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CHAPTER 1
INTRODUCTION
1.1 Statement of the Problem

The structural unit of speech composition is the speech sound ca]]ed
the phoneme.Jr Its variations are called allophones. It can be said also
that phonemes relate to the linguistic basis of a language. However,
phonemes are not "bricks," i.e., the human has been endowed with the
ability to communicate in a continuous mode. Because we speak in an
uninterrupted fashion in order to éomp]ete our Lhoughts, the phonemic
structure connects itself by transitional cues for the perception of cer-
tain phonemes [1]. It is this transitional information that is needed
for absolute discrimination of speech and speech-like sounds [2]. It is
the transitional information that is needed for efficient excitation of
a speech synthesizer.

To synthesize intelligible speech, the perceptual aspects of'speech
sounds have to be used. In other words, the ability for humans to dis-
criminate and differentiate a speech sound with their over-learned senses
must be incorporated into the speech synthesis technique. The speech
synthesis must include perceptual enhancemeht, and the inclusion of

transitional information (that is, frequency shifts). Transitional

information is the 1oci of frequency determined by the place of

, TSome of the words related to the science of the speech waveform are
defined in APPENDIX A.



articulation that connects the phonemes. Phonemes are the basic speech
sound element used to make.a word. One can also say that a phoneme is an
idealized structural unft of language which serves to keep words apart.
It is an astonishing fact as to how the human brain stores rules to keep
track to one's language for communicating. The object of speech synthe-
sis is to come as close as possible to this occurrence.

The history of synthetic voice coding had its origination with H. W.
Dudly in 1939 [3] [4]. The Dudley speech reproduction model consists of
a filter representing the vocal tract resonance characteristics drfven by
an artificially synthesized excitation signal. The filter and the excita-
tion signal parameters are updated periodically. To determine the filter
characteristics, Dudley used the Fourier spectrum of the speech as a
basis. The excitation signal consists of a pulse train for voiced souhds
and random noise for unvoiced sounds. The model that Dudley has repre-
sented is essentially the basis of many methods today [5] [6] [7]. Some
of these ideas are discussed below.

A basic model of the speech waveform is to assume a Tinear quasi
time-invariant system which responds to a periodic or noiselike excita-
tion. This linear time invariant system represents the vocal tract. If
the vocal tfact is assumed to be fixed, then the output of the system is
a convolution between the excitation and vocal tract transfer functioh
(see Figure 1).

Recently considerable interest has been given to methods of digital
analysis and synthesis of speech assuming the presented model. A method
that has proven to be efficient for encoding the speechwave is linear
prediction [6]. The Tinear predictive encoder was developed to improve

the channel vocoder voice quality and intelligibility [7]. The difference
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Figure 1. Model of Speech Production as the Response of A Quasi-Stationary
Linear System (a) Time Domain Characterization, (b) Frequency-
Domain Characterization (After Oppenheim, 1978)



between the linear predictive coded (LPC) vocoder and the channel vocoder
is the filter. There are two types of LPC vocoders, a pitch-excited and
a residual-excited. The difference between the two is how the excitation
signal is characterized for the synthesis filter. In the pitch-excited
LPC vocoder, the model of the vocal tract, with glottal flow and radia-
tion, is represented by the predictor coefficients. These coefficients
are transmitted together with the information regarding the excitation of
the speech, i.e., pitch, voiced/unvoiced decision and the gain. Much
research has been done toward the pitch-excited LPC vocoder. Two methods
have been discovered, the autocorrelation [8] [9] and the covariance [6]
methods. The residual-excited methods can be characterized the same way.
However, instead of using pitch, voiced/unvoiced desicion and gain, the
residual is encoded and transmitted. The residual is the difference be-
tween the actual and predicted speech signals. This technique also car-
ries the name adaptive predictive coding (APC). The channel vocoder, on
the other hand, uses a set of narrowband filters whereas the linear pre-
dictor uses an all pole digital filter. The linear predictive filter
describes the frequency response of the vocal tract system by the pre-
dictor coefficients. Its function is to decompose'the speech into two
waveforms. One waveform represents the parameters that are time-varying
such as predictor coefficients, partial correlation coefficients and
other parameters that represent the formant frequency characteristics.
The other waveform is the prediction residual. Figure 2 describes a
block diagram of the LPC analysis.

The prediction residual is the ideal signal for an excitation func-
tion for the linear predictive analysis and synthesis model because it

contains the actual information instead of the pseudo-model, a pulse
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train or random noise [10]. In addition, phasing information is embedded
in the prediction residual. Furthermore, since the analysis fi]ter is.
the inverse of the synthesis filter, the decomposed waveform can be re-
constructed to form the input speech waveform by updating the parameters
[7] [11]. The prediction residual also follows the actual §peech excita-
tion model g(t) in Figure 1 [12]. The function, g(t), represents the
glottal pulse which is also called the glottal volume velocity at the
vocal cords or glottis. In order to ideally model the voice reproduction
system, it is necessary to use a system whose properties are similar
acoustically to the glottis and vocal tract. It is best to model the
excitation signal with an analogous function to the glottis waveform for
input to the vocal tract. It is well known that for nonnasal voiced
speech sounds, the transfer functions have no zeros [5]. For these par-
ticular sounds, the vocal tract filters can be approximated by an all
pole filter. It is also known that the shape and periodicity of the
glottis excitation are subject to large variations [12]. However, with
the Tinear predictive model the features of the glottal flow, the vocal
tract, and the radiation, which is the output from the mouth, are included
into a single recursive filter. To separate the glottal flow from the
vocal tract involves a deconvolution. Some authors have avoided this sep-
aration of the source function; however, the artificial excitation used by
them represents only a good approximation to the prediction residual for
unvoiced sounds. Moreover, for voiced sounds, the artificial excitation
could be improved. The prediction residual should be used for the excita-
tion function, because it contains the following characteristics:

1. It is repetitive at the pitch frequency.

2. It has basically a flat amplitude spectrum; however, it includes



details that relate to the suprasegmentals of the individual and of the
spoken words.

3. It includes the noisiness of opening and closing of the glottal
mechanism indicéting phase information.

| 4. It includes the fact that voiced fricatives and stops are a com-
bination of noise and a repetitive signal.

Noting the speech characteristics in the residual signal, several
authors have investigated the coding aspects of the prediction residual
[13—32]. However, the speech intelligibility aspects, such as Articula-
tion Index (AI) [29], have not been used in these. The Articulation Index
concept has been used effectively in the sub-band coding of speech [36].
The sub-band coding, based upon AI, allows for an efficient bit distribu-
tioh in coding. This thesis combines all these ideas and presents an
efficient method of coding the prediction residual using the concepts of
sub-band coding. A literature survey related to these areas is presented
in the next section.

One important aspect of coding is bit rate. For certain narrow band
rétes, the coding of the prediction residual is not feasible [13]. Also,
it has been shown that 9,600 bits/second is feasible for transmission of
residual and filter parameters, and is practical over voice grade lines
[35]. In the future, lower data rates have to be used for cost effec-
tiveness. At present, rates below 6,000 bits/second yield speech quality
of a synthetic nature. Rates between 6,000 bits/second and 16,000 bits/
second demonstrates good communication quality. Studies have shown and
present operating equipment demonstrate that a 16,000 bits/second trans-
mission rate and above yield toll telephone quality. The thrust of the

governmental community for designing voice switch networks has been



re;ent]y toward 9,600 bits/second rate. At this rate, the communicators
can comprehend the language spoken; however, there is some drop-off in
speaker recognition but not as drastic as at rates closer to 6,000 bits/
second. With the advent of mircroprocessing systems more sophisticated
algorithms can be implemented with small monetary investments. This
thesis presents the coding and decoding of the residual signal using sub-

band coding at a data rate of 9,600 bits/second.
1.2 Review of the Literature

Predictive systems related to speech have evolved through the years.
A brief survey of these systems is presented below. In earlier studies
of predictive coding systems with applications to speech signals, the
linear predictors were limited to fixed coefficients in an interval [17].
In more recent studies, it was found that since the speech signal has non-
stationary properties, the linear predictor does not efficiently predict
the signal at each interval. In work by Atal and Schroeder [6], an adap-
tive predictive system took into account the quasi-periodicity of speech
signals. In addition to being the classic forerunner for adaptive pre-
dictive coding (APC) of speech signals, this is a more elaborate predictor
than the one with fixed coefficients which is suited for characteristics
of speech sounds. Basically, the residual signal along with the predictor
provides sufficient information for the receiver to regeherate the input.
In this, pitch is determined from the residual signal. Atal and Schroeder
[22] have examined predictive coding of speech signals recently. They
have shown that speech quality can be improved by masking quantizer noise
over the speech signal. Atal and Hanauer [5] described an efficient en-

coding of the speech wave by representing it in terms of time-varying



parameters related to a transfer function of the vocal tract and by model-
ing the excitation.

In wqu by Dunn [13], the linear predictive coded residua] signal was
generated by a feed-forward linear predictive coding (LPC) analyzer and
encoded using delta modulation (DM). The signal was transmitted at a bit
rate of 9,600 bits/second. Gibson, Jones, and Melsa [14] have introduced
a method called sequential adaptive prediction which utilized differential
pulse code modulation (DPCM) with an adaptive quantizer and an adaptive
predictor using Kalman filtering. This work was improved upon by Cohn and
Melsa [15] using adaptive differential pulse code modulation (ADPCM) for
encoding the prediction residual. A method using the Kalman filter for
the adaptive predictive encoder was introduced by Goldberg and others
[16]. This system was real time APC that was iﬁp]emented on a minicompﬁ-
ter. An adaptive residual coding using an adaptive predictor, adaptive
quantizer; and a variable length coder was studied by Qureshi and Forney
[18]. In these studies, a class of speech digitization algorithms is
described for use at bit rates of 9,600 to 16,000 bits/second. These sys-
tems involve an adaptive predictor, an adaptive quantizer, and a variab]e.
length coder. This is a practical version of a residual encoder previous-
1y studied by Melsa and others [14]. Most recently, the method of vari-
able length coding of the prediction residual was studied by Berouti and
Makhoul [19]. This system of APC uses a noise spectral shaping filter to
solve the granular noise quantization problem and an indefinite quantizer
to solve the overload quantizing problem.

A voice-excited predictive coder (VEPC) by Esteban and others [20]
Qses a baseband excitation of the residual and splitband coding by signal

decimation/interpolation. Furthermore, quadrature mirror filters are
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implemented in order that the aliasing properties could be taken advan-
tage of in the synthesizer.

The most recent work by Cohn and Melsa [21] [23] involves the imple-
mentation of a speech coding algorithm for digital transmission of speech
at 9,600 bits/second using a sequential, adaptive linear predictive coder,
an adaptive source coder, and muTtipath tree-searching algorithm to gen-
erate quality speech. This is an extension of the previous work done on
a residual encoder which was an improved ADPCM system for speech digiti-
zation. Chang [24] has extended this work and incorporated a noise re-
sistant code for transmission.

In work by Magill and others [25], a feed-forward LPC analyzer was
used with an encoding method of Adaptive Delta Modulation (ADM) and an
experimental method of encoding the residual by DPCM. This is referred
to as a residual excited linear predictive (RELP) vocoder. It combines
the advantages of linear predictive coding and voice-excited vocoding.

Recently, Dankberg and Wong [26] have implemented a new version of
the RELP vocoder. Their results have included a development of a pitch
predicted ADPCM residual encoder and a harmonic generator. Viswanathan
and others [27] considered the use of voice-excited linear predictive
(VELP) and RELP coders for speeth. They have studied in detail the var-
ious aspects of these coders and have attempted to maximize speech qual-
ity as a result. They also studied the advantages and disadvantages of
baseband residual transmission and baseband speech transmission.

In recent work, Kang [28] studied the development of a narrowband.
voice digitizer that improves speech quality, intelligibility and relia-
bility. The principle of LPC is used in implementing the lattice filter

for the analysis and synthesis. Itakura and Saito [9] [30] have used
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the lattice method for LPC analysis of speech. The thrust has been for
jmproved quantization of partial correlation (PARCOR) coefficients.
Makhoul [31] has presented a class of stable and efficient lattice meth-
ods for linear predictidn of speech. In this, an indepth study is made
on PARCOR coefficients. If the all pole function is stable, then the
lattice obtained from this is stable; furthermore, since the PARCOR co-
“efficients are bounded, stability is guaranteed and an efficient quanti-
zation method can be used.

In work by Flanagan [32], it is shown that the residual approximates
the glottal waveform. In any excitation system, the closer one can
approximate the physical model, the better response one gets from the
system. Flanagan's work enhances this concept to use the residual wave-
form as the excitation to the speech synthesizer.

Rabiner and others [33] have studied the LPC error signal. The work
investigated the variation of the prediction error as a function of posi-
tion in an analysis frame within a single stationary speech segment. The
érror signal has the frequency range of the actual speech.

The work of Goodman [34] found the analog signal can be divided into
several nonoverlapping frequency bands. Each band can be sampled and
quantized independently. The result is an improvement in encoding effi-
ciency over straight sampling and quantizing of signals that are spectrum
peaked. Crochiere and others [36] [37] have applied this to speech sig-
nals in the digital domain. This is referred to as sub-band coding (SBC).
This approach provides a means of controlling and reducing quantization
ndise in the coding.

A pilot study of speech waveform coding techniques were studied by

Tribolet and others [38]. The study compared subjective ratings to the
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various quality (objective) measures for speech waveform coders. Tribo-
let.and others examined four different speech waveform coder algorithms
for Tow-bit rate applications, and studied these relationships for over-
all objective and subjective ratings for quality. The algorithms were:
adaptive differential PCM with a fixed predictor (ADPCM-F), sub-band cod-
ing (SBC), ADPCM with a variable predictor (ADPCM-V) and adaptive trans-
fbrm coding (ATC). The transmission rates studied were 24,000, 16,000,
and 9,600 bits/second. The objective measures used were a conventional
signal-to-noise ratio, frequency weighted signal-to-noise ratio, log
likelihood ratio, and an articulatory bandwidth measure. The results of
the study were that if complexity/cost was of no concern, then ATC is the
most attractive of the group coders. However, if complexity/cost was a
concern, then SBC is an attractive choice. ADPCM-F had the poorest qual-
ity for its complexity; ADPCM-V was the most costly for its quality. The
transform coding and the sub-band coding will be explained in detail in
Chapter II.

In the work by Barabell and Crochiere [39] a new design of the sub-
band coding has been implemented for low-bit rate coding of speech. This
study applied quadrature filters to SBC. This method has also employed
pitch prediction within the sub-bands. Crochiere [40] has implemented a
novel approach for pitch extraction in the SBC. The method uses digital
linear phase shifters based on a bandpass interpolation scheme to achieve
the non-integer delays necessary in the feedback'1oop for the pitch pre-
dictors. It uses the fractional sample de]éy in the pitch loop and per-
mits the processing of the pitch prediction in each sub-band to be
performed at the sub-band sampling rate which contributes to the effi-

ciency of the algorithm.
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Pitch detection algorithms that have been mentioned above have one
basic goal. That is, make a voiced or unvoiced decision and during cer-
tainh periods of voiced sounds, estimate the pitch period.

There are three areas of categorization for pitch detectors. First,
there is a group that uses time-domain properties of speech signals.

These pitch detectors operate directly on the speech waveform in order to
e§timate the pitch period.‘ The measurements that are usually taken are
minimum and maximum amplitude, zero-crossing and autocorrelation measure-
ments. With these detectors, 1t.is assumed the formant structure hasvbeeﬁ
minimized by preprocessing the speech. A second category for pitch detec-
tion‘algorithms uses freéuency—domain properties of speech signals. A
periodic signal in the time-domain will consist of a series of impulses

in the frequency-domain located at the fundamental frequency and its har-
monics. Therefore, one can make measurements in the frequency domain to
determine the pitch period. The final group combines both time and fre-
quency-domain concepts of the speech signals in order to determine pitch
period. This is a technique that is used which flattens the signal with
frequency-domain techniques and subsequently uses autocorrelation mea-
sures to estimate the pitch period. These are called hybrid techniques.
Prévious work of the pitch detection algorithms and related works that
have been published will be discussed.

There are several documented pitch extraction methods that have been
published recently. In earlier methods, analysis of the speech time wave-
form were attempted by visual inspection of spectrograms which involved
the manual determination of pitch [41]. At this time the authors noted
the requirement for an automatic scheme of some kind. Pinson [42] used

the method of Mathews, Miller, and David [41] to estimate a time-domain
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synchronous pitch which in turn was used to determine frequencies and
bandwidths of vowel formants.

Sondhi [43] introduced three methods for finding the pitch period.
The first method spectrum flattens the signal and corrects the phase to
synchronize harmonics. A second method by Sondhi also flattens the spec-
trum but adds an autocorrelation to determine pitch. The third method
center clips the speech signal and uses autocorrelation for determination
of pitch. Using the method by Sondhi, a real-time digital hardware pitch
detector was implemented by Dubnowski, Schafer, and Rabiner [44].

There are also methods that make use of the power spectrum in the
determination of the pitch. One such method is called cepstrum pitch
determination. The cepstrum is defined as the power spectrum of the log-
arithm of the power spectrum, or mathematically expressed, the cepstrum,

Q<) [45] [46], is

) = [fmlog|F(w)|2 cos (wt) du]? (1.1)
0

where f(t) is the speech signal, w is the frequency in radians, and

Flo) = fm f(t) e Iut 4 (1.2)

More recently, using digital inverse filtering techniques, Markel
has innovated a method for estimating the fundamental frequency of voiced
speech using time-domain analysis. This method has been referred to as a
simplified inverse filter tracking (SIFT) algorithm [47]. The pitch per-
jod is estimated by an interpolation of the autocorrelation function in

the neighborhood of the peak of the autocorrelation function.
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Another recent algorithm that determines the fundamental frequency
of sampled speech is implemented by segmenting the signal into pitch per-
iods. This is done by identifying the beginning of each pitch period.
This algorithm is called the data reduction pitch detector by Miller [48].
" To obtain the appropriate identity of the beginning of the pitch period,
the method detects the cycles of the waveform based on intervals between
major zero crossings. The rest of the algorithm determines principal
cycles, which correspond to true pitch periods. |

In work presented by Gold [49], it is assumed that pitch extraction
could be obtained by a visual inspection of the speech wave and is the
best obtainable. The computer program contains essentially four sections.
First, a voiced/unvoiced decision is made and the two portions are sepa-
rated. Each voiced portion is labeled as re]at%ve maximum, then the peak
detector is compiled. The third decision is to determine the spacing;
this in turn determines which samples will be called pitch peaks. Finally,
a procedure is necessary to eliminate spurious peaks and add into the
speech missing pitch peaks. The program is implemented such that editing
can make the best pitch selection.

The work of Gold and Rabiner [50] using parallel processing for esti-
mating pitch is a modified version of Gold [49]. A series of measurements
are made to find the peaks and valleys of the signals. There are six
cases used to determine this. Each is followed to determine if the sample
will be an impulse or zero. The rules of this are:

1. An impulse equal to the peak of the signal occurs at the point of
each peak in time.

2. An impulse equal to the difference between the signal present

peak and the past peak amplitude occurs at the point of each peak in time.
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3. An impulse equal to the difference between the signal present peak
and the past peak amplitude occurs at the point of each peak in time. (If
the difference is negative, then it is set to zero.)

4. An impulse equal to the hegative of the peak of the signal occurs
at each negative peak in time.

5. An impulse equal to the negative of the peak at each negative
peak plus the peak of the preceding negative peak occurs at each negative
peak in time.

6. An impulse equal to the negative of the peak at each negative
peak, plus the negative of the preceding local minimum occurs at each
negative peak. (If this difference is negative, then the impulse is set
to zero.)

h From this technique six estimates are formed. These estimates are
combined with the two most recent estimates for each of the six pitch
detectors. The values are then compared within an acceptable tolerance;
the decision is made for the most occurrences. This value is declared
the pitch at that time. An unvoiced decision is made when there is an
inconsistency between the comparisons for the pitch period.

Another method by Atal [51] is based upon LPC. This detector ini-
tializes with a voiced/unvoiced decision. Upon being classified as
voiced, the speech is low-pass filtered and then decimated by five to one.
The method uses a 41-pole LPC analysis on 40 ms seconds of frame data to
generate the speech harmonics. Then, a Newton transformation is used to
spectrally flatten the speech. A peak picker determines the pitch pefiod
at the five to one decimated rating. Then, the signal is interpolated and

a higher resolution is used to obtain the pitch period.
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The average magnitude difference function (AMDF) pitch extractor
[52] is a variation of autocorrelation analysis to determine the pitch
period of voiced speech sounds. This method takes advantage of the per-
jodicity of voiced speech. It calculates a difference function that at
multiples of the pitch period will dip sharply when the delayed speech
and original speech are compared. The AMDF function is implemented with
shbtraction, addition, and absolute value operations, whereas autocorrel-
ation methods use addition and multiplication operations. For this rea-
son, the AMDF function is attractive for real-time operations.

Another real-time pitch extraction method, based on 1inear predic-
tive téchniques, is presented by Maksym [53]. The method employs a nan—
stationary error process from the adaptive predictive coder by Atal [5].
The é]gorithm in addition to pitch period extraction also detects voiced
speech. The basis of the method uses a predictive one-bit quantizer with
an adaptive algorithm fdr determining prediction coefficients. Since the
method operates on the short-term prediction of the speech waveform, the
presence of the glottal excitation can be detected.

A semiautomatic pitch detector (SAPD) [54] has been presented by
McGonega], Rabiner, and Rosenberg. This method semiaufomatica]]y deter-
mines the pitch contour of an utterance. An autocorrelation of the speech
is generated. The cepstrum of the unfiltered speech is computed. These
displays are shown on a scope on a frame-by-frame basis. The computed
pitch period for each waveform is marked by and is displayed to the user.
With the incorporation of the three waveforms, an extremely accurate mea-
sure is found. The processing is lengthy for an utterance; however, ro-
bustness and accuracy of the results can be a trade-off for many appli-

cations.
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A recent method for estimating pitch period in the presence of noise
of voiced sounds is based on a maximum likelihood formulation [55]. This
stheme is designed to be resistant to white, Gaussian’ndise. A new sig-
nal is formed from the speech signal with a maximizing function to enhance
the peaks for short periods. The function is formed by an autocorre]atidn
of the speech.- It provides accurate estimates of the pitch period and can
be used to determine formant structure. It is compared with the cepstrum
method to perform better under the white noise conditions.

An automatic pitch extraction method was developed by Markel [56]
which also determines formant frequency tracking. This method is similar
to the cepstral analysis. The technique uses two FFT's to obtain the

sequence from which the pitch is extracted. The difference between this

method and the cepstral method is the procedure

for determining the
voiced/unvoiced decision.

An accurate method based on the prediction residual is the method by
Atal and Hanauer [5]. The speech is low-pass filtered and each sample is
raised to a third power to emphasize the high amplitudes of the speech
waveform. A pitch-synchronous correlation analysis is performed of the
cubed speech. A voiced/unvoiced decision is made in this technique. A
second method is based on a Tinear prediction representation of the speech
Waveform. Each sample is predicted from the previous n samples, and
therefore the correlation is not good at the beginning of the pitch per-
iod. The error is large at the beginning. The basis of the technique is
to.use peak picking for the pitch detection.

Another accurate method has been described by Itakura and Saito [57].

This method determines the prediciton error signal by the method of lat-

tice filter formulation. The pitch period is determined by computing
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autocorrelation coefficients of the residual. A set threshold compares
the autocorrelation for a voiced/unvoiced decision with the pitch period.

A two stage method was developed by Boll [58] to determine the pitch
period. The method is based on the Itakura [57] algorithm. It is built
by adding the initialization of each frame based on the preceeding frame
results. The portion of the autocorrelation function of the residual in
the range where a pitch pulse is expected and the basis of the a priori
information is computed in each frame. The savings in computation is
significant.

Two methods were developed by Barnwell and others [59]. These algor-
ithms are: 1) the multiband pitch period (MBPP) estimator, and 2) the
skip-sample recursive least squares pitch position estimator. The multi-
band pitch period estimator first filters the speech waveform into four
bands across the frequency regions where a fundamental is expected to
occur. The bandwidths of these filters are chosen so that only one of
the outputs will be expected to contain the fundamental. Zero-crossing
pitch detectors-operate on the outputs of each of the filters. The in-
formation derived from the zero-crossing detectors is used as a basis for
logical operations to produce pitch period estimates. The skip. sample
recursive least squares technique is based on a recursive least squares
linear predictive coder. The coder operates on a lower sampling rate
than a linear predictive coder and it uses fewer coefficients than the
predictive filter. This approach permits the original sampling time
resolution to be retained. The method produces a sharp residual signal
whose pitch pulses can be used to determine the period.

The future trend is towards efficient low-bit rate coding that en-

hances the perceptual quality and intelligibility of speech. The coding
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of. the residual signal is one way of arriving at the desired goal. This
thesis presents such an idea along with a novel approach to pitch extrac-

tion. The next section presents the organization of the thesis.
1.3 Organization of the Thesis

Chapter II presents the basic ideas associated with the concept of
the prediction residual. A discussion of the mechanism of speéch produc-
tion as related to the makeup of speech articulation is presented in
speech science terms. A model of the vocal tract is presented in mathe-
matical terms and the residual is presented in an algorithm form. The
method of short-time analysis is presented. A new method for determining
pi;ch implementation is presented using the residual waveform.as the
source function.

Chapter III presents some of the general ideas associated with cod-
ing of speech along with some applications. The method of transform cod-
ing (TC) is compared to the method of sub-band coding (SBC). The equiva-
lence of the two methods is shown under certain conditions. The Artiéu-
lation Index (AI) and the phoneme transitional information related to
speech intelligibility are discussed along with their incorporation into
the coding scheme to enhance the perception of speech. The results of
the distribution of energy from the prediction residual of the phonemes
are presented.

Chapter IV presents the design of the energy based sub-band coding
‘algorithm. The basic ideas associated with the sub-band coding are dis-
cussed as related to the proposed coding scheme. The adaptive quantiza-

tion is presented to explain the allocation of bits. The result on
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signal-to-noise ratio (SNR) performance measurements are presented. The
‘computation for coding the prediction residual is presented.
Chapter V presents a summary and suggestions for further study. The
appendixes give a sample of the related speech science definitions, com-
puter programs for coding the prediction residual, a brief review of the

concept of Articulation Index and sonagrams of speech data.



CHAPTER I1I
PREDICTION RESIDUAL AND THE PITCH EXTRACTION
2.1 Introduction

Recent work in the area of speech analysis and synthesis is based
upon a model that separates the glottal flow from the vocal tract. That
is, the speech production is represented by a convolution model where the
input corresponds to the glottal volume velocity and the vocal tract by a
filter. Recent models have assumed an all pole filter to represent the
vocal tract [5]. The filter coefficients are determined by using the
method of linear prediction. By using the inverse filter, the speech can
be deconvolved to obtain the prediction error or residual. The block di-
agram representing this is shown in Figure 3. The residual produces a
peak where the prediction is bad, representing pitch period designations.
As the prediction becomes more accurate, the residual appears as a noisy
signal.

Most synthesis models use a filter excited by either a train of
quasi-periodic pulses or a random noise source [60]. The periodic source
excites the filter for voiced sounds. The noise source excites the fil-
ter for unvoiced sounds. The prediction residual is applicable for
voiced or unvoiced sounds because the residual is an approximate signal
of the corresponding input sources that generate these sounds. The de-
tailed description of the prediction residual is discussed in Section 4

of this chapter.
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PEECH —————» INVERSE —RESIDUAL
SPEEC FILTER
Figure 3. Prediction Residual Formed by Speech Through an

Inverse Filter
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The linear predictive techniques described so far have been used
sUccessfu]]y for time-domain speech analysis and synthesis [5] [30]. The
1inear predictive coding (LPC) techniques have been used in communica-
tions in the past; however, it was applied to speech only recently [5]
[7]. The use of linear prediction in describing the transfer function of
the vocal tract avoids the complexity of Fourier analysis. The slowly
time varying aspects of speech can be taken into consideration by upQ
dating the filter coefficients every so often.

Two significant contributions have been made by Weiner [61][62] and .
Shannon [63]. Weiner's work describes prediction and filtering of ran-
dom, time series data. Shannon's results describe the information con- .
tent of a message, related to band-width and time requirements of that
message, related to band-width and time require%ents of that message.

The background of this chapter uses Weiner's method as applied to sta-
tidnary data. Shannon's results are implicitly used in the coding
scheme.

Section 2.2 describes the basis of human speech production. Section
2.3 discusses the vocal tract model as a discrete time invariant linear
filter. Section 2.4 describes a parallel between the glottal waveform
and the residual signal. Section 2.5 reviews linear prediction analysis.
Section 2.6 discusses short-time analysis. Section 2.7 describes the
implementation of operations for the calculation of the prediction resid-

ual. Section 2.8 presents a novel pitch extraction technique.
2.2 Mechanism of‘Speech Production

Man's system of communication is by speech. Speech is produced

through the human vocal system in a continuous fashion. However, speech
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signals are composed of a sequence of discrete sounds called phonemes.
Although phonemes are not bricks, they are the basic sounds that serve to
make a complete word in any language. The connection or arrangement of
these sounds is based on certain rules. It is the study of these rules
and the way these sounds fit together that is called ]inguisticé. The
basic linguistic element is called a phoneme. Its distinguishable vari-
ations are called allophones [2].

Speech in humans is produced by a physical acoustic system consist-
ing of principally four parts: Tlungs, vocal tract, nasal tract and vocal
cords (see Figure 4). The lungs supply the volume of air necessary to
produce speech. The vocal tract and nasal tract act as fi]térs to shape
the waveform. The velum, a small flap of skin,jacts as a switch to close
the entrance to the nasal tract. When closed, %t removes any effect the
nasal tract may have on the sound produced. The vocal cords, tongue, |
teeth and palate are parts of the filter or constriction mechanism. An
e]ongated opening between the folds of the skin which make up the vocal
éords is called the glottis.

The vocal tract provides the column of air, which is set to vibra-
tion by the excitation of the glottis. In an average male, the vocal
tract is about 17 centimenters in length. The cross-sectional area which
is determined by the position of the tongue, 1ips, jaw and velum varies
from zero, i.e., complete closure, to approximately 20 square centimeters.

Speech sounds produced by the system can be separated into three
distinct clésses according to their mode of excitation. The voiced
sounds are produced when air is permitted to escape in quasi-periodic
pulses by the vibratory actions of the vocal cords. This sets the acous-

tic system to vibrating at its natural frequencies. These resonant



VOCAL SYSTEM (CROSS SECTIONAL VIEW)

1-LIPS 8 - FRONT OF TONGUE

2- TEETH 9 - BACK OF TONGUE

3 - TEETH RIDGE 10 - PHARYNX-

4 - HARD PALATE 11 - EPIGLOTTIS

5 - SOFT PALATE 12 - POSITIONS OF
(VELUM) VOCAL CORDS

6 - UVULA 13 - TIP OF TONGUE

7 - BLADE OF TONGUE 14- GLOTTIS

Figure 4. Cross-Sectional View of the Human Tract
System
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frequencies are concentrations of energy and are known as formant fre-
quencies. These are useful in chéracterizing the vocal tract configura-
tidn, as there is a one-to-one correspondence in the relationship of
vocal tract configuration and formant frequencies. The fricative or
unvoiced sounds are generated by forming a constriction at some point
along the vocal tract and forcing air through the constriction at a vel-
ocity high enough to producé turbulence. This can be identified as wide-
band noise exciting the vocal tract. For an unvoiced sound the vocal
cords are relaxed and partially open. The plosive sounds result from a
complete closure of the vocal tract and a sudden or abrupt release of the
closure.

95 Fas vnnn
Typically, for speech analysis, only the first three or four are used.

The formants or natural resonances are numbered F1, F,, F

Table I gives representative values of these for certain vowels. It has
been noted that all phonemes characterize some formant structure; how-
ever, it is most noted for voiced sounds [2]. It is indicative of the
first formant to be greater in frequency than the fundamehta] fréquency
of the vocal tract. The fundamental frequency is the rate of vibration
of the vocal cords; whereas, the first formant represents the first con-
centration of energy of the vocal tract system excited at the fundamental
frequency. Typically, the fundamental frequency is around 120 Hertz for
men, 220 Hertz for women and 300 Hertz for children. The pitch period is
the reciprocal of fundamental frequency. The pitch period has a range
from three milliseconds to eight mi]]iseconds for voiced sounds. For the
unvoiced sounds, most frequencies range above 4000 Hz and it has approxi-
mately a flat spectrum. A1l voiced sounds are characterized by voice on-

set time (VOT). For example, plosives are characterized by VOT, which is



TABLE 1

AVERAGES OF FUNDAMENTAL AND FORMANT FREQUENCIES
AND FORMANT AMPLITUDES OF VOWELS BY 76 SPEAKERS

i I & @ a O LU A 7

Fundamental frequencies (cps) M 136 135 130 127 124 129 137 141 130 133
W 235 232 223 210 212 216 232 231 221 218
Ch 272 269 260 251 256 263 276 274 261 261

Formant frequencies (cps)
F] M 270 390 530 660 730 570 440 300 640 490
W 310 430 610 860 850 590 470 370 750 500
Ch 370 530 600 1010 1030 680 560 430 850 560
M 2290 1990 1840 1720 1090 840 1020 870 1190 1350
W 2790 2480 2330 -2050 1220 920 1160 950 1400 1640
Ch 3200 2730 2610 2320 1370 1060 1410 1170 1590 1820
F M 3010 2550- 2480 2410 2440 2410 2240 2240 2390 1690
W 3310 3070 2990 2850 2810 2710 2680 2670 2780 1960
Ch 3730 3600 3570 3320 3170 3180 3310 3260 3360 2160
Formant amplitudes (db) L] -4 -3 -2 -1 -1 0 -1 -3 -1 -5
' -24 -23 -17 -12 -5 -7 =12 -19 -10 -15
28 -27 -24 -22 -28 -34 -34 -43 =27 -20

Source: Peterson and Barney, "Control Methods Used in a Study of the Vowels," The Journal of the Acoustical

Society of America, Vol. 24, Mo. 2 (1952), 181.
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the delay from complete closure of the plosive to the beginning of voicing
[66]. The VOT ranges from 25 milliseconds to 300 milliseconds depending
on the phoneme. |
Each phoneme has its own characterization depending on the language.
This characterization is associated with place of articulation and voic-
ing. In this thesis, discussed are the phonemes of the English language.
" This is not to discard the pitch inflections in Chinese, whispered vowels
in Japanese or vocal clicks of South African Hottentots, but to restrict
to a basic area to all languages. This is established by the Interna-
tional Phonetic Association (IPA). Most linguists use about 35 basic
units, and six diphthongs or combination phonemes. The symbols and tele-
type representations of these are shown in Tab]g II.
Phoneticians classify speech sounds by vowé]s and consonants, or
strictly speaking in the manner and their place of production. Each pho-
neme: has certain characteristics and is identified from'the distinctive
features of the speech sound. The distinctive features give a unique
jidentification of the phoneme. These are given below [68].
1. Vocalic/Nonvocalic
presence vs. absence of a sharply defined formant structure.

2. Consonant/Nonconsonant
low vs. high total energy.

. 3. Interrupted/Continuant
silence followed and/or preceded by spread of energy over a wide
frequency region (either as a burst or a rapid transition of
vowel formants) vs. absence of abrupt transition between.sound
and the silence.

4. Nasal/Oral
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TABLE II
REPRESENTATION OF IPA PHONEMES WITH EXAMPLES

Standard . Teletype

IPA Representation Example
i | Iy beet

I | IH bit

e : EY gate

. € EH get

® ~ AE fat

a AA father
2 ? AO Tawn
) _ oW lone
U | : UH full

u UW .‘ fool
Y ER ‘ murder
a : AX - about
A | AH | but

al | AY hide
au AW ' how
a1 oY | toy

p P pack

b B back

t T time

d D dime

k K coat
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TABLE II (Continued)

Standard Teletype
IPA Representation Example
g goat
f fault
v vault
0 TH ether
g DH , ~ either
s S sue
z VA Z00
S SH : leash
z ZH leisure
h HH ‘ how
m M i sum
n N | v sun
n NX sung
1 L laugh
w wear
J Y young
r R rate
17) CH chan
d JH Jar
hw

WH where

Source: Rabiner and Schafer, Digital Processing of Speech Signals, New
Jersey: Prentice-Hall, 1978, p. 43.
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spreading the available energy over wider vs. narrower frequency
regions by a reduction in the intensity of certain (primarily
the first) formants and introduction of additional (nasal) for-
mants.

5. Tense/Lax

higher vs. lower total energy inconjunction with a greater vs.
smaller spread of the energy in the spectrum and in time.

6. Compact/Diffuse

higher vs. lower concentration of energy in a relatively narrow,
central region of the spectrum accompanied by an increase vs. a
decrease of the total energy. |

7. Grave/Acute

concentration of energy in the lower vs. upper frequencies of
the spectrum.

8. Flat/Plain

flat phonemes in contra-distinction to the corresponding plain
ones are characterized by a downward shift or weakening bf some
of their upper frequency components.

9. Strident/Mellow

higher intensity noise vs. lower. intensity noise;

A table for the distinctive features of the phonemes of English are
shown in Figdre 5 [66]. As indicated above the features may be of two
types. The preéence or absence of each feature is expressed as a plus
(+) or minus (-). For example, the vocalic category has vowels shown as

plus and consonants are shown as minus.



PHONEMES

Distinctive Features Y 1 I €2 a A2 U u j rwlmnmn /s fe

1. Vocalic/Nonvocalic + + + + + + +F + - - - -

[}
'
]
|}
]
[}
[}
)
)
]
+
+
+
+
+
+
+
+
+
+
+

2. Consonant/Nonconsonant

3. Continuant/Interrupted + + + + 4+ + F + e e e e = e e -
4. Nasal/Oral | s e e o+ 44

5. Tense/Lax + F = « F + - + - + N + + 4+ + - o = = + + + + - - - -

6. Compact/Diffuse - = =+ + + + + - - | = = 4+ + o e et = e e+t - =+ + - -

7. Grave/Acute - e = e e+ + + + 4+ - -+ o+ o+ - - =+ + - -+ + - - + -

8. Flat/Plain + - - | + -+ +> -

9., Strident/Mellow _ . + - + - - - + -

Figure 5. Distinctive Features of the Phonemes of English Indicating
Feature :

the Presence or Absence of a

€¢
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2.3 Mode] of the Vocal Tract

The acoustic speech system was qualitatively described in the pre-
~vious section. The acoustic tube model of the vocal tract filter can be
represented as a discrete time-invariant linear filter. The modeling
has been discussedvin the literature [2] [7] [67]. The acoustic tube is
approximated by a number of sections each having a constant cross-sec-
tional area. The cross-sectional érea is characterized by the reflection
coefficients. The reflection coefficient is the percentage of a wave re-
flected at an acoustic tube junction. The number of sections in the
acoustic tube model is related to the number of formants for a phoneme.
The formants of speech correspond to the poles of the vocal tract
transfer function [67]. As pointed out in the llast éection, only the
fifst three or four formants are used for speech analysis, and these fre-
quencies are below 5000 Hz. Generally, vocal tract resonances occur

about one per thousand Hertz [67]. Therefore, a bandwidth of 5 kHz is,

in general, sufficient for speech analysis and synthesis. Each phoneme

is set apart from the others by the frequency location of the formants.

The majority of phonemes can be represented by an all-pole model of
the vocal tract [56]. It is well known that for nonnasal voiced phonemes
the transfer function of the vocal tract has no zeros [69]. Nasal and
glide sounds include zeros in the transfer function. Zeros and poles
are necessary. to approximate the nasal and glide sounds. However, it
has been shown that zeros in the vocal tract can be achieved by including
more poles [5].

In Figure 1, let the transfer function of the vocal tract be ex-

pressed by [7]
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V(z) = (2.1)

where G, the gain; {ai}, the filter coefficients, are a function of the
cross-sectional areas of the acoustic tube. The value of P, the order
of the system, is usually taken as twice the number of formants for anal-
L ysis for each speech sound. Typical values for P range from 8 to 10.
The value of 10 has been used for lattice network representations Qf the
vocal tract.

It has been shown that given (2.1), a lossless tube model can be
found [5] [7]. Also, given an acoustic tube with all areas positive,

Equation (2.1) describes a stable system [71.

2.4 A Parallel Between G]otta]_Waveform

and the Residual Signal

In hodern signal processing techniques, it is necessary to use as
much information as can be obtained about the structure of the signal.
This section discusses the characteristics of the residual signa], which
is the output of the linear prediction filter. It is the difference be-
tween the actual and predicted speech signals.

| The residual signal used in this thesis is obtained by using the
autocorrelation method in the LPC algorithm. In doing this, the speech

is Hamming windowed, where the window function is

w(n) = 0.54 - 0.46 cos [ %] 0 <n <Nl

= 0 _ otherwise (2.2)

with N = 256. The computational details are discussed in Section 2.6.
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The prediction residual is the ideal signal for the excitation func-
tion for LPC analysis [28]. It contains the actual information, rather
than a pulse train or random noise as in the simplified linear prediction
models [10]. The waveform that excites the vocal tract is the glottal
waveform, and the residual approximates this.

The characteristics of the prediction residual are as follows: (1)
it marks the pitch period, (2) it has basically a flat amplitude spec-
trum, (3) phasing information is embedded in the prediction residual, (4)
the amplitude spectrum includes details related to the suprasegmentals of.
the individual and the spoken words, (5) the waveform includes the fact
that voiced fricatives and stops are a combination of noise and a repeti-
tive signal.

" Figure 6 gives a comparison between a speeth wave and the corre-
sponding prediction residual for a particular phoneme. The computational
aspects in obtaining these figures will be discussed later. The pitch
period is marked by large spikes in the residual signal. The residual
gives an excellent estimation of pitch since the glottal excitation is
clearly marked.

Figure 7 displays an unsmoothed spectrum of the residual signal.

The spectrum of the residual contains the formants also. The peaks of
thé~formants are flattened; however, there is evidence of the fundamental
and formant frequencies on the plot. The dashed line représents a smooth
spectrum. Even in this, it is seen that there is evidence of the funda-
mental and the formants.

The pitch and voicing for each human is unique; It can be shown by
spectrograms that individuals have unique voice prints. This uniqueness

is basic to the excitation signal rather than in the vocal tract filter.
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Therefore, the suprasegmentals, i.e., the intonation, dialect, melody
pattern, etc., will remain unique to individuals for voiced sounds.

The voiced fricative lends more benefit to this discussion than its
cognate, the unvoiced fricative. The unvoiced fricative is simply a
noisy speech waveform that produces only a noisy residual signal. The
fricative or stop is produced by forcing air through a constriction, such
xashthe teeth or lips. The corresponding sound results from the turbu-
lence and is of the noisy type. The waveform is then represented by
noise that can be shown to be anvunvoiced excitation source. However,
the voiced fricative is a result of a constriction in the vocal tract
while the vocal cords are vibrating. The residual signal from these pho-
nemes produce a repetitive signal at the pitch period.

The artificial excitation function for voiced sounds result in
speech that sounds a bit unnatural. The use of the prediction residual
in coding methods would introduce naturalness in voicing. Ideally, the
excitation of the vocal tract filter model should approximate the exci-
tation of the human vocal tract. The prediction residual meets these

requirements.
2.5 Review of Linear Prediction Analysis

Linear prediction analysis uses a weighted sum of P successive
speech samples to predict the next speech sample. The weights are chosen

such that the mean-square prediction error is minimized. Let

Xp = 3 X T X T 3 X
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where Xn represents the speech sample sequence and a; is a set of pre-
dictive coefficients. In-this application, the method of least squares
is used. Assuming a stationary linear system [5] with time-invariant
statistics, zero mean, let if(n) represent the best estimate, in the
least mean-square sense, of Xn using the as i=1, ..., P coefficients
and let ib(n) be the best backward prediction of x using the by 1 =

1, ..., P coefficients. Then

(2.4a)

I

n ™Mo
[+3)
>

x(n)

1]
™Mo
o
>

ib(n-P-n (2.4b)

Let ef(n) and eb(n) be the forward and backward prediction errors

defined by
ef(n) = X - Xf(n)
P
= - iio a; X (2.5a)
ey (n-P-1) = x. _p_q = Xp(n-P-T)
P+1
= - I b, Xx_ . (2.5b)
_i___'l 1 n"]
where it is assumed that a, = -1 and bp+] = -1. Figure 8 gives the im-

plementation of (2.5)
Since stationarity is assumed, it follows that the errors can be

minimized by

| , .
E[S—gs— (ec(n)) ] =0 G=1, ..., P (2.6a)



X(n)

—= ep(n-p-I)

Figure 8. Implementation for Generation of Forward and
Backward Prediction Errors
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E [5%— (eb(n—P-l))Z] = 0 i=1, ..., P  (2.6b)

P (2.7)

—
i
T
i
x
>
x
i
[
[t}
—
-
-

=
71
—m
x
b
—_
i
m
—
x

X .] j=1, ..., P (2.8)

P 1
r R. . a. = R, ji=1, ..., P 2.10a
RS a, j N . ( )
P -
IR T Ry I TP (2.10b)
where Ri—j = Rj—i has been used. It is clear that (2.10a) and similarly

(2.10b) can be written in a matrix form, wherein the coefficient matrix

is a symmetric Toeplitz matrix [71]. Furthermore,

by = Ay 1= 1s s P | (2.11)
which can be seen by defining
j o= P+l-g
i = P+1-k

in (2.10a). That is,
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1

v R an. _ = _
k=P k-2 “P+1-k P+1-2

which can be rewritten as

= R j=1, ..., P (2.12)

Rizj 2p+1-i p+1-]

1

™o

.i
Comparing (2.12) with (2.10), the relation in (2.11) can be seen The for-

ward prediction error

P P
2 = -y -
E[ef (n)] E[(Xn .E ai Xn-1)(xn .E a1 Xn—1)]
i=] Jj=1
p ] P P ]
= F[x2-2 1 a,xx .]+E[r a, £ a.x . X
n =1 n"n-i j=1 J 529 1 Tn=1 7=
|
p
= 27 -
E[xn ] E[iil a; X Xn—i]
P
= R0 - iE] aj Ri = Ep (2.13)

where (2.7a) has been used to obtain (2.13).
The cross-correlation between the forward and backward prediction

errors. is derived in the following. Let

Cppp = E[ef(n) eb(n~P—])]
= E[x(n) x(n-P-1)] - E[ji] 3p41- xnxn-j]
E[ ; 1+E[ g g
- LI a, x . X a . a. . .
J'='I ] n"'1 n"'P'] J=-I P+]-J _i=-| 1 Xn_-l Xn"J]
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= R a

1

™M O

(2.14)

P41 " i Rparoi

i
where again (2.7a) has been used to obtain (2.14).
It is clear that (2.13) and (2.14) correspond to P coefficients. In

the following, a recursive method will be used wherein the coefficients

a, will be updated. For this reason, let

Es = R (2.15)
k .

- (k). -

E, = R - & a. 'R, k=1, ..., P (2.16)

k 0 o 1 i |
c = R - ; a(k) R k=20,1, ..., P-1 (2.17)
k+1 k+1 .21 i k+1-1i

1= | l
(k) |

where a are determined from (2.10a) by using

i

k
k) .
DR, .alk) - g o | .
IR a ; j=1 k (2.18)
Durbin's method [72] [73] can now be used to solve for agk) in
(2.18). The corresponding equations are
Eo = R0 (2.19)
y ol
. :
j+l E‘J
(J+1) _ -
aj+] = kj+1 jJ=0,1, s P-1
>
(J+1) - () - j - : ‘
a = aiJ) ks a§1{_i i=1,2, ..., (2.20)
- - k2
By = E5 (1-K2,)
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The predictive coefficients are obtained from

o 4 (3+7) .
a, a i=1,2, ..., P

| Interestingly, the prediction residual Ej in (2.20) is readily avail-
able in the algorithm for the predictor of order j. The coefficients kj
generated in (2.20) are usually referred as PARCOR coefficients. These
have some interesting characteristics [9] [28]. |
1. |kj|
2. Since lkjl is unity bounded, a set quantization levels can be

< 1

determined.
3. The PARCOR coefficients are the result of the orthogonalization
of the auto-correcation mgtrix.
In order to show the app]icat{on ofvthis sLstem, the transfer func-
tion and the algorithm to acquire the prediction residual is derived

below.

The transforms of ef(n) and eb(n-P-l) in (2.5) can be expressed in

terms of
P -
Ef(z) = - I a1z X(z) (2.21a)
i=0
P+1 .
z’(P+1) Eb(z) = - 3 biz-1 X(z) (2.21b)
i=1

where Ef(z), Eb(z) and X(z) are the transforms of ef(n), eb(n) and x(n),
respectively. Note that ag and bp+] in (2.21) are each equal to -1. For

simplicity, let

P .
A(z) = 1- 1 a, z ! ~ (2.22a)
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‘ p . |
B (z2) 7~ (P g p, o (2.22b)
P j=1 !
With these, (2.21) can be written as
Ef(z) = Ap(z) X(z) (2.23a)
£ (2) = APt 8,(2) X(2) (2.23b)

It is clear that (2.22) was implemented in Figure 8 using the direct
form. Next, the lattice network implementation of (2.22) is discussed
below. 1In order to do this, recall the relation b, = ap ;_; given in

(2.11). With the relation, (2.21b) can be written as

p .
-(P+ -
ple) = 2P p e, e
i=]
p .
= (P g g (PEDA (2.24)
.=] J A
i
2~ (P+1) AP(2'1) | (2.25)
From this it follows that
Ap(2) o~ (P+1) Bp(z']), (2.26)

EQuations (2.20), (2.25) and (2.26) will now be used to derive the
lattice implementation. To develop the recursive equation for the lattice
formulation, some of the above equations have to be written in a recursive

manner. It is clear that (2.22) can be rewritten in the form

Iy s
Aj+](Z) = = a§J+]) z ! j = 09 ]9 veey P'] (2.27a)

i=0
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bl 1 S0, L P (2.27b)

+
Bj+1(z) - T E] i

where the superscripts on a, and bi are included to denote that (j+1)th

order is implemented rather than a Pth order. Also

aéj+]) = -1 (2.28)
piTe1) = (2.29)
(3+1)

have been used. The remaining a can be expressed in terms of agJ)

]
using (2.20); b§3+1) are related to a§3+]) by [see (2.4)]

b1§J‘+1) ) a§i;12 (2.30)

Using (2.20), (2.29) and (2.30) in (2.27a)

O .
-1 ) (3) -1
Ajlz) = 1= B (a5 - Ky agiy4) 2
(3+1) (j
_ } i) -i
= Aj(z) kj+] _f bi z
i=1
= Aj(z) kj+]Bj(z) (2.31)
Using (2.24)
B, (z2) = 270G a (7T (2.32)
J+1 §*1 '
Equation (2.31) can be rewritten as
Az - Az - Ky sj(z") (2.33)

Substituting (2.32) in (2.33) and simplifying
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B4 (2) = 27'[By(2) - Kypy Ay(2)] (2.34)

Equations (2.31) and (2.34) define the algorithm. The implementa-
tion of theSe is shown in Figure 9, where the generation of kj+1 is also
included. The detailed structure of the optimum inverse filter as an
analysis model is shown in Figure 10a. The corresponding synthesis model
is shown in Figure 10b. The output of the synthesis filter is the input
speech signal. From the analysis section, transform of the prediction

residual is Ap(z).
2.6 Short-Time Analysis

The concept of short-time Fourier analysis [76] [77] is fundamental
for coding the residual signal. For a quasi-periodic signal such as
Speech, the short-time or time-dependent Fourier analysis allows for a
detailed study.

The speech signal, x(m), m=20,1, ..., L-1, from Equation (2.3) is
segmented into r sections such that short-time spectral analysis can be

used. It is assumed that L = rN, where N corresponds to the number of

samples in each section. This assumes the use of the formula

r w(nD-m) = 1 (2.35)

n=-e

where w(m) corresponds to a band limited function to a frequency of 1/2D,
and D is the period (in samples) between adjacent samples of the short-
time transform of the signal [77]. In all practical cases, w(m) is a time
Timited signal and, therefore, its spectrum cannot be band limited. The
effects of this non-band 1imited case are discussed in a recent paper

[93]. It has been shown that the aliasing errors are small and can be
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neglected if D is properly chosen. For a Hamming window, D = (N/4) [77].
In addition to the aliasing errors, end effect errors have to be consid-
ered also [94]. This is necessary since L if finite. The LPC analysis
is applied to the windiwed signal resulting in the windowed residual
signal. The overlap-add of this signal 15 the residual signal, which has
error identified earlier. |

The short-time Fourier transform of the residual signal ef(m) can be
defined as [67]
jwk ® ‘ -jwkm

) = 1 [ec(m) w(nD-m)] e
M= =00

(2.36)

where w = (2 k/N), k=0, 1, ..., N-1, and w(m) corresponds to a window.
For a particular value of n, Equation (2.36) can be implemented using
FFT. This is used in this thesis. A brief review of this iS presented
below.

Let

e (m) = ec(nD+m) w(-m) —o <M< w | (2.37)

oo : -jo,m  =jw n
) = [z e(me “Je K (2.38)
m==co ‘

Further, let m = Nr+q, -» < r < o, 0 < q < N-1. With these,

jwk ' o N-1 -jmk(NY"*'q) -jwkn
) = © [z e (Nrtq) e le (2.39)

X (e N
r=-« q=0

n

-J u)kNY‘ i

Noting that e 1,
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jwk N-1 © -jmkq -jwkn
Xx(e ) = £ [ Z e (Nrtg)]e e (2.40)
n N _ n
q=0 r=-=
For simplicity, let
u(q) = I e (Nr+q) 0 <q < N-1 (2.41)

r=-e

Note that un(q) is periodic with period N. Now Equation (2.40) can be

written, and is

-jwkn N-1 -jwkq
x.(e ©) = e [z ulq)e
q=0

% ] (2.42)

ka -kan

Observe that Xn(e ) is represented as e times the DFT of the se-

quence un(q). Therefore, (2.42) can be written as
Jwy N-1 -ju q

) = qEO un((m-nD))N e

(2.43)

Equation (2.42) represents the DFT form, where ((-))N corresponds to the
modulo N.

The following procedure can be used to compute (2.43).

1. The windowed sequence, en(m), can be computed from (2.37). The
sequence can then be divided into r sections of N samples each, where in
this thesis, L = 4096, N = 256, D = 64, and r = 16.

2. The N-point DFT of un((m-nD))N can be computed to obtain (2.43)
using FFT.

The above procedure is given here for generality. Due to the limi-
tation of the disc space and to reduce computational time, a slightly
different procedure is used in computing the spectral analysis. The

residual signal is rectangular windowed to 256 points, spectrum analyzed
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and then averaged. This is used only for phonemes discussed in the the-
sis. No overlapping was used. The errors associated with this method

are quantified in previously mentioned references [93] [94]. .

2.7 Implementation of Operations for the

Calculation of the Prediction Residual

In this section, the formulation of the prediction residual from the
speech input is presented. The implementation of the operations to cal-
culate the prediction residual represents the analysis model for LPC. The
analysis model cohsists of the speech as the input, the vocal tract model;
the correlation coefficients and the residual as the output.

The analog speech signal is band limited to 3600 Hertz using a second
order Butterworth filter. This signal is digit%zed at the rate of 8000
samples/second. The algorithm for digitization is named DIGITIZ and the
computer program is included in Appendix B.

The results in the last section are used to obtain the windowed dig-
itized data. This allows to process the speech in short segments. The
underlying assumption for most speech processing schemes is that the prop-
erties of the speech signal change relatively slowly with time [67]. This
assumption leads to short-time methods which isolate the signal during the
segment of windowing. The window is a 256-point Hamming window and is
overlapped at 64-point intervals. The windowing is computed by program
WINDOW in Appendix B.

The windowed signal is passed to program AUTO [7]. This program uses
the autocorrelation method for solving the matrix equation (2.10) for the

predictor coefficients [61]. The other matrix values solved for are the
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reflection coefficients or PARCOR coefficieﬁts. These values are passed
for use in the lattice formulation.

The lattice method represents a recursive algorithm for a solution
of the prediction residual. This method guarantees stability. Note that
the PARCOR coefficients are bounded. The program to calculate the resid-
ual by the lattice formulation is INVERS and is included in Appendix B.

Figure 11 illustrates a block diagram showing the sequence of opera-

tions related to the calculation of the prediction residual, ef(n).
2.8 A Novel Approach to Pitch Extraction

2.8.1 Types of Problems Associated with Pitch

Extraction

The pitch extractor is of prime importance in most speech processing
systems, as the pitch is one of the basic parameters in speech analysis
and éyhthesis studies. In low-bit rate systems, it is an essential com-
ponent [2] [7]. Speech with a constant fundamental frequehcy is perceived
as a monotone or of a synthetic nature; variable pitch lends to speech a
melody. An accurate pitch extractor is a challenging area of speech pro-
cessing.

The difficulty in accurately determining pitch is due primarily to
the time varying aspects of the glottal excitation. Since the model of
the vocal tract assumes quasi-periodic changes occurring along the acous-
tic tube, the glottal response is not predicted accurately. This innac-
curacy is due to the nonuniform train of periodic pulses that occur with
the golttal waveform. The simple model of the vocal system excitation,

i.e., periodic uniform pulses or Gaussian noise, eases the measurement of
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of the period of the pitch. However, when the pitch and thejaneform are
changing within a period which occurs with frequency shifts, difficulty
arises.

The second problem associated with the measurement of pitch is due
to the nonseparability of the vocal tract model from the glottal excita-
tion. That is, the separation of the formants and the fundamental fre-
quency may not be possible and therefore the deteetion of the pitch
period is difficujt. This interaction can be seen most often during
transitional regions of formants when the articulatory elements are
changing.

The third prob]em is the detection of the beginning and ending of
the pitch period. Part of this problem occurs in the definition of be-
ginﬁing and ending of the pitch period. In examining the speech wave-
form, it is necessary to always be consistent with the method because
different definitions will often lead to different results. This is seen
in Figure 12. In Figure 12, one can detect the period of zero crossings
before the maximum peaks or detect the period between the maximums. How-
ever, the two methods do not always give the same answers. The discrep-
ancy between the two is due to the slowly time-varying properties of
glottal excitation.

The fourth problem that arises is the decision to ascertain which
segment of speech is voiced or unvoiced. In particular, some algorithms
have problems distinguishing between low-level speech and unvoiced speech.
In transitional analysis, it is difficult to pinpoint the difference
between the two.

In addition to the above problems, the pitch detection ié hindered

further when the signal is a transmitted speech signal. During the
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transmission of a speech signal over a telephone line, thére are degrada-
tions that occur that can change the signal to make pitch detection dif-
ficult. These include: 1) phase distortion, 2) amplitude modulation of
the signal, 3) crosstalk between messages, 4) clipping of high-level
sounds. Furthermore, as the signal travels through the telephone lines,
the Tines act as a bandpass filter with approximate band edges f] = 200

Hertz and f, = 3200 Hertz. The fundamental frequency is usually less

2
than 200 Hertz and therefore is removed by the bandpass action of the
line. The pitch must be regenerated by using harmonics.

The next section discusses advantages and disadvantages associated

with the use of the prediction residual for pitch extraction.

2.8.2 Advantages and Disadvantages for Using

the Prediction Residual as a Source for Pitch

Extraction

The prediction residual solves the problem of vocal tract excitation.
Earlier, it is stated that there is inaccuracy in determining glottal re-
sponse when using the simple model for excitation. When using the two-
source model for the vocal system excitation, i.e., quasi-periodic pulses
and random noise, a simple algorithm can be used for extraction of p{tch.
‘The residual can be used as a single source as an approximation to the
glottal excitation, and, therefore, a simple method can be used to employ
the residual to extract pitch.

It is well known that the residual represents the deconvolution of
the speech from the vocal tract [7]. For each vocal tract configuration,
a different set of formants and a variation in harmonics of the fundamen-

tal- frequency in the spectrum is acquired. The pitch markings'are
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determined by residual spikes in the time-domain. This can be used to
extract the pitch accurately.

The advantage of an accurate estimation of pitch will aid to the
perception of speech. Any enhancement to perception is important to any
analysis-synthesis speech system. The discussion which follows includes
other reasons for using the prediction residual as a source for pitch
extraction.

Referring to Figure 12, it is shown where errors can occur when the
speech signal is used for pitch extraction. Figure 13 shows the residual,
over 256 samples, characterized by spikes which represent the pitch per-
jod. It can be seen that it is not necessary to account for the zero
crossings or maximums. It is simply a matter of tracking absolute maxi-
mums within the range of the established pitch period. It has been shown
that if the interval of analysis is small enough the residual can be used
to extract pitch accurately [28]. Future transmission rates will require
a system that can do an acceptable performance for extracting pitch.

An application for using the residual signal for pitch extraction is
with embedded coding. The advantage with the residual signal is that an
absolute pitch can be determined in a frame. At higher transmission
rates, the coding of the residual can be accomplished more efficiently.
Therefore, a pitch extraction method can be employed easily. However,
it‘is not feasible to transmit the residual with low transmission rates;
consequently, the higher rates must extract the pitch and transfer this
to the Tower rates. Since the residual demonstrates a very accurate
representation of the pitch, the frame-by-frame analysis of the pitch
from the prediction residual would enhance pitch in an embedded coding

scheme.
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However, a disadvantage associated with the residual may occur in a
high noise environment. It has been shown earlier that the residual is a
combination of periodic and noisy signals. In a high noise environment,
the noise may overcome the residual signal. If the noise has amplitude
in the range of pitch markings, the signal would require enhancement to
extract pitch adequately. On the other hand, low noisé contributes to
the flatness of the spectrum of the signal and enhances pitch extraction.

Several advantages and disadvantages have been discussed. It can be
readily seen that the residual is an ideal signal for extraction of the
pitch. The next section discusses the implementation of the pitch extrac-

tor.

2.8.3 A Novel Pitch Extractor

The last few sections have described the prediction residual as the
fesu]t from the linear prediction analysis. It has been shown that the
prediction residual contains much information needed for extracting pitch.
It is a simple problem to pick appropriate peaks to extract the pitch.

It is this problem of pitch extraction that has interested many authors
recently.

Examining Figure 13, a repetitive waveform is seen at the period
called the pitch period. Note that the waveform has a noisiness which
implies a flat amplitude spectrum. It should be noted that for voiced
sounds there are other peaks that are also repetitive. These are evi-
dence of the formant frequencies. They are somewhat dampened; howeve},
this is to be expected since the linear predictive filter has the charac-

teristic of spectrally flattening the signal.
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It is well known for

x(t) = A cos (ano) | (2.44)

where A is the constant maximum amplitude of the signal, and fo is the

fundamental frequency, the spectrum is
X(f) = A §(f-f_ ) + A S(f+f ) (2.45)
2 0 2 0 ’ ,

It can be said that the speech waveform is a combination of sinusoids of
the type given in (2.44) summed together in a quasi-periodic fashion.
The residual signal, ef(n), can be described in a similar fashion.
Therefore, it follows that the spectrum of ef(n) has impulses at the fun-
damental and its harmonics identified here by fo’ f], cees fn. The maxi-
mum amplitude is centered at fo’ the fundamental frequency [75]. The
higher frequencies are all harmonics, or multiples of fO. An a priori
estimate of fo for a speech sound can be found using the residual as in-
put. If the spectrum is available, then the frequency of the maximum
amplitude determines an estimate of fo' This estimate is found to be
relatively accurate for speech and the prediction residual. In the fol-
lowing, a procedure for extracting the fundamental is given.

The initial step is square the residual. This has a dual benefit
in addition to making all calculations positive. First, it makes large
quantities larger and second, any small or noise-like quantities are made
smaller. The new data corresponding to the set of squared samples are
placed in frames of 256 samples each. |

Following the initial step, the original sample rate is used to
determine the time difference between maximums. It is assumed that the

maximums mark the beginning of a new pitch period as set by a threshold.
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The threshold is used to select the next maximum. The data set is paséed
through a peak picker. The peak‘picker uses the threshold to detefmine
the next peak (maximum). The time between the two peaks is calculated by
a differencer function. The system is ready to set a pitch value from
the time between the two peaks.

At this point, the a priori estimate of the pitch and the pitch
value from the differences are averaged. An error check is made for
erroneous pitch values. The error check compares a range of pitch from
a low to a high value. Should the averaged value be less or more than a
set threshold, an update is sent to recalculate the last averaged pitch
in the frame. The process is continued until the end of the frame where
the pitch is set. The procedure for estimating pitch is shown in Figure

14. The next section discusses the results in using the pitch extractor.

2.8.4 Pitch Extraction Results

The PITCH program was applied to 39 phonemes, including 16 vowels
and diphthongs and 23 consonants. Each sound was held from one-quarter
second to one second by a male speaker at normal intensity. Recordings
were made on a SONY Model TC-106A tape recorder under anechoic conditions.
The sounds were low-pass filtered by a Butterworth filter with a cutoff
frequency of 3600 Hertz and samples at 8000 Hertz with nine quantization
bits and one sign bit. The computer system quantization level setting
was +10 volts. This gave a quantization level of 20 millivolts. The
digitized sound was sampled for 1.5 seconds using 12000 data points for
storage. With a limited computer system memory, the beginning of the
sound was found and 4096 points were saved. The sound was stored for

later use and labeled with an appropriate name. Due to the processing
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of the INTERDATA 70 computer system, all processing in program PITCH is
done in 256-point blocks.

The unified recursive solution to solve Equation (2.10a) is by pro-
gram AUTO [7]. The efficient resursive solution was discusséd in an
earlier section. The program INVERS processes the data. The residual
data is stored for use in the program FFTMGR. The computation of the
spectrum is performed in this program. Spectral values are stored for
use in PITCH.

Samples can be plotted for any segment of the sound to aid in visual
determination of the pitch period. An example is shown in Figure 13.

The results show that the method presented here is an adequate and accur-
ate method for determining pitch period. It is compared to Peterson and
Barnéy's data [111]. Table III gives a comparison between this data and
the results obtained from this method. From this table, it can be seen
that the results are good. The voiced/unvoiced decision is not a product
of PITCH. The FFTMGR routine produces an energy level for the determina-
tion of voicing. Voicing errors were made 25 percent of the time. This
is due to‘the fact that the threshold is set to a Tow level. However,
the error check will restrict any wide variance of pitch. If the calcu-
lated fundamental frequency is larger than a set threshold value of 400
Hertz, then the corresponding sound is considered as an unvoiced sound
and no further calculations are made. These two checks allow for accur-
ate measure of pitch and voiced/unvoiced decision.

Error-free pitch estimation is critical to the overall performance
of any low-bit rate coding system. Coding systems that incorporéte the
residual signal for estimation of the pitch are accurate and adequate.

Accuracy can be enhanced by using the residual in a minimum noise
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environment. The residual signal formulates a true pitch per frame that
can be used at low, synthetic transmission rates. There are several rea-
sons that have been discussed to show that this is a novel approach to
pitch extraction and is summarized below. First, it is a two-stage method
that estimates the residual spectrum and uses time samples of the residual
to calculate the approximation of the pitch. Second, the calculation is
done by a thresholding technique which uses the square of samples. Fi-
nally, the extrqction of the pitch includes an error check that estimates
wide variances of the pitch during each frame. Ffom these, it can be

seen that this method can be considered as a hybrid technique.

TABLE 111
COMPARISON OF FUNDAMENTAL FREQUENCIES

' Frequency (Male)
Fundamental from

from Proposed Method of
Phoneme Peterson-Barney [111] Pitch Extraction
/il 136 129
/1/ 135 130
/el 130 125
lae/ 127 135
/o/ R 124 123
/2 129 135
/u/ 137 126
/U/ 141 151
/N/ 130 123

/8/ 133 140
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2.9 Summary

In this chapter, the characteristics of the prediction residual were
présented. There is a parallel between the glottal waveform and fhe re-
sidual. The mechanism of speech production and a model of the vocal
tract is discussed. Short-time spectral analysis is presented. A review
of linear prediction analysis is discussed. A déscription‘of the imple-
mentation of operations for the calculation of the prediction residual is

discussed. A novel approach to pitch extraction is presented.



CHAPTER III
SUB-BAND CODING OF THE PREDICTION RESIDUAL
3.1 Introduction

The average rate that speech is conveyed between humans is about ten
phonemes per second. It has been shown that the information rate of
speech does not exceed 60 bits/second [2] [67]. For the information con-
tent to be preserved, the human must be able to extract the representation
of the speech signal at this rate. It is important that the speech is
intelligible to the Tistener, and this aspect is the fundamental consid-
eration of coding speech.

There are two concerns in coding speech signals. First, the message
content of the speech must be preserved. The content includes linguistic
rules to form thoughts for humans to communicate. Second, the speech |
signal should be represented so that it can be transmitted. At the re-
ceiver, the signal should contain the message without serious degrada-
fions.

The interest in speech coding has led researchers to consider tech-
niques that enhance signal quality, reduce transmission rate and cost,
without considering the complexity of the coding algorithm [64]. The
principle is to enhance the perceptual aspects of speech through the
coding method. In this chapter, some basic ideas associated with speech

coding are discussed. These include transform coding and sub-band-coding.

68
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Since the speech sounds are characteristically different than most acous-
tic sounds, it is necessary to consider the properties that include the
formants and energy of phonemes. Pérceptua] aspects that contribute
transitioné] cues for humans to discriminate and differentiate spéech
sounds are discussed in this chapter. It is known that when human 1is-
teners are exposed to speech, available to them are a set of responses
that are highly over-learned [65]. The minimum discrimination necessary
for absolute differentiation of speech sounds is discussed. Recently,
speech coding techniques have contributed efficient methods to enhance the
coding of speech signals with few degradations. This chapter discusses
some of these methods in Section 3.2. Section 3.3 presents a discussjon
of the transform coding. Section 3.4 presents the method of sub-band
cbding_in defai]. Section 3.5 discusses the determination of frequency
bénds by the Articulation Index. ‘Section 3.6 presents aépects associated
with transitional cueing information for the preception of certain pho-
nemes. Section 3.7 discusses perception of inte1Tigib1e speech. Section
3.8 describes the basis for coding the prediction residual at the rate of

9600 bits/second.
3.2 Coding Methods

The oldest form of speech coding device is the channel vocoder inven-
ted by Dudley [78]. Each of the channels has center frequency W) - For
each of the channels, the time-dependent Fourier transform is represented
as a cosine wave with center frequency 0 which is phase and amplitude
modulated corresponding to the maghitude and phase angle, respectively of

each transform. Therefore, each channel is thought of as a bandpass
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filter with center frequency W, and impulse response w(n). This is shown
in Figure 15. |

The analysis section consists of a bank of channels as in Figure 15
with frequencies distributed across the speech band. Figure 16 shows a
complete channel vocoder analyzer. |

The basic diagram for the synthesizer is somewhat different. The
specific channel controls the amplitude of its contribution to a particu-
lar channel; while the excitation signals control the detailed structure
of the output of a given channel. The voiced/unvoiced decision serves to
select the appropriate excitation generator, i.e., random noise for un-
voiced speech and pulse generator for voiced speech. A block diagram is
shown for the synthesizer in Figure 17. Channe] vocoders operate in the
range of 1200 bits/second to 9600 bits/second. They are also referred to
55 source coders and produce speech of a synthetic nature when at bit
rates below 4800 bits/second.

A major contribution of a channel vocoder is the reduction in bit
rate; however, direct representation of the pitch and voicing information
is not achieved. Therefore, this can be considered as a weakness.

The LPC vocoder is a very important application of linear predictive
analysis in the area of low bit rate encoding of speech. It is shown in
Figure 18.

The basic LPC analysis parameters consists of a set of P predictor
coefficients, the pitch period, a voiced/unvoiced parameter and a gain
parameter. The vocoder consists of a transmitter which performs the LPC

analysis and pitch detection. These parameters are coded and transmitted.

They are decoded and synthesized to output speech. This category of



x(n)

CHANNEL VOCODER COMPONENT

w(n) COS(wyn)

MAGNITUDE LPF
yi (n)

Figure 15.

Basic Component of Channel Vocoder

APPROXIMATION
TO

Xn(ejwk) l

LL



x(n)

CHANNEL VOCODER ANALYZER

BPF |—| MAGNITUDE [—* LPF,

—® DECIMATE |—* ENCODE |—>

MAGNITUDE
SIGNALS

BPF, |—*{ MAGNITUDE }— LPF,

DECIMATE }—s{ ENCODE }———=

VOICING V/UV SIGNAL
DETECTOR =
PITCH PITCH SIGNAL
DETECTOR 22N

Figure 16. Block Diagram of

Channel Vocoder Analyzer

el



CHANNEL VOCODER SYNTHESIZER

MAGNITUDE <‘P >
SIGNALS BF,Fl
MAGNITUDE
SIGNALS @ - BPF,
VOCODER

° . . OUTPUT

MAGNITUDE _ (:‘a ;.
SIGNALS BPFN

VOICED/UNVOICED » SWITCH

PITCH PULSE _T I_ NOISE

SIGNAL GENERATOR GENERATOR

Figure 17. Block Diagram of Channel Vocoder Synthesizer

€L



S(N)

LPC VOCODER

LPC LPC (N)
ANALYZER CODER p—#1 CHANNEL }—*1 DECODER SYNTHESIZER —
PITCH
DETECTOR

Figure 18.

LPC Vocoder

L



- 75

coding is of the vocoder type. In the following, the discussion of vari-
ous aspects is included.

Speech coding can be divided into two broad categories, waveform
coders and vocoders [79]. There has been some metion of a few types of
vocoders earlier. Waveform coders generally attempt to reproduce the
original‘speech waveform according to some fidelity criteria. On the
other hand, vocoders model the input speech according to some speech pro-
duction model; then, synthesize the speech from the model. The basic
make-up for coding the prediction residual in this thesis is of a vocoder
model. However, techniques of waveform coding are also used. It has
been shown that waveform coders tend to give better quality speech that
is robust; whereas, vocoders tend to be more synthetic [64] [79]. Bor-
rowing from the techniques of efficient waveform coders, it is conceiv-
able to define an acceptable coding algorithm to meet quality standards
at.10w~b1t rates of transmission. A primary interest has been to produce
the transmitted speech with the minimum bit rate and still meet accept-
abie quality [80]. Previously mentioned were methods available to date
for coding of the residual. Efficient methods to improve the coding
techniques are presented for coding the prediction residual.

It has been recognized that there are two efficieht methods of wave-
form coding [79]. These are: (1) transform coding (TC) [81] and (2) °
sub-band coding (SBC) [36] [37]. These are characterized as frequency-
domain coders, whereas examples of PCM, differential PCM, and DM are the
time-domain coders. Frequency-domain coders are perceptually better than
time-domain coders because they tend to exploit the pitch of the speech
wéveform for bit rates below 16000 bits/second. They tend to look at the

spectrum of speech in blocks, whereas the predictive systems look at
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adjacent samples. These two methods will be explained in detail in the

next two sections.
3.3 Transform Coding

With transform coding (TC) [81], the system of speech samples is
grouped into blocks, where each block corresponds to the windowed segment
of the speech signal. These blocks of speech are transformed into a set
of transform coefficients; then, the coefficients are quantized indepen-
dently and transmitted. An inverse transform is taken at the receiver to
obtain the corresponding block of reconstructed samples of speech (see
Figure 19). |

A basic assumption in this method is that the speech source is sta-
tionary and has a variance of o2. The successive source output samples
are arranged into the N-vector X; this vector X is linearly transformed

using a unitary matrix A, i.e.,

Y = AX ' (3-1).
where A, in general, is complex, and

AMF* = 1 (3.2)

where * denotes the transpose conjugate. The elements of Y are the trans-
form coefficients. These are independently quantized, yielding, Y. The
vector Y is transmitted to the receiver and then inverse transformed.

Then
X = A Y , - (3.3)

Since the vector i is reconstructed output, distortion is involved. For

unitary matrices the averaged mean-squared overall distortion of the
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IMPLEMENTATION OF TRANSFORM CODING
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transform coder is equal to the quantization error [82]

D = ]N-E{(x-f()T-(x-f()}

CEY - T (Y- ) (3.4)

=| =~

where E{ } represents the expectation. The minimization of D will yield
an optimum bit-assignment rule and an optimum transform matrix A [81].
Let Ji be the number of bits/sample needed for the coefficient Yi (an
entry in the Y vector) of variance o% so that the mean-squared distortion

Di = E[Yi - 91)2] is not exceeded. Then [82]

1 o} |
J'i = 6+-2-'1092[“‘i-] (3.5)

where & is a correction factor that takes into account the performance of
a practical quantizer. The optimum number of bits for the quantizer can

be obtained by minimizing the average distortion

_ N :
D = - % D. (3.6)

N
I J; = constant (3.7)
The optimum bit assignment is [81]

= l . 1 ‘ 1 = ‘
Ji = R+ 5 1092 N TN bit/sample i=1,2, ..., N
™

The average distortion is found to be
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1/N
-02} / (3.9)

Here the distortion introduced by the transform coding scheme depends on
the distribution of variances. In addition, D is found to be the geomet-
ric mean of the variance. This leads to the solution of A matrix. Let

R and Ryy be the covariance matrices of X and Y, then

XX
N 2
det Ryy < 12] o} (3.10)
and for any unitary matrix A
det RXx = det Ryy (3.11)

In particulre, the variances c? are along the diagonal of Ryy; then,

det RXX = AL (3.12)

where A; are the eigenvalues of Rxx' Therefore, the minimum distortion
is found if the variances, o?, are equal to the eigenvalues of RXX [81].
The Karhunen-Loéve transform (KLT) has the property that o? = Ai for a11
i |

Other unique properties of KLT are: (1) transform coefficients are
uncorrelated, (2) the covariance in the KLT domain is diagonal, and there-
vfore, the transform coefficients can be quantized independently without
the loss of performance [83].

It has been noted that the KLT gives optimum performance; however,
there is a Tack of a fast algorithm for the computation of the coeffi-
cients. In addition, the computation is quite complex. Since speech is

a quasi-periodic signal, transform coding would not be efficient unless
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adaptive methods are used. However, this area still needs additional
studies. Zelenski and Holl presented promising results. Tribolet and
others [38] have done additional work in this area also. Zelenski and
Noll experimented with the Walsh-Hadamard transform (WHT), the discrete
s]anf transform (DST), the discrete Fourier transform (DFT), and the dis-
crete cosine transform (DCT) to compare with the KLT. A1l these have
 fast algorithms and are signal independent. Zelenski and Noll found that
the basis vectors of the DCT and KLT are close; however, the KLT is sig-
nal dependent. It has been shown that the performances of the DCT and
KLT are similar [84]. The studies of Tribolet and others found TC to be
complex and costly; however, this method proves to be superior when com-

pared to other systems [38].
3.4 Sub-Band Coding

It is desired to retain the basic components of speech composition
and phonemic quality. TC is a very efficient method of completing the
endeavor; however, due to cost and complexity, it was discarded. The
method of sub-band coding [36] has some very distinct advantages whereby
the original goal can be met in order to secure as much of the speech
signal as possible. One criterion, perceptual in nature, is the reten-
tion of transitional information. Also, the intelligibility of speech
can be maximized by the use of the Articulation Index [29], which is
discussed in Appendix C.

With sub-band coding the frequency spectrum is partitioned such that
each sub-band contributes accordingly to the speech intelligibility which
is quantified by the Articulation Index. The Articulation Index is a

weighted fraction representing, for a given speech channel and noise
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condition, the effective proportion of the normal speech signal which is
available to a listener for conveying speech intelligibility [86]. The
$Peech spectrum can be divided into 20 frequency bands contributing 5 per-
cent each to the Articulation Index. In this case, the frequency spectrum
can be bandpass filtered in such a way that they contribute equally to the
Articulation Index. An example given by Crochiere and others [36] in
Teb1e IV addresses a sub-band partitioning of four bands between 200 to

3200 Hz.

TABLE IV
SUB-BAND PARTITIONING EXAMPLE

Sub-Band No. Frequency Range (Hz)
1 200 - 700
2 700 - 1310
3 1310 - 2020
4 2020 - 3200

Obviously, there are other possibilities of partitioning the speech
band [37]. Each band contributes an equal 20 percent to the total Artic-
ulation Index. The total Articulation Index is 80 percent, which corre-

sponds to a word intelligibility of approximately 93 percent [36].
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Sub-band coding has another advantage which involves quantization.
Each sub-band is quantized separately and each band contains its own dis-
tortion and,.therefore, quantization noise could be considered separately
for each band [36]. Furthermore, because of the nature of the spectrum
of speech, the detectability of this distortion is not the same at all
frequencies.

Since the proposed method is based upon sub-band coding the resid-
ual, the presentation is in terms of the prediction residual, ef(k).

For the following discussion, assume that the sub-bands are parti-
tioned as shdwn in Figure 20. Let the width of each of these bands be

identified by

W = w1 -0 n=1, 2, ..., N=4 (3.13)

where 0 corresponds to the edges of these bands. The implementation of
the sequence of operations leading from the residual to the coded output
for transmission is shown in Figure 21. Also, shown in Figure 21 is the

implementation at the receiver. From this figure, it follows that

r(k) = (efn(k) cos k) * hn(k) (3.14)

where efn(k) corresponds to the output of the nth bandpass filter and
hn(k) corresponds to the impulse response of the nth lowpass filter. It

is clear that

Nn < an (3.15)

in order that the frequency bands are properly separated. Then r(k) is
decimated to the rate zwn from the original sampling frequency. This
signal is then encoded and multiplexed with the other channels. At the

receiver, the signal is demultiplexed, decoded, interpolated, demodulated
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and bandpass filtered to give éfn(k). This is shown in Figure 21. The.
nth sub-band is then summed with other bands to produce éf(k), which is
the sub-band coded and decoded version of the signal. The total imple-

mentation of the system will be discussed later.

3.4.1 Sub-Band Coding and Transform Coding

Earlier it was pointed out that frequency-domain coders can be con-
sidered as a good basis for an efficient coder. In this section the re-
lationship between sub-band coding and transform coding is djscussed.

Considering the ideal case, in which there are M sub-bands corre-
sponding to the M samples, let the discrete cosine transform (DCT) of the

residual signal, ef(k), k=0, ..., M-1, be represented by [84]

] .
0 /M k=0 '
n=1, ..., -1 (3.16)

Vo

M-1
eck) = —‘-—ao+‘/—_§ I« cos (2k + 1)nn K=0, 1, ..., M-T

n=1 oM

(3.17)
which obviously corresponds to the inverse discrete cosine transform

(IDCT). Using

_ (2k + 1)nm
W, = oM (3.18)

in Figure 21, it is seen after modulation and low-pass filtering

r(k) = a k=0,1, ..., M-1 (3.19)
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Since there are M sub-bands corresponding to the M frequencies, and since
r(k) is a constant, it follows that after the decimation only one point
is given for each band and that value is o The encoder in Figure 21
codes the DCT coefficient. This points out the fact that in the ideal
case (i.e., filters and modulators are ideal), the sub-band coding will
be equivalent to the discrete cosine transform coding. 0bvious1y, the
discussion above can be generalized for the case wherein there are N sub-
bands (N < M) rather than M.

It is clear that where the components in the sub-band coder are non-
ideal, the r(k) are not equal to o Further work is necessary in quan-
tifying the difference between r(k) and o [85].

Noting the simplicity in the sub-band coder and also noting the re-
lationship between the transform coder and sub-band coder, the sub-band

coder 1is more practical.

3.5 Determination of Frequency Sub-Bands

Based on Articulation Index

The Articulation Index (AI) is a weighted fraction representing, for
a given speech channel and noise condition, the effective proportion of
the normal speech signal which is available to a listener for conveying
speech intelligibility [29].

In this section, the methods of determining how to achieve maximum
intelligibility based on using the AI are examined. There are two meth-
ods for computing AI. The first method, called the 20-band method by
French and Steinberg [86], is based on measurements or estimates of the
spectrum of the speech and noise present in each of the 20 continuous

bands of frequencies. Each band contributes equally to the speech
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intelligibility. The second method, known as the octave-band method, is
derived from the first method. It requires measurements of the speech
-antl noise present either in certain one-third-octave-band or in certain
full octave bands. |

Some researchers consider these two, i.e., 6ne—third-octave-band and
full octave-band measurements, as different methods. The octave-band
‘method is not as sensitive to variations in the speech and noise spectra
as the 20-band or the .one-third-octave-band methbd. An example where it
fa]]s apart is in situations where an appreciable fraction of the energy
of the masking noise is concentrated in a band of frequency that is one
octave or less in width; under these conditions, the one-third-octave-
band or the 20-band method would be better to use.

The 20 frequency bands are those specified by Beranek for male
voices [87]. These bands are shown in Table XXIV in Appendix C. In order
to use the 20-band method to calculate the AI, the peaks of the spectrum
of the speech signal (PSS) must be approximated first. The level depends.
on if the speech is spoken through earphones or a loudspeaker. There is
an adjustment to either case of -65 dB which is considered as the over-all
long-term rms sound-pressure level of an idealized speech spectrum. How-
ever, with the loudspeaker, an additional amount is adjusted according to
Table V [29]. This is due to the assumption that the room is semirever-
bérant; whereas, earphones do not present reverberance.

These corrections are obtained from experiments conducted in a re-
verberant room using a loudspeaker and from experiments conducted in an
anechoic chamber [29].

Also an additional correction must be added to correct for the noise

spectrum. This is shown in Table VI [29]. The noise that reaches the
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listener's ear is assumed to be that of a steady-state nature. All
noises in the listener's environment and the noise in transmission systems

aré combined to arrive at the noise spectrum level.

TABLE V
ADJUSTMENTS TO THE SPECTRUM OF THE SPEECH SIGNAL

Maximum Spectral Values Amount to be
of Speech Signal Subtracted
85 dB 0 dB
90 | | 2
95 4
100 7
105 11
110 15
115 19
120 23
125 27
130 30

The corrected noise spectrum (NS) has the effect of masking the
speech signal. The noise spectrum increases at a faster than normal rate
when the band sensation level of the speech sound exceeds 80 dB [86].

This band sensation level is defined as the difference in decibels between
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the sound integrated over a frequency band and the sound pressure level
of that band when the speech sound is at the threshold of audibility in
&h anechoic room. The increase in masking is taken into account in the
calculation of AI by adding to the PSS. If the band sensation level of
the sound exceeds 80 dB at the center frequency of a band, then the PSS

is increased by the amount that is shown in Table VI.

TABLE VI
ADJUSTMENTS FOR NOISE SPECTRUM

Band Sensation Added
Level Amount
80 0
85 1
90 2
95 3
100 4
105 5
110 6
115 7
120 8
125 9
130 10
135 11
140 12
145 13
150 14
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The noise spectrum level (NS) is compared to PSS at the mid-frequén—
cies of the 20 bands given in Table XXIV in Appendix C. Values that are
zero or less are set to zero. When PSS exceeds the noise by 30 dB, then
that difference is set to 30. This is due to the limitation on the dy-
namic range of speech [87].

The Articulation Index is defined as

Al = ﬁ W - (AA)max (3.20)
where
(AA)max is the contribution from one band and has a maximum value of
0.05.
wn is the percent of maximum contribution by any one band
and
_ PSS - NS A
wn = sy (3.21)

where 30 represents the dynamic range of the speech band and is a normal-
ized so that wn is limited to unity. Therefore, for 20 bands, the normal-
ization is limited to 600. An illustrative example is given by Kryter
[29].

Consider the one-third-octave-band and octabe-band method. The cen-
ter and cut-off frequencies for these are shown in Tables VII and VIII
[29].

With the one-third-octave and octave-band methods, the correction
levels shown in Table V should be considered for signals received from
the loudspeaker. Also, the NS must be calculated from Table VI, and the

weighting factors need to be computed from (3.21) for each band. These
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are then summed to give the AI for the speech system operating under the

noise conditions and the level of speech.

TABLE VII

FREQUENCIES RELATED TO ONE-THIRD-OCTAVE-BAND METHOD

One-Third-Octave Band

Center Frequency

179
224
280
353
448
560
706
896
1120
1400
1790
2240
2800
3530
4480

224

280

353
448
560
706
896
1120
1400
1790
2240
2800
3530
4480
5600

200
250
315
400‘
500
630
800
1000
1250
1600
2000
2500
3150
4000
5000
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TABLE VIII
FREQUENCIES RELATED TO OCTAVE METHOD

Octave Band Center Frequency
180 - 355 250
355 - 710 500
710 - 1400 1000
1400 - 2800 2000
2800 - 5000 4000

To consider how the different methods éompare for the same'speech
signal and masking noise, Kryter computed the AI for each of these meth-
ods. For 20-band method, AI = 0.38; for one-third-octave method, Al =
0.33; and for octave-band method, Al = 0.28. Since the 20-band method is
the basic method from which all others are derived, it provides the
“correct” Al and the others are éompared to this AI.

The AI can be compared to estimated speech intelligibility scores as
shown by graph in Figure 22. It is noted that the intelligibility score
is highly dependent on the constraints placed on the message communicated.

The greater constraint (for instance, the smaller the amount of in-
formation content in each item of message), the higher the percent intel-
1igibility score for a given AI. No single AI can be used as a criterion
for an acceptable communication value. It is a function of messages

transmitted and the enunciation of the talker [29].
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The Articulation Index is a good quantitative measure of speech
intelligibility. Speech communication can be enhanced by an equal abp]i—.
cation of Al across the speech spectrum in the sub-band coding. In the
next section, the transitional cueing of phonemes, another aid that adds

to speech communication is discussed.
3.6 Transitional Information

The human speaks in an uninterrupted and continuous fashion to com-
municate thoughts. The underlying basis for communication is the pho-
nemic structure that connects itself by means of transitional cues for
the perception of certain phonemes [1]. It is the transitional informa-
tion that must be enhanced to aid the perception needed for absolute
discrimination of speech-like sounds [2]. Transitional cues are a set
of frequency shifts which occur in the second-formant region where a
consonant and a vowel join. The perception of a given phoneme is
strongly conditioned by the transitional information of its neighbors
[2].

The identification of phonemes has been studied under various con-
ditions by a group at the Haskins Laboratories [1]. Many of their ex-
periments'have used synthetic syllables. The combinations of syllables
included consonant-vowel (CV) syllables. The consonant is usually a
stop out of a group of phonemes with the same voicing. The vowels were
maintained at two formants. Further work has been done by Rabiner [88]
for synthesis of phonemes by rules. These concluded that one frequency
variable of the consonant was generally adequate to distinguish that a

consonant of the group was uttered. To further distinguish the



95

consonant, the stop-vowel formant transitions were necessary to perceive
the consonant.

Figures 23(a) and 23(b) illustrate the stop-vowel formant transi-
tions. In Figure 23(a), the vowel /a/ has first and second formants
occurring at 700 Hz and 1200 Hz respectively. It is seen that the con-
sonants /b/, /d/ and /g/ demonstrate a different rise or fall in the:
second formant region. The second formant varies because each consonant
has a different place of articulation. The place of articulation for |
/b/, /d/ and /g/ are front, middle and back, respectively. It is seen
in Figure 23(a) that the consonants appear to commence.from some trajec-
tory determined by their place of articulation.

The trajectory point is further illustrated in Figure 23(b). This
figure uses the consonant /d/ and three vowels, /a/, /i/ and /u/. It is
shown that the consonant /d/ has a loci of points that commence in the
region of 1600 Hz for the second formant. It has been shown that con-
}sonants exhibit this property of transition from a particular frequency
to the steady-state value of the vowels [1].

The consonants that are perceptually heard with falling second for-
mants to the vowel /a/ are /d/ and /g/. The consonant /b/ is heard with
a rising second formant to the vowel /a/. It is noted that a shift in
second formant frequency is bounded. With falling transitions of the
second formant, /g/ is heard for steady-state levels of frequency between
2280 and 3000 Hz; however, between 1320 and 2280 Hz the sound could be
/g/ or /d/; and, below 1320 Hz, it is identified as /d/ [1].

The importance of second-formant transitions is shown for perceptual
purposes. Differences in the acoustic speech signal are due to the exci-

tation and vocal tract configuration for different consonants. These
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will differ as shown in Figure 23 by the transition regions. The con-
sonant transitions are the principal cues for the perception of a parti-
tular consonant. The transition occurs because the vocal tract has one
shape for the vowel and one shape for the consonant. The change in the
vocal tract and the effect that the glottal pulse has on vowels has been

addressed recently [12]. Later, the coding aspects of transitional in-

formation will be discussed.

3.7 Relation of Perception

to Intelligible Speech

A topic that has been mentioned several times before is perception.
Perception related to the Articulation Index and transitional information
together for discrimination of speech sounds. A quantitative description
of speech perception is not possible. However, in a qualitative sense,
speech perception can be enhanced when the intelligibility of speech is
ihcreased. In this section, several aspects of speech perception will be
discussed to show the need to address this subject.

Speech perception can be defined as the ability for humans to dis-
criminate and differentiate the character of speech sounds. Discrimina-
tion is examined along fundamental dimensions of the hearing mechanism
and, in general, one dimension at a time. The ear takes measurements and
makes differential comparisons. These comparisons may be of frequency
and intensity. The over-learned senses of the brain distinguishes the
sﬁeech from other periodic waves. Further, the speech musf be broken in
to its discrete elements, the phonemes. Once the signal is perceived as
speech, there are other factors that determine the fundamental character-

istics of recognizing intelligible speech.



98

The ability to recognize and understand speech determines intelligi-
bility. The intelligibility of speech may bé affected in several ways
[86]. These may include echoes, phase distortion, or reverberation. Un-
natural sounding speech can influence intelligible understanding of
speech sounds. The intensity of the speech may affect intelligibility of
speech received by the ear. Noise in a transmission medium may affect
intelligibility by masking the speech. The talker and listener have
several factors that can cause unacceptable intelligibility related to
the speech [86]. These are given below:

a. The basic characteristics of the speech can be destroyed.

b. The e]ectrica] and acoustic instruments which operate between

the talker and the Tistener may not be adequate.

c. The condition under which the communication takes place may not

be acceptable.

d. As a result of c., the behavior of the talker and listener may

be modified by the characteristics of the communication system.

The perception of intelligible speech is related to the amount of
information spoken. This is shown in'Figure 22. The exactness with
which the Tistener identifies speech sounds is related to the size of
the vocabulary and the sequence or context of the message. As seen from
Figure 22, the more predictable the message is, the better the intelli-
gibility. It has been shown that as the vocabQ1ary size increases, a
higher signal-to-noise ratio is necessary to maintain performance [2].

Perceptual aspects of speech are influenced greatly by semantics
and context. The ability to predict the speech utterance enhances intel-
1igibility. The grammatical rules of a language are part of the human

over-learned senses [65]. Consequently, the language prescribes a
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certain allowable sequence of words. The semantic factors occur as part
of the rules because certain words must be associated with meaningful
units [66]. It has been shown that intelligibility of speech is substan-
tially higher when a grammatically correct and meaningful sentence is
spoken than when using the same words randomly [65]. The over-learned
senses reduce the number of alternative words from the context, and
therefore, the Tistener has improved intelligibility.

The application of speech perception is an adaptive process. The
listener uses the detection procedure within the reception system of the
ear to determine the speech communication process. The listener can
absolutely identify speech when given the basic sound elements of the
speech. The sound elements are discriminated and differentiated from
other periodic sounds to perceive speech. If the speech is intelligible,
the exactness is not only related to how good the transmission medium is
but also to the length of the utterance and its context. These concepts
are applied in the next section to aggregate a coding algorithm for

transmission of perceptually enhanced speéch.
3.8 Basis of Coding the Predictional Residual

A coding mefhod is presented to perceptually enhance the speech.
The method uses sub-band coding (SBC) for coding the prediction residual.
Besides SBC being conceptually simple, it has the additional advantage
ﬁhat each sub-band is quantized separately and each band contains its
own distortion. It should be pointed out that the input to the sub-band
coder is the residual signal rather than the speech signal. Some of the
reasons for this approach are:

a. A more efficient bit distribution based on.energy/frame.
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b. A more pronounced pitch information in the residual signal, and

c. An ideal input for the synthesizer at the receiver.

In an earlier section, the advantages of using the Articulation In-
dex in SBC have been discussed. Each sub-band is selected such that each
contributes equally to the Articulation Index [36]. However, it has been
shown thqt "satisfactory" performance can be expected if this equal con-
tribution to the articulation criterion can be met within a factor of
two [37] [87]. This relaxation of the criteria was allowed for integer-
band sampling with good results [36] [37]. That is, the sub-bands are
between my w; and (mi +1) w3 where m, is an integer. The method has
popularity because it eliminates the need for modulators. Even though
the integer-sampling method requires less hardware, the selection of sub-
bands using the articulation criteria would give better perception. There
has been some research done in the selection of the sub-bands by this
method [37]. Also, it should be pointed out that the sub-band selection
depends on the multipiexing of the encoded speech [37]. This subject
will be further discussed in Chapter IV.

The coding scheme of the residual is based on enhanced transitional
cues. It has been shown that the secohd formant is important for percep-
tual purposes. The exact development will be discussed in this section.

The spectrum of the signal is used for calculation of the energy.

The energy can be represented by [108]

N-1
p|EL(K)|? (3.22)
k=0

m
i
=|—

where Ef(k) corresponds to the discrete Fourier transform (DFT)



101

coefficients of the signal ef(k), which can be computed by using the fast
Fourier transform (FFT) algorithm.

Equation (3.22) is applied to the prediction residual to compute the
energy. The spectrum of the prediction residual is partitioned into four
sub-bands as stated before. Using (3.22), the energies in eaéh sub-band

can be expressed by

N-1
= 1 2 -
E = kEO [Eq, (KD n=1,2,3,4 (3.23

where Efn(k) is the DFT coefficient of the signal corresponding to the
nfh sub-band.

Now the total energy can be expressed by
E (3.24)

Among speech sounds, ET has wide variance. Previous researchers have not
studied the variations in ET of the speech sounds for each prediction re-

sidual. This aspect is discussed in the next section.

3.8.1 Energy Distribution

This section gives the results on the energy data for phonemes. The
goal of the energy study is to distinguish between vowels, nasals and
noisy sounds. This data is used in the next chapter to determine the bit
distribution in the coding algorithm.

The phonemic data used in this thesis was obtained from recordings
of a number of monosyllabic utterances of a male talker made in an ane-
choic chamber. These utterances were lowpass filtered to 3600 Hertz.

The lowpassed filtered signal was then digitized at 8000 Hertz using the
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program DIGITIZ. The digitized data is stored on the INTERDATA computer
system disk in data file BURGE.DAT.

For‘future use, the sentence data in digitized format [146] is
stored on the IBM 370 computer system. The data was lowpass filtered to
4000 Hertz and samples at 8000 Hertz. This data is stored in the files
listed in Table IX with a description of the data. Representative sona-

grams of Table IX are shown in Appendix D.

TABLE IX
SENTENCE DATA

Sentence Description File

"The pipe began to rust while new" 0SU.ACT10161.SPEECHT
"Add the sum to the product of these three"  OSU.ACT10161.SPEECH2
"Open the crate but don't break the glass" 0SU.ACT10161.SPEECH3

"Oak is strong and also gives shade" OSU.ACT10161.SPEECH4
"Thieves who rob friends deserve jail" OSU.ACT10161.SPEECH5
. “"Cats and dogs each hate the other" OSU.ACT10161.SPEECH6

The phonemic utterances used in this thesis are shown in Table X.
Table X represents a wide variety of speech sounds. The consonants /b/
and /h/ are used to utter syllables of the form consonant-vowel-consonant

(CVC) with the consonant /d/ in the final position for the vowels, such



TABLE X

PHONEMIC DATA

No Utterance: No Utterance No. Utterance No. Utterance
1 -- 41 ly/ 81 17/ 121 /hid/
2 /i/ 42 /y/ 82 /bit/ 122 /h1d/
3 /i/ 43 /m/ 83 /bIt/ 123 /hed/
4 /1/ 44 /m/ 84 /bet/ 124 /haed/
5 /1/ 45 /n/ 85 /baet/ 125 /hAd/
6 /€/ 46 /n/ 86 /bAt/ 126 /hod/
7 /€/ 47 /m/ 87 /hot/ 127 /hud/
8 /e / 48 /n/ 88 /bUt/ 128 /hud/
9 /®/ 49 /b/ 89 /fut/ 129 /hJd/

10 /N 50 /b/ 90 /but 130 /hald/

11 /N 51 /d/ 91 /b/ 131 /hold/

12 /a/ 52 /d/ 92 /als/ 132 /haud/

13 /a/ 53 /9/ 93 /bIL/ 133 /hoUd/

14 /D 54 /9/ 94 /bal/ 134 /held/

15 /D 55 /p/ 95 /boU/ 135 /hjud/

16 JU/ 56 /p/ 96 /belt/ 136 - /awa/

17 /U/ 57 /t/ 97 /ju/ 137 /ala/

18 /u/ 58 -- 98 /wll/ 138 /ara/

19 /u/ 59 /t/ 99 /111/ 139 /aya/

20 /Y 60 /k/ 100 /ril/ 140 /ama/

21 /3y 61 /k/ 101 /yIl/ 141 /ana/

22 /al/ 62 /h/ 102 /mIl/ 142 /sen/

23 -- 63 /h/ 103 /nll/ 143 /aba/

24 /al/ 64 13/ 104 /SEn/ 144 /ada/

25 /2L/ 65 13/ 105 /bIl/ 145 /aga/

26 /ol/ 66 /tS/ 106 /dIl/ 146 /apa/

27 /au/ 67 J/tS/ 107 /qll/ 147 /ata/

28 /aul/ 68 /v/ 108 /pll/ 148 /aka/

29 /ou/ 69 /v/ 109 /tIl/ 149 /aha/

30 /ou/ 70 /3/ 110 /kI1/ 150 /aja/

31 /el/ 71 /¥ 111 /hIil/ 151 JatSa/

32 /el/ 72 /z/ 112 /3i11/ 152 /ava/

33 /3ju/ 73 /z/ 113 JtS11/ 153 /a%a/

34 /3u/ 74 /f/ 114 /vIl/ 154 /aza/

35 /w/ 75 /f/ 115 /8 t/ 155 /afa/

36 /w/ 76 /9/ 116 /all/ 156 /aba/

37 /1/ 77 /9/ 117 /fI1/ 157 /asa/

38 /1/ 78 /s/ 118 /baed/ 158 /aJa/

39 /r/ 79 /s/ 119 /sIl/

40 /r/ 80 /f/ 120 /S11/
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~as /hid/. The vowel /a/ is used to utter nonsense syllables of the form
vowel-consonant-vowel (VCV) in both initial and final positions, such as
/aba/. A set of minimal Qnits using the final form -/I1/ (-i11) is used
for the consonants also. Some of the other syllables used are English
words. The basic sounds are found in Table II.

The phonemes are analyzed by the algorithms in Appendix B. The
energy data is shown in Table XI, normalized by the sound /a2/ for the
first 81 phonemes in Table X. The energy in the phoneme /ae/ corresponds
to the largest compared to each of the other phonemes. The data is cal-
culated by the program ENERGY. From Table XI, it can be seen‘that the
energy of the prediction residual divides the phonemes into classes by
phonemic aggregations.

It is well known that with simple LPC methods [60], the excitation
function is a set of periodic pulses or random noises which can be iden-
tified as high or low energy excitation functions. However, by using the-
energy data in Table XI, the phonemes can be grouped into three classes,
namely high energy, Tow energy and noise groups. The high energy group
includes the vowels and diphthongs. The plosive, fricative and unvoiced
phonemes make up the noise group. The low energy group is composed of
glides and nasals. It follows that an ideal exéitation signal for speech
would enhance perception by considering a three-tier classification
rather than the conventional two-source model. This would include a
source for vowels, a source for nasals and glides, and a source for
fricatives. This is the result of the phoneme energy study of the pre-
diction residual. A normalized energy distribution by phoneme for each

sub-band is shown along with the energy bands in Figure 24.



TABLE XI

ENERGY BY PHONEME FOR PREDICTION RESIDUAL

Total
Phoneme  Frequency Band SB1 SB2 SB3 SB4
/i/ .44 .58 .46 .33 .31
/1/ .75 .51 .46 .75 .45
/e/ .84 .65 .47 .00 .54
/el 1.00 1.00 .00 .00 .00
/0\/ .72 .67 .57 .45 A1
/a/ 72 .64 .69 .59 .35
1D/ .83 .60 .68 .70 .42
/U/ .24 .23 .25 .20 .15
/u/ .19 .29 .10 1 .20
/&/ .61 .62 .22 .64 .15
/al/ 1.00 1.00 .79 .68 .65
/DoL/ .44 .75 .45 .20 .32
/au/ 1.00 1.00 .95 .90 .78
/oU/ .56 1.00 .31 .21 .53
/el/ .86 1.00 .64 .66 .49
/3u/ .32 .67 .21 .22 .12
/w/ .24 .35 .24 .10 .23
/1/ .24 .29 .08 .10 .29
/r/ .14 .24 12 .09 .07
ly/ .1 .20 .08 .08 .07
/m/ .34 .65 .25 .22 .19
/n/ .22 .45 17 .18 .13
/n/ .37 .67 .37 .24 .18
/b/ .24 .49 1 .14 A7
/d/ .32 .63 .27 .14 .21
/q/ .31 .50 .18 .14 .16
/p/ .18 .27 .08 .07 .08
/t/ .45 .46 .32 .26 .25
/k/ .32 .63 .23 .19 .20
/h/ .45 .46 .24 .31 .31
13/ .53 .51 .44 .31 .58
/tr/ .23 .46 .16 .10 L1
/v/ .16 .29 .13 .09 .09
/8/ 17 .32 .13 12 .10
/z/ .24 .44 A7 .19 .15
/f/ .07 .04 .07 .05 .12
/e/ L1 .21 .09 .07 .05
/s/ .08 .05 .06 .06 .13
11/ .10 .06 .07 .07 .18
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Based on the above discussion, phonemes can be classified into three
energy groups: (1) high energy (HE), (2) low energy (LE) and (3) noise
(N). To do this, the normalized residual phoneme energies (second column-
in Table XI) are the first tabulated; from this, there are clear breaks
in the energy levels and therefore three energy groups formed. These
breaks are used to identify the threshold values for a particular energy
‘gfoup. For the high energy group, let T]] be the threshold value. That
is, any phoneme that has normalized residual energy greater than T]] is
classified into the high energy group. Similarly, T22 and T33 are the
established threshold values for 1ow energy and noise phonemes respec-
tively. The three groupings are given in Table XII. The threshold
vg]ues Tii"i =1, 2, 3, can be identified from Figure 24. These are

for the entire frequency range.

TABLE XII
PHONEME ENERGY GROUPINGS

Energy Groups Phonemes
HE i, I, e, a2, a, Ay, D, U, u, &
LE m, n, n, Z, ws ]) rs, y

N S, f, b, d, g, p, t, k
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For the sub-band coding, threshold values need to be compufed for
each band. Also, each energy group has to be divided into four subgroups
corresponding to the four sub-bands. Let Ein be the norma]jzed signal
energy in the nth frequency band corresponding to the phoneme that is in
the ith energy group. This is explicitly shown in Table XIII. For
example, E]2 represents the energy in the second frequency band corre-
sponding to the high energy phoneme (first energy group).

The threshold values for Ein (referred hereafter as E¥n) in Table

XIIT will now be established using columns 3, 4, 5 and 6 in Table XI.

TABLE XIII
SYMBOLIC REPRESENTATION OF ENERGY DISTRIBUTION

Frequency Band

1 2 3 4

Ht By Bp B3 By
>
o
g L | En By By Ey
L

NL B3y Egp Bz Egy

Ein is listed for various phonemes in columns 3, 4, 5 and 6 in

Table XI. To make the classification speaker independent, the Ein has

to be normalized by ET given in (3.24). Let
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ET i Eiﬂ. i=1,2,3

in E n=1, 2,3, 4 (3.25)
From this, it is clear that

T i=1,2,3

Eip = 1.0 o9l 23,8 (3.26)

As before, EIn in (3.25) are tabulated for i =1, 2, 3 andn =1, 2,
| 3; 4. The breaks are established from this tabulation and the threshold
values are obtained from these breaks. These are tabulated in Table XIV.
The array in Table XIV will be referred hereafter as energy threshold

matrix. This matrix will be used in computing the bit allocation scheme,

which is discussed in the next chapter.

TABLE XIV
ENERGY THRESHOLD MATRIX

Frequency Band

1T 2 3 4

H .58 .27 1.0 .75
L .50 .19 1.0 .86

N .46 .27 1.0 1.00
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3.9 Summary

In this chapter, the basis of coding the prediction residual at the
rate of 9600 bits/second using the techniques of sub-band coding was pre-
sented. Transform coding and sub-band coding wwere discussed along with
their relationship. The method of achieving maximum intelligibility
based on the Articulation Index was presented. Transitional information
of speech along with the relation of speech perception to intelligibility
was discussed. Phonemes have been divided into three energy groups so
that these can be used in the bit allocation scheme to be discussed in

Chapter IV.



CHAPTER 1V
ENERGY BASED SUB-BAND CODING ALGORITHM
4.1 Introduction

In this chapter the sub-band coding algorithm, introduced in Chapter
ITI, is examined with the prediction residual as the input source signal.
The coding algorithm combines spectral analysis and waveform coding tech-
niques. The combination is intended to provide perceptual enhancement of
the speech. The perceptual aspects of speech are a key factor in the bit
distribution of the coding algorithm. The bit allocation is established
by using the energy groups discussed in the last chapter. For each frame
and for each sub-band, the energy E = %—i IEfn(k)|2 is computed, where
’En indicates the energy corresponding to the nth sub;band in a given
frame.

It is well known that most of the spectral density for vocalic
sounds and the fundamental frequency are basically found in the sub-band
number one (lowest frequency band). The intensity of the energy is sub-
stantially high. Spectrogram data can show this. The second formant
resides predominantly within the second and third sub-bands and is of the
low energy type. These formants determine the transitional cues for cer-
tain perceptual effects. The energy of noisy speech sounds, i.e.,_voice¥
less fricatives, plosives, etc., has a basic flat spectrum and most of_
 the energy is above 2 kHz. The perceptual effects are discerned in this

frequency range. The spectrograms show the intensity of the signal
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_,energy represented by varying shades of gray or black areas [2]. The
higher the energy, the darker the area. Spectrograms are included in
Appendix D. These figures are included to show the different energy
levels associated with different phonemes. From these spectrograms, it
can be seen that vowels are typified by dark areas; whereas fricatives,
plosives, etc., are shown in a gray area. Although all voiced sounds
show a dark color on the spectrogram, Makhoul and Wolf [90] have shown
that nasals and glides have a lTighter shade when compared to other voiced
sounds.

In this study, the energy in each frame of the prediction residual
is calculated for each type of phoneme. The bits per sample in each band
is allocated on an adaptive basis, using the perceptual criteria dis-
cussed in the last chapter. The next section deals with the bit alloca-
tion scheme.

The bit allocation method is incorporated into the sub-band coder,
which is discussed in Section 4.3. The adaptive strategy is combined
with a uniform quantizer with results presented in Sections 4.4 and 4.5.
Section 4.6 gives the details of the modules for computational aspects

of the coding of the prediction residual.
4.2 Bit Allocation

In this section, the bit allocation scheme is discussed using the
energy groupings in Tables XII in Chapter III. 1In symbolic form, the bit
distribution is shown in Table XV for a three-energy level--four sub-band
coder, where the rows correspond to the energy levels and the columns

correspond to a particular frequency band. For example, k23 bits per
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sample are assigned for the second energy (LE) band and the third fre-

quency band.

TABLE XV

SYMBOLIC REPRESENTATION OF BIT DISTRIBUTION

High Energy (H)

Low Energy (L)
Noise (N)

Frequency Band

1 2 3 4

kipy ki kg kyy
Koy Kyp  kp3 Ky
kyp k3 k33 Ky

The bits are allocated by the

LN

where Eij is the energy from Table XIII and

determined from the constraint

™

N,
j21 1

E..
kis = log,(1 + ?}l)
J

empirical formula

1)

i=1,2,3

j=1,2,3,4

(4.1)

oj is a normalization factor

(4.2)

with Nj’ j=1,2, 3, 4, being the number of samples in each band after

decimation. The value of C is equal to the total number of bits/frame
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minus the number of sync bits per frame. Combining (4.1) and (4.2), it

follows that

S

E..
N;[Tog, (1 + Ay = ¢ i=1,2, 3 (4.3)
=1 %]

where the normalization factor, o5 can be determined from (4.3). Equa-
tions (4.1), (4.2) and (4.3) define the algorithm.

The normalization factor is included to take into consideration the
perceptual aspects of the signal. It is used as a weighting factor for
transitional cueing. It has been shown that pitch, formant areas, nasal-
ity and affrication are important for speech perception. Within the
Speech spectrum, these characteristics occur in certain frequency ranges.
The power density of speech can indicate this conception, and is dis-
cussed below. |

The speech power density spectrum is shown in Figure 25. It is
clear that most of the energy is below 1000 Hertz. It has been shown by
Miller and Nicely [91] that below 1000 Hz, voicing, nasality, and affri-
cation are predominant for determination of the phonemic content. It has
been pointed out that given a set of speech signals, a weight factor can
be derived when the speech is separated into sub-bands. When these sig-
nals are coded properly, there is an advantage of distinguishing certain
perceptual effects such as voicing, nasality and affrication. The pér—
ceptual effects can be used for calculation of bits for coding.

To compute the normalization factor properly for coding the residual
signal, a bit matrix is chosen. The bit distribution that is selected is
based on perceptual concepts. This matrix will be referred to as an a

priori bit matrix. In addition to perceptual concepts, the a priori bit
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matrix is selected such that the bit rate is 9600 bits/second for the
sub-bands given in Table IV. The matrix is shown in Table XVI, where the

| A .
entries will be referred to as kij to denote the a priori values.

TABLE XVI
A PRIORI BIT MATRIX DISTRIBUTION

Frequency Band

1 2 3 4
High Energy 1 4 3 2 2
Low Energy 2 3 3 3 2
Noise 3 2 3 3 3

The a priori bit matrix is based on experimental results on pho-
nemes. A cursory inspection of Table XVI reveals that the perceptual
criteria is preserved. For example, on lower bands where pitch and for-
mant data must be preserved as accurately as possible, a large number of
bits per sample are used for encoding, whereas for upper bands where
fricatives and noisy sounds are predominant, fewer bits per sample are
used.' Note that the same number ofvbits for each energy group is allo-
cated. Also, the a priori bit values (k?j) are used to compute the nor-

malization factor in (4.1).
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When the energy of the speech sound is determined to be high enough,
the energy threshold introduced in Chapter III selects the energy matrix
(from Table XIII) and a priori bit values (from Table XVI). These are

used to calculate the normalization factor from (4.1), and

T .
E.. i=1,2,3
6. = —x— (4.4)
J < ki.> i=1,2,3,4
2 W)

where E$j is the energy obtained from threshold matrix and k?j is obtained
from the a priori bit matrix. Figure 26 gives the distribution of (1/oj)
based upon (4.4).

Equation (4.1) can mow be used to allocate the bits. It should be
pointed out that in using this equation, actual energy values of the sig-
nal will be used rather than the threshold values. The following steps
afe performed to allocate the bits.

1. Spectral estimates are computed for each sub-band.

2. The total energy in the frame for the entire frequency band is
computed.

3. E..'s are computed.

iJ .
4. Normalization factor, oj, is computed

5. The bits are allocated by

i=1,2,3

E. . '
k.. = Tlog,(1 + =) (4.5)
1J 20 o i=1,2,3,4

where E1.j is the energy in the jth sub-band corresponding to the ith
energy group and Oj is the normalization factor from (4.4). Figure 27

gives the flow chart for the bit allocation scheme.
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Equatioh (4.5) has been simulated using the phonemes in Table XII.
The bits are averaged for each energy group. The results of the simula-
tions are shown in Figure 28 for each of the three energy groups. Dis-
tinctly shown is a separation of the energy groups. Note that the low
energy group which contains the nasa]ic and glide sounds is shown to
separate the high energy and noise groups. This separation supports the
three-source theory of the residual signal.

Ear]ier, it was shown that the residual signal parallels glottal
excitation. The use of the residual signal for encoding the speech and
later exciting the speech synthesizer has several benefits. The bits are
minimized in the first and second sub-bands, reducing the necessary trans-
mission rate for these sub-bands. It is unnecessary to transmit twice as
many bits for sounds with nasalic, g]ide‘or liquid characteristics. On
the other hand, the discrimination from the noise is shown to be distinct.
The benefit remains clear further, because perceptual criteria will be
enhanced in all sub-bands. Discrimination of sounds can be benefited with
a'minimum bit allocation.

The bit distribution is shown by frame for each phoneme in Figure 29.
Again, it is shown that the perceptual criteria is preserved in that the
'pitch and formant prediminant phonemes receiving a substantial bit allo-
cation and fewer bits are allocated for fricative and plosive phonemes.
Noting that the total number of allowed bits pek frame is constant,‘the
difference in bits per energy group is adjusted in the synthesis bits.

This is discussed in detail in the next section.
4.3 Sub-Band Encoding of the Prediction Residual

The bit allocation scheme was used in the perceptual aspects of
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speech in sub-band coding of the prediction residual. The sub-bénd coder
partitions the frequency band of the residual signal into four sub-bands
by using the bandpass filters. The partitioning of the frequency_bands
is shown in Figure 20. Each sub-band is low-pass translated, decimated

~ [by the Nyquist interval obtained from (3.15)], and encoded according to
the bit allocation scheme discussed above. It has been shown that sepa-
rate coding of each sub-band accomplished the preferenctial perception
criteria for that band [37], The decoding of each sub-band involves an
interpolation and translation back to the original band. The b&nds are
summed to arrive at an estimate of the original residual signal (see Fig-
ure 21). This section desdribes the sub-band codingvparameters, the
relation of the sub-bands to the Articulation Index and other perceptual
cfiteria discussed in this thesis.

The cutoff frequencies for the sub-band coder are shown in Table
XVIL. The guideline established for selection of cutoff frequencies is
to represent an approximately equal contribution to the Articulation In-
dex. The bands shown in Table XVII represent enough of the important

frequencies such that intelligibility is preserved.

TABLE XVII
SUB-BAND CODER CUTOFF FREQUENCIES

Band Cutoff Frequency (Hz)
1 250 - 500
2 500 - 1000

3 1000 - 1700
4 2000 - 3000
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" The integer-band sampling scheme [37] was also analyzed at the sam-
pling rqte of 8000 Hertz. The technidue requires the ratio of upper to
1bu§r cutoff frequencies of the sub-band be (mi +,T)/mi, where m. is an |
‘integer. These bands are related at the bit rate such that the data can
be synchronized-when multiplexed. Table XVIII is helpful in constructing

the sub-bands. Previous authors have given the choice of bands that re-

. -late at other samp]ing rates [36] [37]. Shown in Table XVIII are integer-

band sampling cutoff frequencies for an 8000 Hertz sampling rate. The
integér decimation ratio is shown in Column 1 for 8000 Hertz. The band-
wi'dths.'fi are indicated in Column 2. The sampling rate, 2f., is shown
in Column 3. In Columns 2, 3 and 4, the cutoff_frequencies are indicated
iﬁplicitly; Integer-band sampling is not used in this thesis, and is
 given here for completeness. |
To explain how each band is related, the analysis of the sub-band

C6der is discussed. The sub-band coder is designed for 9600 bits/second.
The transﬁitted coder parameters include the sub-band coded brediction

residual signal, PARCOR coefficients and sync‘bits. Table XIX represents
a breakdown bf_sub-band coder parameters for the high energy phonemes.
Table XX shown sub-band coder parameters relative to the Tow energy
sounds. Table XXI represents those parameters relative to the noise
Sounds. The difference in Tables XIX, XX, and XXI are the bits allocated
_and the frahsmission rates per band,‘and the sync bits.

"It fs well known that the decimation rate shown in Column 4 of Tables
xtx_throﬁgh XXI represent an integer number of samples available before
enﬁoding. These available samples aré ré]ated to the 9600 bits/second
transmission rate. The fractional representation for each frame and sub-

band samples are shown in Table XXII.



TABLE XVIII

INTEGER BAND SAMPLING CUTOFF FREQUENCIES FOR

~ 8000 HERTZ SAMPLING RATE

Decimation

Ratio fy 2, 3 Af,
1 4000 8000 12000 16000
2 2000 4000 6000 8000
3 1333 2666 3999 5332
3 1000 2000 3000 4000
5 800 1600 2400 3200
6 666 1332 1998 2664
7 571 1142 1713 2284
8 500 1000 1500 2000
9 444 888 1332 1776
10 400 800 1200 1600
1 363 728 1089 1452
12 333 666 999 1332
13 308 616 924 1232
14 286 572 858 1144
15 266 534 798 1064
16 250 500 750 1000
17 235 470 705 940
18 222 444 666 888
19 210 420 630 840
20 200 400 600 800
21 190 380 570 760
22 182 364 546 728
23 174 348 522 696
24 167 334 501 668
25 160 - 3200 480 640
26 154 308 462 616
27 148 296 444 592
28 143 286 429 572
30 133 266 399 532
31 129 258 387 516
32 125 250 375 500

125



TABLE XIX

SUB-BAND CODER PARAMETERS RELATIVE
TO HIGH ENERGY PHONEMES

Band Cutoff Frequency Sampling Frequency Decimation Rate Bits Allocated Transmission Rate

(Hz) (Hz) (b/s)

1 250 - 500 500 16 4.0 2000

2 500 -1000 11000 8 3.0 - 3000

3 1142 - 1700 1182 7 1.5 1700

4 2000 - 3000 2000 4 1.0 2000

Sync and Synthesis ‘ ) : 900
9600 b/s




TABLE XX

SUB-BAND CODER PARAMETERS RELATIVE
TO LOW ENERGY PHONEMES

Band Cutoff Frequency

Sampling Frequency Decimation Rate Bits Allocated Transmission Rate

(Hz) (Hz) . (b/s)
1 250 - 500 500 16 2.0 1000
2 500 - 1000 1000 8 2.0 2000
3 1142 - 1700 1142 7 1.0 ' 1142
4 2000 - 3000 2000 4 1.25 2500
Sync and Synthesis 2958

9600 b/s

L1



TABLE XXI

SUB-BAND CODER PARAMETERS RELATIVE
TO NOISE ENERGY PHONEMES

Band Cutoff Frequency

Sampling Frequency Decimation Rate Bit Allocated

Transmission Rate

(Hz) (Hz) (b/s)

] 250 - 500 500 16 1.0 500

2 500 - 1000 1000 8 1.0 1000

3 1142 - 170 0 1142 7 5 571

4 2000 - 3000 2000 4 .5 1000

Sync and Synthesis 6529
- 9600 b/s

8L
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TABLE XXII
REPRESENTATION OF SAMPLES FOR A FRAME FOR HIGH ENERGY SOUND

Band Fraction/Frame Samples/Frame
1 .207 53
2 312 80
3 .180 45
4 .207 53
Sync and Synthesis .094 24
1.000 256 Samples/Frame

The multiplexing (see Figure 21) is simulated on the computer by
first appending eéch of the decimated signals to 256 points per frame by
édding zeros. Second, the DFT's of these are taken. Third, the trans-
formed signals are summed. Finally, the IDFT of the summed signal is
the multiplexed signal, which has 256 points. The demultiplexing in
Figure 21 1is simulated using the inverse process. That is, first, the
decoded signal is transformed. .Second, it is divided into four ffequency
bands. Third, these frequency coefficients in each band are appended by
zeros to get 256 points. Finally, the IDFT of these signals are.taken,-
which gives the demultiplexed signals.

Shown in eacﬁ of Tables XIX through XXII is a band labeled "Sync and
Synthesis." These parameters 1nc1ude synchronization bits and synthesis:

parameters for the receiver. The synchronization bits include one to
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establish the beginning of a frame and three to determine if the frame
contains a high, low or noise energy signal. The remaining samples in
the sync and synthesis bits are allocated to the PARCOR coefficients for
Synthesizing the speech.

The PARCOR coefficients are distributed between the range of |kj| <
1 and, in most cases, the entire range is not required [28]. It has been
shown that the odd-ordered coefficients are somewhat skewed toward the
positive side, whereas the even-ordered coefficients are someghat skewed
toward the negative side [28]. The limitation of a quantizer range re-
sults in better speech quality for a given number of bits assigned to
éach coefficieni, These parameters have been studied in depth in the
literature. Further quantization characteristics of the PARCOR coeffi-
éiéntS*can be found ih (77 [28] [31] [119]. These aspects are used in
adjusting the synthesis bits in Tables XIX to XXII,’and is outlined -
below.

Specifically, the following procedure can be used in assigning bits
for synthesis parameters. .For high energy sounds, 20 bits can be utilized
for the 10 PARCOR coefficients. The bit allocation for low energy sounds
for the PARCOR coefficients is 70. For the noise energy sounds, the bit
a]locatibn is 170. Note that more bits are available for the PARCOR
coefficients corresponding to the low energy-and the nbise signals as
compared to the high energy signals. These allocations in synthesis
parameters for encoding are adequate. Actual implementation of the bit
allocations for the PARCOR coefficients and their effect on the coder has

yet to be done.

The find tuning of quantization parameters has yet to be done. The

total sub-band system requires many trade-offs in the analysis section.
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In the analysis section, allowance must be made for the transmission rate

for each sub-band, In the next section, the uniform quantization method

is discussed,
4.4 Adaptive Uniform Quantization

The sub-band coder partitions the residual signal into four fre-
"quency bands. These banded signals are passed to the quantizer for re-
duction of inférmation content. The design of the quantizer is determinéd
by the bits allocated as discussed earlier. The amp1itude of each resid-

IBITS qevels, where IBITS is

val signal sample is quantized into one of 2
the number of bits allocated for the sub-band. The information content
of the digitized signal is IBITS bits per sample. It is shown in Column

6 in Tables XIX through XXI that the information rate for each sub-band is
Information Rate = (Sampling Freq.)n x I bits/second
I=1, ..., IBITS (4.6)

Qhere (Samp]iﬁg FreQ.)n is the sampling frequency for the nth sub-band.

. After quantizatijon the discrete amplitude level of the signal sample
_has a value.expressed_in binary decimal of length IBITS. The value of
IBITS ranges from 1 to 5. For example, the value of 2 for IBITS yields
amplitude levels of 00, 01, 10 and 11; whereas, a value qf 5 would yield
32 five binary length words.

- The range of the quantizer is aligned such that the amplitudes of the
input residu§1 signal will be within the range of the maximum swing of the
output of the quantization levels. The method for accomplishing the
| assurance that no over]bad occurs is based on a scheme of analyzing each
frame before quantization; i.e., the range of the signal is found before

quantization. ' This is compared to the bits allocated. An adjustment is
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made if needed by rounding the bits allocated to the next integer. The
methbd of quantization w111 be discussed next.

It has been shown that a characteristic of sub-band coded speech is
that it has no sample-to-sample correlation [36] [37]. Following this,
encoding is best performed by adaptive pulse code modulation (APCM) [109]
[121]. Previous encoding based on differential or fixed prediction does
not achieve good results for speech using sub-band coders [37]. Each
sub-band utilizes a uniform quantizer characteristic. Each sub-band
exhibits a different level of energy; therefore, an adaptive uniform
quantizer is used utilizing a technique that shrinks and expands the
quantizer by sub-band such that the signal is within the range of the
maximum quantization level for that sub-band. |

To implement the adaptive uniform quantizer, let the step size be
dénoted by A. Figure 30 illustrates the characteristic for the adaptive
uniform quantizer [109] and will be idscussed in detail. It is well
known that the uniform quantizer level produces error which follows the
uniform distribution. That is, the probability density function of the

"‘quantization error Qe is given by

= 1.-8 A
flQy) = 355 2Q 25 ~ (4.7)
with the variance
2
02(Q) = I3 (4.8)

The step size is dependent on the bits allocated.

. Let the number of levels be represented by

NNo= 2 §=1, ..., IBITS (4.9)
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then

b= grleqMI (4.10)

where [efn(n) ]max is the maximum value of the nth sub-band residual
Signa].

In order to achieve the quantized value, let
y = [gl, Eos +ees ENL] (4.11)
be an (ML)-vector used to identify the parameteks of the quantizer levels
such»that |
| Q = Ay (4.12)

where the vectors Q and y are of dimension NL and represent the quantizer

values. The entries in y are given by

LM N
g = - (G-t 12225
= 0 p= e
= g Bt2cacm (4.13)

From (4.12) and (4.13), it follows that the quantized level Q, in Q is

given by

(4.14)

The quantized values of the residual signal are obtained by rounding it
to the nearest quantized level, which is used to code the signal.
In the next section, performance measures are discussed for the

quantizer and the sub-band coder.
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4.5 Signal-to-Noise Ratio

Performance Measurements

In the previous section, the quantization is done for the banded
prediction residual. In this section, performance measuremetns will be
discussed. It has been recognized in the literature that signal-to-noise
_ratio (SNR) is an inadequate performance measure for speech coding [109].
This idadequacy is realted to the idea that additive white noise is not a
good model for error waveforms in speech quantization. Generally, most
authors supplement the SNR by subjective and perceptual measurements as a
rule.

The SHR is still the single most informative measure for quantizer
performance [109}. If the quantizer is designed for maximum SNR, the
step size can be chosen according to the probability density function of
' the'signal [122]. However, the SNR improvement is offset by greater idle
channel noise for speech [123]. The result is poorer subjective perfor-
mance [123]. Therefore, to enhance SNR an adaptive quantizing technique
is used based on the allocation of bits.
| It has been shown that transform coding with adaptive quantizers
maximizes SNR and lowers the idle channel noise [81]. Intuitively, sub-
bénd coding should follow under similar conditions. With sub-band
coding, the quantization noise of each band is contained within that band
and therefore, minimizes the quantization noise of the coded speech [36].
Due to the characteristics of the speech spectrum, the quantization dis-
tdrtion is not equally detectable at all frequencies. This technique
offers a means of controlling the quantization noise across the speech

spectrum and, therefor a realization of improvement in signal quality

[36].
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The definition of each objective measure will be discussed next.
Perhaps the most common measurement of performance is the conventional
(normalized) SNR which is defined as
N-1 )

L (x(k) - y(k))
- N-1

2 x2(k)
k=0

NSNR = -10 1og]0 (4.15)

where x(k) is the input to the coder and y(k) is the output of the de-
coder. It is assumed that the numerator represents the noise of the
coding technique, such that as the noise decreases a smaller SNR will be
the result of the summation in (4.15). The advantage of this quantity
is a representation of the‘normalization of the error between the coder
input and the decoder output. For speech theré is no perceptual advan--
tage in maximizing the SNR; however, the SNR in (4.15) could be optimized
fof the autocorrelation of the speech [122].

Another measure similar to (4.15) is the root-mean-square error

which is defined as

=1
£ (x(n) - y(n))?

RMSSNR = -20 Tog, n=0 (4.16)
N .

where x(n) and y(n) are defined as before. In (4.16), the error is
assumed to be of random nature, and is normalized by the factor N, the
number of data points.

A third measure is defined as
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MSSHR = - ]WNE] 10 Tog [(X(n) ; y(n))z] 47
n=0 x"(n)
where x(n) and y(n) are expressed as before. The representdtion in (4.17)
defines some measure of error.
The results using (4.15), (4.16) and (4.17) are shown in Table XXIII.

_Thege are computed by program SNRCAL (see Appendix B). These results
exemplify good coder performance. Note that these simulations are done
without bit assignment to PARCOR coefficients. Several phonemes are used
in these measurements and they give an adequate measure of the coder.
However, the complete simulation should include quantization of all param-
eters to complete the 9600 bits/second coding algorithm. The next section
discusses the computational aspects for coding and decoding the prediction

residua].

TABLE XXIII

SIGNAL-TO-NOISE PERFORMANCE MEASUREMENT
FOR SEVERAL PHONEMES

Phoneme  RMSSNR  NSNR  MSSNR

/1/ 29.2 36.7 18.2
/e/ 37.2 36.9 19.1
[ae] 35.1 37.4 17.5
/N 32.9 34.9 15.2
/a/ 30.1 38.4 18.3
/u/ 36.8 38.7 17.7
/Z/ 29.8 38.0 18.4
/al/ - 31.3 37.0 18.2
/au/ 34.2 38.4 18.7
/oU/ 29.4 37.9 16.8
/el/ 33.4 39.0 17.0
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4.6 Computation for Coding the

Prediction Residual

The flow chart that gives all the computer modules is given in Fig-
ure 31 for coding the residual signal. The data blocks shown in Table

XXIV represent data processed and online storage during the computations.

TABLE XXIV
DATA BLOCKS FOR PROCESSING AND STORAGE

Data Block - Record Number of

Name Length Records : Module Used
BURGE.DAT 256 82 DIGITIZ/WINDOW
WINDOW. DAT 256 16 WINDOW/AUTO/LATTIC/INVERS
AUTO.DAT 176 16 AUTO/LATTIC/INVERS
RESIDUAL . DAT 256 16 INVERS/LATTIC/FFTMGR/SUMLPD
SPECTM.DAT 256 16 FFTMGR/RESULT/(PITCH)
BITS.DAT 16 .16 FFTMGR/SUMLPD/ENCODE
PHAZ.DAT 256 16 FFTMGR/RESULT
CODE . DAT 256 16 ENCODE/DECODE
SIGNAL.DAT 256 16 DECODE/RESULT
SQNR. DAT 256 16 RESULT
SBAND1.DAT 256 16 SUMLPD/ENCODE
SBAND2.DAT 256 16 SUMLPD/ENCODE
SBAND3. DAT 256 16 SUMLPD/ENCODE

SBAND4. DAT 256 16 SUMLPD/ENCODE
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- The modules are arraﬁged to generate and use the data in Table XXIV
on the INTERDATA 70. The tape recorder inputs an and]og signal to the
computer while DIGITIZ computeé a sampled §igna] and stores the digitized
signal on disk in location BURGE.DAT. DIGITIZ is set up to store 4096
points. This program calls én assembly language digitizer and sequence
clock for sampling. Thié program is flexible for sampling any analog
signal and storing the signal on disk.

~ Program WINDOW uses the data on disk, BURGE.DAT. The data is win-
dowed using a 256-point Hamming window. The user has the option of
selecting which record of the digitized data to window. The program
reports the sequence selected and also scales the data. The window data

is written in data block WINDOW.DAT.

i
|

~ Routine AUTO calculates predictor and PARCOR coefficients using
Levinson's method [61]. The program uses as input the window data, WIN-
DOW.DAT. The output is an array, AUTO.DAT, containing autocorrelation
coefficients, predictor coefficients, cross-correlation coefficients and
reflection coefficients.

Routine INVERS uses the data from AUTO, AUTO.DAT, for use in the
lattice filter implementation from Equation (2.31) and (2.34). The order
of the filter is ten. The output from this program are the residual
values. This output is stored in RESIDUAL.DAT. Routine LATTIC is the
sames as INVERS except that LATTIC gives the user the option to produce
a plot of the speech and prediction residual on CALCOMP.

The FFTMGR module is an FFT manager that includes a bit reversal and
unscrambler. The inpﬁt to this program is the prediction residual, RE-
SIDUAL.DAT. This routine calculates thé avergae spectrum, magnitude

square and the energy of the prediction residual. It calculates the
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energy per sub-band. It uses an a priori estimate of the energy and bits
to calculate the normalization factor and bits for each sub-band. The
program writes on disk the spectrum, SPECTM.DAT, the bits allocated,
BITS.DAT and the phase, PHAZ.DAT. It also gives the user the option for
a plot of the spectrum on CALCOMP.

7 Routine SUMLPD passes the predictibn residual through a digital
bandpass filter. The‘signal is modulated, lowpass filtered and decimated
as shown in Figure 21. The input to this program is the data file RESID-
UAL.DAT. The outputs are the four sub-bands, SBAND1.DAT, SBAND2.DAT,
SBAND3.DAT, and SBANDA.DAT.

The signallcorreSponding to the four sub-bands are encoded using the
bits allocated in BITS.DATA by useing the program ENCODE. ENCODE allows
fof 32 levels of code. In case of non-integer numbers, the quantizer,
QUNTIZ, rounds the bits to determine the number of quantizable levels.

A uniform quantization is used to determine the code. The output is
written in CODE.DAT.

~ Routine DECODE uses CODE.DAT as input. In the initial frame, the
maximum number of quantization levels is determined. This maximum sets
the level for the inverse quantizer. Then the signal is decoded and
written in file SIGNAL.DAT. |

The program RESULT interpolates, modulates and bandpasses the signal,
SIGNAL.DAT, for reconstruction. The routine calculates signal-to-noise

ratio given by (4.15) and (4.17).
4.7 Summary

In this chapter, the energy based sub-band coding algorithm was pre-

vsehted. The method of allocation of bits was discussed. The design of
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the sub-band encoding of the prediction residual was presented. The com-

putational aspects for coding the prediction residual were discussed.



CHAPTER V
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY
5.1 Summary

This thesis investig;teé an efficient coding of the prediction resid-
ual using the technique of sub-band coding at the bit rate of 9600 bits/
second. The energy of the prediction residual is used to distribute the
bit allocation by sub-bands such that perceptual ériteria is preserved.
The perceptual criteria is enhanced by transit?on information embedded in
the phoneme connections of‘speech by a technique that weights the energy
based on a normalization factor.

Each sub-band is partitioned such that there is an equitable contri-
bution to the Articulation Index as it is a measure of speech intelligi-
bility. This is discussed in relation to the quality of speech. The
perception of speech is described in a qualitative sense. The relation-
ship between the Articulation Index and transitional information is de-
scribed as a method of discrimination of speech sounds.

The prediction residual is discussed as a parallel to the glottal
waveform. The prediction residual is formed by speech through an inverse
filter. This is represented as a deconvolution of speech from the vocal
tract filter.

The voca]_tract filter is modeled as a recursive digital filter

using the method of linear prediction. Linear prediction produces the
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prediction residual, which is the difference between the actual and pre-
dicted speech signais. Because the prediction residual is parallel to
glottal excitation, the prediction residual is an ideal pitch extractor.

A novel pitch extraction technique is presented. It is a two-stage
method that estimates the residual spectrum and uses time samples of the
residual to calculate the approximation of the pitch. The technique cal-
culates a threshold which uses squared samples to extract the pitch with-
in a frame. Also it'includes an error check that estimates wide variances
of the pitch within each period and is then updated.

The three-tier classification of phonemes is derived from the energy
study of the phonemes for the prediction residual. It is shown that the
energy of the prediction residual divides the Whonemes into classes by
phonemic aggregations, namely high energy, low energy and noise groups.
The high enefgy group includes the vowels and diphthongs. The plosive,
fricative and unvoiced phonemes compose the noise group. The Tow energy
group is composed of glides and nasals.
| The three-tier classification of the energy levels along with the
four frequency bands allows for efficient allocation of bits per sample
for each band. The above method aids in preserving perceptual criteria
and.preserves pitchfformant data by the allocation of a large numbef of
bits per sample in the lower bands. Since fricative and noisy sounds are
predominant in the upper bands, a smaller number is used in the lower |
bands. The perceptual criteria is further enhanced by a normalization
factor.

The normalization factor is perceptual in nature and is used as a

weighting factor for transitional cueing. The derivation of the
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normalization factor is discussed. Additional variations are given for
the relationship of the three phonemic classes to the normalization
factor.

The sub-band coder is designed based on the normalization factor,
the energy data, and the bit allocation. The parameters are computed on
a frame-by-frame basis. The sub-bands are constructed such that the bit
rate of the data from each band can be synchronized when multiplexed at
9600 bits/second. The integer-band sampling scheme is analyzed at the
sampling rate of 8000 Hertz for a 9600 bits/second transmission rate.

The sub-band coder is designed to transmit the coded prediction residual
signal,}synthesis parameters and sync bits at the 9600 bits/second rate.

An integral part of the sub-band coder is the quantizer. The en-
coding of the signal is designed baséd on adapfive pulse code modulation.
Uniform quantization is used. The characteristics of the quantizer are
dfscussed in detail. Performance of the quantizer is described in terms
of signal-to-noise ratios (SNR) for objective criterion for quality. The-
~ conventional (normalized) SNR is used for representing the error of the
coder input and the decoder output. The mean-square SNR is used for an
indication of gross error. These SNR measurements are only an indication
for quantizer performance. Generally, the SNR must be supplemented by
subjective and perceptual measurement as a ru]e; However, the SNR mea-
surements in this thesis are used without listeners.

In the following, some extensions to the present effort are sug-

gested. Appropriate references are indicated.
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5.2 Suggestions for Further Study

5.2.1 PARCOR Coefficient Study of Sensitivity

The PARCOR coefficients introduced in Chapter II have been thoroughly
investigated because of their importance to speech analysis and synthesis
[9] (28] [31]. The priority is geared toward the synthesis of speech; in

'that given the prediction residual and PARCOR coéfficients, the speech
signal can bé adequately regenerated. An extension of the present work

would enhance present efforts in this area by studying the sensitivity of
PARCOR coefficients with respect to the sub-band coding of the prediction

residual.

5.2.2 Sub-Band Coding Using Subjective i

Measurements

The present work can be further advanced by the use of sub-band cod-
ing the prediction residual at various bit rates. The synthesized signal
would then be used in a comparative study for various bit rates. The per-
ceptual question concerning the method should be geared towards a record-
ing of the synthesized speech so that a set of listeners could hear the

results,

5.2.3 Energy Threshold Matrix Study

The introduction of the energy threshold matrix (ETM) in Chapter III
requires.further study. In this work it is seen that the ETM is highly
dependent of perceptual criteria; consequently, several variations would
benefit the present work. In some instances, it is necessary to bias the

energy group to enhance the perceptual aspects; but this is unknown until
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the energy distribution is computed. The results of ETM are dependent on-
transmission rates; however, given one transmission rate, several ETM may

be equally applicable to the coding.

5.2.4 Integer-Band Coding of the Prediction

Residual

The integer-band coding method introduced in Chapter IV for use with
the prediction residual has not been considered in this thesis. It is
simple to implement and would minimize the need for modulators. Previous
authors have studied this for speech; however, the subject has not been

studied for the prediction residual [36] [37].

|
|

5.2.5 Prediction Residual and Noise

~ A study that would greatly benefit the speech coding area'is to mask

the prediction residual with white noise. That is,

z(k) = ec(k) + v(k)

where ef(k) represents the discrete samples of the prediction residual
signal and v(k) represents the discrete damples of the white noise.

- The enhancement of the pitch period markings would be of major impor-
tance in this study. Further, the synthesized signal-to-noise ratio per-
formance measurements'would also be of interest. The speech waveform has
been examined in noise stripping environments; however, the prediction
residual in a noise environment has results that are promising [19] [58].
An aid to characterization of the signal would be to use the Laplacian or
Gamma distribution, as with the speech. However, these distributions are

questionable for the prediction residual since the waveform is different.
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Determining the probability distribution of the prediction residual may

be a study in itself.

5.2.6 Modeling the Prediction Residual

The prediction residua]vin this thesis is obtained by inverse filter-
ing the speech signal. Under certain conditions, it is not easy to code
the inverse filter; however, if a model was determined that is similar to
the signal, it would be of benefit for synthesié. An extension of the
work in Chapter II would be to compare the speech and the prediction
residual. }It would be necessary to identify the essential parameters
that can be derived from the residual signal, such as pitch, phase in fo,
formant characteristic and noise between pitch period pulses. The end |
vesults would approximate an expression that compares with the actual
residual pulse. This in .turn could be compared with Flanagan and Rosen-

" berg's work [2] [12] [32].
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Articulation Index - A weighted fraction representing, for a given

speech channel and voice condition, the effective proportion of the .

}normal speech signal which is available to a listener for conveying

speech intelligibility. It is computed from acoustical measurements
or estimates, at the ear of a listener of the speech spectrum and of
the effective masking spectrum of any noise that may be present.
Allophone - A manifold acoustic variation of a phoneme.

Coding - The means by which an analog waveform is discretized then
further represented in one of the well-known methods, e.g., Pulse
Code Modulation.

Cognate - A complimentary pair of fricatives. One is voiced, the
other is unvoiced; however, the place of articulation is the‘same.
Consonant - Those speech sounds which are not exclusively voiced and
mouthoradiated. There are fricative, stop and nasal consonants.

Communication - The means by which any transmission, emmision or re-

ception of signs, usages or intelligence of any nature is conveyed.

Excitation Function - The representation of the glottis in the vocal

tract by mathematical modeling in the synthesis of voice.

Formant - The resonance component of a speech sound. Generally, it
is associated with the phonetic quality of a vowel.

Fricative - The speech sound produced by a noise excitation of the
vocal tracts. This noise is generated by turbulent air fiow at some
point along the constriction in the vocal tract. If the vocal cords
operate with the noise, the fricative will be voiced; otherwise, it
is unvoiced.

Glide (1iquid) - Those sounds characterized by gliding transition of
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13.

14.
15.

16.

17.

18.
19,

20.

- 21,
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the vocal tract and influenced by the cdntext in which the sound

occurs, commonly referred to as semi-vowels.

Glottis - The orifice between the vocal cords.

Intelligibility - The perceptual effect of understanding speech.

sounds.

Language - The set of principles mastered by the speaker in which
resides at his grasp an infinite set of sentences. It is a system
of human communication based on speech sounds used as arbitrary
symbols. |

Nasal - The group of consonants made with complete closure of the
mouth making the radiation sounds come from the nostrils.

Phoneme - The basic speech sound element uéed which serves to keep
words'apart.

Plosives (Stops) - Those speech sounds which begin with complete

closure of the lips. The lungs build up pressure behind the clo-

sure, suddenly release an explosion marking the voice onset time.

Pitch - The difference in the relative vibration frequency of the

human voice that contributes to the total meaning of speech, the
fundamental frequency.
Quality - The ability to identify the character of speech sounds.

Place of Articulation - The part of the vocal tract where constric-

tion occurs. Three places of articulation are: labial, alveolar,
palatal; i.e., front, middle, and back of the mouth.

Speech Perception - The ability of humans to discriminate and dif-

ferentiate speech sound with their over-learned senses.

Suprasegmentals - The features of stress, pitch, intonation, melody,

etc., that occurs simultaneously with speech sounds in an utterance.
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23.

24,

25.
26.

27.
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Transitional Cues - The loci of frequency determined by the place of

articulation connecting phonemes.

Unvofced - Speech sounds that occur without the vocal cord source
operating.

Vocal Tract - The acoustic tube which is nonuniform in cross-sec-
tional area beginning with the 1ips and ending with the vocal cords.
For the adult male, it averages 17 centimeters in length and varies
from 0 to 20 square centimeters in cross-section.

Voiced - Speech sounds that ére produced by the vibratory action of
the vocal cords.

Voice Onset Time - The delay from complete closure of a plosive to

the beginning of voicing. Generally averages 25-30 milliseconds.
Vowel - Speech sounds produced exclusively by the vocal cord, i.e.,

voiced, excitation of the vocal tract.
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The flow graph in Figdre 24 gives all the programs used in this
thesis. These programs were coded for the INTERDATA 70. Each of the _

modules is dichssed below.
B.1 DIGITIZ

This program is an imp]emehtation of analog-to-digital (A/D) con-
‘version. It actuates the equipment and the A/D converter which is a part
of the computer system. The input is from an analog tape recorder. The
output corresponds to the quantized signal with amplitudes of 10 volts
peak-to-peak in steps of 20 millivolts. This data is stored on disk in
area BURGE.DAT. The samples are grouped in ]Glrecords sequentia]]y with

256 samples per record.
B.2 LOOK

This program operates on any data set. It was developed as an in-
formation tool for scanning the data. It has an option to have the out-

put on a CRT or on a line printer.
B.3 WINDOW

This routine uses a 256-point Hamming window, shifts by 64 points,
uses a 256-point window, and the process is continued to the end of the
file. The input is the sampled speech data, BURGE.DAT. It cdhvenient]y
informs the user that the sequence is being windowed. The output is

scaled, windowed data that is written in file WINDOW.DAT.
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B.4 AUTO

This program calculates the inverse filter coefficients, cross-
correlation coefficients, partial correlation coefficients, and auto
correlation coefficients. The'input is the windowed speech data. A
sample of each of the coefficients is printed. They are written in the

file AUTO.DAT.
B.5 INVERS and LATTIC

These routines are in implementation of the lattice filter. The
input is the windowed speech data. The output is the error signal or
" the prediction residual. This output is written in the file RESIDUAL,DAT
on thé disk.

Routine LATTIC provides the user the option of a plot of eaéh frame
for the input speech and the prediction residual. The user must also

enter the two character names of the sound for the frame desired.
B.6 FFTMGR

- This program calculates the Fourier spectrum of the speech input.
It calculates the energy per frame, splits this into the predetermined
sub-bands for sub-band energy, and it computes the normalization factor
and the bit allocation. It uses as input the residual signal and out-
puts the spectrum, phase and bits. These are written in the files

SPECTM.DAT, PHAZ.DAT and BITS.DAT, respectively.
B.7 ENCODE

Routine ENCODE codes a signal based on bits allocated. It uses

uniform quantization using the adaptive strategy discussed in the main



168

part of the thesis to determine the number of levels and rounds the in-
dividual samples to the nearest level. The input is the number of bits

ahd the sub-band signal. The coded signal is written in file CODE.DAT.
B.8 DECODE

This routine decodes the integer data in the file CODE.DAT. It
determines the largest code level and calculates the allocated bits from
this level. It also sets a maximum quantization level. This decoded

signal is written in the file SIGNAL.DAT.
B.9 SUMLPD

A This routine computes the sub-band prediction residuals using the
digital bandpass filters, modulator, lowpass filters, and decimator.

The inputs are the signal spectrum and phase. The outputs are the deci-
mated sub-bands. These are written respectively in the files SBAND1.DAT,
SBAND2. DAT, SBAND3.DAT, and SBAND4.DAT.: |

B.10 RESULT

This routine uses the signal to compute signal-to-noise (SNR) ra-
tios. It uses as input the decoded signal and the residual signal. The
output is a normalized SNR and an average mean squared SNR. The user
has the option of producing a plot. If used, one must input the two-

character sound names. The data is written in the file SQNR.DAT.
B.11 SNRCAL

The routine ca}cu]ates from any two 256-point data arrays the SNR.

The input is two arrays of length 256 or less number of points. The
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program outputs a mean-squared SNR, a root-mean-square (RMS) SNR and a
conventional (normalized) SNR.
B.12 PITCH

This routine estimates the fundamental frequency of a speech utter-
ance. The input is the speech array prediction residual signal and the |

spectrum of the signa].' The program outputs the pitch.
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MPRNINE CIEES A SIGHAL BASED ON ALLOCATEL R1TS
USES 1NIFORM QUANTTIZER; MRITTEN BY L. L. SUNOE

1L ICIY IMYEGEReZCL=H)

THYEGER+2 KODEC 23, IKODEC256)

DINENS O TALCISE), RETSCA), QCFCL2D6)

DRIA KOCE/1., 2. 3. 4. 5.6, 7. 8, 9, 18, 1.1, 12, 17, 14, 15, 16, 2.7, 18,
*58 ;. 20, 23, 27, 23, 24, 23, 76, 27. 28, 29. 30, IX, 32/

i1=3

N2

&0 18 Tet. N

DEC(LIen. 0

KACclden 8

SRUEC 1 Yol

IR0 DATH

REWIND L

PEUIND 2

PEWING 3

Pritir 4

EULD ?

(21 A )

MEMSTT) BITS

VLT LY. 1000 CRLISCI), Jot, 4) .
FNRIATCIN o °ALLOCATED RITS'/F3. 2. FOR SURBAND OMNE” /7

OFN 2,7 FOR SIPKID T /FS. 2, FOR SURBAND THREE’ /2

SFS. 2,7 FUR SINBRAND FOUR? >
FEADLIN)> DFC
DN 20 je1,H
ECCIILECCL)
H1TaR1TSCIL)
PRITE(S, 126 (DEGCCI), I, N>
FORMATCIR o 2 INPUT SIGHAL 2, 12F8, 2)

FIND MAXIMIM OF INFPUT SIGMNAL

CHLL HAXCQDEC, N, BIG, NUM)
Timlied,

CH.L THE QUANTIZER

CALLL QUNT IZ(DEC, BIT, ADEC, 610, KODE, 1KODE)
WRITECS) IKODE

DAINADSOWNPA

$#°3

an

0000000

sHNCOoODKE

HRITECS, 208) (IKOOECK), Kat, N>

FORPMRTCIN , “ENCODED SIONAL. 2. 014)
1FCL. EQ. 5) 00 TO 9

00 TO 4

HRITECS, 999) .

FORMAT (LHL /77 sevsese DONE oesoese’) -
STOP

(7]

SHIFICEE N

SUMGIUTINE CHENENCE, SEN, IN. ESUR)

THIS FROGEAI CMECKS FOR HIGH ENERGY VS LON ENEROY SIAINDS
HPITTIEN RY L. L. FUNGE

1F PREVIONS EIFKGY HAS NINIMAL THE ENFRGY ls RFIRICFO

E = VECTOR OF €NERGY POINTS

SEH = VECTOR 0F 10'"1 ENERGY FOR N PTS

IN = FRANE MREER

ESUR = SHR-EAND EMNERGY

IMPLICIT INTEGER«Z(I-N)
DIMEUSTION EXZ56), SENCL). ESURCL)
AVIE=D. &

N0 10 1=l IN

AVTELSENCTI*AVIE

AVIESAYTEAFLOATCIND

AVIE=RVIE+TD. &

1FCAVIE. BT, EX2%6>) 60 TO 30
E(258)0EC2865716. &

DD 20 1si, 4

ESURCIISESURCL)IA16. &

RETURN

ENO

74
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oana

anon

ao00

16

118

‘e

DOOw

GNIMNT X 2

NEROUTINE (ANY12¢DEC, z-ns.mec,'mo,moe. 1KOLE >
ROUTIE QBNTIZES MDD CODES S10NAL BY L L suroE

INLICIT INTEGERe2CT-N>
INTEGER+2 IKULECE ), KODECL)
DIMFNSIOH QNENCRI), QUECCL), DEGCL)
Ne25R

DU S 1a1, 23X

QENCII=B B

PR RITS TO INTEGERs DETERMINE NO. LEVELS

KOINDRITSeL. @
IRITSe IF IXCRIAMND >

1014 «2e e IKITS

AN &« TINR @1

IFCIANL. OT. 2> 10ONL.eX2
R SFLGATCIOM )

DFETFFIIIIN INCHEMENT 1IN EACH LEVEL

GINCEC2 AeRINI/MIA.
LA Ne Lie. /72

CET VALUF FOKR LEVELS

1N 16 vat, INLH
Klsmlinil ti-Keg,

F2u1010 ~Ke2

PHEHCKZ ) uFI GAT (K1) «QING

PHEW(Kde=FLOAT (K )eQING

CONT LIFE

WRTTECS, 118) 1B1TS. UM, QING, RI0O

FORNHTCIH L 2 UANTIZATION DRYR 77/ BITS FOR CODING
AVALI APLE “. 1677 NRFER OF LEVELS *, 16/° INCREMENT
VHLIE. “,FA 3/° MAX VALUFE OF SIGMAL ., F6. 3)
WPITECS, 166> CQNEWCK), Kat, TQMLL)

FORMATCIN ,° QUANTIZED INCREMENTS “/4F10. 3)

ROURID SIGHAL TO MERKEST LEVEL.

DN A Kmi, N

b0 Ao dmi, 1N

1F ¢QNERCT*1) LE DECCKY) GO TO 60

CALL C1L RrPCQNEN, 3, QOFC, K, DEC, IKODE, KODE )

WINNAIWNM

on0d

Cc—

e 3%

ST E

00 10 38
CONY INUE
CONY INUE.
KETURN

CL.FAMFP

SURFOUT INE CLLAMPCANEN, T, QDEC, K, DEC, 1KODE, KODE >
CLAMPS SIGNAL TO NERRFST LEVEL EY L. L. MROE

IHWFLLCTTY INTEGEReZ(1-N>
INTEGER+2 IKODECL), KIDE(L)
DIMFHSION QI'EC (L), GNENCS. ), DECCL)
LHII = RESCRHENCI+1.) -DECCIK) )
CHIE2e AESCDEC ) =GNERCT) )
IFCCHRL LE. CHI2)' GO 710 10
QDECCK I = CGMNEWCS)
IKODE (K ) =K ODECT)

G0 70 26 -

GRECUHD =QNENCI+L)
TKOGECK > sKODECT+1)

KETURN

ENO

SLL
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ano

FL)

ORECODE

SURFIAIT THE DFE.CODE

FERIYIME (ECTUES COLFD SIONAILHRITTEN EY L. L. BMIROE

11 ICHY INTEORRA 214D
HOFGEFIZ KOF CF56), IKODECI2), KODETCZ36)
DIMENS 1IN SIGHAL(258)

DALA IKINE/2, 2,2, 4: 5,6, 7,8, 9,16, 11,112,135, 14,15 16, 17, 18,
IR IR, 29,22, 23, 24,73, 26,27, 28, 29, X9, 3L, 327

He 254
13=1

FERD DATR, FIND MAX IN AKRAY

FFWIMD L

REWRTHL 2

FERCL, FI10,039) KODE

1113y

o 28 tet.M

KOCHTC12er K] )

LALL MRACKIAET. N, 1IB10, M)

EIGuk] DMYCIRIO)

PFITECS, 128> IRIG, MM N

WPTIFCS, 128) CKOLIF 1), Tei, N>
FUFIWRTCIR , 7 CODFD SIGNAL 7, BIY)
FORMATCIH L, " VALUES FRON MAX FROORAM’, 316)

SET LEVEL FOR INVFRSE QUAMTIZFR

M) 18 1Nfa), 16

10wt o201

IFCIBLIG. FQ 17D) KHITS=3 X2193«AL.0018<RIGY
IFCIBIN. FA. [Me2) EITS=T, 32193+ALOGIOCAIND
IFCERITS GT. 4.8 AND BITS LT. % 2) QALEVEL=1R. @
JIFCRITS. 6. R B AND BITS. 1.1, 4. 2> LEVFL=S 8
IF(RITS. 6T 2. 8. HND. RITS. LT, 3. 2) GLEVE . 3
IFCRIIS. Q3. A ANG RHITS. LT, 2. 2) QUEVEL=L, 2%
IFCRITS. BT . 8 HND. KITS. LT. 1. 2) QLEVEL=D. 62%
IFCcBITS AT, % A) (LEVEL=10. 9

IFCHITS LY. 1. 8) MLEVEL=Q, €29

CALL DECOLER

CHLL \MEOCE COLEVEL, BITS, KODE. N, STGNFL. 1KODE)
HRITEC2) SIGHNAL
WRITF (S, 16A> (STGHALIKY. K=1, N)

47
49
St

53

100

0o

o00n

DEFCODE

FORMAT(1H , *DECOLED SIONAL “, 8F7. 3)
1FC11. EQ. 3> GO TO 99

00 10 &

317 4

END

M

SUBROUT INE. HRXCKODE, N, 1810, NUM)
FINDS MAX TN ARKAY

IMPLICIT INTEGER+2CI-N>
INTFOER*2 KODECL)
Hiat-1,

DO 26 I=3, N2
IFCKODECT ). GT. KODECI+4.)> 00 TO 10
JRIG=OLECI+1)

Higtal et

GO T0 20

IR1G=IODECT)
KOVECI+1)=1R10
CONTINUE

RETURMN

END

9L1
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anoa

RESSLN.T

KQERITINE FESUR.T

KOUT INF LR RTES SHRS WRITTEN RY L L BURGE

aNOn

IHEIICTTY THYRARER2CTI~H) .

TMIFGEF 2 2FUNCL), TPHES) - .
DIMEHSION ST (25F), SFEM (256), STMRN(256) . RFM(256
DIFEH- 1t} BAI 1V(29R), YFALTTLRBA), SHRAL(2D8), RHRT(256)
DIHEN=TIRE PHAZC2%4), SHAG2%E), SFECTHIZSE), RE ITMCZS6)
DINGHRIFAL CHRWSQRI2%E), KC(2TDR) . YIRT6D, TITILE2C(2)

DR NS FIFFCGH), DATARCZSA), TIMFAZLS8), TITLEC(2)
FAIIVAHLFIEF (FHAZC(1), SHRL(L), DATACL))D o

ERTVIK F HECF (SHART LY, K1), FEMCL))

EIIVA FNCF CSTONALLCLY, SPEAILCL))D

FIalIvi FHGF CSRRGSHEL ), SPRCTMCLD)

FOIVRLFIEE (FRECTTCL). RHATCL) )

ELNMIVALFINE (STRMGOL), REIMCL), TIMECL))

EPOITVALENCE CYEXCITC1), Y1)

FRAYA NFU/224. 214, 212, 192/, TRW/Z6, 26, 52, 36, 1867 -

CRIf TIVLE/Z RV 7, SMNRZ/Z, TITLER/7CUN 7, 7 SRR’ /
LAYH YFS/'YFS */

TH - 1s& 2832

ram

H=2%6

1 ekt

RSk 8

FEF114%1. 29

1FAINeY

REGuTwPl/i1z. 6

D) S Jel, N

FALITC1)=D. A

YFZCIT(1)e0. @

PERD DATA

PFUIND 1
FRUIND 2
FEUIND 3
FEUIND 4
FEWIND 2
1 FERDCL, FHD=99) SIGNAL
WRITF (A, 990> .
290 FOPHRTCIHL, © eseee KOUTINE RESIA.T PROCESSING sestes
essssss NUTAUT SINHAL~TO-NOISE RATIO®sess )
PRITECE, 920> CSTOMALCTD, Twi, ND
oxe FORMATCLH . © INPUT SIGNAL °, BF?7. 3)

§ ‘ana

10

3e

48

-3

919
923

[
910

RESUL.T

TNTERFILATING SIGNAL. TO UP SANPLE

HR1TEC6, 50a) .

FORHATCIHL, “FROCESSING SIOHRL “)
HH=THOR L s FRE G4 1FHC TRAND) .

CHLL FFFTCSREAL, STMAG, NR. L, 1)

PO 160 Isl, N

CHAGSNC I 3= SFEALC 1Yo SKERLCI D+ STMAGCI D eSTHRACT)
SHANC 1) ~SART CSIAGSRCT D Y

HRTTECA, 940) (SKREALCTY, STMRACTY. SHANSACT ), SMAOLCT)D, 1oL, 128
FORLATCIH . “RFAIL. TMAD  MAGSQ MAG  °,4F11 3)
MOVE- 1FNC TERND) )

1STOP TEAND S,

17 TEHC IS TOR )

1Z2sH-17

DO & =1, 178

JIsMOVFed=1,

ERFAL. T mSRERL CJI1)

SIMHG T =S THABCIL)

REIRTERPYY

ERERL. CI2)sSREALCT)

SIHAGCI2) =S IMAGCT)

CONT 1HE

DN 4@ 1=1Z, 122

SFEALC[)=R. 8

SIMNAGBCII =0, B

CONT THUE

DO 45 Isl, N

SHAGCT) =SREALC 1D =SREAL C 1)+ SIMAGC T deSTMADCT)
WPITECE, 915) MOVE, 1Z, ISTOR, 122

HRITECE, 825> CSNADCK), Kei, N)

FORIMATCIH , 416D

FORMATIAH , “FREQ INT SIONAL’, 2F12 4)

HODIN ATING SIONAL EBY COSINE WAVE

WRITFCR, $16)

FORMAT CIHL, * MODULATING SIGNAL °)

D) S8 Kei, N

REMCK) sCOSCNNSKeANG)

CRILLL. FFFT(REM, REIM. NB, L, 1.5

DO 5% Keat, N .

SREAL (KD =REMCKK)

SIMAGCK)aRE IMCK)

KEIHCKI SREMCK) «REMCK) +RETIHCK ) «RETMCK)

Ll
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(XS
s
Q,

16
1231

142
16%
103
16605
1A
1h7
123
192
118
111

112
112
114
15
115
11?7
119
119
124
121

12?2
27
124
129
124
122
129
129

§ 3

3

nnn§ ;

145

RESLL.T

KEMOK) sFF IMIK) o SHAGCK )

PEITFCE, 9950) (REMIK), Fui, N)

FOHTCIH L7 MODIRATED SIGHAL. ‘7, 8F7. 3>
TamlEmiDeL

Thitis JFHIC IFRIID)

W S TEHCL LD

O £6 Ka-THIL THRIS

FALITCYDeSPRAL (X))

SFACIIOr)eSTHAGK)

COUT I F

THFITFCE. 9263 (EXCITCK), VEXCITC(K) . Knl, THNL)

FORMMICIH , “EX SIGZ, BF9. 3)

TERLT-= TFRADe L

THCTFRND HE. %) GO TO 2

COT I HNUF

L FEFICEACIT, YEALCTT, N8, L, =1

D 159 Ist.H .
FEANITCIISFAIIITCIIZ296. 8
VYFACITOIDaVFACITCLII /7256 O

WEITFCE, “S8) (EXCITIRI, YEXCITIK), Kad, N)
FUFBRICIN .7 TIKE SIGHAL 7, 4FEAS. 3>

KERD TH RCTURL. SIGMHL.

FERDIX) SPECTM

FEHCC4) FHRAZ

) AW Ket, N

SHAN DI CHURT(SPECTMC(K) )

XK aSHARLKK ) eLOSCFHAZ(K) )

V) =SHABCK)#SINCPHARZ(K) )

CONT IMOE

WRITECR, 4763 (X(K), ¥CK), K=1, N>
FOPMATCIH .7 FEAL TMAO 7, 4F11, 3)
) 99 K=129. N

ACKIeis B

YR =8 0

CONT LMV

PHITECR, 928)

FORMATCINL, *CALCIAATING SNR ‘)
CRII. FFFY(X, ¥, NB, L, =1) :
DN 140 Kat, N

KIK5aXCKIZ2%A. @

Y¥HaviKI/256. 6

HRITFC?> X

WITECE, 986> (XK, YIK), Kni, N)

172
17X
174
1?25
1726
1?7?
178
179
180
184

an.

00

RESWLULT

CALL SNR KOUT INE) CALOLATE AVR SR

CALD. SHRCRHAT, X, No SNRY, SGHR)
PO 138 K, N
TIMECR)=FLORTIK)

ASHF -SRI CK) ¢ASHR

CONY T E.

ASHF2ASHRAFLOAT(NDY

HRITE(2) SHRL

FLOY ROUTIME

NRITECS, 166)

FORMATC DO YOU HANT A SQNR FLOYY )
READCY, 118> ANS

FORMATCIRY)

IFCRNS. NE. YES)> 00 TO 999

WRITE(YS, L20)

FORHMATC THPUT SOIRD NRME’ )

READCS, 110 CHAR

CHLL FLOISCENFTF, 204, B)

CALL PLOTCA. A, =11, 8, =X)

CRIL FIOMC2 6,7 6,3

CHLL. SYHREOLC2, 8, 8. 0, . 14, 2FHONEKE 7. 0. 8, 8)
CRIL SYHMEIN.C299. 0,999 8,. 14, CHAR, 8. A, 4)

CAlL. HME(4. <299 A, 999. 0., 14, “SONR “, 6. 0, 5D
CHLL A, 7.5 44.TILE, @ A, R)

CALL 9% A, 9499, ), . 14, ASKR, @. H, 2)
CHRLL S 3. A A 5. . 34, TITLE2. 0. B, 8)

CALL. LR (999, 9,999, A, . 14, SQNR, 8. 8, 2)

CHLL. PLOTCA. A, |, 0, =X

CALL SCRILEXDAIR, 5. @, 256, 1)

CALL. SCALECTIME. 7. @, 256, 3

CAHLI. AK1SC0. 8, A 0, 1IHTINF. SAMFLES , =13, 7. 0. 0. 8,

STIMEC2%7), TINECZS8))

CRLL ARISCA. A, 8. 0, 21HSIGNAL TO NOISE RATIO, 21, 6. 6, 96.

*DATRC2YS7), DATACRS8)) -

CALL. LINFCTIME, DATA, 256, 1,0, 8)
CALL PLOT(S. 9. 0. 8, =9993)

STOP

END

8L1
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23

o00

140

le

138

49

109
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SUBROUT INE SAMPLE (DEMUD, FASE, 18AND, 1, NB. L, DEC)
COMPISTES IDEAILIZED DECIPRTION FUNCTION

1PF_ICIT IMTFOER2(I-N)
INTEGER«2 IRRHOCL), MFHCA)

DIHENSION DEMODCLY, FASECL)Y, DECLL), PHAZE(256), X(234), ¥(238)

DRTR NFH/27, 5. 57,105/

Jany

TFMALFICTD

HWRITE(S, 118>

FORHAY(IHL, *ROUTINE SHMPLE PROCESSING 7))
DO 18 Kst, 294

PHAZEL (K) @FASE(K)

DFC (KD =DEMA (KD

DN 28 Ke1FN, 256

PHHZE(K)al &

HC(KI)=R 8

HFHResTF =1

HSTaMFlIH/2

D 38 KelST. HFENA

J1u2G6=NET+.7

FHRZE (K)eFASECIL)

DFCCK)=DFMOUNC.IL)

JI=.Teg

COMT THUF,

HRITE(S, 120)

HRITFC%, 1.308) (DECCKY, PHRZE(K), K; Ke1, 236, 32)
FORMATCIH , “ SHIFTED SIONAL. BEFORE DECIMATION’ >
FORPNATCIH , 2F10. 4, 1I6)

DN 48 K=1,2%6
KEKI-DFC LK) *COS(PHAZEC(K) )
VIK)=DEC(KISSINC(FHRZEC(K) >

La?

€RU. FFFTC(K Vo NB, Lo =2)

LB

DO %8 Kei, 256

DFCLK) =X (K

WRITECS, 180> (DECIK), K=1, 2%6) -
FORMAT(1H , “DECIMATED SIONAL‘, 8F6. 1)
KETURN

END

CONRWAWNS

oo

106

is

X0

40

110

SPI_XT

SUBROUT INF. SFLITCAVES.: PHASE, 18K, 1. N&, L, DEMOD)>
COMPUNES LDEFALIZED EHHOPASS FILTER

IMPLICIY INTEGERe2(1-N)
INTEGER*2 1RWHCL)> . .
DIMERZION AVES(L), FHASE (1), DEMODCL)
DIMEHS YN EPLZSE), XK(2DE2, Y(256)
ODIMENSION MHIZDE)

TEF Jug. 83185

T lel1EHC(1)e2L. 25

HRITES, J060)

FORMAT(IHE, “ ROUTINE SPLIT PROCESSING’ )
Jei

1i=leg

DO 18 Kel, 256

FHIK-O. ©

EBrdtid=i §

CONT IR,

IFASCSe TENCD)

IZEROSTENCYS)

DG 29 K+=1PASS. 1ZERD
FHOID=FHASFE (K)

P CDRRVESCKY

JaJet

CONT L MVUF

JL=255-0.

IPAES 1Le255~1FASS

1ZER0O1 = 2396=- 1 ZERD

DO 36 KelZEROL, IPHSSA
EF(JL)=AVESCK)

FHAT] ) PHASECK)

JimT1et

CONYINUE

DO 48 Kel, 256

KK =EP R ISLOSCPHCK) )
YEROI=EFLKI*SINCPHCKD )

CRILL FFFT(X, . NE, L ~1)

DO %3 Kat, 2%6
DEMIDCK) aXCK) «COSCKNSK) /234, 6
WRITECS, 110> ¢DEMODCK), Kni, &)
FORMATCIH . " MODAMRATED SIGNM. “, 8F7. 2>
FETURN

EMND

6.1
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CALCULATION OF FITCKR PERIOD ESTIMATION
QARROUTINE PITCH
CRILCIRATION OF FITCH PERIOD ESTIMATION &Y L. L BUROE
H1 = VECTNN MAMKING PIT1CH FALSE OCCURKENCES
IDIFF = DISTRNCES PETWEEH PUILSES IN SAMMLE FOINTS
N = PRFLICTION RESIDUAL SAMFILE POINTYS
SAR - VFUTOR COMIAINING SQUARFE OF AMPLITUDE FOR Pomrs
T - TEMPOFRKY VECTON FOR STORAGE
FY - VFCYUR OF PITCH FERIOD VRLUFS
SPEIZTH - VFCTMe COGMTAINING MAGNITUDE SQURKE SPECTRU! PTS
IMPLICIT INTFGERe2CI-N)
INTFLERe2 NT(R56), IDIFF(256)>
DIMFHSION POCZ%6), SQR(256), TC256), PTC256)
DIMENSION SPECTMC(256)
AvPeRn. 8
Ne2%4
1. Ke9
CNMXL. 2%
o0 1 I=L N
IDIFF(])=A. 8
PT(I>=% 8

T NTCl)=8

TINE+H. 0U0123
FEWIND L
RFRIND Z
PFRIND 3

FERD SPECTRUM DRTA
READCL) SPECTM
oN 23 ley,12
IFCSPFCTMCT). AT, SPECTHC(I+1)) Q0 YO 38
PIRAEP=SPECTM( 1)
FRFOafONeFLOAT(I+1)
60 10 20
MHXSPLCPECTHCT)
SFFCTMCL+1)=MAXSP
CONT It0IE

+ PITCHu1. /FKFQ

WRITECAK, 990) PITCH, FREQ
FORMRICIHA. ESTINATE OF PITCH FERIOD=’,F10. 4,
RO FUNDAMENTALY ,F10. 4,7 AS COMPUTED FROM MAC SFEC A DATA’)
KEAD RESINUAL DATA
READ(2, FND=99)> KO
IR KuIB Kot
SAUAKE. DATA
DO 49 Mu1L. N
SQRCMI =k ROCM)

22

d 2 823

I TCH

SR aSURCMD +SQRIND

WNRITECR) SaR

HKKITECS, 948> THLXK

00 56 Iei, N
TCI)=SQRCID
HPUN/4
AVOPIVCH

DO 66 Lu1, N, NP
JN=1L

JalehiP=1

D0 632 Kel, J
KisKe1

IFCTAKL). GT. T(Ki+1)) 00 TO 64

MAX=TC(K1e1)
GO T0 63
MAX=TKL)
TCK+ 1L)MAX
CONTINIE
WRITECS, 916> MAX
DO 52 1+, W
TCI)eSnRCTD
THRw 7S5«MAX
DO 69 KIsi.N
NTKI)>=8

DO &5 Kal., J

IFCT(K). GE. THR> 00 TO &6

60 TO A3
HTC(RD=K
JH=IN+A,

CONT ITNUE

00 67 1«1,.JN

IDIFFCD=TARSCHTCR)=NTCT+L))
PTCI FLORTCIRIFFCI) doTIME

PTC=8. B

DO 70 KLet, IN
PTC«PTCKLI+PTC
FTICuPTC/FLOATCIND

IFCPTC. LT, . BO1L) 60 TO 60
IFCPTC. GT. . 82) GO TO 60

00 68 Twi,J N
AVPLPTCL)+AVP
AVP=AVP/FILOAT CIN)
Faul. /8VP

IF(FO. G7. 1.0860. 3 00 TO 60
IFCFO. LT. 100. > RVPw 808

Fa~1/AVP

08l



3852823

160
163

102
18X
104

VWOINAAWN -

%108
29
936

oon

10

~XTOH

THSaIH-2 .

WHITECS, 920> C(NTCM), Mul, INS)

HPITFCR, 918) (PFTCLD, IDIFF(L), I=t, INS)

WRITE(S, ¥08) AVP, FO

COMTIME .

FOFMAT(IHA, “ X, USED RS THR REFERENCE=?, F18, 4>
FOPMAT(IHA, * OCCURKENCES OF PITCH PULSE’ /4iH ,1016)
FOWMAT(1HA, “ VALUFS OF SELECTED PITCH PERIOD AMD PULSE

* DISTRMNCFS “/6(F310. 4, 16))

FORMATCIHD, “ DRTA BLOCK NUMBER’, 16)
60O YO 300

STOP

END

191>

SUBROUT IHE RRXC(X N, R10, NUM)
PETERMINES THE MAXIMM OF AN ARRAY EY L. L. BUROE

IMFLICIY INTEGERe2CY-N>
DIMENALION XC1)

Nisn-t

DO 26 1e1. M1
IFCRRSCXCID ). OT. ABS(X(I+13)> GO TO 10
KIhaiCle1)

Mr=l+et

6D TO 26

El1GsX(1)

KC1+3)uRIG

CUNT1IM)E

RIGaRRSCRIO)

FETURN

END

VOVNOULWNS

oan

.

oo
[ ]

onng 35

>
»
8

40

ELIMLPD

SBKGUTINE SURL PD

FRSSES PREDICYION RESIDUAL THKU DIGLITAL RANDFHSS FLL TFR
BWODULATES, LOWRFASS FILTERS AND DECIMATES WKITTEN EY L. L. HEGF
IMPLAICIT INTFGERe2CI=N)

INTFGERe2 TRNIDCS) .

DIMENSIOM DFNODC236), DECC236) T

DIMEMSTION AVESC2S6), FHASF.(256), FASEC(236)

EQUIVALENCE (PHASE (1), FRSECLY)

DATA TERND/6, 23, 42, 64, 90/

Leg

Na258

Hit=3

DO 18 It N

AVESCI)=0. O

FHHSECDD =0, &

CONTINUE

- RERD 1IN DATH

RERIND 7
RENIND 8

FEWNIND 2

FEMIND 3

RENIND 4

FENIND 8

NERACZ, ENDuI9) HVES
READLCHD FHASE

WRITECS. 100>
FORMAT(1HL, ~ assee FROCESSING BLOCK ‘, 4% 1]
PO X8 JI=1, N

AVES I uSUR TCHYESCT D)
GCONTY TN

PROCESSING SURRANDS

DO 40 1=3, 4

WRITE(S, 110> 1

FOKMAT(1HE), ‘ eseee FROCESSING SURRAND seees’, 14, 4X, * seseese’ )
CALL. SPILITCAVES, PHASE, TBAND, I, NB, L, DEMOD)

CALL LOWPASCDEMOD, TRAND, 1, NR, L, FRSE)

CALI. SAMPLECDEMOD, FASE, 1BAND, I, NB., L, DEC)>

WRITECI) DEC

CONT INUE.

STO#

END
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131200 1313 v va yn 14 vm ge b0 od pa pa
LRI SR eyl N TR ST SNE I

$2ed3IR

P

Wi iy v
ALY

St&hl.h.&
BhWNMD

adnn

[1 X2 X3] 0O0

DO =

[t X X3}

ErRCML.

SURROUT INF. SHCHL.
CMCIAATE SN FROM 256 PO!“T SIONAIL,

IMPT PCIT THIEREFaZCT=N)

DINENS TN STONAL. (2’4).3!055?(256).“(256); ACTURL (236)
DIMEHS IO ERROR (255D

[Tt

DOMTIS0, @

CARAARI-P,

Atk e, B

FEAD IN DATAR

KEWIND 3

FEHIND 2

FEADCY, EHNDA99) SIGHH,
KERDC2) SIQEST

CALCULATE CUMAATIVE SiRt FOK SNR

DO 18 I=1, N

RCIVAL CT)eSIGHA (T1)eSIGNM_CI)

FReNR (I e (SIANA C1)-SIGESTCI) ) CSIGNALCTI)-SIOEST(1))>
PHAZAM=HCTURLLCT ) +DIMSIM

SIRTARFRENNC I ) SIRTAM

Cor T

CALCULATF. NOFMALIZED SR A RMS SNR

SHP » S HEA KA/ DY ISR
FHuSHUMMN I/
SNMNF= 1 Aol OG1L.BCSNR)
FMSLCSORT (M)
FHS20+ A DOLACRMS)

CRALCIYLATE MEAN SQUHRE ERROK
DO 20 I+l N

IFCHCTURLCT ) EQ 8. 8> ACTUALCTD =0, #OA
ANPCT ) =RBS(FRFNRCT IZACTUHILCT D)

CIFCRMRCT). EQ. 8, B) QHRCI) =), 004

NNRCIDu 10, AeAl ODRIBCONRCII)D
ASHPLIGIR (1) *ASHR

CUNTIIF

ASHREASHR/F|.ORT CH>

-
CETNAVIWNS

o w
WN

14

(11X}

2106

onn

100

e
10

|NRC ML

HNRITE THE CRL.CULATED RESULTS

NRITECS, 910> RMS, SQrk, RSNF

FORMATCLIHD, © KNS SQUIF 2, 3K F10. 3740 o NORM SONK 7. 3% F30. X
*/iH 2 HERAN SQUAKE SULHR ©. 1L F30. 3>

S10P

ENG

(101 o] ol > o8

SURROUT INE  UNCODE (L EVEL., BITS, KNDE, N, SIONAL, 1KODE)
"DECPOFR FOK INFUT COOE) EY L. L. BURGE

IMPLICLIT INTEGEReZCI-N)

INTEGERe2 KODECL), IKODECL)

DIMNENSTON STGHALCL)

1BITSsIFIXC(ELITSe 1)

L« 2e«1EL1TS

QINC=QA.EVEL/FL OATCIUN)

QUEGLFLOART(LRA /2. 8

LTCMED-TF IXCONEG.. 1)

1QENS= .

WR1TECS, 166> 1QML, 1RITS, QINC

FORMAT CLHA, * NUHBER LEVELS”, 13, 26 “BITS?, 13, 2%, 7 mc'.rr »
DO 18 Imi, N

OO 20 1=y, IUNED

JL=iONEG=1+d

IFCRONDEC D). EQ. IKODEC) D) SIGNAL(I>=-FLOAT(JL>+QINC
CONTIIUE

K=y

DO 20 Ks=IQHEG, 1GPOS

IFCKOLECT), EQ IKORECK) ) SIONAILCID=FLOAT(K1>+QINC
Ki=N1+1

CONT 1NUE

CONT INJE

RETURN

END

28l



BBNNOSWN
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Bt W At A Al TRl T
TEDVNAINAANRDY
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¢ N

[ &
>

T X3
LR}

ANONAOAINOONO0 O

o000

aoow

rETY M Care

KQESITINF FFTAGR

ISFLICTT INTHAERS2C1~N)

CALCIR ATES THE. MAGHITUDE. SQUANED OF FOURIER SPECTRUM
HEIYIEM RY L. 1. HINGE .

CRLCILATIFS FIREGY FOR N PTS )

8L = VICIOR OF THFUT SHMPLES OH TNPUT

SL = VECIOR OF #FRL. SPECTRUM POINTS ON OUTFUY FKOM FFY
$1 = VECTOR (F ITHAGLIHARY SPECTRUM FOINTS QRITPUT FROM MANSQ
Yo = VHOIOK OF FEGHITUDE SPECTRUM FGINTS ON OUTPUY

M = MAFER OF FOINTS

1WPITS - ORLEKF OF FFY

AVES = SFeCTFAL CUkFFICLENTS

Bt =~ SUE-FRND FLEFROY

SIRNA = HNFHINLIZATION CONSTANT

INIFAERe? KRITSIR, 4)

DIMFNSTION SLO2GR), Y258, V1(ZOB), ECZTE), ZB1TS(4), AVEP(2S6)
PIHENZION AVFS(258), XP(258), DATH(258), KUFF (52), FHAZ(256)
DIMENS UM f1T8C4), ESIIRCI), ENERGY (R, 4), SIGMAC4), SENCIE)
ENMITVALENIE (XP(13; ¥(1), EC1)), CDATACL), AVES(1))
YR YES/7VES “ /7
CATA SINtAR/4et. B/
DHIA KPIT%/4. 2.2, X3, 1. 2L.3. X, 2. 2, 3/

‘DHTA EMERGY/Z10O.,7..4..%. .3.,2.,
*24. .14 .8.,16 ,16..6. 7

1EERHIT = 6
1Tsn

NEITS1e9

41 1 Imt, eH4
RVEP(])=0. @
RYESCI)ed &
DN 21« 3,4
2B11S¢1> = A. B
Clremc . 2%
Ne2%4

HEITIS u NRITSL -4
LLes

FEAD DRIA

REHIND 1
FEWHIND 2
RELTIMD X
FEHRIND 4
KERD (1., EHDa99) S84

CHLCIANTE SPECTM AND ENERTY

630
131

ooon § o060 o0

R4

U4

502
%522

303
%33
540
50

=T vICeNe

CALL FFFT(SL, V1. NBITS. L, 1)

CHLI. MAGSACYL, S5, N, E, PHA2)>

IN= [Nt

EKESEC29R/Y/72. 6

IFCIN. EQ. 1) GO 10 630

IFCEC256). 1.7, 4. 8> 60 YO 616

WRITECE, 1.11) 1N, RE .
FORHATCAHA, * SECTION 2, 14,7 TOTAL - ENERGY FOR BLNCK = 7, F16. 6)

CALCULATE ENERAY/ZSUR-RAND KRAND

CALL SURCYL. N, ESUR, IN)

IFCECR%E). LT, 48, ) 60 Y0 200
CHECK IF HIGH OR LUK ENERGY BRSED ON PREVIOUS ENFROY

CAHLL CHEVENCE, SEN, IN. ESUB)
ET0T~EC256)
IFCETOT. LY. EX3) G0 TN 593

R FRIOR! CALCULATION OF NORMALIZATION CONSYANT

IFCETOT. GT. £41) 60 TO 564
IFCETOY. OT. £22> 00 TO %02
1FCETNT. GT. E33> 60 70 503
00 il J=f. 4
SIGHACTII=ENERGYCL, J3/C10. »a(KRITSCL, J)/2. 32193))
GO 10 %40 :
00 522 dmi, 4 }
SIGHALI =ENERGY (2, J3/<10. s#CKBITS(2, J)/3 32153
GO 10 540
PO 522 Jui, 4
S1GMACI I=ENERGYC3, )/¢10, #aCKBITSC3, 3373, 321935)
1FCSIGHACT), EQ. &. @) SIOMACIH =1, @
- CONTINUE
CONTITHUE
WRITECE, 96> CSIQNACT), =1, 4)
FORMATCAHA, “ SIGMA VALUES =, 4F16. 6>
FORMAT C1HB, * K1 TS/SAMPLE MATRIX® Z1H8, 41687
+1HD. 418/1HA, 418) . .

€8l



T MO ey oM

X W8 FORMAT(1HD,  ENEROV THRESHOLD MATRIX’ / 139 HRITE(3) ZB1TS
- S1HD), 41 1.6, /1D, AF1.6. 6/1HD, 4F16. 6> ::? ¢ WRITEC4) AVEP
o C X
« C CHCILATE EHITS FOR SFECIFI1ED SIOMA :ﬁ g : FLOTTING ROUNTINE
a7 ~ [ .
- og DU EB Ind, 4 - 144 WRLITECS, 112>
59 & KT SCI)CX X219 1ALOBLACESUBC LI /SIGHRCID+L 8) 145 132 FORMAT (DO YOU NANT A FLOT?”)
e HETTECE, £65) CRITSCT), Tot. 4) . 146 REANCS, 113> ANS
1Ay TEITRa0 O 147 11X FORMATCIAS)
182 ) ERY lat, 4 148 LFCRRIS. NE. Z;E.S > G0 YO 9598
3 3 : 149 WRITECS, 130>
19T €01 THITSaPITSCI)+THITS -
1ed IFCTRITS 1T, 2. #) GO TO €83 159 130 FORHATC THRUT SOUND HANE” )
145 PLOHT 8 TCOHNT +1, 191 (FFADCS, 113> CHAR
164, PO EG2 Imt, 4 152 CALL PLOYSCRUFF, 206, &)
137 €02 THITCCI)eZBITRCII*RITSCID 1332 €hLL FLOICO. @, ~11. 6, =3
Loz 6d% COtY e 154 CHIL r:,o‘::..s.‘i. ;. g,:y ar faam
na. £on NROATCIHG, < < OCATE SUBREP. . i 19% CALL SYMEM (2.0, 7. 6,. 14, 7FHONEME “, »
::a - ::r: {.In 6"41‘ BITS FLLOCATED FOR S HOST, 2, 4FL2. 3> 156 CALL. SYIH(HL.CDAT. 0, 999. B, . 1.4, CHAK. 8. 8, 4>
113 &£38 WELIFCR, £20) TN 157 CALL FLUTC @, 3. 6, =T>
112 620  FDOFHATCIHE, “SECTION . e, ¢ 1S PREDOMINATELY NOISE’, ~ 498 CALL SCHLECLATR. 5. 8, 254, 1)
113 e’ sesessse NN ENERGY CALCW.ATED? ) . 159 CALL SCAIECRP. B. 8,204, 1)
14 C 160 CHLL. AXISCH. 0. 8. 8, SHFREQUENCY, =9; 8. @, 0. 8, XP(237), XP<(238))
13% C ESTIMATION GF AVERGE SFECTRUM AND FVERAGE R1TS 161 CRLL. AXISCB. A, &. O, 11HMAG SCUARRED, 11, 6. B, 98. ¥, DATA(237), DRTAI23A)). A,
116 € 162 CHLL. LINECXP, AVES, 256, 1, 8, 8)
117 651 DO 10 [a1, 294 263 CHLL FLOTC1G. 8, 6. 6, ~999)
118 F/FSCIICAVESCLIsYLCL) 16: %93 STOP
139 AVFPCTIRAVEPC D) +FHAZCT) 16% END
126 10 CONY LB ¥ 166 C
121 6N 10 % 167 €
122 99 0 20 sy, 234
12% HVESCI)=AVFSCID/E. &
174 HYEPCIYRHVEFCT) /16, @
12% 29 CIRITHNE
124 on €44 Iat, d
127 - £bd ZBITSCIInZBITSCI} 16. @
125 o4 70 a1, 2%4
129 RPC1)=CI~124F,00
128 30 CONTINUE
121 HPITECA, 54983 ((KRITSCL, 03, Jui, 4), led. 3D
132 WRITECE. 560> CCENERGYCL, 3, Jwi, 4), 1=1,3)
13% WRITECE, $6%) CZBITSCI), I=l, 4)
134 963 FORMRATCIND, *AVERAGED BITS AILLOCATED TO SUBEAND” , 2) 4F6. 3>
3% ¢ .
134 € WRITE GUY DATA ON DISK AMND PRINVER
137 € .
2318 WRITE(2) RVES
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WODINALEAN»

andod

annnan

10

MAROSE

SUSRCAST LHE MANSQIX, V1, NY, £ PHRZ)
IMPLICIT IMYFUFR22CE-PD
FROGERH COHFUTES MRGINITUDE SQURRED OF THO muws
WELITEN KY L L. FAGE
X - FIVST RVEF¢ FOR LNPUT AND nmmnuoe AKRAY FUR a.m'\n
Vi = SELIRKD ANFRY FOR INFUT
NY = ekl OF POLINTS
F = FlFRLY
DINFNSI0N X(1), ¥1(1), EC1), FHRZ2(1)
D) tHh 3 s 3, NT
FPRAZCIISAIANZ (XCI), Y1(3))
XEDeY LI K (I)eYL(TISYI(I)
Chl L FHEROYOX, NT, ED
RETURN
{325

EIEIIRCY

SURROUT IHE EHF ROV (XK, NT, E)
IMA ICTT INTEGFRAZCT-N)
THIS PENOGEARH CALCUI RTES THE ENERGY PER N mlms
WRITIEN FY L. L. BURGE
X = MAGMITTULGE SQUARFED INPUT ARRAY
N1 - MOEER OF FOINTS
£ = ENEROY
DIMENSTON X(1),ECL)
b= HY - 1
EC1) = 0.0
DO 10 J = 4,1
ECJT+1) = (0. B0B2444)eX(I)+ECT)
CONTIMUE
KF TURM
END

CDVAULWNG
onnno0nn

32 10

L.MTYvYi1IC

IMFLICIT INTEOER*2(I-N)> .

IMPLEMENTHTION OF LATYICE FILTER KV L. L. AURGE
A1, S1 - IMNFUT OF SPEECH SAMFLES

N = N0 OF FOLITS

M = OROFR O+ FILTFR

RC = REFLFECTION COFFFICIFNTS

RO = PREDICTIMN RESINUAL OF SPERECH PTS OUTPUT
B =~ VECIOK OF FROKWRFD FRFDICIED SAMFLES

C - TEMF(WARRY VECTNK FOR SANPLFS

DIMNEHSION RC11). RICZDH), a(s:).nruaun.ltctu).mmc«) .

DIMENSION (11, 258), 8#(11), ST(13)
DINENSION FOC258)
DIMENSTION XN(258), Dﬂrﬁ(?&&).bﬁTRl(ﬁG). BUFF (58>
EQUIVAILFINE CARFRY (1), k<1)). CARRAYC12), AC1))
FQUIVAI FNCE C(RRRAY(Z3), ALPHR(1)), (RkRﬁV(34). KC(1)>)
EDUIVALFNCE (DARIACL), KOCL))
EQUIVALFNCE CMATALCL), M(i))
DA1A YES/’YFS “/
Mr10
N=257
[ ]
IRECad
Chti=1. /8009,
READ WINUOKWFD DATA
RENIND 1
FERIND 2
NENIND T
READCT, END®%9) AL
FENIND ©
IREC=IRE 1
D 16 IslL N
KMC1)a(1-1)>+CON
FEADC2) ARKAY
(1> = 8.8
DO 40 K = {,N
C<1, K)=RL(K)
IFCK. OT. 1) RC(LDI=AL(K-1)
DO @ =M
S1<C1)=RLCKD
SICI+LOaSITI+RCI I okCI)
CCI+ 1, K)eBLDKCCIIeS1 T
IF (K. FQ. 1) GO TO 20
BT 1) T+5, K=1)
GO TO %@
H(J+1.)=0. @
FOCKI=STCI+4)

68l



7

2e

4n

108

110
120

130

L& TTIIC

CONTIME

CONT S IAE

WEITE(R) 0

MisjeSH

WP ITECH, 100> (KOCT), Im1, ML)

FIARAIC1HG, *KESIDURL VALUFS FROM LATTICE FILTER /’

&Ci6F12 £))

Ne=lSet
WRIYECE, 508> MS
FLOTTINA KOUTINE
WFITECS. 114)
FORMMTC IS A M .OT DESIKED? )
FFRUCS, 1203 WIS
FRENATCIRY)
1F CANS ME YFS) 60 TO S
HRIVE(S, 128)
FUFIRTC THFUT SOUMID MAME” )
FFRDOS. 1205 1 R
FRAE=F1 ORTCIVER)
CHLE. P 1S CriikF. 204, 8)
CRLL F101CA. 8, -13. A, =3
CHLL F1NT(-1. M, % 8, X
CHLL. SYMEME (=1, 8,2 0. . 14.°FHONEME 7, 99. 9, 8)
CHLE SYTHFd 1999 0, 999 B, . 14, CHAR, %6. 8, 4)
CALIL Syl¥64 (993 8,939 6,. 14, “FRAME *, 92, 8, 6)
CAII. MNEFF (399 0, 955, B, . 14, FRAME, 99. 0, ~1.)
Gl FLOYCE 81, 1. B, =3)
CHLL. SLACFCLATA, 4. 8, 256, 1)
CHLI. SLH FONL 48, 254, 15

CALL. RAIS(A 0.0 8, 13HTIME . INTEKVAL, -£3. 4.0, 8. 0,

SXI297), ANCZSZ))

CALL AXISCO. 0, 0 6, BHRESIDURL. 8. 4. 8, 96. &,

*LATARC297), LATACZ5A))

L 4

CRLL L INECY N, kD, 256, 1.0, 8)

FOFNRT D, “ PRESENTLY PROCESSING DATA THRU LATTICE FILTER

/31K . FOP SPEECH SFCTION “, I
CALL SCALECAATARL 4. 8, 254, 1.3

CRLL AXKISCH A, 5. 6, A3IMTIME INTERVAL, -13.4. 0, 8. 0,

*KNC28?), XH(Z298))

CALL AXIS(H. f. %5 6, AHSPEFECH. 6. 4. 0, 90. 6,

*DRTALC2575, DATRL1(2DH))

CALL. FLOTCR &, B, =3)

CALL LIMNFCZH, R1, 256, 1, 0. @)
CALI. LOTC(E 8, 0. B, =)

H 0 S

CALLL. F1.0T(O. 8, 8. 8, ~999)

b 3]

VWENIIN S WR S

ano

10

o0

LARTTIC

SUBKOUT INE  SHIRCRES1, RACT, N, GNR, SANR)
CALCIAATES SNR) HRITVEN KY L. L. BURGE

IMFLICIT TNVTEGFR42CI=-ND

OIHFHNZION FESTCL), RACT (1), QNK(1.), ACTUAL (2356 ), ERROR(ZM)
DRSO, &

SINHA =0, &

DO 20 IsL N

RCTIRLCTDaRRCTCLISRACTCTD
ERFIRCII=(RACTCII=RESTCID) ) #CRACTCII-RESTCL))
DIMZARIsACTUAL CTD+DUHSLM

SUHIDLM=FRRORCT > + SLRIDUM

CONTINIE

CRNR = STHUOMZDURSUM

SOHR= LA+ OO0 1LACSANR)

DO 19 Isi, N -

IFCRACTCD). EQ. 8. 8) RACTCI)=Q. 632

HCTUALCID) =RACTCT I »RACTCL )

ERRORC I n{RACTC D) -RESTCI) )eCRACTCLI-KESTCI))
QURC D =AESERRORC D ZRCTUALCTd)D

IFCQNRCTD. EQ. 0. 95 QNRCID=H, 984

RHRC1)>=1.0. B+ALDOLOCQANRCED )

CONT THUE

RETURN

END
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Y
P W)

ES SUEROMT THE SUECY L H, ESUR, IND
2 c Y1 = VECTOR OF WAMITULE SPECTRUM POINTS 1 SUBKOUT INE FFFTCX Y4, 1 L, TTRAND
b I 4 H - HHEER (F FOINTS 2 c .
4 C FSUR - VECIOR (F SUR-BAND ENERGY OF OUTPUT 3 IMLICIT INTECERe2(1-H) :
s ¢ 1 - FVAIE MIREER 4 C THIS KOUVINE IS A REVISION OF
‘6 € IHIS WOUT I ESTIMATES ENERGY/ZSUR-BAND FURDE % € FRST FOURIER TRANS WRITH FRUNING EBY J.D. MARKEL
7 TMF_FCIT INTFREFVe2()-N) BrLL 6 C ¥ - VECTOR OF KEft. DRIA POINTIS
a DUMENR IO ¥Y1C(1), ESURC4) ? C Y1 -~ VECTOKR OF ITMAOTNAKY DATH POINTS
L] FSiN e @ 8 C M - ORDER OF FFY.......... 2+eM=NO. OF PIS.
ESURUsa B s C L = ORLER OF PRUNED DATH (NC2selL)> LOM
FSIRTh B 16 DIMENSION XC1), V1<1)
ESiNants & 11 N = ¢4}
Pleadnos 42 L2 = 2es
IF 1L 1023 . 13 C M
1F 1L 2242 14 C ZERO THE VECTOUR FOR TMAGINAKY FPOINTS
|13 VI T2 15 C .
IF1L4=90 16 . O 18 1 = 1,236
c ' 17 10 Yicl) » a. &
c FSTINATION OF NORIMLIZED SUB-EHND DISTRIRUTIONS 18 THOPL ‘= & 783183
[ 18 DN 46 LO = 1, K
DO 18 (=1, VFILS 20 LMK & 2¢eC1-L0OY
10 FSURLe(]. B/PTS)e¥E CI)SESURY 21 LM = LR
ESSIRLs2 oF SIIRL ’ z2 LIX u 2e1MK
ESIB(LInFElR) 23 3 = THOPIAIX
Lh 20 IsIFIEL, IFIL2 24 IFCLO-M+L) 20, 30, 38
29 ESI2e (1. B FTSIevL{TDESURZ 2% 20 L. L2
SRR, oFEI2 26 ¢
ESIRC2 ) =E Siikz 27 ¢© ITRAN 1S THE DIKECTION OF THE YRANSFORM
DO YA I=IFIL2. IF11.3 2 ¢
38 ESIPXac]. A/PIS)eV1C(1)+ESURS FEI 1 ] DO 40 1M = 1, LM
FEIfstug, o SHRZ - 36 . ARA = (LM-1)+SC1 181 TRAN
LFSUHCI ) eF SRR : X1 L€ = COSCARG) .
DO 48 1e1FILY. IFILS 2 S » SINCAKG)
4n FSiPd4al) A/PTSIaY] (1)+ESURY ) X3 ) DO 48 L1 = L1X N, LIX
ESLIR4u2 +ESURY . 34 JLom LI-LIXeLM
ESURC4D=FSiig 3% J2 & JLelMX
WFITECA, 168) IN. CESUBCI), 1ad, 4) x6 T1 = XCILI=K(I2)
100 FORMATCIHG, * SUB-RRND ENERGY. DISTRIBUTED FOR SECTIONS’, 32 T2 = ¥Y1(J1)-¥1(J2)
+14/1H0, 4F16. 6) 38 KCIL) = XCTLI+XCID)
FETURM : ) 39 ¥1.CIL) = VICTLI+YICTI2)
END 48 HCJIR) w CaTi+SaT2
2 41 48 V1(I2) & CeaT2-8«T1
4% C “2 CALL FERTC(X, V1, M)
4 C ax RETURN
43 END
4 ¢
46 C

L8l
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k3

-

FERER R R EREND)
BN E NN

anonnn

3n

aan

SRENBITINE FRICK V1. 1)
IrFLICIT IMVENERS2CE-N)

FOUTINE FEVERSES RITS, 6 VIS 1, VICE VERSR DUE TO FFY

A FEVISION 1F 3. D MARKEL ROUTINE
X - FEAL FFT PDINTS
Y1 - IMKGINAMY FFT POINTS
" - GFUER OF FFIT
INTFOERS2 LC(F)
DICENEION K1), ¥ICL)
DO 26 J=1. A

LIy =t

IFCI-M) 30,10, 29
LCI)> = 2ee(Piei-))
CONYIIRE

R §

L8 = 1.(8)

DO %8 .18 = 1,18

L7 &~ 1 7>

DN %S9 17 & J8,L7,L8
L& uw 1 (AD

) 58 W o J7.1L6.L7
L% = L ()

00 %3 J% « J6.195,L6
1d s 108

DN %a 34 = JN. 14, LY
13 = 1.

) L8 IR - J4,0L3.04
L2 = j.€¢2)

o0 %A 12 & J 2,13
L1 = 4C1)

DO %o 13 - J2,11,12
IFCIN-11) 36 , X8, 48
P ou Xea

XCJH) w XK(CTL)

X1y = K

FI a vi{JIMND

VYLCINY = YI(JL)
Yi¢J1) = F}

IN = IN + 1

L.0HT THUE

CALL NSCRMOX, Vi. M)
FETURN

Frp

VONAMIAWN P

ao0000

16

anoon

USCRmM

SURROUT THE: USCRMOK Y4, M)
IMPLICIT INIEGFRe2(1-N)

THIS FROGRAM UDNSCHAMNELES FOURJER TRANSFORM OF REAL DATA

DUE 10 FFY AFYER S R DAVIS
X = AFRAY OF &EfAL TRANSFORM POINTS
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ARTICULATION INDEX

The concept of the Articulation Index (AI) wa§ adVanced by French
and Steinberg [86]. It is defined as a number obtained from articulation
tests using nonsense syllables under the assumption that any narrow band
of speech frequencies of a given infensity in the absence of noise car-
ries a contribution to the total index, which is independent of the other
bands with which it is associated, and that the tota]é of all the bands
is the sum of the contributions of the separate bands [86]. It must be
proven that there is a unique function re]ating syllable or word articu-
lation to AI for any given articulation crew and choice of word list.

In determining AI under these conditions, there are essentié]]y two par-
ameters of a Tinear communication system that can be varied: (a) the
level of the speech above the threshold of hearing, and (b) the frequency
response of the system.. Here a jinear system that is free from noise is
assumed.

A curve of Al versus frequency is fnc]uded from French and Steinberg
[86] in Figure 32. The curve is derived from the syllable articulation
gain and frequency responses of speech waveforms [86]. . The syllable
articulation is expressed as the percentage of syllables with which con-
sonant-vowel-consonant of meaningless monosyllables are perceived cor-
rect]y.‘

Baranek [87] pointed out two important facts. First, extending the
frequency range of a communication system below 200 or above 6000 Hz

contributes almost nothing to the intelligibility of speech. Second,
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ARTICULATION INDEX VS. FREQUENCY

FREQUENCY (KHz)

Figure 32. Composite Articulation Index vs. Cutoff Frequency of Ideal
Lowpass Filters (After French and Steinberg, 1947)
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each frequency band shown in Table XXV makes a 5 percent contribution to
the AI, provided that the orthotelephonic gain of the system is optimal

(about +10 dB) and that there is no noise present.

TABLE XXV

FREQUENCY BANDS OF EQUAL CONTRIBUTION
TO ARTICULATION INDEX

Mid-Freq : Mid-Freq
No Edges of Band (Mean) No. Edges of Band (Mean)
1 200 - 300 270 11 1600 - 1830 1740
2 330 - 430 380 12 1830 - 2020 1920
3 430 - 560 490 13 2020 - 2240 2130
4 560 - 700 630 14 2240 - 2500 2370
5 700 - 840 770 15 2500 - 2820 2660
6 840 - 1000 - 920 16 2820 - 3200 3000
7 1000 - 1150 1070 17 3200 - 3650 3400
8 1150 - 1310 1230 18 3650 - 4250 3950
9 1310 - 1480 1400 19 4250 - 5050 4650
10 1480 - 1660 1570 20 5050 - 6100 5600
The orthotelephonic (0T) gain is defined by
OT Gain (Subjective) = 20 log (eo/po) + 20 log (Ez/eo)
+ 20 log (P]/Ez) (A.1)
where
P, = free field pressure necessary to produce the same loudness

1
in the ear as was to produce by the earphone with voltage

E2 across.
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e = voltage produced by the microphone across the input re-
sistor of the amplifier by a voice which produces pressure

Po at a distance of one meter in a free field.

Ez/e0 voltage amplification of the amplifier.

0T Gain (Objective) = 20 log (eo/po) + 20 log R

+ 20 Tog (ez/eo) + 20 log (pe/ez) (A.2)

where
R = ratio of the pressure producéd at the eardrum of a listener
by a source of sound to the pressure which would be produced
by the same source at the listener's head position if he were
removed from the field.
Pe = Pressure produced at the eardrum of a listener by the ear-

~ phone with a voltage e, across it; others are the same.
The AI obtained per frequency band in Table XXV is successively

added to arrive at the total AI.
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