mapping units (analysis variance); 2) the relationships 

between chemical properties, chemical and morphological properties, 

and morphological and morphological properties (regression and canoni­

cal correlation); 3) the study of the magnitude of the variation of each 

soil property within the different soil horizons (principal component, 

factor analysis); 4) mathematical classification (numerical taxonomy). 



CH.APTER II 

SIMPLE STATISTICS 

Abstract 

The objective of this study was to investigate the variability of 

different soil properties within the soil mapping unit. Two areas were 

selected in which the variation of soil-forming factors were minimized. 

A total of 18 and 23 profiles were sampled from the first and second 

areas, respectively. Laboratory data were obtained using the Slipped­

Block design to adjust for the·variation arising from conducting the 

analyses at different times. The experiment was executed two times and 

the adjusted mean values were used in the statistical analysis. The 

means, standa~d deviation, maximum and minimum values of the mean (a=.9~ 

and the coefficient of variation (C.V.%) were calculated from the adjus­

ted data. The number of samples required to estimate the true mean 

where the STD of the estimate.is 10% of the mean is also reported. 

Most of the soil properties showed high C.V.% values within the 

area as a unit and for the individual series within each area. There 

was a strong tendency for the C.V.% values of the chemical properties 

to decrease when both areas were delineated to different soil mapping 

units. This tendency was not observed among the C.V.% values for the 

morphological properties. High C.V.% values were indicative of the 

high variability among different soil properties even for areas where 

3 
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variation of the soil-forming factors were kept constant or minimum 

over a short distance. Also, based on this study, it is concluded that 

a more accurate characterization of the soil mapping units will require 

more samples than usually taken by the soil surveyor. 

Field Work Investigations 

Soil is a heterogenous system. The heterogeneity arises from the 

many factors that affect the soil body. These factors are parent mate­

rial, climate, topography, organisms, and time. In the selected areas 

of this study, these factors were reasonably constant. The land use 

in area one was pasture. The second area was part of the O.S.U. 

Agronomy Experiment Station. The topography of Area One was mainly the 

summit position, and was flat linear in Area Two. The slope ranged 

from .3 to 3.5% and from .S to 1% in Area One and Two, respectively. 

A total of 18 profiles were described and sampled in the first 

area and 23 profiles in the second area. To ensure unbiased random 

site selection, the outside boundary of each area was drawn on a trans­

parent paper (Figure 2.1), then the center of each area was marked and 

several radial lines, branching from the center toward the boundary, 

were drawn. Starting from the central point, the sites were located on 

each line. The distance between each location was approximately 60 

feet. More than one mapping unit occurred inside each area. The sites 

were located withput any reference to the boundaries of the different 

mapping units. This provided different numbers of sites in each mapping 

unit. 

The depth of the sampling was to the bedrock in Area One and to 

92 inches in Area Two. Complete morphological description was attempted 
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Figure 2.1. Locations of the Sampling Sites 
and the Field Design. 
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according to a coded system designed by the author. Horizons that 

occurred below the line of lithological discontinuity were designated 

as buried horizons. 

Two types of parent material were recognized: Permian Formation 

in the first area, and Old Alluvium in the second area. 

Laboratory Statistical Design 

6 

The Slipped-Block design was used to ensure removing the variations 

arising from conducting the chemical tests at different times (Timon, 

67). Figure 2.2 shows the design layout. The samples of each area were 

given serial numbers an~ by random process, the 12 samples were assig­

ned to each block with one sample repeated in 'the next block as an 

overlap as required by the design. All the tests were conducted using 

12 samples at the same time. Each area was randomized and blocked se­

parately. The experiment was repeated two times for each area. 

Chemical Analysis 

Particle size fractionation was determined as described by 

Grossman (29) and as suggested by Baktar (4). Calcium carbonate was 

removed by soaking the soil in sodium acetate for two weeks. Organic 

matter was removed by heating the soil with 31% hydrogen peroxide. 

Sodium acetate and overnight shaking were employed to ensure maximum 

dispersion. Clay was measured by the hydrometer method (Day, 221). 

The very fine sand was separated and measured and the rest of the sand 

fractions were reported as fine sand. Silt was obtained by subtraction 

after adjusting for Caco3 . Organic carbon was determined by the potas­

sium dicromate procedure of Schollenberger (62). Cation exchange 
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Figure 2.2. Layout of the Slipped­
Block Statistical 
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capacity was determined by saturating the soil with sodium acetate pH 

8.2 (Bower, 19). Exchangeable hydrogen determination was according to 

Peech (SO). Base saturation was calculated by dividing the sum of the 

NH40AC extractable bases by the CEC. The pH was measured with a 

Beckman pH meter on a 1:1 soil to water suspension. Calcium carbonate 

was determined by acid neutralization (Richards, 55). 

Statistical Analysis 

The adjusted means values for all the measurements were obtained 

by removing the effect of time-to-time from the row data according to 

the statistical design. The following statistics were computed for 

each variable using the adjusted data: mean, standard deviation, mini­

mum and maximum values, coefficient of variation, and the number of 

samples required to estimate the true mean with standard deviation equal 

to 10% of the mean. The following formula was used to compute the num­

bers of samples required to estimate the means for each variable using 

the adjusted data: 

sx2 /n=P~2 

100 's~2/x2 = lOOP;;-

rn = C.V./lOOP 

n = (C.V./100 • P) 2 

C.V. = Coefficient of Variation 

p = .1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

n = number of samples required to estimate the true mean where the 

standard deviation is equal to 10% of the mean. 
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The above analysis was conducted on Ap horizon (designated as Ap 

zone), R horizons (designated as subsurface zone), and Cr horizons 

(designated as parent material zone). Also, the above analysis was 

conducted on a layer equivalent to the zone occupied by 90% of the 

plant roots. 

The depth of the root zone was defined as follows: 

Depth of root zone (2.5) 

where A1 , c1 , and D1 are the thicknesses of each horizon (Ap or B1 or 
i 

s2) contained in the ~oot zone. Either c1 or n1 could be zero. The 

weightedaverages were calculated depending on the depth. Furthermore, 

the analysis was repo~ted for each area as an independent unit and for 

different series within each area. 

Results and Discussion 

Area One, Ap Zone 

Area One included four series designated as series A, B, C, and D. 

The number oJ profiles was described randomly for each series as indi-

cated on AOV Table 2.1. The results are discussed for each zone within 

the area as an independent unit and within each series. A complete 

list of the computation is found in Appendix A. 

C.V. is a measurement of the relative variability. The number of 

the samples required to estimate the mean is a function of the C.V.%. 

Thus the C.V.% and the required number of samples were used to indicate 

the extent of variability among different soil properties throughout 

the discussion. 
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Among the chemical properties for the whole area, K(C.V.% 74.5), 

Na(289.2), and Caco3(59.7) showed maximum variation. The number of 

samples required to estimate the mean were 56, 836, and 36 samples, 

respectively. C.V.% fortherest of the chemical properties ranged 

from 8 for pH to 37.7 for calcium (Table 2.1). Comparing the same 

10 

variables within each series, the C.V. dropped sharply for all proper-

ties except for Na in series C (219.6) and series D (190). The C.V. 

for K decreased only in series A. The rest of the measurements showed 

moderately low to low C.V.%, but varied widely above 10%. However, a 

strong tendency in the reduction of the C.V. was observed for some pro-

~.perties like the CEC, OM, and clay. These properties are considered 

very important for management practices and soil classification. 

Property 

K 

Na 

Caco3 

A 

TABLE 2.1 

COEFFICIENT OF VARIATION FOR THE 
SURFACE ZONE, AREA ONE 

Series 

B c 

18.6 66.6 66.4 

D 

20.6 

57.2 2.5 219.6 190.0 

94.0 39.0 39.4 53.2 

Overall 
Area 

74.5 

289.2 

59.7 
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Area One, Subsurface Zone 

Among the measured chemical properties for the whole area, C.V.% 

for Mg (25.9) and H (95) were the highest, followed by calcium (74), 

potassium (65), and CEC (57). The C.V.% for Caco3 (10.9) and base sa­

turation (29.9) were the lowest. Comparing with different series, C.V.% 

for H, pH, Ca, Mg, VFS, and CEC decreased significantly by series 

mapping. TheC.V.% for clay remained relatively low, but increased 

dramatically in series D (41.7). The C.V.% for Na increased sharply 

for all series .(Table 2.2). It was noticeable that the C.V.% for the 

sodium in the subsurface was higher than in the Ap zone when computed 

for different series, but the result was reversed when the C.V.% was 

computed for the whole area, 

Property 

Mg 

H 

Ca 

CEC 

BST 

Na 

CaC03 
K 

TABLE 2.2 

COEFFICIENT OF VARIATION FOR THE 
SUBSURFACE ZONE, AREA ONE 

Series 
A B c 

39.6 9.0 30.l 

25.9 20.0 68.5 

59.1 34.0 90.0 

39.7 5.0 16.5 

47.5 30.8 69.7 

156.5 70.3 250.0 

63.2 56.2 51. 7 

83.3 106.0 110.2 

Overall 
D Area 

25.5 125.9 

46.0 95.0 

56.0 74.9 

13.9 57.4 

41. 7 29.9 

79.8 63.9 

67.4 10.6 

35.2 65.0 
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Area One, Parent Material 

The C.V.% for potassium (262.8), Caco3 (189.8) 1 sodium (95.2), and 

calcium (84.5), followed by hydrogen (79,6), OM (64), base satur.ation 

(59), and very fine sand (58.7) were the highest among the chemical 

properties. The C.V.% for pH (10.3) was the lowest (Table 2.3). 

Property 

K 

CaC03 
Na 

Ca 

H 

OM 

BST 

VFS 

TABLE 2.3 

COEFFICIENT OF VARIATION FOR THE 
PARENT MATERIAL, AREA ONE 

Series 

A B c 

177.6 60.0 107.5 

61.3 0 .o - 68.2 

159.1 6.6 54.4 

74.8 89.3 72.3 

56.1 125. 7 67.2 

54.1 58.4 76.0 

24.0 55.8 41.5 

18.3 102.6 61.9 

Overall 

D 
Area 

405.7 262.8 

159.6 189.8 

86.3 95.2 

73.7 84.5 

85.4 79.5 

69.3 64.1 

47.1 59.0 

40.0 58.7 

Based on series analysis, C.V.% for potassium decreased sharply 

in all series except in series D where it increased to 405.7. Caco3 

also decreased for all series. Sodium did not show any significant 

change except in series C (54.4). The C.V.% for calcium did not show 

any noticeable improvement in any of the four series. Also, the C.V.% 
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for clay, fine sand, very fine sand, and silt did not show any signifi­

cant changes in all series in comparison with the analysis for the 

whole area. 

Area One, Root Zone 

Analysis of the data for the root zone of the entire area was not 

much different from its Ap counterpart. However, the C.V.% for various 

variables in the root zone were lower than those for the subsoil except 

for sodium which was high in the surface. 

Area One, Morphological Data 

The morphological data for the entire are'a (Table 2 .4) exhibited 

high C.V.% values. Some very important criteria like depth of clay 

film (81%), depth of mottling (126%), and slickensides (134%) were 

high. The high C.V.% for the depth of the buried layer (175.4) might 

indicate the type of the truncated horizon. Except for the drainage, 

all the morphological properties exceeded the value of 10% which is 

accepted by many workers. Furthermore, based on the individual series 

analysis, there was no decisive declination or inclination trend in 

C.V.% for various properties. Generally, delineation of series based 

on chemical properties, especially those properties useful in soil 

classification, though the C.V.% was still high, was better than if the 

delineation would have been based on morphological properties. The sam­

ples required to estimate the true mean of the morphological properties 

were high and impractical to undertake in the field. High proportion 

of soil inclusions in some series might have contributed to the big 

increase in the C.V.% for some of these morphological properties. 



TABLE 2.4 

COEFFICIENT OF VARIATION FOR THE MORPHOLOGICAL 
PROPERTIES, AREA ONE 

14 

Property 
Series Overall 

A B c D Area 

D. clay film 73.6 9.4 72.l llO. 7 81.2 

D. mottling 58.8 141.4 155.0 161.7 126.5 

D. slickensides 200.00 161.0 62.3 134.4 

D. pressure 
faces 200.0 161.4 65.3 130.0 

Area Two, Ap Zone 

Area two included four series designated as series E, F, G, and H. 

The computed statistics were reported in the same way as for Area One. 

Among the chemical properties (for the entire area), the C.V.% was 

highest for Caco3 (98.3), followed by Na (47.1), clay (44.6), and cal­

cium (30.7). The C.V.% for the rest of the chemical properties ranged 

from 9.8% for pH to 26% for Mg (Table 2.5). Based on individual series, 

the c·. V. % for Caco3 did not decrease (in comparison with the entire 

area) dramatically except in series E (50.7). It remained the same or 

increased dramatically for other series. C.V.% for clay decreased 

sharply only in series H (14.3). C.V.% for Na increased to 21.5% in 

series G, 29% in series H and to 58.3% and 54.5% in series F and E 

respectively. However, it decreased significantly for calcium in series 
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H (9.9) and for series E (11.2). Also it increased to 46.3 for Mg in· 

series F. The rest of the properties exhibited slight changed from one 

series to another. 

Property 
E 

CaC03 75.8 

Na 58.3 

Clay 42.0 

Ca 11.2 

H 16.9 

Mg 14.4 

TABLE 2.5 

COEFFICIENT OF VARIATION FOR THE 
SURFACE ZONE, AREA TWO 

Series 
F G 

150.9 89.4 

54.S 21.5 

38.5 42.2 

35.1 38.4 

26.2 28.9 

46.3 16.1 

Area Two, Subsurface Zone 

Overall 
H Area 

215.3 98.3 

29.6 47.1 

14.3 44.6 

9.9 30.7 

15.0 23.6 

14.2 26.1 

Based on the entire area, the C.V.% for sodium was the highest, 

followed by caco3 (36.9), OM (24.5), and fine sand (29). The C.V.% for 

the rest of the data was below 20%. Based on individual series, the 

C.V.% for all the chemical properties remained the same or decreased 

significantly, except for Na in series E (100.6) (Table 2.6). It was 
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observed that the C.V.% values were noticeably lower for the subsur-

face zone than the Ap zone. This was true for the entire area and for 

the individual series. 

TABLE 2.6 

COEFFICIENT OF VARIATION FOR THE 
SUBSURFACE, AREA TWO 

Property Series 
E F G 

Na 100.6 16.5 21.5 

CaC03 50.3 26.2 89.4 

OM 29.3 14.4 11.4 

FS 18.4 12.8 22.5 

Area Two, Root Zone 

Overall 
H Area 

5.6 51.2 

19.5 36.9 

14.2 24.5 

8.6 29.0 

Except for the sodium (80.7), which was higher than its counter-

part in the Ap or subsurface zones, the C.V.% for the rest of the data 

were either averages or slightly different from Ap or subsurface values 

(see Appendix A). 

4,rea Two, Morphological Properties 

The soil properties (using the area as a unit) associated with 

amount and type of clay, such as depth of slickensides (155.9), depth 
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of pressure faces (253.8), and depth of maximum streaking (50.4) showed 

highest C.V.% values (Table 2.7). The C.V.% for the depth of mottling 

(56.5), depth of white and black bodies (49.4), and depth of krotovina 

(52.1) were next highest in C.V. values to the depth of slickensides 

and pressure faces. 

D. 

D. 

D. 

D. 

D. 

D. 

TABLE 2. 7 

COEFFICIENT OF VARIATION FOR THE MORPHOLOGICAL 
PROPERTIES, AREA TWO 

Property Series 

E F G H 

Slickensides o.o 223.6 69.6 173.2 

Pressure Face o.o 46.9 232.6 134.2 

Streaking 28.5 o.o 44.1 o.o 

Mottling 33.5 34.4 87.5 65.5 

Black/White 
Bodies 51.6 0.0 o.o 24.0 

Krotovina 48.1 28.3 69.4 15.0 

Overall 
Area 

155.9 

253.8 

50.l 

56.5 

49.4 

52.1 

All these properties are related directly or indirectly to the 

soil-water relationships. This might suggest that soil moisture distri-

bution may be the reason for this pattern. Noticeably, the slope of 

this area averaged .5%, and the general inclination of-the topography 

was from north to south, Based on individual series analysis, the C.V.% 
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for the depth of pressure face decreased sharply in series F (46.9), 

and to (<.01) in series E, but remained very high in series G and H. 

Streaking decreased sharply in all series of the second area. C.V.% 

for the black and white bodies decreased sharply in all series except 

for series E (51.6). The C.V.% for the depth of mottling did not 

change except in series F (< .01). The absence of the sharp decline in 

the C.V.% for the morphological properties within each individual 

series in comparison with the C.V.% for the entire area was very obvi-

ous. 

Conclusions 

1. The C.V.'s% for the chemical and morphological properties were 

found to be very high whether computed for the entire area or for each 

individual series within that area. 

2. In both studied areas, the chemical properties of the subsur­

face (subsoil) showed less variation than the Ap zone (surface zone). 

The variation of chemical properties were lowest in the parent material 

of Area One. 

3. The C.V.'s% for the chemical properties showed a substantial 

decrease when the area was delineated by the different mapping units. 

This trend was not noticeable among the morphological properties. 

4. Based on the computer number of samples required to estimate 

the true mean (P = .9), it would be impractical, or uneconomical, to 

fully characterize the variability in the mapping units. This would be 

difficult to achieve, especially for the morphological characterization 

which showed higher variations. 
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5. Both areas where this investigation was conducted occupied 

small areas. In both areas, the variations of the soil-forming factors 

were reasonably constant. However, morphological properties showed 

high C.V.% values within the different series. This indicated that 
/ 

~ ', soil morphological properties can be highly variable even within a 

very short distance. 



CHAPTER III 

REGRESSION ANALYSIS 

Abstract 

The objective of this study was to investigate the relationships 

between 14 soil properties. The properties examined were fine sand, 

very fine sand, silt, clay, pH, hydrogen, organic matter, sodium, cal­

cium, magnesium, potassium, cation exchange capacity, calcium carbonate, 

and base saturation. Two areas were selected. The first area was on 

Permian Formation, and the second was on Old Alluvium. Conditions 

minimizing the diversity of factors that enhances wide differences in 

soil genesis were maintained. A total of 18 and 23 profiles were des­

cribed and sampled from the first and second area respectively and 

using a random transect. Chemical measurements were obtained utilizing 

the Slipped-Block design to remove the variation arising from conducting 

the analyses at different times. The whole experiment was repeated 

twice. Adjusted means were used in the statistical analysis. Multiple 

regression analyses were conducted. A stepwise regression procedure was 

used to select the appropriate regression equations. Standardized par­

tial regression coefficients were also estimated. Pairwise correlations 

between the 14 soil properties were also computed. Regression analysis 

indicated the existence of multiple relationships between soil 

20 
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properties rather than a simple one. Correlation coefficients did not 

seem to provide information on the true relationships between different 

soil properties, especially when relative importance of different pro­

pertie& in relation to each other are considered. 

Introduction 

Quantitative relationships between soil properties have not been 

investigated in great detail. Correlations and simple or multiple 

regression have been used in some cases. Few researchers reported such 

work. Protz (52) used regression analysis in studying relationships 

between landform parameters and soil properties. He also used it in 

studying the soil variability across selected landscapes in Iowa. 

Wilding (70) used regression to study the rela,tionship between cation 

exchange capacity, organic matter, and various clay fractions. 

Hallsworth (31), Helling (33), Williams (32), Makeague (43), and. 

Karmanov (38) also reported similar work. 

In studying the relationships between soil properties, two factors 

have not been fully considered. The first factor is that soils develop 

under a diverse number of factors. These factors may include geology, 

climate, vegetation, topography, time, and organisms, including human 

activity. Thus if specific generalizations about the relationship 

between different soil properties using multiple regression have to be 

made, the diversity of the conditions or the factors that contribute 

to, or give rise to a wide range of soil genesis, should be minimized~ 

The second factor is that, in most cases, multiple correlation governs 

the relations between soil properties. Thus if building models for 

prediction purposes is the researcher's main interest, a wide range of 
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conditions and huge omount of data are necessary, even if the model is 

intended for a small area. On the other hand, if the investigator is 

interested in studying the relative contributions of certain variables 

in explaining the variations of a particular soil property, the tradi-

tional multiple regression may not provide the answer. 

The objective of this study was to evaluate the relationships 

between 14 different soil properties. Namely, fine sand (fs), very fine 

sand (vfs), silt, clay, pH, hydrogen (H), cation exchange capacity (CEC)" 

sodium (Na), potassium (K), organic matter (OM), calcium (Ca), magnesium 

(Mg), calcium carbonate (Caco3), and base saturation (BST). Emphasis 

was given to the relative contribution of individual soil properties in 

explaining the variation of a particular property using the selected 

regression equation which resulted from the stepwise procedure. 

Results and Discussion 

Regression analysis was conducted for each genetical horizon sepa-

rately (Ap zone, subsurface zone, Cr or parent material zone), and for 

all horizons treated together (this will be referred to as all sample 

analysis). The above analysis was done for each area. Thirteen 

variables were used as independent variables and one as a dependent 

variable at each step. A stepwise regression was conducted to select 

the appropriate regression equations. The criterion used for choosing 

the number of variables in the regression equations was by maximization 

of the R-square (R2). When the . 2 maximum R was reached, the variable 

contributed to an increase of 2 to 3 percent or less in R2 and the 

variable was deleted from the equation. Then the regular regression 

analysis was conducted on the selected equations and the standardized 
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partial regression coefficients were estimated (Draper, 23). The usual 

statistics were computed. 

Tables 3.3, 3.4, 3.5, 3.6, and 3.7 show the pairwise correlation 

between the 14 soil properties and Tables 3.1 and 3.2 show the regres­

sion equations for each dependent variable, multiple correlation, R2, F 

for the regression equation, and the significance of the F test. The 

regression equations were reported at the two significant levels. The 

odd number indicated the equation was significant at probability of .5% 

and the even number was .significant at probability of 1%. Equations 1 

and 2 represent all samples, equations 3 and 4 represent the surface 

zone, equations 5 and 6 represent the subsurface zone and equations 7 

and 8 represent the Cr zone. If no equation was given for the even 

number, then it was the same for the odd number. The partial regres­

sion coefficient was interpreted as the relative contribution of that 

variable in explaining the variation of the dependent variable. For 

the purpose of clarity, some equations were discussed. The rest of the 

equations would be interpreted in the same manner. The number that 

appears between two brackets following the measurements represents the 

standardized partial regression coefficient as reported in the diffe­

rent regression equations. 

All samples regression equation for CEC in Area One indicated that 

87% of the variation of CEC could be explained by Ca, Mg, clay, and BST. 

BST (-.69) was slightly higher than Ca (.55), Mg (.55), and clay con­

tent (.23) seemed to be the least significant. 

However, for Area Two, (all samples) regression equations indica­

ted that IlST (.6), Ca (.68), and Mg (.68) explained the largest portio~ 

95% of the CEC variation. Clay contribution appeared to be negligible. 



TABLE 3.1 

REGRESSION ANALYSIS FOR AREA ONE 

r R2 F prob > F 

l CEC • .55 Ca+ .SS Mg+ .23 clay - .69 bst .93 .87 123.4 0.0001 
3 CEC • .83 Ca + .60 Mg + .31 K - 1.39 bst .98 .97 90.l 0.0001 
5 CEC • .1,9 z.;g + .34 H - .23 K + .11 silt + .54 clay .96 • 93 . 31.9 0.0001 
6 CEC • - .32 K + .18 silt + .80 clay .94 .• 88 34.8 0.0001 
7 CEC • .01 clay + .19 Mg - 1.6 bst + 1.34 Ca + .56 Na .88 .78 8.35 0.0017 
8 CEC • .33 Mg+ .39 clay .54 .29 3.1 0.0741 

1 Na• 1.02 bst + .51 CEC + .32 clay - .73 Ca - .31 It .84 .70 23.3 0.0001 
3 Na • • 38 H +· • 51 pH + • 43 Ca - .18 k .94 .89 26.7 0.0001 
4 Na • .49 H + .59 pH+ .42 Ca .93 .87 30.6 0.0001 
5 Na• .29 H - 1.10 Ca+ .75 clay+ 1.81 bst .95 .90 28.8 0.0001 
7 Na• .59 H - .62K + .73 pH+ .64 silt+ .38 CEC .86 ~74 6.7 0.0038 

l OM•· .62 H + .48 silt - .21 clay .as .72 64.6 0.0001 
3 OM • - .35 pH - .26 vfs .so .25 2.45 0.1187 
5 OM• .41 H + .39 Ne - .49 Mg+ .30 silt - .52 bst .96 .93 34.5 0.0001 
6 OM• .80 H + .52 pH - .91 Mg + .42 silt + .31 clay .98 .95 41. 7 0.0001 
7 OM • .36 Ca - .40 silt + .39 vfs - .90 pH .84 ..• 71 7.8 0.0023 
8 OM • ~ .20 silt + .52 vfs - .86 pH .so .64 8.2 0.0024 

l pH • .31 Mg - .21 Ca - .67 H - .32 K • 86 .72 55 • 0.0001 
3 pH• .32 clay+ .20 vfs + .70 Na.- .70 H .91 .83 16.3 0.0001 
4 pH• .22 clay+ .82 Na - .75 H • 90 .81 20 • 0.0001 
5 pH • .67 CEC + 1.31 bst - .34 vfs - .33 silt - .16 It - .Sl R .97 .94 20.2 0.0001 
6 pH• - .7) H - .~OK .89 .80 37.1 0.0001 
7 pH • - .84 H - .37 OM - .34 Ca - .51 silt + .47 bat .95 .91 25.0 0.0001 
8 pH • - .73 H - .46 OM - .SS silt - .27 bst . .94 .89 26.5 0.0001 

1 K • .04 OM - .15 pH - .32 Na + .44 silt + .08 clay .70 .49 14.l 0.0001 
2 K • .54 silt - .39 Na .68 .46 33. 7 0.0001 
3 K • .20 silt - .25 CaC03 - .30 H - .62 vfs .88 • 77 10.9 0.0007 
s K • ,87 clay - 1.01 CEC - .23 silt - .47 pH • 79 .63 5.7 0.0075 
6 K • -.59 pH - .22 vfs .64 .41 5.3 0.0184 
7 K • -.62 Na+ .74 silt - .30 Caco3 + .22 CEC .85 .73 8.7 0.0015 

N 
+=' 



TABLE 3.1 (Continued) 

1 Ca• .74 bst + .51 CEC .93 .86 244.2 0.0001 
3 Ca • .99 bst - .56 CEC - .23 Hg - .19 pH - .13 K .99 .97 70.9 0.0001 
5 Ca • .88 bst + .41 CEC - .22 pH •. 98 .96 117.4 0.0001 
7 Ca • 1.04 bst + .48 CEC - .34 .96 .92 55.S 0.0001 

1 Mg• .18 pH+ .37 bst + .72 CEC .91 .82 117.7 0.0001 
3 Mg• 1.92 bst + 1.43 CEC - .86 Na - 1.09 Ca - .37 E .97 .• 94 36.4 0.0001 
5 Mg• .67 CEC + .20 silt - .19 Ca - .70 OH .98 .95 63.0 0.0001 
6 Mg • .66 CEC - .54 OM .96 .93 92.6 0.0001 
7 Mg• .46 Ca+ .54 Na+ .31 K + .23 vfs .83 .69 7.3 0.0029 
8 Mg • • 63 Ca + • 38 Na .78 .61 11.8 0.0011 

1 Fs • -.40 vfs - .63 silt - .71 clay .99 .99 999999.9 0.0001 
3 Fs • -.20 vfs - .72 silt - .73 clay .99 .99 958642.3 0.0001 
4 Fs • - .63 sil.t - .67 clay .99 .97 275.3 0.0001 
5 Fs • - .52 silt - .90 clay - .38 vfs 1 1.0 999999.9 0.0001 
6 Fs • - .58 silt - .38 clay+ .66 vfa .99 .99 94964.7 0.0001 

1, vfs • - 2.5 fs - 1.58 silt - 1.77 clay - .002 bat .99 .99 269376 0.0001 
3 vfs • .49 pH - .64 K - .54 clay - .20 bat .89 .so 13.3 0.0003 
4 vfs • .40 pH - .60 K - .50 clay .88 • 77. 15.8 0.0002 
5 vfs - - 1.39 silt - 2.66 fs - 2.39 clay .99 .99 999999.9 0.0001 
6 vfs • - .70 silt+ .23 bst • 71 .51 7.9 0.0047 
9 vfs • - .88 silt - 1.52 fs - .58 clay .99 .99 58906.2 0.0001 

1 Silt • 0.001 OM - 1.58 fs - .63 vfa - 1.12 clay .99 .99 652132.5 0.0001 
3 Silt ·-1.39 fs - .28 vfs - 1.02 clay .99 .99 496832.1 0.0001 
5 Silt• .72 vfs - 1.91 fs - 1.73 clay 1 1.0 999999.9 0.0001 
7 Silt• - 1.14 vfs - 1.73 fs - .66 clay .99 .99 45300.9 0.0001 

1 Clay • 0.001 CEC - 1.4 fs - .56 vfs - .89 silt .99 .99 822799.9 0.0001 
3 Clay • 1.41 fs - .88 silt .97 .94 125.3 0.0001 
5 Clay • - 1.11 fa - .58 silt - .42 vfs 1 .1.0 999999.9 0.0001 
7 Clay• - 2.64 fa - 1.52 silt - 1.73 vfs .99 .• 99 19593.0 0.0001 

N 
\J1 



TABLE 3.1 (Continued ) 

1 Bst -•• 19 pH + .88 Ca + .22 Na - .51 CEC .99 
3 Bst • .22 K + .62 Ca+ .46 Na+ .39 Mg - .67 CEC .99 
5 Bst • .25 pH + 1.02 Ca + .1'7 vfs - .30 CEC .99 
7 Bst • .88 Ca + .34 Na - .45 CEC .96 

1 CaC03 • .42 bst - .36 vfs - .40 fs - .32 H - .35 Mg .63 
3 CaC03 • .33 :-ig + .33 clay - .38 K .66 
4 CaC03 a .28 bst.+ .53 clay - .30 K .67 
s CaC03 • .42 Mg + .42 Ca .79 
7. caco3 • .60 Ca - .64 vfs - .41 K - .Sl fa .79 
8 Caco3 • .77 Ca - .34 vfs .69 

1 H • .44 O}f - .51 pH - .20 bst - .26 K. .88 
3 K • .92 Na - .86 pH - .03 Ca .87 
4 H • .89 Na - .86 pH .87 
s H • .81 OM - .70 pH+ .43 Mg - .36 silt - .20 K .98 
7 H • -.23 a..~ - .68 pH - .44 Ca - .47 silt.+ .38 bat .• 95 
8 B • -.59 pH - .31 Ca - .30 silt .93 

.90 168.4 

.99 189.4 

.98 148.9 

.93 66.6 

.40 10.1 
• 44 3. 7 • 
.45 3.8 
.63 12.9" 
.62 5.3 
.48 7.0 

.78 67.9 

.75 14.1 

.7S 22.6 

.95 44.8 
.91 24~2 
.87 30.l 

0.0001 
0.0001 
0.0001 
0.0001 

0.0001 
0.3840 
Q.0349 
0.0008 
0.0093 

.0071 

0.0001 
0.0003 
0.0001 
0.0001 
0.0001 
0.0001 

1 

N 
Q'\ 



TABLE 3.2 

REGRESSION ANALYSIS FOR AREA TWO 

Regression Eguations r R2 F Prob > F 

1 CEC • .68 Ca-+ .68 Mg + .07 clay - 0.6 bst .98. .9S Sll.4 .0001 
J CEC • 0.001 CaCO~ + .9J Ca+ .48 Mg - .79 bst .99 .99 796.J .0001 
4 CEC • .98 Ca - • J CaCOJ .94 .88 72.4S .0001 
s CEC • 1.02 Ca+ .OJ K - .lJ H + .29 Ra+ .49 Mg - .OJ fs - .98 bst .99 .99 222.6 ~0001 
6 CEC • .Jl K + .4J pH - .69 fs .88 .78 22.7 .0001 

l Na • .08 pH - .23 K - .OS Ca - .6J Mg - .07 clay+ 1.87 bst + 
2.03 CEC .88 .78 S2.7 .0001 

2 Na "' .48 pH+ .42 Mg - .lS clay • 74 .SS 4S. .0001 
3 Na •-.87 Mg - .28 K + .40 silt - .19 Om .8S .7J 12.27 .0001 
s Na • - 1.13 Mg + .04 silt + .02 pH + .19 eaco3 - 2.44 Ca + 

2.15 bst + 2.J7 CEC .97 .94 32.7 .0001 
6 Ra • 0.32 Silt + .28 CaC03 + .62 pH .84 .70 115.0 .0001 

1 K • .45 fa - .02 vfs +.SOM.+ 2.77 CEC + 2.35 bst - 2.53 Ca 
- 64 Na - 1~11 Hg .74 .54 15.0 .0001 

3 K • .J2 H + 1.35 pH+ .19 fa - .74 bst .73 .SJ S.2 .0058 
4 K • .40 H + .J2 OM + 1.25 pH - .52 bat • 78 .60 6.62 .0022 
s K • 1.23 H + .75 pH - .4J clay .76 .57 8.3 .0013 
6 K • .67 H .82 .67 17.2 .0007 

l H • .22 OM - 0.99 pH+ .27 clay+ .28 CBC .9J .86 169.6 .0001 
J H • • 74 pH + .15 CaCOJ - .46 ca - .16 vfs - .29 silt + .S CEC ·. -. 9J .87 17.7 .0001 
4 H • - 1.0 pH+ .36 CEC - .21 Silt .91 .83 J0.5 .0001 
s B • - .SS pH+ .28 CM+ .44 Ca+ .19K - .55 bat .96 .9J S4.4 .0001 

l CM• .28 K + .SS H + .17· Ca - .27 fs - .Sl CEC .78 .61 33~7 .0001 
3 OM • .S2 K - .J9 Na - .35 fs - .20 clay .6S .42 3.3 .035J 
4 OM • .42 K - .27 Na .SJ .28 4.0 .0341 
s OM• - .2S K + .28 Na+ .J4 bst - .61 CaCOJ - .66 silt+ .74 B .as • 72 6.7 .0014 
6 OM • .J6 H - .32 CaC03 - .SO silt .80 .64 11.J .0003 

l pH• .28 CEC + .2S clay - .74 B .94 .89 299.5 .0001 
J ._pH • .20 bst - .22 K - .40 H + .J6 Ca ,96 .92 SJ.8 .0001 
4 pH - .lJ CaC03 + .30 K - .52 R + .41 .ea .96 .93 56.2 .0001 
s pH• - .72 H - .48 silt - .lS clay+ .Sl CEC .95 .90 J9.0 .0001 
6 pH• - ~71 H - .J6 silt+ .43 CEC .94 .89 53.0 .0001 

N 
-...J 



TABLE 3.2 (Continµed) 

1 Clay • - .95 silt - .42 fs - .22 vfs .99 . .99 7937.3 .0001 
3 Clay • - 1.02 silt - .26 fs .99 .98 491.9 .0001 
5 Clay • - .90 silt - .68 fs .99 .98 629.2 .0001 

1 Bst • 1.07 Ca + .JO Ha + .54 Mg - 1.11 CEC .98 .95 546.0 .0001 
3 Bst • 1.10 Ca+ .56 Kg - 1.19 CEC + .10 pH+ .OJ B .... 01 eaco3 .99 .99 359.5 .0001 
4 Bst • 1.18 Ca + .57 Mg - 1.23 CEC .99 .99 713.3 .0001 

1 Fa • .02 K - .48 vfs - 2.19 silt - 2.29 clay .99 .97 1057.1 .0001 
2 Fs • - .49 vfs - 2.2 silt - 2.31 clay .88 .73 1410.2 .0001 
3 Fs • - .65 vfs - 4.51 silt - 4.10 clay+ .08 Na - .10 Ca+ .11 OK .99 .99 177.2 .0001 
4 Fs • - .27 OM+ .41 Ca - .60 Na .58 .34 3.2 .0449 
5 Fs • 0.001 K - .45 vfs - 1.88 silt - 1.92 clay + .0001 CEC .99 .99 999999.9 .0001 
6 Fs • - .• 45 vfs - 1.88 silt - 1.92 clay .99 .99 999999.9 .0001 

2 Vfs • - .008 CEC - '3)7 silt - 1.60 fs - 3.9 clay .96 .92 304.7 .0001 
3 Vfs • 0.11 OM - 6.67 silt - 1.54 fs - 6.12 clay .98 .95 85.9 .0001 
5 Vfs • - 4.22 silt·- 2.24 fs - 4.31 clay .99 .99 478603.5 .0001 

l Silt • - .44 fs - .23 vfs - 1.04 clay .99 .99 7247.8 .0001 
3 Silt • - .26 fs - .96 clay .99 .98 525.0 .0001 
5 Silt • -.53 fs - 1.02 clay - .24 vfs .99 .99 999999.9 .0001 
6 Silt• - .75 fs - 1.09 clay .99 .98 520.9 .0001 

l CaC03 • .32 Ca+ .40 clay+ .34 bat .82 .68 76.2 .0001 
3 CaC03 • 1.30 bst + .71 H + .24 vfs + .26 Na - .30 Ca • 78 .83 5.7 .0032 
4 CaC03 • 1.1 bst + + .74 H + .20 vfs .76 .57 8.4 .0012 
5 CaC03 • - .46 H - .22 OM - .39 pH+ .23 Ca+ .25 Na + .71 clay .92 .85 15.4 .0001 
6 CaC03 • - .51 H - .26 OM - .26 pH+ .22 Ca+ .71 clay .91 .83 16.7 .0001 

l Ca • .99 CEC + .87 bst - .44 Mg - .26.Na .98 .96 680.8 .0001 
3 Ca • 1.01 CEC + .86 bst - .49 Mg - .02 pH .99 .99 729.5 .0001 
4 Ca • 1.03 CEC + .84 bst - .47 Mg .99 .99 101.l .0001 
s Ca• .98 CEC + .91 bst - .48 Mg - .33 Na .99 .99 466.4 .0001 

N 
00 



TABLE 3.2 (Continued) 

1 Mg• 1.18 CEC + .71 bst -, .69 Ca .99 
3 Mg• 1.79 CEC + 1.32 bst - 1.49 Ca - .08 fs + .03 CaC03 .99 
4 Mg • 1.82 CEC + 1.38 bst - 1.54 Ca - 0.08 fa .99 
5 Mg• 1.75 CEC + 1.62 bst - 1.82 Ca - .001 fa - .12 vfs - .57 Na 

- .06 pB .98 
6 Mg • .59 CEC - .59 OM+ .15 silt 

' 
.97 

.91 370.6 

.98 190.2 

.98 245.6 

.97 63.1 

.94 76.6 

.0001 

.0001 
·.0001 

.0001 

.0001 

N 

'° 



TABLE 3.3 

CORRELATION COEFFICIENT FOR CHEMICAL PROPERTIES, AP ZONE, AREA ONE 

I f'tI C.K K .. CEC 0"' ?>I C4CV5 CA ..... "'!(; FS ilFS S!LT 

THICK 1,CC•Oi.IC o,Ou9oo •0,2LllH1 •0.107119 .o.oq3a?. 0,2SS3b •0 0 33455 •O,tOS53 O,Cl 131 -0:15518 o ,·n97u t, 0:41-01!2 O,t91Cl!s 
o. otJt10 ~,64~~ U,4149 O,b712 0,7112 n,30o4 0 0 17118 n 0 &71>Q (,,t;t-D5 0,53ilb <), 7D I II ·(I. 1'51 J r •"CISC 

K o,1;11C106 1.~000~ •0,3b5~8 u, I 2:1811 0 0 19170 •0,18891 •0,30CIS7 •0 0 3!J93 •0,55250 o,I04~5 .n,37oB1 -0:111221 o.'-.:>J7'l 
o,b., .. 8 O,OoOli 0,1358 o.1s1011 11.111159 O,tJS28 0.2113 0,20llb Ci, 0171 c.&803 o.123? n.t1on1.i 0.0078 

H .a.2c11eJ -o,3o5ue 1.(1()000 O,tt740 0,221151 -o.39979 •O,GoOoO o. i.1101.10 o,11574S o :r<11ci1 o.18c;2o; o:n~e75 .0,!6517 
o,a1a'l o, USI! 0,1)000 (• ,01127 o,3701.1 0.1002 u.9975 o,naoo O,C51>3 

('. '""" 0, 1.11> I 8 ,,, .. ~,.., () .r,12c; 

CEC ·0,1074'l tl, t 26i0(; 0.1 J7t1() 1.onno~ .0,21029 o.321211 Cl,3231\2 0,40311'1 0,11002? o,77nll8 .n.a7t91 -0:2ar-l:\ o.~72o3 
c,11112 v ... \ IJ<I :i.e427 0 0 11uuo u,u!l23 o, 1 oS o O,tliQ'l (l,(IQ72 o.uo17 !I. ~vl)t n. 1Ji.en ,, • '3f>7 0.11~" 

OM •IJ,JOJ&2 t• 0 \0l71> o.22as1 •0.2102~ ! 0 00000 •U,43u11 O,Ptll79 •0,01Qbb •o,2sa2a •0.22Qto 0 0 (1t13t2 •.i:3""' t 0,!1&2G7 
u,1112 ",<1<159 u 0 37Cll 0 0 11023 0.0000 0,07lil:I o,o53b o,753~ o,2S3o n,3&n3 0,8&51 "., 3c; l o.e.'.)~1 

PH 0 0 25530 •U,188Q\ •0,3997Q 0.321211 .o.u3011 t,ollc•no 0 0 JCln1A ('.,278&2 o.s1ooq ~.~~OAl •O.t~~D7 0=3~?~3 •0,2e.3o~ 
v,3oo~ ~.~52d 0,1002 0.1650 tl.07<16 o,OOIJO 0,1094 ll,2o29 0,0306 1',0t>Oll 0,1.lc;'ll! n,;>210 t..2,'<ll 

CACOl •0 0 33~55 •0,3G957 .o • .ion&o 0,3;>382 n,011179 o.59ot8 1, OOCIOO 0,3071.17 -O,U787o o:ae7Qo .n.21373 n:o::>625 -0.20101 
ij 0 17ab 0,2113 0 0 9975 O,lb99 v,953& {). 1 <i911 1i 0 0(I;'.)(! .o.1v211 0.001111 .1.03<19 0 ,.5'11;11 ", o I 1 t. 0 0 C1 I Cl! 

CA •0,1~553 •U,31393 0 .aBbll.b O,Q~30Q -o.o79b~ 0.27~1>2 0,3971o7 1.00000 O,P.2,io7 0,(,32511 0. t 7r;1:1 l n:0ooq1 •O.l&~a~ 
.J,o1oq o.20ilb t' 0 OllCIO <>.0972 0,75311 o.2o29 •).102<1 o.r.oco o.ooot 0,001.18 0 ,11!\53 n,7\'lll ~.1128 

NA 0,01131 •0,552~0 0,1151115 o,aoci22 .o.2hQ211 i),51v09 0,117870 0.8201>7 t 0 00001) 0,52'11(. 0,15071 0:3~3nq •O,aHQQa 
v.9·6U5 o,0173 o.o5&3 o.o•H 7 o.2530 0 0 030& o.1;lJ~U 0.0001 o.onu11 0 0 023<1 o.531/9 n,11~b ~.n3CIO 

t4G •0,15'518 (),\£.1135 0,011191 o.11a11a .o,2i9t& 0,1150111 O,ll879'l 0,1>32511 o.52911> t.DODOO .n.un2cia •r:2n2&~ o.~1~c;2r; 
1>,!>.Seo 0,11!l03 11. 7 IJ1>ll o,ouo1 r,,3t>J3 0.0110<1 o,:;39q o.ooaa u,023CI n.ocoo o.0<173 n,3319 o,<;7oci 

FS o,o97iiO •0.37e8t 0.10525 •0,<17191 o.0<1312 •0,18n07 -o.2tl73 o, 17S81 o.1su11 -0:1102<111 1.000011 o:aaQ~'5 •0,73&!0 
J,7018 0,1232 O,Ut>18 0 0 flll8Q ~.eost o,11s<1a o,.sq11a o.11sr,3 O,S39'1 0.01113 o.oouo n. ~oll.l 0. 0 •)(lt:; 

VFS o 0 ~oo02 -~.7u22l 0,G5P75 •D,2UC33 •0,3111>11 0.31121'\1 O,Cl2825 0,00091 0 0 3B,n9 •0~2a2~B 0 ,11114115 1:0~000 .o.us~q"' 
•"513 o,.iuu4 ~,oa1S v,33b7 u,1351 0,221'1 11,91 \4 .o.11<111 0. 11 t>h n.3319 0, 01>11 l (I• t'IRO(l o.ollf5 

SILT 0,1919& o,ooa79 •0,10517 0,1)72o3 0,01>207 •U.2b3'111 •0,?blOt -o.3Rbbl -~.a~99U o.ooci2s -o,731>1~ •0:"~~<111 1.000~(1 
o, 114Sfl o.ou1i; u.s12s ,'). 77110 o,BOb1 o,28QA 0.11191 11,1128 o.ol9o 11,q709 o. o nee:; 11, n:S115 1; .on on 

Cl.AV •0,415\175 0,12323 •0,10319 o.i.31100 .o,01<1111 0,£:2957 o.1.1511os 0 .1I5bll O,lb511l o:&o7Jo -n,7i.42? -o:u~19<1 0., 5i:>71 
o ,o&os O,o2ol Oot.837 0.001111 o.93<10 o.01sz U,04111 ll,bl;17 o.s119 0,0075 Q0 0Q02 11,11982 Cl.Sli!& 

BST 0001915 •0,27189 o.111&ss o,oci•1" -0,011957 o.3b323 0 ,31.l&!i& .o.89'181 0,77UOb o :sn&8 o,2777" 0:1~94S •0,39b2CI 
,"139'1 o.2751 0,1568 O,b981; 0,7ii!38 0, 1385 0,1590 0,0001 0.11002 Cl,0257 o.2&1111 11.r:;ots o,1o:ss 

w 
0 



TABLE 3.4 

CORRELATION COEFFICIENT FOR CHEMICAL PROPERTIESJ SUBSOIL ZONE, AREA ONE 

I( ... QM PH CACOJ CA NA itc; f"S YFS SILT CLAY ~ST 

I( 1.00000 0.1110112 0 0 511b20 •0 0 &02&11 •0.323Ub •0.1132211 •0 0 117738 •0.4&11117 o.o5&4a .o.2s211 o.13aqo -o:oJs3o -~.52012 
0.0000 0.0907 0.0190 o.noa1 0.1910 0.0132 o.oa5t 0 0 0521 o.s2110 0.1115 o.503& n.RPOll 0.021~ 

H 0.111 (142 1.00000 o.R8057 •O.s522o .o.s23113 -o.s7o32 •0 0 57075 •C.c3Rll3 ~.1on&2 n 0 0583R -o.~n75? -o:t97Rt -~.15103 
o.1io;i1 o.oc.oo 0 0 0001 0 0 0001 -0.0258 0.0121 v.0117 0 0 00011 o.52113 n.~1no o.0?011 n.a,t~ o.vGr-3 

OH o0sllo2ll 0 0 68os1 1000000 -o.1~211a -o.51555 •0.&8390 -0.00801 -0.118&1 0 0 1058A -0.0070& 0;1us39 -o:z1q~~ -o.~c7o7 
• 0190 o.ooc11 .o~oo 0.0001 0.0265 0.0011 0.00111 o.ooos u.5101 n.7~87 11 0 Sn&19 ll.33€13 11.1Jnt11 

PH •0.&02oll •0.85228 •0.782118 1.00000 0.1105011 0.117995 0.0000& 0 0 b733G •0 0 140~7 o.osu1s -0.11015 0:2a11r1 0 0 t,.:&01 
c,00111 o,.ooo 1 u.coot 0.0000 o.o3t>7 0.01138 0,()085 0 1 0ll22 1) 0 5t-6o o.s310 o.475a (1.3352 o.;in11 

CACOJ •Oo3230b •0.523113 •0.51555 0 0 uoso11 l 0 0GOOO o.755311 O,t>81'15 o.7557& -0.&22~5 -o.2~2q1 0.21.i>.i•o o:oan13 ll.~3762 
Oo1'110 0.025rl o.02115 o.o3t>7 a.oooo 0.0003 u.001s o.oJoJ o.0~5s 11.i>552 0 0 2ll':>ll 0 .1111112 o.!IGu.:. 

CA -~.1132211 -o.s7o32 .o.&a3qo 0,47995 0 0 755311 1.00000 o.81oso o,6n111t -n.01020 -o.t292~ 0 0 31510 0:111:~22 0 0 1'-Q~"O 
0.0112 0.0123 0.0011 0.01138 0.0003 0.0000 0.0001 0.0001 0.0023 11.00'111 0 .;>021 o. "obi; (). 00i) 1 

NA .o311111R -o.s1q75 -o.&01101 06'>0000 0 0 b8195 0 0 81050 1 0 00000 _ 0.111518 -o.&1111a 0.123"3 0.11<12'1 o:s%1.10 o.1'3878 
.011s1 0,0111 0 0 001a .ooe5 0.0018 0,0001 0.0000 0.00011 0.0037 o.t>211s o.t>373 0 0 0090 o, Q!IO I 

HG -0.1101107 .o.&38113 .o.11eo1 O,o7331i 0 0 7557& 0.801111 o.11151a 1.00000 -0.11211 -o.28732 o. 3Jllb(\ o:ne~u o 0 l-<!7 H 
0.0521 0.00411 0.00011 0.0022 0.0003 0.0001 o. 00011 0,0000 0.0009 0,2477 o.2o:sc11 11, 110 Ob l1 .0~ll• 

FS 0.0501111 o,t&Ob2 o.tosss •0.111407 •0.&2285 •o.&7020 -0.047711 -0.11211 1.00000 o.3&9b& •0.5n319 -o:o?327 -o.ao0'18 
0.11~110 0 ... 2113 o.s101 o.5&84 o.oosR 0.0023 0.0031 0 0 0009 \).()COO 0,1111 0.0111 n,~no1 u.DQ<lo 

VFS •0325277 0&05818 ·060&7'1& OaOSlllS •Oa26?q7 •Oa12920 .:H 15 ,8180 .7887 .s110 .2ss2 .&0<111 
0 6 1238~ •0&28732 

0 1>2'15 0 ?.a11 
o.3oqc.& 
o.n11 

1.00000 -o.&7'135 -o:4'?"2 
0.0000 0.0010 ~.~731 

o.1112s 
o.4q"9 

SlLT 0&1l4q0 •0300752 
,S93b .97011 

0&14539 •0517'175 
.5&119 .111511 

032888'1 
.• 21150 

Oa31519 
.2021 

Oalt'129 03111106 •0 0 58319 •0 0 07935 1.00000 0:311035 O, 'l!'Cl'l'1 
.1>373 .2034 0.0111 0.-0019 (l ,00()11 l\ 0 15S3 t;.7377 

CLAY •0 0 03§30 •0 0 19781 ·0~23958 0.211110 0.011013 o.&n22 0 0 590110 0.120011 •0.'12327 -0~1132112 (1 0 3uq35 1:00000 0 0 32?a1 
o.88911 0.11314 o.3383 o.3352 0.0042 o.ou&R o.oo'lo 0.0000 u.0001 o.on1 0.1553 11 0 01!0 (I 0,19111 

BST •0.52972 •0,75103 •03807&7 o.&a&o7 o.&3782 0.89840 o.a1s18 0 0 08738 -o.11onaR o.1112s. 0.0848'1 () :32281 1.00000 
0.0238 0.0003 .0001 0 0 ou36 0.001111 0.0001 0,0001 0.0010 0 0 0<l'1b o.~qoq o. 7377 (\. ! '11 'I 0.0000 

CEC •0.31942 •0 0 17515 •0 0 2bU9'1 0.32303 0,&17&0 0.08501 0,&2278 0.80&87 •0.872&3 -o.37t97 0.1120<1'5 0:87725 0 0 1ci~ob 
0.19&3 o.'la7o o.2879 0 .1697 o.OOb3 0.0011 · o.oose 0.0001 0.0001 o.12es 0.081'1 11.0001 0.1011 

w ,._. 



TABLE 3.5 

CORRELATION COEFFICIENT FOR CHEMICAL PROPERTIES, CR ZONE, AREA ONE 

K H 0" PH CAC03 CA •a MG FS VFS SJLT Cl.AY '!ST 

I( 1&00000 •0 1 171181 •0 1 06545 ·0~17871 •0.06512 0,13817 •0,51983 o,0577n -0,31111111 -~.15372 o.519ol 0~31055 .o,ov7o2 
,uooo 0 1 11878 0 0 7Q64 0.11180 0 0 79711 0 0 5845 0 0 0270 0 0 R199 o.2~3~ o.~~25 0 0 0271 0 0 21•Qf< c.c;1,.1 

H -o 0171181 1,00000 o.a2os1 •0 0 77Qllb -0 0 112059 -0.11100 -0 0 3231111 -o~o~594 0,7SQ05 •6 0 51571 •0 0 hDl5o •0:19247 •0,7n9~5 
•"878 0.0000 0.0820 0.0001 u.os22 o,ouoa 0.1905 0 1 0011 0,0003 0.0285 o.~Obl 0.1111112 o.vOIO 

014 -o.oc.s11s 0,112083 1 1 00000 •O,b2125 .o,t7o52 •O,o53o2 •0 0 115921 •0,295to ll.211<!3 0,052111 •0,37o3C -0:12&01 •0,23~78 
o,79bll 0,0620 o.oaoo 0.0059 0,11835 o,8320 o.oss2 o,234~ 0,3%1 o.eJ011 0.1211 o.~ten o.3~,a 

PH •0.17671 •0,77911b •0,62125 1.00000 o.2sR23 0,110293 0,5379a o,51435 -o.~775t o.s3;;9i; 0. ;> t I 1>c; 1;;vlloN• o.sa~2 .. 
0,11780 0.0001 0,0059 0.0000 o.2a1>1 o.oq73 0.0213 0 0 0290 o.0115t o.c.210 u.3992 n.9997 1i 0 0I H• 

C4C03 •0&01>512 -0,112059 -0.17052 o.211a23 1,000()0 0 0 1>22111 0.21755 o.35279 -o.u09Q7 -0.02230 o.a1Q1111 o:3Pt03 0, 153~1'3 
,197a o,os22 0 0 11AlS 0,211&1 0,0000 o.ooss o.3658 0,1'>10 0.0911 IJ,Q300 .0.011111 II 0 11 An ct.OiJ.:. 

CA o311a11 -0.111110 -0.053&2 0 .'10293 0,622111 1.00000 o.1e.eo1 o.oaqoq -o,&6338 o.u!&711 o,S54Bli 0:2J.?B o.e .. 9e!i 
.sa115 0.0008 0 0 8326 O,OQ7l 0 0 0(158 0.0000 o.5051 0,0011> U,0018 0 0 0837 o. v I o9 o.,'531> o.OOl1t 

NA •0,51983 •0.3231111 -0.115921 o.537911 0.21755 0 0 1&803 1,00000 _0,118067 •0 0 t5~C>' U, t. I 4(1 ! Cl, t2Qo9 0:0151>9 o.33595 
o,l27o o,19os 0,0552 0. 0213 o,3858 o,5051 0.0000 o,o~35 u.5359 o.1>s211 o.1>097 0.1150 7 0.112~ 

MG 0,05776 -o.&&5911 -o.2951& o.s11135 o.35279 0,&8909 o.11aoo1 1.ono~o -o.ouoS3 o.11Hl7 0,117781'1 0:1oan11 o.&2557 
o.8199 0.0011 0 9231111 0.0290 o.1s10 O,OOlb 0,0435 0.0000 0.00811 0.0725 o.oJJu9 O,hb91> o. :inss 

FS •0,31111111 o,75905 0,23103 •0,117751 •0,110997 •0 0 08338 •0,15623 •O,oOQSl 1 0 00000 •0 0 595711 -n,7u237 -0:1175\9 •0 0 00512 
0,2038 0,0003 o.35o3 0.01151 0,0911 o.0?18 o,s35q o.oos4 1).0000 0 • o oci I o. 0•1011 o.n11;,3 c,. vo 78 

Vf 8 •0,15372 •0.51571 0,052111 0,53898 •0,02230 0.111&711 03111101 0.113317 •0.5<l5711 1 0 00(i01) 11 0 024"7 -0:2nrJ1~ 0.110'2'7 
o,51125 0.0285 o.t13bll 0.0210 0,93110 0.01137 ,b5211 n,012s o.oo9t o.nooo o,Q232 (1 0 t2Sq (1. (\§i;b 

SILT 065191>3 .060015& .0611&311 
.0211 ,0083 .1211 

0621165 
.3992 

Oa4791111 
• 041141 

0655111111 
,0169 

oa12qo9 
.&OQ7 

0.117780 •0.711237 il 0 0?.a111 1.00000 0:3ci117i) 0.5~;;0& 
o.0111J9 0.00011 o.q232 0.11000 o.105il o.o1u4 

CLAY o,11oss •u.192111 -o.12&bl 
0,2098 0.1111112 o.1>106 

0.00008 
0 0 9997 

o.38103 
0,1188 

0.21233 
o,3!13o 

0,0~'5bQ 
o. 507 

O~IOPOll •0 0 47519 •0 0 2110111 
0 0 eb9b u.01101 0,11259 

o.:S.9117n I :011000 •0 0 M>175 
(l, lilSO 0.0000 o.&011 

BST .0.00102 -0.10955 .o.231178 0 0 580211 0053083 <i.8119811 o.33595 o.&2557 •o.&us12 I) ,11 .. 027 c.s&1100 -o:~hl75 i.ooo~o 
o,971>t 0 1 0010 o.111a4 · o.ottb .02311 0,0001 0,11211 0,0055 0.0078 o.OSllb 0.0148 0.11077 o.onoo 

CEC 0.00030 •0.17157 •0,08111>7 0. 05380 o.0<1150 0.19520 0,331127 0,371178 •0 0 12811 •0 0 005511 o.oc>uo 0:1Jnna -o.1i,273 
o,9991 o.~9~0 o.73ijll o.s321 o. 71178. 0 0 4370 0.1752 0,12511 0,61211 0,7870 O.Q3C!8 0.0111 o.s1oa 
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TABLE 3.6 

CORRELATION COEFFICIENT FOR CHEMICAL PROPERT_IES, AP ZONE, AREA TWO 

K H OM Pti CAC03 t• NA MG FS VF'S Sii. T CLAY 8ST 

K 1.0~000 •0&27a39 0,115751 0&53o58 -0&101Q9 0 0113bt9 -o015to7 o.3(1973 0 03010& -o.155A5 -n.12121 c:oM1113 o.21511a 
o.uooo .2051 0.0262 .0083 .bll33 o,Ol74 .11914 11 015oa o.t&ta 0.11111 o.575? 0 0 ;.6C10 o.3235 

" -0.211139 1.00000 -0.12907 •0.8tl3b -0.09297 •0.529bQ o.12a1a -0.02511 -o.1911e1 -0.12112 0 0 0bll32 o:o~ASS •0.73~50 
o.2os1 0.0000 o.ss12 0.0001 o.b731 0.0093 0 05&00 0 0 9073 o.3630 o.5o27 o. 7791> n 0 <10C1! o.ooot 

OH 0~115751 ·o.t29o7 1.00000 0.131180 •0.2o57o 0.011111111 -o.311oq3 -c.011s11 -0.011353 0.01819 o.tbO~t -0~15944 -o.D"IQt 
.i;2a2 0 05572 0 0 00\JO o.s395 0.221111 0 0811011 0.11111 0 0 ob5d 0 0 843& 0,7229 0 011blt> ~.11~111 o.~a~c 

PH o,53o5c:! •o.ett3b 0,1311(1(1 t.noooo 0 0 31104 o.&3390 0.00115 0,4tti5b o.2c:1937 o.olbQ4 -o.35977 0:111;.Js "·"3"25 
0.0083 o. 000 t o.s395 0.0000 o.1"58 0.0001 o.9880 0.11,.80 o. PJu5 0 0 1131'19 ll 0Oii11! <'.1523 0.0001 

CAC03 -o.1tt99 -0.09297 ·.o.lb57o o.311011 1.00000 o.38819 0.18300 o. 3•1538 0.10879 0.15023 -o.5s2111 o:Sllllbll o.s557o 
0 0 e11ll 0 007lt 0.2204 0.11158 0.0000 0.0072 0.4033 o.15&5 6.ti212 0049]0 0 0ono2 o.no12 0.00511 

CA 0 043&19 •0&529o9 0304444 0 083390 0 038819 i.00000 0026972 o. 7?7lo o.22974 -0.10194 .o.as?.29 o;ii1u'.\1 1).77573 
o.011a 00093 0 8400 0.0001 0.0072 0.0000 0.174'9 0.0001 o.29to o.&435 o.ot96 0.0222 0.0001 

NA •Oa15t07 0012818 -001110113 0600315 o.ts3oo 0026972 1.00000 o.o&b9t •0.38&5~ .o.32~211 o.1c11.,5 o:c339a .n.oos110 
0 11•Hll .soou .11111 .98811 o.4o:n ,1799 .0.0000- 0.0005 o.oti85 0.13~3 o.o311ti n 0677<1 0 0 9787 

HG o.3o973 •0.02511 •0.09517 0.<1t«1So 0,30538 o. 72731> 0 0 bbb'H t.oooon -o.11nnt -o.28571 -o.311015 0:4"019 0.31205 
001 '>0" 0,9073 o.ob58 0.01180 o.15ti5 0.0001 0.0005 0.0000 0 04356 o.1s&1 n.1110 n.0271 0.1412 

FS 0 0 30100 •0,19687 -0 0011353 0028937 0.10679 o.229711 -o.1eoso -0.11081 1000000 0 016215 -o.2aR94 -0:01010 o.211a21 
0.1&18 003030 0.81110 o.1aos 0.0212 o.29tb o.ot.85 o.4358 o.voHo o.4u55 o • .2520 1'1.<lt>35 o.t&b9 

YFS •O.t55o5 -0.12132 0.071119 O,Otf:l9q 0.15023 -o.101q4 -o.1202a -o.2Rs11 II, 1!>215 1.c.0000 -0.0.:2210. o :2"('"'" n 0 04n2s 
0 1 q177 00sc21 o.7229 O.Q389 0009311 0 00435 0.1301 0 0 16b3 u 0 li1155 0.0000 11 0 Ulli;ll n,?.2q'> o.ass3 

Sii. T -0.12121 o.oo"l2 o.tooa1 ·o.1~q77 -o.55274 •o.as229 0010405 -~.34075 -o.211~Qu •O.Q2?10 1.00000 -o:qs .. 2t. -o.11s129 
c.s1s2 0,770& "·"o3b 0,0918 0.0002 o.0111s u.o311b n 01ttb o.252~ o.oaa6 o.ooo~ o.noo1 o,nlo~ 

CLAY 0 08803 o.oosss •0.1~944 0.30835 o.s"Ao4 0 0474H 0.01390 004&03Q •0 0111010 0.2~0&0 -o.11so2& 1:000Cto o.1os5q 
o.bo'lb 0 1 9091. 0 0 11ti1" 0 .1523 0.0012 0.0222 0.8779 0.0211 u.llb35 o.22Qo O • OllUl n.oooo O.Ot>17 

8&T 00215114 -o.73850 -0.011191 0 0A)425 o.55570 o.77573 -0.00590 0.11205 o.24'827 0.011025 •0.115120 o.3QSS'l 1.00000 
,121s 000001 0 0 8490.: 0.0001 0.0059 0.0001 u.9787 0.1472 o.1tib9 o.8553 o.o3111t n.0017 u.oooo 

C£C 0.4t'5!b 0.07734 0.03439 o.32813 o.012;u 0 0bb9a& 00sas111 0,111202 •0.~827t -o.2A9?.1 -o.2~&1Q 0~33!\Cll 0 0 oaua1 
0004811 0 0 7Z58 o.e1c,z o.12c,11 007434 o.ooos 0.0034 0 0 0001 o.101s 0 0 1001 o.2575 0 011111 0.1002 
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TABLE 3.7 

CORRELATION COEFFICIENT FOR CHEMICAL PROPERTIES, SUBSOIL ZONE, AREA TWO 

K H 014 PH CAC03 CA NA ... , fS VFS SILT CLAY BST 

1, OCIOOCr 1),07120 0,3Z885 •li,US708 -o.5t2Z9 •0.29128 •0,4bbo9 •0,31Sb1 o,37"91 o.113bo -o.105u~ -0:111q1 -o.5t619 
0,0000 0,0005 C,1255 0,0477 0,01Z4 u,1775 0,0248 0,1~24 o,01c;7 o,,,cc;e o.;,135 n.r;•n5 o.ol 17 

0 1 b7121> loCOllOO o.o~b20 •o,77b07 •o,&o5o2 •o.aoc29 •o,73073 •0.56091 0 • 39biHI 0.22~12 •0.221u& •o:van93 •O,oS977 
0.0005 0.0000 0,0005 0.0~01 o.oOl2 o.ns8a 0.0001 o,ouso O,G6i!8 o,3129 o.31~7 n,8529 Cl,ooo& 

0312865 o.&6&2o 1,00000 •004096b •0044879 •004tl70 •00520&2 •0 0 Q7o22 0,38485 o,a&uq5 -o.st597 o:t97b3 .o.sotal 
.1255 o.ouos 0.0000 ,n522 .0111 ,o509 0 0109 0 0 0210 O,U1>913 o,ozso 0.0111 0 0 3bb0 0,0148 

.o,41708 .0,11&01 .o.ao9&b 1,00000 0,681108 0.01&117 0,75776 o,&6345 -0 1 09877 •0,22773 ~n.11031 0: 1'11343 O,J9lOl' 
Oa0477 0,0001 0 0 0522 0,0000 0.0003 0,01181 o.ooot O,OOOb o.01sa o.<><>&o 0,1121>2 ". 0 l 9<1 0 0 0blS 

•0.51229 •Oab05&2 •0 0 411879 g,i,811011 1.00000 o.c.2378 O,bllSlt u,&11193 •O,b&093 •'1.l911tb -o.1&525 o:ol 725 o.511H7 
0,01211 0,0022 0.0317 0,0003 0,00(11) 0,0015 O,OGOC1 0 0 nc1e 0,000& 0 0 0&21 o,1<1111 I), 011' 7 0,00711 

•Oo291Z8 •Ooll0029 -0.111110 o.a1ca1 0,62378 1.00000 C,3clil<3 0,51943 •0.&6bll7 •0,76921 o,?.bo7b 0:212,,5 0 0 191191 
.1775 0,0580 0,0509 0.01181 0.0015 0,0000 0,0911 0,011 l 0.0003 0,0001 0,21'>0 n 0 21l61 0.0001 

•0311«>«>&9 •0,73073 •0.520&2 0,75776 o,64511 o.360113 1.00000 061>57?3 •0.57229 •0,35780 o.toooe o;n1ci1 o.1&565 
.0211s 0.0001 0,0109 0,0001 0,0009 0 0 <i91l 0,0000 ,oco7 u.~0111 o,o<>J& O.'H>5b ('. 3•!0.S O,ObCl2 

•00J1Sc.t •0651>091 •0047«>22 
.1112a ,oo5a .021" 

o01>b3115 
.0001> 

00&11193 .oo 18 
0,51Clll3 

0.0111 
03b57i!3 

.0007 
1,00000 •0,7«>551 -o.&1an11 O,IU2117 o:<.o?ll7 O,'H373 
0,0000 0.0001 0,0017 0,51&7 n •. 115&9 0.001!1 

o,37291 o.39b88 0 0 3811115 •0.~9877 e0 0 bb093 •O,b8&G7 •0,57229 •0,76551 l,OuOCO o,77o7o -o.23Cl7b •0~11~598 -~.51038 
IJ,0797 O,Oc.08 O,Ob98 0,01~11 o.oOGb 0,0003 0,004] 0,0001 o.uooo 0 0 0001 0,27DS n,0250 O,OllO 

0.1131>0 Oo22ill2 0 0 401105 •o.2?773 •0,3941& •o.7&921 •0,357Bb •O,&•so11 o,77i.7n 1.ooono •0,5P337 -n:1a315 •O,h07113 
• ob058 0,3129 u.0256 0 0 2960 o.ob27 0,0001 n.oq3b 0,0011 0.0001 o,ouoo 0. 01'13 o.51"7 0,0021 

•0,1(1500 •D.2210& •0,51597 •0 1 171137 •D.18525 0026676 0 0 1;,ooa 0,10201 -o.~J97b -o.50111 l.oono~ •0:73B63 o,:p7o!! 
o.&335 0 0 1107 0.0111 0.0202 o,3974 ,2150 U,11&56 0,51b7 0,2705 0,01113 0.0000 n,0001 0,075& 

•0.11747 •0.040Cl3 o,t97o3 o.11s3a3 0 0 61725 0,27265 o,223q1 o,uo201 •0,4b5Cl8 •0.1U315 •0,738o3 1 :ceoooo O,Ol8&J 
0 .• 5935 0,8529 0 0 JbbO . 0,0194 u.0011 0,2081 o.3o43 0,05!>9 o.02so o .s1111 0,0001 o 0 01101) 0,8fill 

•0,51&19 •O,b5977 •D,50103 0.3930& 0 0 !i4337 o.791497 o.31!51>5 0,53.573 •0,51Ul8 •0 0 007113 0,3771'>8 0:•>3863 s.ocooo 
0,0117 0,000& 0.01118 o.o&JS 0.0010 0.0001 0 0 0&92 0,0087 0.0120 0.0021 0,07~& 0 0 1'1>11 o.oouo 

•0,1301>3 •0.33858 •0,3&1184 o.oue.32 o.e.101.11 o.&so38 0,&6917 Q,7Go90 •0,78910 •0,&2925 o.011s1 0:111'1>91 o,n5e11 
0 0 5524 0 0 11140 . 0 0 081>9 0,0009 0,0013 0.0008 0.0005 0.0001 0.0001 o.oou 0.11151 o. 0165 0 0 2Ci!7 
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In the Ap zone (surface zone, Area One), HST contribution was still the 

highest (-1.39) followed by Ca (.83), and Mg (.6). Clay did not appear 

in the regression equation and was replaced instead by K (.26). 

However, for the same zone (Area Two), Ca contribution was the highest 

(.93) followed by HST (-.79), and Mg (.48). caco3 contribution at the 

5% significance level was negligible. The regression equation explained 

99% of the CEC variations. Furthermore, at the .1 probability level, 

only Ca (.91) and Caco3 (-.23) seemed to be important and explained 88% 

of the CEC variations. 

In the subsurface zone (Area One), clay seemed to contribute most 

to the variation in CEC. Its contribution was four times higher than 

silt and three times higher than potassium; while in Area Two, FS (.69) 

was twice as important as K (.32) and one and one half times higher 

than pH e.43). Clay did not seem to be important in the explaining CEC 

variation in the subsurface of Area Two. This might be due to the 

stratified nature of the clay minerals in this area. 

Clay (.39) and Mg (.33) explained 29% of the variation of CEC in 

the Cr zone (Area One) at the 1% significance level. At the 5% signi-

ficance level, clay (.01) contribution seemed to be the least important. 

OM was not found to be associated with the CEC in any zone of any area. 

All samples regression (Area One) indicated that BST (1.02), CEC (.51), 

clay (.32),and.Ca (-.73) explained 70% of the variation of Na, while in 

Area Two, pH (.48), Mg (.42), and clay (-.15) explained 55% of the Na 

variation at the 1% significance level. In Area One, H (.49), pH (.59), 

and Ca explained 87% of the variation of Na in the Ap zone, while CEC 

(2.37), BST (2.15), Mg (-1.13), Ca (2.44), and Caco3 (.19) explained' 94% 

of the variation of Na in Area Two (r=.97). 
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In the subsurface (Area One) multiple correlations were .95. BST 

(1.81), Ca (-1.1), clay (.75), and H (.29) explained 90% of the varia­

tion of Na, while 70% of the Na variation in the subsurface (Area Two) 

was explained by pH (.62), Caco3 (.28), and silt (.32) (i;=.84). Fur­

thermore, in the Cr zone (Area One) 74% of the Na variation was 

explained by silt (.64), pH t73), K (-.62), H (.59), and CEC (.38). 

Regression equations for fine sand, very fine sand, silt, and clay 

confirmed previous knowledge about the relationship between these pro­

perties. In most cases, 99% of the variations of one of these variables 

were explained by the other two. However, in a few cases this rule did 

not apply. In the subsurface (Area Two), Ca ( .41), Na ( .60), and OM 

(.29) accounted for 34% of the FS variation at 1% significance level. 

Also, in the Ap zone (Area One), very fine sand was only explained by 

K (-.60), clay (.50), and pH (.4) at .1 probability level. Very fine 

sand was not correlated with silt in either the surface or the subsur-

. face, or with the clay in the surface of Area One, or in the surface or 

subsurface of Area Two. 

Further study of the regression equations revealed the extremely 

high correlation between these soil properties. Multiple correlation 

coefficients varied from .80 to .90 in JUOSt cases. However, iri a few 

cases, R2 was noticed to be relatively low. For example, R2 for OM in 

the surface zone was .42 (Area Two), and .25 (Area One). This r~lative­

ly low correlation between organic matter and soil properties suggests 

that external factors exert more impact on the OM of the surface zone. 

This relation was reversed in the subsurface of both areas. Also, Na 

and K in the surface of both areas did not have high multipl~ 

correlations with different soil.properties (.46 to .54). Multiple 
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correlations for Caco3 were .40 for the surface zone of both areas. 

The trend of low R2 values of the regression equation for some 

variables in the surface zone of both areas could be due to a strong 

association with climate, as in the case of OM, or with factors that 

govern the mobility of the leaching intensity, as in the case of Na, K, 

and Caco3 . No explanation could be advanced for the low correlation 

obtained for the very fine sand in the surface (Area One ' 
p = l) or 

the fine sand in the subsurface (Area Two, p = l). 

Regression equations also revealed that except for sand, silt, and 

clay, no one soil property can be predicted by less than two properties. 

Furthermore, the regression equations indicated that, in most cases, 

the number and kind of variables important in 'explaining the variation 

of a particular soil property will depend totally, except for sand, 

silt, and clay, on the genetic horizon under consideration. If these 

horizons were treated together, different equations or relationships 

might result. 

Correlation Coefficient As a 

Prediction Criterion 

Tables 3.3, 3.4, 3.5, 3.6, and 3.7 show the pairwise correlation 

between 14 soil properties. A close examination of these correlations 

revealed high correlation between many soil properties. The correla-

tion coefficient is interpreted as the trend followed by one variable 

if another variable correlated with it varies. Thus, in soil there 

might exist conditions where high correlations might be obtained, but 

as was shown before, the variation in one variable cannot be explained 

only by one single variable. 
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For example, examining the matrix of the pairwise correlations 

ttable 3.3) for the Ap zone (Area Two) showed the correlation between Ca 

and Na to be .82 and .63 between Ca and Mg, but Na with the high corre­

lation with Ca did not appear in the regression equation for Ca. In 

Area Two (subsurface zone) (Table 3.6) correlation between Ca and pH 

was .83; Ca and Na, .3; Ca and silt, -.48; and .47 for Ca and clay. 

None except sodium (with low pairwise correlation with Ca) appeared in 

the regression equation. In the subsurface zone (Area One) (Table 3.2), 

correlation between Ca and OM was -.68, .75 with Caco3 , .81 with Na, .81 

with Mg, -.67 with FS, and .61 with clay, but none of these variables 

appeared in the regression equation for Ca. This pattern dominated the 

relationships between the different variables and their respective 

regression equations. Exception to this, was the regression equations 

for the organic matter in the surface zone only, and for the sodium in 

the surface zone of Area One. This might suggest that high pairwise 

correlation may exist between soil properties, but it does not mean that 

the correlation can be informative since multiple correlations govern 

the relationships between all the aoil properties investigated in this 

study. 

Conclusions 

1. The multiple regression model seemed to fit the relationships 

of different soil properties very well. Simple regression was not 

found to exist between these properties. 

2. The pairwise correlation coefficient did not seem to be a pro­

per tool to be used as an indicator to explain the relationship between 
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two soil properties. This is true since multiple relationships govern 

the relationships between these properties. 

3. Regression analysis indicated that the number and kind of 

variables that appeared in the regression equations and the R-squared 

values, depended totally on the genetic horizon considered. If the 

different genetic horizons were treated together, completely different 

equations may result. 

4. Eventhough the two areas seemed to be composed of soil that 

developed under conditons that would stimulate a narrow range of genetic 

processes, no general pattern could be established for each area. Each 

property should be considered separately. This might suggest that a 

regression model with a high prediction capabi1lity to cover a wide range 

of conditions may not be feasible. However, soil separates seemed to 

yield to such a model provided that mineralogical and weatherability 

of the sand fractions were known. 



CHAPTER IV 

CANONICAL CORRELATION 

Abstract 

For many years, soil scientists implied the existence of certain 

relationships between chemical and morphological properties with little 

pursuit in this area. One problem they faced was how to establish any 

relationships between discrete multistate morphological and continuous 

chemical properties, or how to make inference about a specific state of 

the morphological properties. 

In this investigation, the technique of canonical correlation is 

introduced as a statistical tool in studying the relationships between 

morphological and chemical properties. The canonical correlation was 

conducted on different genetic zone: 1) surface zone (includes all 

Ap-designated horizons); 2) subsurface zone (includes all B-designated 

horizons); 3) P.M. zone (includes all Cr-designated horizons); and 

4) all samples (includes all of the samples). 

Mathematical relationships established using this technique showed 

that significant relationships do exist between chemical and morpholo­

gical properties. These relationships also differ from one zone to 

another. This investigation also demonstrated that this technique can 

be used to test the suitability of different soil properties as diagnos­

tic criteria in the system of soil classification. In many cases, 

40 
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superiority of some soil properties was indicated. Moreover, the 

conclusion reached about the suitability of some properties as diag­

nostic criteria was in harmony with the way these criteria are used in 

the current system. 

Furthermore, since this procedure can be carried for different 

genetic, zone s, selection of better criteria for the lower categories 

of the system can be carried out with minimum subjectivity. The sta­

tistical test to support the significance of the groups produced from 

using such criteria are also available. In addition to this, canonical 

correlation could be an excellent tool in isolating factors responsible 

for explaining certain soil patterns. One potential area is land capa­

bility classification or land use planning. 

Introduction 

Morphological properties of soil are discrete multistate variables. 

If causes and effects that result in the variation of the different soil 

morphological properties are to be studied, then the level of the chemi­

cal properties or the state of the morphological properties must be 

attached to the conclusion about the variations of these properties. 

For example, if the hue is to be related to the chemical properties 

of the soil, it would be of great importance to know how the value and 

the chroma would relate to the same properties at the same time. 

Usually regression analysis treat all the variables as continuous vari­

ables, and it is concerned only with univariates as the dependent 

variables. Inference about discrete (multistate dependent) variables, 

such as structure (grade, class, type), or concretions (type, abundance) 

or pores orientation may not be possible. Therefore, a new approach is 
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adopted here to treat the discrete morphological properties as multi-

state dependent variables and to study their relationships with the 

chemical properties. 

The technique suggested here was introduced by Hotelling (36) and 

was improved to be used by high speed computers. A detailed descrip-

tion of the mathematics involved can be found in many statistical texts, 

but a simplified summary of the concept involved is presented here. 

Let us assume that a group of observations were recorded on cer-

tain sampling units. These units can be soil horizons, or soil 

profiles. The observations can be a group of morphological or chemical 

properties. The vectors of these observations can be mathematically 

represented as follows: 

Set one Set two 
xll, X12"". ".Xpl yll' y21········yql Observation 1 

x12' x22 · · · • · · · .xp2 y21' y22·.'' .. ' .Yq2 Observation 2 

N 

Where (X1 , x2, ..••.... Xp) is a group of variables (morphological 

properties, for example) recorded on a unit (set one) and we desire to 

study their relationship with Y1, Y2 , .....••• Yq' which is another set 

of variables (set two, chemical properties) recorded on the same unit. 

N is the number of the units (horizons or profiles). 
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The correlation matrix for the whole data can be represented as 

follows: 

[

xx 

R = 
yx 

RxJy 

Ryy . (4.1) 

Rxx, Ryy are correlations among variables of set one and set two 

respectively. Rxy and Ryx are the correlations between the variables 

of set one and the variables of set two. 

Two assumptions are made about R: 

1. R is a full rank p + q. 

2. Since R is a correlation matrix, it is implicitly assumed 

that the relationships between X's and Y's are linear. Also Ryx con-

tains at least one none zero element. 

The objective now is to find a new coordinate system in space 

of each set of variables in such a way that the new system displays, 

unambiguously, the system of correlations between the variables of the 

two sets. More precisely, find the linear combination of the variables 

in each set that has maximum correlation. These linear combinations 

are the first coordinates of the new system. Then the second linear 

combination in each set is found in such a way that the correlation 

between them is maximum and is uncorrelated with the first linear 

combinations. This procedure is continued until the new coordinate 

system is completely specified. 

The following procedure explains the mathematical construction of 

the two new coordinate systems. Assume the variance-covariance matrix 

of thewhole data can be represented as follows: 
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[11 Al2] 
A = 

A21 A22 , (4.2) 

Where All = Var (X) (4.3) 

A22 = Var (Y) (4.4) 

Al2' A21 = Cov (X,Y). (4.5) 

Consider an arbitrary linear combination: U = a'X and V = c'Y - - - - ' 
we ask for the linear functions U and V which have maximum correlations. 

Correlations between U and X, and V and Y are not changed by the linear 

operators a and c. Therefore, we can normalize a and c without affec-

ting the correlations. To construct the U's and the V's of maximum 

correlations where U. and V. are uncorrelated with U. and V., the fol-
- i i J J 

lowing restrictions are imposed: 

Var qp = Var (<!'X) = a'A a= 1 
- 11-

Var (y) = Var (s'Y) = s'A22S 

E <tz> = E (~'X) = 0 

E <y) = E (s'Y) = o. 

Thus the correlation between Q and y is: 

Corr (l!, '!_) 
Cov (~,y) 

= -------------------k-
( Var (Q). Var (y)) 2 

Cov (l!,Y) = Cov (~'X, c'Y = ~'A12~· 

Therefore, A12 should not be the null matrix. 

(4.6) 

(4. 7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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The problem now is to find a and c to maximize Car (~'X, ~'Y) sub-

jected to: 

(4.12) 

By using the Lagrange multiplier technique, it can be shown that a 

and c can be found from solving the following system of equations 

(Anderson, l; Morrison, 46) 

(4.13) 

In order to have non-trivial solutions to the above system, the deter-

minant of the above matrix is set equal to zero. This leads to finding 

A, which can be proved to be equal to 

A = ~'A12~. (4.14) 

Therefore, A is the correlation between Q. - ~·x and v_ = ~·y when a and 

c satisfy the system for some value of A. 

Since we want to maximize the correlation between ~ = ~·x and ~ = 

~'Y, we take A = A1 , which is the largest eigenvalue for the augmented 

matrix of the above system. Thus ~l = ~1 ·x and ~l = s1 'Y (where y1~1 , 

~l'~l satisfy the value A = A1) are the normalized linear combinations 

of X and Y respectively, with maximum correlation. 

The second maximum correlation is obtained from Q.2 = a 'X and V = - -2 -2 

s2 'Y such as ~l' and ~l are uncorrelated with ~2 and ~2 . Therefore, the 

new complete coordinate system can be summarized as follows: 
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with corresponding correlations A= Al' A2, .•.• Ap' where Al is the max­

imum value of the eigenvalue among all possible A •• The practical 
1 

interpretations of these relationships will be undertaken in the discus-

sion section using real data. 

The objective of this study was to relate specific morphological 

properties at any state with the chemical properties. 

Materials and Methods 

Two areas were selected for this study. A total of 18 and 23 ·pro-

files were sampled from Area One and Two respectively. Descriptions of 

the two areas, field design, laboratory measurements, and laboratory 

statistical design were given in previous chapters. The coding system 

for the morphological properties was established prior to the field 

work and is given on the attached description sheets. The horizontal 

bold number represents the number of the horizon. The vertical number 

represents the code for each morphological property written on the same 

line. The code values for the texture increase as the clay content of 

the texture abstract increases accordinaly: The code values for the 

soil texture were equally spaced. The Munsell color, as recorded in 

the field, was not changed since hue, chroma, and value were equally 

spaced. High value for the hue will refer to lOYR, and low hue will 

refer to 2.SYR. The codes for all other morphological properties were 

equally spaced. 

Analyses were conducted on different genetic horizons (Ap horizons 

will be referred to as the surface zone; the B horizons will be referred 

to as the subsurface zone; and the Cr horizons will be referred to as 

the parent material zone). The same analysis was also conducted on all 
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on all horizons treated together (this zone will be referred to as all­

sample analysis). 

Results and Discussion 

Correlations less than (.5) in absolute value were not considered 

important. The choice of this value was arbitrary and subjective. How­

ever, a threshold correlation value could be determined by the following 

formula: 

< t a/2, n-2 (4.15) 

n is the sample size and ta/ 2, n- 2 is the tabulated t with n-2 degree of 

freedom, a is the desired probability level, and r is the correlation 

coefficient which needs to be determined. The following correlation 

classes were established for the absolute value of r: .5 - .59 = low or 

very low; .6 - .70 ~moderate; .7 - .8 ~moderately high; .8 - .9 =high; 

.9 - 1 = very high. 

In some cases, a class transitional between two classes was used to 

fit the many class levels for the original variables, especially for 

the morphological properties. The above classes were established for 

the correlations between the properties and the canonical variables, 

not for the correlations between the canonical variates themselves. 

Association Analyses for Color, Area One 

The first canonical correlation (corr (U1,v1)) was .87 (Table 4.1). 

This can be interpreted as follows: u1 is highly correlated with v1 . 

Thus, high hue code value (.78), moderately low value code (-.6), and 



TABLE ,4.1 

CANONICAL CORRELATION .ANALYSIS FOR ALL SAMPLES FOR AREA ONE 

CA!t!"NlCtl °"~A"i OF bRjUa> .I. l'l~A"I f)F GPQUP 2 CAN'.:!llICAL CHI-SCUARE DF PROB > CHI-SQ 

lrA;i.JtSLE Ct~:"lt~~~ ~~klAo~t CANONICAL Y!ll.ItBL!' C'JRR!'Lf.TJCN 

l -.i.40171~73 3S • 01821269 o.e65676Z6 l49.no20 39 0.0001 

2 J.7o5dl9l:> 94. 4 le35593 0. 59418561 't9.42898 Zit 0.0011 

3 "'• ~jC1"0:)l J 83.4394lJ21 0.4fl22455 17. 85549 11 0~0946 

CORll<=LATl(N CCEFFICIE'llTS cic.h1"c;'4 E:A:;.H CA•~C!lll?CAL VA'llAeLE OF Gll.C'UP 1 A!lfO T!-E VAll.JA9l!:S (IF GROUP l 

CAlllC!l.IC AL HU': Voll CHRO 

lrA~ I l c. 7<;7??9 -J.b .. ltd9 -0.869248 

.. AR f Z 0.54'1254 u.1>~:.7u9 -0.199639 

\U ;t 3 0.2~4467 -'-1.Ctft."~~d 0.452275 

C'.lR!:H.ll"IC!'. CO!'FF TC I ~'l:TS t>EhEc.\o c~:'.H CAN1"11CAL VARI A!!LE 1)1' GROUP 2 ANO Tl·E VARIABLES OF GROUP 2 

CA~r•,fCt.L H K CFC CAC03 FS C'I VFS CLAY SIL"" CA 

~Ail II l 0.6586~6 J.379577 0.200358 -0.244356 -0.214572 0.886423 -0.192749 -0.108462 0.5!4091 -0.265549 

MG NA BST 

-o. CES9'i3 -u.45i:l 7u -0.516618 

-----------------~----------------------------------------------------------------------------------------------------------------
CAN:N IC Al H K CEC CAC03 FS OM YFS CLAY SIL'!' CA 

.. UI II 2 -o.c9~;10 -J.JllZ7t -0.265286 -O.C97209 0.23555S -0.258028 0.255456 -0.324116 -O.l685lC -0.213025 

~G ~A BST 

0.015931 -u.~4~;~o -0.13~253 

~ 
00 
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very low chroma code (-.87) are highly associated with moderate amount 

of hydrogen (.68), very high organic matter content, moderate silt, 

and base saturation. The number between the brackets indicates the 

level of the original data as correlated with the other properties. 

The canonical correlation is a measure of how strong the two canonical 

sets were correlated (Figure 4.1). 

In terms of the original data, this can be reworded as follows: 

lOYR hue, value of 3-4, and chroma of 1-2 are highly associated with a 

moderate content of hydrogen, a very high content of organic matter, 

moderate silt, and low base saturation. 

The level of low, moderate, or high for the chemical properties 

refers to the standardized adjusted means of that particular property. 

For example, organic content ranged from .01% to 2% •. Thus very high 

organic content refers to the 2%, while very low refers to the .01%. 

Therefore, the classification of high or low refers to the particular 

level in the area where the soil was sampled. The figures given here 

(Figure 4.1) represent the sample values of u1 and v1 as calculated 

from the data, Q1 = ~ 1 •x, and y1 = s1 'Y, that satisfy the value of L1 • 

Later in the following section, the construction of the graphs 

will be investigated in more detail and will be used as a tool to 

select some of the properties that would be suitable as a diagnostic 

criterion in the mathematical classification. 

The canonical correlation for the surface zone (area one) indicated 

that no significant correlation existed (above the .5) between any of 

the variables, even u1,v1 were strongly correlated (.99) (Table 4.2, 

Figu~es 4.2 and 4.3). 
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TABLE 4.2 

CANONICAL CORRELATION ANALYSIS FOR SURFACE ZONE FOR AREA ONE 

ClNONtCAL l!EAN C!' GROUP 1 MEAN OF GROUP 2 CAtiOlHCAL CHI-SQUARE OF PROS > CHI-SQ 
VlRIA'ILE CA~CNICAL VARIA~LE CANONICAL VARIABLE coaREL.\TION 

1.59497209 H33.61201620 o.99797a64 84. 70911 39 0.0001 

2 -l.171731Z8 2188.38504244 0.9U6U74 32.34554 24 o.1184 

3 1.21393938 -539.17314817 o.84075867 u.65799 11 0.3999 

CORP.ELATION COEFFICIE'HS ilETWEEt,t EACH CANONICAL VARIABLE OF GROUP l ANO THE VARIABLES. OF GROUP 1 . 
CANONICAL HUE Vil CHRO 

VAR • 1 0.49H6a o. 700611 -0.375375 

VAR I 2 0.550911 -o. 7068 00 -0.800389 

VAR I 3 0.670169 •0.097868 0.467409 

CORRELATION COEFFICIENTS 8ETwEEN EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP 2 

CANONICAL H K CEC CAC03 FS 011 VFS CLAY SILT CA 

VAR I 1 -1). 010405 0.092313 0.140112 -0.099431 -0.043389. -0.337717 -0.262451 -0.07HB4 0.213322 0.388467 

llG NA BST 

o. 350569 o.0910.6a o.050993 

-----------------------------------------------------------------------------------------------------------------------------------
CANONICAL 

VAR t 2 

H K CEC 

0.286619 -0.133343 -0.133496 

lllG NA OST 

-0.082413 -0.047409 0.014804 

CAC03 

o. 011827 

FS 011 VFS CLAY SILT CA 

0.065683 0.214154 0-190507 -0.29920B 0.160012 -0.163280 

V1 ...... 



z.1zssz193 + 

1. 92931063 + 

1.733099H + 
I 
I 
I 
I 

GROUP l I 
CAii VAR f 1 I 

I 
I 
I 

1.531>88805 + 

1.34067676 + 
I 
I 
I 
IA3 

• 

B 

• 
A AA 

AAAA 

A 

A A A 

·---------·-------------------·-------------------·-------------------·-------------------·-------------------+-----
H33.3Z575 1433.48050 

lEGENO: A=l oss.s=z OBS.ETC. 

H33.635Z5 

GROUP 2 
CAN VAR t 1 

H33.79001 1433.94476. 1434.09951 

Figure 4.2. Plot of the Compounds in the Plan of the First Pair of Canonical Variables for the 
Surface Zone, "Area One. VI 

N 



-0.922$1618 .. 
I 
I 
I 
I 
I 
I 

. I 
I 
I 

-1.08232860 + 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-1.2411!4102 

GROUP 1 
CAN YA~ f 2 

-1.40135344 

-1.56086586 

+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
+ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
• 
I 
I 
I 
IA 

A 

A A A A 
A A A 

A 

A A 

A 

A 

A A A 

A 

1---------·------------------~·-------------------·-------------------+-------------------+----- ------+-----
Z187.891"i0 2188.04078 

LEGENO: A=l OBStS=Z OBS1ETC. 

2188-19007 

GROUP 2 
CAN VAR I 2 

2188.33935 2188.48864 21ss.6379Z 

Figure 4.3. Plot of the Compounds in the Plan of the Second Pair of Canonical Variables for the 
Surface Zone, Area One. 

V1 
w 



54 

The first canonical correlation for the same set of variables in 

the subsurface (area one) was .83. This was interpreted as follows: 

moderate to high hue (.77), moderate to low value (-.64), and very low 

chroma (-.89) is highly associated with a high content of organic mat­

ter. In other words, hue of 7.5YR or 5YR, value of 3-4, and 1-2 chroma 

(-89) are highly associated with a high content of organic matter (Figure 

4.4). The second canonical variate was not significant (Table 4.3). 

The canonical correlation for the first canonical variate (parent 

material zone - area one) was .99% 1 prob > X • .03 and indicated that 

7.5 YR hue is associated with a low cation exchange capacity (CEC) (.51) 

and low clay content (Figure 4.5, Table 4.4). 

Association Analyses for Color, Area Two 

Canonical correlation for the first canonical variable (all sam­

ples was .92). This was interpreted as follows: very high hue code 

(.91), moderately low value code (-.66), and very low chroma code is 

highly associated with a moderate content of hydrogen L 66), and very 

high organic matter content (Table 4.5, Figure 4.6). In terms of ori­

ginal data, lOYR, 3-4 value, and 1-2 chroma, is highly associated with 

a moderate amount of hydrogen and very high organic matter contents. 

The second canonical variate was not significant. 

As it was for the first area, canonical correlation for the first 

canonical variate was '98l but no significant correlations (above .5) 

were exhibited between the morphological and chemical properties (Table 

4.6, Figure 4.7). However, canonical correlation between the first two 

variates for the subsurface was .90, and was highly significant.(prob > 

Chi-SQ= .0001) (Figure 4.8). It was interpreted as follows: lOYR hue, 
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TABLE 4.3 

CANONICAL CORRELATION ANALYSis·cFOR THE SUBSURFACE ZONE, AREA ONE 

~EAN OF GROUP 1 
CA~O~ICAL VARIA3LE 

-o. 632741"1 

l.C,4720310 

o.6Hoooss 

ftEAN OF GROUP 2 
CA1'iONICAl VARIA!llE 

84.2H78074 

-34.121104 73 

120.96789066 

CANONICAL 
CORRELATION 

0.82703H4 

0.65687451 

o.35356595 

Cfft-SQU&RE 

65.6!1357 

24.78850 

4.74072 

DF 

39 

24 

11 

PROll > CHI-SQ 

0.0049 

0.4173 

0.9421 

CORRELATION COEFFICIENTS BETWEE~ EACH CANOSICAL VARIABLE OF GROUP 1 ANO THE VARIABLES OF GROUP 1 

CANONICAL HUE VAL CHRC 

VAR I 1 0.772619 -0.642627 -~-839034 

VAR I 2 0.577640 0.711351 -0.275~87 

VAR I 3 0.263424 -0.294625 o.365760 

CORRELATION COEFFICIENTS BETWEE~ EACH CANONICAL VARIABLE OF GROUP 2 ANO THE VARIABLES OF GROUP 2 

CANONIC.Ill 

VAR I 1 

H 

0.4843Z3 

K 

0.110818 

CEC CAC03 FS 

0.159435 -0.242293 -0.008336 

!IG NA BST 

-0.1477l4 -0.451614 -0.483754 

O" VFS CLAY Sill CA 

0-807341 -0-158159 -0.187566 0.3~L700 -0.328416 

-------------------------------------------------------------------~---------------------------------------------------------------
CANONICAL 

VAR I 2 

ff K CEC CAC03 

'J- 014366 ~-~21538 -0.331878 -0.112684 

!IG NA BST 

-0.114339 -0.399396 -0-251324 

FS Oft YFS CLAY SILT CA 

o.442609 -o.340369 ~o.os2s21 -o.506155 -0.081836 -0.369075 

\J1 

°' 



TABLE 4.4 

CANONICAL CORRELATION ANALYSIS FOR THE P. M. ZONE, AREA ONE 

CAt>llNICAL llEAli OF GROUP l llEAN OF GROUP 2 CANONICAL CHI-SQUARE YHIA;!LE CANONICAL VARIABLE CANONICAL VARIABLE CORRE.LATION 

1.10Hl319 166.37932644 0.97773601 56.H966 

2 2.29117486 -242.01380318 0.90612296 27.08276 

3 1. 75832260 -208. 89940149 0.82280321 10.73613 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 1 ANO THE VARIABLES OF GROUP 1 

CANOJllCAL HUE VAL CHRO 

VAii I 1 o.876522 -0.131622 0.361765 

VAR I 2 o.08s2n 0.886H6 -0.339849 

YAR I 3 -0.03755 -0.443123 0.868509 

CORRELATION ~JEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 2 ANO THE VARIABLES OF GROUP 2 

CANONICAL 

VAR I 1 

CANONICAL 

VAR I 2 

H K CEC 

-0.074602 o.one88 Q',,501668 

llG NA BST 

O.lt51t925 -0.077102 -0.215830 

H K CEC 

O.Olt7802 -O.Olt0700 -0.305109 

llG NA 

-0.189688 -0.147935 

BST 

0.()95891 

CAC03 FS 011 

0.056H2 -0.186532 0.110295 

CAC03 FS 011 

0.069095 -o.19s201, -0.315159 

VFS 

0.037636 

VFS 

0.195751 

OF PROB > CHI-SQ 

39 0.0329 

24 0.30()4 

11 o.4660 

CLAY SILT CA 

o.s126a3 -0.052559 o.253861 

CLAY SILT CA 

0.263263 -0.055278 -0.1761t84 

Vt 
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TABLE 4.5 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

C.lh~ICAL "fAN OF .;i;.;.up l MEAN OF G~CUP Z CANCNICAL CHI-SQUARE OF 
\IAllUBLE CAhCNICA-. VAl\lAb-. E CANONICAL VARIABLE COllRELAT ICN 

-11.1n:;,59.,3 o.ie'it6818 o.<;11101os ZZ3.'i3953 39 

z 11.1tu.i:o7-.itl 1.35159758 0 .lt35013f:9 38.02375 Zit 

3 w.731t3louZ -0.55669445 0.37788910 16.10180 11 

COAPEUTICN COEFFICIF.US ot:hi:cl\i E.t.l.H CANOl'IICAL VARI,l.BLE OF GROUP 1 ANO T11E VARIABLES OF GROUP 1 

CANCtllCJIL HUI; VAL CHf<O 

ll&A • 1 Oo'iC4Zt:4 -0.051!.l.,,8 -0.984247 

\AR I 2 0.10E655 u. n:.,lt. -0.114267 

UR I 3 0.412917 .i • .1.<;.071\J 0.1349 lZ 

CORPELATICN COEFFICIEhTS bET•EcN EACH CANONICAL VAPIAeLE OF GROUP z AND T~E VARIABLES OF GROUP z 

CANCNICAL H II. CEC CAC03 FS OH VFS CLAY 

\All ' 1 0.(:59t75 Ii • .1.70958 -o.2s14es -0.144055 -0.301899 0.949915 -O.Z<Hl83 -0.212052 

~G NA BST 

-C.2579ts -.i.42.iitSo -0.433598 

------------------------------------------------------------------------------- -------------
CAhCNICAL 

11111 II 2 

H K CEC CAC03 
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TABLE 4.6 

CANONICAL CORRELATION ANALYSIS FOR THE SURFACE ZONE, AREA TWO 

llEAN OF GRO:JP 1 
CANONICAL YARIA,LE 

4.13063 903 

1. 79429903 

-0.82403!J08 

llEAN OF GROUP 2 
CANONICAL VARIABLE 

-47.9009915 

12058360057 

H.29148092 

CANONICAL 
CORRELATION 

0.91554222 

O. JTllOOT38 

~-56210254 

CHI-SQUARE 

6!>-32696 

17.67630 

5.12646 

CORRELATIO~ COEFFICIENTS BETW~E~ EACH CANONICAL VARIABLE OF GROUP 1 AMO THE VARIABLES OF GROUP 1 

CANONICAL KUE VAL CHRO 

VAR I 1 0-806937 0.08H98 0.100156 

VAR I 2 -0.278205 o. 930124 0.861920 

VAR I 3 0.521013 -0.551155 0.497053 

CORRELATION COEFFICIENTS BETWEE~ EACH CANONICAL VARIABLE OF GROUP Z ANO THE VARIABLES OF GROUP Z 

CANONICAL H K CEC CAC03 FS 011 YFS CLAY 

VAR I 1 -0.206288 -0.283957 0.101225 0.085410 -0.3251111 -0.443849 -0.089534 0.114533 

llG NA BST 

0-113099 o.186975 0.167135 

OF 

39 

24 

11 

PROB > CHI-SQ 

o.01s8 

-.• nsa 
009249 

SILT CA 

-0.047003 0.172270 

CANONICAL 

VAR I 2 

H K CEC CAC03 FS 011 YFS CLAY SILT Cl 

o.360375 -0.196264 -o.1045s1 o.564212 0.176559 -0.494216 0.350515 00469976 -0.524430 -0.109531 

llG NA BST 
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2-3 value, and chroma of 1 is highly (Table 4.7) associated with mode­

rate amount of hydrogen (.6), low amount of fine sand, and a very high 

organic content. It was also interpreted as 2.SYR hue, 2-3 value, and 

6-7 chroma being highly associated with moderately low hydrogen con­

tents, very low organic contents, and a high content of fine sand. 

From the above interpretations, it was observed that if all gene­

tic horizons were treated together, organic matter would show very high 

associations with the color variables. The correlation was positive 

with the hue and negative with the chroma and the value. Moderate 

correlation was exhibited with moderate hydrogen content. No signifi­

cant correlations were found between the color variables and the chemi­

cal properties for the surface zone in both areas. Furthermore, 

hydrogen seemed to be highly correlated with the color variables in area 

two, but not in area one (surface zones in both areas). 

This pattern could possibly be tied with soil development as 

follows: Area two is composed of soils that exhibit an advanced stage 

of leaching and are highly developed. Hydrogen is highly correlated 

with the leaching intensity. From this, the extent of soil leaching, 

as indicated by the content of the exchangeable hydrogen content, can 

be associated with the color variables. 

The absence of the significant associations between the color vari­

ables and the organic matter contents, in the surface zones of both 

areas, could probably be due to the existence of higher correlations 

between the color variables and certain types of organic compounds, 

especially those highly resistant to microbial activities. As it has 

been known for some time, the proportion of the highly resistant organic 

compounds in the subsoil exceed by many fold its proportion in the 



TABLE 4.7 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE ZONE, AREA TWO 

CANONICAL 
VARIA!ILE 

1 

2 

J 

llE.!IN !JF GROUP 1 
CANONICAL VA~IA!ILE 

-0.17QH363 

0.05055Z5J 

0 .9.U 309U 

llEAN OF GROUP 2 
GANON1CAL VARIABLE 

-0.30495700 

-2.91900509 

1.17208534 

CANONICAL 
CORRELATION 

0.89874880 

0.52685981 

0.0995394 

CH1-SQUAltE 

168.03002 

40.23596 

15.03681 

CORRELATION COEFFICIENTS BETWEE!'f EACH CANONICAL VARIABLE OF GROUP 1 AND THE VARIABLES OF GROUP 1 

CANONICAL HUE VAL CHRO 

VAR I l 0.926332 -0.575908 -0-946500 

VAR I 2 o. 1!2!1189 -0.528588 0.287683 

YU I 3 o.11616a 0.623639 O.H6210 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP Z 

CANONICAL H K 

VAR I l 0.60.;314 o.442621 

l'iG NA 

o. 325270 -o. 236415 

CANONICAL H K 

VAR I 2 0.12H81 -0.046684 

llG NA 

0-275036 0.257545. 

CEC 

o.354356 

BST 

-0.322154 

CEC 

0.407634 

BST 

0.181161 

CAC03 FS 011 VFS 

0.182589 -0.493845 0.910730 -0.554653 

CAC03 FS 011 VFS 

0.047680 -0.076276 -0.124690 -0.211046 

CLAT 

0.172606 

OF 

39 

24 

l1 

PROll > CHI-SQ 

0.0001 

0.0202 

o.uo1 

SILT CA 

0.165226 0.282839 

CLAY SILT CA 

o.404015 -0.126158 -0.215413 
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surface zones. No association was found to exist between organic con­

tent and color variables in this zone. Instead, moderate association 

was found between hue, clay, and cation exchange capacity. However, by 

definition, the Cr horizon is the zone of minimum organic matter 

accumulation in the profile. 

Consistence, Area One 

Canonical correlation for the first canonical variate (all samples) 

was .81 (Table 4.8), This was interpreted as follows: moderated dry 

code (.65), very high moist code (.96), very high sticky code (.90) 

is highly associated with moderately high CEC code (.72), moderate to 

low fine sand code (-.72), low, very fine sand code (-.63), high clay 

content (.82), and moderately low silt (-.62) (Figure 4.9). The second 

canonical variate was not significant. The interpretation of the above 

variate was as follows: hard, very firm to extremely firm with sticky 

and slightly plastic soil is highly associated with moderate CEC, high 

clay content, very low fine sand, low very fine sand, and low silt. 

Canonical correlation for the first variables for the surface zone 

(area one) was .99 (Table 4.9). This indicated that low, dry code (.59) 

and moderate to high sticky soil is highly associated with low hydrogen 

content (.52) (Figures 4.10 and 4.11). In other words, loose to 

slightly hard and slightly sticky soil is highly associated with low 

hydrogen content. The second canonical variate was not significant. 

Canonical correlation for the first variate (subsurface zone, area 

one) was .87 (Table 4.10). This was interpreted as moderate, dry code 

(.69), high moist code (.86), and low sticky code (.55) is highly asso­

ciated with low, fine sand code (-.85), moderate to high clay content 



TABLE 4.8 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA ONE 

-~--~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~ 

CU.C•llC AL "IEA!lf ')F G.~WIJi> l 14EAN OF GPOUP 2 C/ll'ICil!CAL CHI-SQUARE 

UP I .&BL E CANCNICA_ ~~RIAo_c CANONICAL VARIA~L~ CORRELATION 

,;.3.,, .. 1 .. ld -33.53CZ4981 0.81013046 122.98270 

2 ii. l.l~ :).(>J:);t 30.74605331 0 .4903<l07Z 46. oa532 

3 1o1.Z37u1'Qi~J 154. 8'<208762 o.47806673 26.Z8009 

4 "·" ,,., ,.,,,J, lt3.25018137 0.31645558 7. 59749 

CORReLATICN C~EF~ICICNTS o~TWcc~ cA'H CANOl'IICAL VARIASLE OF GROUP 1 A~O TH~ VARIABLES OF GROUP 1 

CA•l'J"IIC.&L O~Y >t.JlST STK PLCT 

11&.Q • 1 o.t !!Hc;o u. ;,;94zz 0.8~8781 0.659956 

11AR II 2 -o. 309438 11 • .,.> .. :151 0.003283 0.564519 

ltAR I 3 c.592406 -..,;. J.Ud3a; 0.167930 o. 380475 

\U II It -o. 343483 -w.2:Jo4'>l 0.404947 o.:?17830 

COR~FLATI(N COEFFICIEl'lTS oi:ht:.:'4 c4::.H CANONICAL VARIABLE OF GPOUP 2 A!lfO THE VARIABLES OF GROUP 2 

CAl>C'HCAL H I( CF.C CAC03 FS OM VFS 

VAR II l· 0.083615 u. bl<tll o. 717947 o.313aa3 -0.724653 0.030344 -0.639950 

MG NA BST 

o.t.4n46 u • ...O.>Zto7 o. 271668 

CLAY 

0.823950 

OF 

52 

3b 

zz 
10 

pooe > CHJ-SQ 

0.0001 

0.1209 

u.Z395 

O.f:693 

SILT 

0.624Z22 

u 

0.479162 

----------------------------------------~--~~--~~~---------~~-~~---------------------------------------------------------
CANCNICAL H K. CEC CAC03 

\IAR I 2 0.573017 U.j~d~5d -0.089304 -0.146945 

MG NA BST 

-O.to15435 -u.S~d~>~ •D.530657 

FS 

-0.074923 

OM 

0.687986 

VFS CLAY SIL~ CA 

-0.254900 -o.2~7378 O.S58647 -0.234230 
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TABLE 4.9 

CANONICAL CORRELATION ANALYSIS FOR THE SURFACE ZONE, AREA ONE 

CIMlNICAL llEAN O" GROUD 1 llEAN OF GROUP 2 CANONICAL CHI-SQUARE OF PROB > CHI-SQ 
VARIABLE CANONICAL VARIAaLE CANONICAL VARIABLE CORRELATION 

1 0.17086923 2525.99629289 0.99991390 156.H-282 52 0.0001 

2 -o. ll 7!19499 -196.60443172 0.99352590 78.14044 36 0.0001 

3 3.95329796 -695.156H462 0.97305355 38.99007 22 0.0142 

4 -1-26507961 752.201615H 0.8616609 IZ.57953 10 0.2475 

CORRELATION COEFFICIE~TS BETWEEN EACH CANONICAL VARIABLE OF GROUP 1 ANO IHE VARIABLES OF GROUP 1 

CANONICAL OllY 113I ST STK PLCT 

VAR I 1 -0.589986 0.461286 o. 737017 o. 323632 

VAR I 2 0.658267 o.1s,an 0.265343 -0.452769 

VAR II 3 0.450H3 o. n0761 0.42455 s 0.796769 

VAR I 4 0.126386 -0.293110 o.4H040 o.235418 

CORRELATION tOEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP 2 

CANONICAL H K CEC CAC03 FS 011 VFS CLAT SILT CA 

VAR I 1 -0.524338 0.3S7H3 0.089933 0.309318 -0.441287 -0.003089 -0.379119 0.444533 0.261122 -0.23002 

llG NA SST 

O. l'o6576 -0.21241.4 -0.192654 

-----------------------------------------------------------------------------------------------------------------------------------
CANONICAL H K CEC CAC03 FS OH VFS CLAT SILT CA 

VAR I 2 o.o981oo9 0.003658 0.042236 -0.090974 -0.115920 -0.222294 -0.297033 0.390018 -0.151268 -0.042090 

llG NA SST 

0.050710 -0.160085 -0.269194 
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Figure 4.10. Plot of the Compounds in the Plan of the First Canonical Variables for the Surface 
Zone, Area One. 
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TABLE 4.10 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE ZONE, AREA ONE 

C.\:.IONICAL l'IEAN OF GROU" 1 llEAN OF GROUP 2 CANONICAL CHI-SQUARE 
VARIABLE CANOSICAL YARIA3LE CA~~NICAt VARIABLE CORRELATION 

1 0.331t5H19 -n.96so1eo1 0.87036124 105.51912 

2 1·26491t010 307.71170551 c. 79it07600 55. 92861 

3 -o. 696"5 55 9 75.011312"7 O. 5H9885it 21-07708 

" 0.13i)515<t5 -185.15320635 o.1t101uoo B.71t251 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF G~OUP 1 ANO THE VARIABLES OF GROUP 1 

CANONICAL ORY llJI ST STK PLCT 

VAR I 1 0.695316 0.864695 0.552683 -0.066612 

VAR I 2 0.230799 r..<t"1510 C.351965 0.979152 

VAR I 3 -C.675923 Q.239302 -0.205375 -0.1621t70 

VAR I It 0.079974 0.0102"7 o.726969 0.095911 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROU? 2 AND THE VARIABLES OF GROUP 2 

CANO!'IICAL 

YAR I 1 

CANONICAL 

VAR I 2 

H I( tft 

-0.406'tlt0 0.1"5592 0.779072 

MG NA BST 

0.800690 0.5ZS643 0.3481t61t 

H It CEC 

-0.029615 -0.179221 o. "12119 

llG NA BST 

0.141030 0.141t977 -0.039541 

CAC03 FS 011 VFS 

0.2915"5 -0.852871 -0.165711t -0-146677 

CAC03 FS 011 VFS 

0.172034 -0.132261 0.012347 -0.502828 

CLAY 

0.789B84 

CLAY 

0.326816 

OF 

52 

36 

22 

10 

PROB > CHI-SQ 

0.0001 

0.0182 

0.5162 

o.5576 

SILT CA 

0.51t7197 0.657111 

SILT 

0.132825 
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0.185216 
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(.79), low silt content (.54), moderate calcium code (.65), high mag­

nesium content (.80), and low sodium content (.52). Thus, hard, very 

firm, slightly sticky is associated with moderate to high CEC values, 

low fine sand, low silt, moderate to high clay calcium content, but 

high magnesium and low sodium content (Figure 4.12). 

73 

The first canonical correlation for the Cr zone (Area one) was .96 

(Table 4.11). This indicated that high moist (.78), and moderate sti­

ckiness (.65) is highly associated with low organic matter content 

(-.66), and moderate silt content (Figure 4.13) or friable to firm and 

slightly stick soil is highly associated with low organic matter and 

moderate silt content. 

Consistence, Area Two 

Canonical correlation for the first variate (all samples) was 

.91 (prob >CHI-SQ= .0001) (Table 4.12). This cart be interpreted 

as very high dry value (.97~ very high moist code (.88), moderate to 

high stickiness code (.78) and moderate to high plasticity code (.77) 

is highly associated with high CEC (.86), low Caco3 ~ low clay; and 

moderately low organic matter content (-.77). In terms of the original 

data, extremely hard, very firm to extremely firm, slightly sticky and 

slightly plastic to plastic soil is highly associated with high CEC, 

low calcium carbonate, low clay, and moderately low organic contents 

(Figure 4.14). The second canonical variate was not statistically sig­

nificant. 

Soil properties of the first canonical variate for the surface 

zone (Area two) did not show any important correlation. Second canoni­

cal variate indicated that very high, dry code (.90), very high moist 
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TABLE 4.11 

CANONICAL CORRELATION ANALYSIS FOR THE P. M. ZONE, AREA ONE 

C:ANONIC:&L llEAN OF G.aOUP 1 llEAN OF GROUP 2 CANONICAL CHI-SQUARE OF 
VARIASLE CANONICAL VA~IA,LE CANONICAL VARIABLE CORRELATION 

1 0.12250458 11.3401t0.U3 0.975"2318 60.37861 52 

2 -0.05097652 493. 77207396 O. 889S90lt2 33.15209 36 

3 o. u:ns 20" 140.62598182 o.85395783 19.02425 22 

" -ii. G01l9906 -21.80867612 o. 74426144 7.26542 10 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 1 ANO THE VARIABLES OF GROUP 1 

CANONICAL DO llOlST STK PLCT 

VAR I 1 o. 000959 o. 781916 0.620328 0.497682 

VAR I 2 -0.5521t82 -0.53l772 -0.036723 0.'421509 

VAR I 3 1).599024 o.263242 o. 76"395 0.75781t0 

VAR I 4 o.579597 0.1954 71 -0.171885 -0.0179"3 

CORRELATION COEFFICIENTS BET•EE~ EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP 2 
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TABLE 4.12 

CANONICAL,CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

CU.Ct: IC AL ~EAN OF 4'i<.,.1UP l 14EAN OF GROUP 2 CA!llCfliICAL CHI-SQUARE OF PROB > CHI-SQ 
VARU8LE CAl\iCNICAL V~AIAoLE CANlNICAL VARIABLE CORRELATION 

1 .... :H3cHBl 0.36468585 0.90l:52159 250.02862 52 0.0001 

2 o ... ~u;1:;:;0 0.07246795 0.62140511 70.65520 36 0.0005 

3 w .t.~314353 3.51303893 0 .35121097 19.90368 22 0.5895 

4 "'•L7~h275 -2.27eT2545 0.24080259 6.21244 10 0.7982 

COPAELATJ("' C0EFFICIENTS 8cT.ee .. c~CH CANONICAL VARIABLE OF CROUP 1 AND T~E VARIABLES OF CROUP 1 

CAlli(NIC AL QQY M.i1ST STK PLCT 

UR I l c ... no48 u. dl!,.9ol o.783727 o.779660 

UR II 2 -0.172013 o."6.t'ilo) -0.068860 -0.135985 

'iAR • 3 -0.152492 -u. """'"'o 0.404641 o.~34315 

11AA M 4 -0.018332 -\.I. C..ZOOob -0.466151 0.296892 

COAllELATICN COEFFICIE,..TS r.er.u:e-. EACH CANlNJCAL VARIABLE OF CROUP 2 AND TtoE VARIABLES Of CROUP 2 
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code (.95) and moderate plasticity code (.66) is highly associated (.99) 

with high CEC values (.79), high magnesium, or moderate sodium content 

(.69) (Table 4.13). 

In referring to the original data, this indicated that very hard 

to extremely hard, extremely firm, and slightly plastic soil is highly 

associated with high CEC values, high magnesium, and moderate sodium 

content. Moderate to high association was indicated between consis­

tence and chemical properties. First canonical correlation for the 

subsurface was .77. This was interpreted as moderate to high associa­

tion exists between very hard (.83), friable to firm (.73), and slightly 

sticky (.71), and moderate CEC values; low, very fine sand content (.52), 

or calcium, sodium, and moderate magnesium content.(Table 4.14, Figure 

4.15). 

It appears from the above interpretations that close association 

exists between consistence and clay content. Closer association was 

also exhibited with cation exchange capacity, which is a good criterion 

to indicate the type of clay mineral present. Moreover, the associa­

tions indicated between the sand fractions and soil consistence, which 

were negative in nature, support our knowledge about the relationships 

between these two properties. This confirmation might be considered 

as an indication of the validity of this mathematical approach of 

quantifying the relationships between soil morphological properties. 

Chemical properties like hydrogen, calcium, magnesium, and sodium also 

exhibited high association with the consistence. However, the degree 

of the associations obtained depended on the zone under consideration. 



TABLE 4.13 

CANONICAL CORRELATION ANALYSIS FOR THE SURFACE ZONE, AREA TWO 

CANC"llCAL MEAN OF GROUP 1 KEAN Of' GROUP 2 CAKONICAL CHI-SQUARE OF PROS > CHI-SQ 

VARI ABLE CANONICAL VARIASLE CANONICAL VARIABLE CORRELATION 

1 2.64783006 -49. 53941552 o.9999786' 2l't.26188 S2 0.0001 

2 3.11970591 10.56464823 o. 99336401 8].47213 36 0.0001 

3 1.50785627 29.93716113 0.84H3H9 27.2.\222 22 o.2ou 

" -1.202?9745 10.70204502 o.75518629 10.98088 10 o.3588 

CDR~ELATIO~ COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 1 AND THE VARIABLES OF GROUP 1 

CANONICAL ORT MlIST STK PLCT 

VAR t l -0.410873 0.033793 0.088222 -C.191636 

VAR I Z 0.900581 0.997817 0.360956 0.669724 

VAR I 3 -0.1H179 -o. D't9744 0.461869 0.67993't 

VAR I 4 0.046185 0.019535 0.805360 -0.228986 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP 2 

CANONICAL ff K CEC CAC03 FS OM VFS CLAY SILT CA 

VAR I 1 -0.111521 :-0.46 7745 -0.157774 o.125s11 -0.403353 -0. )49001 -0.095772 -0.041844 0.112146 0.019891 

CANONICAL 

VAR I 2 

MG 

-o. 059543 

ff 

0.122483 

"' 
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0.423750 
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0.037319 -0.443035 0.190855 -0.010569 00.479927 

CXl 
0 



TABLE 4.14 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE ZONE, AREA TWO 

CANONICAL l!EAN OF GROUP 1 llEAN OF GROUP 2 CANONICAL CHI-SQUARE DF P'ROll > CHI-SQ 
YAlUA3LE CANONICAL YARIAgLE CANONICAL VARIABLE CORRELATI!llf 

1 1.5081tOH6 4.21992803 0.11319352 133.23.\38 52 0.0001 

2 0.44091"75 3.79655887 0.59145484 63.0'1693 36 0.0035 

3 0.336'14574 3.96325511 0.5054fJ044 29.9"810 22 0.1194 

4 o. 83933234 -0.62046027 0.29951090 7-23712 10 u.7042 

CORRELATION COEFFICIE~TS BETW~E~ EACH CANONCCAL VARIABLE OF GROUP 1 ANO THE VARIABLES OF GROUP 1 

CANONICAL ORT ll(lI ST STK PLCT 

vu ' l o.e347!JO o.735195 o.719398 0.48T081t 

vu , 2 0-070008 -o. 6"8628 O.lt02153 0-293861 

VAR I 3 -0.506573 o. t921t86 o.551517 Oo 1432()0 

VAR I 4 -0-201t022 -O.OH"52 -0.128720 0.809870 

CORRELATION COEFFICIENTS 8ETWEE~ EACH CANONICAL VARIABLE OF GROUP 2 ANO THE VARIABLES OF GROUP 2 

CANONICAL H K CEC CAC03 FS 0'111 YFS CLAY SILT ca 
VAR I 1 -0.211121 0.079010 o.699615 0.408262 -0.470545 -0.44999t, -0.524381 0.283171 o.093698 o.SCS60!1 
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the Subsurface Zone, Area Tw~. 
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Pores, Area Two 

Canonical correlation for first variate (all samples) was ,85 

(Table 4.15, Figure 4.16). This was interpreted as follows: high 

frequency of random pores (.97), and very low frequency of oblique 

pores is highly associated with very low CEC, moderate pH (.67) values, 

moderate organic content (.70), low clay content (-.52), or low calcium 

content (-.61). The second canonical variate was considered insigni­

ficant. 

Structure, Area Two 

First canonical variate (all samples) had .9 canonical correlation 

(Table 4.~6). It indicated that very high grade code L9), very low 

type code (-.95) is highly associated with moderately high CEC values, 

very low organic content (-.81), low clay content, moderate magnesium 

content (.70), and low sodium content (Figure 4.17). In reference to 

the original variables, very coarse, prismatic is highly associated 

with moderately high CEC, low organic matter, or magnesium, low clay, 

and sodium contents. 

The second canonical variate had a canonical correlation of .59. 

It indicated that strong structure (.77) has a low association with low 

content of fine sand (-.56), or weak structure is associated with high 

fine sand. This conclusion is consistent with previous knowledge about 

the behavior of the sand fractions and structure. 

Coating, Area Two 

First canonical variate (all samples) had .88 canonical correla­

t_ion (Table 4.17). This indicated that high frequency of clay coating 



TABLE 4~15 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

CASCNICAL ~EA!\I CF i.f<OUP .i. !"FAN CF GP.CUP 2 CA!llCNIC AL CHI-SQUA~~ OF PRCB > CHJ-SQ 
.... 11ueu= CA'1.C!HCAL ~AtdA6LE CANCNICAL VIRIASLE CORRE LA TION 

1 -J.vluu7,77 1.8 3584553 o.a51t72764 186. 86069 56 0.0001 

2 \i. '"'' 3\17 :>2 9 -o.oc;t;45461t 0.50191883 51.13006 39 0.0923 . 
3 "·"'"3.i.lJlJ -l.1EU6014 o. 3f;36~ 885 21. 08931 21t 0.6339 

" i.l~i5u4:>JZ• 3.87ClZ917 0.21t505223 6.40%8 11 o.e45.r, 

CORREL~TtCh CCEFFICIENTS o:TwEc~ EACH CANONICAL VARIABLE OF GROUP 1 ANC T~E VARIABLES OF GROUP 1 

C .lflCl'd CAL HOPP'.lR Vc:i?Uil. RANPQll OBLPOR 

110 • 1 -C.301593 -J.:>76l.JZ 0.971252 -0 .862~29 

"~"' • 2 0.2C9366 o. 7\.3illo9 -0.036302 -O.li21314 

\IA~ • 3 -O.l:!H22 u.Ll .. .J19 0.176862 o.211i396 

\JAR f. 4 0.92CS«;O -J. •2<>95<> -0.155151 0 .181"3" 

COPRFLllTICN COEFF !C!Efl.TS tsf::TilEE"4 EACH CANO'lllCAl VARI AeLE OF GROUP 2 ANO THE VARIABLES OF GROUP 2 

CAlllC!\l!CAL ... K CEC CAC03 PH FS o" VFS CLAY Sil T 
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CA HG !\IA SST 

-0.44<;870 -u. blellll~ -0.27186& -0.200483 
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TABLE 4.16 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

~EAN OF i.kJUP 1 
CA~:'IICAL VARlA~LE 

J .C:6l 1''"'~ .. 

-u.l<><Hl<>luo 

l .3lciJ1"16 

14EAI• OF G~CUP 2 
CAt.O'IICAL VAll.tA!ILE 

O.l'il32326 

0.29474405 

-2.87485345 

CANCt,iICAL 
COPRELATION 

o.90258196 

0. 5881t6451t 

o.372€7118 
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12 
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TABLE 4.17 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

>!EA>.! CF GR.jtJP 1 
t4NCNICAL 114,.lAoi..:i 

Jol!0.2171> .. 0 

-J.i.>.>JftoJ'J 

u.2ll29 .. J9 

!4!:'~N OF GF !JUP 2 
CANO .. ICAL V!RIA8L~ 

0.22~91230 

1.61325446 

3.255"'9122 

CANCNtCAL 
C'lRReLAT ION 
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(.80), and very high frequency of oxide coating (.91) is highly asso­

ciated with low hydrogen content (-.63) and low CEC (.56) values, 

moderate pH (.71), very low organic matter, and low magnesium content. 

The high, but negative association between clay coating and organic 

matter content was probably due to the fact that clay coatings occurred 

mostly in the subsoil where organic matter content was low. This might 

suggest the weakness of the organic matter translocation in this area 

(Figure 4.18, and 4.19). The second canonical variate was not signifi­

cant. 

Mottling, Area Two 

First canonical variate (all samples) was; . 76. It was interpreted 

as follows: very many (.97), medium to coarse. (.9), distinct (.96) mot­

tles is moderate to highly associated with moderate hydrogen content 

(-.6), low pH (.58), and very low content of organic matter (.93). This 

suggested that the clarity of observing the mottles increases with 

decreasing organic matter content, especially the contrast between the 

mottles and the soil matrix. The opposite is true when the organic 

matter increases. The highly negative association with the abundance 

and the size suggested that the mottlings are caused mostly by oxide 

coatings, not by the organic matter. This conclusion also supports the 

conclusion stated earlier that the organic matter translocation in this 

area is weak. This is true since clay coating, mottling, organic coa­

ting, and oxide coatings occur maximally in the subsoil (Table 4.18, 

Figure 4.20). 
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CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 
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Concretions, Area Two 

First canonical variate had canonical correlation of .74 (all sam-

ples) (Table 4.19). This was interpreted as follows: high concretions 

quantity (.90), large size (.92), with high frequency of white concre-

tions is moderately associated with a low content of hydrogen (.77), 

calcium carbonate (.S8), organic matter (.SS), and calcium (.S4), 

magnesium (.S2), sodium and base saturation (.S8) (Figure 4.21). 

Referring to the original data description, this can be stated as 

follows: many coarse, white concretions aremoderately associated, but 

negatively with hydrogen, positively with low content of organic matter, 

calcium, magnesium, calcium carbonate, and bas1e saturation. On the 

other hand, this also can be restated as follows: few, fine, white 

concretions are moderately associated, but negatively with hydrogen and 

positively with high content of calcium carbonate, calcium, magnesium, 

sodium, and base saturation. Table 4.20 shows the coding system. 

Selection of Diagnostic Criterion 

Previously, it was shown that 

u = a xl' -p -p 
v = b x2 -p -p 

where q1 ,~ 1 is a linear combination of x1, which represents a group 

of measurements taken on one sample with p dimension, and x2 is another 

group of measurements taken on the same sample with q dimensions, p > q. 
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CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 
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TABLE 4.20 (Continued) 
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x1 represents the matrix of morphological properties, while x2 

represents the matrix of the chemical properties. ~l and y1 are vectors 

of compounds where N is the number of samples in the data. 

The linear transformation could be visualized as scaling down a 

multidimensional hyperspace into a space whose points could be repre-

sented in Euclidian space. These points can be plotted in the plane of 

the first pair of the canonical variate with one coordinate representing 

the morphological properties and the other coordinate representing the 

chemical properties. The distance between the points in this plan can 

be used to investigate the presence of any clustering or grouping. 

Since U. represents x1 group of variables measured on i location 
-i 

and Yi represents x2 of variables measured on the same i location, 

therefore studying the clustering along both axes should reveal the 

superiority of each group of variables in producing a better-compacted 

grouping. 

The unique identification of the different locations can be done 

either by a special computer program or from the original U.,V. com­
-i ~ 

pounds. The moment the different groups are recognized along each 

axis, several statistical testing procedures are available to test the 

significance of the clustering. Wilk's criteria on studentls t can be 

used to establish the number of the groups. While testing the equality 

of the means of the groups, computations of confidence intervals on the 

means could also be done. The compactness of each group can be indi-

cated by the significance of Wilk's criteria on the width of the 

confidence intervals. The number of groups needed to be established 

can also be used to judge the superiority of diagnostic properties. 
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Sometimes a few locations will not graphically be assigned to any 

group. Discriminant analysis using Mahalinobis distance, or Fisher 

1inear discriminant function could be used to assign these locations 

to the closest group. In the mean time, the Mahalinobian distance or 

the linear function can be used to judge whether these locations are 

inclusions or not, in this case, the exact percentage of the inclusions 

can be computed. Furthermore, by using this procedure, precise charac­

terization of what would be considered as inclusions can be achieved. 

Using this approach, and utilizing the profile or different gene­

tic horizons as the main unit, the significance of each property as 

diagnostic criterion can be tested objectively. The property that 

produces the most compacted or most homogenous grouping would be 

favored to establish a new taxa. Moreover, the current diagnostic 

criteria used in the present taxonomy can be tested or redefined for 

possible improvements in the system .. Another potential use of this 

procedure could be the establishment of a systematic objective way of 

improving any kind of artificial grouping, land capability classifica­

tion, or any other interpretations which require finding the best 

criteria to achieve the most appropriate grouping at any scale, 

The unique identification of the different locations was not 

possible at this time due to the extreme similarity between many loca­

tions. Thus the symbols seen on each figure represent the number of 

locations having the same values. However, the exact locations that 

constitute each point on the figure can be identified by inspecting 

the original canonical compounds. Nevertheless, it should be stressed 

again that statistical procedures adapted for computer analysis are 

available to test the significance of the established groups. 



A brief discussiort on each figure will be presented here. Pre­

ceding the discussion, a title will be given in the following order: 

Area, zone, variables that were used to construct g1 , variables that 

were used to construct ~1 , and figure number. 

Area One, All Samples, Color (Group One) ./Chemical Properties (Group 

Two), Figure 4.1. 
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No distinctive clustering can be recognized along the axis that 

represents the chemical properties. Very weak clustering can be recog­

nized along group one (color), but with extreme overlapping. No 

subdivision could be established if color or chemical properties were 

used as a diagnostic criteria. Itlshould be noted that the failure of 

both the color and the chemical properties to produce any different 

grouping should not lead to discarding these properties as diagnostic 

criteria, but it should be taken as an indication to show that if one 

wants to compare these two groups of properties against each other, then 

both would fail to produce any grouping. 

Area One, Surface Zone, Color:! Chemical Properties, Figure 4. 2 

Two major groups with few points in the overlapping position can 

be recognized along both axes. The'grouping was more compacted along 

the color axis. It is worthy to note here that this area is composed 

of two different soil orders in which the color is used as a diagnostic 

criteria to separate the two orders. This conclusion supports the 

validity of this mathematical approach. More than two groups can be 

recognized for the subsurface zone of the same area, but with many 
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scattered points. The color of the subsurface is not diagnostic between 

Mollisols and Alfisols, orders which existed in this area (Figure 4.4). 

Further evidence to support the validity of this approach is pre­

sented in Figure 4.5 (P. M. zone). Since by definition parent material 

is not soil, thus color should not have a diagnostic capability to 

discriminate non-soil, one-type parent material. That is why only one 

group was produced along both axes. Few points were far from the center 

of that group. These points could represent the locations where shale 

was interbedded with the sandstone of the Permian parent material. 

Area Two, All Samples, Color/Chemical Properties, Figure 4.6 

Three major groups with more than one subgroup can be recognized 

along the color axis with very little overlapping occurring between 

groups. No grouping existed along the chemical properties. If color 

has to be used as a diagnostic criteria, three major groups could be 

established with subgroup divisions based on color but not on chemical 

properties. 

Area Two, Surface Zone, Color/Chemical Properties, Figure 4.7 

Only one compacted group can be recognized along the color axis. 

This area is composed of only one soil order, namely Mollisols. This 

order is recognized by the presence of mollic epipedon. The production 

of only one group further substantiates the validity of this approach. 

Area Two, Subsurface Zone, Color/Chemical Properties, Figure 4.8 

Three major groups can be recognized along the color axis. Many 

subdivisions can also be established within the major groups. The 
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significance of each subdivision should be tested statistically. 

Two major groups can be recognized along the chemical properties 

with no clear boundaries. Each group could be divided to more than one 

subgroup on the color basis. The significance of the clustering along 

both axes should be tested statistically. 

Area One, All Samples, Consistence/Chemical Properties, Figure 4.9 

Several groups can be recognized along the consistence axis, but 

with few points unyielding to the clustering of the major groups. No 

clustering is recognized along the chemical properties. However, if 

confidence intervals were computed for the groups recognized along the 

color axis, a possible overlap between the groups may result. 

Area One, Surface Zone, Consistence/Chemical Properties, Figures 4.10 

and 4.11 

Three groups, with no overlapping, are recognized along the consis­

tence axis. The same number of groups are recognized along the 

chemistry axis. The superiority of clustering along the two axes should 

be established by statistical procedures. The same pattern is exhibited 

by the second canonical pair (Figure 4.11). 

Area One, Subsurface Zone, Consistence/Chemical Properties, Figure 4.12 

Three groups with possible overlap can be recognized along the consis­

tence axis. Some points can be considered as inclusions. A very weak 

clustering pattern is exhibited along the chemistry axis. The superio­

rity of the consistence in the subsurface zone as a diagnostic criteria 

over the chemical properties is clear and unquestionable. 



104 

Area One, P.M. Zone, Consistence/Chemical Properties, Figure 4.13 

One uncompacted group with several scattered points can be recog­

nized along the consistence axis. This pattern is consistent with the 

Cr horizon definition. 

Area Two, All Samples, Consistence/Chemical Properties, Figure 4.14 

Several groups are recognized along the consistence axis. Some 

points are located in an overlapping position or unyielding to the 

clustering. Two major groups, but not very dense, can be recognized 

along the chemistry axis. Two or more points can be considered in the 

overlapping position. The chemical properties would divide the data 

into two major groups and many subgroups. The superiority of the 

desired criteria will depend on the number of groups needed to be esta­

blished and on the statistical tests. 

Area Two, Surface Zone, Consistence/Chemical Properties 

No clustering is produced. The points were so scattered that the 

computer failed to plot any point on the same scale. No conclusion can 

be advanced on the suitability of either property •s a diagnostic cri­

teria. 

Area Two, Subsurface Zone, Consistence/Chemical Properties, Figure 4.15 

Three major groups can be recognized along the consistence axis. 

Some overlapping exists between the groups and some points are far from 

the center of different groups. Three points can be regarded as inclu­

sions. One major group can be recognized along the chemistry axis. 
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Therefore, in comparison with the consistence variables, the chemical 

properties possess very low discriminating capability. 

Area Two, All Samples, Pores Orientation/Chemical Properties, Figure 

4.16 

Two major groups with clear overlap exist along the chemistry axis. 

The presence of the two groups should be tested statistically. Several 

groups, with one point unyielding to the classification, can be recog-

nized along the pores axis. The groups are very compacted and the 

distance between some of the groups is not large. The overlapping 

should be established by the statistical procedures. However, stronger 

dissection is apt to be produced by pores. 

7 
Area Two, All Samples, Structure/Chemical Properties, Figure 4.17 

Two major groups are produced along both axes. The clustering 

along the structure axis is more compacted, but with many points in the 

overlapping positions. Less points are unclassified along the chemistry 

axis and should be evaluat~d by the statistical methods. In this case, 

further subdivision along the consistence axis is possible. 

Area Two, All Samples, Coating/Chemical Properties, Figures 4.18 and 

4.19 

Three major compacted groups are recognized along the coating axis 

and no points are unclassified. Two groups can be established along the 

chemistry axis, but with very wide range of variability and overlapping. 

The superiority of the coating as a diagnostic criteria over the chemi-

cal properties is clear. Using the second canonical pair, the coating 



106 

is still superior to the chemical properties. As a matter of fact, no 

clustering is produced along the chemical properties axis. 

Area Two, All Samples, Mottling/Chemical Properties, Figure 4.20 

Four very compacted groups can be recognized along the mottling 

axis. No overlap or unclassified points are shown. The dissection 

between the different groups is sharp. No clustering is recognized 

along the chemistry axis. The superiority of the mottling as a diag­

nostic criteria over the chemical properties is clear and can be 

further evaluated by the statistical testing. 

Area Two, All Samples, Concretions/Chemical Properties, Figure 4.21 

Four major groups can be recognized along the concretions axis. 

Few unclassified and overlapping points can also be ·recognized along 

this axis. The groups are very compacted, but with possible subdivision 

within each group. No clustering can be recognized along the chemistry 

axis. The superiority of the concretions distribution over the chemical 

properties, as a discriminating criteria, is clear. Moreover, this 

conclusion can be further substantiated by the statistical testing. 

Conclusions 

Mathematical relationships established using the canonical correla­

tion technique proved that strong associations do exist between the 

different morphological and the chemical properties. However, emphasis 

here is not placed on the many relationships examined in this study, but 

on the validity of the mathematical approach used as an effective tool 

capable of relating two sets of different variables. Moreover, 
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inference about the relationship between the level of the chemical pro­

perties and the specific state of the morphological properties was 

possible by this technique. Since each level, or state of many of the 

morphological properties can he considered as the collective effect of 

many factors, further investigation utilizing this technique may prove 

to be an excellent tool in isolating the factors important in explaining 

certain patterns. One potential area is land use. 

This technique could also be used in an important aspect of the 

soil taxonomy, that is, the selection of the diagnostic criteria. The 

technique should not he regarded, at this stage, as a tool in creating 

taxonomical categories. Previous discussion proved that if supportive 

statistical tests were followed, suitability of different diagnostic 

criteria in the soil taxonomy can be evaluated objectively and the 

criteria selection for better taxonomy can be achieved.. These diagnos­

tic criteria can be evaluated for different horizons or for the profile 

as a whole. These results would be followed with maximum possible 

objectivity utilizing standard statistical techniques adapted to be 

executed by high-speed computers. This preliminary investigation indi­

cated that the majority of the morphological properties were superior 

and capable of producing more compacted groupings than the chemical 

properties. In many cases, the conclusions reached through this tech­

nique showed to be compatible with the diagnostic definitions of some 

of the properties used in the current soil classification system. 



CHAPTER V 

CANONICAL CORRELATION 

Abstract 

The objective of this study was to investigate the relationships 

between different soil morphological properties. Descriptions of the 

study areas, field work design, number of profiles sampled, and labora­

tory statistical design were given in previous chapters. 

Emphasis was given to the relationships between color, consistence, 

and other morphological properties. This was due to the significant 

roles played by the color variables and the consistence-related proper­

ties either in soil classification or soil development. Association 

analysis technique was used to investigate these relationships. Signi­

ficant relationships were found to exist between the color variables and 

the other morphological properties. 

Also significant and close associations were found between the soil 

structure and other properties like roots, pores orientation, and 

consistence. 

Close examination of the graphs that represent the first canonical 

pair showed that canonical correlation can be used to test the suitabi­

lity of different soil properties in producing more distinct grouping, 

if used as diagnostic criteria. Furthermore, the technique showed that 

some soil properties are superior as diagnostic properties within one 

108 
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horizon and inferior in another. This might be helpful in selecting 

better criteria for the lower categories of the soil classification 

system. Moreover, testing the significance of the classification pro­

duced by this technique could be carried with minimum subjectivity. 

Introduction 

Quantitative relationships between soil morphological properties 

have not been fully investigated. One reason is that statistical tech­

niques suitable for soil investigation require a high~speed computer 

which has been recently introduced to soil investigations. 

Simple correlation coefficients (pairwise correlations) were used 

to indicate the possible relationship between two variables. If one 

has ten soil properties, it will take fifty simple correlation coeffi­

cients to show all possible relationships. These relationships, 

indicated by the fifty coefficient~ may not be easily understood. 

Therefore, a technique, easy to interpret and understand, which 

expresses these relationships in that easy format, is needed. Further­

more, multiple relationships might exist between soil properties and 

simple pairwise correlations would not be a good tool. The canonical 

correlation technique was introduced by Hotelling (36). The technique 

was introduced to understand the possible relationships between two sets 

of variables. 

For example, if one wishes to study the relation between the color 

variables (hue, value, chroma) and consistence variables (dry moist, 

stickiness, plasticity), we can represent the observations recorded on 
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different horizons 1n a matrix format as follows: 

Unit 
Number hue value chroma dry moist stickiness plastic. 

1 
\1 x21 x31 yll y21 y31 y41 

2 x12 x22 x32 y21 y22 y32 y42 

N 

Let X be a matrix that represents the color data and Y to represent the 

consistence data, where X is NX3 and Y is NX4. The canonical correla-

tion is concerned with a simple way to understand the relationship 

between the two groups. The technique linearly transfers these data to 

be displayed by a new axes that shows the relationship clearly. First, 

the data are transferred linearly to a new system. Let U. = XA and V. = 
1 1. 

YB where U., V. are NXl vectors, and A is 3X3, R is 4X4 matrices. 
1 1 

for i = 1, . . . N 

u. = 
~1 

and 



If a and b were chosen such that U,V have maximum correlation, this 

correlation would be called the canonical correlation, 

111 

The degree of the association between the two sets is the value of 

the canonical roots (eigenvalues of the data matrix). The nature and 

the measure of this relation between the variables within each set is 

indicated by the variables in both sets having larger weights. If th~ 

canonical correlation between the two sets is unity, this means one of 

the sets would be predicted perfectly by the other set. 

The number of the canonical variates that can be constructed 1S 

equal to the number of the variables in the smaller set, thus, in the 

above example, three canonical variates or axis can be compared. These 

canonical variates are uncorrelated by construction. Each canonical 

variate displays the maximum correlation with the first variate carrying 

the maximum correlation, followed by the second and the third. ·If we 

consider the set U = XA alone, it can be treated as equivalent to the 

multiple regression. So is V = XA. Therefore, treating each set sepa-

rately, the degree of the polynomial in each variable within the set can 

be determined under the restriction that increasing the degree of the 

polynomial improves the canonical correlation between U,V. Therefore, 

the degree of polynomial for either the color or the consistency can be 

determined and the relationship still can be expressed in a simple cor­

relation. However, it should be noticed that even if quadratic of cubic 

terms are used in the model, the canonical correlation computation will 

be performed on these data as if they were original data, but these data 

express certain degrees of polynomial when they are inputed for calcula­

tions. 
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The "canonical variate, especially the first one, has another pro-

perty besides displaying maximum correlation. That property is the 

maximum variance. This provides a measure of the variation explained 
. 

in the regression model reached. This could be used as a tool to 

select the set of properties which show maximum variations. 

The geometric interpretation of the canonical exes can be visua-

lized as follows: in R-dimensional space (7 in our example) a sample 

of p + q = R(7) determines one hyperplane of p(3) and one of q(4) di'"' 

mensions intersecting at the origin and contain a swarm of points 

representing the two sets. Linear transformations are developed for 

the first p coordinates axes and also for the q coordinates axes such 

that these two hyperplanes are as parallel as possible in a new dimen-

sional space. 

The objective of this study was to investigate the relat~onship 

between the different morphological properties of soil by the canonical 

correlation technique. Linear relationships were assumed, and no 

attempt was made to determine the degree of polynomial in each vari-

able since producing prediction models was not themain-g-oal of this 

investigation. 

Results and Discussion 

Selected samples of the association analysis (for different areas) 

wer,:e presented here since many relationships were established. The 

rest of the analysis will be reported somewhere else. Special atten-

tion was given to the detailed interpretation of the relationships 

between the soil color and other soil morphological properties. This 
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was due to the signific~nt role played by the, color in the class~fica-

'tion and development of the soil. 

The canonical correlation for the first variate (all samples, Area 
, . ., -

Two) was .79 (Table 5.1). This can be interpreted as very high hue 

values (.92), low value -value (-.68), and very low chroma value (-.97) 

is,highly associated with low frequency of clay coating (-.68) and very 

low oxide coating frequency (-. 98) (Figure 5 .1 ). This can be interpreted 

in terms of the original data as hue of lOYR with value of 3 to 4 and 

chroma of 1 to 3 is highly associated with l.ow frequency of clay coating 

on very low oxide coatings or hue of 2.5YR with value of 6 to 7 and 

chroma of 7 to 8' is highly moderate, high frequency of clay coatings and 

very hig\l, frequency of oxide coatings. However, for the Cr zone, (Area 

One) the first canonical variate had .7 canonical correlation (Table 

5. 2) (Prob > Chi SQ = .1467). This suggests that high h'Je value (.80) 

is moderately associated with high organic coating frequency (.84), or 

low to moderately low hue value is moderately associated with low fre-

quency of organic coating. Another way of interpreting this pair is 

5YR, 7.SYR hue is associated with high frequency of clay coating or hue 

of 2.SYR, SYR hue is associated with low frequency of organic coating 

(Figure 2). 

Canonical correlation for the first (all samples, Area Two) was .66 

(Table 5.3). This can be interpreted as follows: high or very high 

hue values (.9), low value values (.7) and very low chroma code (.99) 

is moderately associated with very low class code ( .96), --1ow grade code 

(-.52), and high type code (.86). In referring to the original data, 

7.SYR hue with 3 to 4 value and chroma of 1 to 2 is moderately associ-

ated with very coarse, weak, or moderate angular ·or subangular structure 
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TABLE 5.2 

CANONICAL CORRELATION ANALYSIS FOR THE P. M. ZONE, AREA ONE 
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CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 
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or 5 YR hue with value of 6 to 7 and chroma of 7 is moderately associa­

ted with fine moderate to strong subangular structure (Figure S.3). 

The first canonical variate had a correlation of .SS (Area One, 

all samples). It indicates that low hue values (.S7), very high value 

code (.86),_and moderate chroma code (.66) is associated with low class 

code (.62), or very low grade code (-.86), and low to very low type 

co9e {-,82) (Table S.4, Figure S.4). In terms of the original data, 

SYR hue with 2 to 3 value and chroma of 6 to 7 is associated with medium 

weak or very weak subangular or prismatic structure, or 7.S YR hue 

with 5 to 6 value and chroma of 2 to 3 is associated with coarse, strong 

to very strong angular or granular structure. 

Color, Mottling, All Samples, Area Two, Figure 5.5-, Table S.S 

First canonical variates had a correlation of .63 (all samples, 

Area Two) (Prob> CHI-SQ= .0001). This can be interpreted as follows: 

moderate hue value code (.69), very low value code (-.86), and very low 

chroma code (-. 91) is moderately associated with very loW' __ m()ttling size 

code (-.96). In reference to the original variables, SYR and 7.SYR hue 

with value of 2 to 3 and chroma of 1 to 2 is moderately associated with 

faint coarse mottles, or 2.S YR and SYR hue, value of 6 to 7 and chroma 

of 6 to 7 is associated with prominent fine mottles. 

Color, Roots, All Samples, Area Orie, Ta15le S.6,-Figure S.6 

First canonical variates had a correlation of .78 (prob> CHI~SQ 

= • 0001). This was interpreted as follows: high hue values (. 8), low 

value code-(-:-.66), and very low chroma code (-.82) is highly associated 

with moderate frequency of medium roots (.92) and very high roots 
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TABLE 5.5 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 
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TABLE 5.6 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA ONE 
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quantity (.96). In terms of the original data, 7.SYR hue with values 

of 4 to 5 and chroma of 2 to 3 is highly associated with many medium 

roots, or SYR with value of 5 to 7 and chroma of 6 to 7 is highly asso-

ciated with few, fine roots. 

Considering the same canonical variate for subsurface zone (Area 

One) (Table 5.7, Figure 5.7), canonical correlation for the first 

variate was .66 (prob> CHI-SQ= .0011). This was interpreted as 

follows: high hue value (.8), low value code (-,68) and very low 

chroma code (-.87) is moderately associated with low medium root fre-

quency (.52) and very high root quantity (.89). In terms of the 

original variables, 7.SYR hue with value-of 4 toS and chroma. of 2 to 3 

is moderately associated with many medium root~. 

Structure, Pores Orientation, All Samples, Area Two, Table 5.8, Figure 

5.8 

The canonical correlation of the fir-st variate was .-ao (prob > 

CHI..,SQ = .0001). This was interpreted as follows: very high class 

code (.92), low structure grade and very low type code (-.92) is highly 

associated with very low frequency of random pores code (-.99), and 

very high frequency of oblique pores (.89). In reference to the origi-
-· 

nal variables, very coarse, weak prismat:Cc struct~re is highly 

associated with oblique pores, while very fine to fine, strong granular 

structure is dominated by random pores. This conclusion may shed some 

light on the degree of permeability for different horizons if the pores 

orientation is known. 

/ 



TABLE 5.7 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE, AREA ONE 

GANOfUCt.L !llEAN OF GRCUP l MEAN Of CPOUP 2 tA!'<IC~ICAL CHI-SQUARE 
YARI.\8LE CANG~ICAL VA~I~~LE CANONICAL VARIASLE CORRELATION 

l -0.61213'>55 0.20622166 0.65559231 32. 77825 

2 l.H09HH 0.1297195'1. Q.39174307 10. 30744 

3 O.H890792 -0.80439340 0.29505924 3.64340 

COR~ELATION COEFfICIE~TS BETWEEN EACH CANONICAL VARIABLE OF GROUP l ANO THE VARIABLES OF CROUP 1 

CANO I> I CAL HUE VAL CHRO 

VAR I 1 o.eo3761 -0.636237 -0.874213 

VAR I 2 o.s75in5 o. 695795 -0.196849 

VAR I 3 0.149605 -o. 33 32 75 o.443sso 

CORRELATION COEFFICIENTS BETWEEN EACH CANONICAL VARIABLE OF CROUP Z ANO THE VARIABLES OF CROUP Z 

CANONICAL RFINE RllED RC ORS RCUNT 

VAR I 1 -0.054607 o.sz 3520 -0.358597 0.892014 

VAR I 2 -o. 7•2958 1).426008 o.873872 0.092475 

VAil I 3 -0.555170 -0.502855 0.258979 0.187450 

OF 

12 

6 

2 

PROB ) CHI-SQ 

0.0011 

0.1113 

0.1593 
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TABLE 5.8 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA TWO 

CAl\Cf'> t C Al ~E4N '=!F Gk.:JIJi> • MEAl\I OF G!tOUP 2 C.$'fCl'lICAL CHI-SQUARE 
VAl1.U~l E C AN':llll IC I'll. \'O.!\ lA"I.;: CANJ~!CAL VA~IASL~ C'JRRELATtCN 

l u • .>olo~cl7 2 -0.03C0309l 0. 7'i739 755 121 .92035 

2 u.':17557 .. 62 -0.47194399 0.29005492 u. 81184 

3 '1olst1131•1" o.1 s?211s1 0.14238 797 2. 23261 

CORllELATICl\I C:lECFICll;'lllTS ocht.c·'< E.:l.C.!i CANJfllICAL VAll.IAeLE OF GROUP 1 ANO THE VARtA8l..ES OF GROUP l 

CAl\.CNIOL CLAS <.~AS TYPS 

11411 • 1 0.9205~2 u.52.dJ3 -o. 924202 

.. AR # 2 0.390101 -o • .>.>lJOU 0.314B7 

\AR # 3 -O.l20123 .... 18:>1 .. ,. 0.216459 

CORREL.&TICN COEFFICIENTS othEE'I E1<C.H CAN'JNICAL VARIABLE OF GROUP 2 AND Tl-!E VARIABLES CF GROUP 2 

CA'l\Cll;lCAL HC~PCR vcRi> uR. RANP!)R 08lPOR 

\AA II 1 0.41C347 u.lcB7<t6 -0.985425 o.e91999 

VAR f 2 -0.429723 "• 2J"4<>8 -o.056757 -o. ~35048 

llAR ti 3 -0.801737 u. 2222.ll" o.09a204 0.233413 
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12 
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PROB > CHJ-SQ 
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Structure, Roots, All Samples, Area One, Table 5.9, Figure 5.9 

The canonical correlation of first variate was .54 (prob > CHI-SQ 

= .0011). It indicated that moderate to high structure class code (.76) 

with high grade code (.82), and very high type code (.94) is associated 

with very high root quantity (.99). In terms of the original variables, 

strong, medium to coarse platy structure has low association with many 

roots, or very weak, medium prismatic structure has low association 

with few roots. It is very well known platy or strong prismatic struc­

ture impedes the growth of roots. This conclusion again supplies some 

evidence about the validity of this mathematical approach. 

Structure, Consistence 

The canonical correlation for the first variate was .63 (all sam­

ples, Area One) (prob> CHI-SQ= .0001).(Table 5.10, Figure 5.11). It 

was interpreted as follows: very high class code (. 97), very high grade 

code (. 97) and low type code is moderately associated with moderate dry 

code (.71), high moist code, high stickiness code (.85), and high plas­

ticity. In terms of the original variables, moderate association is 

identified between very strong, coarse to very coarse angular or sub­

angular structure and hard, firm, sticky and plastic soil materials. 

However, first correlation (all samples, Area Two) indicates that 

coarse or very coarse, weak to moderate prismatic structure is highly 

associated with very hard or extremely hard, firm to very firm, sticky 

and plastic soil materials. 

The same canonical variate was interpreted as fine or very fine 

moderate granular or platy structure is highly associated with loose or 



TABLE 5.9 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA ONE 

CANC'HCAL '4E A'f cs: GkJUP l MEAN OF GROUP 2 CANCN.ICAL CHI-SQUARE 
llAR I A ill E C l~(~;t C A1.. II Ail.lA<l~ t: CANONICAL VARIABLE C()l'llELATION 

l J .£l.0-.4Jl l 0.31H3298 o.53821425 .•. 32. 98733 

1 -v.u <;; 107 22 -o.3 2c2qo10 0.2t:225228 6.65086 

3 J.15'1717H o.oc;s11164 0.12249637 1016417 

CORPHATICl'o COEF"lCif'llTS ~t:TwE~'f EAC!i CANONICAL VARIABLE OF GROUP l AlllD Tt<E VARIABLES OF GROUP 1 

CA:i.rntCAL CLAS Gll.AS TYPS 

lrA'I f 1 c. 75€6!54 Oo !>2<tool 0.938742 

lrA'I ti Z -O.bC<;5:!2 -11.;\l~ld!> 0.316083 

'tall • 3 -C.2:!0032 .>.zs,~1t2 -0.137316 

CORRELAT!C~ C~EFF!CIE~TS bEThtc~ EACH CANONICAL VARIABLE OF GRCUP 2 AlllD THE VARIABLES OF GROUP 2 

CANCNICAL l<F! "IE o<'1c11 RC ORS RQU"T 

'<A~ • 1 O.~~EU7 o ... 911lol -0.054882 o.c;a9359 

'VAR I 2 -C.4C'i9t:7 11. 41oll54 -o.553061 O.C86818 

VAR II 3 o. 571444 -u. ;6,Hud -o. 732627 0 .022679 
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TABLE 5.10 

CANONICAL CORRELATION ANALYSIS FOR ALL SAMPLES, AREA ONE 

CANOt;JCAL MEAN.OF GRD:IP l MEAN OF GROUP 2 C ANC'fl: l CAL CHl-SQU/.lle 
VAf<U.BLE CANONICAL VAK1,8LE CANONICAL VARIABLE CORRELATION 

1 0.2ltfa25564 0.39005298 0.62911595 45.67761 

2 o.ou112119J -0.10351036 o.21,016eos 4.86752 

3 o.12s.zaia:. -0-.09933021 0 .02.610590 o. 05522 

CORRFUTJON COEFFICIENTS 8£rt1Eci cA:H CANONICAL VAltU8LE OF GROUP 1 ANU TH! VA.RUBLES OF GltJUP 1 

CANCIHCAL 

UR I 1 

VAR I 2 

YAP. I 3 

CLAS 

0.9669lft 

-0.101744 

-o.233934. 

GUS TYPS 

0.9072~U 0.512103 

U.177143 0.743508 

o.1e4a41 -o.430055 

CQRRrLATION COEFFICIENTS 8cTwEE~ cAtH CANONICAL VARIABLE OF GROUP.z ANO THE VARIABLES OF GR:>UP 2 . 

CAl'iONl C AL 

VA~ II 1 

vu • 2 

VAR• 3 

ORY 

o. 715801 

-0.393142 
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M~lST STK PLCT 

Oo46f>01a 0.854674 0.857585 
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soft, slightly firm or firm, sticky, and plastic soil materials (Table 

5.11, Figure 5.12). 

Considering the subsurface zone (Area One), the first canonical 

variate suggested that weak to moderate angular or subangular structure 

is moderately associated with hard and friable or firm soil materials 

(Table 5.12, Figure 5.13). The canonical variate for the subsurface 

(Area Two) suggested that coarse, subangular or angular structure is 

associated with very hard, friable or firm, and sticky soil material 

(Table 5.13, Figuie 5.14). 

Selection of the Diagnostic Criteria 

The comparison between morphological properties and their capabi­

lities as a diagnostic criteria is investigated in this section. The 

mathematical and the statistical concept involved in this approach were 

outlined in Chapter Four. Preliminary results are reported here. No 

statistical tests are carried in this investigation. 

Area Two, All Samples, Color/Coating, Figure 5.1 

Four very-well compacted groups can be recognized along the coating 

axis. Only four points belong to a separate group. Subdivision could 

be carried along the color axis, but with excessive overlapping. The 

significance of the clustering along the color axis is not clear and 

should be established by the statistical procedures. The superiority 

of the coating over the color as a diagnostic criteria is clear. 



TABLE 5.11 

CANONICAL CORRELATION ANALYSIS FORALL SAMPLES, AREA TWO 

CANCNTCAl KEAN OF GlllUP l MEAN OF GROUP Z CANONICAL CHT-SQUAPE OF PROB > CHl,,;SO VARIABLE CANOlllICAL VARlA8LE CANONICAL VARJASLE COP.R"LATlON 

1 I) .31t2 41905 0.5891t5650 o.87807228 ~60."3921 12 0.0001 

2 0.9Uit9C>lt- o.58000343 0.21006062 · 6.16071 6 0.4058 

3 U.95047Ulil -0.61462744 0.11598923 1.42221 z 0.4956 

CORR~LATJCN COEFFICIENTS BEfWEE~ eA:H CANONICAL VARIABLE OF GROUP 1 AND THE VARIABLES OF GROUP 1 

CAlliCNICAL CLAS ~~AS TYPS 

VAR I 1 0.91~050 o.Sl4L9S -o.928530 

11-'R I 2 o.ooe951 0.111111 0.205359 

lrAR jJ 3 o.394040 -a.35l1t1t3 o.309289 

CORRELATICN COEFFICIENTS BEfWEEN EACH CANONICAL VARIABLE OF GROUP 2 AND THE VARIABLES OF GROUP 2 

CANCNJCJL ORY KJIST STK PLCT 

VAR I l Q.91!1384 0.841t150 0.785948 0.807774 

VAR I 2 -o.132958 -0.113152 0.554101 0.32Blt83 

VAR f 3 0.117309 Cl. U1SZ11 o. 251101t -O.lt89308 
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TABLE 5 .12 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE ZONE, AREA ONE 

"4UN OF ~JUP 1 
CU<ICNtC~ Vt.RlillLE 

l.Z9:U7599 

"·994Jio9d4 

-.).135 7 .. 512 

MEAN OF ~OUP Z 
CANONICAL VARI ABLE 

0.22025221 

0.16451238 

-1.21664589 

CANONICAL 
CORRELATION 

o.59292610 

0.3U0183l 

Oo21t558473 

CHl-SCUARE 

ZT.85614 

8 • .!6269 

2. 79933 

CQQRFLATICN COEFFICIENTS B~T~EE~ EACH CANONICAL VARIABLE OF GROUP l ANO ThE VARIABLES OF GROUP 1 

CUo<CNlCAL CLAS :;us T'IPS 

\A:t • 1 o.25z542 o. 73cn2-.. 0.52205 

'tU I 2 0.91tl21tS -0.18Z7H -0.335109 

VAR f 3 -0.224234 -11.6492.1.S Oe78't069 

CORRELATICN COEFFlClENTS flET11ec-. EACH CANONICAL VARIABLE OF GROUP 2 AND TtoE VARIA8LES OF GROUP 2 

CAll.CNICAL D~Y MJlST STK PLCT 

'tAlt • 1 C. llHH 0.517~90 0.286167 -0.221597 

1'AR I 2 o. 31860" -11. 5121t:il 0.353934 -0.025135 

VAR I 3 -o.510224 -O.b•to21t5 -0.810790 -0.838471 

OF 

12 

6 

2 

PR08 > CHI-SQ 

l].0059 

0.2111 

o.21ts.r. 

i­
.i::­
i-



l.6Z6CC6~S • 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1.4e4!E361t • 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1.3421601! • 
I 
I 
I 
I 

CllOUP 1 I 
CAN VU I l I 

I 
I 
I 

1.2011:!801 • 

l 9 

IA A A G 
I 
I 
I 
I 
I 
I 
I 
I 

1.059,1520 • 
I 
I 
I 
I l 

8 

All A 

A C 

A 

A 

c 

11 

9 

c 

A 
c 

c 

e 

l 

A 

A· 

A 

·----+---------·-------------·--- ___ ...,___ _______ ., ____________ ._ ..... 
-O.CS239401 o.o6751t656 

L!G!NOI A•l oas.B•Z 085.!TC. 

0.187.\8713 

GROUP Z 
CA"f V~R t l 

o.3011o2no o.42736827 o.5473088.\ 

Figure 5.13. Plot of the Compounds in the Plan of the First Pair of Canonical Variables for 
the Subsurface Zone, Area One. ...... 

.i:-­
N 



C&NC!'IICAL 
VARIABLE 

1 

2 

3 

TABLE 5.13 

CANONICAL CORRELATION ANALYSIS FOR THE SUBSURFACE ZONE, AREA TWO 

"Ult OF IOK)UP l 
c•N~~IC~ VARIA~~e 

l .l .. 5%939 

o.uozs1u1 

l.l53SHSa 

MEAN OF GROUP 2 
CANONICAL VARIABLE 

1.38489253 

-0.90117216 

0.64302502 

CANOJf ICAL 
CORRELATION 

o.52440995 

0.19096540 

0.13<;78099 

CHI-SQUARE 

31. 03479 

4.66428 

l. 61803 

CORllELATICJf COEFFICJElfTS BET•EE~ cA;H CANllflCAL VARIABLE OF GROWP 1 AlfO THE VARIA&LES OF GROUP 1 

CANCIHCAL 

VACI I# 1 

UR II 2 

VAR II 3 

CLAS GUS T'f PS 

o.&96749 o.184790 -0.618063 
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Area One, P.M. Zone, Color/Coating, Figure 5.2 

One major group can be recognized along the coating axis. No major 

grouping is recognized along the color axis. If the definition of the 

P.M. (the Cr horizon), to be consistent with this approac~, no more than 

one major group should be formed. Because, eventhough genesis is not 

directly mentioned in the formation of the coating, they occur as a 

result of genetic processes. This process is not allowed in the P.M. 

zone. Some scattered points are present. These points could represent 

the locations where the shale interbeds with the sandstone in the 

Permian Formation. 

Area Two, All Samples, Color/Structure, Figurei 5.3 

Four discrete, compacted groups can be established along the struc-

ture axis. About eight points are not assigned to any groups. Another 

four, less-compacted groups, with only two unclassified points, can be 

established along the color axis. The superiority of each grouping 

should be evaluated by the statistical procedures. 

Area Two, All Samples, Color/Structure, Figure 5.4 

Four compacted groups can be recognized along the structure axis 

with very little overlapping and unclassified points. Some clustering 

can be recognized along the color axis, but with overlapping and less 

dense clusters. The boundary of each group along the color axis should 

be established statistically. Tendency of the structure superiority 

can be anticipated at this point, but for a conclusive result, statisti-

cal tests should be employed. 
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Area Two, All Samples, Color/Mottles, Figure 5.5 

Four discrete, compacted groups can be recognized along the mot­

tles axis with three points forming a small separate group. No overlap 

exists between different groups. Four, but less compacted clusters 

with much overlapping can be established along the color axis. 

If the soil is to be classified using the mottles as a diagnostic 

criteria, compacted and dissected groups can be easily established. A 

subdivision utilizing the mottles to subgroup would result in less over­

lap than if the subdivision would have been carried along the color 

axis. The capability of the mottles to produce more decisive grouping 

than the color is very clear and statistical evaluation would further 

support this conclusion. 

Area One, All Samples, Color/Roots, Figure 5.6 

Three compacted groups can be established along the roots axis 

with few unclassified points. Each roots group can be subdivided to 

several, less defined, overlapping subgroups. The limit on the sug­

groups should be established by statistical procedures. In this case, 

many points would be classified as inclusions. 

Area One, Subsurface Zone, Color/Roots, Figure 5.7 

Two major compacted groups can be recognized along the roots axis. 

few points did not belong to any of the major groups. If the color is 

used as a secondary criteria, many indistinctive subgroups with more 

unclassified points would result. In this case, many points would be 

regarded as soil inclusions. At this stage, the inclination is to 
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consider the roots as a better criterion than the color unless statis­

tically proven otherwise. 

Area Two, All Samples, Structure/Pores Orientation, Figure 5.8 

Three major groups can be established along both axes with sub­

division possibilities within each group also along both axes. The 

compactness, or the confidence intervals on each group and the superi­

ority of either property should be evaluated statistically. 

Area One, All Samples, Structure/Roots Distribution, Figure 5.9 

Two major groups can be recognized along the roots axis with few 

unclassified points. Three groups, but with mbre overlapping, can be 

produced along the structure axis. Subdivision for more dense subgroups 

is possible along both axes. There is strong tendency for the roots to 

produce more dissected groups than the structure. However, the subdivi-

. sion should be evaluated statistically. 

Area One, All Samples, Structure/Consistence, Figure 5.10 and 5.11 

Several groups can he recognized along the consistence axis with 

several points occupying the overlapping position. Two major, more­

compacted groups can be recognized along the structure axis, but with 

less unclassified points. Subdivision could be carried along both 

axes. Using the second canonical plan, the consistence exhibits very 

weak clustering capability. However, structure produces more groups 

with higher number of overlapping and unclassified points than in the 

case of the first canonical plan. 
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Area Two, All Samples, Structure/Consistence, Figure 5.12 

Two major, dissected groups can be recognized along the structure 

axis. No overlapping or unclassified points are shown along this axis. 

No clustering is produced along the consistence axis. Some clustering 

patterns do exist, but with excessive overlapping. The presence of any 

groups or subgroups along this axis should be established by different 

statistical procedures. The superiority of the structure as a diagnostic 

criteria is very clear and can be further substantiated by the statisti­

cal evaluation. 

Area One, Two, Subsurface Zones, Structure/Consistence, Figure 5.13 and 

5.14 

Three groups can be recognized along the structure axis with one 

unclassified point. Subdivision is possible also along this axis. 

Several, small groups, but with many unclassified points, can be esta­

blished along the consistence axis. Major groups and subdivisions 

along this axis should be determined statistically, but it may depend 

on the number of the groups that need to be established. The same pat­

tern also exists in Area Two (Figure 5.14). Two major groups are 

recognized along the structure axis with several small groups along 

the consistence axis. Many unclassified points are shown along both 

axes. 

Conclusions 

Relationships between many soil morphological properties were 

investigated using the canonical correlation technique. Significant 

associations were found to exist between different soil morphological 
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properties. Inference about specific states of the soul properties 

was possible by this technique. This would help stimulate further 

investigations on the source of the variation, especially if hypotheses 

concerning these variations or the factors involved are to be formu­

lated. 

Many morphological properties are used as a diagnostic criteria 

in the present system of classification. Constructing different com­

pounds that represent the soil properties and plotting these compounds 

in what is called the plan of the canonical variables showed to be a 

potential technlque to test the suitability of different properties in 

producing different soil groups or subgroups. Testing the suitability 

of the different properties to be selected as ~ differentiating crite­

ria was outlined. 

However, it should be noted that this technique would not inunedi­

ately produce taxonomical categories, but subsequent discriminant 

analyses should be used to test the significance of the classification 

groups or subgroups produced by the canonical variables. The use of 

this technique would also allow to assign, with a calculated probabi­

lity (degree of affinity), the soil that would be considered as 

inclusions otherwise. Furthermore, percentage and precise characteri­

zation of soil conclusions would be possible. One of the most important 

features of this technique is that all the aforementioned computations 

can be done with maximum objectivity and utilizing statistical proce­

dures. 



CHAPTER VI 

FACTOR ANALYSIS, AREA TWO 

Abstract 

A data set that consists of 109 horizons (23 locations) was used 

in this study. A total of 24 morphological and 14 chemical properties 

were used. The total data set was represented by a 109X38 matrix. The 

profiles were partitioned into the following zbnes and sets: 1) All 

samples (with three sets), 109X38, 109X24, and. 109X14; 2) Surface 2:one 

(includes all horizons with Ap designation) represented by two sets, 

23Xl4 and 23Xl4; 3) Subsurface zone (includes all horizons with B desig­

nation) represented by two sets, number of B'sX24 and number of B'sX14. 

Principal component axes were computed for all the above zones 

using the different sets. Ten principal axes were retained for factor 

analysis. Characteristic roots, final communality estimates, the con­

tributions of different factors to the conunon variance, and the 

correlation between the different rotated factors and the soil proper­

ties were also reported. An index to i.,clicate the magnitude of the 

variation of different soil properties was formulated. 

The factors' model was an effective tool in scanning the soil vari­

ations. The ten factors' model was sufficient for the morphological 

properties, while the six factors' model was more appropriate for the 

chemical properties. This indicated higher variability among 

150 
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morphological than chemical properties. This was true regardless of 

the partitioning procedure. However, better understanding on the pos­

sible source of the variation among the different properties could 

result when the data are partitioned into subsets. Nevertheless, more 

compacted groups or clusters resulted when the data were not parti~· 

tioned. In this case, the first three factors were the most important 

but with lower conununality estimates than in the case of partitioned 

sets. The loading index indicated the importance of various soil 

properties within each horizon regarding the magnitude and the contri~ 

bution to the total variation. However, as a general result, properties 

related to soil moisture were the most variable in the soils of this 

area. 

Introduction 

Mathematical classification is not the only way of expressing the 

relationships between continuous variables like soil. Alternatives to 

mathematical classification have been pursued by soil scientists. 

These alternatives include what is called ordination. Principal compo­

nent and factor analysis are some of the techniques which have been 

used to study the relationships between soils, Cuanalo (18), Holland 

(31), and Arkley (2). 

The principal component (PC) analysis is concerned with arranging 

soil individuals along a few axes chosen so as to preserve as much 

information as possible about the soil individuals being studied. The 

axes are derived mathematically and possess certain properties that 

can be used in studying the relationships between soil individuals. 

Physically, it could be said that the technique involves looking inside 
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a single set of variables and attempting to assess the structure of 

these variables after they have been transformed to a system of inde-

pendent variables. 

A brief sununary of the mathematical concepts involved is given 

here. For greater detail, many texts are available (Morrison, 46; 

Richards, 56; and Harman, 32). Suppose we have P measurements like 

color, organic matter, calcium, and potassium on as many as N observa-

tions. N can be either the number of soil profiles or the number of 

horizons. The original data can be represented in a matrix notation 

as follows: 

X11 • • • • • • • • • .xpl 

x = 

(6.1) 

Let us further assume that the covariance matrix ~ is of full rank and 

the characteristics roots A1> •••••••• AP of~ are all distinct. The 

set of the original P variables are used to generate new P variables 

y 2 •••••••••• yp as follows: 

(6.2) 

or Y = A'X where each column of A contains the coefficients for one 

principal component. Thus the Y. 's (principal axes) are linear combina­
i 

tions of the original data. The Y. 's are constructed such that the 
l. 



153 

2 
sample variance of Yi= ai'X given by SYl = § 1 8~ is greatest for all 

coefficient vectors normalized so that a'a = 1 where S is variance-- -
covariance matrix. The problem is not to determine a. subjected to the 

1. 

above constraint. Using the Lagrange Multiplier, it can be proved that 

the coefficient must satisfy the P-simultaneous linear equations 

Is- Aiia. = O. 
-1 

·(6.3) 

If the solution to these equations were to be other than the null vec-

tor, the value of A. must be chosen so that the determinant 
1 

A.II = 0 
l. 

(6.4) 

A. is thus the characteristics root of the covariance matrix and a. is 
1 -1 

its associated characteristic vector. Since 1 1 ~ 1 = 1, thus 

where SYl is the variance of the first principal axis. Since the coef­

ficient vector was chosen to maximize the variance, then Al must be the 

greatest characteristic root of S. Therefore, the first principal axis 

possesses the property of explaining the largest amount of the varia-

tions of soil variables. 

The second principal axis is the linear combination Y2 = a2 1x, 

whose coefficients have been chosen subjected to the constraint, 

~ 2 ·~2 = 1, 1 1 1 ~ 2 = O, so that the variance of Y2 is a maximum. From 

the above restrictions, it can be seen that the Y2 is independent of Y1, 
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and next to Y1 , Y2 has maximum variance. Y3 •.•.. Yp are constructed in 

the same way. 

All of the original data are now transformed to a new system whose 

axes are orthogonal. Each axis accounts for a portion of the original 

variance. The following model expresses the whole system: 

Y •• 
l.J 

+ ••••• a .X 
PJ p 

(6.6) 

and the total system variance is Al+ A2 ..•.• +AP= tr S, where Ai's 

are the eigenvalues of S. The contribution of the jth component in 

explaining the variation of the system is 

A. 
---1-- x 100. (6. 7) 

tr S 

The moment correlation of the ith response and the ith component will 

then be 

a .. ;--r-: 
l.J J 

s. 
l. 

(6.8) 

If the components have been extracted from the correlation matrix rather 

than S, the sum of the characteristics roots will be 

tr R = P (6.9) 

The proportion of the variance of the ith component to the total vari-

ance is 

A. 
l. 

p (6.10) 
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If the correlation matrix was used in the transformation, the new 

system is described as follows: 

-x (6.11) 

Principal Factor Analyses 

Principal factor analyses was introduced by Spearman (64), and was 

developed to its present level by Gernett (26) and Thurstone (66). The 

technique aims to explain observed relations among numerous variables 

in terms of simpler relations. The simplification may be by producing 

a set of classification categories or creating a smaller number of hypo-

thetical variables. Actually, factor analysis is a way of classifying 

manifestations of variables, but not immediately the producer of taxo-

nomy of individuals. Two routes of factors computation have been 

followed (Cattel, 16): 1) the principal axes method; 2) the centroid 

method. In this study the principal axes method will be followed. 

Previously in the section of the principal component analysis, we 

already constructed the following model 

p 
Y. = j~l a .. X. 

1 1J J 

J = 1, ..... p (6.12) 

or in matrix notation, Y = A'X. From this it follows that X can be 

regenerated from Y 

(6.13) 
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= (6.14) 

Thus the mathematical model or the general linear representation of the 

data can be given in the following model: 

x 
p 

= + ••.••• 

Al F mm 

A F 
pm m 

+ 

e: 
m 

(6.15) 

or X = AF + ~ in matrix notation where A is a factor loading matrix, 
p 

f is a common primary latent factor, ~ is an error vector. The assump-

tions underlying the above model are: 1) the F's are independent, zero 

means unit variance; 2) the ~'s are independent, zero means variance 

$.; and 3) the F's and the e:'s are independent. As a consequence, 
i 

m 2 
cr •• = .L: 1A •. + $., 
ii J= iJ i 

for J = 1, ..... ,m, 

i=l, ..... ,p. 

m 
The first term .E 1 A~. is called communality of the ith response 

J= iJ 

(denoted h.), while$. is called specificity. 
i i 

cr .• = k~lAik Ajk' iJ 

for i t J 

which is in matrix notation 

L: AA + $ 

(6.16) 

(6.17) 

(6.18) 
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From these relations it can be seen that the PC model regenerates the 

original data from the PC's, while the factor model partially regene-

rates the data from the common factors. Also, in the PC model, the 

cr .. 's completely accounted for the PC's variance, but in the factor 
11 

model, the cr .. 's were split into two parts, the communality (that part 
11 

of cr .. attributed to the common factors), and the specificity (that 
11 

part of cr .. attributed to the error). Let 
11 

Y. 
F. = 

J 0.. )li:i 
J 

for J = 1, .... , m, 

],. 

and their corresponding loading A .. = a .. (\.) 2 • Also let 
l.J J1 J 

E: • 
l. 

p 
• L: 1a .. Y.' 
J=m+ J1 J 

for j = 1, ..... p. 

Thus the factor model can be rewritten as follows: 

p 
X. = .~1 a .. Y. +. L: 1a .. Y., or 

l. J= 1J J J=m+ J1 J 

m p 
~ x. = .La .. (A.) 

1 J=l. 1J J 

Y. 
l. 

0.)'2 
J 

+ . L:+ 1a .. Y., 
J=m J1 J 

for J = 1, ..... p. 

As a consequence, the new model is 

X. = .Y:11 \ .. F. + E:i.'' 
1 J= 1J J 

where A •• = a .. 
1J 1J 

12 = a .. (A.) 
J1 J 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 



and F. 
J 

~ =Y./0 .. ) 
J . J 

and the communality of the ith response is 

Irt the PC model 

m 2 
. El;\ .. J= l.J 

m 2 2 
= .E 1a .. ;\., and~= Ea .. ;\ . 

J= l.J J Jl J. 

.12 . 
(a ... ;\,) 

(x Y ) JJ J corr . , . = --"-8-----
i. J •• 

1.1. 

while in the factor model, 

corr(S., F.) =a .. 
1. J Jl. 

k 
(;\.)2 = ;\,. 

J 1.J • 

The factor loading are interpreted as the correlation between the 

response (standardized) and the latent factors. 

Factor Rotation 
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(6.24) 

(6.25) 

(6.26) 

(6.27) 

It is well known that an orthogonal transformation of uncorrelated 

variables result in uncorrelated variables. Furthermore, if the coeffi-

cient producing the transformation are appropriately normalized, the 

variance of the original variables remain unchanged. Denote, by F, the 

mxn matrix of each of the m factor scores ort the units, and let 0 be mxn 

any orthogonal matrix, such as, O'O = 00' = O. Thus the factor model 

becomes 

X = A pxn pxm 
F + e: or X = 0 10F + e: mxn pxn' (6.28) 

R = C . F + e: (6.29) 
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Thus we have a new factor model in which the connnunalities and the 

specificities of the original model remain unchanged. The elements of 

0 have the same interpretation as the elements of A. 

c .. 
1J 

R = corr(X., F.). 
1 J 

Statistical Approach 

(6.30) 

Each area was treated as an independent unit and the series boun-

daries were ignored in this study. Three .genetic zones were 

recognized. The surface zone (includes the Ap, and Al2 horizons), the 

subsurface zone (includes all horizons whose field designations start 

with B), and all samples (all samples were treated alike without refe-

rence to the field designations). The last one will be referred to as 

"all samples analysis." 

SAS (1976) was used in the computations. Principal axes were 

computed first. The largest portion of data variance was accounted by 

the first ten axes. Therefore they were retained for subsequent analy-

sis. Eigenvalues and the contributions of each axis to the conunon 

variance were also computed. Ten axes were used to build the principal 

factors' model. The Varimax solution was employed for rotation of the 

factors. 

The data set was partitioned into three sets, the chemical data 

set, the morphological data set, and all data combined together. Each 

of these sets was subjected to principal component analysis. This 

approach was followed in order to achieve the following objectives: 

1) to study the sources of variation in each genetical zone in the soil 

profile and for the whole profile; and 2) a data reduction device was 

employed whereby sorting the different soil properties according to a 
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certain weight determined by higher loading, the property association 

with the factor that accounts for a larger portion of the data variance 

will be discovered. Furthermore, it is hoped that this technique will 

yield an index to be used in selecting the most appropriate properties 

suitable for the cluster analysis. 

Results and Discussion 

A correlation of .4 or higher was declared significant in this 

study. This was an arbitrary and subjective choice. 

Chemical Data, Surface Zone 

Six axes accounted for 91.5% of the total variation. Twelve prin­

cipal axes accounted for 100% of the variation. The first axis was 

correlated with pH, Ca, Mg, BST, CEC, clay, silt, and accounted for 

34.9% of the total variance. No significant correlations wer.e indicated 

between axes 8, 9, 10, and any of the soil properties (Table 6.1). 

Ten principal axes were used to build the factors' model. The com­

puted factors' model accounted for 99% of the total variance. Six 

factors accounted for 85% of the common variance (Table 6.2). Final 

communality estimates were above 97% for all soil properties. This 

indicates that the constructed model has a high capability in explaining 

the variation and regeneration of the original soil properties involved 

in the computation. 

Table 6.2 shows the analysis of the rotated factor model. The 

coefficients listed under the heading "factor pattern" can be interpre­

ted in two different ways. They are either the correlations between 

each factor and all the soil properties, or they are the loading 
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TABLE 6.2 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE 
OF THE CHEMICAL PROPERTIES, SURFACE ZONE 
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(relative weight of each soil property on each factor). Furthermore, 

the summation of the squared values of these correlations is the portion 

of the variance explained by that factor. 

For example, the first factor, by construction, explained as high 

as 22% of the total variation in the data. Hydrogen had a loading of 

(-.96), pH (.88), Ca (.89), and base saturation (.85). The rest of the 

soil properties did not show any significant (above .4) loading with 

this factor. This suggested that H, pH, Ca, and BST are the soil pro­

perties that contributed largely to the soil variation in the surface 

zone of this area. Thus, the first factor could be regarded as the 

factor explaining the intensity of leaching and acidity of the surface 

of the soil. 

The second factor accounted for 20.6% of the total variance. It 

was highly correlated with CEC (.96), Mg (.90), and to a lesser degree 

with sodium (.71) and Ca (.62). This suggested that factor two is 

strongly tied with the exchangeable cations and soil capability of 

holding these cations. 

The third factor explained 16.1% of the total variance and was 

highly associated with soil texture, namely, silt and clay. The fourth 

factor accounted for 8.1% of the total variance. It was highly corre­

lated with one soil property, that is organic matter (.96). The 

loading of the rest of the soil properties on this factor were negligi­

ble. The fifth factor was correlated with fine sand (.95), while the 

sixth factor was correlated with very fine sand (.93). The seventh 

factor was correlated with calcium carbonate (.86). The ninth factor 

accounted for only 2% of the total variance and had a low correlation 

with sodium (.52). Factor ten explained only .8% of the total variance 
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and did not show any significant correlation with the soil properties. 

Figure 6.1 shows the loading of the different locations on factor one 

and two. The symbols indicate the number of the locations having the 

same loading. For example, the number 9 indicates that nine different 

horizons (observations) had the loading values that were the same on 

factors one and two. These horizons belong to different soils since 

very few soils have more than one Al horizon. Since more than one 

location (observation) had the same loading, the unique identification 

of the exact location was not possible. The graph showed the presence 

of several groups. This suggests that if the area is to be mapped on 

similarity between surface horizons, more than four groups or units 

would be established. 

However, since very compacted (the presence of 12, 9, 8, and 7 

observations having the same loading) clusters were observed, this 

suggests that mapping series with a narrow range of variation of chemi­

cal data might be possible. This was substantiated by the fact that 

six axes were able to explain 91% of the total variance, and it could 

be assumed that a reasonably homogeneous mapping unit could result. 

Morphological Data, Surface Zone 

Total variance was 21 (Table 6.3). Six and ten axes accounted for 

76.1% and 92.4% of the total variance respectively. The morphological 

properties had significant correlations with ten principal axes. 92% 

of the variation of the chemical data was explained by six axes, while 

ten principal axes were needed to explain the same amount of variation 

in the morphological data. Final communality estimate, which is the 

portion of the variables variance explained by the factors' model, werP 
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less than its chemical counterpart. It varied 79.4% for stickiness to 

99% for the root size. This suggests that the degree of variability 

among the morphological properties is higher than for,. the chemical pro­

perties. 

Six principal factors accounted for 67,2% of the variance of the 

total data (Table 6.4) and 85% of the chemical data. The first factor 

was responsible for 21. 8% of the total variance. It is highly corre­

lated with the consistence variables, namely, dry and moist, coating, 

and pores orientation, followed by texture, plasticity and the strength 

of the structure. 

It seems that the first factor identifies the properties most 

important to soil moisture relationships. The second factor accounted 

for 15.2% of the variance. It is correlated with size of the roots 

and the concretions. The fourth factor is highly correlated with hue, 

value, an~ chroma, and to a lesser degree, with the type of concretions. 

The ninth factor is highly correlated with structure size. The tenth 

factor was correlated with chroma and accounted for 5.5% of the variance. 

It seems that high correlations existed between morphological pro­

perties and different factors. However, 36.3% of the total variance was 

explained by the first two factors, while the rest of the variance was 

evenly shared by eight factors. This is a good indication of the high 

variability among soil morphological properties. This conclusion was 

supported by plotting the loading of different locations on different 

factors. The values of the loadings were so scattered that the computer 

plotter failed to plot them. 
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Subsurface Zone, Chemical Data 

Total variance was 14 (Table 6.5). Six axes accounted for 91% of 

the total variance, while ten axes explained 98.6% of the total vari­

ance. No significant correlations were exhibited between the soil 

properties and the axes 7 to 10. Six of the ten factors accounted for 

75.4% of the total variance (95% for the surface area zone). Final 

communality estimates were above 95% for all soil properties. 

The first factor accounted for 14.4% of the total variance (22% 

for the surface zone). It is highly correlated with the sand fractions 

(Table 6.6). The second factor accounted for 14.8% (20.7% for the sur­

face zone) and is highly correlated with hydrogen, pH, and to a lesser 

degree with sodium (.49). The third factor explained 14.4% of the 

variance and is highly correlated with clay (.92) and silt (-.95). 

Base saturation, calcium, and calcium carbonate had high loadings on 

the fourth factor which accounted for 17.4% of the total variance. The 

fifth factor identified potassium with high loading, while the sixth 

factor identified organic matter (.88) with the highest loading. No 

significant correlations were found with factors nine and ten. 

It appeared that the factors in the subsurface zone had better 

physical interpretations than for the surface zone. Each factor 

explained a portion of the variance as special types of soil properties. 

For example, the first and third factors identified physical properties 

important for soil moisture relationships. The second and fourth fac­

tors identified properties important to the leaching pattern. The 

fifth factor was associated with potassium, while the sixth factor 

identified organic matter. The eighth factor was highly associated 
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TABLE 6.6 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE 
OF THE CHEMICAL PROPERTIES, SUBSURFACE ZONE 
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with cation exchange capacity and magnesium which are important proper­

ties for clay mineralogical identification and soil development. 

This pattern of speciality in explaining only certain types of soil 

properties helped in producing several groups, but with obvious overlap­

ping when the loading of the locations on factor one and factor two 

were plotted by the computer.(Figure 6.2). 

Subsurface Zone, Morphological Data 

Total variance was 23 (Table 6.7). Six principal axes accounted 

for 65.3% of the total variance, while ten axes accounted for 81%. The 

final communality estimates varied from 67.5% for structure class to 

92.6% for concretions size. Six principal factors accounted for only 

56.6% of the data variation. In comparison with the surface zone, the 

factors for the subsurface zone appeared to be highly specialized in 

explaining the variations of certain types of soil properties. For 

example, the first factor was specialized in color, coating types and 

structure class (coating types and structure class showed high associ­

ation with color, chapter 5). The second factor specialized in texture 

and consistence (9.9%). The third factor identified the concretions 

(8.8). The fourth factor was highly correlated with the color (13.3). 

The failure of a few axes to he correlated with a large number of 

soil properties, or to explain a higher portion of the data variations, 

is another indication of the high variability among the soil morphologi­

cal properties. Figure 6.3·showed several overlapping groups that 

resulted from plotting the loadings of different locations on the first 

and second factors (Table 6.8). 
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PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE MORPHOLOGICAL 
PROPERTIES, SUBSURFACE ZONE 

FACTOR! FACTOM2 FACTORJ FACTOR4 FACTORS FACTOR& FACTOR7 F41CTOR8 F ACTOR'I 

-0.22:<'3 Ool9072 0.32096 0.01~23 0·2~91!4 OolE514 0·12320 -0.07394 o.59813 

1).3q;,•;i -0.241'55 -0047444 0027215 -0.20212 0033532 -Ool6l57 -00040711 -Oo2f.ll25 

-Oo.!•JJb 0 o7 •8114 0002292 0.01347 -0.27640 -0.20680 -o.1•7t8 -0.06494 -0.03846 

0~44475 0060669 -0.01627 o. uaoo 0.11173 -o. 0Sd75 -0.35477 0.163111 0.0112:< 

Ool9525 0 .1 f!4 I 7 o.o·H1;1 o. Ol'S24 o.;;131;4 -0.22447 -0.07593 -OoO'!JIJO -O.l9715C 

0.2•9~0 o."f:•06 -O.JR004 o.2~t~g o.234!'14 o.1c1112 o.:?'1399 0·31165 -0.04543 

Oo\J6BS" o .29ar,2 -o. 326 ll o.scos1 0.111,20 o.1r.116 0.44048 0.16292 -0.10105 

·001qos1 0.09129 0.26911 -0.32367 o • .>1313 o.21seu <lo<l'l820 -o. 0'56119 -o. Oll•HO 

o.1 •<i'lt1 0.119'12 Oo 26!Hi6 -o. 311!'53 o.uoell o.21et'e 0.14934 -o.1oaea -0.110'51 

O.JE6'1 0.11825 o.:<'!1740 -0.20674 -o.u7469 o.21c>ss o.22Ho -0.06368 -0.1527~ 

-0.63415 0·46917 0·31631 -0.10039 0.15504 o.2os'i1 0.01010 -0007383 -o.oqzo5 

o.s601H -Ool •llO 0007954 -O.OA426 Oo410J5 -0.36075 0.17251 -0.13401 0.21235 

0.1 .. 164 -0.33344 -0.27(169 Oo11oea -0.03200 -o. 2E98l 0006434 -0.01;7:'1• o.Cli5'5 

0·55!109 0.20405 -0.321'511 O.OE925 Oo]Oo"9 .. 0.03395 -0.21151 0.01;153 0.11•4<; 

(1.12987 0.17462 -·o.10Ja11 Oo1809l -Oo5"1C.77 -0·27091 0.4'51'57 0.16476 0.17646 

-o .2 e n9 -0.297"1 0·28139 •Oo358l2 0·2~024 -0.133,0 0.13113 Oo62902 -o. 070'i0 

-0.3<1341 -0010367 -0.23348 o.1J796 0.37535 -0·2•474 o.32346 -c.5•79& -C•l709E 

0.2110511 -o •2.1672 0.60458 Oo6C)l89 -0.11111 o.oen2 o.04295 -0.05249 -o.OC!6'l! 

0 •. 20~35 -0.24080 0.65401 0054247 -Ool3.!17 -0·06786 -0.01134 0·02535 o.0•628 

Oo139'17 0.012<15 0.38701 o.53469 0.21456 -0•14194 -o. 15192 0.03846 -o. 2'5313 

0.12400 -0.111788 -0018483 Oo032l7 o.ozau -o. 07135 -0.11300 Oo03l27 o. :<4 E95 

0024900 0 .50405 0.09116 -0.229fi6 -0.50953 -0·0•6'51 0002729 -0.1959• 0.09961 

-0.31110& -0.14192 -0.21362 0.33019 000:1753 o.s5854 -0.0636;J -0.06492 0.21792 

FJN41l COM~UNAlITY ESTIMATES• 

Tli TCK T£XT ORY ll'QTST 511( PLCT fUllUND "SIZ~ MCOllT 

FACTOAIO 

-o .015;; 05 
-OoOl(;";l 

0.01616 
-0.07305 

o.309q3 
0.21212 

-0.242A6 
0.09049 

-0.07C78 
-0.00420 
-0.19911 
-0.13319 

o.o•'ii78 
0.012-;3 

-0.12921 
o.1101j5 
0·1!715 
Oo1!421 
0029124 

•0044273 
-o.oe2os 

0.04276 
0.16313 

t'UE VAL 

o.et7U9 Oo7lll716 0.118219 0.111893 0· 181465 00800348 Oo79021e 00918196 0·890761 o.861496 0.853387 00757110 

CMkO Cl4S GAAS TYPS ROUNT CONQUNT CQflSll CO NCO LOR COATYPE PORSIZE PORORlEN 

o.840437 0.6752&3 0.19930• o.899•86 0.909006 0 .90900.; o.9 262ll' Clo8lS213 0.683156 0.69(;930 c.12s•82 

-·· ·-·--
l 2 3 4 5 fi 

ETGFllV.llWES 5.0:!lt•754 2·914577 2•246'512 
7 e 9 JC! 11 

200147611 1·5•2689 l•26S3f>O 
12 

POllTIOlll 0•219 
&0043364 0.98562• o.a•••21 0.744056 

Oo 12 7 o.oge o.o8a Oo067 0.055 Oo045 
0.645115 00:69229 

CU!'! POl<TlO" 
0.043 Oo 0.57 

0.219 o. 146 Oo443 0.531 o.sge 0·653 
0.032 0.021 o.02s 

Oo698 0.141 0.779 o.a10 0.939 o.•63 

1' 1" 15 16 17 18 
ElCiEllVALllES 0.56268/S 

19 20 21 
Oo•HJ0b7 0•429192 00357253 0.150112 

22 23 

POMTi011 
00278769 Oo25954l 0·175271 0·116483 

Oo02• 0.019 Oo019 0.01& 
00092963 00011423 

CUtt PORT ION 
o.01s 0.012 0.011 o.ooa 

0.11111 o.901 Oe926 
o.oos o.oo., o.oo:s 

0.941 0.957 0.969 Oe980 Oo.988 Oe993 0.997 1.aoo 
..... ..... 
.p. 



80.D 
THICC 
'iJ l 
~•Y 
•1,TST 
stir 
PLC1 
... ~U'<O 
.. :!.JZ£ 
•CD•T 
l'LF 
If•\. 
(HIOC 

CL•5 
~fl$ 

fYP5 
•i;u~T 

CC"wU"T 
"'~IZ 
CQ .. C:OLOll 
CGUYPE 
f'GQSIZE 

TABLE 6.8 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE OF 
THE MORPHOLOGICAL PROPERTIES, SUBSURFACE ZONE 
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From the previous discussion, it appears that the chemical proper­

ties are less variable than the morphological properties in both zones. 

Few axes effectively explained a large portion of the variance of 

chemical properties, while a larger number of axes were needed to 

explain as much variance of the morphological properties. Furthermore, 

it appears that the constructed factors, for both the chemical and mor­

phological properties of the subsurface, can be associated with the 

soil properties that are important in explaining general processes, 

relationships, or soil-development. 

All Samples, Chemical Data 

Total variance was 14 (Table 6.9). The first axis accounted for 

43.6% of the variance. The six axes accounted for 92.7%. The first 

factor acco~nted for only 31% and six factors explained 72.5% of the 

total variance. The first six factors for the surface and the subsur­

face accounted for 85% and 75.4%, respectively. This might suggest 

that zonal analyses result in a better estimate of the variances. 

Furthermore, it gives a better comprehension of the magnitude of the 

variation of each soilJproperty within each genetic zone. This is 

extremely important if a hypothesis is to be evaluated about the rela­

tionships between the different soil properties and external or internal 

factors. 

Final communality estimates for different properties were very 

high, which indicates that even when all horizons were treated together, 

the ten factors' model was very effective in scanning the variations of 

the soil properties in the profile. 
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TABLE 6.9 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE 
CHEMICAL PROPERTIES, ALL SAMPLES 
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No ~ignificant correlations ~xisted with the principal axes 6 to 

10 (Table 6.10). The first factor was correlated with very fine sand 

(3 .1%). The second, third, fourth, and eighth factors accounted for 

66.3% and were highly correlated with H, pH, silt, clay, Ca, BST, CEC, 

Mg, and, to a lesser degree, with OM, Na, Caco3, and very fine sand. 

The fifth factor was correlated with K (.97). 

It appears that when the analyses were done on zonal bases, the 

highly correlated properties were explained by separate factors, but 

when all the horizons were treated alike, properties that are not highly 

correlated among themselves were explained by the same factor. This 

leaves some of the factors which highly participated in explaining the 

variations with less meaningful interpretations. The loadings of dif­

ferent locations on factors one and two produced more compacted groups 

than in the case of zonal analyses, but with clear overlapping (Figu~e 

6.4). This could be attributed to the soil inclusions. 

All Samples, Morphological Data 

Total variance was 24 (Table 6.11). The first, third, sixth, and 

tenth axes accounted for 59.1%, 74.5%, and 86.7% of the total variance, 

respectively. The first three axes accounted for more than its counter­

parts in the surface and the subsurface zones. Furthermore, the first 

six factors explained 72.3% of the total variance. This was a higher 

estimate than for the surface (67.2%) and the subsurface (56.6%). The 

final communality estimates were also comparably high. They varied 

from 73.1% for soil stickiness to 97.8% for structure grades. 

It appears that the ten axes (for all samples) explained less of 

the soil variance than the first six factors of the separate zones. 
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The ability of the first three factors to explain a higher portion 

of the variation of the soil was reflected by plotting the loading of 

the different locations on the first three factors (Figures 6.5 and 6.6). 

More compacted groupings can be observed with some clear dissection. 

The presence of the overlapping in both figures strongly suggest the 

presence of a large portion of soil intergrades. These intergrades, 

which could be regarded as inclusions, can be considered as one of the 

reasons why the ten factors explained a lesser portion of the soil 

variations. 

The absence of the speciality among factors in explaining only one 

type of the soil properties was clear (Table 6.12). For example, the 

second factor accounted for 13. 9% of the total' and it had a high corre­

lation with mottling and a low correlation with root quantities. The 

relationships between the mottling and the root quantities is not under­

stood. Similar patterns were also observed for the eighth factor where 

color variables and structure class were correlated with the same factoL 

Chemical and Morphological Data Set 

Thirty-eight principal axes were computed to explain the variance 

of the data. The first ten axes accounted for 81.8% of the variance 

(Table 6.13). No significant correlations occurred between the soil 

properties and the ninth axis. All the soil properties showed signifi­

cant correlations with the first axis except for the sand fractions and 

the pores. 

Six of the constructed factors accounted for 71.8% of the total 

variance (Table 6.14). Final communality estimates varied from 65.3% 

for structure grades to 97.7% for silt. The first factor accounted for 
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EIGENVALUES AND CONTRIBUTIONS TO THE COMMON VARIANCE 
OF ALL SOIL PROPERTIES, ALL SAMPLES 
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22.6% of the common variance and was associated only with the morpholo­

gical properties except for the organic matter. The second factor had 

higher correlations with chemical properties than with the morphological 

properties (Table 6.15). The third factor accounted for 6.3%' of the 

common variance and was correlated with the concretions. The fourth 

factor accounted for 4.7% and was correlated with pores and to a lesser 

degree with the horizon thickness. The ninth factor was totally corre­

lated with chemical properties and accounted for only 5.5% of the common 

variance. 

It appears that the first six factors were the most important in 

explaining the data variations. The number of the soil properties that 

showed high loading decreased as the order of the factor increased. 

The first three factors had high correlations with many important 

soil properties. This was reflected by the compactness of the groups 

produced by plotting the loadings of different locations on the first 

three factors (Figures 6.7 and 6.8). Two distinct groups were recog­

nized by plotting the first against the second factor. Three groups 

were produced by plotting the first against the third factor. However, 

some locations were too far from the center of the groups. Such situa­

tions could be due to the presence of soil inclusions. 

It seems that treating the soil horizons alike produced more com­

pacted groups. Moreover, each factor was correlated with many 

properties whose intercorrelations are not clear cut. This made the 

interpretation of the factors difficult and less meaningful •. Parti­

tioning the data to different genetic zones and different data sets 

gave better understanding about the extent of the variation of each 

single property within each horizon. This, in turn, will make the 
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selection of the properties with the highest loading within each horizon 

easier and more systematic if data reduction for further analysis is to 

be undertaken. Moreover, knowing or isolating the properties that 

exhibit higher variation could be done systematically. This would be 

helpful in formulating hypotheses about the sources of the variations, 

especially when external factors are involved in the investigation. 

Thus 

Loading Index 

Previously it was shown that 

m 
X. = .I: 1 f. •• F. + e: •• 

1 J= l.J J 1 

Var (X.) 
1 

m 2 
= .L: 1A •• + '''· J= l.J 'I' 

m 2 2 

(6.31) 

(6.32) 

Where .L: 1A .. is called the communality, f. .• is the portion of X. vari-
J= 1J 1J 1 

ance explained by F .. Therefore, the total contribution of F. to the 
J J 

total variance is 

p 2 
V = .L: 1A .. 

J= 1J 
(6.33) 

L = (V/N) X 100 is the percentage contribution of the F. to the total 
J 

variance. N is the number of the variables. A .. is interpreted either 
1J 

as the correlation between X. and F. or the portion of X. variation 
1 J 1 

2 
explained by F .• Therefore, A x L = D wou1d be a measure of the 

J ij 

relative contribution of X. in explaining the data variance. The magni-
1 

tude of D would serve as an indicator of the relative variance of X. in 
1 
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comparison with the other variables in the same set. Tables 6.16, 6.17, 

and 6.18 show the different soil properties listed according to their D 

values in a decreasing order. Higher D values indicate higher contri­

bution to the data variance. The D values were calculated for the soil 

properties within each data set. The indices revealed the significance 

of investigating the variation of soil properties within each zone. 

Different arrangements were found for each different zone and for 

each chemical and morphological property. However, it was noticed that 

certain properties occupied the top position of the index within dif­

ferent zones, but with a slight change in the order. This conclusion 

is in complete harmony with previous knowledge that soil properties are 

different in their variability within each horizon. This indicates 

that validity of this approach. For example, studying the D values 

for the surface and subsurface, the values suggested that properties 

related to leaching intensity or water holding capacity are the most 

important properties to consider in further investigation of soil vari­

ability. The same pattern was also noticed in case of morphological 

properties. Properties like texture, consistence, mottling and concre­

tions occupied the top position of different indices listings. 

Summary and Conclusions 

Previous analysis showed that factqr analysis can be a proper tool 

in studying the variability of different soil properties. Factors' 

models were very effective in estimating the variance of individual soil 

properties. Ten factors' model was sufficient for this purpose. How­

ever, the first six factors were enough to explain the variation of the 

chemical properties while ten factors were needed for the morphological 



Surface 

porp. 

1-H 

2-CEC 

3-Ca 

4-PH 

5-Mg 

6-BST 

7-clay 

8-Silt 

9-Na 

10-Fs 

11-0M 

12-Vfs 

13-CaC03 

14-K 

TABLE 6.16 

LOADING INDEX (D) FOR THE CHEMICAL.PROPERTIES 
WITHIN THE DIFFERENT GENETICAL ZONES 

zone Sub fur face zone all samples 

D prop. D prop. D 

20.7 BST 14.73 BST 14.45 

18.59 Ca 13.48 silt 14.19 

17.43 silt 13.00. H 14.14 

17 .04 clay 12.19 clay 12.75 

16.69 H 11.20 Ca 12.07 

15.90 Fs 19.90 CEC 11.64 

14.53 PH 10.44 Mg 11.64 

13.33 Mg 10.21 PH 10.42 

10.39 Vfs 9.45 CaCo3 7.68 

7.65 CaC03 8. 77 K 7.43 

7.47 CEC 8.43 Na 4.87 

6.23 K 6.26 OM 4.18 

5.94 OM 5.50 Vfs 3.58 

5.03 Na 3.55 Vfs 3.58 
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Surface 

Prop. 

!-Dry 

2-Moist 

3-Poroient 

4-Conqunt 

5-Rsize 

6-Consize 

7-Coatype 

8-Plct 

9-Type 

10-Thick 

11-Hue 

TABLE 6.17 

LOADING INDEX (D) FOR MORPHOLOGICAL PROPERTIES 
WITHIN THE DIFFERENT GENETICAL.ZONES 

zone subsurface zone all samples 

D Prop. D Prop. 

19.45 msize 11.26 Text 

19.04 Mabund 10.77 Moist 

19.04 Mcont 19.30 Dry 

14.90 Chroma 9.28 Coatype 

14.90 Hue 8.61 Type 

14.00 Consize 7.94 Class 

12.19 co a type 7.56 Msize 

7.60 Conqunt 7.45 Mabund 

6.45 Moist 6.90 Mcont 

6.27 Val 6.01 Rqunt 

6 .,14 class 4.80 Stk 

12-Concolor 5. 71 Type 4.83 Pl ct 

13-Class 5.67 Plct 4. 77 Consize 

14-Val 5.45 Bnd 4.54 Conqunt 

15-Text 5.07 Gras 4.41 Val 

16-Bnd 5.03 Dry 4.40 Chroma 

17-Chroma 4.86 Text 4.27 Hue 

18-Porsize 4.78 Rqunt 4.20 Pororient 

19-Rqunt 4.67 Stk 3.99 Bnd 

20-Gras 3. 72 Concolor 3.15 Gras 

21-Stk 3.42 Posize 1.59 Concolor 

22- Thick 1. 56 Thick 
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D 

17.89 

16.19 

15.80 

12.18 

11.52 

10.87 

10.76 

10.28 

10.04 

9.93 

9.63 

8.18 

7.69 

6.89 

6.29 

6.12 

5.34 

4.84 

4.07 

3.64 

3.40 

1.22 



199 

TABLE 6.18 

LOADING INDEX (D) OF DIFFERENT 
SOIL PROPERTIES IN THE SOIL 

PROFILE, ALL SAMPLES 

Prop. D Prop. D 

1-Mabund 18. 72 25-H 4.07 

2-Msize 17.9 26-Plct 3.99 

3-Mcont 17 .11 27-Na 3.84 

4-0M 12. 71 28-Bst 3.79 

5-Vf s 12.39 29-Gras 3.53 

6-Class 11. 72 30-Ph 3.40 

7-Chroma 11.07 31-Bnd 3.1 

8-Coatype 10.76 32-Porsize 2.69 

9-Dry 10.45 33~Pororient 2.64 

10-Fs 10.24 34-Rsize 2.48 

11-Type 9.26 35-Concolor 1.92 

11-Rqunt 9.26 35-K 1.57 

12-CEC 8.76 

13-tText 8.76 

14-Val 8.41 

15-Mg 7.62 

16-Hue 7.60 

17-Moist 7.09 

18-Thick 6.59 

19-Silt 6.19 

20-Ca · 5.76 

21-Stk 5.65 

22-Clay 5.55 

23-Conqunt 4.55 

23-Consize 4.55 

24-CaCo3 4.15 
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properties. This indicated higher variability exists among the morpho­

logical properties. This was true whether the different horizons were 

treated individually or not. Moreover, better and more meaningful in• 

terpretations may be tied with different factors, especially for the 

subsurface zone. Treating the different horizons alike resulted in a 

larger number of soil properties correlated with one factor. In this 

case, the first three factors were the most important in studying the 

variation of the soil properties. Moreover, better classification 

resulted from using the factors that are highly correlated with many 

soil properties. Nevertheless, the final communality estimates. for 

individual properties were lower than when different horizons were 

treated separately. Also, treatirig the different horizons separately 

gave a better estimate on the extent of the variations of the individual 

soil properties. This is very important if a certain hypothesis about 

the source of the variation needs to be formulated. 

Arrangement of different properties according to the loading index 

indicated that the properties most related to soil-moisture relation­

ships were the properties that highly contributed to the variability of 

•oil in this area. 



CHAPTER VII 

FACTOR ANALYSIS, AREA ONE 

Abstract 

A ~ata set that consisted of 85 horizons (18 locations) was used 

in this study. A total of 24 morphological and 14 chemical properties 

were recorded on each horizon (observation). The data set thus consis­

ted of a matrix of 85X38. The data was partitioned to the following 

sets and subsets: 1) the complete set (referred to as the all samples 

analysis), 58X38, and two subsets of 85X24, and 85Xl4; 2) surface zone 

(includes all horizons with Ap designation) with two subsets, 18X24 

and a matrix of 18Xl4; 3) subsur!ace zone (includes all horizons with 

B designation) with two subsets, number of 49Xl4 and number of 49X24; 

4) P.M. zone (includes all horizons with Cr designation) with two sub­

sets, number of 18Xl4 and number of 18Xl24. The principal axes and 

the characteristic roots were computed. Ten factors' model was computed 

from the principal axes. The final communality estimates, the contribu­

tions of different factors to the total variance, and the correlation 

between the different factors and the soil properties were computed. A 

loading index to indicate the magnitude of the variation of different 

soil properties was also formulated. 

Ten factors were needed to represent the variations of the morpho­

logical properties, while six factors were sufficient for the chemical 
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properties. This was true regardless of the partitioning procedure 

which indicated higher variability among the morphological properties. 

However, partitioning the data helped provide a better interpretation 

of the different factors. The result was higher efficiency in esti­

mating the variance of the different properties, while using the com­

plete set helped to produce more compacted clustering. In this case, 

the first three factors were the most important. The chemical proper­

ties showed maximum variation in the subsoil. The variation of the 

properties in the parent material was lower than in the surface and 

subsurface zones. According to the loading index of the different 

properties, cation exchange capacity, clay, texture, and consistence 

were the most variable properties in the soils of this area. 

Introduction 

The statistical analyses were carried out in a similar fashion to 

the second area. A description of this area was given in Chapter Two. 

Three genetic zones were recognized in this investigation, surface 

zone (includes all horizons whose field designations start with Ap), 

subsurface zone (includes all horizons whose field designation starts 

with B), and parent material zone (includes only the Cr horizons). 

All the above genetic horizons were treated alike (this was referred to 

as the all samples analysis). 

Surface Zone, Chemical Data 

Total variance was 14 (Table 7.1). Six and ten axes explained 92% 

and 99% of the total variance, respectively. No significant correla­

tions were observed between the soil properties and the eighth, ninth, 
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and tenth axes. The variance accounted by the constructed ten factors' 

model was 13.8 (98.5%). Six principal factors accounted for 76.3% of 

the variance (Table 7.2). The final communality estimates were above 

98%. 

The first factor accounted for 22% of the total variance. It was 

correlated with exchangeable cations and base saturation. The second 

factor accounted for 11.3% of the total variance. It was highly corre­

lated with cation exchange capacity (CEC) and, to a lesser degree, with 

magnesium (Mg). Organic matter (OM) showed a high loading on the third 

·factor which accounted for 7.8% of the variance. The fourth factor was 

highly correlated with potassium (K) and very fine sand (vfs). The 

fifth factor strongly identified hydrogen (H) and pH (acidity). No 

significant correlations were observed with factor number ten. 

It seemed that most of the factors were correlated with properties 

which were highly correlated among themselves (see regression analysis, 

Chapter III). For example, exchangeable cations and base saturation, 

pH and hydrogen, cation exchange capacity and magnesium. Except for 

the first factor, the first seven factors approximately participated 

evenly in explaining 96% of the variation. This suggested that most 

of the soil properties considered in this zone have contributed to the 

heterogeneous soils developed from the Permian Formation. 

Surface Zone, Morphological Data 

Total variance was 19 (Table 7.3). Six axes explained 74.7% of the 

total variance, while ten axes accounted for 92.2%. No significant 

correlations were observed with the ninth and tenth axes. The final 

communality estimates varied from 84.6% for horizons boundaries (Bnd) 
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TABLE 7. 2 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE 
OF THE CHEMICAL PROPERTIES, SURFACE ZONE 

FACTORl 

-O•l719l 
0032929 
Oo1752lt 
0027104 
0035647 

-o.o 7401 
0.13955 
0005490 
0002907 

-0023822 
Oo90997 
0057339 
0072523 
0097235 

1 

Oo 74lt32 
0004111 
0.111111 
Oo375'i5 

-Oo217•9 
Oo3273l 

-Ool•02.5 
-0.059211 
·-00095'58 

Oo09•23 

FACT OR2 FACTOR3 FACTOR• FACTORS FACTOR& FACTOR? FAC1CR8 F•C1CR9 FACT1:1ao 

Ool 1781 0009593 -0083019 -0·22624 -0.32049 -0020466 -0006187 
0.01253 Ool4192 Oo147'54 0.90902 o.05607 -0 .• 05628 -0001812 
0.90911 -o. 11753 -0010475 Oo04080 -0.08407 0010417 0.30468 
0014526 o.oo;•11 0011885 -0008395 0.01346 0090561 0024070 
Ool6475 -0.22793 0026826 -0061938 0008976 0o10353 Oo 37848 

-0.12350 0.95246 -0.19!>19 0017165 0.01571 Oo046JO -0.00123 
-0.24244 0003119 Oo 16143 o.·01151 0070468 -0.11692 -0.61242 
..:oo 1ies29 -00111702 0089070 -0009627 0018286 -0002746 -0.26907 

Oo.J 5028 Oo012"5 -Ool4494 -Oo0886l -oo 12046 0025045 0087260 
OoO 0250 -oooosto -0032614 0001097 .-0090772 -0008407 0.03892 
0026654 -llol7f-05 OoOT743 0017014 Oo 14943 0012004 Oo00551 
Oo5 7904 -0.15369 -Ool6997 -0007586 -0009209 0021114 Oo3528J 
0 026174 -0017546 Ool5799 0018221 Ool9609 0021706 0009290 

-0005795 -0002422 0005819 Oo02•56 0014558 Ool0195 -0005105 

ORTHOGONAL TRANSFORMATION MATRIX 

2 

-0.33014 
0 o•"J605 

-o 004071 
-o 009304 
-0.27•94 

0055311 
-0.01593 
-0054257 

Oo00676 
•Oo09322 

3 

-Ool69T7 
OoOl 812 
004118112 

-0045214 
-0041367 

OoOll•81 
-0040454 

o.4.1826 
-0011712 

0006339 

.. 
o. 31478 
.Oo•72~8 

-0040190 
-Ool7663 

Oo39&12 
Oo1?J50 

-0021670 
0027783 

-Oo24l42 
0004382 

5 

-0004218 
-Oo182'52 
-Oo6710f> 

0019703 
-0059199 

00052114 
-Oo 105'59 

0.22944 
-0014709 

0019262 

~ 

Oo2•ll5 
0.47794 

-0•04198 
-Oo099'11 
-Oo 35 746 
-0070178 

Oo042•6 
-0·26710 

0.01816 
-0·089'54 

7 

-0029592 
0015805 
Oo0'5067 
Oo5J184 
0024572 

-00227•0 
-0.6'5022 
-Oo069'58 
-0023078 

0008322 

8 

Oo 20.e31 
-Oo5•3<'4 
-0.13354 
-OoJ<1415 

0.0'5591 
-0008119 
-0039662 
-0053207 
-00111546 
-0.06196 
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TABLE 7.3 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE 
MORPHOLOGICAL PROPERTIES, SURFACE ZONE 

Fll.CTOR2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 FACTORS 

-ii.S3242 0.08298 -o.59650 0.05974 -0.25033 -0.20030 0.12835 
- ... 22974 0.14531 0.06914 0.13033 O. l84S3 0.20083 o. 11879 
- ... ..i!>456 0.65659 -0.12450 o.03656 0.17612 -0.01415 o.~6404 
0.15232 -0.44665 -O.l 9044 0.17864 0.25468 -0.13408 o. 26988 
u.3:>077 0.15687 -0.30341 -o. 00143 -0.02404 0.16516 -o. 28150 
J.l3837 o. 72717 -0.01360 o. 27796 0.13808 -0.01812 -o. C4798 
0.06476 0.64855 0.33105 o.26084 0.49603 -0.00260 -o. 11741 

-O.C.1793 0.42415 0.08017 -0.25000 -o.19788 0.38597 O. C9307 
D.3:1483 -0.04500 0.32589 0.40037 -0.42303 0.02279 o. 26502 
o. 5() 333 -o. 3e52't 0.08523 -0.34622 O.OC:352 0. 32483 o. 11785 
a. uo629 -0.16026 -o. 71813 o.5274a 0.16028 0.09904 o. C7327 
0.21976 0.4CH8 0.5S4llo -0.13680 -0.3t209 -0.07094 o. 13467 
w.32630 -0.25S04 0.29595 -o. 40289 0.41773 -0.18109 0.16682 

-ll. <o3a5lo -0.29899 o.58544 0.32857 o.32074 o. 304lo 7 -o. 13lo28 
-o. 07786 -0.06223 o.C089lo -o. 2067lo 0.12068 0.01043 o. 52028 

a.35146 o.oc;zis 0.19913 0.19493 -0.02242 -0.49219 0.26498 
u. 57798 O.Ollo 77 -0.07489 O.llo951 -0.26712 o.50756 0.19907 
a. u7o6 0.14668 -0.27642 -0.06127 0.25585 0.25992 0. 20726 

-O • .i:7329 .:o.42576 0.43493 0.589lo5 -0.07l26 0.04406 0.11168 

FINAL COMMUNALITY -ESTIMATES: 

Til'~ TFXT CRY MOIST STK PLCT HUE 

FACTiJR9 FACTJRlO 

-0.08893 o. 25932 
o. 30629 0.15.Jt.O 

-0.06108 -0.09697 
o. 16008 0.24153 
0.23295 -0.09636 

-0.17836 -0.10211 
0.13003 0.25218 

-o. 08968 0.15159 
0.23887 0.200t9 
0.21395 -0.10329 

-0.1305lo -o. 23644 
-0.01735 -o. 24335 
-0.38999 o. u 666 
-0.04415 -0.04553 

0.14973 -0.21104 
0.07662 -0.05655 

-0.29698 0.22410 
0.00965 -0.11877 

-0.21543 -0.13225 

VAL CHFQ 
o.846324 o.c;,."""" o.932230 o. 861165 o. 96l lo43 o. "76145 0.942928 0.880621 0.953057 0.851799 

CLA.S ;;;us TYPS RSIZE RQtJNT CONCOlOR COATYPE PO'tS I ZE PORORIEN 
0.97380,) 0.8118656 o.950281 · o.950897 0.932048 0.886925 0.948402 0.9302 to 0.965503 

l 2 3 4 5 6 1 8 9 10 
EIG'"'V.LUES 3.5o!> 516 .2.858449 2.526726 2.332270 1.618077 1. 283480 1.095922 C.95786lo 0.680506 o.594659 

. POl'TIC"4 IJ. 18~ o.1so 0.133 0.123 0.085 0.068 0.058 0.050 0.036 0.031 
CU14 PORTION o.iat1 0.338 0.471 0.594 0.679 0.1,.1 0.804 0.855 0.890 0.922 

ll 12 13 lit 15 16 17 18 19 
FICENVUUES J.511.b!lil 0.479227 '0.221016 0.159563 0.074056 0.030983 0.009998 0.000000 -0.000000 
POllTTO"J 0.021 0.025 0.012 0.008 0.004 0.002 0.001 o.ooo -o.ooo 
CU"' PORTION "· 9't~ 0.974 0.986, 0.994 o.998 0.999 1.000 1.000 l.ooo 

N 
0 

°' 



207 

to 97% for the soil stickiness (stk). 

The first six factors accounted for 60.7% of the common variance. 

Except for the third factor (13.3%), roughly the ten factors contri­

buted evenly in estimating the variance. The first factor was highly 

correlated with horizon boundaries (Bnd), chroma, and, to a lesser 

degree, with moist consistence. The second factor (9.3%) was corre­

lated with hue and concretiqns (Table 7.4). 

It was noticed that in most cases, root size and pores orientation 

were correlated with the same factor. Also, most of the factors did 

not show correlation with certain properties, like color or consistence 

alone. Strong intercorrelations were shown to exist between these 

properties (see Chapter IV). For example, strong association was 

observed between the color of the concretions and the hue, structure 

grades, classes, and dry consistence, chroma and moist consistence, etc. 

The failure of a few factors to explain larger portions of the common 

variance was indicated by the even contribution of various factors. 

However, the high communality estimates suggested that the ten factors' 

model is capable of scanning the variation of the morphological proper­

ties. 

Subsurface Zone, Chemical Data 

The total variance was 14 (Table 7.5). Six axes accounted for 

89.7% of the common variance, while ten axes accounted for 98.6%. No 

significant correlations were obseryed with axes 7 to 10. The final 

communality estimates varied from 96% for CEC to 99.8% for very fine 

sand. Six factors of the ten principal factors accounted for 71.1% 

(76.3% for the surface zone) of the common variance. 
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ROTATED FACTORS AND CONTRIBUTION TO THE COMMON VARIANCE OF 
THE MORPHOLOGICAL PROPERTIES, SURFACE ZONE 
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TABLE 7 .5 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE 
CHEMICAL PROPERTIES FOR SURFACE ZONE 
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The first factor accounted for 25% of thP variance. It was highly 

correlated with CEC, clay, very fine sand (vfs), and, to a lesser 

degree, with Ca. According to the regression analysis (Chapter III), 

Ca showed close relationships with CEC and clay. 

Organic matter (OM) showed a high loading on the second factor 

followed by H. Regression analyses also strongly suggested the close 

relationship between OM and H. In most cases, potassium (K) showed 

high loading on one factor. No other property showed significant 

loading on the same factor at the same time (Table 7.6). 

Except for the first factor, the first eight factors estimated an 

even portion of the common variance. However, the high communality 

estimates indicated the success of the model in explaining the variance 

of the data. The failure of a very few factors to explain larger por-

tions of the variance, in addition to the even contribution of the 
) 

various factors to the common variance, indicated the extreme heteroge-

neitynature of the soil properties in the subsurface zone. This was 

reflected by the graph of the loading of different locations on factO!S 

one, two, and three (Figures 7.1 and 7.2). Some sort of grouping was 

produced, but with obvious overlapping. This might also be due to the 

contribution of a large portion of soil inclusions or soil intergrades. 

Subsurface Zone, Morphological Data 

Total variance was 24 (Table 7.7). The first six axes accounted 

for 66% of the total variance, while ten axes accounted for 82.5%. 

Significant correlations were observed between soil properties and all 

principal axes. The final communality estimates ranged from 69.5% for 
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TABLE 7 .6 

ROTATED FACTORS AND CONTRIBUTION TO THE COMMON VARIANCE OF THE 
CHEMICAL PROPERTIES, SUBSURFACE ZONE 
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horizon boundary (Bnd) to 95.3% for mottling. These estimates were 

considerably lower than their chemical counterparts. 

Six factors accounted for 66.9% (60.9% for the surface zone) of 

the variance (Table 7.8). The first factor accounted for 12.9% of the 

total variation and exhibited high correlation with texture and consis-

tence. Th.e second factor accounted for 13. 6% and was highly correlated 

with mottling and, to a lesser degree, with value. (Canonical corre-

lation suggested a ,strong association between the color variables and 

the mottling). The contributions of the rest of the factors varied 

from 11% for the third factor to 4.9% for the tenth factor. Color 

variables, in addition to the root quantity, appeared to have high 

loading on the third factor (association analysis indicated the strong 

association between root quantity and color variables). Most of the 

other factors were correlated with one or two soil properties. 

It seemed that the factors, in most cases, were either correlated 

with one property or with some properties which had strong association 

(indicated previously by the canonical correlation). 
( 

The failure of a few factors to he correlated with a larger number 

of soil properties was a good indication of the high variability among 

the morphological properties. This conclusion was substantiated by the 

clear scattering of the loadings of different locations on the first and 

second factors (Figure 7.3). However, soil inclusions might also con-

tribute to the high variability. 

Parent Material, Chemical Data 

Total variance was 14 (Table 7.9). 91.2% and 98.9% of the total 

variance was.explained by six and ten axes, respectively. No 
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TABLE 7.9 

PRINCIPAL AXES' AND COMMUNALITY ESTIMATES OF THE 
CHEMICAL PROPERTIES, P. M. ZONE 

FACJOR2 FA(;TOR3 FACTOR4 FACTOR'S FACTOR6 FACTOR? FACTORS 

ooao200 .,-Oo 19611' -00211886 -Ool2369 0.22293 0013228 0.02012 
0 oO 31104 o.01.sa45, OoOe786 Oo 16713 Ooo:S•t9 -Oo1T628 -O.U9:SJ 
0010681 'Oo6lJU1 0050469 -Ool518• Ool8•51 Ool712• o.02'ao1 
0 ol 81•4 0.15231 0.13010 Oo 658•9 -001 e92• Oe18374 -0.221111 

-0.4"l066 0001;11•9 -oo 2119'17 -oo 11;z34 -0023206 0023567 0.01112 
Oo1'540l -0.44738 0069947 0 0 09656 o.oU53 -0009822 o.1~229 

-0.21310 Oe 161114 -0006733 o.2u4• 0023963 0.24954 0005477 
-ooJ980t -0051602 0.24716 -o.406t• -o. 2•198 -0.07899 -0013011 

0.63111 0.47801 0.17186 -Oo04J•9 -0.44187 -0.071115 0.011412 
OoSHO• -0.00121 -0.21163 Ooll600 0.15504 -0029096 0000100 
Ooll•IO -Oo203•• Oo32J60 0020269 Oo 13696 Ool59ll 0011356 

-Ooll45J Oo0867J 0020096 -Oo 14684 oo 3e048 -Oo04405 -0024815 
-0.5Ei9•1 o.55•97 -0000427 0009401 Oo 10912 -0.32347 0012097 
-0.15206 -0032682 -0002952 0031275 .0· 15420 -0.01213 0016921 

FINAL COM"UNALITY ESllMAtESI 

K H CEC CAC03 PH OM, FS 
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VFS CLllY SllT CA "G llA 11sr 
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significant correlations were observed between soil properties and~axes 

7 to 10. The final communality estimates varied from 96% for potassium 

to 99% for fine sand. 

Six factors accounted for 61% of the common variance. The variance 

accounted by the ten factors' model was 13.84. The first factor accoun­

ted for 13.3% of the total variance (Table 7.10). It was highly 

correlated with very fine sand and, to a lesser degree, with fine sand, 

pH, and hydrogen. The second factor identified high correlation with 

clay, while the third factor showed high correlation with K ~nd Na. 

Organic matter had a high, but negative loading and H had a positive 

loading on the fourth factor. 

It was observed that the properties corre 1lated with the same fac­

tor usually have high correlations among themselves, but they are not 

the type of properties that could be related to a specific soil process. 

This conclusion is in harmony with the definition of the Cr horizon 

where the intensity of most processes are supposed to be minimum. It 

was noticed, however, that six factors showed to be sufficient in 

explaining the variation of the chemical data in this zone. 

Parent Material Zone, Morphological Data 

Total variance was 18 (Table 7.11). The six and ten axes accounted 

for 82% and 96.2% of the total variance. The amount of variance · 

explained for the P.M. zone was higher than for the surface and subsur­

face using the same number of axes. This might suggest less variation 

among morphological properties in this zone. Another support for this 

conclusion is the higher communality estimates shown by the ten.factors' 

model computed for this zone. 
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TABLE 7.10 

ROTATED FACTORS AND CONTRIBUTION TO THE COMMON VARIANCE 
OF CHEMICAL PROPERTIES, P. M. ZONE 

F ACICRt FACTCR2 FACTOR3 FACTOR• F AC IOA5 FACICR6 FACTOR? FACTORS FACt0A9 

-Ooll46.J 0018227 -Oo8'!f>27 o.o6o9s -0.16088 Oe0285J o.J9?7s 0.06253 Oell928 
•0042067 -0 00666• o. 02278 -0032796 -oo 15576 -Oo 14509 -o.Jt417 -Oo 49211 -Oot3192 
•Oo02·Ul5 0.21796 Oo1115!i0 0002916 0·00307 Oe9E056 •Oo00987 0000505 Oo 11365 
-o .04941 0 022•"'1 0.11813 0001191 Ooe5•53 OeOOltO Ool5995 0.39352 0005491 

004397'• 0•01726 Oo.25419 0061300 0009275 -ooou,ee -0.05993 Oo.J0454 0009836 
OoO J8'54 -Oo04ie2 -OoO'l267 -0097153 -oo 0407'8 •Oo0JJl4 -0.17755 -Oo030ll -Oo 06363 

-o.6C5'58 ·0·3~£15 Oo OA<i42 -Oo1250• -Oo 12(>7'1 -0·0•9•7 -0.52633 -o.·311"18 -0·12776 
Oo94Jl8 •0011707 Oo011•70 -0.02286 -0007623 -0·0•578 •OoOll3• 0024092 Oo094t3 

•Oo055as 0•92719 -OoHl542 0004327 Oo 17•38 0024627 0017444 0001231 •0000627 
0001056 0020424 -0016714 OoZ lJllO Oo I 1144 0 -0002177 Oo 113•07 Oo 36298 Oo ll 996 
Oo2'59t'l Ooll8•3 -Oo0'5293 -0002611 Oo;i7698 Oo 171'52 0017303 coe63'56 Co1•4'53 
0 0292:18 -0000500 0012396 00111338 oocr'ls1• 0029560 0022020 0046507 0069937 

•Oo0l730 Oo02•36 Oo835•l Oo3364l -0003790 Oo 20817 001511111 0014688 0022864 
Oo2 3875 -0007926 Oo 14939 0016068 Oo 16292 -Oo 19257 Oo 2•3116 0085268 Oo 12691 

ORTHCGO~AL TRA~SFORftATlON "ATRlX 

l 2 3 " 5 6 7 8 9 

Oo 39245 Ool7853 Oo 09&·•8 -0.33065 Oo24l49 0012657 -Go 369111 0060660 0024684 
-o.21ise1 ·o 047373 •Oo6'7790 0.20321 Ooll825 0008991 -0040850 0000069 -oo04• 82 
•Oo •33 36 0035599 0038663 -00370•9 0008998 0055471 0000693 -0027082 0•07615 
-0 022752 •Ool4700 -o o 17 eu -0071869 •OolJJll2 •Oo4!719 •0025418 •Ool7892 -0010259 
-o 0 49157 -0005060 ' 0029379 0015313 0.60291 •Co 3785.8 -0000265 0031596 •Ool3?93 
•Oo42(>15 -o 057462 -Oo 10•22 Oo06J60 -0026512 0027851 -0.21529 0029021 '0043337 
0.10019 00111026 Oo47J39 OoZ2932 -o. 31•90 -0·25981 -00598•• -0017972 0.12599 

-Oo2629a 0.17277 Ool505• 0014707 -0051324 0001790 -0001684 0.3999" -0049•01 
-o .10151 0 ·421,32 -Oo0'1461 -Oo16478 -0031997 •0026918 o. 47 39 l Oe32176 Go 378 39 
-o.1s12a 0•14362 0003100 Oo258'3 000•!161 -0.26395 Oe04848 -002294• Oosse47 

~AOPORTIONAL CONTRIBUTIONS tO COMMON VARIANCES 8Y ROTATED FACTORS 
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TABLE 7 .11 
)' 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE 
MORPHOLOGICAL PROPERTIES, P. M. ZONE 

FACTORl FACTOR2 FACTOR3 FACTDRlt FACTORS FACTDR6 FACTOR? FACTORS FACTOR9 FACTOIUO 

Tl'ICK -0.1261o0 0.0651't -0.11650 -o. 71"57 0.30672 c.1too21 o.34692 0.13984 0.05622 0.19832 
TEX! 0.667'.5 O.Zd654 0.11452 o.51529 0.01151 -0.2551o5 0.00155 o. C0819 0.12958 o. 2:>555 
DRY O.bl.l4't7 0.13165 0.02309 ·-0.03009 -0.62857 0.28217 c.21043 o. 20456 -0.09121 -0.0400"-
l'CIST 0.119Zb 0.01392 -0.03704 0.221"'2 -0.17983 0.20915 -0.22378 o. C2901 0.10374 o. 34016 
STK 0.7dbo0 -0.17417 -0.29405 0.31049 0.22204 0.28995 0.10114 -o. (7498 0.028"-7 -0.01149 
PLCT 0.>3553 -o.21H23 -0.42231 0.26589 0.32348 0,37130 0 .12902 -O.C97l4 -0.24512 -0.06624 
l'ABU'IO o.& 11o14 o. 38951 0.5C584 -0.2 Zlt05 0.19200 -O.Cll863 0.02694 -0.10496 -0.085llo -o. 03480 
l'SIZE 0.75176 11.35093 0.42536 -0.22369 0.16643 -0.03174 -o .02659 O. Cl412 0.02915 -0.18690 
l'CCNT 0. 75250 .... 35 237 0.36431 -0.16140 0.28669 -0.03944 -0.07845 O, C0116 0.0!1764 -0.1717·4 
1-UE -O.J5519 o. 3() 839 0.3391 lo 0.44613 -o. 05063 -0.06643 0 .55755 o. :!2941 0.0761t3 -0.07438 
VAL -0.1196~ -a. 5to'l93 0.59547 0.16283 0.09341 0.16102 0.18473 -o. 18301 0.39048 0.06493 
Cl-i~O O.to5.H'o 0.5to374 -0.52915 -0.07996 -0.08006 -0.29252 o.06057 o. 21027 -0.05913 0.02739 
RSI ze -0.3!>'.30 Oodl427 -0.27341 -0.00907 o. 00225 0.21083 -0.10025 -o. C6692 0.24411 -0.01084 
!ICU~T -O.J:>to3J u.&1427 -0.27341 -0.00907 0.00225 0.21083 -0.10025 -o. (6692 0.24411 -0.01084 
CC'llCOL!m -0o4L'o9l 1>.Hl59 o.55386 0.03552 o.31631 0.00707 -0.06301 o. (9805 -0.33062 o. :!2646 
CCATYPE -0 •. HOdl 11.26855 -0.28834 0.45327 0.1:0052 -0.04039 0.10346 -o. C0052 -0.04272 -o. 07282 
PCRSIZE -0 • .210l'o .... 5<>727 0.15585 0.103H -o. 35803 0.07773 0.26084 -o. 57510 -0.22207 0.00683 
PC~C'RlEN -0 • .31485 O. l'o283 0.41923 o.32687 -0.12133 C.51175 -0.38567 o. 24183 -0.11717 -0.15775 

FINAL COMMUNALITY ESTll'ATES: 

THICK TEXT DRY MOIST STK PlCT MA8UND HSI ZE HCONT 
0.9dll36 0.930779 0.98't032 C.916576 0.986c63 5 0.951399 o.969670 0 .984657 0.976263 

HUE VAL CHRO RSI ze RQUNT CONCOLOR COATYPE" PO RSI ze PORORIEN 
0.973035 0.955698 0.931664 0.982093 o.982093 0.971481 0.889442 0 ,983320 0.965944 

1 2 3 4 5 6 7 8 9 EIGENVALUES 5.U28399 3.218045 2.352234 1.675798 1.443651 1.0 ... 8046 0.879H3 0.682600 0.570876 PORTION U.279 0.179 0.131 0.093 0.080 0.058 o. C49 0.038 0.032 
cu~ PORTION 0.219 0.458 0.589 0.682 0.162 0.820 O.S69 0.907 0.939 

10 11 12 13 14 15 16 17 18 EIGENVALUES O.ltlb5'i4 0.349493 0.2C7140 0.072625 0.027178 0.018659 0.008917 0.000010 0.000000 PORTI'JN 0.023 0.019 0.012 0.004 0.002 0.001 o.coo o.ooo o.ooo CUii! PORTIJN u.962 0.981 0.993 0.991 0.998 • i.ooo l.ClOO loOOO l.':'')0 
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Six factors accounted for 68.8% of the common variance. The first 
·I 

factor accounted for 18.7% of the total variance and had a very high 

correlation with mottling, and a lower correlation with soil. texture 

(Table 7.l2). The second factor showed a very high correlation with 

the roots and accounted for 12% of the common variance. The third 

factor hiad a high correlation with stickiness, plasticity, and a lower 

correlation with moist consistence and concretion and type. Only one 

factor, namely the seventh, had a high correlation with the hue. All 

other factors exhibited extremely low correlations with color variables. 

This suggested the minute nature of the color variability of the parent 

material. This conclusion is in complete harmony with the hypothesis 

that genetic development that reflects color changes are not al.lowed, 

by definition, in the parent material zone. 

The factors computed for morphological properties in this zone 

were not tied with any interpretation or pattern. This was true since 

no major process 1s supp?sed to be operating in this zone. This was 

probably the reason why some factors had correlation with several pro-

perties that were not correlated, or whose correlation was not direct, 

for example, concretion and moist or wet consistence. There may be an 

association between these variables; but it is not yet fully understood. 

All Samples, Chemical Data 

Total variance was 14 (Table 7.13). 90.3% and 98.2% of the total 

variance were explained by six and ten axes, respectively. No signifi-

cant corr~lationsoccurredbetween soil properties and axes 6 to 10. The 

final communality estimates varied from 94% for H to 99.9% for very fine 

sand (Table 7.14, Figure 7.4). 
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TABLE 7.12 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE OF THE 
MORPHOLOGICAL PROPERTIES, P. M. ZONE · 

FACTORl FACTOR.Z FACTOR3 FACTOR4 FACTOR5 FACTOR6 FACTOR7 -·FACTORS FACTOR9 FACTORlO 

o.o+587 o.1+321 -0.00413 0096540 0001006 -Ool0652 -0003708 -OoG7242 -0000970 -0009136 
Oo+69a.5 0001264 Oo2 5121 -0049112 000+005 -0.17009 Oo23451 OoCOl80 Ool0855 Oo 55578 
Ool35'ol -Oo0ft904 0023326 0000715 o.86820 OoOU23 0011213 · 0013964 Oo21346 Oo 131162 
O.HS.>2 uo0230l 0040501 -Oo 19981 0.39183 0.02992 -0019807 -Oo C8964 .,...Oo07227 0.62685 
Oo26'o79 -i>o08638 0088693 -0009957 o.13793 -Ool6063 -0006297 -Oo 13238 0000911 0021519 
0.02790> -0.19101 Oo9'tC98. 0.04925 -0003517 -0.03749 -0.10988 -o. C3886 0.09645 0.02'696 
0.9:>"19 -i>.07674 Oo02~21 OoC6'>·41 0.07761 Oo00328 -0.02132 Oo 17116 ().03385 0.13188 
C.970'o9 -0.03338 0.07040 -0000855 Oo 17000 -0002468 -0.02192 -O.C2470 0.06796 0.03794 
o.~c555 0.02 379 0.13487 -0.03857 0.05486 -0.04673 -O.Olt440 -o·.C9369 0.05305 0.07048 

-o."5696 11.1 .. 285 -0.18171 -0.06659 -0.05346 0013400 0.93419 0.12331 -0.10346 -0.01255 
-o.o"53+ -0025836 -0.031+2 -0.00572 -0.00562 0001952 0.14067 -OoC5760 -0092894 0003796 
o.2~a+• 0026165 0.12481 -0.06085 0014295 -0.35930 0.06456 -O.C6717 0.77836 0.16638 

-O.J.H58 Oo9l 732 -0014255 0.09091 -Ooll919 0009919 0.07091 Oo 16474 0023327 0000174 
-0.03758 0.9J. 732 -0.14255 0009081 -Ooll919 o.C9919 0.07091 o. I61t74 0.23327 0.00174 

Oo17.JZ8 -11001352 -0.42874 0.23693 -0.50915 0.50064 0024480 o.aa91 -0.01086 o.23373 
-Ool 7663 0033010 0.25750 -0.05848 -Oo 73299 OoC4031 0034341 Oo C0026 0.13229 -0.07227 

o."3336· 0.32637 -0.14725 -0.09067 0.08040 0.02161 0.13121 o.c;os34 0.01123 -0.03735 
-o.unu 0.19572 .. :;-0.10722 -0.13069 0.03047 0.91509 0.11615 -OoC0336 -Ool9659 -0.05111 

ORTt-OGCNAL TRANSFORHATICN MATRIX 

1 2 3 4• 5 6 7 8 9 10 

o.63594 -OoZll20 -0.47396 o.14314 -0.35711 -0.22069 -Ool4596 0.11250 -0.15766 o.26609 
Oo3i222 ·, 0067065 Ool8827 -0000795 0007459 Oo0987l 0022119 -Co30780 -0043104 Ooll588 

-Yo50746 0028982 -0042240 -0.04242 OoCl780 -0.37273 -0021483 Col5315 -0051557 -o. 0600!> 
0.2H79 -0.04306 0.39092 -0~66231 -0.19262 -0022333 -0042696 0006568 -Ooll768 -0027037 

-0029724 u. 00306 0.29030 o.28612 -0.81597 0.03098 -0.02239 -Co25961 -0009127 o.04999 
-Jo0695\l o.30368 -0.49032 -0;43124 -0028346 Oo54797 -0009037 -Go07819 0028567 -0000747 
-0004264 -Oo 13558 -0.18612 -0036879 -Oo 13831 -0044099 0069160 -0030349 Oo09874 -Ool2402 

o.O$bll+ 0.12576 -0.13291 0017545 o.17450 -0031371 -0.44829 -q.68563 oo;U526 -0009096 
-1.1.o+i cJa -Oo 53509 -0.11867 -0.09624 Oo 15't54 Oo38928 -0.05827 -C.461-49 -0.53201 -0.10478 
-0019993 -0008385 o.u213 -0030841 0.09934 -0008417 -0008542 -Ool1568 0002752 Oo 89548 

PROPORTIONAL CONTRIBUTIONS TO COMMON VARIANCES BY ROTATED FACTORS 

FACTORl FACT:JR2 FACTOR3 FACTOR4 FACTOR5 FACTOR6 FACTORT· FACTORS FACTOR9; ~ FACTORlO 
3o3!4476 20162359 20350966 1034-1205 10822846 1.330425 10259475 10065262 1.725521 00893382 
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TABLE 7 .13 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE CHEMICAL 
PROPERTIES FOR ALL SAMPLES 

FACTORt FACT DR2 FACTOR3 FACTOR4 FACTORS FACTDR6 FACTOR7 FACTO RI F ACTOA9 

-0.16563 o.6•at6 o.4~011 -0.12130 -0-•0•19 0021294 0.00523 o. 30349 o. 02978 
-0.58718 0.58198 -o. 29019 o.2~835 o. 315~0 o. 02691 0.03201 Oo09457 CoC3878 

0.6'51120 Q~56319 -003843• 000119~0 -0.07125 -0.0'5985 -o.0•014 0.082116 0015642 
o.56792 0.01221 0.38889 -o. 47 Ul4 o. 43427 -o. 2706 3 -0.02212 Oo 16608 0.10241 
0~5~•20 •0064076 o.02444 •Oo00697 •0025454 •Oo25Z48 0.17083 •00011655 Oo 18510 

-0.43121 0071840 Oo I ?063 OoJ0812 Oo lf'.912 •0011197 Oo26947 o. ,. 368 e.1H26 
•Oo6.'5840 -0.625'59 •Ool7736 •0021416 0005004 0.20910 0015274 0.!)7405 0.14016 
-0.12831 -0.60267 o. 307116 0063511 -0.01401 -0.23099 -0.20111 Oo 15090 Oo 005 32 

0.14322 0 .50067 -Oo2'>23• -OoC.9549 -Oo03J40 -0.08426 •Oo23J66 0.05662 -o. 08684 
0.27142 0.79859 0.37943 o. o• 48 2 -0.03311 -o. Oe784 0.14965 -o.:H324 •G. 12604 
o.a'5932 o.o•Ol6 0.01150 0.16481 0.22189 0035980 -0.11522 -0005354 0007557 
0018292 0.19167 •0·138411 0.13895 -0.15247 Oo 0,4809 o.oas2a 0.00494 0.20451 
0 .18298 •Oo282J5 -0.24045 o.os6e• 0002214 -o.OJ550 0.30131 0·23961 -o. 29329 
00121•• •Clo 4 2962 Oo33353 0.11309 0.111300 Oo 29 739 Oo,08684 •O.G225S -0.00974 

FINAL CDM"ONALITY £STI .. ATESI 
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TABLE 7 .14 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE OF 
THE CHEMICAL PROPERTIES, ALL SAMPLES 
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Six principal factors accounted for 79.57% of the collllTlon variance 

(76.3% and 71.1% for the surface and the subsurface zones, respectively). 

CEC, fine sand, clay, and Mg followed by calcium had high loading on 

the first factor which accounted for 24.7% of the collUTlon variance. The 

second factor was highly correlated with H and pH and, to a lesser 

degree, with organic matter and base saturation. The third factor was 

highly correlated with potassium. As in the case for different zone 

analyses, potassium appeared to be correlated with factors that did not 

show any significant correlations with any of the soil properties at 

the same time. No explanation could be advanced for this pattern. 

The fourth factor was highly associated with very fine sand. Simi­

lar to the surface and subsurface zones, the properties that were 

correlated with the same factor had a strong intercorrelation among 

themselves (regression analysis). It appeared also that even if genetic 

horizons were treated alike, a six factors' model would be considered 

sufficient to explain a large portion of the data variance. However, 

it would not indicate the magnitude of the variation of individual soil 

properties within different horizons. This is very important if a 

hypothesis is to be formulated on the sources of variability of diffe­

rent soil properties. 

All Samples, Morphological Data 

Total variance was 23 (Table 7.15). Ten axes accounted for 86.3% 

of the total variance. Significant cor=elations existed with all the 

principal axes. The final communality estimates varied from 69.7% for 

concretion type to 97.5% for pore orientation. 
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TABLE 7o15 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF THE 
MORPHOLOGICAL PROPERTIES OF ALL SAMPLES 
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Six factors accounted for 63.7% of the conunon variance. The ten 

factors could be divided into two groups according to their contribu­

tion to the connnon variance. The factors 1 to 5 in one group and 6 to 

10 in the other group. Each factor contributed evenly to the common 

variance. This spread of the variance among many factors indicated the 

nature of the high variability among the morphological properties. 

The first factor accounted for 15.1% of the common variance (Table 

7.16). It was highly correlated with consistence, and to a lesser 

degree, with horizon boundaries, and size and strength of the soil 

structure. The second factor (12.9%) was highly correlated with mot­

tling. The third factor (11%) was highly correlated with hue, chroma, 

to a lesser degree with root quantity, and concretion type. The fifth 

factor was correlated with concretion type and size. The ninth factor 

was correlated with root quantity, and color value. According to the 

association analysis, root quantity was correlated with the color 

variables (Tables 7.17 and 7.18, Figure 7.5). 

Different factors were correlated with many properties. These pro­

perties were intercorrelated. This pattern made it very hard to tie 

the different factors with any meaningful interpretations. However, 

it seemed that texture, consistence, size and strength of the structure, 

mottling, color, and coating types are the most important properties, 

ordered in sequence according to the magnitude of their variability. 

All Data 

Total variance was 38 (Table 7.19). 67.5% and 79.6% of the total 

variance was accounted by six and ten principal axes. Sixteen axes 

were needed to explain 90.5% of the total variance. The final 
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TABLE 7 .16 

ROTATED FACTORS AND CONTRIBUTIONS TO THE COMMON VARIANCE OF THE 
MORPHOLOGICAL PROPERTIES, ALL SAMPLES 
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TABLE 7.17 

PRINCIPAL AXES AND COMMUNALITY ESTIMATES OF ALL PROPERTIES OF ALL SAMPLES 
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VIL -O.Hh8 C. "'a<;O~ 0.12051 0.02852 0.24554 0.15931 -O.C6539 o. (6992 -0.31332 -o. 40041 
C•a'l -O.lh71 o.o1~92 -0.066 71 -0.10846 -O.H818 -0.16862 0.11121 o. C5095 -0.05Z69 o. 05968 
CLAS 0.7o}o9 -o.2~995 0.14819 0.!2772 -0.15586 o.2e2c.6 0.0985) O. C2462 -0.14064 -0.03749 
G•~S o.ai1,1 -J.2'1J77 0.05525 C.1681>3 -0.15776 0.19911o 0.12502 o. C31o78 -0.0421>7 0.01479 
TYPS O.•llJ, -0 .. 42:062 -0.18077 -o.11szz o.z52s1 0.28806 0.33239 -o. t9n8 -0.16292 0.21432 
R~IZE 0 • .6.lc70 -0.'9.\406 0.01417 0.2031. -0.22285 -0.17835 0.49292 0.152'3 0.19020 O.ZP98 
PCl!t.T O.~d.JaO -u. 7o 742 0.02653 c .090l'o 0.08754 11.07018 0.05339· •o.c15aa 0.25 .. 79 0.20507 
CC"' CUNT o.;,c.;'i• 11.;215r. 0.31081 C.35716 0.19589 -o.21os35 ;..0.33037 -o. 23102 O.Ol6U 0.18637 
cc .. siz 0.4-o.191 O.l7129 c. 39063 0.38847 o. 2962'" -0.23817 -0.332'12 -o. l6~0i) -0.00240 0.1'1965 
CCfl.COt.011 o ..... udcl -o •• '1J41 a.26026 0.37024 O.C775l O.C7674 0.02725 -o. CS431 -0.15?85 -0.21219 
CC!lYPE o ... "'191 -u.o~352 0.24~21 0.48796 -0.14071 0.18566 0.08353 o. W223 -a.35529 -0.010~8 

PCR~IZE 0.1);57 z -u.o>5oa 0.10307 C.41039 -o. 35622 -0.28?07 -0.01755 o. (,7449 0.10840 0.08109 
PCAC'RIEJC 0.1.J:.S7 o.u<.363 0.12223 o.39335 0.17266 0.09490 -0.07059 0.49941 0.26992 -0.29957 
K O.Zh27 -0.•1970 0.2831o2 -0.15506 o.21eoo -0.420'13 0.21180 O.Cl766 -0.37252 -o. 0458 5 

" o •. nzs1 -u.di005 0.03499 -0.18559 -0.20813 0.07778 -0.06182 -0.18•~5 0.12785 -0.25781 
cec O.oZ<'2Z 0.11835 -0.13705 -0.03706 -0.10571 -C.08994 0.01295 -o. 23 l't4 0.15854 -0.18118 
C&COJ 0.2677b ~.4~621 -0.358)8 -o.35167 0.30271 -0.20168 -o .08845 o. 20342 -0.12671 o. !0612 

'" -o.u3777 o.11 .. a9 -0.11211 0.17472 0.19464 0.29596 -0.04025 o. C5865 o.02no o. 14869 ,,. O.lZoiJll -~. oll 53 -0.05997 -0.11447 0.10619 -0.00320 0.08792 -o. C65l3 0.04228 o. 03520 
FS -o •• 1J2s ·-o.~~231 o. 28008 0.03885 -0.18645 0.15696 -0.2lt,65 -o. 10655 0.12113 o.13389 
YFS -O.i4o(ol o. 1.<844 -o. 29002 o.~4250 o. 24279 o. 30797 0.27919 O.C2726 -0.02888 -0.09253 
CLAY O.JllJZ o. 2• 295 -0.21626 -0.11838 -0.19805 -o.1e9a3 O.C297l -0.(1493 -0.03"70 -0.19•50 
SILT 0~1 .. 1.i1 -o. 3' 707 -0.01299 -0.14218 o.362e4 -0.22677 0.12799 0.16 708 -0.141 7t, 0.07069 
CA O.H4'~ o.54803 -0.34289 0.15720 0.10055 -0.19755 0.12892 -o. C'ltOlo 0.10517 -0.01789 
l'G 0.7JH9 0. 'tO 530 -o.1 e11oo o.14950 0.14652 -0.00879 0.17252 -o. l67il0 0.13721 -0.09146 
ro o . .;~11~J J.09532 -0.25075 O.OZ2t,8 -0.1231tl o.2az:n o .• 16236 -0.20348 0.06917 0.171H 
UT Oell•'-'tli o. 71872 -o.J0154 0.18997 o.2941tl O.OH9t, 0.15865 O. CZ868 O.Ot,461t 0.11376 

FINAL COMHUNALJ7V ESTIMATES: 

er.D T"ICK TEAT ORV MOIST STK PLCT HABU~D HSIZE l'tOllT HUE YAL Cl<llD 
o. 756~76 o.651!&4 0.8H4~3 11.1>63893 o.761666 0.867158 o. 796250 0.921493 0.963913 0.903946 0.110376 o.735690 0.153051 

CLAS GR~S TVP5 RSIZE RQUNT CONQUNT CONSIZ CGNCOLOR COATVPE POPS! ZE POP.ORI EN I( H 
c.12~513 o.a57527 o.7ao.Hl3 0.7177b2 o.799276 0.919072 0.90838' 0.51972 .. o.730773 0.636978 0.636806 o.768,.19 0.86 .. 611 

CEC CAC03 '" OM FS YFS CLAY SILT CA HG NA SST 
o.,,,,.,.65 0.697&34 0. 79&1"8 11.853623 o.nnn a.758367 0.905976 00879176 0.11,.509 0.873761 o.e6,.914 o.no .. 1• 
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TABLE 7.18 

ROTATED FACTORS OF ALL PROPERTIES, ALL SAMPLES 

ROTATED FACTOR PATTERN A I 

FACTORl FACTOR2 FACTOR3 FACTOR4 FACTCR.5 FACTOR6 FACTO!t7 FACTORS FACTOP.9 FACTORlO 

8t.O 0.!>5o17 -0.22045 -0.010111 0.46754 0.11706 0.28935 0.05161 -0.22618 -0.09940 o.13866 
Tt-tCK 0,.104ZJ -o • .,1569 0.01462 o.3381t5 -0.66896 0.20131 0.10224 -o. C3187 -0.15422 •0.01674 
TEXT O.b~2S7 "· 02.55b 0.06873 0.02688 -0.01674 0.05428 -0.06392 0.16382 0.08463 0.28961 
D~Y 0.5'1065 "· \19 4b0 o. 23269 0.00449 0.02494 0.02256 0.05079 0.10919 -0.18177 0.45083 
!!Ct ST 0.6h6b J.06422 0.11409 O,C7946 0.08328 0.03593 O.C89BO O.C3982 0.07318 0.57190 
STK O."t't29b o.1}1t438 0.06121 O,lb826 -0.01209 0.07274 -0.04810 -0.01884 0.03707 o.79162 
PLCT 0 • .:1.1295 -u. 05065 -0.07210 0.24865 0,05304 0.09868 -0.00442 -o. C6092 0.06271 0.81563 
MA8t.,.,,O -0.111572 U.U\1031 0.94361 0.00939 -0.09368 0.04089 -0.07628 o. C71t33 0.02901 -0.00463 
!'SIZE -0.>12476 \l.i0579 0.96505 -o.oozzz -0.06158 0.10833 -0.06626 -o. 02445 -0.01099 0,01226 
1<CC111T -o .v5593 0.\15615 0.9ZZ60 -0.04870 -O. ll 521t 0.08122 -0.12989 -o. C6l6l -0.01503 0.05780 
1-u: -O.Oio5H -0.29408 -0.05/o08 0.15634 0.10549 0.2H02 0.13005 o. 10776 0.00303 o. 00661 
VAL -o .... 7535 o. 2.& 334 0.24112 o.04488 -0.099l't -O.l01t56 -o. 70910 O. C81t49 0.01722 -0.18301 
Ct-~C. 0.111112; o • .Ju553 0.19941 -0.23678 -o. 73066 -o. G897t,. -0.05506 O. C3044 -0.10149 0.00945 
CLAS O.'tOZ21 -J. l't935 -O.Q4790 0.66310 0.12665 0.01667 o.2ono -o. C269't o. 05631 0.37780 
GRAS O.<tt>921 -a.12022 -0.12396 0.6032t,. 0.13879 O.O't55" o.32193 O. C0985 0.06072 0.33896 
l'rPS O.l793o uoU5l90 -0.16988 0.3H37 0.44261 -0.20377 0.31549 -o. ~9757 0.26013 0.20lt42 
ll!StlE o.11v253 -O.lt,.755 -0.03533 0.20531 0.01796 -o.13213 o. 74984 0.16943 0.1"559 -0.150'>5 
~CUNT o.ou-.ilo -0.37978 -0.21332 0.18680 0.52930 0.04432 o.s3221 -o. Cl413 0.01844 0.09306 
CCNCUNT 0.30459 0,21.1196 0.11625 0.18959 -0.00660 o.84n7 -0.02208 O. C3700 0.03715 0.12194 
CCNSIZ O.l ob 75 Oo 19364 0.16255 0.20187 0.07863 o.85720 -0.03b53 o. C9211 0.08317 0.10553 
CCNCOLOR O.Z0395 -0.12796 o. 01793 0.60081 0.16586 0.22311 -0.02212 o. 108,,.,. 0.10127 -o. 01940 
CCATYPE o.u45du o.u7907 -0.01007 C,76395 -0.09/o53 0.13006 0.07245 o. 22983 0.12892 0.19535 
P".:RSI Z!: -O.J7112 -0.05360 -0.08098 0.11535 -0.289't4 o.11849 0.33265 o. 0040 O.O't23't 0.03859 
PCRCRIE"I o.u<;.o:.9 u. J.0938 0.03560 0.18976 o. 27239 0.00403 -o .08837 .0.69592 -0.10082 -0.04l't9 
K o.uo647 -o. 3!> 136 0.12135 0.17363 0.13901 0.10494 O,C998l -0, C8759 o. 73520 -0.00111 
H 0.033111 -o.uJ267 -0.20751 0.11532 o. 27818 -0.19608 0.14824 -o. 1269/o -0.09381 -0.01251 
cec O.d!>lol -o.uZ582 -0.10034 o.t 7954 -o. 02460 o.16680 Q.08967 -0.10998 -0.01178 o.140'>0 
CAC03 0.,010!;9 0.42989 -0.12578 -0.38021 -0.01380 0.00221 -0.19425 -O.C5063 0.36671 o. 27286 
PH O.OL344 o. 78640 O.H2/o6 -0.03226 -0.10590 o.o85t,.3 -0.25364 o. C2830 -0.26391 0.06691 
CM o.011ta 7 -u.53392 -0.28190 0.14690 0.49630 -0.11454 0,36527 -O. l.5425 0.21976 O.Olt833 
FS -o. 72263 -u. lci 392 0.20168 -0.22862 -0.11972 0.01052 -o .oa19 s -o. C0073 -0.'>4673 -0.15376 
~FS -0 • .375't0 IJ.'t3949 -0.10606 0.08170 0.12423 -0.33105 -0.13126 o. C3210 -0.17866 -0.48079 
CLAY O.!H3 73 O.Ob452 -0.13366 0.12924 -0.24620 0.07385 0.00211 -o. C0646 0.17262 0.24361 
SILT O.'t2.0d4 -o. ue099 -0.09932 0.16278 0.38748 0.10944 0.20992 -O,Cl106 0.61938 o. 26952 
CA 0.0652~ u. 53033 -0.10998 -0.00b09 -0.15755 0.20605 0.03291 -o. (0358 0.06596 -0.07647 
MG 0.7651Z U.45306 0.01719 0.19417 0.00659 0.19800 0.02530 -o. C6475 -0.004 78 -0.007'5 
NA 0.43325 1),63907 0.06955 0.07659 -0.27838 -0.00246 0.02046 -o. a345 -0.30139 0.14 .. ,9 
llST 0.2o24b O.d244Z 0.02574 -0.07170 -0.07578 0.08270 -o .10282 O. C1129 -o.01e20 -0.10777 
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TABLE 7 .19 

CONTRIBUTIONS TO THE COMMON VARIANCE, 
ALL PROPERTIES, ALL SAMPLES 

ORT~OGONAl TRANSFORMATION MATRIX 

3 

-o.07621 
-0.33530 

o.eo111 
0.2541t2 
o.oao1t3 
0.04536 
0.35'i20 
0.01102 

-0.16269 
0.02014 

4 

-0.36639 
-0.18075 
-0.25401 

0.55505 
0.12535 

-O.'t2167 
-o. 22666 
-0.06189 
-0.42966 
-0.16478 

5 

0.11265 
0.43822 
0.03869 
0.03576 
o. 76470 
0.31269 

-0.03812 
-O.C3839 
-0.32595 

0.02192 

6 

0.22842 
-0.12873 

0.32161 
-0.38649 

0.18972 
-0.40151 
-o. 52656 

0.34539 
-0.04220 
-o. 28793 

7 

0.11334 
o.33626 

-0.02734 
-0.15039 
-0.26053 
-0.16704 

0.46115 
-0.03943 
-0.38120 
-0.61498 

a 
C.02156 
0.03421 

-C.13336 
0.:!8915 
c.06581 
C.19540 
0.14394 
C.78101 
C.2901tl 

-C.26757 

PROPORTIONAL CONTRIBUTIONS TO COMMON VARIANCES BY ROTATED FACTORS 

9 

-0.17681 
-0.15769 
-0.02064 
-0.18477 
-0.34879 

o.56039 
-0.26999 

0.26634 
-0.57280 

0.04111 

10 

-0.41592 
0.01417 

-0.12922 
-o. 41670 

0.17453 
-0.33444 

0.40922 
0.38317 

-0.15634 
o.39426 

FACTORl fACTJ~2 FACTOR3 FACTOR4 FACTORS FACTOR6 FACTOR7 FACTORS FACTOR9 FACTORlO 
6.294209 4.147191 3.278090 2.979139 2.955214 2.171728 2.1515~3 l.40809C 1.781854 2.893522 
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0.001 
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32 
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3 
3.122005 

0.082 
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13 
0. 711597 

0.019 
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23 
0.211557 

0.006 
o.968 

33 
0.055381 

0.001 
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4 
2.171146 

0.057 
Oo585 

14 
0.658649 

0.017 
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24 
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0.005 
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3't 
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0.001 
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communality estimates varied from 51.9% for the color of the concretions 

to 92% for the mottling abundance (Table 7.17). The final communality 

estimates were higher for the chemical properties when the zones were 

treated separately. 

Six factors accounted for only 58% of the common variance. This 

was quite a bit lower than the amount of variance explained by the same 

factors when the profile was partitioned to different zones. This was 

true for both the chemical and morphological properties. The first 

factor (16.6%) was correlated with texture, consistence, structure 

strength, CEC, Mg, fine sand, Ca, Na, and silt. The second and ninth 

factors accounted for 11.4% and 4.7% of the common variance, respec­

tively and were totally correlated with chemical properties. It was 

noticed that morphological properties showed higher loadings on dif­

ferent factors. The third factor identified mottling with the higher 

loading, while the sixth factor identified concretion size and the color 

with the higher loadings. The seventh factor identified the root 

quantity and size. 

It was observed here that a high correlation existed between the 

morphological properties and the different factors. This singled out 

the morphological properties to be the prime contributers to the soil 

variations or heterogeneit~ A high variability among the morphological 

properties was also observed when different genetic horizons were 

treated separately. 

Since the first and the second factors were correlated with many 

properties, plotting the loadings of the locations on those two factors 

produced several compact groups (Figure 7.6). Plotting the loading for 

only the chemical data (Figure 7.4), or the morphological properties 
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alone (Figure 7.5) did not produce clusters as compacted as when all 

the data were combined together. Figure 7.7 shows the many soil pro­

perties with high loading on the first two factors after the Varimax 

rotation. 

Loading Index 

Loading index values (D) were calculated in a similar fashion to 

area two (Tables 7.20, 7.21, and 7.72). Different arrangements 

resulted for different horizons. Many properties, like CEC, clay, and 

texture, occupied the top position for different horizon listings, 

especially for the subsurface and for all horizons treated together. 

Sodium and the base saturation occupied the t~p positions for the sur­

face zone only (the number of samples required to sample the true mean 

as a function of the standard deviation in Chapter II, showed that 

sodium and base saturation were among the highest for the same zone. 

The behavior of the same variables in the subsurface was also confirmed 

by the lower position occupied on the loading index list). This is 

considered as a clue to the validity of this index. 

Summary and Conclusions 

Principal component and factor analysis demonstrated to be a suf­

ficient tool in scanning the variation of different soil properties • 

. However, the results depended on the manner by which the soil units 

were selected (individual horizons, or profiles). Different answers 

resulted when different genetic horizons were treated alike or sepa­

rately. Each case showed to have some advantage over the other. If 

the horizons were treated separately, estimates of the individual 
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TABLE 7. 20 

LOADING INDEX (D) OF DIFFERENT CHEMICAL PROPERTIES 
WITHIN THE DIFFERENT GENETICAL ZONES 

Surface zone subsurface zone P.M ?.one All sa11iples 

Prop. D Prop. D Prop. D Prop. D 

1- BST 20. 72 CEC 2Q. 71 Ca 13.40 CEC 21.36 

2- Ca 18.24 Clay 20.30 BST 13.10 Clay 19.57 

3.,. Na 11.42 FS 15.60 FS 11.80 H 15.23 

4- Vl"S 11.09 Mg 12.60 OM 11.30 Mg 14.64 

5- K 9.65 PH 11.20 K 8.00 PH 14.23 

6- CEC 9.36 BST 8.90 CEC 7.90 FS 13.53 

7- Silt 9.36 OM 7.40 Clay 7.60 OM 8.69 

8- Clay 8.89 K 7.20 Silt 7.30 BST 8.07 

9- H 8.20 Ca 7.0.0 Na 7.30 Ca 7.87 

10-Mg 7.15 CaC03 6.40 CaC03 5.10 K 7.35 

11-0M 7.05 VFS 6.30 FS 5.00 VFS 6.66 

12-CaC03 6.46 Silt 6.00 i>H 4.50 CaC03 6.49 

13-Fs 5.70 Na 3.20 H 4.1*0 Silt 6.27 

14-PH 3.81 H 2.50 Mg 4.00 Na • 73 
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TABLE 7.21 

LOADING INDEX (D) FOR DIFFERENT MORPHOLOGICAL PROPERTIES 
WITHIN DIFFERENT GENETICAL ZONES 

Surface zone subsurface zone P.M zone All samples 

Prop. D Prop. D Prop. D Prop. 

1- Stk 12.51 Msize 12.30 Mcont 17.60 Msize 

2- Text 9.61 Mabund 11.80 Msize 17.60 Mabund 

3- Pororient 7.92 Mcont 11.5 Mabund 16.90 Mcont 

4- Gras· 7.80 Dry 10.00 Pl ct 12.00 Text 

5- Rsize 7.57 Stk 9.10 Stk 10.40 Dry 

6- Val 7.12 Text 8.30 Rqunt 10.20 Moist 

7- Coatype 7.04 Chrom 8.00 Rsize 10.20 Chrom 

8- Chrom 6.58 Hue 7.40 Dry 7.70 Conqunt 

9- Type 6.45 Consize 7.40 Thick 7.10 Consize 

10-Concolor 6.41 conqunt 7.20 Pororient 6.30 Hue 

11-Rqunt 6.08 Type 6.70 Hue 6.10 Co a type 

12-Clas 5.44 Rqunt 6.40 Chrom 5.80 Stk 

13-Moist 4.50 Rsize 4.90 Coatype 5.40 Clas 

14-Dry 4.40 Gras 4.30 Porsize 4.90 Porsize 

15-Plct 4.40 Concolor 4.10 Text 4.10 Gras 

16-Hue 4.40 Pororient 3.50 concolor 2.60 Val 

17-Bnd 4.20 Val 3.30 moist 2.20 Rqunt 

18-Porsize 3.40 Con type 3.20 Pororient 

19- Clas 2.01 Pl ct 

20- Plct 1.60 '£hick 

21- Bnd .99 Type 

22- Bnd 

23- Con color 

240 

D 

12.10 

11.60 

11.40 

10.90 

10.10 

9.90 

8.40 

7.90 

7.90 

7.70 

7.00 

6.80 

5.40 

4.70 

4.70 

4.50 

4.50 

4.30 

4.00 

3.90 

3.70 

3.30 

2.60 



TABI.E 7 22. 

LOADING INDEX (D) FOR ALL SOIL PROPERTIES 
WITHIN THE SOIL PROFILE 

Prop. D Prop. D 

1:- CEC 12.00 28- OM 3.20 

2- Clay 11.70 29- Silt 2.90 

3- Text 11.40 30- Val 2.90 

4- Mg 9.80 31- Concolor 2.80 

5- FS 8.60 32- K 2.60 

6- BST 7.70 33- VFS 2.20 

7~ Mahund 7.60 34- Rqunt 2.20 

8- Ca 7.50 35- CaC03 2.10 

9- Mcont 7.30 36- Pororient 1.80 

10-H 7.30 37- Porsize 1.50 

11-PH 7.10 38- Type 1.50 

12-Moist 6.20 

13-Dry 5.80 

14-Bnd 5.20 

15-Plct 5.10 

16-Stk 4.70 

17-Coatype 4.50 

18-Na 4.50 

19-Chroma 4.20 

20-Consize 4.20 

21-Conqunt 4.10 

22-Hue 3.90 

23-Msize 3.90 

24-Gras 3.70 

25-Thick 3.50 

26-Clas 3.40 

27-Rsize 3.20 
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variances were very high for different soil properties. At the same 

I 
time, the magnitude of the variability of each soil property within 

each horizon is scanned better. This is very important if hypotheses 
J. 

\ 
on the differential movement of soil constituents or soil genesis are 

to be formulated. Moreover, more meaningful interpretations were pas-

sible for the different factors when horizons were treated separately. 

Lower communality estimates resulted when all the horizons were 

treated alike. The first few axes accounted for a higher proportion 

of the variance. In addition, many properties were correlated with a 

single factor which helped to produce a more compacted cluster. One 

common pattern prevailed in this study regardless of the way the hori-

zons were treated. This pattern was that the morphological properties 

were higher in variability than the chemical properties (this conclu-

sion was also reached by a different route in Chapter II). 

A larger number of axes were needed in the case of the morphologi-

cal properties to explain the same variation exhibited by the chemical 

properties. Six factors were sufficient in the case of the chemical 

properties regardless of the method by which the horizons were treated, 

but ten factors were required for the morphological properties. 

The variation of the chemical properties was the highest in the 

subsurface zone. The variation of the chemical and morphological pro-

perties was minimum in the parent material. This conclusion is consis-

tent with the definition of the Cr (P.M.) horizons. 

According to the D values, the variation of each property depended 

on the horizons in question. However, common properties were observed 

to occupy the top position with different arrangements like CEC, clay, 

texture, and consistence. Therefore, these properties were considered 



to contribute to a higher portion of the variability of the soil in 

this area. They were followed by the hydrogen. fine sand, mottling, 

base saturation, pH, and sodium. 
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CHAPTER VIII 

CLUSTER ANALYSIS 

Abstract 

A total of 85 and 109 horizons from two areas were used in this 

study with 25 morphological and 17 chemical properties in the simila­

rity matrix. The chemical data were normalized first then the whole 

set was transformed by the Talkington method ( 165) so that the maximum 

distance between any two individuals would be .f"2. The similarity 

matrix was then converted to a dendogram using the unweighted average 

agglomerative procedure. Three different similarity measurements 

were recognized from each dendogram. The horizons were then classified 

into different groups according to the similarity level. 18 and 23 

transition matrices were constructed and classified according to ~he 

information theory by Norris (48). This procedure was repeated three 

times. The pedons indicated that the similarity measurements chosen to 

classify the horizons from the primary dendogram had a very little 

effect on the number of the groups produced each time. Exact similarity· 

occurred between pedons of the same series in area one, but of different 

series in area two. The pedons interchanged their positions between 

the different groups as the initial similarity level was changed. More­

over, the pedona within one group did not belong to series that occur 

adjacent to each other in the field. This suggested that both areas 
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should be designated as soil complex units. The author feels that in 

an area where the variations of the soil-forming factors were kept mini­

mum to this level of similarity between the pedons within each series 

is not sufficient to draw different mapping units on both areas. 

Introduction 

Man is known to be a natural classifier since the dawn of history. 

Classification became an artistic way of remembering the many properties 

of different objects. As man's knowledge about his surroundings 

increased, his classification grew to be more complicated and more 

systematic. 

In the most general terms, classification' is the process of giving 

names to a collection of objects which are thought to be similar to 

each other in some respect (Everitt, 25). Gilmour (27) attempted to 

distinguish two different classifications. A natural classification 

of living things is one which groups together individuals having a 

larger number of attributes in connnon; whereas, an artificial classi­

fication is composed of groups having only a smaller number of common 

attributes. 

As a natural system, soil was not excluded from classification by 

man as his knowledge of this system improved. Many attempts to classify 

the soil were undertaken in many countries, but the most· comprehensive 

and recent system is the one published by the United States Department 

of Agriculture in 1976. Recently, and with the vast improvement in high 

speed computers, systematic classifications based on more quantitative 

attributes have been attempted in many areas. The earliest numerical 

approach to classification of the soil was by Hole and Hironaka (34). 
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Many problems have to be solved and precautions taken in order to 

reach a sensible quantitative classification of soils. Also many steps 

are involved in achieving such a classification. These steps may 

include the selection of the soil units, the selection of the soil pro­

perties, the measure of similarity to be used, and the methods of 

displaying the results in an easily interpreted format. 

Before discussing these problems, a definition of the quantitative 

groups, which result from what is known as the clustering method and 

are called clusters, might be appropriate. Many definitions were given 

to the cluster, but the most acceptable definition is the one given by 

Everitt (24, p. 44). "A cluster may be described as a continuous region 

of space containing a relatively high density of points, separated from 

other such regions by regions containing a relatively low density of 

points." 

Selection of the Soil Units 

One major obstacle in the numerical classification of soil is the 

anisotropy of soils (whether profiles, pedons, or other soil units) 

(Moore and Russel, 44). A solution to the problem that it presents 

must be found before a numerical classification scheme can be achieved. 

The anisotropy of soil profiles is reflected in the separation of the 

profile into horizons, which can be considered to be isotropic (Knox, 

39; Russel and Moore, 60). As a solution to this, Ryner (54), suggested 

numerical classification of soil on the basis of a sequence of similar 

horizons as preferable to considering the entire profile as a unit and 

then using profile properties (Sarkar and Bidwell, 61). 



247 

A second solution to this problem is the comparison of each hori­

zon with all other horizons studied (Ryner, 54). This method requires 

too much computation time, and some of the comparisons might not be 

usable. For example, the Al horizon of one soil may be similar to the 

C horizon of another soil. 

A third solution is to compare horizons which occur at the same 

depth in different profiles (Moore and Russell, 44). 

Selection of Soil Properties 

Soil properties can be divided into four main groups: 1) dichoto­

mous properties, such as the presence or absence of mottles; 2) multi­

state unranked properties, such as the form of a structure unit, which 

may take one of several possible states; 3) multistate ranked propertie~ 

such as the size of the class of peds; 4) continuously varying proper­

ties, such as cation exchange capacity of the soil. 

The selection of soil characteristics is a critical step in nume­

rical classification. Sarkar, Bidwell, and Marcus (61) stated that 

too closely related characters might exert a double emphasis on a cer­

tain property and unduly influence the classification. Grigal and 

Arneman (28) thought that deletion of some characters probably would be 

necessary for numerical taxonomy of soils to be effective. They objec­

ted to deleting characters on the basis of correl~tion because it would 

result in losing information on some soils and they suggested using 

factor analysis instead. 

Rohlf (58) found correlated characters in a numerical classifica­

tion somewhat desirable. Sneath and Sokal (63) suggested deleting any 

properties that are a logical consequence of another. However, when 
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two characters with high empirical (but not logical) correlations are 

available, both should be included unless they are caused by a single 

fa~tor. Arkley (2) irtdicated that the number of soils included should 

be large, the general kinds of soil included should be well represented, 

and the selection of soil properties even more important. He noticed 

that eventhough all kinds of soil properties can be included, properties 

highly correlated like moist and dry color or redundant properties 

should be avoided. As a general rule, if a character can be considered 

as a linear combination of other properties, then it would not add any 

power to, or improve the classification. 

Weighting the Soil Variables 

Sneath and Sokal (63) presented argument in favor of weighting all 

variables equally, especially where classification is intended to be a 

natural, or basic classification for general use rather than one for a 

specific objective. They gave many reasons for equal weighting. The 

most important are: 1) equal weighting, employing as many characters 

as possible, results in general classification which can be of general 

use to many purposes; 2) it is difficult to be completely objective in 

assigning different weight to characters; 3) equal weighting appears 

automatically during the mathematical computations of numerical classi­

fication. 

They also favor the use of a large number of variables in numeri­

cal taxonomy on the grounds that the use of many variables greatly evens 

out the effective weight which each one contributed. Arkley (1) agreed 

that in the first stage of analysis, the use of a large number of vari­

ables standardized so as to give equal weight to each is certainly a 
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sound approach. The extensive covariance among soil variables in 

widely differing data sets is strong evidence that a long list of soil 

variables is not necessary to classify soils effectively by either 

conventional or numerical methods. 

Standardization of Soil Variables 

1. It is clearly inappropriate to compare differences in variables 

with range of 0.0 to 1.0 with variables with a range of 100 to 1000. 

For continuous variable~ standardization may be achieved by many for-

mulas: 

z. = 
i 

(X. - X) 
i 

(8.1) 

where Z has zero mean and unit variance, X. is the unstandardized vari­
i 

ables, Xis the mean, sX. is the standard deviation of Xi. This 
i 

procedure is the most accepted way of continuous variables standardiza-

tion, or 

X' (X - X . )/(X - X . ) (8.2) 
min max min 

where X' is the standardized variable. 

2. Another method of equalizing the contribution of the discrete 

and continuous variables is based upon the information theory that has 

been developed by Burr (12). Continuous variables are standardized to 

a mean of 0.0 and a standard deviation of ±/2 by the formula 

X' = (X - X)/1.414 SD x 
(8.3) 

and multistate variables by the formula 
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M(t-l)/2tp (S - 1) (8.4) 
s m 

where M' is the standardized variable; M is the unstandardized variable 

(as coded); tis the total number of individuals (soils) with no mis-

sing data; ps 1s the proportion of t in state S (S /t); S 1.s the nutnber 
n n 

of individuals in state S; S is the number of possible states of vari­
m 

able M. 

3. Another method of equating the weight of all properties was 

proposed by Talkington (65), 

2 
D •• 

1Ja 
(8.5) 

the detailed use of this formula is given 1n the statistical approach 

section. The problem of highly skewed data should be considered in the 

standardization of variables. In some cases, it would be appropriate 

to use a logarithmic or square root transformation for a known skewed 

distribution as was done by Russell (60). 

Measures of Similarity or Differences 

Sneath and Sokal (63) used the term similarity coefficient to 

indicate the measures of either similarities or differences. Four 

classes of similarity coefficients have been used. 

1. Distance Coefficients. The simplest form of distance measure-

ment 1s called Mean Character Difference (MCD) and has been used by 

Russell (60) and Webster (68). 
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MCDjk (8.6) 

where X ........• X are standardized variables i and k are two indivi-
J. n 

duals such as soil properties. A much more commonly used distance 

coefficient is the Euclidean distance 

(8.7) 

The average Euclidean distance coefficient has the advantage of being 

readily visualized and can be plotted in two or three dimensions. This 

coefficient has been used by many authors (Cipra, 20; Grigal and 

Arneman, 28; Moore, 45; Webster and Burrough, 68; and Caunalo and 

Webster, 18). 

Another distance has been used by some workers and called the 

Canberra Metric by Lance and Williams (40). It has been used by Webster 

and Burrough (68). 

(8.8) 

where x .. , x.k are the values of the kth properties for the ith and 
l. J l. 

the jth sites, p J.S the number of soil properties. 

2. Similarity Coefficients. These coefficients were suggested by 

Bray and Curtz (10). 

n n 

sr = i~1[<lxik - xjkl)/j~l<xik + xjk)J (8.9) 

all variables must be standardized to common range and positive sign. 
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This coefficient has been used by Holz and Hironaka (34), Bidwell and 

Hole (7), Bidwell (8), Sarkar (61), and Moore and Russell (45). 

3. Simple Matching Coefficient. This coefficient is usually 

used for data as a two state character (O,l). It has been used by 

Russell (60) and Brisbane and Ravira (11). It involves considerable 

loss of information and is not recommended for soil classifications. 

4. Product Moment Correlation Coefficient. This coefficient was 

used by several workers: Cipra (20), Cuanolo and Webster (18), Moore 

and Russel (44), Moore (45), and Russel (60). One disadvantage of 

using this coefficient is that it is a measure of pattern rather than 

magnitude of differences. 

Moore and Russel (44) compared all the above coefficients and 

concluded that the Euclidean distance is probably the most appropriate 

for soil because it is sensitive to magnitude. Webster (69) criticized 

Euclidean distance measure because it is sensitive to magnitude. 

However, his criticism is valid when very few soil properties are used. 

Sorting Strategies 

Generally, the matrix of pairwise similarity coefficients produced 

from the analysis of the data is very large. The number of pairs is 

n(n-1)/2, where n is the number of individuals. Thus a similarity 

matrix usually cannot be adequately interpreted by simple visual inspec­

tion. 

The most commonly used procedure in displaying the similarity 

matrix in soil studies is the system called "the sequential, agglomera­

tive, hierarchic, non-overlapping, clustering method" by Sneath and 

Sokal (63). The results are generally presented in the form of a 
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dendogram or phenogram. There are varieties of algorithms for the defi­

nition of maximum similarity between clustering of individuals. 

l~ Single Linkage or Nearest Neighbor Clustering. This method 

uses the criterion for joining based upon the two most similar indivi­

duals between two clusters. This method did not win the acceptance of 

many soil scientists. However, some soil workers used this method, such 

as Ryner (33), and Muir (47). 

2. Complete Linkage or Farthest Neighbor Clustering. This is 

based upon the similarity of the least similar pair of individuals in 

the two clusters. 

3. Average Linkage Clustering. This is the most commonly used 

clustering method in soil studies. It is intermediate between the 

extremes of the two methods described above. Many soil workers used 

this method, Berkham and Norris (6), Bidwell and Hole (7), Bidwell (8), 

Cipra (20), Caunalo and Webster (18), and Sarkar (61). The centroid 

method is similar to the average linkage method. It is a very attractive 

method to soil scientists because it can be represented in two or more 

dimensions.(Campbel, 15; Caunalo and Webster, 18; and Moore and Russell, 

61). 

4. Variable Group Clustering. By this procedure, it is possible 

to allow several individuals and/or clusters to join at a single step 

in the procedure (Arkley, 2). The criterion for joining were based 

upon the change within group variance. This procedure is described in 

detail in Sneath and Sokal (63). 

5. Flexible Sort Clustering by Lance and Williams (40). 

(8.10) 
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D .. is a measurement of difference or dissimilarity, i and j are joined 
1J 

pair of individuals or group~ and k is a candidate for joining the 

group. a is a parameter that could be 1/2 of a function of the numbers 

of the individuals. It has been used by Campbell (15), Moore (45), 

Russel and Moore (60), and Russel (61). 

6. Information Content Clustering Method. This method of clus-

tering technique is based upon information theory that has been 

develope~ by Norris .and Dale (48). Moore (45) applied this method to 

all two state variables (transition matrix). This m~thod will be used 

in this investigation and the detail of the procedure will be given 

later. 

7. The Divisive Method. The divisive method begins with the 

whole population and progressively divides it into smaller and smaller 

groups using the similarity matrix. The method uses separation on a 

primary variable with high communality together with minimum variance 

and t-test and discrimenant function to increase the separation of the 

groups. This method requires too much computing time. It has been 

used by very few soil scientists (Norris, 49). 

Statistical Approach 

Two types of characters were used in this study, continuous charac-

ters represented by the chemical properties, and discrete characters 

represented by the morphological properties. The types of the charac-

ters and the coding system are found in Appendix B. 

All the soil characters were scaled so that the square of the 

maximum distance which they could contribute along their coordinate 

axis inn-dimensional space was 2 (Talkington, 65). A two-stage 
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character will be given for example, /2. for present and 0 for aqsent 

(n2 = (/2 - 0) 2 = 2). The interval 0 to 2 was divided into as many 

classes as necessary for multistate variables. The continuous vari-

ables were normalized first and then scaled linearly in the range /2, 0 

so the Euclidean distance of maximum 2 for the continuous characters 

can be computed from the following formula: 

2 1 
Dij = 2n (8.11) 

where n is the number of variables, n' is the total number of the state 

including one state for each quantitative variable. 

Distance matrices of 85x85 and 109xl09 were computed for both areas 

using 85 and 109 pedogenic horizons, respectively. The numerical analy-

sis of different pedons were based on the result of the dendogram 

obtained from the distance matrix by the agglomerative method (the 

unweighted, average linkage method). At this stage, the different 

horizons were classified into two different groups. The horizons were 

assigned to different groups and then the relative position of the pedo-

genie horizons was used to construct a transition matrix. The 

transition matrices were then classified to produce the final pedon 

clusters. 

This procedure is summarized in the following steps: 1) the 85 

and 109 samples from 18 and 23 pedons were classified into different 

groups based on the dendogram produced by using only the soil characters. 

The groups were numbered 1 ••. N for each area;, 2) tables of profile 

descriptions that show the number of the group in which each horizon 

was classified by the dendogram and using a different similarity level 
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were prepared; 3) the sequence of the numbers describing each pedon 

was converted to a transition matrix. Each profile was represented by 

a different transition matrix for each change in the similarity level. 

The dimension of the matrix is N X N, where N is the number of the 

groups recognized from the initial dendogram for a specified similarity 

level; 4) the 23 and 18 transition matrices, each representing one 

pedon, were classified based on the primary grouping of their horizons. 

The relative position of the different horizons 1n the pedon was con-

sidered in building the transition matrix. 

Norris (48) discussed the method of clustering such matrices. Tn 

this method, each possible entry in the transition matrix is considered 

as a single state of a multistate variable. The information content of 

the matrix is defined as 

I = X .. LnX .. - J:.X .. LnX .. (8.12) 
1J 1J 1J 

where X .. = J:.X ..• Two transition matrices A and B can be compared by 
1J 1J 

calculating IA, IB, and lA+B' Then by computing 61, 

(8.13) 

where 61 is a measure of the information change. The pair of matrices, 

giving minimum information, are then joined together. 

Results and Discussion 

Twenty-three morphological and 16 chemical properties were used to 

calculate the similarity matrix (109 X 109 for area two and 85 X 85 for 

area one). The lower triangle of the similarity matrix was punched on 
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IBM cards and inputed for the initial clustering of different horizons 

regardless of the pedons from which they came. The relative position 

of the different horizons was not considered at this stage. The soil 

properties were the only factors affecting the horizons similarity. 

This route was followed because an equal number of horizons is not 

required to obtain the cluster of the different pedons. Other routes 

require equal number of horizons in order to compute the similarity 

matrix. To do this, equal intervals have to be sampled from each 

pedon. This will lead to some samples being collected from two diffe­

rent genetic horizons. 

Figures 8.1 and 8.2 show the dendograms for the initial horizons 

of both areas. Four major groups were recognized for the first area. 

The recognized groups represented different genetic horizons. The 

surface horizons were well separated in one group and all the argillic 

horizons in another group. The argillic horizons of pedon 11 and 10 

were classified into the B300 group. This classification was considered 

proper since B300, by definition, has more than 50% of the argillic 

horizon characteristics. Also, few of the B300 horizons were classified 

with the CrOO group. This could partly be due to the difficulty in 

recognizing the lower boundary of the solum where the change between 

the parent material and the solum is very gradual. The occurrance of 

B20t (pedon 1), B2lt (pedon 5), and B200 (pedon 6) with the surface 

group could be due to errosion where these locations occupy a very mild 

convex position. 

Figure 8.2 shows a cluster of 109 horizons for area two. All the 

ApOO horizons, except for the ApOO horizons for pedon one, were classi­

fied into one group. From the author's experience during the field 
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are given in Tables 8.1, 8.2, and 8.3. Similarity levels of .70, .72, 

and .80 were used for area two. The groups resulting for different 

levels are given in Tables 8.4, 8.5, and 8.6. The next stage was to 

build the different transition matrices from Tables 8.1 to 8.6. Each 

table will yield a group of matrices of different dimensions for each 

table, the number of the matrices is equal to the number of the pedons 

in the area. The dimension of the matrix in each group is equal to the 

number of the groups established using a specific similarity level. 

Table 8.7 is an example of how the transition matrix was built for 

pedon number 5 (area two, similarity level .72 extracted from Table 

8.5). The entry in the transition matrix (Table 8.7) takes into 

account the relative position of the genetic horizons in the profile. 

The author feels that in this respect, the transition matrix method is 

advantageous over other methods. 

The three groups of transition matrices were classified separately 

and different clusters were drawn accordingly. Figures 8.3, 8.4, and 

8.5 show different clusters for area one and Figures 8.6, 8.7, and 8.8, 

for area two. A similarity coefficient of 23 was recognized for pedons 

of area one, and 35 for pedons of area two. The clusters of both areas 

show the extreme similarity between some pedons. If two or more 

pedons were written on the same line, this would indicate that both 

pedons were exactly similar. One should be cautious, however, because 

this did not mean that in reality the two pedons are 100% similar to 

each other, but they were only similar in respect to the properties 

used to compute their similarity. The exact similarity between two or 

more pedons was noticed to occur between pedons of the same series in 

area one and between pedons of different series in area two. 
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Table 8.8 shows the different, major groups established for area 

one using the three similarity measurements. Two major groups can be 

recognized in each case, but with very few pedons forming small groups. 

However, the pedons were interchanged between different groups when 

the initial similarity level was changed. Moreover, since similar 

pedons within each group did not belong to series that occur adjacent 

to each other in the field, drawing lines to separate the different 

pedons would be impossible. Table 8.9 shows the different groups 

established for area two from clusters numbered (Tables 8.6, 8.7, and 

8.8). Two major groups were also recognized in each case, but with 

very few pedons forming small groups. However, the pedons were inter­

changed between the different groups as the similarity level was 

changed. This might indicate that even in a small area, the high level 

of homogeneity as intended in soil survey operations is not possible to 

achieve. Furthermore, it may also indicate that soil inclusions may 

occupy a larger portion of the mapping unit. Therefore, it is reasona­

ble to assume that both areas should be designated as complex units. 

Summary and Conclusions 

Soil survey operations are based on the systematic examination of 

the soil profiles in the field where changes are thought to occur. The 

lines that delineate the mapping unit are usually drawn using criteria 

chosen in advance and given heavy weighting in deciding the type of soil. 

Dissimilar soils within the delineation are called soil inclusions. 

Mathematical classification, as in this study, uses many criteria. 

Some of them are used in the conventional classification and some are 

not, Many studies, as well as this study, showed that the kind of soil 
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investigation some doubts were experienced about assigning ApOO to this 

horizon. The texture of this horizon was finer than any of the surface 

horizons in the entire study area. No explanation could be advanced 

at that time. Therefore, the author feels. that the horizon allocation 

with the B2t group was proper. Most of the B22t, the B23t, B2lt or 

the B24t and B25t horizons were classified into·{iifferent groups, but 
............ 

with very few inclusions within each group. The occurrence of some 

different horizons inside other groups could be due to the fact that 

the B2t subdivisions are established by the vertical subdivision of a 

thick horizon. Therefore, the wavey topography (as was shown in Chapter 

II) of the horizons lead to one horizon designatiQn in a certain loca-
--. 

,tion and to another designation in another loc'ation within the same 

area. Therefore it is possible for one horizon to be designated as 

B22t in one pedon to be designated as B2lt or B23t in another pedon. 

In the next stage, the different horizons were classified into 

different groups using different similarity levels. The criterion for 

choosing the similarity level is subjective, but depends on the minimum 

similarity exhibited between the different horizons. The validity of 

such classification can be tested by the Wilk's criterion. This test 

is based on maximizing the between groups sum of squares and minimizing 

the within groups sum of squares. The classification which gives a 

maximum Wilk's criterion value could be used to determine the number of 

clusters present. 

Three levels of similarity measurements were used to investigate 

the effect of the primary grouping on the number of the final pedons 

clustering. Similarity levels of .73, .76, and .80 were used for area 

one. The groups classification resulting from these similarity levels 



HOR. 1 2 3 4 

APOO 02 02 01 20 

BlOO 02 20 

B20t - - - -
B200 - - - -
B20t - 21 - -
B21t 13 - 19 20 

B22t 13 - 19 14 

B23t 08 - 09 15 

B300 - 16 09 -
B310 - - - -
B320 - - - -
B330 - - - -
CrOO 08 10 10 11 

TABLE 8.1 

SUMMARY OF THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDOGRAM (D=.76), AREA ONE 

LOCATIONS NUMBER 
.5 6 7 8 9 10 11 12 13 

01 01 01 01 02 01 01 01 02 

- - - - 02* -
- 01 - - - - - 05 

- - - - - 01 01 - 19 

01 - 06 19 21* - - - -
16 - 19 17* 02* - - - -
- - 16 - 18* -
16 05 16 09* - 19 01 - 06 

- - - - - - - - -
- - - - - - - - -
- - - - - - - - ... 
03 12 10 12 04* 12 12 07 12 

* indicates the presence of discontinuity 

14 15 16. 17 18 

01 01 01 01 01 

- 21 - - 06 

06 - 21 19 

- - 15 16* 

- 05* - - 05 

02 

16 

06 

10* 12* 12 07* 12 

N 

°' V1 



HOR. 1 2 3 4 

APOO 03 03 01 27 

BlOO 03 27 

BlOt - - - -
B200 - - - -
B20t - 28 - -
B21t 18 - 25 27 

B22t 18 - 25 19 

B23t 10 - 12 20 

B300 - 21 11 -
B310 - - - -
B320 - - - -
B330 - - - -
CrOO 10 14 13 15 

TABLE 8.2 

SUMMARY OF THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDOGRAM (D=.73), AREA ONE 

LOCATIONS NUMBER 

5 6 7 8 9 10 11 12 13 

02 02 01 01 03 01 02 01 03 

- - - - 03• -
- 01 - - - - - 06 

- - - - - 01 02 25 

02 - 08 26 28* - - - -
22 - 25 23* 20* - - - -
- - 21 - 24* -
22 06 21 11* - 25 02 - 07 

- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
04 17 14 17 OS* 17 17 09 17 

* indicates the presence of discontinuity. 

14 15 16 17 18 
---

02 01 01 01 01 

- 28 - - 08 

08 - 29 25 

- - 20 21* -

- 06* - - 06 

03 

21 

07 

13* 17* 16 09* 17 

!-..> 
0\ 
0\ 



HOR. 1 2 3 4 

APOO 01 01 01 15 

BlOO 01 15 

BlOt - - - -
B200 - - - -
B20t - 15 - -
B2lt 10 - 15 15 

B22t 10 - 15 10 

B23t 06 - 07 11 

B300 ·00 12 -07 ... 
B310 - - - -
B320 - - - -
B330 - - - -
CrOO 06 08 08 09 

TABLE 8.3 

SUMMARY OF THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDQGRAM (D=.80), AREA ONE 

LOCATIONS NUMBER 
5 6 7 8 9 10 11 12 13 14 

01 01 01 01 01 01 01 01 01 01 

- - - - 01* -
- 01 - - - - - 04 

- - - - - 01 01 - 15 -
01 - 04 15 15* - - - 04 

12 - 15 13* 11* - - - - -
- - 12 - 14* -
-12 04 12 07* - 15 01 - 04 -
- - - - - - - - - 01 

- -· - - - - - - - 12 

- - - - - - - - - 04 

02 09 08 09 03* 09 09 05 09 08 

* indicates the presence of discontinuity. 

15 16 17 18 

01 01 01 01 

15 - - 04 

- 15 15 

- 11 12* -

04* - - 04 

09* 09 05* 09 

"-> 
Ct\ 
....... 



HOR. 1 2 3 4 5 

APOO 06 16 16 15 16 
BlOO - - 16 - 15 

10t - - - - -
B2lt 03 07 07 05 07 

B22t 13* 13* 08* 13* 11* 

B23t 13* 02* 08*• 10* -
B24t - - - - -
B25t - - - - -
B300 - - - - -
1310 - - - - 16* 

1320 - - - - 08* 

TABLE 8.4 

SUM}"i..ARY OF THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDOGRAM (D=.70), AREA TWO 

LOCATIONS NUMBER 
6 7 8 9 10 11 ·12 13 14 15 16 17 

16 16 16 15 16 16 16 15· 16 16 15 16 

- - - - - - - - - - - -- - 15 - - 16 

16 05 15 06 05 11 07 05 03 07 07 07 

01* 13 09* 13* 13* ll** 13 01 13 13 01 13* 

01* 10* 09* 12** 08* - 13* 10* 01* 04 01* 02* 

- - - - - - 01* - 01* 13 04* -
- - - - - - 01* - 02* 08* 04* -
- - 10** -

-
- - - ,.. 

*•11, **•111, indicates the presence of discontinuity. 

18 19 20 

16 16 16 

- - -
07 05 05 

07 04 13* 

13* 04 10* 

02* 14* -

21 

16 

-
03 

13 

08* 

-

22 

lS 

16 

07 

13 

14 

01 

23 

16 

07 

13* 

08* 

"" (j'\ 
00 



TABLE 8.5 

SUMMARY OF THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDOGRAM (D=.72), AREA TWO 

LOCATIONS NUMBER 

HOR. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

APOO 04 10 10 09 10 10 10 . 10 09 10 10 10 09 10 10 09 10 

BlOO - - 10 - 09 - - - - - - - - - - - -
BlOt - - - - - - - 09 - - 10 

B2lt 02 04 04 03 01; 10 03 09 04 03 06 04 03 02 04 02 04 

B22t 07* 07* 05* 07* 06* 01* 07 05* 07 07* 06*· 07 01 07 07 01* 08* 

B23t 07* 01* 05** 06* - 01* 06* 05* 07** OS* - 01* ·06• 01* 02 01* 01* 

B24t - - - - - - - - - - - 01* - 01* 07 02* -
B25t - - - - - - - - - - - 01* - 01* 05* 02 c 
B300 - - - - - - - 06** -
B310 - - - - 10* -
B320 - - - - 05** -

* •11, ** •111, indicates the presence of discontinuity. 

18 19 20 

10 10 10 

- - -

04 03 03 

07 02 07* 

07* 02 06* 

01* 08* -

21 

10 

-
02 

07* 

05* 

-

22 

09 

04 

04 

07 

02 

01 

23 

10 

04 

07* 

OS* 

N 
0\ 
\Cl 



l 2 3 4 
HOR. 

APOO 02 06 06 06 

BlOO - - 06 -
BlOt - - - -
B2lt 01 02 02 02 

B22t 04* 04 03* 04* 
B23t 04* 01* 03** 04* 

B24t - - - -
B25t - - - -
B300 - - - -
B310 - - - -
B320 - - - -

s 

06 

06 

-
02 

05* 

-
-
-
-
06* 

TABLE 8.6 

SUMMARY OF.THE HORIZONS CLASSIFICATION BASED ON 
THE PRIMARY DENDOGRAM (D=.80), AREA TWO 

LOCATIONS NUMBER 
6 7 8 9 10 11 12 13 14 15 16 17 

06 06 06 06 06 06 06 06 06 06 06 06 

- - - - - - - - - - - -
- - 06 - - 06 

06 02 06 02 02 04 02 02 01 02 02 02 

01* 04 03* 04* 04* 04* 04 01 04 04 01 04* 

01* 04* 03* 04** 03* - 04* 04* 01* 01 01* 01* 

- - - - - - 01* - 01* 04 01* -
- - - - - - 01 - Pl* 03* 01* -
- - 04* -
-

93** -

* •li, ** •111, indicates the presence of 4iscontinu1ty. 

18 19 20 

06 06 . 06 

- - -

02 02 02 

04 01 04* 

04* 01 04* 

04* 05* -

21 22 

06 06 

- 02 

01 02 

04* 04 

03* 01 

- 01 

23 

06 

02 

04• 

03* 

N 

"' 0 



TABLE 8.7 

TRANSITION MATRIX FOR PEDON NO. 5 (D=.72), AREA TWO 

01 02 03 04 05 06 07 08 09 

01 00 00 00 00 00 00 00 00 00 

02 00 00 00 00 00 00 00 00 00 

03 00 00 00 00 00 00 00 00 00 

04 00 00 00 00 00 01 00 00 00 

05 00 00 00 00 00 00 00 00 00 

06 00 00 00 00 00 00 00 00 00 

07 00 00 00 00 00 00 00 00 00 

08 00 00 00 00 00 00 00 00 Q() 

09 00 00 00 01 . 00 00 00 00 00 

10 00 00 00 00 01 00 00 00 01 

10 

00 

00 

00 

00 

00 

01 

00 

00 

00 

00 

~ 
-.J 
1--' 
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TABLE 8.8 

FINAL PEDONS CLASSIFICATION OBTAINED FROM 
THE PEDONS DENDOGRAMS, AREA ONE 

• 73* .76* .so* 

Gl G2 G3 Gl G2 G3 Gl G2 G3 
p s p s p s p s p s p s p s p s p s 

1 D 2 B 3 A 1 D 3 A 5 A 1 D 3 A 9 c 

4 A 7 c 5 A 9 D 4 A 11 c 5 A 8 c 16 D 

14 D 15 D 13 D 2 B 8 c 6 c 2 B 6 c 
9 D 18 A 6 c 7 c 10 c 12 e 17 c 18 A 

16 D 12 c 17 B 14 D 4 A 12 c 
8 c 13 D 15 D 13 D 

17 B 16 D 18 A 15 D 

10 c 10 c 
11 c 11 c 

* the similarity level, G = group established from the pedons clusters. 
S = the series from which the pedon was sampled in the field. 
P = the number of the pedons. 

N 
-....J 
00 



TABLE 8. 9 

FINAL PEDONS CLASSIFICATION OBTAINED FROM THE PEDONS DENDOGRAMS, AREA TWO 

.70* .72* .80* 

Gl G2 G3 Gl G2 Gl G2 G3 G4 
p s p s p s p s p s p s p s p s p s 

1 F 17 H 2 F 1 F 2 F 1 F 12 G 2 F 23. F 

19 G 15 G 18 G 12 G 18 G 13 G 21 H 19 G 

3 F 13 G 4 E 3 F 14 G 4 E 

12 G 9 E 13 G 17 H 17 H 20 F 

20 F 10 E 5 E 6 E 10 E 6 E 

4 E 6 E 8 E 11 E 3 F 11 E 

5 E 14 G 14 G 7 E 8 E 15 G 

18 E 23 F 21 H 10 E 5 E 16 G 

11 E 16 G 20 F 18 G 

7 E 19 G 9 E 7 E 

21 H 22 G 9 E 

16 G 15 G 22 G 

22 G 23 F 

* *= the similarity level, G = group established from the pedons clusters. 
S = the series from which the pedon was sampled in the field. 

N 
P = the number of the pedons. -..J 

'° 
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characters used have a strong impact on the outcome. The author feels 

that treating the soil as an anisotropic medium is a reasonable approach 

based on the genesis theory. Thus the transition matrix approach is a 

proper method to deal with this problem. However, it hinders using 

some of the properties that are characteristics of the whole profile 

and not the individual horizon which are, at the same time, important 

in the conventional classification systems. Therefore, if an unbiased 

comparison between the mathematical and the conventional classification 

is needed, then the transition method would be the ideal one, if modi­

fied to include such properties. 

The initial similarity used to classify the different horizons 

based on the primary dcndogram had a little ef,fect on the number of the 

groups into which different pedons were classified. However, the 

pedons interchanged their positions between different groups each time 

the similarity level was changed. Moreover, the pedons within a speci­

fic group did belong to different series that are not adjacent to each 

other on cite field. This makes the separation of different series, 

based on the mathematical classificatio~ hard to achieve. This might 

indicate, if one submitted to the validity of the cluster analysis, 

that the series, as defined in the context of homogeneity, may not 

exist at any level 1n the field even in a small area where the variation 

of the soil forming factors are minimum. This might also suggest that 

a larger portion of the mapping unit is occupied with soil inclusions 

Jn this case, it 1s reasonable and safer to call such a unit a soil 

complex. This conclusion applies to both areas. 
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TABLE 1 

SIMPLE STATISTICS FOR THE AP ZONE BY AREA 

Mean STD Min Value Max Value C.V.% N. Samples 
AR1 AR2 AR1 AR2 AR1 AR2 AR1 AR2 ARl AR2 ARl AR2 

K 0.6 0.4 0.4 0.1 0.2 0.3 1.5 0.6 74.5 19.5 56 4 
H 5.7 5.2 1.4 1.2 2.1 2.0 8.0 7.6 24.4 23.6 6 6 
CEC 22.7 20.0 4.4 3.9 17.2 15.3 34.5 33.6 19.6 19.4 4 4 
OM 1.9 1.3 0.3 0.2 1.3 1.0 2.5 1.7 17 .o 12.5 3 2 
pH 6.6 6.1 0.5 0.6 5.4 5.4 7.3 7.8 8.0 9.8 1 1 
CaC03 0.8 0.4 0.5 0.4 0.1 0.1 1.9 1.1 59.7 98.3 36 97 
Ca 9.2 9.0 3.5 2.8 3.0 6.2 16.7 18.3 37.7 30.7 14 9 
Na 0.6 0.2 1.6 0.1 o;,_1 0.1 3.3 0.6 289.2 47.1 836 22 
Mg 5.2 4.3 2.0 1.1 2.6 3.0 10.3 8.5 32.1 26.l 10 7 
FS 30.6 11.8 9.1 2.6 15.9 6.8 55.5 17.4 29.7 22.3 9 5 
VFS 10.4 10.8 1.8 1.5 6.0 7.9 13.7 14.1 17.6 13.4 3 2 
Silt 36.5 55.6 6.5 10.5 21.1 32.0 49.4 67.2 17.8 18.9 2 4 
Clay 22.6 21.8 6.6 9.7 11.2 13.0 38.6 40.8 29.4 44.6 9 20 
BST 72.3 69.5 23.6 10.5 21.4 57.0 100.0 100.0 32.7 15.1 11 2 
Slope 1. 7 0.6 1.0 0.1 0.5 0~5 3.5 1.0 57.5 19.1 33 4 
Thickness 7.8 9.0 3.0 2.2 4.0 5.0 28.0 13.0 34.7 24.4 12 6 
D Dark L 13.1 28.5 4.5 6.1 8.0 10.0 15.0 36.0 38.2 21.4 15 5 
D Bu : 7.3 36.2 12.8 13.9 o.o o.o 44.0 74.0 175.4 38.4 308 15 
D Rooz 13.3 11.4 5 •. 7 3.1 4.0 7.0 26.0 19.0 42.7 26.7 18 7 
D Crotv 13.7 8.2 16.3 4.3 0.0 o.o 48.0 12.0 119.2 52.1 142 27 
D Coner 10.3 29.2 9.3 11.5 o.o 4.0 30.0 52.0 90.0 39.5 81 16 
D Mot 9.8 23.3 12.4 13.. 2 o.o 7.0 35.0 50:o 126.5 56.5 160 32 
D Bwbod 5.4 5.0 5.5 2.5 2.0 2.0 25.0 12.0 101.5 49.4 103 24 
D Clay Flm 5.4 9.2 4.4 2.1 o.o 5.0 14.0 13.0 81.2 22.9 66 5 
D Sliksd 4.4 21.6 6.0 33.7 o.o o.o 18.0 77.0 134.4 155.9 181 243 
D Presf s 4.7 8.4 6.1 21.4 o.o o.o 18.0 74.0 130.0 253.8 169 644 
D Strk 10.5 67.1 19.1 33.9 o.o o.o 34.0 91.0 101.4 50.4 103 25 
Drang 4.5 4.1 0.5 0.3 4.0 4.0 5.0 5.0 11.2 8.3 1 1 
Perm 2.0 1.1 0.8 0.3 1.0 1.0 3.0 2.0 38.3 26.5 15 7 

n for.ARI• 18 
n for AR2 • 23 
ARl • Area l !',) 

CX> 
AR2 • Area 2 -..J 



Mean 
ARl AR2 

K 0.4 0.4 
H 5.2 5.1 
CEC 25.l 21. 7 
OM 1.6 L3 
pH 6.9 6.2 
CaC03 1.0 0.5 
Ca 11. 7 10.0 
Na L5 0.3 
Mg 7.4 4.8 
FS 28.6 11.4 
VFS 9.8 10.4 
Silt 35.0 53.4 
Clay 26.6 24.8 
BST 81.0 70.6 
Slope 1. 7 0.6 
Thickness 16.7 78.7 
D Dark L 13.1 28.5 

n for ARl • 18 
n fo1 AR2 • 23 
ARl • Area 1 
AR2 • Area 2 

TABLE 2 

SIMPLE STATISTICS FOR THE ROOT ZONE BY AREA 

' S'.i'D Nin Value Max Value c.v .% 
ARl AR2 AR1 AR2 ARl AR2 ARl A.'t2 

0.4 0.1 0.2 0.3 1.4 0.5 78.1 14.8 
1.4 1.1 2.9 2.0 7.9 6.5 26.3 21.5 
5.0 4.3 17.7 15.3 36.5 35.3 20.l 19.7 
0.3 0.2 LO LO 2.1 1. 7 18.2 13~3 
0.6 0.6 5.9 5.6 7.6 7.8 8.5 9.8 
0.6 0.4 0.1 0.1 2.1 Ll 55.6 72. 7 
4.6 3.1 3.2 6.6 20.7 18.3 39.3 30.8 
2.1 0.3 0.1 0.1 6.3 1.2 135.7 80.7 
2.2. 1.1 3.1 3.0 11. 7 8.0 29.5 23.2 
9.7 2.7 15. 9 . 6.2 55.5 17.4 34.1 23.4 
2.2 1.5 6.0 7.2 13.5 14.1 21.9 14.7 
6.0 9.9 21.1 32.2 45.l 64.8 li.l 18.6 
7.9 919 11.2 13.0 40.4 42.6 29.7 40.0 

22.2 9.9 27.0 60.7 100.0 100.0 27.4 14.0 
1.0 0.1 0.5 0.5 3.5 1.0 5.7 1.9 

10.4 10.8 4.0 40.0 37.0 92.0 62.3 13.8 
4.5 6.1 s.o 10.0 28.0 36.0 34.7 2L4 

N. Samples 
ARl AR2 

61 2 
7 5 
4 4 
3 2 
1 1 

31 53 
15 10 

184 82 
9 5 

12 6 
5 2 
3 4 
9 16 
8 2 
1 4 

39 2 
12 5 

N 
00 
00 



TABLE 3 

Sl}fPLE STATISTICS FOR SUBSOIL BY AREA 

Mean STD Min Value Max Value c.v.% N. Samples 
AR1 AR2 AR1 AR2 AR1 AR2 ARl AR2 AR1 AR2 ARl AR2 

K 0.4. 0.4 0.4 <0.1 0.1 0.3 1.3 0.4 65.0 8.0 42 1 
H 3.8 3.4 2.2 0.7 0.7 2.6 7.1 5.1 95.0 20.3 90 4 
CEC 28.1 30.8 6.8 2.9 18.2 24.6 40.6 34.9 57 .4 9.4 33 1 
CM 0.8 0.4 0.4 0.1 0.4 0.3 1.5 0.6 24.3 24.5 6 6 
pH 7.3 7.4 0.8 0.5 5.7 6.3 8.3 8.1 42.6 6.0 18 1 
CaC03 1.5 1.0 1.2 0.4 0.2 0.1 5.2 1. 7 10.9 36.9 1 14 
Ca 19.2 14.1 12.3 2.5 4.2 10.6 40.8 23.l 74.9 17.5 56 3 
Na 3.5 1.8 4.4 0.9 <0.1 0.2 11. 7 2.8 63.9 51.2 41 26 
Mg 9.1 7.7 3.4 1.0 3.3 5.2 15.0 8.8 125.9 12.7 159 2 
FS 24.4 12.0 11.3 J.5 3.2 6.7 44.9 18.5 36.7 29.0 14 8 
VFS 8.4 9.2 4.2 1.5 2.6 6.0 18.9 12.0 46.5 16.8 22 3 
Silt 32.9 42.3 5.9 6.5 17.1 22.9 42.6 52.5 50.7 15.4 26 2 
Clay 34.J 36.6 10.3 6.6 19.2 24.2 52.0 46.8 18.1 18.1 3 3 
BST 75.0 77.4 43.0 7.7 33.5 58.6 100.0 17.6 29.9 19.1 9 4 
RZD 5.6 3.0 3.6 2.2 1.0 1.0 13.0 7.0 65.0 72.5 42 53 
Thickness 16.7 78.7 10.4 10.8 4.0 40.0 37.0 92.0 62.3 13.7 39 2 

n for ARl • 18 
n for AR2 • 23 
n for RZDl • 15 
n for RZD2 • 12 
ARl • Area 1 N 

CX> 
AR2 • Area 2 '° 



TABLE 4 

SI~1PLE STATISTICS FOR THE CR ZONE BY AREA 

Mean STD Min Value Max Value C.V.% N. Samples 

K 0.1 0.2 0.1 0.9 262.8 69 
H 2.0 1. 6. <0.1 5.2 79.6 48 
CEC 16.7 5.6 8.2 31. 9 33.5 11 
OM 0.2 0.2 <0.1 0.6 64.1 41 
pH 7.9 0.8 6.3 9.3 10.3 1 
CaC03 1. 7 3.2 0.1 14.7 189.8 360 
Ca 12.0 10.1 3.1 33.4 84.5 71 
Na 3.0 2.9 <0.1 9.4 95.2 91 
Mg· 6.0 2.3 1.8 11.0 39.1 15 
FS 47.6 13.6 29.0 76.2 28.6 8 
VFS 15.3 9.0 4.1 34.3 58.7 35 
Silt 19.2 7.8 6.0 37.4 40.7 17 
Clay 17.9 5.2 10.7 28.6 28.9 8 
BST 91. 7 64.5 36.7 100.0 59.0 35 
Slope 1. 7 1.0 0.5 3.5 57.5 33 
Thickness 7.9 3.4 1.0 18.0 11.2 l 

n = 18 
N 

'° 0 



TABLE 5 

SIMPLE STATISTICS FOR SERIES A, AREA ONE 

Mean STD Min Value Max Value C.V.% N. Samples 
A B Cr A B Cr A B Cr A B Cr A B Cr A B Cr 

K 0.3 0.5 0.2 0.1 0.4 0.4 0.2 0.1 0.1 0.4 1.0 0.9 18.6 83.3 177.6 4 69 315 
H 6.0 4.0 2.0 0 .• 5 2.3 1.1 5. E1 1.4 0.6 6.6 7.0 3.1 7.8 57.8 56.1 1 33 32 
CEC 26.5 27.0 16.6 7.5 7.0 2.2 18.8 20.7 14.6 36.5 36.9 19.5 28.1 25.9 13.1 8 7 2 
OM 1. 7 0.7 0.2 0.2 0.3 0.1 1.5 0.5 0.1 1.9 1.1 0.4 12.0 39,7 54.1 2 16 29 
pH 1.0 6.1 7.6 0.4 0.9 0.6 6.4 6.0 6.9 7.3 8.1 8.1 5.8 13.0 7.2 1 2 1 
CaC03 0.8 1.1 0.9 0.8 0.7 0.5 0.1 0.2 0.6 1.9 1.8 1.6 94.0 63.2 61.3 88 40 38 
Ca 11.5 20.3. 8.7 2.3 12.0 6.6 8.9 5.2 3.2 14.2 34.5 18.1 20.2 59.l 74.8 4 35 56 
Na l.8 3.4 3.0 1.1 5.3 5.0 0.9 <0.1 0.1 3.3 10.l 9.4 57.2 156.5 159.l 33 245 253 
Mg 7.2 9.6 6.2 2.3 3.8 1.8 5.0 4.3 3.9 10.3 13.3 8.4 32.4 39.6 29.4 11 16 9 
FS 32.5 22.9 47.2 16.8 10.l 13.4 15.9 8.6 29.0 55.5 31.3 61.4 51.9 44.1 28.4 27 19 8 
VFS 11.6 11.2 10.5 1.6 5.4 1.9 9.3 6.5 9.3 13.1 18.9 13.5 14.0 48.1 18.3 2 23 3 
Silt 32.6 32.0 23.l 7.8 5.3 10.-7 21.l 27.9 14.6 38.0 39.5 37.4 23.9 16.5 46.0 6 3 21 
Clay 23.4 33.6 19.0 11.5 8.9 4.9 11.2 24.9 14.5 38.6 45.5 24.2 49.3 26.5 25.5 24 7 7 
Bst 78.6 74.5 85.5 3.1 40.6 20.9 75.2 40.0 61.9 82.1 100.00 100.0 4.0 47.5 24.0 1 23 6 
Slope 1.7 0.9 1.0 3.0 56.3 32 
Thickness 9.3 17.0 7.5 3.8 9.3 2.1 5.0 8.0 5.0 14.0 25.0 10.0 40.8 54.6 27.8 17 30 8 
D Dark L 11.8 2.2 10.0 15.0 18.9 4 
D Burl o.o o.oo o.o 0.0 
D Rooz 10.8 4.4 6.0 15.0 41.2 17 
D Crotv 19.5 22.9 0.0 48.0 117.4 138 
D Coner 5.5 6.4 o.o 11.0 115.5 133 
D Mot 19.0 16.4 o.o 35.0 86.1 74 
D Bwbod 4.5 2.6 2.0 8.0 58.8 35 
D Clay Flm 8.0 5.9 o.o 14.0 73.6 54 
D Sliksd 1.3 2.5 . o.o 5.0 200.0 400 
D Presfs 1.3 2.5 0.0 s.o 200.0 400 
D Strk 3.8 4.8 o.o 10.0 127.7 163 
Drang 4.5 0.6 4.0 s.o 12.8 2 
Perm 2.0 0.8 1.0 3.0 40.8 17 

11 • 4· N 

'° I-' 



TABLE 6 

SIMPLE STATISTICS FOR SERIES B, AREA ONE 

Mean STD Min Value Max Value c.v.% N. Samples 
A B Cr A B Cr A B Cr A B Cr A B Cr A B Cr 

K 0.9 0.6 0.1 0.6 0.6 0.1 0.5 0.1 0.1 1.4 1.0 0.1 66.6 106.0 60.1 44 112 36 
H 6.1 2.6 1.3 0.3 0.5 1.6 5.9 2.2 0.1 6.3 2.9 2.3 4.6 20.0 125.7 1 4 158 
CEC 23.7 26.9 26.7 0.9 1.3 7.4 23.0 26.0 21.4 24.3 28.0 31.9 3.9 5.0 27.8 1 1 8 
OM 2.0 0.7 0.2 0.01 0.3 0.1 2.0 0.6 0.1 2.1 0.9 0.2 0.3 34.0 58.4 1 10 34 
pH 6.7 8.0 8.5 0.4 0.5 0.4 6.4 7.6 8.2 7.0 8.3 8.7 5.7 6.3 4.3 1 1 1 
CaC03 1.0 1.2 1.0 0.4 0.7 0.0 0.7 0.7 1.0 1.3 1. 7 1.0 39.0 56.2 o.o 15 32 1 
Ca 8.8 16.2 12.0 4.1 5.5 10.7 5.8 12.3 4.4 11. 7 20.1 19.6 47 .2 34.0 89.3 22 12 80 
Na 0.1 2.5 5.2 1.9 1.8 0.3 0.1 1.3 5.0 1.3 4.0 5.5 2.5 70.3 6.6 1 49 44 
Mg 7.6 9.6 6.4 0.6 0.9 1.4 7.2 9.0 5.4 8.1 10.2 7.4 8.3 9.0 22.3 1 1 5 
FS 24.3 31.5 47.1 6.8 8.2 19.2 19.5 25.7 35.0 29.1 37.3 59.3 27.9 26.1 36.5 8 7 13 
VFS 8.0 5.8 20.0 2.9 2.3 20.4 6.0 4.2 5.5 10.0 7.4 34.3 35.9 39.5 102.6 13 16 105 
Silt 39.0 30.6 14.9 6.8 2.2 0.7 34.2 29.0 14.4 43.8 32.2 15.4 17.5 7.3 4.7 3 1 1 
Clay 28.7 32.1 18.1 2.8 8.2 3.9 26.7 26.3 15.3 30.7 38.0 20.8 9.6 25.7 21.5 1 7 5 
BST 73.5 80.5 85.5 28.2 28.2 7.2 53.6 84.3 47.0 93.4 100.0 100.0 38.3 30.8 55.8 15 10 31 
Slope 1. 6 0.1 1.5 1. 7 8.8 1 
Thickness 6.0 11.5 9.0 2.8 2.1 2.8 4.0 10.0 7.0 8.0 13.0 11.0 47.1 18.5 31.4 22 3 10 
D Dark L 16.5 2.1 14.0 17.0 13.7 2 
D Burl 6.5 9.2 0.0 13.0 141.4 200 4 
D Rooz 7.5 5.0 4.0 11.0 66.0 44 
D Crotv 4.0 5.7 o.o 8.0 141.4 200 
D Coner 11.5 2.1 10.0 13.0 18.5 3 
D Mot 8.5 12.0 o.o 17.0 141.4 200 
D Bwbod 13.5 16.3 2.0 25.0 .120.5 144 
D Clay Flm 7.5 0.7 7.0 8.0 9.4 1 
D Sliksd o.o o.o o.o o.o 
D Presf s o.o o.o o.o o.o o.o 
D Strk 13.5 0.7 13.0 14.0 5.2 1 
Drang 4.0 o.o 4.0 4.0 o.o 1 
Perm 2.0 o.o 2.0 2.0 o.o 1 

n • 6 
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TABLE 7 

SIMPLE STATISTICS FOR SERIES C, AREA ONE 

Mean STD Min Value Max Value C.V.% N. Samples 
A B Cr A B Cr A B Cr A B Cr A B Cr A B Cr 

K .5 0.4 0.1 0.3 0.5 0.1 0.2 0.1 0.1 1.1 1.3 0.1 66.4 110.2 107 .5 44 121 101 
H 6.6 3.4 3.0 1.1 3.0 2.0 5.0 0.7 0.2 8.0 7.1 5.2 16.6 68.5 67.2 J 47 45 
CEC 20.6 22.7 14.0 3.0 3.7 2.2 17.1 18.2 12.2 24.3 27.7 16.9 14.5 16.5 15.9 2 3 3 
OM 1.9 1.0 0.3 0.3 0.5 0.2 1.4 0.4 0.1 2.1 1.5 0.6 14.1 48.5 76.0 2 24 58 
pH 6.2 6.8· 7.6 0.6 0.9 1.1 5.4 5.7 6.3 1.0 7.9 8.8 9.7 13.2 14.0 1 2 2 
eaco3 0.6 1.0 0.7 0.2 0.5 0.5 0.5 0.5 0.1 1.0 2.0 1.3 39.4 51. 7 68.2 16 27 47 
Ca 9.6 14.2 7.6 4.4 12.8 5.5 2.9 4.2 . 4.0 16.7 39.8 18.7 45.7 90.0 72.3 21 81 52 
Na 0.6 1. 6 1. 9 1.4 4.0 1.0 0.1 0.1 0.8 2.1 8.9 3.1 219.6 250.0 54.4 482 625 JO 
Mg 5.2 6.3 5.4 2.J 1.9 2.8 2.6 J.J 3.7 8.7 8.8 ll.O 45.6 30.1 50.8 21 9 26 
FS 33.6 32.7 56.6 5.2 6.3 13.9 26.4 28.5 56.6 41.0 44.9 76.2 15.6 18.5 24.6 2 3 6 
VFS 10.6 9.2 14. 2 1. 9 3.5 9.8 8.9 5.5 4.1 13.7 14.7 30.9 18.1 37.6 61.9 3 14 47 
Silt 37.9 32.8 14.6 5.0 3.7 5.6 32.2 28.0 6.0 45.2 37.0 21.8 13. 1 11.2 38.3 l 2 l 
Ciay 17.9 25.3 14.4 3.8 3.3 2.6 12.7 19.2 10.7 22.7 28.9 18.0 21.0 13.0 17.9 4 2 3 
BST 75.7 97.8 98.0 32.2 58.0 42.2 21.5 33.5 66.0 100.0 100.0 100.0 42.6 69.7 41.5 18 49 17 
Slope 2.6 10.5 2.0 2.5 18.9 4 
Thickness 7.7 12.5 9!5 1.2 9.3 4.4 6.0 4.0 6.0 9.0 27.0 18.0 15.8 46.5 3 22 
D Dark 12.2 1.9 10.0 15.0 16.0 74.2 3 55 
D Bu;rl 3.3 8.2 o.o 20.0 244.9 500 
D Rooz 13.5 5.2 8.0 21.0 38.3 15 
D Crotv 17.7 14.7 0.0 3.5 83.l 69 
D Coner 5.7 6.7 o.o 16.0 119.0 142 
D Mot 6.5 10. l 0.0 20.0 155.0 240 
D Bwbod 4.5 2.8 2.0 9.0 62.5 39 
D Clay 6.2 4.4 o.o 13.0 72.1 52 
D Slil«;d 2.1 3.5 o.o 8.0 161.0 259 
D Presfs 3.5 5.7 o.o 13.0 161.4 261 
D Strk 6.5 10.1 0.0 20.0 155.0 240 
Drang 4.6 0.5 4.0 5.0 11.0 1 
Perm 2.5 0.8 .... 1..0 2.0 33.5 .11 

N 
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TABLE 8 

SIMPLE STATISTICS FOR SERIES D, AREA ONE 

Mean STD Min Value Max Value C.V.% N. Samples 
A B Cr A B Cr A B Cr A B Cr A B Cr A B Cr 

K .7 0.2 <0.1 0.5 0.1 0.1 0.2 0.1 <0.1 1.5 0.3 0.1 80.6 35.2 405.7 65 12 1646 
H 4.5 3.4 1.2 1.5 1.6 1.1 2.1 1.4 <0.1 5.7 5.4 2.7 . 33.0 46.0 85.4 11 21 73 
CEC 22.0 34.8 16.2 2.6 4.9 6.3 19.8 27.3 8.2 26.6 40.7 27.1 11.9 13.9 38.8 1 2 15 
OM 2.0 0.8 0.2 0.4 0.3 0.2 1.3 0.5 0.1 2.5 1.2 0.4 22.5 38.1 69.3 5 15 48 
pH 6.7 7.7 8.3 0.3 0.3 0.7 6.3 7.1 7.2 7.1 8.0 9.3 4.5 4.0 8.3 1 1 1 
CaC03 0.9 2.3 3.3 0.5 1.6 5.3 0.2 0.7 0.7 1.6 5.2 14.2 53.2 67.4 159.6 28 45 255 
Ca 7.5 24.4 18.6 2.6 13.7 13.7 4.1 7.6 5.5 10.2 40.8 33.4 35.4 56.0 73.7 13 31 54 
Na 0.1 5.8 3.5 1.9 4.6 3.1 <0.1 1.1 <0.1 1.9 11. 7 6.1 190.0 79.8 86.3 361 64 75 
Mg 6.0 11.5 6.0 1.3 2.9 2.8 3.7 8.5 1.8 7.1 15.0 8.8 20.9 25.5 46.0 4 65 21 
FS 28.3 14.7 39.1 6.1 10.4 9.2 21. 3 3.2 29.7 39.1 31.4 54.5 21.5 71.0 23.5 5 50 6 
VFS 10.2 6.6 17.9 0.9 4.2 7.5 9.2 2,6 10.3 11.3 14.2 30.l 9.20 26.7 41. 7 1 7 17 
Silt 36.8 34.2 22.4 7.5 9.2 7.1 26.6 17.1 15.3 49.4 42.7 33.2 20.4 17.9 31.6 4 3 10 
Clay 24.7 44.4 20.6 2.7 7.9 6.6 19.8 35.5 11.4 27.3 52.1 28.6 1.0 41. 7 32.2 4 17 10 
BST 64.2 76.0 90.9 23.9 42.2 38. 7 36.6 59.5 45.6 92.4 100.00 100.0 37.2 41.7 40.0 14 17 16 
Slope 0.8 0.6 0.5 2.0 76.8 59 
Thicknes.: 7.7 22.3 6.3 4.0 12.6 2.8 4.0 6.0 1.0 15.0 37.0 9.0 52.0 44.3 27 20 
D Dark L i4.0 7.5 8.0 28.0 53.6 56.3 29 32 
D Burl 16.3 17.6 o.o 44.0 108.0 117 
D Rooz 16.8 5.8 9.0 26.0 34.3 12 
D Crotv 9.0 16.0 o.o 41.0 177.8 316 
D Coner 17.8 10.5 0.0 30.0 59.0 35 
D Mot 7.5 12.l o.o 28.0 161. 7 261 
D Bwbod 4.2 2.6 2.0 8.0 63.3 40 
D Clay Flm 2.3 2.6 o.o 7.0 110.7 123 
D Sliksd 10.3 6.4 o.o 18.0 62.3 39 
D Presf s 9.7 8.3 o.o 18.0 65.3 43 
D Strk 18.0 12.0 o.o 34.0 66.6 44 
Drang . •. 4.7 0.5 4.0 5.0 11.1 1 
Perm . 1.5 0.5 1.0 2.0 36.5 13 

n • 6 N 

'° +:-



TABLE 9 

SIMPLE STATISTICS FOR SERIES E, AREA TWO 

-
Mean STD Min Value MaX Value C. V.% N. Samples 

A B A B A B A B A B A B 

K 0.4 0.4 0.1 0.1 0.3 0.4 0.6 0.4 28.9 5.6 8 1 
H 5.3 3.9 0.9 0.9 3.6 2.7 6.6 5.1 16.9 23.7 3 6 
CEC 18.3 28.6 2.2 3.1 15.4 24.6 22.2 34.3 12.0 10.8 1 1 
0}! 1.4 0.4 0.2 0.1 1.2 0.3 1. 7 0.6 12.2 29.3 2 9 
pH 6.0 7.1 0.5 0.5 5.5 6.3 6.9 7.7 7.6 7.5 1 1 
CaC03 0.5 0.7 0.3 0.4 0.1 0.1 0.9 1.2 75.8 50.3 48 25 
Ca 8.1 12.8 0.9 1.7 6.2 10.7 9.0 14.7 11.2 12.9 1 2 
Na 0.2 1.1 0.1 1.1 0.1 0.2 0.4 2.8 58.3 100.6 34 100 
Mg 3.9 7.1 0.6 1.3 3.4 5.2 4.8 8.6 14.4 18.2 2 3 
FS 11.6 15.3 3.0. 2.8 8.3 10.8 17.0 18.5 25.8 18.4 7 3 
VFS 11.0 10.1 1.0 0.9 9.7 9.1 12.8 12.0 9.2 8.3 1 1 
Silt 57.7 41.3 8.3 7.7 46.4 22.9 67.2 47.0 14.3 18.8 2 4 
Clay 20.0 33.3 8.4 7.3 13.2 24.2 34.2 46.7 42.0 21.9 18 5 
BST 69.3 74.4 7.7 8.8 60.6 58.7 79.6 84.3 11.0 11.8 1 l 
Slope 0.6 0.2 0.2 0.5 1.0 31.4 8 
Thickness 8.8 74.8 1.9 17.9 6.0 40.0 12.0 92.0 21.8 23.9 5 6 
D D.,rk L 28.5 8.2 10.0 36.0 28.6 8 
D Burl 36.1 9.5 29.0 53.0 25.3 7 
D Rooz 12.6 ti. 4 7.0 19.0 35.2 12 
D Crotv 8.1 3.9 o.o 12.0 48.1 23 
D Coner 36.6 8.6 29.0 50.0 23.4 6 
D Mot 31.0 10.4 12.0 50.0 33.5 11 
D Bwbod 6.6 3.4 4.0 12.0 51.6 27 
D Clay Flm 9.3 1.0 7.0 12.0 17.1 3 
D Sliksd 0.0 o.o o.o o.o - 1 
D PresFs o.o o.o o.o o.o - 1 
D Strk 72.4 ·26.6 30.0 91.0 28.5 8 
Drang 4.0 o.o 4.0 4.0 o.o 0 
Perm 1.3 0.5 1.0 2.0 37.0 14 

n•8 
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TABLE 10 

SDIPLE STATISTICS FOR SERIES F, AREA TWO 

Mean STD Min Vaiue Max Value C.V.% N. Samples 
A B A B A B A B A B A B 

K 0.4 0.4 0.1 0.1 0.3 0.3 0.5 0.4 13. 7 3.9 2 1 
H 4.6 3.1 1.2 0.3 2.8 2.8 5.9 3.4 26.2 8.3 7 1 
CEC 21.8 31.8 6.8 1.2 16.2 30.8 33.6 33.8 31.3 3.6 10 1 
OM 1.3 0.4 0.2 0.1 1.1 0.3 1.5 0.4 12.4 14.4 2 2 
pH 6.5 7.7 0.6 0.4 5.8 7.3 7.2 8.0 8.8 4.8 1 1 
Caco3 0.3 1.1 0.4 0.3 0.1 0.8 0.6 1.5 150.9 26.2 227 7 
Ca 10.0 13.6 3.5 0.6 6.6 13.1 15.0 14.5 35.1 4.2 12 1 
Na 0.3 2.3 0.2 0.4 0.2 1.8 0.6 2.7 54.5 16.5 30 3 
Mg 4.7 7.8 2.2 0.4 3.0 7.2 8.5 8.4 46.3 5.6 21 1 
FS 10.6 11.6 2.4 1.5 6.8 9.8 12.9 13.3 22.9 12.8 5 2 
VFS 9.9 9.0 1.4 1.0 7.9 7.9 11.4 10.5 13.8 11.2 2 1 
Silt 61.4 40.7 3.8 5.2 55.4 34.4 64.8 46.8 6.3 12.8 1 2 
Clay 18.0 38.6 6.9 3.1 13.0 35.S 30.0. 42.9 38.5 7.9 15 1 
BST 69.8 75.1 8.9 3.4 62.8 72.0 84.0 79.9 12.7 4.4 2 1 
Slope 0.6 0.1 0.5 0.6 9.8 1 
Thickness 9.2 21.2 2.7 2.7 6.0 79.0 12.0 85.0 29.2 3.3 9 1 
D Dark L 30.6 4.4 24.0 35.0 14.4 2 
DBur L 32.8 5.9 24.0 40.0 18.0 3 
D Rooz 12.4 1.8 10.0 15.0 14.7 2 
D Crotv 10.0 2.8 6.0 12.0 28.3 8 
D ·concr 22.8 11.9 4.0 34.0 52.0 27 
D Mot 23.4 8.0 12.0 34.0 34.4 12 
D Bwbod 4.0 o.o 4.0 4.0 0.0 0 
D Clay Flm 9;2 2.7 6.0 12.0 29.2 9 
D Sliksd 15.4 34.4 0.0 77.0 223.6 500 
D PresFs 11.0 24.6 o.o 55.0 46.9 22 
D Strk 74.8 35.1 2.0 91.0 o.o 11 
Drang 4.0 o.o 1.0 4.0 o.o 10 
Perm 1.0 o.o 1.0 1.0 o.o 15 

n • S N 
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TABLE 11 

SIMPLE STATISTICS FOR SERIES G, AREA TWO 

Mean S'ID Min Value Max Value C.V.% .. N. Samples 
A B A B A B A B A B A B 

K 0.4 0.4 <0.1 <0.1 0.3 0.3 0.5 0.4 12.0 5.6 1 1 
H 4.8 3.3 1.4 0.5 2.0 2.7 6.3 4.2 28.9 15.6 8 2 
CEC 20.5 32.4 2.3 2.7 17.3 27.7 22.2 39.9 11.0 8.5 1 1 
OM 1.2 0.3 0.1 0.1 1.0 0.3 1.4 0.4 11.4 17.8 1 3 
pH 62 .o 7.5 0.8 0.3 5.6 7.1 7.8 7.8 12.3 3.9 2 1 
CaC03 0.5 1.2 0.4 0.3 <0.1 0.7 1.1 1. 7 89.4 29.8 80 9 
Ca 10.0 16.1 3.8 3.4 7.6 11.8 18.3 23.1 38.4 21.3 15 s 
Na 0.2 2.0 <0.1 0.7 0.2 0.5 0.3 2.8 21.5 35.6 5 13 
Mg 4.4 8.2 0.7 0.7 3.5 6.8 5.5 8.9 16.1 8.5 3 1 
FS 12.0 9.0 2.7 2.6 9.0 6.7 17.4 14.5 22.5 28.9 5 8 
VFS 11.5 7.7 1.9 1.6 8.8 6.0 14.1 10.9 16.4 21.2 3 5 
Silt 47 .8 45.0 14.4 5.0 32.2 36.7 64.6 52.3 30.1 11.l 3 5 
Clay 28.7 38.3 12.1 6.7 14.3 27.9 40.9 46.8 42.2 17.5 9 3 
BST 72.3 82.5 15.4 7.3 60.8 76.0 100.0 97.5 21.2 8.8 5 1 
Slope 0.6 0.1 0.5 0.7 9.6 1 
Thickness 9.3 80.0 2.6 4.2 5.0 71.0 13.0 83.0 28.3 S.3 8 1 
D Dark L 27.1 6.2 18.0 34.0 22.7 5 
D Bur ;.. 39.4 22.8 o.o 74.0 57.8 33 
D Rooz 9.9 1.2 8.0 12.0 12.3 2 
D Crotv 7.3 5.1 o.o 12.0 69.4 48 
D Coner 27.4 13.4 9.0 52.0 48.9 24 
D Mot 19.3 16.9 9.0 49 •. 0 87.5 77 
D Bwbod 4.0 o.o 4.0 4.0 o.o 1 
D Clay Flm 9.3 2.6 5.0 13.0 28.3 8 
D Sliksd 51.3 35.7 o.o 76.0 69.6 48 
D PresFs 11.9 27.6 o.o 74.0 232. 7 542 
D Strk 77.9 34.3 o.o 91.0 44.1 20 
Dl'ang 4.4 0.5 4.0 5.0 12.1 2 
Perm 1.0 0.0 1.0 1.0 o.o 1 

n • 7 N 
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TABLE 12 

SIHPLE STATISTICS FOR SERIES H, AREA TWO 

Mean STD Min Value Max Value C.V.% N. Samples 
A B A B A E A B A B A B 

K 0.4 0.3 0.1 0.1 0.3 0.3 0.4 0 .. 4 19.6 16.3 3 3 
H 6.5 3.1 1.0 0.5 5.7 2.6 7.6 3.6 15.0 15.8 2 3 
CEC 19.8 31.4 4.1 1.8 15.3 29.3 23.5 32.5 20.9 5.6 4 l 
OM 1.2 0.4 0.1 0.1 1.1 0.4 1.3 0.5 8.8 14.2 1 2 
pH 5.6 7.7 0.2 0.1 5.4 7.5 5.8 7.7 2.6 1.9 1 , ... 
CaC03 0.2 1.1 0.4 0.2 0.1 0.9 0.6 1.3 215.3 19.5 364 4 
Ca 7.6 13.8 0.8 0 .. 4 7.0 13.6 8.4 14.2 9.9 2.6 1 1 
Na 0.2 2.1 0.1 0.1 0.2 2.0 0.3 2.2 29.6 5.6 9 l 
Hg 4.1 7.8 0.6 0.3 3.5 7.5 4.5 8.2 14.2 4.3 2 l 
FS 14.0 10.l; 0.6 0.9 13.4 9.8 14 .. 5 11.S 3.9 8.6 1 1 
VFS 10.5 10.1 1.3 0.6 9.1 9.6 11.6 10.8 12.2 6.2 2 1 
Silt 58.6 41.5 1.8 9.5 56.7 35.8 60.4 52.5 3.1 22.8 1 5 
Clay 16.9 37.9 2.4 8.8 15.3 27.9 19.7 44.5 14.3 23.3 5 5 
BST 63.0 77.5 7.4 7.1 57.1 72.4 71. 2 85.6 11. 7 9.2 1 l 
Slope 0.6 0.1 0.5 0.6 10.2 1 
Thie' .1ess 8.7 82.0 2.1 1. 7 7.0 80.0 11.0 83 9.5 2.1 l 1 

. D Dark L 28.0 2.6 25.0 30.0 31 l 10 
D Burl. 34.7 io;s 27.0 47. 0 20.2 4 
D Rooz 10.3 2.1 8.0 12.0 86.9 76 
D Ci:otv 7. 7 6.7 0.0 12.C 15.0 2 
D Coner 24.0 3.6 20.0 27.0 65.i 42 
D Mot 12.0 7.8 7.0 21. 0 65.5 42 
D Bwbod 4. 7 3.1 2.0 8.0 24.0 . 6 
D Clay Flm 8.7 2.1 7.0 11.0 173.2 300 
D Sliksd 20.3 35.2 o.o 61.0 173.2 300 
D Presfs 18.7 33.3 o.o 56.0 134.0 180 
D Strk 15.3 20.7 1.0 39.0 o.o 1 
Drang. 4.0 o.o l1.0 4.0 0.0 1 
Perm 1.0 0.0 1.0 1.0 o.o 1 N 

'° n = 3 
(1) 



APPENDIX B 

VARIABLES USED IN CALCULATING 

THE SIMILARITY MATRIX 
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VARIABLES USED IN CALCULATING THE SIMILARITY MATRIX 

Field Observations (Discrete variables) 

Horizon boundaries Structure 

abrupt = 1 Class 

clear = .6 very fine = 1 

gradual = . 3 fine - 2 

diffuse = .2 medium = 3 

Texture coarse = 4 

sandy = 1 very coarse = 5 

loamy sand = 1.5 Grade 

sandy loam = 2 structureless = 1 

loam = 3.4 very weak = 2 

silt loam = 3.9 weak = 3 

silt = 1.2 moderate = 4 

sandy clay loam = 5.5 strong = 5 

clay loam = 6.6 very strong 6 

silty clay loam = 6.7 Consistence 

sandy clay = 9 Plasticity 

silty clay = 10 non-plastic = 1 

clay = 10 slightly plastic = 2 

plastic = 3 



Consistence (continued) 

loose = 1 

soft = 2 

slightly hard = 3 

hard = 4 

very hard = 5 

extremely hard = 6 

Moist 

loose = 1 

very friable = 2 

friable = 3 

firm = 4 

very firm = 5 

extremely firm = 6 

Stickiness 

non-sticky = 1 

slightly sticky = 2 

sticky = 3 

Mottles 

Abundance 

few = 1 

common 2 

many = 3 

very many = 4 
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Mottles (continued) 

Size 

fine = 1 

medium = 2 

coarse = 3 

Contrast 

faint = 1 

distinct = 2 

prominent = 3 

Color 

Hue 

10 YR= 6 

7.SYR = 7 

5 YR = 8 

2.SYR = 9 

Chroma= 1, 2, 3, 4, 5, 6, 7, 8 
(as coded on the Munsell Chart) 

Value= 1, 2, 3, 4, 5, 6, 7, 8 

Roots 

(as coded on the Munsell Chart) 
(as 

Size 

fine = 1 

medium = 2 

coarse = 3 

Abundance 

few = 1 

common = 2 

many = 3 



Root score = size + abundance 

Concretions 

Abundance 

non-present = 0 

few = 1 

common :::: 2 

many = 3 

Size 

fine = 1 

medium == 2 

coarse = 3 

Kind 

white = 1 

black 3 

Coating 

non-present 0 

organic 1 

oxides = 3 

clay = 5 

Pores 

Size 

very. fine = 1 

fine = 2 

medium = 3 

coarse = 4 

Chemical Data (Continuous variables)) 

Clay % 

Fine sand % 

Very fine sand % 

pH 

Organic matter % 

CEC 

Clay/CEC 

Na 

Mg 

Ca 

K 

Ca/Mg 

H 

Caco3 

Very fine sand/Silt 

Silt/Clay 

Base saturation 
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