This dissertation has been

The University of Oklahoma, Ph.D., 1968
Engineering, chemical

University Microfilms, Inc., Ann Arbor, Michigan

## THE UNIVERSITY OF OKLAHOMA

GRADUATE COKLEGE

# HYDRODYNAMIC STUDY OF LIQUID-IIQUID SEPARATION IN A CONVENTIONAL CYCLONE 

A DISSERTATION<br>SUBMITTED TO THE GRADUATE FACULTY<br>in partial fulfillment of the requirements for the degree of<br>DOCTOR OF PHILOSOPHY

BY
Henry Pa-Houng Sheng
Norman, Oklahoma
1968


PLEASE NOTE: Not original copy. Several pages are blurred and indistinct. Filmed in the best possible way.
...UNIVERSITY MICROFILMS

## ACKNOWLEDGMENT

As I am reaching the terminal of my academic journey after an unexpectedly long and tortuous path, I feel compelled to take this opportunity to say a few words to those whom I shall cherish in my memory.

First, I wish to express my deep appreciation and profound admiration to Professor C. M. Sliepcevich for his guidance and encouragement in directing this study. Both his classroom pedagogy and tutorial sessions, in which he elucidated a multitude of interdisciplinary subjects, were part of my rewarding experiences at the University of Oklahoma.

Gratitude is also due to members of my dissertation committee: Prof. Sherril Christian, Prof. John Campbell, Prof. Frank Canfield for their generous effort in contributing many hours of discussion as well as advice; and particularly to Dr. J. Reed Welker for his meticulous examination of this manuscript. Personal communication with Prof。 K. Rietema of Technological University of Eindhoven, Holland is also thankfully acknowledged.

Special mention must be given to Dwight Pfenning, my colleague, for his competent assistance in computer programming
which made the processing of massive raw data possible. Indebtedness must also extend to Dr. Hadi Hashemi and Jerry Havens for their analytical interpretations on several problems. Credits should be given to Mrs. Ruth Hogan, Mrs. Joyce Meyer and Miss Connie Ellender for the preparation of the manuscript and to Mrs. Billy Ann Brown for general administrative guidance on this project.

Both Continental Oil Company of Ponca City, Oklahoma and U.S. Industries of Kansas City, Mo. are responsible for the donation of hydrocarbon and polyethylene particles. respectively, for the laboratory experiment.

Finally, the financial support of the E-C Corporation of Chicago, Illinois made this investigatiori possible。

## ABSTRACT

In a conventional hydrocyclone, two vortices take place when a sufficient amount of two or more liquid phases is charged tangentially to the upper base. The primary vortex is responsible for discharging the heavier phase in a rotating spray at the apex of the underflow. Simultaneously, at this apex a column of air, usually known as the air core, is drawn spirally upward to carry the lighter phase through the vortex finder tube and to exit as the overflow.

A mathematical model postulating a combined streamline flow and centrifugal action is proposed. However, by testing against the processed experimental data, it is discovered that only at phase ratio (oil/water) of $1 / 2$, the streamline flow governs the mechanics of phase separation. In this respect, the fate of a solid or liquid to exit in the overflow is ultimately determined by its path and the momentum of the air core relative to the terminal velocity of the particle in question. The prevalent assumption, which attributes the centrifugal action to be the sole controlling factor in a cyclone, is therefore not adequate for a liquid-liquid system.

Unlike the common centrifuge which draws on external power for the separation on phases, the source of power in a hydrocyclone is inherent within the system. Consequently, any separation in a hydrocyclone is inevitably complemented by a certain degree of turbulence. Through the theoretical formulation outlined in this thesis, it is possible to express the macroscopic turbulent length in a dimensional form.

A total of 240 runs was conducted by incorporating three levels of flow rates and feed compositions and two levels of solid (polyethylene sp. gr. = 0.92) sizes and solid conients as parameters. The system is consisted of water and hydrocarbon (sp. gr. $=0.76$ ). The relative efficiency value and effective volume fraction for each run are tabulated.

A method for estimating the relative efficiency values for an undetermined system is presented. In addition the practical application of relative efficiencies for comparing the performance of two cyclone systems is illustrated.

## TABLE OF CONTENTS

Page
LIST OF TABLES ..... *
LIST OF ILLUSTRATIONS ..... xi
CHAPTER
I. INTRODUCTION ..... 1
II. HISTORICAL BACKGROUND AND PRIOR WORK ..... 8
III. THEORETICAL ANALYSIS ..... 13
Separation Mechanics ..... 13
Tangential Velocity at the Air Core ..... 15
Definition of the Apparent Mass ..... 16
Mechanism of Solid-Liquid Separation ..... 17
Flow Path of Particles Traveling in a
Cyclone ..... 23
Effective Separation Region in a Cyclone ..... 27
Method of Determining the Macroscopic
Turbulent Length ..... 33
Separation Efficiency ..... 36
Overall Separation Efficiency for a Three-
Phase System ..... 38
Definition of Ideal Separation Efficiency. ..... 41
IV. EXPERIMENTAL APPARATUS AND PROCEDURE ..... 43
Laboratory Equipment ..... 44

## TABLE OF CONTENTS (continued)

Page
Physical Dimensions of the Laboratory
Hyärocyclone ..... 46
Experimental Installation ..... 48
Materials Uised ..... 48
Experimental Procedures ..... 50
Operating Parameters ..... 51
V. MEASUREMENT ERRORS ..... 52
VI. DISCUSSION OF RESULTS ..... 56
Efficiency Curves ..... 56
Emulsification ..... 68
Effective Volume Fraction and Cyclone
Performance ..... 69
VII. APPLICATION OF RELATIVE EFFICIENCY VALUE TO
CYCLONE PROCESS DESIGN ..... 76
Method of Estimating Relative Efficiency
Values ..... 76
Comparison of Two Syclone Systems ..... 77
VIII. CONCLUSIONS ..... 84
APPENDICESA. Mathematical Derivation of Tangential
Velocity at the Air Core ..... 87
B. Comparison of Two Definitions of Overall
Separation Efficiency ..... 100
C. Table of Ideal Separation Efficiency vs o
Effluent Splits ..... 104

TABLE OF CONTENTS (continued)
Page
Physical Dimensions of the Laboratory
Hydrocyclone ..... 46
Experimental Installation ..... 48
Materials Used ..... 48
Emulsification ..... 68
Effective Volume Fraction and Cyclone
Performance ..... 69
VII. APPLICATION OF RELATIVE EFFICIENCY VALUE TO
CYCLONE PROCESS DESIGN ..... 76
Method of Estimating Relative Efficiency
Values ..... 76
Comparison of Two Cyclone Systems ..... 77
VIII. CONCLUSIONS ..... 84
APPENDICES
A. Mathematical Derivation of Tangential
Velocity at the Air Core ..... 87
B. Comparison of Two Definitions of Overall Separation Efficiency ..... 100
C. Table of Ideal Separation Efficiency vs. Effluent Splits ..... 104

## TABLE OF CONTENTS (continued)

Page
APPENDICES (continued)
D. Sample Data Sheet and Calculations ..... 108
E. Presentation of Results ..... 110
Preliminary Treatment of Raw Data ..... 110
Overall Separation Efficiency Curve vs.
Effluent Splits at Various Specified
Parameters ..... 112
F. Testing the Proposed Model ..... 180
Reduction of Mathematical Equations ..... 180
Selection of the Appropriate Model by
Experimental Data ..... 181
Phase Separation by Combined Streamline Flow and Centrifugal Action ..... 181
Phase Separation Controlled by Centri-
fugal Action ..... 183
Phase Separation Controlled by Stream-line flow . . . . . . . . . . . . 184
G. References ..... 188
H. Nomenclature ..... 190

## LIST OF TABLES

Table Page

1. Estimating the Overall Efficiency Values by Extrapolation. ..... 77
2. Summary of Cyclone Design Information ..... 81
C-1. Ideal Separation Efficiency ( $E_{5}$ ) versus Effluent Split ( $Q_{0} / Q_{u}$ ) for Various Phase Ratios ..... 106
E-1. Index Table for Experimental Set and Run. Numbers ..... 113
E-2. Summary of Experimental Results ..... 153
E-3. Summary of Processed Data ..... 163

## LIST OF ILLUSTPATIONS

Figure

## Page

1. Vertical, Radial and Tangential Flow Pattern
in a Conventional Cyclone . . . . . . . 3
2. (a) Tangential Velocity Profile . . . . . . . 5
(b) Streamline Flow Pattern . . . . . . . . . . 5
3. Operating Cyclone Hypothetically Partitioned
into a Turbulent and an Effective Separa-
tion Region .................. 28
4. Vertical and Cross-Sectional Views of a Hypo-
thetical Model Within the Cyclone . . . . . 32
5. Views of the Air Core and Rotating Spray at
the Apex . . . . . . . . . . . . 45
6. Dimensions of Laboratöry Hydrocyclone . . . . . 46
7. Schematic Diagram of Experimental Installation. 49
8. Overall Efficiency vs. Effluent Split (oil/ water $=1 / 2, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}$ )57
9. Overall Efficiency vs. Effluent Split (oil/
water $\left.=1 / 1, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}\right)$ ..... 58
10. Overall Efficiency vs. Effluent Split (oil/ water $\left.=2 / 1, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}\right) \quad . . . . . . .59$
11. Overall Efficiency vs. Effluent Split (oil/ water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec} ; \mathrm{VFT}=$ medium, Apex $=$ No. 1) . . . . . . . . . . . 61
12. Overall Efficiency vs. Effluent Split (oil) water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ large, Apex = No. 2)62
13. Overall Efficiency vs. Effluent Split (oil/ water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ small, Apex = No. 2)63

## LIST OF ILLUSTRATIONS (continued)

Figure
Page
14. Overall Efficiency vs. Effluent Split (oil/ water $=1 / 2, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ small, Apex $=$ No. 1) ..... 64
15. Overall Efficiency vs. Effluent Split (oil/ water $=1 / 2, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ large, Apex=NO. 2) ..... 65
16. Relative Efficiency vs. Effluent Split at Three Phase Ratios $\left(Q_{\hat{I}}=60.0 \mathrm{cc} / \mathrm{sec}\right)$ ..... 67
17. Cyclone Performance vs. Effluent Splits (Run Set No's. 1, 10, 11, and 13) . ..... 72
18. Cyclone Performance vs. Effluent Splits (Run Set No's. 15, 22, and 24) ..... 73
19. Cyclone Performance vs. Effluent Splits
(Run Set No's. 25, 37, 38, and 39) ..... 74
20. Estimated Overall Efficiency vs. Effluent Splits (oil/water $=4 / 1, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}$ ) ..... 78
21. Cyclone System No. 1 (Single Unit) ..... 79
22. Cyclone System No. 2 (Dual-battery in Series). ..... 80
A-1 : Conventional Cyclone with Both Cylindrical and Conic sections ..... 94
E-1 through E-39
Overall Efficiency vs. Effluent Splits (at Various Specified Parameters Indexed in TABLE E-1) ..... 114

# HYDRODKNAMIC STUDY OF LIQUID-LIQUID SEPARATION <br> IN A CONVENTIONAL CYCLONE 

CHAPTER I

INTRODUCTION

Generally a cyclone can be either a cylindrical tube, a hollow truncated cone, or a combination of both. The latter is the most common design today. The feed entrance tube is always installed tangentially but usually in the upper portion of the cylindrical section. Two concentric outlets are provided at opposite ends. The upper outlet is commonly known as the vortex finder tube or overflow discharge and the lower outlet the discharge nozzle or underflow apex.

The most attractive feature of the cyclone is its simplicity in both construction and operation (e.g., no moving parts) and low capital investment (as compared with a centrifuge, for example). However, the practical advantage of a cyclone is that almost any mixture of immiscible fluids or solid-containing suspension with a density gradient can be separated into two enriched portions, provided the
flow throughput is substantial enough to generate adequate vortex action within the cycione. When a clear liquid is present in the feed, two vortex phenomena can be observed. The outer vortex represents the bulk flow swirling downward in a rotating spray at the apex where the inner vortex, essentially a column of air usually known as the air core, is drawn spirally and co-directionally upward to carry the lighter phase through the vortex finder tube and to exit as the overflow (Figure 1). Since most liquid fluids are several hundrea times denser than air and owing to the conservation of momentum at the apex, the tangential velocity of the aircolumn can be expected to be several hundred times* greater than that of the bulk flow at the discharge nozzle. It is mainly due to this air core that the lighter phase of the feed mixture is separated through the vortex finder tube. One may also note that the dual-vortex mechanism experienced in a hydrocyclone is different from the single-vortex flow which has been extensively investigated by hydrodynamicists. The flow pattern of a single fluid in a hydrocyclone has been determined by several investigators with findings in good agreement. Both Crainer (5) and Kelsall (11) maintained that the product of tangential velocity and radius to the nth power is constant.

$$
\begin{equation*}
v_{\theta} r^{n}=\text { constant } \tag{1}
\end{equation*}
$$

[^0]

Figure 1 . Vertical, Radial, and Tangential Flow Pattern
as long as the total input energy to the systems remains unchanged; i.e., the law of conservation of angular momentum is applicable. However, as shown in Figure 2, $n$ can vary from -1 to +1 depending on the internal friction loss. For a fluid of infindite viscosity $n$ is -1 . Driessen (6) derived the basic mathematical relationship between tangential velocity and radius for a vortex flow involving a single fluid, which compared favorably with the measured values. Rietema (16) has plotted the reduced tangential velocity as a function of the reduced radius using the sum of kinematic viscosity and turbulent viscosity as a parameter, and it provided correlations for the optimum design of solid-liquid separation, which has since been a standard reference in this technology. Mixon (14) further substantiated the correlation by reinterpretations which are expected to pave the way for the future study of three-phase separations.

In contrast to numerous publications on solid-1iquid separation by the technology of hydrocyclone, the study on liquid-liquid separation has been meager. The major differences between these two mechanisms are: 1) solid particles remain intact while liquid particles tend to split into finer sizes due to high shear stresses near the air core and 2) solid particles to be separated from the liquid nearly always have a density much greater than that of the liquid, whereas the dispersed liquid particles may have a density either slightly greater or less than that of the continuous phase.


Figure 2(a). Typical Tangential Velocity Profile Near The Entrance Tube (17)


Figure $2(\mathrm{~b})$. Streamline Flow Pattern

Unlike the centrifuge in which a particle, either of liquid or solid, experiences a unique force, the particle moving through a fluid medium in a hydrocyclone experiences unbalanced pressures on opposite sides of the particle normal to the direction of flow. In addition, the source of power for the separation of phases in a hydrocyclone is inherent in the stream; hence, any separation in a hydrocyclone is always complemented by a certain degree of turbulent mixing of the phases, notably in the upper conic section near the feed entrance tube. This inevitable turbulence causes a damaging effect in a solid-liquid case where solids could be dynamically "retained" near the air core and then mechanically carried off to the overflow. In the case of a liquid-liquid system, the effect is even more detrimental if the liquid particles tend to emulsify with the continuous medium. When an emulsion is formed, the function of a hydrocyclone is merely reduced to the separation of the denser emulsion from the lighter emulsion of an essentially homogeneous mixture. However, the presence of a solid phase in a liquid-liquid system tends to discourage the emulsion forming presumably due to the reduction of surface contact area--especially when the solid is preferentially wetted
by one of the liquids. It is mainly from the standpoint of academic interest that this investigation is devoted mostly to the study of turbulent mixing in a hydrocyclone by a proposed mathematical model. The purpose of this model is to express the turbulence in terms of dimensional "length" when the required experimental variables become available.

One of the major factors in the commercial acceptance of a unit of equipment is its economic feasibility. The main reason that the hydrocyclone has not yet been generally adopted for liquid-liquid separation by commercial operations is its low efficiency at the present state-of-art. Therefore, one of the objectives of this investigation is to measure the separation efficiency of a two-phase, liquid system in the presence of a solid. It is hoped that this study will eventually yield some perspective knowledge leading to the amelioration of economic feasibility of liquid separation by the technology of hydrocyclone.

## CHAPTER II

HISTORICAL BACKGROUND AND PRIOR WORK

Of all the cyclones in existence today, the gassolid cyclone, commonly known as the cyclone separator, probably has the longest history of usage.

Although the first hydrocyclone patent was granted in the U.S. in 1891 to Bretney and a five-faot diameter hydrocyclone was employed by the phosphate industry as early as 1914, commercial installations were not too prevalent until the late 1930 's--mostly confined to the pulp and paper industry for cleaning dilute pulp stock.

It was not until the early 1940's when the Dutch
 large tonnage that the acceptance of hydrocyclone generated any appreciable momentum. From then on, numerous papers appeared in the literature and many ingenious designs and modifications for a broad spectrum of applications became available on the market. The art of hydrocyclone technology then began to flourish.

With the exception of independent theoretical studies on vortex hydrodynamics, engineering research on the hydrocyclone, particularly in correlation of performance and applicability to various processes, was meager until it received concerted support from both the U.S. Atomic Energy Commission and U.K. Atomic Energy Authority during World War II. In the ensuing years, more sophisticated efforts, incorporating hydrocynamic principles and analyses, appeared in published papers. It is due to the limited scope of this investigation that readers are referred to the book The Hydrocyclone (3) which contains the most complete bibliography available. Over 600 papers on hydrocyclone and related subjects and 55 patent reviews are presented.

While the hydrocyclone has been standard equipment in various fields of technology for solid-liquid separation, the $1960^{\circ}$ s saw a revived interest in special laboratory uses and diversified applications-notably in the chemical industry for liquid-liquid axtraction, solid-liquid leaching, crystallization and in space technology where separation in a zero-gravitational field is required. Recently, in the petrochemical industry, considerable effort has been expended to increase the operating efficiency of the cyclone separator in order to permit its use in general liquidliquid separation on a commercial scale. A cursory review of current information seems to indicate that the general trend is toward adopting a system consisting of multiple,
small- or even miniature-cyclones with common feed entrance and discharge exits. It is generally regarded that a small cyclone yields a higher efficiency. Hence, for handling large capacities, multiple, small units can be used to circumvent the problems of scale-up. In addition, the effect of various dimensions and apex angles on separation efficiency can be minimized in a smaller cyclone.

Since the scope of this investigation is primarily in the realm of liquid-liquid separations, a brief review of the previous work in this aspect is pertinent.

While the literature is abundant in solid-liquid separation work, little is available on liquid-liquid separations. The earliest recorded investigation was conducted by Tepe and Woods (21) of the U.S. Atomic Energy Commission in 1943 in which the separation efficiency was derived. Van Rossum (23) in 1953 conducted investigations on the separation of water-in-oil emulsions in a 3-inch cyclone using oils of different viscosities and densities as the continuous phase. Effects of viscosity on separation efficiency were also determined. Simkin and Olney (18) in 1956 determined by a series of experiments the most favorable conditions for separating liquids in a 4-inch cyclone. Values of separation efficiencies as a function of effluent split at various feed compositions, feed rates, and geometric factors of the cyclone were obtained. The relationship between the mass transfer efficiency and the degree of phase seaparation
was also discussed. In the same year, Bradley (2) proposed a scheme to use the cyclone as an extractorseparator which was followed by Hitchon's (10) experiment to measure both the separation efficiencies and mass transfer efficiencies in a 10 mm . cyclone as an extractingseparating device for a tri-component system. In similar manner, Molyneaux (15) investigated the possibility of liquid-liquid extraction and solid-liquid leaching in a dual-cyclone for other tri-component systems and reported the findings in the form of mass-transfer coefficients. In addition, Ereeze (4) reported some separation results and qualitative conclusions from a high-speed "dual jet-clons" as a substitute for a mixer-settler unit.

Academically, Klein (12) in 1950 investigated the applicability of a cyclone to the separation of a liquid mixture in a 3-inch cyclone. Although optimum effluent splits were obtained for various feed compositions and pressure drops across the cyclone, emulsification remained serious. Ellefson (7) continued the work by employing an 8-inch cyclone in order to simulate the commercial-scale operation. He reported the range of optimum volume at various parameters as well as the correlation of energy requirement to the inlet and overflow diameters. Recently, Sweet Water Development (19) has conducted massive experimental runs using various designs and modifications of
cyclone for a liquid-solid-liquid system in which the solid, a propane inydrate, has an intermediate density between brine and propane. However, no tabulation of separation efficiency and correlation of data are presented.

## THEORETICAL ANALYSIS

This theoretical study is presented in two parts. In the first part the separation mechanics, in which the motion of a particle, whether it be a solid or liquid, is thoroughly investigated with due consideration for influential factors, and a mathematical model is proposed in order to determine the ineffective separation region. In the second part the definitions of multicomponent separation efficiency and ideal efficiency are presented.

## Separation Mechanics

The flow mechanism in the separation of immiscible liquids in a hydrocyclone involves two vortices - the inner:vortex primarily responsible for carrying the lighter phase to the overflow and the outer vortex for discharging the heavier phase to the apex. In the absence of any wellestablished theory for a dual-vortex flow involving two immiscible liquids, it seems appropriate to derive the desired equation of state from the Navier-Stokes Equation (1). Since steady-state is expected for a cyclone in
operations and the fluid under consideration is assumed to be incompressible,

$$
\begin{equation*}
\nabla \cdot \vec{\nabla}=0 \tag{2}
\end{equation*}
$$

where $\vec{V}$ is the fluid velocity. In cylindrical coordinates for a Newtonian fluid with constant density, $\rho$, and.viscosity, u, the following equations of motion are pertinent:
r-component

$$
\begin{align*}
V_{r} \frac{\partial V_{r}}{\partial r}+V_{z} \frac{\partial V_{z}}{\partial Z}-\frac{V_{\theta}}{r}=-\frac{1}{\rho} \frac{\partial P^{\prime}}{\partial r}= & \nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{r}}{\partial r}\right)+\right. \\
& \left.\frac{\partial^{2} V_{r}}{\partial z^{2}}-\frac{V_{r}}{r^{2}}\right] \tag{3}
\end{align*}
$$

$\theta$-component

$$
\begin{equation*}
\mathrm{V}_{r} \frac{\partial \mathrm{~V}_{\theta}}{\partial r}+\mathrm{V}_{z} \frac{\partial \mathrm{~V}_{\theta}}{\partial Z}+\frac{\mathrm{V}_{r} \mathrm{~V}_{\theta}}{r}=\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \mathrm{~V}_{\theta}}{\partial r}\right)+\frac{\partial^{2} \mathrm{~V}_{\theta}}{\partial z^{2}}-\frac{\mathrm{V}_{\theta}}{r^{2}}\right] \tag{4}
\end{equation*}
$$

Z-component

$$
\begin{array}{r}
V_{r} \frac{\partial V_{z}}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial V_{z}}{\partial \theta}+V_{z} \frac{\partial V_{z}}{\partial Z}=-\frac{1}{\rho} \frac{\partial P}{\partial Z}+v\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{z}}{\partial r}\right)+:\right. \\
 \tag{5}\\
\left.\frac{\partial^{2} V_{z}}{\partial z^{2}}\right]+g
\end{array}
$$

The vertical velocity component as measured by Kelsall (10) indicates that a null region generally prevails within the cyclone in operation except in the neighborhood of the air core or the inner vortex where the liquid is carried to the
overflow by a spiral action of the inner vortex, i.e., the tangential velocity predominates over the others. Therefore it appears reasonable that the vertical velocity component is negligible. (Note: For a short laboratory size cyclone, the hydrostatic pressure attributed by the gravitational force is also negligible in comparison with the centrifugal force generated within the cyclone. Reported values indicate sometimes a magnitude of $15,000 \mathrm{~g}$ is possible).

Tangential Velocity at the Air Core: The tangential velocity profile of a single fluid in a hydrocyclone has been well investigated (5), (6), (10). However, the analytical expression of the velocity at the air core is extremely complex. As an academic exercise, this author presents two additional methods for determining the velocity at the air core which have not been reported in the literature. The analytical method is shown in Appendix $A$ and the experimental method which requires several measured variables and a set of trial and error procedures is under the last section "Method of Determining the Macroscopic Turbulent Length" of this chapter.

Of all the equations presented in the derivation of air core velocity (shown in Appendix A), the two most important ones are:

$$
\begin{equation*}
v_{\theta}=\frac{a v_{0}}{a^{5+2}-b^{5+2}}\left(x^{\xi+1}-\frac{b^{\xi+2}}{r}\right) \tag{6}
\end{equation*}
$$

where

$$
\mathrm{a}=\mathrm{air} \text { core radius }
$$

$\mathrm{V}_{\mathrm{O}}=$ tangential velocity at the periphery of the air core
$r=$ radius of the cyclone
$\mathrm{b}=$ radius of the upper base of the cyclone
$\boldsymbol{\xi}=\frac{(Q / L)}{\nu}$, a dimensionless quantity
and $\quad V_{o} \cong \frac{a^{\xi+2}-b^{\xi+2}}{a} \sqrt{\frac{P_{\text {in }}\left(h_{2}^{2} \tan ^{2} \alpha\right)}{\rho[K \cdot E \cdot(2)]}}$
where $P_{\text {in }}=$ inlet pressure to the cyclone
$h_{2}=$ height of conic section of the cyclone $\alpha=$ apex angle of the cyclone . $=$ density of the fluid
$[K \cdot E \cdot(2)]=$ kinetic energy of the fluid in the conic section of the cyclone (See Eq. A-48)

Definition of the "Apparent Mass": Neumark (15)
has proved analytically that the so-called "apparent mass"the mass of a particle moving through a non-viscous and incompressible fluid-is dependent on the density and volume of the fluid being displaced as well as the geometric shape of the particle in question. A table of the shape factor is also provided by Neumark ranging from zero to infinity. For a spherical particle, the shape factor is 0.50. Thus for example, the apparent mass of a spheroid moving in water would be

* Identical with Eq. A-52。

$$
\begin{equation*}
m_{0}=m+0.5 \mathrm{M} \tag{8}
\end{equation*}
$$

where $m$ is the static mass of the spheroid and $M$ is the mass of water being displaced by the spheroid. It is evident that the apparent mass will only be identical to the static mass when the particle is traveling in an absolute vacuum. In applying this principle to particles flowing in a hydrocyclone, the apparent mass of the particle will be used as the correct term in place of the static mass for the derivation of equation of motion shown in the following section.

## Mechanism of Solid-Liquid Separation: In dealing

 with the problems encountered in hydrodynamics, it is sometimes necessary to designate particle velocities relative to the fluid with overbars; hence $\overline{\mathrm{v}}_{\mathrm{X}}, \overline{\mathrm{v}}_{\mathrm{y}}, \overline{\mathrm{v}}_{\mathrm{z}}, \overline{\mathrm{v}}_{\theta}, \overline{\mathrm{v}}_{\mathrm{r}}$ must be distinguished from the fluid velocities, $v_{x}, v_{y^{\prime}}$. . 。 respectively. Thus if $W$ is an arbitrary function of the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ components, we have$$
\begin{align*}
d W & =\frac{\partial W}{\partial X} d X+\frac{\partial W}{\partial Y} d Y+\frac{\partial W}{\partial Z} d Z+\frac{\partial W}{\partial t} d t  \tag{9}\\
\frac{\partial W}{d t} & =\frac{\partial W}{\partial X} \frac{d X}{d t}+\frac{\partial W}{\partial Y} \frac{d y}{d t}+\frac{\partial W}{\partial Z} \frac{\partial Z}{\partial t}+\frac{\partial W}{\partial t} \\
& =\frac{\partial W}{\partial X} \overline{\bar{V}}_{X}+\frac{\partial W}{\partial Y} \bar{v}_{Y}+\frac{\partial W}{\partial Z} \overline{\bar{V}}_{Z}+\frac{\partial W}{\partial t} \tag{10}
\end{align*}
$$

where $\frac{d W}{d t}$ is the rate of change of $W$ as seen by a co-moving
observer with the same velocity as the streamline and $\overline{\bar{v}}_{\mathrm{X}}$, $\overline{\bar{v}}_{y}{ }^{\prime} \overline{\overline{\mathrm{V}}}_{z}$ are absolute reference frames. For cylindrical coordinates

$$
\begin{align*}
& \frac{D}{D t}=\frac{\partial}{\partial t}+V_{r} \frac{\partial}{\partial r}+\frac{V_{\theta}}{r} \frac{\partial}{\partial \theta}+V_{z} \frac{\partial}{\partial Z} \\
& \frac{D \vec{v}}{D t}=\frac{\partial \vec{v}}{\partial t}=\bar{v}_{r} \frac{\partial \vec{v}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \vec{v}}{\partial \theta}+\bar{v}_{z} \frac{\partial \vec{v}}{\partial z} \\
& =\left(\frac{\partial \bar{v}_{x}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{x}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \bar{v}_{x}}{\partial \theta}+\bar{v}_{z} \frac{\partial \bar{v}_{x}}{\partial z}\right) \hat{i} \\
& +\left(\frac{\partial \bar{v}_{y}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{y}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \bar{v}_{y}}{\partial \theta}+\bar{v}_{z} \frac{\partial \bar{v}_{y}}{\partial z}\right) \hat{j} \\
& +\left(\frac{\partial \bar{v}_{z}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{z}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \bar{v}_{z}}{\partial \theta}+\bar{v}_{z} \frac{\partial \bar{v}_{z}}{\partial z}\right) \hat{k}  \tag{11}\\
& \hat{i}=\cos \theta \hat{e}_{r}-\sin \theta \hat{e}_{\theta}  \tag{12}\\
& \hat{j}=\sin \theta \hat{e}_{r}+\cos \theta \hat{e}_{\theta}  \tag{13}\\
& \hat{\mathrm{k}}=\hat{e}_{z} \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& \bar{v}_{x}=\cos \theta \bar{v}_{r}-\sin \theta \bar{v}_{\theta}  \tag{15}\\
& \bar{v}_{y}=\sin \theta \bar{v}_{r}+\cos \theta \bar{v}_{\theta}  \tag{16}\\
& \bar{v}_{z}=\bar{v}_{z} \tag{17}
\end{align*}
$$

By using Eqs. 12 through 17 for transformation, we have

$$
\frac{\mathrm{Dv}}{\mathrm{Dt}}=\left(\frac{\partial \overrightarrow{\mathrm{v}}_{r}}{\partial t}+\bar{v}_{r} \frac{\partial \stackrel{\dot{v}}{r}^{\partial r}}{\partial \mathrm{E}}+\frac{\overline{\mathrm{v}}_{\theta}}{r} \frac{\partial \overline{\mathrm{v}}_{r}}{\partial \theta}-\frac{\ddot{\bar{v}}_{\theta}^{2}}{r}+\bar{v}_{z} \frac{\partial \bar{v}_{r}}{\partial z}\right)
$$

$$
\begin{aligned}
& +\left(\frac{\partial \bar{v}_{\theta}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{\theta}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \overline{\mathrm{v}}_{\theta}}{\partial \theta}+\frac{\overline{\mathrm{v}}_{r} \overline{\mathrm{v}}_{\theta}}{r}+\overline{\mathrm{v}}_{z} \frac{\partial \overline{\mathrm{v}}_{\theta}}{\partial Z}\right) \\
& +\left(\frac{\partial \overline{\mathrm{v}}_{z}}{\partial t}+\overline{\mathrm{v}}_{r} \frac{\partial \overline{\mathrm{v}}_{Z}}{\partial r}+\frac{\overline{\mathrm{v}}_{\theta}}{r} \frac{\partial \overline{\mathrm{v}}_{z}}{\partial \theta}+\overline{\mathrm{v}}_{z} \frac{\partial \overline{\mathrm{v}}_{z}}{\partial z}\right) \cdot . \cdot \theta \text {-component }
\end{aligned}
$$

Z-component

From Newtonian mechanics the basic equation for a particle moving in a fluid with a velocity $\bar{v}$ is (9)
$m_{0} \frac{D \vec{v}}{D t}=-k \vec{v}+m^{\circ} \vec{Z}-2 m^{\circ} \vec{\omega} \times \vec{v}_{\theta}-m^{\circ} \vec{\omega} \times(\vec{\omega} \times r)+\int P d \vec{A}$
where $\quad \frac{D \vec{v}}{D t}$ denotes the righthand side of Eq. 18. $-k \vec{v}$ is the viscous force $m^{\circ} \vec{Z}$ is the body force equal to $\mathrm{m}^{\circ} \cdot \mathrm{g} \widehat{\mathrm{e}}_{\mathrm{z}}$ in this case - $2 \mathrm{~m}^{0} \vec{\omega} \times \vec{v}_{\theta}$ is the Coriolis force caused by the rotating force
$\mathrm{m}^{0} \vec{\omega} \times(\vec{u} \times \vec{r})$ is the centrifugal force caused by the rotating force
$\int P d \vec{A}$ is the net pressure force acting on the particle and $d A=d s \cdot \vec{n}$ where $\vec{n}$ is the normal unit vector with respect to the surface element of the particle.

For the $x$-component:
$m_{0}\left(\frac{\partial \overline{\bar{v}}_{r}}{\partial t}+\bar{w}_{r} \frac{\partial \bar{v}_{r}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \bar{v}_{r}}{\partial \theta}-\frac{\bar{v}_{\theta}^{2}}{r}+\bar{v}_{z} \frac{\partial \bar{v}_{r}}{\partial z}\right)=-k: \bar{v}_{r}+m^{\circ} \bar{z}^{2}$

$$
\begin{align*}
& -2 m^{\circ} \vec{\omega} \times \vec{v}_{r}-m^{0} \vec{\omega} \times(\vec{\omega} \times \vec{r})+\int P \cdot d s \cdot \vec{n}_{\theta z}=-k \cdot \vec{v}_{r} \\
& -2 m^{0} \omega \bar{v}_{r} \sin \hat{\varphi}_{v_{z} v_{r}}-m^{0}[\vec{\omega}(\vec{\omega} \cdot \vec{r})-\vec{r}(\vec{\omega} \cdot \vec{\omega})]+\int P d s \cdot \vec{n}_{\theta z} \\
= & -k \bar{v}_{r}+2 m^{0} \omega \bar{v}_{r}-m^{0}\left[\vec{\omega}\left(\omega r \cos \omega_{v_{z r}}\right)-r\left(\vec{\omega}^{2}\right)\right]+\int P d s \cdot \vec{n}_{\theta z} \\
= & -k \bar{v}_{r}+2 m^{\circ} \omega \bar{v}_{r}+m^{0} r \omega^{2}+\int P d s \cdot \vec{n}_{\theta z} \tag{20}
\end{align*}
$$

For the $\theta$-component:
$m_{0} \frac{\partial \bar{v}_{\theta}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{\theta}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial \bar{v}_{\theta}}{\partial \theta}+\frac{\bar{v}_{r} \bar{v}_{\theta}}{r}+\bar{v}_{z} \frac{\partial \bar{v}_{\theta}}{\partial Z}=-k \bar{v}_{\theta}+m^{\circ} \vec{z}^{\prime}$
$-2 m^{2} \omega x \vec{v}_{\theta}-m^{0} \vec{\omega} \times(\vec{\omega} \times \vec{r})+\int P d s \cdot \vec{n}_{r z}=-k \bar{v}_{\theta}-2 m^{0} \omega \times \bar{v}_{\theta}$

$$
\begin{align*}
& \sin \Phi_{v_{z} v_{\theta}}-m^{0}(0-0)+\int P d s \cdot \vec{n}_{r z}=-k \bar{v}_{\theta}-2 m^{\circ} \omega \bar{v}_{\theta} \\
& \quad+\int P d s \cdot \vec{n}_{r z} \tag{21}
\end{align*}
$$

For the $Z$-component:
$m_{0} \frac{\partial \bar{v}_{z}}{\partial t}+\bar{v}_{r} \frac{\partial \bar{v}_{z}}{\partial r}+\frac{\bar{v}_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+\bar{v}_{z} \frac{\partial \bar{v}_{z}}{\partial \theta}=-k \bar{v}_{z}+m^{\circ} g-2 m^{\circ} \vec{\omega} \times \vec{\omega}$
$-m^{\circ} \vec{\omega} \times(\vec{\omega} \times \overrightarrow{\mathbf{z}})+\int P d s \stackrel{\rightharpoonup}{n}_{\theta r}=-k \bar{v}_{z}+m^{\circ} g-0-0+$

$$
\begin{align*}
& \int P d s \cdot \vec{n}_{\theta r} \\
= & -k \vec{v}_{z}+m^{\circ} g+\int P d s \cdot \vec{n}_{\theta r} \tag{22}
\end{align*}
$$

Here, the approximations for $\frac{\partial \bar{v}_{\underline{I}}}{\partial Z}, \frac{\partial \bar{v}_{\theta}}{\partial Z}, \frac{\partial \bar{v}_{Z}}{\partial Z}, \frac{\partial \bar{v}_{Z}}{\partial Z}{ }_{\theta}$
$\frac{\partial \bar{v}_{z}}{\partial r}, \frac{\partial \bar{v}_{z}}{\partial \theta}$, can all be neglected. Further we are only concerned over the separation of solid or liquid particles
from a liquid by means of the vertical component. Therefore, only Eq. 22 is useful. Unfortunately, Eq. 22 cannot be solved analytically because of the presence of the pressure force term. However, for an approximate solution, it is proposed to exclude this term temporarily and to reinstate it later in an empirical fashion as shown in Eq. 43.

$$
\begin{gather*}
m_{o}\left(\frac{\partial \bar{v}_{z}}{\partial t}\right)=-k \quad \bar{v}_{z}+m^{\circ} g  \tag{23}\\
\frac{d \bar{v}_{z}}{d t}=-\frac{k^{\prime} \bar{v}_{z}}{m_{0}}+\frac{m^{\circ}}{m_{0}} g \tag{24}
\end{gather*}
$$

Eq. 24 is essentially a first order linear equation and the solution is

$$
\begin{gather*}
e^{\int \frac{k}{m_{0}} d t} \frac{d \bar{v}_{z}}{d t}+e^{\int \frac{k}{m_{0}} d t} \frac{k}{m_{0}} \bar{v}_{z}=e^{\int \frac{k}{m_{0}} d t} \frac{m^{0} q}{m_{0}} \\
\bar{v}_{z} e^{\int \frac{k}{m_{0}} d t}=e^{\int \frac{k}{m_{0}} d t} \frac{m_{0}^{0}}{m_{0}}\left(\frac{m_{0}}{k}\right)+k^{\prime} \\
\bar{v}_{z} e^{\frac{k_{0}}{m_{0}} t}=e^{\frac{k}{m_{0}} t} \frac{m^{0} g}{k}+K^{\prime} \tag{25}
\end{gather*}
$$

when

$$
\begin{gathered}
t=0, \bar{v}_{z}=0 \\
K^{\prime}=-\frac{m^{0} g}{k} \\
\bar{V}_{z} e^{-\frac{k_{2}}{m_{0}} t}=e^{\frac{k_{0}}{m_{0} t}} \frac{m^{\circ} g}{1^{\prime}}-\frac{m^{0} g}{k^{\prime}}=\frac{m^{0} g}{'^{k}}\left(e^{\frac{k_{0}}{m_{0}}}-1\right)
\end{gathered}
$$

$$
\begin{equation*}
v_{z}=\frac{m^{\circ} g}{k}\left(1-e^{-\frac{k_{1}}{m_{o}} t}\right) \tag{26}
\end{equation*}
$$

By considering the force of buoyancy which is equal to

$$
\mathrm{F}=-\mathrm{Mg}
$$

we have

$$
m_{0}\left(\frac{d v_{z}}{d t}\right)=(m-M) g-k \bar{v}_{z}
$$

and consequently (neglecting the pressure force term)

$$
\begin{equation*}
\bar{v}_{z}=\frac{(m-M) q}{k}\left(1-e^{\frac{-k_{0}}{m_{0} t}}\right) \tag{27}
\end{equation*}
$$

Now, we can determine the constant term $k$ by comparing
Eq. 27 with Stoke's Law which describes the terminal velocity of a free-falling body in a viscous, hydrostatic fluid. Thus, we have

$$
\begin{gather*}
m=\frac{4}{3} \pi \sigma^{3} \rho^{\prime} \text { and } M=\frac{4}{3} \pi \sigma^{3} \rho \\
\bar{v}_{z}=\frac{4}{3} \pi \sigma^{3} \frac{\left(\rho^{\rho}-\rho\right) \sigma}{k}\left(1-e^{\left.-\frac{k_{1}}{m_{o}}\right)}\right. \\
=\frac{2}{9} \frac{\left(\rho^{\prime}-\rho^{i}\right) \sigma^{2}}{\mu} g \\
k=6 \cdot \pi \sigma \mu \quad\left(1-e^{-\frac{k_{2}}{m_{o}} t}\right. \\
t \rightarrow \infty \\
k \quad=6 \pi \sigma \mu \tag{28}
\end{gather*}
$$

when

Flow Path of Particles Traveling in a Cyclone: In the case of oil-water separation, with water being the continuous phase, the oil is mostly divided into fine particles which will most probably follow the streamline of the water. Thus, to predict the streamline path traveled by a particle of negligible weight and dimension, let us assume the streamline function in cylindrical coordinates

$$
\begin{align*}
\psi=f(r, \theta), \text { so } d \psi & =\frac{\partial \psi}{\partial r} d r+\frac{\partial \psi}{\partial f} d \theta \\
& =\frac{\partial \psi}{\partial r} d r+\frac{1 \partial \psi}{r \partial \theta} r d \theta \tag{29}
\end{align*}
$$

If the stream function has a value $\psi_{A}$ at $A$ and $\psi_{B}$ at $B$, the difference in the $\psi$-values, $d \psi=\psi_{B}-\psi_{A}$, equals the rate of flow across the line $A B$, as a consequence of the definition of $\psi$. This flow rate can be considered as the total of two flow rates; namely, in cylindrical coordinates, the radial velocity $V_{r}$ in the outward radial direction, and $\mathrm{V}_{\theta}$ in the tangential direction. Since the radial flow rate is $r V_{r} d \theta$, and the tangential flow rate is $-V_{\theta} d r$, we have

$$
\begin{equation*}
d \psi=r v_{r} d \theta-V_{\theta} d r \tag{30}
\end{equation*}
$$

Previously, we know from the derivation of air core velocity, (Eq. A-12)

$$
\begin{equation*}
r V_{r} \cong(Q / L) \tag{31}
\end{equation*}
$$

However, $r V_{r}$, which is mainly responsible for the spiral downward flow, is not strictly a constant throughout the entire cyclone because of the overflow $Q_{0}$. Therefore, an approximate method must be devised. Recognizing the material balance equation for steady state

$$
\begin{equation*}
Q_{f}=Q_{o}+Q_{u} \tag{32}
\end{equation*}
$$

we can consider the terminal conditions where measured variables can be obtained. For the limiting case,

$$
Q_{0}=0, \text { then } Q_{f}=Q_{u}
$$

we have

$$
\begin{equation*}
(Q / L) \cong r V_{r} \cong Q_{f} / 2 \pi H \tag{33}
\end{equation*}
$$

on the other hand, if

$$
Q_{u}=0, \text { then } Q_{f}=Q_{0}
$$

the distance for $Q$ to travel downward before it reaches the air core to reverse its direction and exit in the overflow will be doubled. Hence

$$
\begin{equation*}
(Q / L) \cong r V_{r} \cong \frac{1}{2}\left(Q_{f} / 2 \pi H\right) \tag{34}
\end{equation*}
$$

and an approximate equation based on terminal conditions can be

$$
\begin{equation*}
(Q / L)=\frac{\left(Q_{f}+Q_{u}\right)}{2} \frac{1}{2 \pi H} \cong r V_{r} \tag{35}
\end{equation*}
$$

Recalling Eq. 6, we have

$$
\begin{equation*}
v_{\theta}=\frac{a V_{0}}{a \xi^{+2}-b^{\xi+2}}\left(r^{\xi+1}-\frac{b^{\xi+2}}{r}\right) \tag{6}
\end{equation*}
$$

3y the relationship of

$$
\begin{equation*}
v_{\theta}=\frac{r \cdot d \theta}{d t} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{r} d t=d r \tag{37}
\end{equation*}
$$

Eq. 36 can be written as

$$
\begin{equation*}
\mathrm{d} \theta=\mathrm{V}_{\theta} \frac{\mathrm{dr}}{\mathrm{r} \mathrm{v}_{\mathrm{r}}} \tag{38}
\end{equation*}
$$

Substituting Eq. 38 into Eq. 30 yields

$$
\begin{gathered}
\int d \psi=\int r V_{r} d \theta-\int V_{\theta} d r \\
\psi=-\left(r V_{r}\right) \frac{V_{\theta} d r}{\left(r V_{\dot{r}}\right)}-\left(-V_{\theta} d r\right)+K^{\prime}=\text { constant }
\end{gathered}
$$

which signifies that the flow pattern of the stream function is specified.

In case the downward flow pattern is desired, Eq. 38 can be integrated to yield

$$
\begin{align*}
d \theta & \left.\left.=\int \frac{V_{\theta} d r}{(Q / 2 \pi H)}=\int \frac{a V_{0}}{(Q / 2 \pi H)\left(a^{\xi+2}-b^{\xi+2}\right)} \right\rvert\, r^{\xi+1}-\frac{b^{\xi+2}}{r}\right) d r \\
\theta & \left.=\frac{a V_{0}}{(Q / 2 \pi H)\left(a^{\xi+2}-b \xi+2\right.}\right)\left\langle\frac{r^{\xi+2}}{\xi+2}-b \xi^{+2} \ell n r\right)+k^{\prime} \tag{39}
\end{align*}
$$

If we assign $C_{o}$ as the initial radial distance of the particle from the centeriof the hydrocyclone when $\theta=0$, then we have
the initial condition
and $\theta=\frac{a \dot{o}_{0}}{(Q / 2 \pi H)\left(a^{\xi+2}-b^{\xi+2}\right)}\left(\frac{r^{\xi+2}-c_{0}^{\xi+2}}{\xi+2}-b^{\xi+2} \ln \frac{r}{C_{0}}\right)$
which should adequately describe the path of the particle traveling in a hydrocyclone provided both the tangential velocity of the fluid at the air core and the initial radial distance of the particle are known.

In order to determine the time required for a liquid particle of the dispersed phase to fall freely in a viscous medium over a distance $Z_{m}$. Eq. 27 can be rewritten as

$$
\begin{equation*}
\frac{d Z_{m}}{d t}=\frac{(m-M) q}{k}\left(1-e^{-\frac{k}{m_{0}} t}\right) \tag{41}
\end{equation*}
$$

Integrating Eq. 41 yields

$$
\int d z_{m}=\frac{(m-M)}{k} g\left[t+\frac{m_{0}}{k} e^{\frac{-k}{m_{0}} t}\right]+K^{\prime}
$$

when

$$
\begin{gathered}
t=0, Z=0 \\
K^{\prime}=\frac{(m-M)}{k} g \frac{m_{0}}{k} \\
z_{m}=\frac{(m-M)}{k} g\left[t-\frac{m_{0}}{k} e e^{-\frac{k}{m_{0}} t}\right]-\frac{(m-M)}{k^{2}} g m_{0}
\end{gathered}
$$

$$
\begin{equation*}
=\frac{m_{0}(m-M) g}{k^{2}}\left[\frac{k}{m_{0}} t-1+e^{\frac{-k}{m_{0}} t}\right] \tag{42}
\end{equation*}
$$

As mentioned earlier, in order to solve Eq. 22 with the inclusion of the pressure term, it is necessary to resort to an empirical procedure. Fortunately, Fontein's (8) citing of dye injection experiments provided a physical model which indicated that the overflow fluid mostly initiates from the area near the cyclone wall after traveling downward in a certain distance $Z_{o}$ in order to exit reversely through vortex finder tube. Thus, we have

$$
\begin{equation*}
2 z_{o}=\frac{Q_{0} t}{\frac{\pi\left(b^{2}-a^{2}\right)}{2}} \tag{43}
\end{equation*}
$$

and $\quad z=z_{m}+z_{0}=\frac{(m-M) m_{0} g}{k^{2}}\left[\frac{k}{m_{0}} t-1+e^{-\frac{k_{0}}{m_{0}} t}\right]$

$$
\begin{equation*}
+\frac{Q_{O} t}{\pi\left(b^{2}-a^{2}\right)} \tag{44}
\end{equation*}
$$

Effective Separation Reqion in a Cyclone: In reality, when a mixture of immiscible liquids is charged into a hydrocyclone at a given rate, $Q_{f}$, substantial enough to generate some centrifugal action, there will be a certain turbulent mixing region extending a leng"th "d" from the upper base (Figure 3). Therefore, at least this much of the hydrocyclone


Figure 3. Cyclone Hypothetically Partitioned into a Turbulent and An Effective Separation Region.
is extremely ineffective for separation. However, as the liquid mixture moves from the turbulent region into the separation region, a particle of the dispersed (discontinuous) phase at a radial distance, say $C_{0}$, will take a certain time to reach the air core of radius "a". By combining Eq. 37 and Eq. 31

$$
\begin{align*}
& V_{r} d t=d r  \tag{37}\\
& (Q / L)=r V_{r} \tag{31}
\end{align*}
$$

$$
\begin{align*}
d t & =\frac{r d r}{(Q / L)}  \tag{45}\\
\int_{0}^{t} d t & =\int_{a}^{c_{0}} \frac{r d r}{(Q / L)} \\
t & =\frac{c_{0}^{2}-a^{2}}{2(Q / L)} \tag{46}
\end{align*}
$$

the time requirement can be determined. Since the particle travels downward until it reaches the air core to be carried off in the overflow, the downward distance covered by this particle is also equal to "Z" as represented by Eq. 44. With the presence of the turbulent region, the maximum distance of "Z" is therefore

$$
\begin{equation*}
\mathrm{Z}=\mathrm{H}-\mathrm{d} \tag{47}
\end{equation*}
$$

where $H$ is the height of the cyclone.
In case the centrifugal force becomes the dominating factor, it is necessary to incorporate it into Eq. 45.

As we know the centrifugal acceleration $=\omega^{2} r$ where $\omega$ is the angular velocity at the radius $r$ (Note: In contrast to solid-body rotation, $\omega$ is not a constant but is a function of $r$ ). Hence, the force experienced by an oil particle $=(M-m) \omega^{2} r$, assuming that locally the flow is slow so that the hydrostatic pressure law holds. Referring to Eq. 27 the terminal velocity of the particle will be equal to $\frac{(M-m) \omega)^{2}}{k} r$. Since $\omega=\frac{V_{\theta}}{r}$

$$
\left(\bar{v}_{r}\right)_{t}=\frac{(M-m)}{k_{k}} \frac{v_{\theta}^{2}}{r^{2}}(r)=\frac{(M-m)}{k} \frac{v_{\theta}^{2}}{r}
$$

and Eq. 6 states that the tangential velocity

$$
\begin{align*}
& \nabla_{\theta}=\frac{a \nabla_{o}}{a \xi+2-b \xi+2}\left(\frac{r \xi+2-b \xi+2}{x}\right) \\
& \left(\bar{v}_{r}\right)_{t}=\frac{(M-m)}{k r^{3}} \frac{a^{2} v_{0}^{2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}}\left(r^{\xi+2}-b^{\xi+2}\right)^{2}  \tag{48}\\
& \text { Since } \xi=\frac{(Q / L)}{\nu} \text { and } \nu=\frac{\mu}{\rho} \\
& \xi \text { is a fairly large number*, and } \\
& \left(\frac{r \xi+2-b \xi+2}{a \xi^{+2}-b \xi+2}\right)^{2} \approx 1 \\
& \therefore\left(\overline{v_{r}}\right)_{t}=\frac{(M-m)}{k r^{3}} a^{2} v_{0}^{2}=\left(\frac{d r}{d t}\right)_{t} \\
& d t=\frac{d r}{\frac{(M-m) a^{2} v_{0}{ }^{2}}{k r^{3}}}
\end{align*}
$$

(49) \#

Combining Eq. 45 with Eq. 49 yields
*The magnitude can be estimated by assuming $Q=Q_{f}=$ $60 \mathrm{cc} / \mathrm{sec}$. for an actual run, so $L=2 \pi x 16 \mathrm{~cm}$. and $\nu={ }^{5} 0.01$ $\mathrm{cm}^{2} / \mathrm{sec} . \dot{\xi} \cong 60$.
\#Integrating Eq.. 49 will yield

$$
\left.t=\frac{9 u\left(C_{0}^{4}-a^{4}\right)}{8\left(\rho-\rho^{1}\right)\left(\sigma_{l}^{3}\right) a^{2} \nabla}\right\}
$$

$$
\begin{gather*}
d r=\frac{(Q / L)}{r} d t+\frac{(M-m) a^{2} v_{0}^{2}}{k r^{3}} d t=\frac{\left[r^{2} k(Q / L)+(M-m) a^{2} v_{o}^{2}\right]}{k r^{3}} d t \\
d t=\frac{r^{3} d r}{r^{2}(Q / L)+\frac{(M-m) a^{2} v_{O}^{2}}{k}}  \tag{50}\\
t=\frac{1}{(Q / L)} \int_{a}^{C_{0}} \frac{r^{2}+\frac{r^{3} d r}{(M-m)} a^{2} v_{O}^{2}}{k(Q / L)} \\
M=\frac{4}{3} \pi \rho \sigma^{3}, m=\frac{4}{3} \pi \rho^{\prime} \sigma^{3}, k=6 \pi \sigma \mu
\end{gather*}
$$

Equation 50 can be integrated by consulting an integral table where

$$
\begin{gather*}
\int \frac{x^{3} d x}{\left(K^{2}+X^{2}\right)}=\frac{x^{2}}{2}-\frac{K^{2}}{2} \ln \left(K^{2}+x^{2}\right) \\
t=\frac{c_{0}^{2}-a^{2}}{2(Q / L)}-\frac{\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} V_{O}^{2}}{9 \mu(Q / L)^{2}} \ln \left(\frac{C_{0}^{2}+\frac{2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} V_{O}^{2}}{9 \mu(Q / L)}}{a^{2}+2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} V_{O}^{2}}\right.  \tag{51}\\
9 \mu(Q / L)
\end{gather*}(5,
$$

Now, from Eq. 35 and Eq. 47 we have the relationship between ( $Q / L$ ) and $Z$ if experimentally measured flow rates are available. We also have the relationship between $Z$ and t from Eq. 44 provided the mass of the dispersed liquid
particle and the overflow rate are known. However, it appears Eq. 51 is handicapped by the fact that $C_{0}$ ! the radial distance from the center which determines whether the dispersed liquid particle will exit in the overflow or the underflow, cannot be measured directly by any simple experimental scheme. Therefore, in order to remedy this situation, it is necessary to establish another relationship between $C_{0}$ and some experimentally measurable variables so we can bridge the proposed theoretical model described in the foregoing sections and the experimental results--yet to be obtained--to test the validity of the model.

Assuming the oil-water mixture in the hydrocyclone is consistently well-proportioned as in the feed, we can propose that the ratio of a hypathetical conic volume of radius $C_{0}$ (Figure 4) to that of a radius $R$ is proportional to the ratio


Fig. 4. Vertical and Cross-Sectional View of a Hypothetical Model Within a Cyclone.
of the actual fraction of the volumetric rate of oil exiting in the overflow to that of its ideal fraction, thus

$$
\frac{\frac{1}{3} z \pi\left(C_{o}^{2}-a^{2}\right)}{\frac{1}{3} z \pi\left(R^{2}-a^{2}\right)}=\frac{\left(Q_{0} x_{0} / Q_{f} x_{f}\right) \exp :}{\left(Q_{0} x_{0} / Q_{f} x_{f}\right)}
$$

or

$$
\begin{gather*}
\frac{\left(C_{o}^{2}-a^{2}\right)}{\left(R^{2}-a^{2}\right)}=\frac{\left(Q_{O} x_{O} / Q_{f} x_{f}\right)}{\left(Q_{O} X_{O} / Q_{f} x_{f}\right)_{i d e a l}}  \tag{52}\\
R=\frac{b Z}{H} \tag{53}
\end{gather*}
$$

Both $b$ and $H$ are physical dimensions of the cyclone, and ( $x_{o}, x_{f}$ ) exp. are measured volumetric fractions of the oil in the overflow and in the feed, respectively. The ( $x_{0}$, $\mathrm{X}_{\mathrm{f}}$ ) ideal are defined in the second part of this chapter (p.41). One must bear in mind that this hypothetical model has no physical meaning.

## Method of Determining the Macroscopic Turbulent

Length: In the previous section we have obtained the means for calculating $C_{o}$ from a proposed model requiring measured experimental variables. However, Eq. 51 is of no use unless $v_{0}$, the tangential velocity at the air core, is known. Although an analytical method is available (Eq. 7) for computing $V_{o}$ at two parameters, $P_{\text {in }}$ and $(Q / L)$, it is not only very tedious but also, in applying it to Eq. 51, the correct
pair of $P_{\text {in }}$ and ( $Q / L$ ) values corresponding to each run must be known. This requirement demands an additional measurement, $P_{\text {in }}$ which cannot be obtained accurately due to pressure fluctuations within the cyclone during operation. Fortunately, the tangential velocity at the air core varies largely with the feed rate but less with the underflow (Eq. 35); i.e., both $P_{\text {in }}$ and $(Q / L)$ are affected by the feed, whereas ( $Q / L$ ) is only slightly affected by the underflow. In view of Eq. 51 which still contains two unknowns, $t$ and $V_{0}$, we can employ a pair of simultaneous equations representing two adjacent runs and a trial and error scheme to obtain $t$ and an average value of $V_{0}$ between any two adjacent runs of the same feed rate. The procedure is shown in the following steps:
A) Let
$t_{1}=\frac{C_{O 1}^{2}-a^{2}}{2!(\Omega / L)_{1}}-\frac{\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} v_{O}^{2}}{9 \mu(Q / L)_{1}^{2}} \ln \left(\frac{c_{O l}^{2}+\frac{2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} v_{O}^{2}}{9 \mu(Q / L)} 1_{1}^{2}}{a^{2}+\frac{2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} v_{0}^{2}}{9 \mu(Q / L)} 1}\right)$
$t_{2}=\frac{C_{O 2}^{2}-a^{2}}{2(Q / L)_{2}}-\frac{\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} \grave{v}_{0}^{2}}{9 \mu(Q / L)_{2}^{2}} \ln \left(\frac{C_{O 2}^{2}+\frac{2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} v_{o}^{2}}{9 \mu(Q / L)_{2}}}{a^{2}+\frac{2\left(\rho-\rho^{\prime}\right) \sigma^{2} a^{2} v_{o}^{2}}{9 \mu(Q / L)_{2}}}\right)$
where $\left(C_{0}\right)_{1}$ and $\left(C_{0}\right)_{2}$ can be obtained by using Eq. 52 with experimental information and ari assumed "d" from which

$$
\begin{align*}
& \mathrm{Z}=[\mathrm{H}-\mathrm{d}]  \tag{47}\\
& \mathrm{R}=\frac{\mathrm{bZ}}{\mathrm{H}} \tag{53}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{c_{o}^{2}-a^{2}}{R^{2}-a^{2}}=\frac{\left|\frac{Q_{0} x_{O}}{Q_{f} x_{f}}\right|_{\exp }}{\left|\frac{Q_{0} x_{O}}{Q_{f} x_{f}}\right|_{\text {ideal }}} \tag{52}
\end{equation*}
$$

B) Likewise, let
$Z_{1}=\frac{(m-M) m_{0} g}{k^{2}}\left[\frac{k}{m} t_{1}-1+e^{\frac{-k}{m_{0}} t_{1}}\right]+\frac{\left(Q_{0}\right)_{1} t_{1}}{\pi\left(b^{2}-a^{2}\right)}$
$Z_{2}=\frac{(m-M) m_{0} g}{k^{2}}\left[\frac{k}{m} t_{2}-1+e^{-\frac{k_{1}}{m_{0}} t_{1}}\right]+\frac{\left(Q_{0}\right)_{2} t_{2}}{\pi\left(b^{2}-a^{2}\right)}$
represent the same two adjacent runs where

$$
z_{1} \cong z_{2}
$$

for a unique "d". If the $m$ and $m_{o}$ values were negligibly small. Eq. 44a and Eq. 44 b can be approximated to

$$
\frac{\left(Q_{0}\right)_{1} t_{1}}{\pi\left(b^{2}-a^{2}\right)}=\frac{\left(Q_{0}\right)_{2} t_{2}}{\pi\left(b^{2}-a^{2}\right)}
$$

or

$$
\begin{equation*}
\frac{t_{1}}{t_{2}}=\frac{\left(Q_{0}\right)_{2}}{\left(Q_{0}\right)_{1}} \tag{54}
\end{equation*}
$$

C) Now Eq. 5la and Eq. 5lb can be fully utilized by substituting $(Q / L)_{1}$ and $(Q / L)_{2}$ (from Eq. 35) and an assumed value of $V_{0}$ in order to obtain $t_{1}$ and $t_{2}$ values. The value of $t_{1} / t_{2}$ must satisfy Eq. 54 before proceeding to the next step. If not, a new value for $V_{0}$ is assumed and Step (A) to (C) are repeated until the calculated $t_{1} / t_{0}$ matches the $t_{1} / t_{2}$ value from Eq. 54.
D) Finally, after the calculated $t_{1} / t_{2}$ satisfies Eq. $54, Z_{1}$ or $Z_{2}$ can be calculated (Eq. 44). A calculated value of $d$ is then found from Eq. 47. If the calculated value of $d$ does not equal the assumed value of $d$, the procedure is repeated from Step (B) downward until the assumed and calculated values of dare equal.

## Separation Efficiency

Before the overall separation efficiency for a threephase system is defined, it is worthy to note some nomenclature and material balance equations for a two-phase system.

$$
\begin{equation*}
Q_{f}=Q_{o}+Q_{u} \tag{32}
\end{equation*}
$$

where $Q_{f}, Q_{o}, Q_{u}=$ volumetric flow rate of the feed, overflow and underflow, respectively.

$$
\begin{equation*}
x_{0}+y_{0}=1.0 \tag{55}
\end{equation*}
$$

where $\quad X_{0}, Y_{0}=$ volumetric fraction of the lighter phase and the denser phase in the overflow, respectively.

The following material balance equations are also useful:

$$
\begin{equation*}
x_{u}+y_{u}=1.0 \tag{56}
\end{equation*}
$$

$$
\begin{align*}
& Q_{o} x_{o}+Q_{u} x_{u}=Q_{f} x_{f}  \tag{57}\\
& Q_{o} y_{o}+Q_{u} y_{u}=Q_{f} y_{f} \tag{58}
\end{align*}
$$

Tepe and Woods' (21) definition of overall separation efficiency for a liquid-liquid system is not only confined to the hydrocyclone but is also applicable to other separating devices as well. Briefly, the overall efficiency is the sum of each liquid phase (immiscible) efficiency. Thus

$$
\begin{equation*}
E=E_{1}+E_{2} \tag{59}
\end{equation*}
$$

where $E_{1}$ is the phase efficiency of the lighter liquid phase and $E_{2}$ that of the denser phase. Since the lighter phase is expected to exit in the overflow and the denser in the underflow, by definition

$$
\begin{equation*}
E_{1}=\frac{1}{Q_{f}}\left[Q_{0} x_{0}-Q_{0}\left(1-x_{0}\right) \frac{Q_{f} x_{f}}{Q_{f}\left(1-x_{f}\right)}\right] \tag{60}
\end{equation*}
$$

Qox is the measured volumetric flow rate of the lighter phase in the overflow, and $Q_{0}\left(1-x_{0}\right)\left(\frac{X_{f}}{1-x_{f}}\right)$ is the proportional amount of the lighter phase in the overflow had there been no enrichment of the lighter phase based on the presence of the heavier phase.

$$
\begin{equation*}
E_{2}=\frac{1}{Q_{f}}\left[Q_{u} y_{u}-Q_{u}\left(1-y_{u}\right) \frac{Q_{f} y_{f}}{Q_{f}\left(1-y_{f}\right)}\right] \tag{6I}
\end{equation*}
$$

Combining Eq. 60 with Eq. 61 yields

$$
\begin{equation*}
E=E_{1}+E_{2}=\frac{Q_{0}\left(x_{0}-x_{f}\right)}{Q_{f}\left(1-x_{f}\right)}+\frac{Q_{u}\left(Y_{u}-Y_{f}\right)}{Q_{f}\left(1-Y_{f}\right)} \tag{62}
\end{equation*}
$$

With the aid of material balance equations, Eq. 62 could be reduced further to

$$
\begin{equation*}
E=\frac{Q_{O}\left(x_{O}-x_{f}\right)}{Q_{f} x_{f}\left(1-x_{f}\right)} \tag{63}
\end{equation*}
$$

Overall Separation Efficiency for a Three-Phase
System: In the case of a three-phase separation in a conventional hydrocyclone where only two outlets are accessible, the third phase will have to exit either through the vortex finder tube or the discharge apex, or both simultaneously. Hence, in defining the overall separation efficiency, the desirability of the third phase to exit in either outlet dictates the format of the equation. If it is desired that the third phase exit in the overflow, the phase efficiency for the lighter phase would be

$$
\begin{align*}
E_{1}= & \frac{1}{Q_{f}}\left[Q_{0} x_{0}-Q_{0}\left(1-x_{o}-Z_{O}\right) \frac{Q_{f} x_{f}}{Q_{f}\left(1-x_{f}-Z_{f}\right)}\right]=\frac{Q_{0}}{Q_{f}} \\
& {\left[\frac{\left(x_{f} Z_{o}-x_{0} Z_{f}\right)+\left(x_{0}-x_{f}\right)}{\left(1-x_{f}-Z_{f}\right)}\right] } \tag{64}
\end{align*}
$$

where $\quad z_{0}=$ fraction of third component in the overflow. $\mathbf{z}_{\mathrm{f}}=$ fraction of third component in the feed.

The phase efficiency for the denser phase is identical to Eq. 6l. Likewise, the phase efficiency for the third phase would be

$$
\begin{align*}
E_{3} & =\frac{1}{Q_{f}}\left[Q_{o} Z_{o}-Q_{o}\left(1-x_{o}-z_{o}\right) \frac{Q_{f} Z_{f}}{Q_{f}\left(1-x_{f}-Z_{f}\right)}\right] \\
& =\frac{Q_{O}}{Q_{f}}\left[\frac{\left(x_{o} Z_{f}-x_{f} Z_{o}\right)+\left(Z_{o}-z_{f}\right)}{\left(1-x_{f}-Z_{f}\right)}\right] \tag{65}
\end{align*}
$$

The overall separation efficiency for a three-phase system is therefore
$E=E_{1}+E_{2}+E_{3}=\frac{Q_{0}\left[\left(x_{o}-x_{f}\right)+\left(Z_{o}-Z_{f}\right)\right]}{Q_{f}\left(1-x_{f}-Z_{f}\right)}+\frac{Q_{u}\left(Y_{u}-y_{f}\right)}{Q_{f}\left(1-Y_{f}\right)}$
In case it is desired that the third phase exit in the underflow,

$$
\begin{equation*}
E=\frac{Q_{0}\left(x_{0}-x_{f}\right)}{Q_{f}\left(1-x_{f}\right)}+\frac{Q_{u}\left[\left(y_{u}-y_{f}\right)+\left(z_{u}-Z_{f}\right)\right]}{Q_{f}\left(1-y_{f}-Z_{f}\right)} \tag{67}
\end{equation*}
$$

Tengbergen and Rietema (20) listed eleven basic requirements for an acceptable overall separation efficiency value. The major points were

1. The highest value should be reached only when both phases are obtained completely pure after separation.
2. If one effluent stream contains a pure phase, the efficiency should be equal to the ratio of the quantity of this pure stream over the quantity of this phase in the feed.
3. If the feed is split up into 2 streams having the same composition as the feed, the efficiency number should be zero.
4. The efficiency should remain the same if the 2 phases or the 2 effluent streams are interchanged.

For a two-phase system, they defined the efficiency to be

$$
\begin{equation*}
E=\left|\frac{Q_{o} x_{O}}{Q_{f} x_{f}}-\frac{Q_{0} Y_{O}}{Q_{f} Y_{f}}\right|=\left|\frac{Q_{O} x_{u}}{Q_{f} x_{f}}-\frac{Q_{u} Y_{u}}{Q_{f} Y_{f}}\right| \tag{68}
\end{equation*}
$$

which is identical to Eq. B-2 (Appendix B)
Extending this definition to a multiphase system yields

where $A_{1}, A_{2}, A_{3}, . . . A_{n}$ are lighter phases desired to leave the overflow.
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$, . . . $\mathrm{B}_{\mathrm{n}}$ are denser phases desired to leave in the underflow, and

$$
\begin{equation*}
\left(A_{1}+A_{2}+A_{3}+\ldots+A_{n}\right)_{0}+\left(B_{1}+B_{2}+B_{3}+\ldots+B_{n}\right)_{0}=Q_{0} \tag{70}
\end{equation*}
$$

$\left(A_{1}+A_{2}+A_{3}+\ldots+A_{n}\right)_{u}+\left(B_{1}+B_{2}+B_{3}+\ldots+B_{n}\right)_{u}=Q_{u}$
$\left(A_{1}+A_{2}+A_{3}+\ldots+A_{n}\right)_{f}+\left(B_{1}+\dot{B}_{2}+B_{3}+\ldots+B_{n}\right)_{f}=Q_{f}$

Examples illustrating the identity of Eq. 63 with Eq. 68 and Eq. 66 with Eq. 69 are shown in Appendix B. It has been demonstrated in the literature (20) that numerous different algebraic manipulations are available to compute the identical overall efficiency value.

## Definition of Ideal Separation Efficiency: When a

 feed stream containing two immiscible fluid phases of a given proportion is charged to a hydrocyclone, the most ideal separation would be for the overflow to contain only the pure lighter phase and the underflow the pure denser phase. Consequently, the ratio of the overflow to underflow (effluent split) will be identical to the ratio of the lighter phase to denser phase $\left(\mathrm{x}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}\right)$ in the feed. With reference to Eq. 62 both$$
\left(x_{0}\right)_{s}=1.0,\left(y_{u}\right)_{s}=1.0
$$

and the ideal efficiency, $E_{s}$, is unity.

$$
\begin{equation*}
E_{s}=\frac{Q_{o}+Q_{u}}{Q_{f}}=1.0 \tag{73}
\end{equation*}
$$

In case the desired effluent split is not identical to $x_{f} / y_{f}$, the best separation would be for one exit flow to contain a pure phase; i.e., either $\mathrm{x}_{0}$, or $\mathrm{Y}_{\mathrm{u}}$, equals 1.0. In such a case the shape of the curve of the ideal efficiency, $\mathrm{E}_{\mathrm{S}}$, versus effluent split will be of a "roof-type" with the highest $E_{s}$ value (1.0) at $Q_{o} / Q_{u}=X_{f} / Y_{f}$. Since the ideal efficiency values can be obtained independent of experimental data, a

FORTRAN computer program has been developed to generate these values which are shown in Table C-1 for subsequent reference. For a three-phase system, the determination of $\mathrm{E}_{\mathrm{S}}$ values follows the same logic as discussed in this section. If it is desired to have the third phase exit with the lighter phase, then

$$
\begin{equation*}
\left(x_{0}+z_{0}\right)_{s}=1.0,\left(y_{u}\right)_{s}=1.0 \tag{74}
\end{equation*}
$$

otherwise

$$
\begin{equation*}
\left(x_{0}\right)_{s}=1.0,\left(y_{u}+z_{u}\right)_{s}=1.0 \tag{75}
\end{equation*}
$$

and both Eq. 66 and Eq. 67 can be reduced to unity respectively at $Q_{o} / Q_{u}=x_{f} / y_{f}$.

The utilization of the ideal efficiency curve is not only limited to hydrocyclones in general but to any phase separation device as well. In employing the ideal curve as a guide (in a somewhat similar manner as the equilibrium curve in the extraction operation), it enables the designer to select the most optimum range of effluent split when the actual efficiency values are available for comparison.

## CHAPTER IV

EXPERIMENTAL APPARATUS AND PROCEDURES

A conventional hydrocyclone normally consists of three stationary parts: 1) Vortex finder tube (VFT), 2) Main body with tangential feed entrance tube, and 3) Discharge apex nozzle. For a certain size of a main body, which is essentially a short cylindrical section in conjunction with a truncated cone, a given interchangeable vortex finder tube and certain discharge apex nozzles are combined to satisfy a specific requirement for separation. In the case of solid-liquid separation, for instance, the larger the diameter of the, yortex finder tube, the coarser the separation; i.e., more solid particles exit with the liquid in the overflow. On the other hand, a large discharge apex orifice yields greater underflow. :Thus the primary function of the apex nozzle is to control the effluent split ( $Q_{0} / Q_{u}$ ). In certain industrial applications, apex nozzles with variable diameters are often employed in order to suit a range of specific needs.

## Laboratory Equipment

For the convenience of visual observations in the present study, a glass, laboratory hydrocyclone test set was purchased from Liquid-Solid Separation, Ltd. of London (Fig. 5). It contains two hydrocyclones, 30 mm and 15 mm ID measured at the cylindrical section. Each cyclone is equipped with three vortex finder tubes and five discharge apex nozzles. Because the maximum solid size used in the experiments reported herein was 0.832 mm , it was not possible to use the 15 mm cyclone since the largest discharge apex nozzle, being 1.5 mm , could not accommodate a free slurry flow. In the case of the 30 mm cyclone, this restriction also permitted the use of only the largest discharge nozzle ( 3.0 mm , designated as No. 1) and occasionally the second largest nozzle (2.6 min, designated as No. 2).

One of the primary objectives of this study was to determine the separation efficiency as a function of effluent split $\left(Q_{0} / Q_{u}\right)$. However, the restrictions imposed on the range of volume splits by the limited combinations of vortex finder tube and discharge.apex nozzle precluded obtaining the desired range of values from 0.2 to 8.0. In order to obtain the desired range of values, a screwclamp and copper wires were used to restrict the overflow through a chlorinated Tygon tubing attached to the vortex finder tube. All of the three vortex finder tubes (ID $8.5 \mathrm{~mm}, 6.0 \mathrm{~mm}, 4.2 \mathrm{~mm}$, designated as large, medium, and small respectively) were used. The dimensions of the cyclone in detail are shown in Figure 6.


Figure 5. Views of the Air Core and Rotating Spray at the Apex

Physical Dimensions of the Laboratory Hydrocyclone
The laboratory hydrocyclone has the shape of a truncated cone. In order to simplify the mathematics involved in describing the geometry of a truncated cone, extrapolation was made from the apex so the cycione can be considered as a cone. Since it is the ratio of the cone volumes (hypothetical cone volume over the effective cone volume as defined by Eq. 52) which is applicable to calculations, any error incurred by considering a full cone instead of a truncated cone will be relatively insignificant.

By use of the physical
dimensions of the laboratory hydrocyclone, the apex angle, $\alpha$, the extrapolated height, H, can be calculated as follows (See Figure 6 for dimensions of the cyclone).

$$
\begin{aligned}
& \tan (\alpha / 2)=\frac{1.50-0.15}{14.5} \\
&=0.0931 \\
& \alpha=10^{\circ} 40^{\prime} \\
& \frac{0.15}{h^{\prime}}=\tan (\alpha / 2)=0.0931 \\
& \mathrm{~h}^{\prime}=1.60 \mathrm{~cm} \\
&\text { Hence, } \left.\quad \begin{array}{rl}
\mathrm{H} & =\mathrm{h}+\mathrm{h}^{\prime} \\
& =14.5+1.6=16.1 \mathrm{~cm}
\end{array} \quad \begin{array}{rl} 
\\
& =1
\end{array}\right)
\end{aligned}
$$

The volume of the cone at a distance $Z$ from the apex is $\frac{\pi R^{2} z}{3}$ whereas $R / b=z / 16.1$

$$
\begin{aligned}
R^{2} & =b^{2}\left(\frac{16.1-\alpha}{16.1}\right)^{2} \\
& =(1.5)^{2}\left(\frac{16.1-\alpha}{16.1}\right)^{2}
\end{aligned}
$$

The air core radius is estimated to be about 0.1 cm . The conic volume of a height $Z$ is

$$
\frac{\pi}{3} R^{2} Z-\pi(a)^{2} Z=\frac{\pi Z}{3}\left(R^{2}-3 a^{2}\right)
$$

The hypothetical conic volume of a height $Z$ with a radius $C_{0}$ is

$$
\frac{\pi}{3} c_{0}^{2} z-\pi(a)^{2} z=\frac{\pi Z}{3}\left(c_{o}^{2}-3 a^{2}\right)
$$

As stated in Chapter III (p. 33) the relationship between the measured variables and the assumed hypothetical model is represented by

$$
\begin{equation*}
\left(\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right) /\left(\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right)_{\text {ideal }}=\frac{\pi\left(c_{o}^{2}-3 a^{2}\right) \frac{Z}{3}}{\pi\left(R^{2}-3 a^{2}\right) \frac{Z}{3}} \tag{52}
\end{equation*}
$$

It is generally due to the simplicity of the hydrocyclone operation that the entire experimental configuration is quite minimal. A duplicate set could be assembled within a few days provided all the parts are available.

The major part of the installation was a Teel conveyor pump (Model 1P610) driven by a $\frac{1}{2} \mathrm{HP}$ motor. Since variable speeds for the pump were requred, a Variac was attached to the motor and different sizes of pulleys incorporated between the motor and pump. A 55-gal drum equipped with a low-speed mixer was also employed for mixing the premeasured solid particles with the hydrocarbon. The details of the experimental setup are shown in Figure 7.

## Materials Used

The hydrocarbon used throughout this project was a mixture of $C_{12}, C_{13}$, and $C_{14}$ defined as "heavy paraffin" and was donated by Continental Oil Co. of Ponca City. The specific gravity was determined by a Westphal balance to be 0.756.

The solid particles, trade-named Microthene, were donated by U.S. Industrial Chemical Co. Two sizes, 0.832 mm and 0.294 mm , both having the same specific gravity of 0.923, were tested. Since the particles are only preferentially wetted by the hydrocarbon, they were mixed with the hydrocarbon prior to merging with the water stream.


Figure 7. Schematic Diagram of Experimental Installation.

Whenever emulsion occurred as a result of the intense turbulence in the cyclone created during high flow rates, a few drops of water-soluble "emulsion breaker" (trade-named Tretolite) was added to disperse the emulsion layer.

## Experimental Procedure

Because a density change of any material is not expected in this experiment, all the percentages are conveniently expressea on a volume basis. The experimental procedures are:

1) Once all the requirements for a particular run were assigned, the mixer in the solid-hydrocarbon tank and the conveyor pump were turned on to allow mixing and recycling of solid and hydrocarbon between the pump and the tank for five minutes before merging with the water to enter into the hydrocyclone. The water flow rate was determined by using a calibrated monometer.
2) With the aid of a stop-clock, a run began with the simultaneous placing of overflow and underflow tubes each in separate cylinders. For a feed rate of $50 \mathrm{cc} / \mathrm{sec} .$, a 60 seconds duration was assigned; for $50 \mathrm{cc} / \mathrm{sec} ., 60$ seconds; and for $40 \mathrm{cc} / \mathrm{sec} ., 75$ seconds, respectively.
3) At the end of each run, both the volume of aqueous and of hydrocarbon-solid phases in overflow and underflow were measured and recorded.
4) The solids were then vacuum-filtered through a Buchner funnel and collected in a pre-weighed paper
basket prior to drying. Each sample was oven dried for about 3 hours at $100^{\circ} \mathrm{C}$ prior to weight determination in an analytical balance.

A data sheet including sample calculations is given in Appendix $D_{\text {o }}$

## Operating Parameters

As evident in the foregoing chapters, the determination of separation efficiency (E) as a function of effluent split $\left(Q_{0} / Q_{u}\right)$ demands the measurement of $X_{O}, Y_{u}$, and $z_{0}$ as dependent variables. In order to observe any significant effect on these variables, the following parameters and levels were chosen:
A) Feed rate $\left(Q_{f}\right): 50,60$, and $75 \mathrm{cc} / \mathrm{sec}$.
B) Feed phase ratio $\left(\left(x_{f}+z_{f}\right) / y_{f}\right)=0.5,1.0$, and 2.0.
C) Solid concentration in oil: $2 \%$ and $4 \%$.
D) Solid Diameter: 0.832 and 0.294 mm .

Thus, the minimum number of sets required would be identical to the maximum number of combinations of parameter levels, so No. of Sets $=3 \times 3 \times 2 \times 2=36$

In view of the possibility that the dimensions of both the vortex finder tube and the discharge nozzle might exert strong influence on the measured variables, three additional sets of runs using different combinations of vortex tube and discharge nozzles were conducted (Figures E-5, 6, and 14) for comparision. All the 39 sets of efficiency curves are presented in Appendix E.

MEASUREMENT ERRORS

Although efforts have been made to minimize all the possible measurement errors in the system, an estimate of the errors is still appropriate.

Before estimating the relative errors inherent in the overall efficiency value and various volume splits, it will be recalled that the resultant relative errors of the four arithmetic operations are (13)

Addition:

$$
\begin{equation*}
\frac{e_{x}+y}{\bar{x}+\bar{y}}=\frac{\bar{x}}{\bar{x}+\bar{y}}\left(\frac{e_{x}}{\bar{x}}\right)+\frac{\bar{y}}{\bar{x}+\bar{y}}\left(\frac{e_{y}}{\frac{y}{y}}\right) \tag{76}
\end{equation*}
$$

Subtraction:

$$
\begin{equation*}
\frac{e_{x-y}}{\bar{x}-\bar{y}}=\frac{\bar{x}}{\bar{x}-\bar{y}}\left(\frac{e^{x}}{\frac{1}{x}}\right)-\frac{\bar{y}}{\bar{x}-\bar{y}}\left(\frac{e_{y}^{y}}{\bar{y}}\right) \tag{77}
\end{equation*}
$$

Multiplication: $\quad \frac{e_{x} \cdot y_{y}}{\bar{x} \cdot \bar{y}} \cong \frac{e_{x}}{\bar{x}}+\frac{e_{y}}{\bar{y}}$

Division:

$$
\begin{equation*}
\frac{e_{x} / y}{\bar{x} / y} \cong \frac{e_{x}}{\bar{x}}-\frac{e_{y}}{\bar{y}} \tag{79}
\end{equation*}
$$

where $\bar{x}, \bar{y}=$ measured quantity of variables $x, y$, respectively. $e_{x}, e_{y}=$ known error in the measured quantity $x, y$, respectively.

In this experiment, the errors in the measurement arise from the volumetric measurement of the effluents and the gravimetric measurement of the solids. The relative error in measuring the oil (and also water) volume in the overflow as well as in the underflow is estimated to be approximately $\pm 0.5 \%$. By applying Eq. 76 the resultant maximum relative eqror in either overflow (or underflow) volumetric measurement should be

$$
\frac{e_{Q_{0} t}}{Q_{0} t} \leq 1.0 \%
$$

Since $x_{o}$ is the volume fraction of oil (with solids) in the overflow, the resultant relative error by applying Eq. 79 is

$$
\frac{e_{x_{0}}}{\bar{x}_{o}} \leq 2.0 \%
$$

The maximum relative error for the feed volume is the combined relative error of both the overflow and underflow because the feed volume was determined by adding the overflow and underflow volumes.' Hence, by Eq. 76

$$
\frac{Q_{Q_{f}}}{Q_{f^{t}}} \leq 2.0 \%
$$

Likewise, by Eq. 79, the relative error in computing $\mathbf{x}_{f}$ should be

$$
\frac{e_{x f}}{\bar{x}_{f}} \leq 3.0 \%
$$

"With reference to Eq. 63 the overall efficiency can be expressed in terms of

$$
\begin{equation*}
E=\frac{\left(Q_{0} t\right)\left(x_{0}-x_{f}\right)}{\left(Q_{f} t\right)\left(x_{f}\right)\left(l-x_{f}\right)} \tag{80}
\end{equation*}
$$

The resultant relative error of $Q_{0} / Q_{f}$ can be estimated as $s$ $3.0 \%$ and for $\left(x_{0}-x_{f}\right)$, the relative error is $\leq 4.5 \%$. Similarly, for the term $x_{f}\left(1-x_{f}\right)$, the relative error is $\leq 6.0 \%$. By combining the relative errors of all measurements pertaining to the efficiency, the error analysis shows that the maximum relative error in calculating the efficiency is

$$
\frac{e_{E}}{\bar{E}} \leqslant 13.5 \%
$$

The maximum relative errors for each of the volume splits were also estimated. In summary:

Volume Split
Relative Error
s $2.0 \%$
water $\left(\frac{Q_{u} y_{0}}{Q_{u} y_{u}}\right)$
oil + solids $\left.\frac{Q_{0}\left(x_{0}+Z_{0}\right)}{Q_{u}\left(x_{u}+Z_{u}\right)}\right)$
$\leq 1.0 \%$

## 55

$$
\begin{array}{ll}
\text { oil }\left(\frac{Q_{0} x_{o}}{Q_{u} x_{u}}\right) & \leq 1.0 \% \\
\text { solids } \left.\frac{Q_{0} Z_{o}}{Q_{u} Z_{u}}\right) & \leq 0.08 \%
\end{array}
$$

## CHAPTER VI

## DISCUSSION OF RESUUTS

## Effici.ency Curves

A total of 240 runs grouped"in 39 sets of various parameter combinations was conducted for this experiment. An index table and description for the preliminary treatment of raw data are included in Appendix E with two summaries of data and 39 sets of efficiency curves. Each set comprises both an actual and an ideal efficiency curve plotted as functions of effluent split ( $Q_{o} / Q_{u}$ ). Since there are only three phase ratios (oil/water $=1 / 2,1 / 1$, $2 / 1$ ) included in this experiment and each phase ratio dictates the shape of an ideal efficiency curve, the actual efficiency curve is compared with its own ideal efficiency curve at the same phase ratio. Figures 8, 9, and 10 (identical to Figures E-1, 2, and 3) are representative samples at $Q_{f}=60 \mathrm{cc} / \mathrm{sec}$.

Among the 39 sets of efficiency curves presented here, three sets are duplicates of identical parameter combinations. The purpose was to investigate the possible influence of both vortex finder and discharge nozzle sizes


Figure 8. Overall Efficiency vs. Effluent Split (oil/ water $=1 / 2, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}$ ).


Figure 9. Overall Efficiency vs. Effluent Split (oil/ water $\left.=1 / 1, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}\right)$.


Figure 10. Overall Efficiency vs. Effluent Split (oil/ water $\left.=2 / 1, Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}\right)$.
on the actual efficiency. Runs in Figures 11, 12, and 13 (identical to Figures $E-4 ; 5$, and 6) were conducted under identical operating conditions with different tube and nozzle combinations. As evident from the shape of the curves, no appreciable effect on actual efficiency could be detected. However, in contrast to Figure 14 (Figure E-13), Figure 15 (Figure E-14) displays a sharp decline in actual efficiency under a large vortex finder tube. The logical explanation is that at phase ratio (oil/water) of $1 / 2$, the vortex tube's cross-sectional area not only covers most of the oil particles congregating around the air core but also the water phase as well. Hence, the size of the tube is of importance. In the previous case where the phase ratio (oil/water) is $2 / 1$, both the overflow and the underflow contain large portions of oil, particularly in the overflow. Therefore, it could be reasoned that the vortex finder tube, from the smallest to the largest used in this experiment, is likely to be occupied by oil flowing through. From the exhibits of all the three duplicate runs, it may be concluded that both vortex tube and discharge nozzle size would have no effect on the actual efficiency for runs of phase ratio (oil/water) $2 / 1$.

It can also be noted from all the actual efficiency curves that nearly all the maximum values are located in the vicinity where $Q_{o} / Q_{u}=1.0$, irrespective of any phase ratio. This consistency may be attributed to the fact that the


Figure 11. Overall Efficiency vs. Effluent Split (oil/ water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ medium, Apex $=$ No. 1 .


Figure 12. Overall Efficiency vs. Effluent Split (oil/
water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ large,
Apex = No. 2).


Figure 13. Overall Efficiency vs. Effluent Split (oil/ water $=2 / 1, Q_{f}=75.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ small, Apex = No. 2)



Figure 15. Overall Efficiency vs. Effluent Split (oil/ water $=1 / 2 ; Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}, \mathrm{VFT}=$ large, Apex No. 2.)
geometrical shape of the cyclone exerts a unique influence on the actual separation efficiency since all the runs were conducted in the 30 mm cyclone.

As a result of this investigation, a novel term- . relative efficiency ( $\mathrm{E} / \mathrm{E}_{\mathrm{S}}$ )--is introduced. It is defined as the ratio of the actual efficiency to its corresponding ideal efficiency at the same effluent split ( $Q_{0} / Q_{u}$ ) and phase ratio $\left(x_{f} / y_{f}\right)$. While the utility value of this term is exemplified in the following chapter, the values of relative efficiency are plotted against effluent split ( $Q_{0} / Q_{u}$ ) in Figure 16 for the runs shown in Figures 8, 9, and 10. It may be of some interest to note that practically all of the lowest values of the relative efficiency occur in the neighborhood where the effluent split ( $Q_{0} / Q_{u}$ ) approximates the phase ratio $\left(x_{f} / y_{f}\right)$.

With reference to the section on "Separation Efficiency" in Chapter III, it has been mentioned that the peak of the ideal efficiency (100\%) can only occur where effluent split ( $Q_{0} / Q_{u}$ ) coincides with phase ratio ( $X_{f} / Y_{f}$ ). Therefore, the low value of relative efficiency where $Q_{o} / Q_{u}$ equals to $x_{f} / Y_{f}$ only substantiates the belief that this particular cyclone is not well designed for the liquidliquid separation and process designers must select a cyclone most suitable for a known phase ratio $\left(\mathrm{x}_{\mathrm{f}} / \mathrm{Y}_{\mathrm{f}}\right)$ in order to obtain a maximum investment return.


Figure 16. Relative Efficiency vs. Effluent Split at Three Phase Ratios ( $Q_{f}=60.0 \mathrm{cc} / \mathrm{sec}$ ).

## Emulsification

According to the established theory, an emulsion consists of two liquid phases of which the dispersed phase is distributed in the continuous phase in the form of microdroplets ( 0.2 to 5 microns). When the volume concentration of these droplets exceeds $74 \%$, they must cease to be spherical and the structure resembles that of foams. It is also known that an emulsion is formed when the dispersed liquid particle in a mixture traveling in a continuous medium experiences intense shear force as a result of momentum transfer. In the case of a hydrocyclone, the phenomenon occurs only at higher feed rates as observed in this experiment. Under these circumstances, the dispersed particles congregating in the vicinity of the air core apparently are not able to transfer all of the momentum from the air core to the next adjacent layer and consequently are broken into micro-droplets. This phenomenon is more pronounced for a mixture having a phase ratio (oil/water) of 1.0 , probably due to the maximum interfacial contact surface area separating these two phases. The momentum transfer across an interface is always hindered to some extent presumably due to the interfacial tension. It is natural that the momentum flux generated from the air core can cause a larger particle to break up into smaller ones. The "breaking-up" process will continue until the interfacial forces of the particle
are large enough to withhold further reduction in size due to shearing forces.

During the experimental runs one could also observe the intense emulsification taking place at the region immediately below the upper base where turbulence is more prominent. When emulsions are formed within a hydrocyclone, separation becomes minimal because the particles of smaller size are less mobile, particularly in a very crowded space. Hence, no meaningful comparison can be made between an emulsified run and its emulsion-free counterpart under otherwise identical operating conditions.

## Effective Volume Fraction and Cyclone Performance

The so-called "effective volume fraction" (EVF) is defined as the complementary fraction of the ineffective volume representing turbulence, emulsification, mixing, entrainment and any unknown hydrodynamic cause detrimental to the separation of phases in a cyclone. Although the ineffective volume fraction can be obtained by direct conversion from the macroscopic turbulent length defined in Chapter III (Note: both values are tabulated in Table E-3), the term "volume fraction" is preferred over "length" which might suggest that ineffectiveness is present only in a particular locality. Nevertheless, before arriving at the value of a volume fraction, it is necessary to determine the turbulent length by the scheme outlined in the final
section of Chapter III; the selection of the appropriate model by fitting it with experimental data is fully explained in Appendix F. However, one must bear in mind that the derivation of relative velocity, and hence the vertical distance (Eq. 27 and Eq. 40) traveled by a dispersed particle, was performed for the case where the density of the continuous phase is greater than that of the dispersed phase. Hence both $\overline{\mathrm{v}}_{\theta}$ and $\overline{\mathrm{v}}_{r}$ are negligible. If, on the converse, these two quantities are not negligible, the turbulent length, $d$, obtained without the inclusion of them cannot be too realistic. Unfortunately, the mathematics would be insurmountable if both $\overline{\mathrm{v}}_{\theta}$ or $\overline{\mathrm{v}}_{r}$ were included in the derivation for an analytical solution. From a series of solid-liquid separation experiments Rietema (17) has reported, in terms of minimum turbulence, various optimum ratios of cyclone component parts to the cyclone's upper base diameter, e.g.,

$$
L / D=5.0 \text { and } b / D=0.28
$$

where $L$ is the cyclone height and $b$ the internal feed tube diameter. By comparing with the present cyclone in question where

$$
\begin{aligned}
\mathrm{L} / \mathrm{D} & =14.5 / 30.0 \cong 5.0 \\
\text { and } \quad \mathrm{b} / \mathrm{D} & =6.0 / 30.0=0.20
\end{aligned}
$$

It is conceivable that some turbulence may be attributed to the small feed entrance tube.

One may also note from the tabulation of effective volume fraction that the value is in increasing order with effluent split $\left(Q_{o} / Q_{u}\right)$. This phenomenon could very well mean the moderation of turbulence as more fluid (in both phases) exits in the vortex finder tube as the overflow. Since the vortex tube is located very near the feed entrance tube, a high overflow rate also suggests that a short and direct route could exist between these two tubes.

Superficially, the relative efficiency value and the effective volume fraction may seem to be identical. A close examination of the equations and derivations indicates that the former is a measure of enrichment of both liquid phases by means of effluent compositions, while the latter reveals the hydrodynamic aspect of a cyclone in operation. A comparison of these two terms is meaningful only for identical cyclones under identical operating conditions. For example, a replacement of the small vortex finder by a medium size for higher overflow rate would lower the value of relative efficiency because a more dense liquid phase would exit in the overflow. Yet in the meantime, the effective volume fraction increases due to less turbulence. In order to measure the performance of a cyclone, a new term, $\Phi$, designated as the product of relative efficiency and effective volume fraction is introduced. It is interesting to note from Figures 17, 18, and 19 that for


Figure 17. Cyclone Performance vs. Effluent Splits (Run Set No's. 1, 10, 11, and 13).


Figure 18. Cyclone Performance vs. Effluent Splits (Run Set No's. 15, 22, and 24).


Figure 19. Cyclone Performance vs. Effluent Splits (Run Set No's. 25, 37, 38, and 39).
all the runs with $\mathrm{x}_{\mathrm{f}}=0.33$ (phase ratio - oil/water $=0.5$ ), an "S" shape curve results when the performance is plotted against effluent splits, except when intense emulsification is encountered. However, no fixed shape curve could be identified for runs with $\mathrm{x}_{\mathrm{f}}=0.50$ and $\mathrm{x}_{\mathrm{f}}=0.67$. This phenomenon further substantiates the fact that the mathematical model postulating a streamline flow is more suitable. for a system in which the dispersed phase is of a density less than that of the continuous phase (for more details see Appendix F).

## APPLICATION OF RELATIVE EFFICIENCY <br> VALUES TO CYCLONE PROCESS DESIGN

Method of Estimating Relative Efficiency Values
The relative efficiency has been defined to be the actual separation efficiency divided by the ideal efficiency at the same effluent split ( $Q_{0} / Q_{u}$ ) and feed composition ( $X_{f}$ ) (Appendix C). Briefly, it is a measure of the proximity to an ideal state and its maximum value is unity. Since relative efficiency values ( $E / E_{S}$ ) as a function of effluent split $\left(Q_{0} / Q_{u}\right)$ for three $x_{f}$ values ( $0.33,0.50$, and 0.67 ) at a particular feed rate have been determined experimentally, the $E / E_{S}$ value at, say, $x_{f}=0.8$ can be readily obtained by cross-plotting the known relative efficiency value versus $\mathrm{x}_{\mathrm{f}}$ at various effluent splits and extrapolating to $\mathrm{x}_{\mathrm{f}}=0.8$. The results of a set of such extrapolations is given in Table 1. The overall efficiency curve of this new estimated system is simply the extrapolated relative efficiency values multiplied by the corresponding ideal efficiency ( $E_{s}$ ) values at the same effluent split ( $Q_{0} / Q_{u}$ ) . In Figure 20 the estimated overall efficiency curve at $60 \mathrm{cc} / \mathrm{sec}$ and $\mathrm{x}_{\mathrm{f}}=0.8$ (or $x_{f} / y_{f}=4.0$ ) in a 30 mm cyclone is shown as an illustration of the usefulness of the relative efficiency values.

TABLE 1
ESTIMATING THE OVERALL EFFICIENCY VALUES BY EXTRAPOLATION

(extrapolated)

| l. | 0.70 | (extrapolated) |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.7 | 0.55 | 0.70 | 0.96 | 0.99 | 0.42 | 0.42 |
| 0.9 | 0.70 | 0.73 | 0.96 | 0.99 | 0.51 | 0.51 |
| 1.1 | 0.86 | 0.75 | 0.97 | 0.99 | 0.59 | 0.59 |
| 1.3 | 0.91 | 0.82 | 0.94 | 0.99 | 0.66 | 0.65 |
| 1.5 | 0.94 | 0.84 | 0.80 | 0.78 | 0.71 | 0.70 |
| 1.7 | 0.96 | 0.85 | 0.74 | 0.68 | 0.75 | 0.59 |
| 2.0 | 0.97 | 0.86 | 0.69 | 0.56 | 0.83 | 0.47 |

*See Table C-1
\# See Figure 20 next page

Comparison of Two Cyclone Systems
A practical example of the application of relative efficiency to cyclone process design utilizing the aforementioned efficiency curve is of interest.

In making a comparison, two cyclone systems are considered. System 1 operates at a flow rate of $60 \mathrm{cc} / \mathrm{sec}$ and contains $50 \%$ oil in the feed. It is now desired to separate the feed stream into two effluents with the overflow containing


Figure 20. Estimated Overall Efficiency vs. Effluent Splits (oil/water $=4 / 1, Q_{E}=60.0 \mathrm{cc} / \mathrm{sec}$ ).
about $86 \%$ oil. Separation is to be accomplished by using a $30-\mathrm{mm}$ cyclone, and the operating effluent splits ( $Q_{o} / Q_{u}$ ) are chosen from the actual efficiency curve given in Figure 9 (or Figure E-2) because the information on the feed conditions and the overflow composition are available. The data also show that

$$
\begin{aligned}
& Q_{0}=27 \mathrm{cc} / \mathrm{sec}, \dot{Q}_{u}=33 \mathrm{cc} / \mathrm{sec} \\
& x_{u}=0.20, E / E_{s}=71 \%
\end{aligned}
$$

The flow sheet for System 1 is shown as follows:


$$
\begin{aligned}
\mathrm{Q}_{\mathrm{u}} & =33 \mathrm{cc} / \mathrm{sec} \\
\mathrm{x}_{\mathrm{u}} & =0.20 \\
\mathrm{y}_{\mathrm{u}} & =0.80
\end{aligned}
$$

Figure 21. Cyclone System 1.

Here, the total flow requires pumping is $60 \mathrm{cc} / \mathrm{sec}$ and only one cyclone unit is needed.

Suppose it is now desired to upgrade the oil content in the overflow to $\mathrm{x}_{0}=0.98$ while maintaining the same feed rate, feed composition, and overall effluent splits
as in System 1. Two cyclone batteries in series, designated as System 2, are devised for comparative study. By assuming an effluent ratio. for each battery and by using efficiency Curves (Figures 10 and 20), one can determine the interstream flow rate and flow composition with the aid of simple material balance equations (Equations 55-58). Thus


Figure 22. Cyclone System 2.
(Dual-battery in Series)
it is discovered that for
Battery I:

$$
\begin{aligned}
Q_{f}^{\prime} & =213 \mathrm{cc} / \mathrm{sec} \\
Q_{f}^{\prime \prime}=Q_{O}^{\prime} & =180 \mathrm{cc} / \mathrm{sec}
\end{aligned}
$$

Battery II:

$$
\text { Total flow requires pumping }=393 \mathrm{cc} / \mathrm{sec}
$$

If each unit cyclone is to process the same feed rate ( $60 \mathrm{cc} / \mathrm{sec}$ ) as in System 1

$$
\frac{393 \mathrm{cc} / \mathrm{sec}}{60 \mathrm{cc} / \mathrm{sec}-\text { unit }}=6.5 \text { units }
$$

will be required. A summary of pertinent information for these two systems is shown in Table 2.

## TABLE 2

SUMMARY OF CYCLONE DESIGN INFORMATION

## System 1

1) $Q_{f}=60 \mathrm{cc} / \mathrm{sec}=1370 \mathrm{gal} / \mathrm{day}$
2) $\mathrm{x}_{\mathrm{f}}=0.5, \mathrm{y}_{\mathrm{f}}=0.5$
3) $Q_{0}=27 \mathrm{cc} / \mathrm{sec}=615 \mathrm{gal} / \mathrm{day}$
4) $\mathrm{x}_{\mathrm{O}}=0.86, \mathrm{y}_{\mathrm{f}}=0.14$
5) $Q_{u}=33 \mathrm{cc} / \mathrm{sec}=755 \mathrm{gal} / \mathrm{day}$
6) $x_{u}=0.20, y_{u}=0.80$
7) Overall effluent split $\left(Q_{0} / Q_{u}\right)=0.82$
8) Overall efficiency $E=0.655$
9) Relative efficiency $\left(E / E_{S}\right)=(0.66 / 0.90)=$ 0.710
10) Total flow requires pumping $=60 \mathrm{cc} / \mathrm{sec}$
11) Total No. of cyclone in operation $=1.0$

TABLE 2 (continued)

## System 2

1) $Q_{f}=60 \mathrm{cc} / \mathrm{sec}=1370 \mathrm{gal} / \mathrm{day}$
2) $\mathrm{x}_{\mathrm{f}}=0.5, \mathrm{y}_{\mathrm{f}}=0.5$
3) $Q_{0}=27 \mathrm{cc} / \mathrm{sec}=615 \mathrm{gal} / \mathrm{day}$
4) $x_{0}=0.98, y_{0}=0.02$
5) $Q_{u}=33 \mathrm{cc} / \mathrm{sec}=755 \mathrm{gal} / \mathrm{day}$
6). $x_{u}=0.107, y_{u}=0.893$
6) Overall effluent split $\left(Q_{0} / Q_{u}\right)=0.82$
7) Overall efficiency $E=0.867$
8) Relative Efficiency ( $\mathrm{E} / \mathrm{E}_{\mathrm{s}}$ ) $=0.867 / 0.900$ $=0.964$

## Battery I

No. of Cyclone $=3.5$ in parallel
$Q_{f}^{\prime}=213 \mathrm{cc} / \mathrm{sec}\left(X_{f}^{\prime}=0.70, Y_{f}^{\prime}=0.30\right)$
$Q_{O}^{\prime}=180 \mathrm{cc} / \mathrm{sec}\left(x_{O}^{\prime}=0.80, Y_{O}^{\prime}=0.20\right.$
$Q_{u}=33 \mathrm{cc} / \mathrm{sec}\left(x_{u}=0.11, Y_{u}=0.89\right)$
Effluent split $\left(Q_{o} / Q_{u}\right)=5.45$
Efficiency $E_{I}=0.410$
$E_{I} / E_{S}=0.410 / 0.47=0.875$

## Battery II

No. of cyclone $=3.0$ in parallel
$Q_{f}^{\prime}=Q_{0}^{\prime}=180 \mathrm{cc} / \mathrm{sec}\left(X_{f}^{\prime}=0.80, Y_{f}^{\prime}=0.20\right)$
$Q_{0}=27 \mathrm{cc} / \mathrm{sec}\left(x_{0}=0.98, Y_{0}=0.02\right)$
$Q_{u}^{\prime}=153 \mathrm{cc} / \mathrm{sec} \quad\left(x_{u}^{\prime}=0.77, y_{u}^{\prime}=0.23\right)$

## 83

TABLE 2 (continued)

Effluent split $\left(Q_{o} / Q_{u}\right)=0.376$
Efficiency $\mathrm{E}_{\mathrm{II}}=0.170$
$\mathrm{E}_{\mathrm{II}} / \mathrm{E}_{\mathrm{S}}=0.167 / 0.19=0.880$
10) Total flow requires pumping $=393 \mathrm{cc} / \mathrm{sec}$
ll) Total No. of cyclone in operation $=6.5$

Additional power for inter.cyclone pumping (393 $\mathrm{cc} / \mathrm{sec}-60 \mathrm{cc} / \mathrm{sec}=333 \mathrm{cc} / \mathrm{sec}$ ) will also be required as a result of further enrichment of both the overflow and underflow streams. In essence, the upgrading process is accomplished by taking advantage of extreme effluent splits $\left(Q_{0}^{\prime} / Q_{u}=5.45\right.$ in Battery $I$ and $Q_{o} / Q_{u}^{\prime}=0.176$ in Battery II) where relative efficiency values are close to unity. One may also note that the overall relative efficiency value for System II is 0.964 in comparison with 0.710 for System 1.

CHAPTER VIII

CONCLUSIONS

As a summary of experience accumulated during the laboratory investigation, the following conclusions are apropos:

1. In a laboratory hydrocyclone, the mechanics of liquid-liquid separation is governed by the postulated streamline flow when an air core is present. In brief, the fate of a solid or liquid dispersed particle to exit either in the overflow or underflow is determined by a host of interrelated factors; such as the air core momentum, size, shape, density of the particle, the viscosity of the surrounding fluid, the net pressure force on the particle as well as the local acceleration.
2. The most intensely turbulent region was observed to be near the entrance tube immediately below the upper base. It is believed that the turbulence was caused by the geometric incongruity of the cyclone design with respect to the flow pattern. Hence, turbulence mitigation could be effected by the modification of the geometric configuration of the cyclone.
3. The utility of an ideal efficiency curve designated for each feed composition can be realized in the form of relative efficiency values for the estimation of the overall efficiency value of a heretofore undetermined system.
4. As expected, the dispersed liquid particles decrease in size with increasing flow rate. Emulsions became detrimental to the separation in most cases at $75 \mathrm{cc} / \mathrm{sec}$ --notably at phase ratio (oil/water) $=1.0$ However, emulsification can be inhibited by the presence of solid which is preferentially wetted by the dispersed phase but not by the continuous liquid phases.
5. Both vortex tube and discharge apex dimensions showed negligible effect in the determination of overall separation efficiency except in the case where the feed contains one-third oil or any lighter phase. In such a case, a large vortex tube covers not only the cross-sectional area of the air associated with oil particles but also the continuous phase surrounding the air core as well.
6. The effective volume fraction (converted from macroscopic turbulent length) is in increasing order with the effluent splits. This fact probably indicated that as more fluid is leaving in the overflow, less turbulence is taking place within the cyclone.
7. The cyclone performance as defined shows a consistent pattern as a function of effluent split only for systems of $x_{f}=0.33$. Since the performance is the product
of effective volume fraction (EVF) and relative efficiency, it could also imply that the mathematical model derived for determining the EVF is more suitable for systems having a density of the dispersed phase less than that of the continuous phase.

## APPENDIX A

## MATHEMATICAL DERIVATION OF AIR CORE VELOCITY

As stated in the beginning of Separation Mechanics part, the vertical velocity component of a fluid in a hydrocyclone is negligible in comparison with the radial and tangential components. Hence, for a two-dimensional model, Eq. 3 and Eq. 4 . can be simplified

$$
\begin{equation*}
V_{r} \frac{\partial V_{r}}{\partial r}-\frac{V_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial P}{\partial r}+\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{r}}{\partial r}\right)-\frac{V_{r}}{r^{2}}\right] \tag{A-1}
\end{equation*}
$$

$$
\begin{equation*}
V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{r} V_{\theta}}{r}=\nu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{\theta}}{\partial r}\right)-\frac{V_{\theta}}{r^{2}}\right] \tag{A-2}
\end{equation*}
$$

Rearranging Eq. A-1 yields

$$
\begin{aligned}
V_{r} \frac{\partial V_{r}}{\partial r}-\frac{V_{\theta}^{2}}{r} & =-\frac{1}{\rho} \frac{\partial P}{\partial r}+\nu\left[\frac{1}{r}\left(\frac{\partial V_{r}}{\partial r}+r \frac{\partial^{2} V_{r}}{\partial r^{2}}\right)-\frac{V_{r}}{r^{2}}\right] \\
& =-\frac{1}{\rho} \frac{\partial P}{\partial r}+\nu\left[\frac{1}{r} \frac{\partial V_{r}}{\partial r}+\frac{\partial^{2} V_{r}}{\partial r^{2}}-\frac{V_{r}}{r^{2}}\right]
\end{aligned}
$$

Noting

$$
\begin{equation*}
\frac{1}{r} \frac{\partial\left(r V_{r}\right)}{\partial r}=\frac{v_{r}}{r}+\frac{\partial V_{r}}{\partial r} \tag{A-3}
\end{equation*}
$$

and differentiating Eq. A-4 yields

$$
\begin{equation*}
\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial\left(r V_{\dot{r}}\right)}{\partial r}=\frac{1}{r} \frac{\partial V_{r}}{\partial r}-\frac{V_{r}}{r^{2}}+\frac{\partial^{2} V_{r}}{\partial r^{2}} \tag{A-5}
\end{equation*}
$$

We can rewrite Eq. A-3 as

$$
\begin{equation*}
v_{r} \frac{\partial V_{r}}{\partial r}-\frac{v_{\theta}{ }^{2}}{r}=-\frac{1}{\rho} \frac{\partial P}{\partial r}+\nu\left[\frac{\partial}{\partial r} \frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}\right] \tag{A-6}
\end{equation*}
$$

Likewise, Eq. A-2 can be written as

$$
\begin{equation*}
V_{r} \frac{\partial V_{\theta}}{\partial r}+\frac{V_{r} V_{\theta}}{r}=\dot{v} \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial\left(r V_{\theta}\right)}{\partial r}\right] \tag{A-7}
\end{equation*}
$$

In the case of steady state, the product of $r$ and $V_{r}$ can be approximated to a constant. Thus

$$
\begin{equation*}
\frac{\partial\left(r V_{r}\right)}{\partial r} \underline{\sim}_{\sim}^{\sim} \tag{A-8}
\end{equation*}
$$

which further reduces Eq. A-6 to

$$
\begin{equation*}
V_{r} \frac{\partial V_{r}}{\partial r}-\frac{v_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial P}{\partial r} \tag{A-9}
\end{equation*}
$$

Rearranging Eq. A-7

$$
\begin{align*}
& V_{r}\left[\frac{\partial V_{\theta}}{\partial r}+\frac{V_{\theta}}{r}\right]=\nu \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial\left(r V_{\theta}\right)}{\partial r}\right]  \tag{A-10}\\
& \left(\frac{V_{r}}{r}\right) \frac{\partial\left(r V_{\theta}\right)}{\partial r}=\nu \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial\left(r V_{\theta}\right)}{\partial r}\right] \tag{A-11}
\end{align*}
$$

By taking advantage of

$$
\begin{equation*}
r V_{r} \cong \text { constant }=(Q / L) \tag{A-12}
\end{equation*}
$$

where $Q$ is volumetric rate, Eq. A-1? can be expressed as

$$
\begin{array}{ll} 
& \frac{(\rho / L)}{r^{2}}:\left[\frac{\partial\left(r V_{\theta}\right)}{\partial r}\right]=\nu \frac{\partial}{\partial r}\left[\frac{1}{r} \frac{\partial\left(r V_{\theta}\right)}{\partial r}\right] \\
\text { of } & \frac{(Q / L)}{\nu} \frac{1}{r^{2}} \frac{d\left(r V_{\theta}\right)}{d r}=\frac{d}{d r}\left[\frac{1}{r} \frac{d\left(r V_{\theta}\right)}{d r}\right] \\
\text { Let } & \frac{1}{r} \frac{d\left(r V_{\theta}\right)}{d r}=g(r)
\end{array}
$$

Eq. A-14 is therefore
or

$$
\begin{equation*}
\frac{(Q / I)}{\nu} \frac{G(r)}{r}=\frac{d[G(r)]}{d r} \tag{A-16}
\end{equation*}
$$

$$
\frac{(Q / L)}{\nu} \frac{d r}{r}=\frac{d\lceil g(r)]}{g(r)}
$$

$$
\frac{(Q / L)}{\nu} \ln r=\ln [g(r)]+c
$$

or

$$
\begin{equation*}
g(x)=K r^{\frac{(\Omega / L)}{\nu}} \tag{A-17}
\end{equation*}
$$

Equating Eq. A-17 and Eq. A-15

$$
\begin{aligned}
& K r^{\frac{(Q / L)}{\nu}}=\frac{1}{r} \frac{d\left(r V_{\theta}\right)}{d r} \\
& \frac{d\left(r V_{\theta}\right)}{d r}=K r \frac{(Q / L)}{\nu}+1 \\
& r V_{\theta}=\frac{K_{1}}{\frac{(Q / L)}{\nu}+2} r^{\frac{(Q / L)}{\nu}+2}+K_{2}
\end{aligned}
$$

$$
\begin{equation*}
v_{\theta}=\frac{K_{1}}{\frac{(Q / L)}{v}+2} r^{\frac{(Q / L)}{\nu}+1}+\frac{K_{2}}{F} \tag{A-18}
\end{equation*}
$$

If $\frac{\left(0 / L_{1}\right)}{\nu}=-2$, the solution approaches $\infty$. However, by substituting the value of -2 for $\frac{(Q / L)}{\nu}$ in Eq. A-16 we have

$$
\begin{aligned}
& -2 \frac{g(r)}{r}=\frac{d[g(r)]}{d r} \\
& -2 \ln r=\ln g(r)+K
\end{aligned}
$$

with Eq. A-15 $\quad g(r)=K_{1} r^{-2}=\frac{1}{r} \frac{d\left(r V_{\theta}\right)}{d r}$

$$
\begin{align*}
& K_{1} r^{-1}=\frac{d\left(r V_{\theta}\right)}{d r} \\
& K_{2}+K_{1} \ln r=r V_{\theta} \\
& V_{\theta}=\frac{K_{1} \ln r}{r}+\frac{K_{2}}{r} \cdots \tag{A-20}
\end{align*}
$$

Equation A-12 states that

$$
\begin{gather*}
V_{r} r=(Q / L), \text { or } V_{r}=\frac{(Q / L)}{r} \\
\frac{\partial V_{r}}{\partial r}=-\frac{(Q / L)}{r^{2}} \text { or } \frac{(Q / L)}{r} \frac{\partial V_{r}}{\partial r}=\frac{-(Q / L)^{2}}{r^{3}} \\
V_{r} \frac{\partial V_{r}}{\partial r}=\frac{-(Q / L)^{2}}{r^{3}} \tag{A-21}
\end{gather*}
$$

or

Combining with Eq. A-9

$$
V_{r} \frac{\partial V_{r}}{\partial r}-\frac{V_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial P}{\partial r}
$$

91

$$
\begin{equation*}
\frac{(Q / L)^{2}}{r^{3}}+\frac{V_{\theta}^{2}}{r}=\frac{1}{\rho} \frac{\partial P}{\partial r} \tag{A-22}
\end{equation*}
$$

Eq. A-18 can be squared to

$$
\begin{equation*}
V_{\theta}^{2}=\frac{K_{1}^{2}}{\left[2+\frac{Q / L}{\nu}\right]^{2}} r^{2\left[\frac{Q / L}{\nu}+1\right]}+\frac{K_{2}^{2}}{r^{2}}+\frac{2 K_{1} K_{2}}{\left(2+\frac{Q / L}{V}\right)^{(Q / L)}} r^{(Q} \tag{A-23}
\end{equation*}
$$

Substituting Eq. A-23 into Eq. A-22 we have

$$
\begin{align*}
& \frac{d P}{d r}=\frac{\rho(Q / L)^{2}}{r^{3}}+\frac{\rho K_{1}^{2}}{\left(2+\frac{(Q / L)}{v}\right)^{2}} r \frac{\left[2 \frac{(Q / L)}{\nu}+1\right]}{\rho K_{2}^{2}} r^{3} \cdots \\
& +\frac{2 \rho K_{1} K_{2}}{2+\frac{\left(Q / L_{1}\right)}{\nu}} r^{\left[\frac{Q / L}{\nu}-1\right]}  \tag{A-24}\\
& \left.P(r)=-\frac{\rho\left[(Q / L)^{2}+K_{2}^{2}\right]}{2 r^{2}}+\frac{\rho K_{1}{ }^{2}}{\left[2+\frac{(Q / L)}{\nu}\right]^{2}\left(2+\frac{2(Q / L)}{\nu}\right)} r^{2[(\rho / L)}+1\right] \\
& +\frac{2 \rho K_{1} K_{2}}{\left[2+\frac{(Q / L)}{\nu}\right]\left(\frac{(Q / L)}{\nu}\right)^{r}} \frac{(Q / L)}{\nu} \tag{A-25}
\end{align*}
$$

For Eq. A-24, when $\frac{(Q / L)}{\nu}=T 1$.

$$
\begin{align*}
& \frac{d P}{d r}=\frac{\left[\rho(Q / L)^{2}+\rho K_{2}^{2}\right]}{r^{3}}+\frac{\rho K_{1}^{2}}{r}+\frac{2 \rho K_{1} K_{2}}{r^{2}}  \tag{A-26}\\
\therefore & P(r)=\frac{-\rho\left[(Q / L)^{2}+K_{2}^{2}\right]}{2 r^{2}}+\rho K_{1}^{2} \ln r-\frac{2 \rho K_{1} K_{2}}{r} \tag{A-27}
\end{align*}
$$

By squaring Eq. A-20

$$
\begin{align*}
V_{\theta}^{2} & =\frac{K_{1}^{2}(\ln r)^{2}}{r^{2}}+\frac{2 K_{1} K_{2} \ln r}{r^{2}}+\frac{K_{2}^{2}}{r^{2}} \\
& =\frac{1}{r^{2}}\left[K_{1}^{2}(\ln r)^{2}+2 K_{1} K_{2} \ln r+K_{2}^{2}\right] \tag{A-28}
\end{align*}
$$

Substituting Eq. A-28, into Eq. A-22

$$
\begin{align*}
& \begin{aligned}
\frac{d P}{d r} & =\frac{\rho(Q / L)^{2}}{r^{3}}+\frac{\rho}{r^{3}}\left[K_{1}^{2}(\ln r)^{2}+2 K_{1} K_{2} \ln r+K_{2}^{2}\right] \\
& =\frac{\rho}{r^{3}}\left[K_{1}^{2}(\ln r)^{2}+2 K_{1} K_{2} \ln r+K_{2}^{2}+(Q / L)^{2}\right] \\
P(r) & =\rho K_{1}^{2} \int \frac{(\ln r)^{2}}{r^{3}} d r+2 K_{1} K_{2} \rho \int \frac{\ln r}{r^{3}} d r \\
& -\frac{\rho\left[K_{2}^{2}+(Q / L)^{2}\right]}{2 r^{2}} \\
\int \frac{(\ln r)^{2}}{r^{3}} d r & =\frac{r^{-2}(\ln r)^{2}}{-2}-\frac{2}{2} \int r^{-3}(\ln r) d r \\
& =-\frac{(\ln r)^{2}}{2 r^{2}}+\int \frac{(\ln r)}{r^{3}} d r
\end{aligned}
\end{align*}
$$

Substituting Eq. A-31 into Eq. A-30

$$
\begin{align*}
P(r)=-\rho K_{1}^{2} \frac{(\ln r)^{2}}{2 r^{2}} & +\left(2 K_{1} K_{2} \rho+K_{1}^{2} \rho\right) \int \frac{(\ln r) d r}{r^{3}} \\
& -\frac{\rho\left[K_{2}^{2}+(\ell / L)^{2}\right]}{2 r^{2}} \tag{A-32}
\end{align*}
$$

$\int \frac{\ln r}{r^{3}} d r=\frac{r^{-2}}{-2} \ln r-\frac{r^{-2}}{4}=\frac{-\ln r}{2 r^{2}}-\frac{1}{4 r^{2}}=\left(\ln r+\frac{1}{2}\right)\left(\frac{-1}{2 r^{2}}\right)(A-33)$

$$
P(r)=-\rho K_{1}^{2} \frac{(\ln r)^{2}}{2 r^{2}}-\left(2 K_{1} K_{2} \rho+K_{1}^{2} \rho\right) \frac{\left(\ln r+\frac{1}{2}\right)}{2 r^{2}}
$$

$$
-\frac{\rho\left[K_{2}^{2}+(Q / L)^{2}\right]}{2 r^{2}}
$$

$$
=-\frac{\rho}{2 r^{2}}\left[K_{1}^{2}(\ln r)^{2}+K_{2}^{2}+(Q / L)^{2}\right.
$$

$$
\left.+\left(\ln r+\frac{1}{2}\right)+K_{2}^{2}+(Q / L)^{2}\right]\left(2 K_{1} K_{2}+K_{1}^{2}\right) \quad(A-34)
$$

To.calculate the air core rotating velocity, we know from Eq. A-18

$$
\mathrm{V}_{\theta}=\frac{\mathrm{K}_{1}}{2+\frac{(Q / \mathrm{L})}{\nu}} r^{\left(\frac{Q / L}{\nu}+1\right)}+\frac{\mathrm{K}_{2}}{\mathrm{r}}
$$

$$
\left.\frac{(\Omega / L}{\nu} \neq-2\right) \quad(A-18)
$$

where $(Q / L)=V_{r} r$, and $K_{1}$ and $K_{2}$ are determined by the boundary conditions at $r=a$, and $r=b$ (Figure A-1)
where $\quad V_{\theta}=V_{0}$ at $r=a$

$$
\mathrm{V}_{\theta}=0 \text { at } \mathrm{r}=\mathrm{b}
$$



Figure A-1. Conventional Cyclone With Both Cylindrical and Conic Sections

$$
\begin{gather*}
\mathrm{V}_{0}=\frac{\mathrm{K}_{1}}{2+\frac{(Q / L)}{\nu}} a^{\left(\frac{Q / L}{\nu}+1\right)}+\frac{\mathrm{K}_{2}}{\mathrm{a}}  \tag{A-35}\\
0=\frac{\mathrm{K}_{1}}{2+\frac{(Q / L)}{\nu}} \cdot b^{\left(\frac{Q / L}{\nu}+1\right)}+\frac{\mathrm{K}_{2}}{\mathrm{~b}}
\end{gather*}
$$

Multiplying Eq. A-35 by $1 / \mathrm{b}$ and Eq. A-36 by $1 / a$

$$
\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{~b}}=\frac{\mathrm{K}_{1} \mathrm{a} \cdot\left(\frac{\mathrm{Q} / \mathrm{L}}{\nu}+1\right)^{j}}{2+\frac{\mathrm{Q} / \mathrm{L})}{\nu} \mathrm{b}}+\frac{\mathrm{K}_{2}}{\mathrm{ab}} \quad(\mathrm{~A}-35 \mathrm{a})
$$

$$
\begin{align*}
& \left(\frac{0 / L}{v}+1\right) \\
& 0=\frac{K_{1} b}{2+\left(\frac{Q / L}{\nu}\right) a}+\frac{K_{2}}{a b} \\
& \left(\frac{Q / L}{\nu}+1\right) \quad\left(\frac{\mathrm{Q} / \mathrm{L}}{\nu}+1\right) \\
& \frac{\mathrm{V}_{0}}{\mathrm{~b}}=\frac{\mathrm{K}_{1}}{2+\left(\frac{\mathrm{Q} / \mathrm{L}}{\nu}\right)}\left[\frac{\mathrm{a}^{\left.\frac{(2 / L}{\nu}+1\right)}}{\mathrm{b}}-\frac{\mathrm{b}^{\left(\frac{L}{\nu}+1\right)}}{\mathrm{a}}\right] \text {, } \operatorname{let}\left(\frac{Q / L_{1}}{\nu}\right)=\xi \\
& K_{1}=\frac{\left(\frac{v_{0}}{b}\right)(2+\xi)}{\frac{a^{\xi+1}}{b}-\frac{b \xi+1}{a}}=\frac{2+\xi}{a^{\xi+1}-\frac{b^{\xi+2}}{a}}\left(V_{0}\right) \\
& =\frac{2+\xi}{a^{\xi+2}-b^{\xi+2}}\left(a \vee_{0}\right) \tag{A-37}
\end{align*}
$$

Multiplying Eq. A-35 by $b^{(\xi+1)}$ and Eq. A-36 by $a^{(\xi+1)}$

$$
\begin{gather*}
V_{0} b^{\xi+1}=\frac{K_{1}}{2+\xi}(a b)^{\xi+1}+\frac{K_{2} b^{\xi+1}}{a}  \tag{A-38}\\
0=\frac{K_{1}}{2+\xi}(a b)^{\xi+1}+\frac{K_{2} a^{\xi+1}}{b} \tag{A-39}
\end{gather*}
$$

Subtracting Eq. A-37 from Eq. A-38 we have

$$
\begin{align*}
\mathrm{V}_{0} b^{\xi+1} & =K_{2}\left(\frac{b^{\xi+1}}{a}-\frac{a^{\xi+1}}{b}\right)=K_{2}\left(\frac{b^{\xi}+2}{a b}-a^{\xi+2}\right. \\
K_{2} & =\frac{b^{\xi+2}}{b^{\xi+2}-a^{\xi+2}}\left(a v_{0}\right) \tag{A-40}
\end{align*}
$$

Substituting Eq. A-37 and Eq. A-40 into Eq. A-18 we have

$$
\begin{align*}
& V_{\theta}=\frac{a V_{0}}{a \xi^{+1}-b \xi^{+2}} r^{\xi+1}+\frac{b \xi^{+2} a \dot{V}_{0}}{b \xi^{+2}-a \xi^{+2}} \frac{1}{r} \\
& =\frac{a V_{0}}{a^{\xi+2}-b^{\xi+2}}\left(r^{\xi+1}-\frac{b^{\xi+2}}{r}\right) \tag{A-41}
\end{align*}
$$

Now we can find the approximate value of $V_{0}$ by energy conservation. The kinetic energy of the liquid in the hydrocyclone with the parameters as shown in Fig. A-1 is

$$
\begin{aligned}
\text { K.E. } & =\frac{1}{2} \rho h_{1} \int_{a}^{b} v_{\theta}^{2} 2 \pi r d r+\frac{1}{2} \rho \int_{0}^{h_{2}} \int_{a}^{R=h_{2}} \tan \alpha{ }^{\tan }\left(2 \pi V_{\theta}{ }^{2} r d r d h / 3\right. \\
& =\left[\pi \rho h_{1} \int_{a}^{b} v_{\theta}^{2} r d r\right]+\left[\frac{\pi \rho}{3} \int_{0}^{h_{2}} \int_{a}^{h_{2}} \tan \alpha v_{\theta}^{2} r d r d h\right](A-42)
\end{aligned}
$$

Squaring Eq. A-41 yields

$$
\begin{aligned}
& \int v_{\theta}^{2} r d r=\frac{a^{2} v_{o}^{2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}} \int\left(r^{2 \xi+3}-2 b^{\xi+2} r^{\xi+1}+\frac{b}{r}^{2(\xi+2)}\right) d r \\
& =\frac{a^{2} v_{0}^{2}}{\left(a^{\xi+2}-b \xi^{+2}\right)^{2}}\left[\frac{r^{2 \xi+4}}{2 \xi+4}-2 b^{\xi+2} \frac{r \xi+2}{\xi+2}+b^{2(\xi+2)} \ln r\right]
\end{aligned}
$$

For the first term of Eq.A-42

$$
\begin{align*}
\int_{a}^{b} V_{\theta}^{2} r d r & =\frac{a^{2} v_{o}^{2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}}\left\{\left[\frac{b^{2 \xi+4}}{2(\xi+2)}-\frac{2 b^{2 \xi+4}}{\xi+2}+b^{2(\xi+2)} \ln b\right]\right. \\
& \left.-\left[\frac{a^{2 \xi+4}}{2 \xi+4}-\frac{2 b^{\xi+2} a^{\xi+2}}{\xi+2}+b^{2(\xi+2)} \ln a\right]\right\}(A-45)  \tag{A-45}\\
& =\frac{a^{2} v_{o}^{2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}}\left[b^{2(\xi+2)} \ln b-\left(\frac{3}{2}\right) \cdot \frac{b^{2 \xi+4}}{\xi+2}-b^{2(\xi+2)} \ln a\right. \\
& \left.+\frac{2(a b) \xi+2}{\xi+2}-\frac{1}{2} \frac{a^{2 \xi+4}}{(\xi+2)}\right] \\
& =\frac{a^{2} v_{o}^{2}}{\left.a^{\xi+2}-b^{\xi+2}\right)^{2}}\left[b^{2(\xi+2)} \ln \frac{b}{a}-\frac{1}{2} \frac{3 b^{2 \xi} \xi^{2}+4}{\xi+2} 2 \xi+4\right.
\end{align*}
$$

Substituting $h_{2}$ tan $\alpha$ for $r$ in Eq. A-44

$$
\begin{aligned}
\int_{0}^{h_{2}} \int_{a}^{h_{2} \tan \alpha}{ }_{V_{\theta}}{ }^{2} r d r d h & =\frac{a^{2} v_{o}^{2}}{\left(a^{\xi+2}+b^{\xi+2}\right)^{2}} \int_{0}^{h_{2}}\left[\frac{\left(h_{2} \tan \alpha\right)^{2 \xi+4}}{2(\xi+2)}\right. \\
& -\frac{2 b^{\xi+2}\left(h_{2} \tan \alpha\right)^{\xi+2}}{\xi+2} \\
& \left.+\ln \left(h_{2} \tan \alpha\right)\left(b^{2(\xi+2)}\right)\right] d h \\
& =\frac{a^{2} v_{0}^{2}}{\left(a^{\xi+2}+b^{\xi+2}\right)^{2}}\left[\frac{h_{2}^{2 \xi+5}(\tan \alpha)^{2 \xi+4}}{(2 \xi+4)(2 \xi+5)}\right. \\
& -\frac{2 b^{\xi+2} h_{2}^{\xi+3}}{\left.\left(\xi^{2}+2\right)(\xi)^{\prime 3}\right)} \\
& +b^{\left.2(\xi+2) h_{2}\left(\ln h_{2}-1+\ln \tan \alpha\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
\text { Total K. E. } & =\frac{\pi \rho h_{1} a^{2} v_{0}^{i 2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}}\left[b^{2(\xi+2)} \ln \frac{b}{a}-\frac{1}{2} \frac{3 b^{2 \xi+4}-a^{2 \xi+4)}}{(\xi+2)}\right. \\
& \left.+\frac{2(a b) \xi^{\xi+2}}{\xi+2}\right]+\frac{\pi \rho h_{2} a^{2} v_{0}^{2}}{3\left(a^{\xi+2}+b^{\xi+2}\right)^{2}}\left[\frac{\left(h_{2} \tan \alpha\right)^{2 \xi+4}}{(2 \xi+4)(2 \xi+5)}\right. \\
& -\frac{2 b^{\xi+2}\left(h_{2} \tan \alpha\right)^{\xi+2}}{(\xi+2)(\xi+3)}+b^{2(\xi+2)}\left(\ln h_{2}-1\right. \\
& +\ln \tan \alpha)] \\
& =\frac{a^{2} \rho \pi v_{0}^{2}}{\left(a^{\xi+2}-b^{\xi+2}\right)^{2}}\left[h_{1} \text { K. E. (1) }+\frac{h_{2}}{3} \text { K. E. (2) }\right]
\end{aligned}
$$

By neglecting the gravitational potential energy, the net potential energy is $=$ Inlet pressure $x$ Volume of the cyclone.

$$
\begin{array}{r}
\text { Volume }=\pi b^{2} h_{1}+\int_{0}^{h_{2}} \pi(h \tan \alpha)^{2} d h=\pi b^{2} h_{1}+\frac{\pi h_{2}^{3}}{3} \tan ^{2} \alpha \\
\text { Total P.E. }=P_{\text {in }}\left[\pi b^{2} h_{1}+\frac{\pi h_{2}^{3}}{3} \tan ^{2} \alpha\right] \tag{A-49}
\end{array}
$$

Assuming no energy loss due to viscous shear we have

$$
\begin{equation*}
\text { Total P. E. }=\text { Total K. E. } \tag{A-50}
\end{equation*}
$$

$$
\frac{a^{2} \rho \pi \vee_{0}^{2}}{\left(a^{\xi+2}-b^{\xi}+2\right)^{2}}\left[h_{1} \text { K. E. (1) }+\frac{h_{2}}{3} \text { K. E. (2) }\right]=\operatorname{P}_{i n}\left[\pi b^{2} h_{1}\right.
$$

$$
\begin{aligned}
& \left.+\frac{\pi h_{2}^{3}}{3} \tan ^{2} \alpha\right] \\
V_{0} & =\frac{a^{\xi}{ }^{+2}-b^{\xi}+2}{a} \sqrt{\frac{P_{i n}\left(b^{2} h_{1}+\frac{h_{2}^{3}}{3} \tan ^{2} \alpha\right)}{\rho\left[h_{1} \text { K.E. (1) }+\frac{h_{2}}{3}\right. \text { K.E. (2)] }}}
\end{aligned}
$$

For a cyclone of negligible vertical section, Eq. 56 can be reduced to

$$
\begin{equation*}
V_{0} \approx \frac{a^{\xi+2}-b b^{\xi+2}}{a} \sqrt{\frac{p_{i n}\left(h_{2}^{2} \tan ^{2} \alpha\right)}{\rho[K . E \cdot(2)]}} \tag{A-52}
\end{equation*}
$$

## APPENDIX B

COMPARISON OF TWO DEFINITIONS OF SEPARATION EFFICIENCY

1) The general equation for the separation efficiency involving any number of phases is
where $A_{1}, A_{2}, A_{3}$, . . $A_{n}$ are lighter phases desired to leave in the overflow

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \cdot \cdot \cdot \mathrm{~B}_{\mathrm{n}} \text { are heavier phase desired }
$$

to leave in the underflow
Subscript $0, f, u$ denote overflow, feed, underflow and

$$
\begin{align*}
& \left(A_{1}+A_{2}+A_{3}+. .\right)_{0}+\left(B_{1}+B_{2}+B_{3}+. . .\right)_{0}=Q_{0}  \tag{70}\\
& \left(A_{1}+A_{2}+A_{3}+. . .\right)_{u}+\left(B_{1}+B_{2}+B_{3}+. . .\right)_{u}=Q_{u}  \tag{71}\\
& \left(A_{1}+A_{2}+A_{3}+. . .\right)_{f}+\left(B_{1}+B_{2}+B_{3}+. . .\right)_{f}=Q_{f} \tag{72}
\end{align*}
$$

For a two-phase system ( $A$ and $B$ )
let

$$
\begin{array}{ll}
A_{0}=Q_{0} x_{O} & B_{0}=Q_{o} Y_{O} \\
A_{u}=Q_{u} x_{u} & B_{u}=Q_{u} Y_{u} \\
A_{f}=Q_{f} x_{f} & B_{f}=Q_{f} Y_{f}
\end{array}
$$

Eq. $\mathrm{B}-1$ is reduced to Eq. 68
$E_{\text {overall }}=\left|\frac{Q_{0} X_{O}}{Q_{f} x_{f}}-\frac{Q_{0} Y_{O}}{Q_{f} Y_{f}}\right|=\left|\frac{Q_{u} X_{u}}{Q_{f} X_{f}}-\frac{Q_{u} Y_{u}}{Q_{f} Y_{f}}\right| \quad$ (B-2)

For a three-phase system $\left(A_{1}, A_{2}\right.$ and $\left.B\right)$ where phase $A_{2}$ is, say, a solid preferentially wetted by the lighter phase, $A_{1}$, and is desired to exit in the overflow
2) In this investigation, the general equation for the separation efficiency involving any number of phases is

$$
E_{\text {overall }}=\sum_{1}^{n} E_{A_{1}, A_{1}}=\sum_{B_{2}}^{A_{n}} E_{A}+\sum_{1}^{B_{n}} E_{B}
$$

For a two-phase system (A-B), Eq. B-4 is reduced to Eq. 62. $E_{\text {overall }}=E_{A}+E_{B}=\frac{Q_{O}}{Q_{f}}\left[x_{0}-\left(1-x_{0}\right) \frac{x_{f}}{1-x_{f}}\right]$

$$
\begin{equation*}
+\frac{Q_{u}}{Q_{f}}\left[y_{u}-\left(1-y_{u}\right) \cdot \frac{x_{f}}{1-x_{f}}\right] \tag{62}
\end{equation*}
$$

$$
\begin{align*}
& \left(A_{1}\right)_{0}=Q_{0} x_{0},\left(A_{2}\right)_{0}=Q_{0} z_{0}, B_{0}=Q_{0} Y_{0} \\
& \left(A_{1}\right)_{u}=Q_{u} x_{u}, \quad\left(A_{2}\right)_{u}=Q_{u} z_{u}, B_{u}=Q_{u} Y_{u} \\
& \left(A_{1}\right)_{f}=Q_{f} X_{f},\left(A_{2}\right)_{f}=Q_{f} Z_{f}, B_{f}=Q_{f} Y_{f} \\
& E_{\text {overall }}=\left|\frac{Q_{0}\left(x_{o}+z_{O}\right)}{Q_{f}\left(x_{f}+z_{f}\right)}-\frac{Q_{o} Y_{O}}{Q_{f} Y_{f}}\right|=\left|\frac{Q_{u}\left(x_{u}+z_{u}\right)}{Q_{f}\left(x_{f}+z_{f}\right)}-\frac{Q_{u} Y_{u}}{Q_{f} Y_{f}}\right| \tag{B-3}
\end{align*}
$$

For a three-phase system ( $\left.A_{1}-A_{2}-B\right)$ Eq. $B-4$ is reduced to Eq. 66
$E_{\text {overall }}=E_{A_{1}}+E_{A_{2}}+E_{B}$

$$
\begin{align*}
& =\frac{Q_{0}}{Q_{f}} \frac{\left(x_{o}-x_{f}+x_{f} z_{o}^{\prime}-x_{O} z_{f}\right)}{\left(1-x_{f}-Z_{f}\right)}+\frac{Q_{O}}{Q_{f}} \frac{\left(z_{O}-z_{f}+z_{f} x_{O}-x_{f} z_{O}\right)}{\left(1-x_{f}-Z_{f}\right)} \\
& +\frac{Q_{u}}{Q_{f}} \frac{\left(y_{u}-y_{f}\right)}{\left(1-y_{f}\right)} \\
& =\frac{Q_{o}}{Q_{f}} \frac{\left(x_{o}-x_{f}+z_{Q}-z_{f}\right)}{\left(1-x_{f}-z_{f}\right)}+\frac{Q_{u}}{Q_{f}} \frac{\left(y_{u}-y_{f}\right)}{\left(1-y_{f}\right)} \tag{66}
\end{align*}
$$

For the purpose of illustrating the identity between
Eq. 63 and Eq. 68, the following algebraic proof is provided:
a) For a two-phase system, Eq. 68 is

$$
\begin{align*}
E & =\frac{Q_{O} x_{O}}{Q_{f} x_{f}}-\frac{Q_{O} Y_{O}}{Q_{f} y_{f}}=\frac{Q_{O} x_{O} y_{f}-Q_{O} y_{O} x_{f}}{Q_{f} x_{f} y_{f}} \\
& =\frac{Q_{O} x_{o}\left(1-x_{f}\right)-Q_{O} x_{f}\left(1-x_{O}\right)}{Q_{f} x_{f}\left(1-x_{f}\right)} \\
& =\frac{Q_{O} x_{O}-Q_{O} x_{O} x_{f}-Q_{O} x_{f}+Q_{O} x_{f} x_{O}}{Q_{f} x_{f}\left(1-x_{f}\right)} \\
& =\frac{Q_{O} x_{O}-Q_{O} x_{f}}{Q_{f} x_{f}\left(1-x_{f}\right)}=\frac{Q_{O}\left(x_{O}-x_{f}\right)}{Q_{f} x_{f}\left(1-x_{f}\right)} \tag{63}
\end{align*}
$$

b) For a three-phase system (Run No. 55) given

$$
\begin{array}{lll}
Q_{f}=75.0 & Q_{O}=56.70 & Q_{u}=18.30 \\
x_{f}=0.654 & x_{0}=0.773 & x_{u}=0.277 \\
y_{f}=0.332 & y_{O}=0.211 & y_{u}=0.699 \\
z_{f}=0.014 & z_{u}=0.016 & z_{u}=0.024
\end{array}
$$

$$
\begin{array}{lll}
Q_{f} x_{f}=49.0 & Q_{f} y_{f}=24.9 & Q_{f} z_{f}=1.05 \\
Q_{0} x_{0}=43.9 & Q_{0} y_{o}=12.0 & Q_{0} z_{0}=0.90 \\
Q_{u} x_{u}=5.1 & Q_{u} y_{u}=12.9 & Q_{u} z_{u}=0.15
\end{array}
$$

$$
E=\frac{Q_{O}\left(x_{O}+z_{O}\right)}{Q_{f}\left(x_{f}+z_{f}\right)}-\frac{Q_{O} Y_{O}}{Q_{f} Y_{f}}=\frac{56.7(0.789)}{75.0(0.668)}-\frac{12.0}{24.9}=0.409
$$

and

$$
\begin{aligned}
& E_{A_{1}}=\frac{Q_{O}}{Q_{f}}\left[\frac{x_{0}-x_{f}+x_{f} z_{O}-x_{o} z_{f}}{1-x_{f}-z_{f}}\right]=0.756\left[\frac{0.119+0.0115-0.011}{0.332}\right]=0.271 \\
& E_{A_{1}}=\frac{Q_{O}}{Q_{f}}\left[\frac{z_{O}-z_{f}+x_{o} Z_{f}{ }^{-Z}{ }_{o}^{x_{f}}}{1-x_{f}^{\sim} z_{f}}\right]=0.756\left[\frac{0.002+0.011-0.011}{0.332}\right]=0.0046 \\
& E_{B}=\frac{Q_{u}}{Q_{f}}\left[\frac{Y_{u}-Y_{f}}{l-Y_{f}}\right]=0.244\left(\frac{0.699-0.332}{0.668}\right)=0.244\left(\frac{0.367}{0.668}\right)=0.134 \\
& E=E_{A_{1}}+E_{A_{2}}+E_{B}=0.409
\end{aligned}
$$

## APPENDIX C

IDEAL EFFICIENCY VALUES VERSUS
EFFLUENT SPLITS

Although ideal separation efficiencies are independent of feed rates, it is necessary to assume a number ( $Q_{f}$ ) in order to obtain the values. By applying the prescribed conditions outlined on Page 41 to Eq. 62 and by enlisting the aid of a $\mathbb{F}$ IORTRAN computer program shown below, a table of values is given in the following pages.

C IDEAL SEPARATION EFFICIENCY CALCULATION $Q F=60.0$ LNCT $=54$ XOY $=0.0$
DO $650 \mathrm{~K}=1,6$
$Q O=0.0$
IF (XOY-1.0) 110, 115, 115
$110 \cdot \mathrm{XOY}=\mathrm{XOY}+0.5$
GO TO 116
$115 \quad \mathrm{XOY}=\mathrm{XOY}+1.0$
$116 \quad \mathrm{XF}=\mathrm{XOY} /(1.0+\mathrm{XOY})$
DO $600 \mathrm{~J}=1,7$
$Q 0=00+10.0$
$\mathrm{QU}=\mathrm{QF}-\mathbf{Q O}$
IF (QU) 650, 650, 100
IF ((QO/QU) -XOY) 200, 300, 400
100
$200 \quad \mathrm{XO}=1.0$
$\mathrm{YU}=1.0-((Q F * X F-Q O) / Q U)$
GO TO 500
$\mathrm{XO}=1.0$
$\mathrm{YU}=1.0$
GO TO 500
$400 \quad \mathrm{YU}=1.0$
$\mathrm{XO}=1.0-(\mathrm{QF} *(1.0-\mathrm{XF})-\mathrm{QU}) / \mathrm{Q} \mathrm{O}$

```
500
510
550
5100 FORMAT ( \(1: 1\) 10F7.3)
5000
600
650
\(\mathrm{YF}=1.0-\mathrm{XF}\)
A1 \(=((X O-X F) /(1.0-X F)) * Q U / Q F\)
\(\mathrm{A} 2=((Y J-Y F) /(X F)) * Q U / Q F\)
\(\mathrm{A} 3=\mathrm{QO} / \mathrm{QU}\)
\(\mathrm{ES}=\mathrm{Al}+\mathrm{A} 2\)
\(\mathrm{A} 4=\mathrm{XF} / \mathrm{YF}\)
IF (LNCT-54) 550, 510, 510
WRITE \((3,5000)\)
LNCT \(=0\)
LNCT \(=\) LNCT +1
WRITE \((3,5100) \mathrm{QF}, \mathrm{XO}, \mathrm{YU}, \mathrm{XF}, \mathrm{YF}, \mathrm{A} 4, \mathrm{Al}\),
    A2, ES, A3
FORMAT ('0'/'O')
CONTINUE
CONTINUE
END
```

TABLE C-1
IDEAL SEPARATION EFFICIENCY (E ) VS. EFFLUENT SPLIT ( $Q_{o} / Q_{u}$ ) FOR VARIOUS FEED PHASE RATIOS ( $x_{f} / y_{f}$ )

| $Q_{\mathrm{f}}{ }^{*}$ | $\mathrm{x}_{0}$ | $Y_{u}$ | $\mathrm{x}_{\mathrm{f}}$ | $Y_{\text {f }}$ | $\mathrm{x}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}$. | $\mathrm{E}_{\mathrm{x}}$ | $\mathrm{E}_{\mathrm{y}}$ | $\mathrm{E}_{\mathbf{S}}$ | $Q_{0} / Q_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.000 | 1.000 | 0.800 | 0.333 | 0.667 | 0.500 | 0.167 | 0.333 | 0.500 | 0.200 |
| 60.000 | 1.000 | 1.000 | 0.333 | 0.667 | 0.500 | 0.333 | 0.667 | 1.000 | 0.500 |
| 60.000 | 0.667 | 1,000 | 0.333 | 0.667 | 0.500 | 0.250 | 0.500 | 0.750 | 1.000 |
| 60.000 | 0.500 | 1.000 | 0.333 | 0.667 | 0.500 | 0.167 | 0.333 | 0.500 | 2.000 |
| 60.000 | 0.400 | 1.000 | 0.333 | 0.667 | 0.500 | 0.083 | 0.167 | 0.250 | 5.000 |
| 60.000 | 1.000 | 0.600 | 0.500 | 0.500 | 1.000 | 0.167 | 0.167 | 0.333 | 0.200 |
| 60.000 | 1.000 | 0.750 | 0.500 | 0.500 | 1.000 | 0.333 | 0.333 | 0.667 | 0.500 |
| 60.000 | 1.000 | 1.000 | 0.500 | 0.500 | 1.000 | 0.500 | 0.500 | 1.000 | 1.000 |
| 60.000 | 0.750 | 1.000 | 0.500 | 0.500 | 1.000 | 0.333 | 0.333 | 0.667 | 2.000 |
| 60.000 | 0.600 | 1.000 | 0.500 | 0.500 | 1.000 | 0.167 | 0.167 | 0.333 | 5.000 |
| 60.000 | 1.000 | 0.400 | 0.667 | 0.333 | 2.000 | 0.167 | 0.083 | 0.250 | 0.200 |
| 60.000 | 1.000 | 0.500 | 0.667 | 0.333 | 2.000 | 0.333 | 0.167 | 0.500 | 0.500 |
| 60.000 | 1.000 | 0.667 | 0.667 | 0.333 | 2.000 | 0.500 | 0.250 | 0.750 | 1.000 |
| 60.000 | 1.000 | 1.000 | 0.667 | 0.333 | 2.000 | 0.667 | 0.333 | 1.000 | 2.000 |
| 60.000 | 0.800 | 1.000 | 0.667 | 0.333 | 2.000 | 0.333 | 0.167 | 0.500 | 5.000 |
| 60.000 | 1.000 | 0.300 | 0.750 | 0.250 | 3.000 | 0.167 | 0.056 | 0.222 | 0.200 |
| 60.000 | 1.000 | 0.375 | 0.750 | 0.250 | 3.000 | 0.333 | 0.111 | 0.444 | 0.500 |
| 60.000 | 1.000 | 0.500 | 0.750 | 0.250 | 3.000 | 0.500 | 0.167 | 0.667 | 1.000 |
| 60.000 | 1.000 | 0.750 | 0.750 | 0.250 | 3.000 | 0.667 | 0.222 | 0.889 | 2.000 |
| 60.000 | 0.900 | 1.000 | 0.750 | 0.250 | 3.000 | 0.500 | 0.167 | 0.667 | 5.000 |
| 60.000 | 1.000 | 0.240 | 0.800 | 0.200 | 4.000 | 0.167 | 0.042 | 0.208 | 0.200 |
| 60.000 | 1.000 | 0.300 | 0.800 | 0.200 | 4.000 | 0.333 | 0.083 | 0.417 | 0.500 |
| 60.000 | 1.000 | 0.400 | 0.800 | 0.200 | 4.000 | 0.500 | 0.125 | 0.625 | 1.000 |
| 60.000 | 1.000 | 0.600 | 0.800 | 0.200 | 4.000 | 0.667 | 0.167 | 0.833 | 2.000 |
| 60.000 | 0.960 | 1.000 | 0.800 | 0.200 | 4.000 | 0.667 | 0.167 | 0.833 | 5.000 |
| 60.000 | 1.000 | 0.200 | 0.833 | 0.167 | 5.000 | 0.167 | 0.033 | 0.200 | 0.200 |
| 60.000 | 1.000 | 0.250 | 0.833 | 0.167 | 5.000 | 0.333 | 0.067 | 0.400 | 0.500 |
| 60.000 | 1.000 | 0.333 | 0.833 | 0.167 | 5.000 | 0.500 | 0.100 | 0.600 | 1.000 |

*Ideal efficiency values are independent of feed rates.

TABLE C-in(Continued)

| $Q_{\text {¢ }}{ }^{*}$ | $\mathrm{x}_{0}$ | $\mathrm{Y}_{\mathrm{u}}$ | $\mathbf{x}_{\mathbf{f}}$ | $\mathbf{Y}_{\mathbf{f}}$ | $\mathrm{x}_{\mathrm{f}} / \mathrm{y}_{\mathrm{f}}$ | $\mathrm{E}_{\mathrm{x}}$ | $\mathrm{E}_{\mathrm{Y}}$ | $\mathrm{E}_{\mathrm{s}}$ | $Q_{0} / Q_{u}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60.000 | 1.000 | 0.500 | 0.833 | 0.167 | 5.000 | 0.667 | 0.133 | 0.800 | 2.000 |
| 60.000 | 1.000 | 1.000 | 0.833 | 0.167 | 5.000 | 0.833 | 0.167 | 1.000 | 5.000 |
| 60.000 | 1.000 | 0.171 | 0.857 | 0.143 | 6.000 | 0.167 | 0.028 | 0.194 | 0.200 |
| 60.000 | 1.000 | 0.214 | 0.857 | 0.143 | 6.000 | 0.333 | 0.056 | 0.389 | 0.500 |
| 60.000 | 1.000 | 0.286 | 0.857 | 0.143 | 6.000 | 0.500 | 0.083 | 0.583 | 1.000 |
| 60.000 | 1.000 | 0.429 | 0.857 | 0.143 | 6.000 | 0.667 | 0.111 | 0.778 | 2.000 |
| 60.000 | 1.000 | 0.857 | 0.857 | 0.143 | 6.000 | 0.833 | 0.139 | 0.972 | 5.000 |
| 60.000 | 1.000 | 0.150 | 0.875 | 0.125 | 7.000 | 0.167 | 0.024 | 0.190 | 0.200 |
| 60.000 | 1.000 | 0.188 | 0.875 | 0.125 | 7.000 | 0.333 | 0.048 | 0.381 | 0.500 |
| 60.000 | 1.000 | 0.250 | 0.875 | 0.125 | 7.000 | 0.500 | 0.071 | 0.571 | 1.000 |
| 60.000 | 1.000 | 0.375 | 0.875 | 0.125 | 7.000 | 0.667 | 0.095 | 0.762 | 2.000 |
| 60.000 | 1.000 | 0.750 | 0.875 | 0.125 | 7.000 | 0.833 | 0.119 | 0.952 | 5.000 |

*Ideal efficiency values are independent of feed rates.

## SAMPLE DATA SHEET AND CALCULATIONS

In the following page is a sample data sheet of a typical run (No. 198) conducted under the prescribed conditions as indicated. The calculation procedure for obtaining the overall separation efficiency is quite simple.

$$
\begin{aligned}
& x_{0}+z_{o}=\frac{\text { oil }+ \text { solid }}{\text { run volume }}=\frac{25.73}{26.06}=0.988 \\
& y_{u}=\frac{\text { water volume }}{\text { run volume }}=\frac{19.74}{34.02}=0.580 \\
& x_{f}+z_{f}=0.666 \\
& Y_{f}=0.334 \\
& \left.E=\frac{Q_{\mathrm{O}}\left[\left(\mathrm{X}_{\mathrm{O}}+\mathrm{z}_{\mathrm{O}}\right)-\left(\mathrm{X}_{\mathrm{f}}+z_{\mathrm{f}}\right)\right]}{Q_{\mathrm{f}}[1}-1-\left(\mathrm{X}_{\mathrm{f}}+z_{\mathrm{f}}\right)\right] \quad+\frac{Q_{u}\left(Y_{u}-Y_{f}\right)}{Q_{\mathrm{f}}\left(1-Y_{f}\right)} \\
& =\frac{26.06(0.988-0.666)}{60.08(1-0.666)}+\frac{34.02(0.580-0.334)}{60.08(1-0.334)} \\
& =0.627 \\
& Q_{o} / Q_{u}=26.06 / 34.02=0.766
\end{aligned}
$$


Data Sheet
(Liquid-Solid-Liquid Separation) $\quad$ Run-No: 197

(A)

| water vol. | 1984 cc. |  |
| :--- | ---: | :--- |
| oil + solids | 1435 cc. |  |
| dry sol. + tare | 114.69 | gm. |
| tare wt. | 5.42 gm. |  |
| dry solid | 109.27 gm. |  |
|  | 118.4 | cc. |

solid content in oil $=8.27 \%$
(B)
run vol. $=3419 \mathrm{cc} / 100.5^{\mathrm{c}} \mathrm{sec}=34.02 \mathrm{cc} / \mathrm{sec}$ water vol $=1984 \mathrm{cc} / 100.5 \mathrm{sec}=19.74 \mathrm{cc} / \mathrm{sec}$ oil + sol $=1435 \mathrm{cc} / 100.5 \mathrm{sec}=14.28 \mathrm{cc} / \mathrm{sec}$

Total throughput $=60.08 \mathrm{cc} / \mathrm{sec}=100.00 \%$
Total water vol. $=20.08 \mathrm{cc} / \mathrm{sec}=33.43 \%$
Total oil + solids $=40.00 \mathrm{cc} / \mathrm{sec}=66.57 \%$
Total solids in overflow $=0.461 \mathrm{cc} / \mathrm{sec}$. Total solids in underflow= $1.180 \mathrm{cc} / \mathrm{sec}$. Total solids entering $=1.641 \mathrm{cc} / \mathrm{sec}$.

Solid conc. in oil $=4.07 \% \quad$ Solid conc. in fluid $=2.71 \%$
Overflow/underflow (solids) $\quad=0.391$ Overflow/underflow (oil) $=1.93$
Overflow/underflow (oil + solids $=1.80$ Overflow/underflow (water) $=0.017$

## APPENDIX E

## PRESENTATION OF DATA

There are three tables presented in this appendix. Table E-l serves as an index for the reader to locate a particular run of a given set of parameters. Table E-2 contains all the unprocessed experimental data as well as calculated actual efficiencies. The measurement error inherent within each column in Table E-2 is given in Chapter V. In Table E-3 are included the treated data and the detailed calculation procedures in a FORTRAN computer program.

## Preliminary Treatment of Raw Data

Since all the feed rates ( $Q_{f}$ ) varied less than $\pm 1.5 \%$ from the desired values, it is assumed that such a deviation will have very little effect on the measured variables. To achieve the uniqueness within each set of runs and to facilitate the processing of raw data for subsequent computations, a factor was applied to each $Q_{f}$ in order to adjust it to the exact desired feed rates: 50.00, 60.00 and $75.00 \mathrm{cc} / \mathrm{sec}$. Consequently both $Q_{0}$ and $Q_{u}$ were also adjusted proportionally.

111
The trial and error procedure outlined previously for determining the average macroscopic turbulent length between a pair of adjacent runs further requires the $Q_{0}$ or $Q_{u}$ interval between each pair to be consistent throughout the entire set. In order to permit the turbulent length calculations to be made, it was therefore necessary to obtain values of the efficiency at $Q_{0} / Q_{u}$ ratios other than the measured ratios. These interpolated values for efficiency and $Q_{0} / Q_{u}$ ratios were obtained for each difference in overflow or underflow rate of $2.0 \mathrm{cc} / \mathrm{sec}$. Interpolation was carried out only between measured values for efficiency and $Q_{o} / Q_{u}$. A total of 445 interpolated data points were obtained based on the original 240 measured data points. All the interpolated points are contained in Table E-3 and are prefixed by a letter $C$ in the discussions. While the separation efficiency value for each interpolated effluent split ( $Q_{o} / Q_{u}$ ) could be located from the original efficiency curve, it was not possible to reassign a new value of an independent variable $\left(X_{f}+z_{f}\right)$ from another independent variable--effluent split ( $Q_{0} / Q_{u}$ )--without further experimental work. To remedy this situation, it was again necessary to resort to the assumption applied earlier that slight variations from the desired feed phase ratio (0.5, 1.0 and 2.0) were also insignificant to the measured dependent variables $x_{o}, y_{u}$, etc. Hence an average value of ( $\left.X_{f}+z_{f}\right)$
within each set of runs was obtained by the following method.

$$
\left(x_{f}+z_{f}\right) \text { ave. }=\frac{\sum_{1}^{n}\left[Q_{f}\left(x_{f}+z_{f}\right)\right]_{i}}{\sum_{1}^{n}\left[\left(Q_{f}\right)\right]_{i}}
$$

where n is the total number of runs in the original set, and subscript $i$ is designated to each individual run. Once the value of $\left(x_{f}+z_{f}\right)$ was estimated, the $\left(x_{0}+z_{o}\right)$ and $y_{u}$ corresponding to each interpolated effluent split was readily obtained from the efficiency,

$$
\begin{equation*}
E=\frac{Q_{O}\left[\left(x_{0}+z_{O}\right)-\left(x_{f}+z_{f}\right)\right]}{Q_{f}\left[1-\left(x_{f}+z_{f}\right)\right]}+\frac{Q_{u}\left(y_{u}-Y_{f}\right)}{Q_{f}\left(1-Y_{f}\right)} \tag{66}
\end{equation*}
$$

and the material balance,

$$
\begin{equation*}
\left[1-\left(x_{o}+z_{o}\right)\right] Q_{0}+y_{u} Q_{u}=Q_{f}\left[1-\left(x_{f}+z_{f}\right)\right] \tag{58}
\end{equation*}
$$

A computer program was written to make the desired calculations. The program is listed later in this appendix and the results of the calculations for $\left(x_{0}+z_{o}\right)$ and $y_{\mu}$ are included in Table E-3.

## Overall Separation Efficiency Curve vs. Effluent Split at Various Specified Parameters

For the convenience of locating a particular run or an efficiency curve, the following table is provided. Thus; if it is desired to locate the efficiency curve of a given
set of parameters, say $Q_{f}=60 \mathrm{cc} / \mathrm{sec}$, phase ratio (oil/ water) $=1.0$,solid content $2 \%$ and solid size 0.832 mm , the number will be Figure $\mathrm{E}-2$ as indicated in this case by the superscript 0 in the following table

## TABLE E-1

Index Table for Sets and Run Numbers

| $\frac{\text { oil }}{\text { water }} \downarrow$ | $2 \sigma_{s}=0.832 \mathrm{~mm}$ |  |  | $2 \sigma_{5}=0.294 \mathrm{~mm}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2\% solids |  |  |  |  |  |
| $\begin{gathered} 1 / 2 \\ (\text { run } N o) \end{gathered}$ | $\begin{gathered} 10 \\ (75-82) \end{gathered}$ | $\begin{gathered} 1 \\ (1-7) \end{gathered}$ | $\begin{gathered} 11^{\circ} \\ (82-85) \end{gathered}$ | $\left\lvert\, \begin{gathered} 25 \\ (169-72 \end{gathered}\right.$ | $\begin{gathered} 22 \\ (153-51 \end{gathered}$ | $\left\lvert\, \begin{gathered} 24 \\ (164-69 \end{gathered}\right.$ |
| 1/1 | $\begin{gathered} 8 \\ (60-68) \end{gathered}$ | $\begin{gathered} 2^{0} \\ (8-17) \end{gathered}$ | $\begin{gathered} 7 * \\ (51-59) \\ \hline \end{gathered}$ | $\begin{gathered} 26 \\ (1.73-77) \end{gathered}$ | $\begin{gathered} 23 \\ (158-63 \\ \hline \end{gathered}$ | $\begin{array}{r} 27 * \\ (178-81 \\ \hline \end{array}$ |
| 2/1 | $\begin{gathered} 9 \\ (69-74) \\ \hline \end{gathered}$ | $\begin{gathered} 3 \\ (18-26) \\ \hline \end{gathered}$ | $\begin{aligned} & 4,5,6 \\ & (27-50) \end{aligned}$ | $\binom{30}{(191-94}$ | $\begin{gathered} 29 \\ (186-90 \end{gathered}$ | $\begin{gathered} 28 \\ (182-8 \\ \hline \end{gathered}$ |
|  | 4\% solids |  |  |  |  |  |
| 1/2 | $\begin{gathered} 12 \\ (86-92) \\ \hline \end{gathered}$ | $\begin{gathered} 13,14 \\ (93-103) \end{gathered}$ | $\begin{array}{\|c\|} 15 \\ (104-9) \\ \hline \end{array}$ | $\begin{gathered} 38 \\ (229-33) \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} 37 \\ (222-28 \\ \hline \end{array}$ | $\begin{gathered} 39 \\ 234-39 \\ \hline \end{gathered}$ |
| $1 / 1$ | $\begin{gathered} 21 \\ (147-52 \\ \hline \end{gathered}$ | $\begin{gathered} 16 \\ (110-15) \end{gathered}$ | $\begin{gathered} 17 * \\ (116-26 \end{gathered}$ | $\begin{gathered} 36 \\ (217-21) \end{gathered}$ | $\begin{gathered} 33 \\ (202-7) \\ \hline \end{gathered}$ | $\left.\begin{array}{c} 32 * \\ (199-01 \end{array}\right)$ |
| $2 / 1$ | $\begin{gathered} 20 \\ (142-46 \end{gathered}$ | $\left\lvert\, \begin{gathered} 18 \\ \times 127-34) \end{gathered}\right.$ | $\begin{gathered} 19 \\ (135-41 \end{gathered}$ | $\left(\begin{array}{c} 34 \\ (208-12) \end{array}\right.$ | $\begin{gathered} 31 \\ (195-8) \end{gathered}$ | $\left(\begin{array}{c} 35 \\ (213-16) \end{array}\right.$ |
| $\begin{gathered} Q_{\mathrm{f}} \\ \mathrm{cc} / \mathrm{sec}^{2} \end{gathered}$ | 50 | 60 | 75 | 50 | 60 | 75 |

*. Separation disrupted seriously bẏ intense emulsification.

- Separation interfered by moderate emulsification.


Figure E-l. Overall Efficiency vs. Effluent Split.


Figure E-2. Overall Efficiency vs. Effluent Split.


Figure E-3. Overall Efficiency vs. Effluent Split.


Figure E-4. Overall Efficiency vs. Effluent Split.


Figure E-5. Overall Efficiency vs. Effluent Split.


Figure E-6. Overall Efficiency vs. Effluent Split.


Figure E-7. Overall Efficiency vs. Effluent Split.


Figure E-8. Overall Efficiency vs. Effluent Split.


Figure E-9. Overall Efficiency vs. Effluent Split.


Figure E-l0. Overall Efficiency vs. Effluent Split.


Figure E-ll. Overall Efficiency vs. Effluent Split.


Figure E-12. Overall Efficiency vs. Effluent Split.


Figure E-l3. Overall Efficiency vs. Effluent Split.


Figure E-14. Overall Efficiency vs. Effluent Siplit.


Figure E-15. Overall Efficiency vs. Effluent Splif.


Figure E-16. Overall Efficiency vs. Effluent Split.


Figure E-17. Overall Efficiency vs. Effluent Split.


Figure E-18. Overall Efficiency vs. Effluent Split.


Figure E-19. Overall Efficiency vs. Effluent Split.


Figure E-20. Overall Efficiency vs. Effluent Split.


Figure E-2l. Overall Efficiency vs. Effluent Split.


Figure E-22. Overall Efficiency vs. Effluent Split.


Figure E-23. Overall Efficiency vs. Effluent Split.


Figure E-24. Overall Efficiency vs. Effluent Split.


Figure E-25. Overall Efficiency vs. Effluent Split.


Figure E-26. Overall Efficiency vs. Effluent Split.


Figure E-27. Overall Efficiency vs. Effluent Split.


Figure E-28. Overall Efficiency vs. Effluent Split.


Figure E-29. Overall Efficiency vs. Effluent Split.



Figure E-31. Overall Efficiency vs. Effluent Split.


Figure E-32. Overall Efficiency vs. Effluent Split.


Figure E-33. Overall Efficiency vs. Effluent Split.


Figure E-34. Overall Efficiency vs. Effluent Split.


Figure E-35. Overall Efficiency vs. Effluent Split.


Figure E-36. Overall Efficiency vs. Effluent Split.


Figure E-37. Overall Efficiency vs. Effluent Split.


Figure E-38. Overall Efficiency vs. Effluent Split.


Figure E-39. Overall Efficiency vs. Effluent Split.
table e-2
SUMMARY OF EXPERTMENTAL RESULTS

| Run | $\mathbf{x}_{\mathbf{E}} \mathbf{+ z}_{\mathbf{f}}$ | $\begin{gathered} \mathbf{Q}_{\mathbf{f}} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $x_{0}+z_{0}$ | $\begin{gathered} Q_{0} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $Y_{u}$ | $\begin{gathered} Q_{u} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{0} Y_{o}^{o}}{Q_{u} Y_{u}}$ | $\frac{Q_{0}\left(x_{0}+z_{0}\right)}{Q_{u}\left(x_{u}+z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{o}}{Q_{u} z_{u}}$ | Solid $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.336 | 60.48 | 0.487 | 41.520 | 0.993 | 18.960 | 0.463 | 2.190 | 1.130 | 145.00 | 143.00 | $\infty$ | I. 93 |
| 2 | 0.340 | 60.40 | 0.542 | 36.550 | 0.965 | 24.050 | 0.541 | 1.511 | 0.720 | 23.66 | 23.34 | 78.300 | 2.05 |
| 3 | 0.355 | 60.00 | 0.703 | 25.300 | 0.896 | 34.700 | 0.636 | 0.729 | 0.240 | 4. 94 | 5.12 | 1.350 | 2.12 |
| 4 | 0.339 | 60.79 | 0.582 | 33.960 | 0.989 | 28.830 | 0.606 | 1.266 | 0.545 | 23.80 | 23.40 | 76.000 | 2.08 |
| 5 | 0.338 | 29.71 | 0.013 | 30.400 | 0.947 | 29.310 | 0.625 | 1.037 | 0.424 | 11.98 | 11.83 | 25.500 | 2.03 |
| 6 | 0.330 | 59.90 | 0.091 | 17.500 | 0.821 | 42.400 | 0.474 | 0.413 | 0.155 | 1.60 | 1.64 | 0.503 | 2.01 |
| 7 | 0.347 | 60.14 | 0.711 | 23.500 | 0.885 | 36.600 | 0.629 | 0.642 | 0.210 | 3.94 | 4.11 | 0.870 | 2.06 |
| 8 | 0.504 | 59.82 | 0.796 | 35.150 | 0.916 | 24.700 | 0.692 | 1.423 | 0.314 | 13.55 | 13.51 | 15.500 | 2.14 |
| 9 | 0.502 | 60.04 | 0.865 | 30.830 | 0.885 | 29.210 | 0.753 | 1.055 | 0.150 | 7.95 | 7.99 | 6.330 | 2.12 |
| 10 | 0.501 | 60.24 | 0.844 | 23.290 | 0.710 | 36.950 | 0.531 | 0.030 | 0.140 | 1.87 | 1.97 | 0.037 | 1.98 |
| 11 | 0.495 | 59.80 | 0.873 | 28.400 | 0.846 | 31.400 | 0.717 | 0.904 | 0.140 | 5.16 | 5.43 | 1.150 | 2.11 |
| 12 | 0.499 | 59.58 | 0.863 | 27.230 | 0.807 | 32.350 | 0.565 | 0.842 | 0.143 | 3.76 | 3.98 | 0.240 | 2.00 |
| 13 | 0.501 | 59.99 | 0.863 | 26.100 | 0.781 | 33.690 | 0.638 | 0.770 | 0.130 | 3.06 | 3.29 | 0.190 | 2.02 |
| 14 | 0.502 | 00.19 | 0.854 | 20.190 | 0.676 | 40.000 | 0.473 | 0.505 | 0.109 | 1.33 | 1.40 | 0.022 | 2.04 |
| 15 | 0.501 | 60.34 | 0.502 | 53.300 | 0.972 | 7.040 | 0.218 | 7.571 | 3.400 | 147.00 | 144.00 | $\infty$ | 2.01 |
| 16 | 0.498 | 60.19 | 0.705 | 37.454 | 0.938 | 22.740 | 0.061 | 1.047 | 0.410 | 20.20 | 20.10 | 29.700 | 2.01 |
| 17 | 0.490 | 60.20 | 0.620 | 47.200 | 0.958 | 13.000 | 0.391 | 3.631 | 1.440 | 53.10 | 52.70 | 73.200 | 1.98 |
| 18 | 0.668 | 00.00 | 0.973 | 32.490 | 0.715 | 27.570 | 0.793 | 1.178 | 0.012 | 4.11 | 4.54 | 0.066 | 2.03 |
| 17 | 0.667 | 60.45 | 0.803 | 48.400 | 0.800 | 12.050 | 0.490 | 4.017 | 0.900 | 26.80 | 27.30 | 25.000 | 2.00 |
| 20 | 0.068 | 60.11 | 0.648 | 43.vou | 0.785 | 17.110 | 0.581 | 2.513 | 0.490 | 9.95 | 9.96 | 7.950 | 1.98 |
| 21 | 0.661 | 59.90 | 0.442 | 35.300 | 0.745 | 24.600 | 0.741 | 1.435 | 0.190 | 5.29 | 5.61 | 1.050 | 1.92 |
| 22 | 0.066 | 60.15 | 0.955 | 30.380 | 0.071 | 29.800 | 0.74 E | 1.019 | 0.009 | 3.06 | 3.33 | 0.061 | 2.02 |
| 23 | 0.664 | 00.10 | 0.988 | 21.350 | 0.515 | 38.750 | 0.516 | 0.551 | 0.013 | 1.12 | 1.17 | 0.027 | 2.01 |
| 24 | 0.670 | 60.43 | 0.959 | 23.550 | 0.534 | 30.880 | 0.563 | 0.639 | 0.013 | 1.35 | 1.42 | 0.030 | 1.94 |
| 25 | 0.669 | 60.05 | 0.985 | 11.140 | 0.404 | 48.850 | 0.264 | 0.228 | 0.081 | 0.04 | 0.04 | 0.014 | 1.93 |
| 20 | 0.075 | 60.52 | 0.992 | 29.720 | 0.630 | 30.800 | 0.717 | 0.965 | 0.011 | 2.59 | 2.78 | 0.059 | 2.06 |
| 27 | 0.662 | 74.30 | 0.989 | 39.100 | 0.703 | 35.200 | 0.770 | 1.111 | 0.016 | 3. 70 | 4.04 | 0.048 | 2.02 |
| 28 | 0.665 | 74.78 | 0.985 | 38.460 | 0.675 | 36.320 | 0.740 | 1.059 | 0.023 | 3.21 | 3.47 | 0.092 | 2.00 |
| 29 | 0.663 | 75.12 | 0.942 | 44.250 | 0.736 | 30.870 | 0.735 | 1.433 | 0.114 | 5.12 | 5.37 | 0.820 | 2.01 |
| 30 | 0.666 | 75.50 | 0.985 | 34.300 | 0.600 | 41.200 | 0.650 | 0.833 | 0.020 | 2.04 | 2.17 | 0.048 | 2.01 |
| 31 | 0.667 | 74.90 | 0.987 | 29.900 | 0.544 | 45.000 | 0.574 | 0.664 | 0.015 | 1.44 | 1.51 | 0.026 | 2.10 |
| 32 | 0.676 | 75.58 | 0.980 | 22.580 | 0.453 | 53.000 | 0.414 | 0.426 | 0.019 | 0.76 | 0.79 | 0.017 | 1.98 |
| 33 | 0.668 | 74.92 | 0.789 | 56.700 | 0.699 | 18.220 | 0.407 | 3.112 | 0.951 | 8.10 | 8.11 | 6.710 | 2.06 |
| 34 | 0.667 | 75.35 | 0.912 | 45.750 | 0.709 | 29.400 | 0.667 | 1.556 | 0.194 | 4.86 | 4.90 | 2.860 | 2.00 |
| 35 | 0.67 C | 74.81 | 0.797 | 55.000 | 0.688 | 19.750 | 0.424 | 2.788 | 0.819 | 7.12 | 7.18 | 5.540 | 2.09 |
| 36 | 0.673 | 75.43 | 0.864 | 49.110 | 0.683 | 26.320 | 0.565 | 1.806 | 0.371 | 5.08 | 5.13 | 3.430 | 2.02 |
| 37 | 0.664 | 74.85 | 0.832 | 48.000 | 0.664 | 26.950 | 0.483 | 1.788 | 0.447 | 4.45 | 4.46 | 3.320 | 2.08 |
| 38 | 0.671 | 75.16 | 0.978 | 36.090 | 0.613 | 39.070 | 0.668 | 0.924 | 0.033 | 2.33 | 2.48 | 0.078 | 1.97 |
| 39 | 0.656 | 74.30 | 0.976 | 37.100 | 0.665 | 37.200 | 0.709 | 0.997 | 0.035 | 2.90 | 3.10 | 0.103 | 1.92 |
| 40 | 0.668 | 75.70 | 0.981 | 41.900 | 0.717 | 33.800 | 0.779 | 1.240 | 0.033 | 4.32 | 4.77 | 0.647 | 1.96 |

TABLE E-2 (continued)

| Run | $\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\mathrm{f}}$ | $\begin{gathered} Q_{f} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $x_{0}+z_{0}$ |  | $\mathbf{Y}_{\mathbf{u}}$ | $\begin{gathered} Q_{\mathbf{u}} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{0} Y_{0}}{Q_{u} Y_{u}}$ | $\frac{\varepsilon_{0}\left(x_{0}+z_{0}\right)}{Q_{u}\left(x_{u}+z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{o}}{Q_{u} z_{u}}$ | Solid $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 0.665 | 74.60 | 0.777 | 54.850 | 0.653 | 19.750 | 0.372 | 2.777 | 0.940 | 6.33 | 6.33 | 6.250 | 1.88 |
| 42 | 0.666 | 75.10 | 0.978 | 30.400 | 0.546 | 44.700 | 0.568 | 0.680 | 0.026 | 1.46 | 1.53 | 0.027 | 1.95 |
| 43 | 0.673 | 75.50 | 0.942 | 44.250 | 0.708 | 31.250 | 0.716 | 1.416 | 0.116 | 4.56 | 5.05 | 0.074 | 1.95 |
| 44 | 0.665 | 74.80 | 0.971 | 42.400 | 0.737 | 37.400 | 0.820 | 1.134 | 0.522 | 4.83 | 5.40 | 0.060 | 1.89 |
| 45 | 0.674 | 74.60 | 0.857 | 48.500 | 0.680 | 26. 100 | 0.569 | 1.858 | 0.374 | 5.02 | 5.12 | 3.570 | 1.95 |
| 46 | 0.665 | 75.21 | 0.981 | 21.610 | 0.462 | 53.600 | 0.407 | 0.403 | 0.014 | 0.74 | 0.79 | 0.019 | 1.80 |
| 47 | 0.665 | 74.65 | 0.985 | 39.050 | 0.687 | 35.600 | 0.752 | 1.097 | 0.024 | 3.46 | 3.70 | 0.152 | 1.77 |
| 43 | 0.665 | 75.17 | 0.972 | 27.6070 | 0.510 | 47.500 | 0.506 | 0.583 | 0.028 | 1.16 | 1.21 | 0.043 | 1.77 |
| 49 | 0.665 | 74.95 | 0.982 | 35.250 | 0.616 | 39.700 | 0.669 | 0.888 | 0.028 | 2.26 | 2.39 | 0.074 | 1.89 |
| 50 | 0.666 | 75.00 | 0.922 | 46.000 | 0.745 | 29.000 | 0.709 | 1.586 | 0.163 | 5.76 | 6.02 | 1.420 | 2.06 |
| 51 | 0.499 | 74.70 | 0.661 | 46.900 | 0.775 | 27.800 | 0.407 | 1.687 | 0.735 | 4.95 | 4.93 | 6.300 | 2.11 |
| 52 | 0.496 | 74.50 | 0.750 | 38.000 | 0.767 | 36.500 | 0.517 | 1.041 | 0.340 | 3.35 | 3.56 | 2.730 | 1.99 |
| 53 | 0.495 | 74.87 | 0.641 | 50.250 | 0.800 | 24.620 | 0.390 | 2.041 | 0.914 | 6.62 | 6.56 | 8.490 | 2.12 |
| 54 | 0.506 | 74.93 | 0.584 | 59.920 | 0.796 | 15.010 | 0.246 | 3.992 | 2.080 | 11.50 | 11.41 | 18.200 | 2.08 |
| 55 | 0.503 | 75.55 | 0.680 | 46.300 | 0.777 | 29.200 | 0.433 | 1.586 | 0.653 | 4.84 | 4.84 | 6.210 | 2.03 |
| 50 | 0.501 | 75.25 | 0.755 | 31.750 | 0.690 | 43.500 | 0.432 | 0.730 | 0.258 | 1.78 | 1.77 | 1.960 | 1.95 |
| 57 | 0.500 | 75.50 | 0.850 | 25.250 | 0.676 | 50.250 | 0.468 | 0.502 | 0.069 | 1.43 | 1.42 | 1.680 | 1.94 |
| 58 | 0.494 | 75.09 | 0.758 | 29.000 | 0.674 | 46.000 | 0.410 | 0.630 | 0.226 | 1.46 | 1.46 | 1.670 | 2.01 |
| 59 | 0.505 | 75.25 | 0.807 | 29.750 | 0.692 | 45.500 | 0.460 | 0.654 | 0.183 | 1.72 | 1.73 | 1.070 | 1.99 |
| 60 | 0.476 | 49.80 | 0.826 | 17.800 | 0.687 | 32.000 | 0.471 | 0.556 | 0.142 | 1.47 | 1.45 | 0.053 | 1.99 |
| 61 | 0.507 | 50.30 | 0.795 | 11.400 | 0.577 | 38.900 | 0.237 | 0.293 | 0.104 | 0.55 | 0.56 | 0.053 | 1.99 |
| 62 | 0.508 | 50.60 | 0.840 | 28.900 | 0.940 | 21.700 | 0.738 | 1.332 | 0.224 | 19.20 | 19.30 | 13.500 | 1.98 |
| 63 | 0.505 | 50.00 | 0.857 | 26.700 | 0.901 | 23.300 | 0.738 | 1.146 | 0.178 | 10.00 | 10.90 | 1.160 | 1.87 |
| 64 | 0.504 | 50.13 | 0.872 | 22.510 | 0.795 | 27.620 | 0.646 | 0.815 | 0.131 | 3.47 | 3.76 | 0.079 | 1.96 |
| 65 | 0.500 | 50.25 | 0.860 | 24.050 | 0.832 | 26.200 | 0.691 | 0.918 | 0.154 | 4.68 | 5.21 | 0.080 | 1.93 |
| 60 | 0.504 | 50.25 | 0.789 | 31.000 | 0.950 | 19.250 | 0.700 | 1.610 | 0.361 | 25.80 | 25.70 | 29.950 | 1.91 |
| 67 | 0.496 | 50.18 | 0.620 | 39.850 | 0.981 | 10.330 | 0.393 | 3.858 | 1.480 | 149.00 | 152.00 | 80.000 | 2.00 |
| 68 | 0.503 | 50.47 | 0.678 | 36.910 | 0.971 | 13.560 | 0.511 | 2.722 | 0.901 | 64.10 | 63.00 | 73.100 | 1.94 |
| 69 | 0.663 | 49.90 | 0.880 | 32.600 | 0.742 | 17.300 | 0.632 | 1.884 | 0.307 | 6.45 | 6.52 | 4.400 | 1.99 |
| 70 | 0.668 | 50.40 | 0.787 | 38.190 | 0.698 | 12.300 | 0.405 | 3.105 | 0.950 | 8.12 | 6.17 | 6.190 | 2.07 |
| 71 | 0.670 | 49.65 | 0.966 | 28.600 | 0.733 | 21.050 | 0.772 | 1.359 | 0.062 | 4.88 | 5.24 | 0.454 | 1.91 |
| 72 | 0.600 | 50.11 | 0.996 | 26.110 | 0.694 | 24.000 | 0.785 | 1.088 | 0.007 | 3.54 | 3.84 | 0.900 | 1.94 |
| 73 | 0.666 | 50.02 | 0.994 | 23.450 | 0.628 | 26.570 | 0.693 | 0.883 | 0.005 | 2.37 | 2.50 | 0.069 | 1.93 |
| 74 | $0.65{ }^{\circ}$ | 49.95 | 0.993 | 15.600 | 0.497 | 34:350 | 0.466 | 0.454 | 0.006 | 0.90 | 0.92 | 0.072 | 1.96 |
| 75 | 0.334 | 49.83 | 0.717 | 17.280 | 0.869 | 32.550 | 0.596 | 0.531 | 0.173 | 2.90 | 3.10 | 0.170 | 2.06 |
| 76 | 0.332 | 50.05 | 0.715 | 19.850 | 0.911 | 30.200 | 0.669 | 0.657 | 0.204 | 5.66 | 5.91 | 1.410 | 1.94 |
| 77 | 0.334 | 50.12 | 0.492 | 33.600 | 0.989 | 16.520 | 0.478 | 2.034 | 1.050 | 73. 70 | 72.60 | 167.000 | 2.01 |
| 78 | 0.332 | 50.01 | 0.624 | 24.610 | 0.952 | 25.400 | 0.650 | 0.969 | 0.382 | 13.10 | 13.00 | 12.200 | 1.83 |

TABLE E-2 (continued)

| Run | $\mathrm{x}_{\mathrm{f}}+z_{f}$ | $\begin{gathered} Q_{f} \\ \text { cc/sec } \end{gathered}$ | $x_{0}+z_{0}$ | $\begin{gathered} Q_{0} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $Y_{u}$ | $\begin{gathered} Q_{u} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{0} Y_{o}}{Q_{u} Y_{u}}$ | $\frac{Q_{0}\left(x_{0}+z_{o}\right)}{Q_{u}\left(x_{u} \dot{z} z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{o}}{Q_{u} z_{u}}$ | Solid \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 79 | 0.332 | 50.25 | 0.696 | 15.320 | 0.829 | 34.950 | 0.503 | 0.438 | 0.161 | 1.78 | 1.86 | 0.051 | 1.87 |
| 80 | 0.330 | 50.40 | 0.508 | 10.000 | 0.714 | 40.400 | 0.160 | 0.248 | 0.171 | 0.44 | 0.45 | 0.016 | 1.87 |
| 81 | 0.341 | 50.35 | 0.698 | 21.500 | 0.925 | 28.850 | 0.678 | 0.745 | 0.242 | 7.19 | 7.21 | 4.970 | 2.03 |
| 82 | 0.336 | 50.16 | 0.729 | 17.830 | 0.882 | 32.330 | 0.626 | 0.551 | 0. 169 | 3.39 | 3.62 | 0.278 | 1.93 |
| 83 | 0.336 | 75.20 | 0.640 | 28.500 | 0.850 | 41.700 | 0.480 | 0.683 | 0.258 | 2.60 | 2.59 | 4.550 | 1.92 |
| 84 | 0.336 | 74.88 | 0.607 | 34.150 | 0.900 | 40.730 | 0.586 | 0.838 | 0.370 | 4.72 | 4.67 | 12.700 | 1.99 |
| 85 | 0.341 | 75.20 | 0.389 | 59.400 | 0.812 | 15.800 | 0.147 | 3.759 | 2.820 | 7. 78 | 7.68 | 194.000 | 2.12 |
| 86 | 0.338 | 49.70 | 0.453 | 36.600 | 0.992 | 13.100 | 0.385 | 2.794 | 1.540 | 199.00 | 199.00 | 200.000 | 4.04 |
| 87 | 0.336 | 49.90 | 0.647 | 13.100 | 0.774 | 36.800 | 0.364 | 0.356 | 0.162 | 1.03 | 1.09 | 0.189 | 3.94 |
| 88 | 0.333 | 50.10 | 0.529 | 31.200 | 0.989 | 18.900 | 0.548 | 1.651 | 0.786 | 71.50 | 70.40 | 94.500 | 4.15 |
| 89 | 0.334 | 50.33 | 0.590 | 28.580 | 0.980 | 21.750 | 0.625 | 1.314 | 0.574 | 35.00 | 34.80 | 38.200 | 4.12 |
| 90 | 0.330 | 50.42 | 0.650 | 18.420 | 0.843 | 32.000 | 0.511 | 0.576 | 0.238 | 2.40 | 2.54 | 0.632 | 4.05 |
| 91 | 0.326 | 49.88 | 0.607 | 20.330 | 0.902 | 29.500 | 0.584 | 0.689 | 0.313 | 3.15 | 3.42 | 0.650 | 4.18 |
| 92 | 0.328 | 50.40 | 0.619 | 24.900 | 0.951 | 25.500 | 0.644 | 0.976 | 0.390 | 12.30 | 12.80 | 5.900 | 3.82 |
| 93 | 0.333 | 59.92 | 0.458 | 43.560 | 0.995 | 16.360 | 0.405 | 2.663 | 1.450 | 333.00 | 320.00 | ¢ | 4.07 |
| 94 | 0.333 | 59.80 | 0.566 | 33.200 | 0.960 | 26.600 | 0.585 | 1.248 | 0.565 | 17.10 | 16.70 | 36.100 | 4.00 |
| 95 | 0.332 | 60.20 | 0.683 | 25.200 | 0.920 | 35.000 | 0.661 | 0.720 | 0.248 | 6.13 | 6.45 | 2.370 | 3.91 |
| 96 | 0,332 | 60.30 | 0.600 | 29.700 | 0.927 | 30.600 | 0.593 | 0.971 | 0.418 | 8.17 | 7.97 | 14.850 | 4.07 |
| 97 | 0.335 | 60.30 | 0.715 | 20.500 | 0.861 | 39.850 | 0.581 | 0.514 | 0.171 | 2.64 | 2.98 | 0.224 | 4.07 |
| 98 | 0.341 | 60.30 | 0.558 | 15.420 | 0.735 | 44.880 | 0.250 | 0.344 | 0.207 | 0.72 | 0.76 | 0.075 | 4.02 |
| 99 | 0.331 | 60.19 | 0.400 | 34.450 | 0.761 | 25.740 | 0.178 | 1.338 | 1.050 | 2.24 | 2.23 | 2.390 | 3.94 |
| 100 | 0.333 | 59.80 | 0.394 | 38.300 | 0.776 | 21.500 | 0.176 | 1.781 | 1.390 | 3.14 | 3.11 | 4.410 | 4.02 |
| 101 | 0.335 | 60.20 | 0.415 | 31.800 | 0.754 | 28.400 | 0.189 | 1.120 | 0.868 | 1.88 | 1.87 | 2.350 | 3.94 |
| 102 | 0.338 | 59.80 | 0.446 | 27.100 | 0.751 | 32.700 | 0.218 | 0.829 | 0.670 | 1.49 | 1.50 | 1.300 | 4.07 |
| 103 | U. 332 | 59.60 | 0.447 | 19.900 | 0.725 | 39.700 | 0.172 | 0.501 | 0.382 | 0.82 | 0.80 | 1.310 | 3. 80 |
| 104 | 0.334 | 75.30 | 0.478 | 52.500 | 0.995 | 22.800 | 0.449 | 2.303 | 1.210 | 230.00 | 230.00 | $\infty$ | 4.12 |
| 105 | 0.330 | 74.86 | 0.514 | 47.040 | 0.983 | 27.820 | 0.525 | 1.691 | 0.841 | 57.50 | 56.00 | 140.000 | 3.98 |
| 106 | 0.332 | 75.50 | 0.022 | 31.400 | 0.875 | 44.100 | 0.545 | 0.712 | 0.307 | 3.54 | 3.48 | 6.280 | 4.05 |
| 107 | 0.330 | 74.90 | 0.533 | 42.840 | 0.941 | 32.060 | 0.525 | 1.336 | 0.663 | 12.20 | 11.70 | 72.300 | 4.02 |
| 108 | 0.338 | 75.47 | 0.601 | 36.770 | 0.911 | 39.700 | 0.581 | 0.926 | 0.416 | 6.47 | 6.23 | 41.300 | 3.90 |
| 109 | 0.331 | 74.72 | 0.632 | 23.100 | 0.805 | 51.620 | 0.423 | 0.448 | 0.205 | 1.44 | 1.47 | 0.953 | 4.08 |
| 110 | 0.499 | 59.80 | 0.781 | 36.400 | 0.941 | 23.400 | 0.688 | 1.556 | 0.363 | 20.30 | 20.10 | 24.200 | 3.89 |
| 111 | 0.494 | 59.98 | 0.827 | 34.900 | 0.940 | 25.080 | 0.750 | 1.392 | 0.254 | 19.50 | 19.30 | 24.200 | 3.98 |
| 112 | 0.504 | 60.10 | 0.873 | 25.500 | 0.770 | 34.600 | 0.629 | 0.737 | 0.120 | 2.78 | 3.23 | 0.071 | 4.00 |
| 113 | 0.501 | 60.30 | 0.907 | 29.500 | 0.890 | 30.800 | 0.797 | 0.958 | 0.099 | 7.88 | 9.88 | 0.600 | 3.89 |
| 114 | 0.499 | 60.30 | 0.856 | 22.200 | 0.708 | 38.100 | 0.524 | 0.583 | 0.118 | 1.71 | 1.97 | 0.038 | 3.98 |

TABLE E-2 (continued)

| Run | $\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\mathrm{f}}$ | $\begin{gathered} Q_{f} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $\mathrm{x}_{0}+{ }_{0}$ | $\begin{gathered} Q_{\mathrm{o}} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $\mathrm{y}_{\mathbf{u}}$ | $\begin{gathered} Q_{u} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{o} Y_{o}}{Q_{u} Y_{u}}$ | $\frac{Q_{0}\left(x_{0}+z_{o}\right)}{Q_{u}\left(x_{u}+z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{o}}{Q_{u} z_{u}}$ | $\underset{\%}{\text { Solid }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 115 | 0.496 | 59.72 | 0.080 | 42.160 | 0.956 | 17.560 | 0.532 | 2.401 | 0.785 | 38.10 | 38.20 | 34.000 | 3.89 |
| 116 | 0.507 | 74.75 | 0.625 | 55.250 | 0.825 | 19.500 | 0.348 | 2.833 | 1.290 | 10.30 | 10.20 | 10.600 | 3.95 |
| 117 | 0.505 | 75.60 | 0.697 | 44.550 | 0.769 | 31.100 | 0.452 | 1.432 | 0.565 | 4.27 | 4.26 | 4.720 | 4.12 |
| 110 | U.bus | 75.05 | 0.662 | 49.400 | 0.805 | 25.650 | 0.419 | 1.926 | 0.803 | 6.65 | 6.47 | 7.750 | 4.00 |
| 119 | 0.500 | 75.07 | 0.819 | 36.310 | 0.798 | 38.760 | 0.616 | 0.937 | 0.212 | 3.79 | 3.83 | 2.860 | 4.12 |
| 120 | 0.499 | 75.25 | 0.921 | 25.750 | 0.715 | 49.500 | 0.570 | 0.520 | 0.067 | 1.66 | 1.78 | 0.320 | 4.05 |
| 121 | 0.502 | 74.90 | 0.844 | 30.500 | 0.731 | 44.400 | 0.555 | 0.687 | 0.146 | 2.17 | 2.29 | 0.700 | 4.06 |
| 122 | 0.494 | 75.30 | 0.853 | 31.800 | 0.770 | 43.500 | 0.610 | 0.731 | 0.138 | 2.72 | 2.96 | 0.581 | 4.05 |
| 123 | 0.501 | 75.05 | 0.731 | 41.400 | 0.785 | 33.650 | 0.510 | 1.230 | 0.420 | 4.20 | 4.20 | 4.380 | 4.18 |
| 124 | 0.490 | 74.70 | 0.756 | 40.500 | 0.810 | 34.200 | 0.562 | 1.184 | 0.357 | 4.67 | 4.67 | 4.780 | 4.00 |
| 123 | 0.502 | 75.30 | 0.741 | 40.300 | 0.777 | 35.000 | 0.515 | 1.151 | 0.382 | 3.83 | 3.82 | 4.230 | 4.03 |
| 126 | 0.504 | 75.45 | 0.905 | 23.450 | 0.676 | 52.000 | 0.497 | 0.451 | 0.062 | 1.27 | 1.21 | 5.130 | 3.92 |
| 121 | 0.665 | 60.06 | 0.981 | 37.260 | 0.850 | 22.800 | 0.879 | 1.634 | 0.034 | 10.75 | 13.00 | 1.320 | 3.85 |
| 128 | 0.607 | 60.40 | 0.982 | 32.860 | 0.710 | 27.600 | 0.770 | 1.191 | 0.030 | 4.03 | 4.76 | 0.235 | 4.01 |
| 129 | 0.666 | 60.12 | 0.980 | 29.220 | 0.628 | 30.900 | 0.684 | 0.946 | 0.030 | 2.49 | 2.82 | 0.118 | 3.91 |
| 130 | 0.666 | 60.30 | 0.480 | 26.000 | 0.574 | 34.300 | 0.610 | 0.758 | 0.025 | 1.74 | 1.92 | 0.121 | 4.04 |
| $1 \leq 1$ | 0.606 | 59.60 | 0.743 | 45.500 | 0.886 | 11.300 | 0.465 | 4.292 | 1.000 | 29.60 | 29.30 | 31.800 | 3.94 |
| 132 | 0.569 | 59.60 | 0.487 | 39.000 | 0.932 | 20.600 | 0.939 | 1.893 | 0.026 | 27.20 | 27.80 | 18.600 | 3.90 |
| 133 | 0.663 | 59.74 | 0.814 | 46.200 | 0.841 | 13.540 | 0.516 | 3.412 | 0.754 | 17.80 | 17.80 | 13.200 | 4.05 |
| 134 | 0.664 | 60.30 | 0.869 | 42.800 | 0.824 | 17.500 | 0.543 | 2.446 | 0.389 | 12.00 | 12.00 | 10.300 | 4.02 |
| 135 | 0.076 | 75.00 | 0.985 | 47.000 | 0.865 | 28.000 | 0.896 | 1.679 | 0.024 | 12.40 | 16.60 | 1.000 | 3.92 |
| 130 | O.066 | 74.90 | 0.980 | 42.300 | 0.769 | 32.100 | 0.815 | 1.333 | 0.016 | 5.72 | 7.64 | 0.055 | 3.95 |
| 131 | 0.002 | 75.06 | $0.9 \rightarrow 6$ | 39.500 | 0.703 | 35.500 | 0.772 | 1.113 | 0.015 | 3.74 | 4.50 | 0.086 | 3.95 |
| 150 | 0.064 | 75.6 if | 1. 3 co | 53.000 | 0.715 | 22.000 | 0.495 | 2.436 | 0.611 | 7.04 | 7.10 | 6.180 | 3.96 |
| 1ذy | 0.669 | 75.05 | 0.790 | 55.700 | 0.688 | 19.350 | 0.409 | 2.379 | 0.876 | 7.25 | 7.25 | 7.470 | 3.90 |
| 140 | U.0.61 | 74.72 | 0.184 | 58.600 | 0.820 | 16.120 | 0.442 | 3.635 | 0.910 | 16.20 | 16.35 | 13.400 | 4.00 |
| 141 | 0.667 | 49.95 | 0.994 | 28.750 | 0.779 | 21.200 | 0.847 | 1.356 | 0.010 | 6.13 | 7.63 | 0.390 | 4.04 |
| 142 | 0.666 | 4.9.70 | U. 496 | 28.800 | 0.791 | 20.900 | 0.861 | 1.378 | 0.060 | 6.62 | 8.27 | 0.410 | 3.84 |
| 143 | 0.066 | 50.12 | 0.915 | 35.300 | 0.932 | 14.820 | 0.791 | 2.382 | 0.213 | 33.00 | 34.20 | 17.000 | 3.98 |
| 144 | 0.065 | 49.63 | 0.849 | 38.400 | 0.950 | 11.230 | 0.634 | 3.419 | 0.547 | 57.70 | 60.04 | 30.600 | 3.81 |
| 145 | 0.666 | 49.07 | 0.945 | 31.650 | 0.906 | 18.220 | 0.939 | 1.737 | 0.010 | 18.50 | 20.90 | 4.110 | 3.79 |
| 140 | 0.071 | 49.94 | 0.992 | 32.800 | 0.942 | 17.140 | 0.952 | 1.914 | 0.020 | 31.50 | 32.70 | 15.500 | 3.92 |
| 147 | 0.503 | 50.17 | 0.748 | 32.750 | 0.962 | 17.420 | 0.543 | 1.880 | 0.490 | 38.80 | 39.90 | 22.500 | 4.02 |
| 148 | 0.500 | 50.00 | 0.646 | 38.040 | 0.968 | 11.960 | 0.449 | 3.181 | 1.160 | 65.78 | 64.60 | 78.700 | 3.99 |
| 149 | 0.503 | 50.00 | '3. 845 | 28.300 | 0.947 | 21.700 | 0.778 | 1.304 | 0.210 | 20.30 | 20.80 | 13.000 | 3.82 |
| 150 | 0.495 | 49.90 | 0.815 | 25.200 | 0.835 | 24.700 | 0.650 | 1.020 | 0.224 | 4.96 | 6.33 | 0.050 | 3.91 |
| 131 | 0.500 | 50.00 | 0.792 | 22.900 | 0.748 | 27.100 | 0.536 | 0.845 | 0.235 | 2.66 | 3.11 | 0.026 | 4.07 |
| 152 | 0.503 | 50.10 | 0.768 | 20.100 | 0.674 | 30.000 | 0.425 | 0.670 | 0.231 | 1.58 | 1.76 | 0.013 | 3.97 |

TABLE E-2 (continued)

| Run | $\mathrm{x}_{\mathrm{f}} \mathrm{tz}_{\mathrm{f}}$ | $\begin{gathered} Q_{f} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $\mathrm{x}_{0}{ }^{+z_{0}}$ | $\begin{gathered} Q_{0} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $y_{u}$ | $\begin{gathered} Q_{u} \\ \text { cc/sec } \end{gathered}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{0} Y_{0}}{Q_{u} Y_{u}}$ | $\frac{Q_{0}\left(x_{0}+z_{0}\right)}{Q_{u}\left(x_{u}+z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{0}}{Q_{u} z_{u}}$ | Solid \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 153 | 0.335 | 60.30 | 0.554 | 35.800 | 0.983 | 24.560 | 0.582 | 1.458 | 0.664 | 43.00 | 42.70 | 92.200 | 2.02 |
| 154 | 0.333 | 59.97 | 0.507 | 53.370 | 0.960 | 26.620 | 0.586 | 1.254 | 0.566 | 17.30 | 17.50 | 35.600 | 2.01 |
| 153 | ). 337 | 59.90 | 0.031 | 29.000 | 0.940 | 30.900 | 0.639 | 0.939 | 0.368 | 9.60 | 9.43 | 17.900 | 2.02 |
| 156 | 0.329 | 59.64 | 0.641 | 23.540 | 0.875 | 36.100 | 0.559 | 0.052 | 0.270 | 3.34 | 3.31 | 7.940 | 2.03 |
| 157 | 0.332 | 00.10 | 0.672 | 19.500 | 0.830 | 40.600 | 0.495 | 0.480 | 0.190 | 1.88 | 1.91 | 1.160 | 2.09 |
| 150 | 0.501 | 60.19 | 0.8884 | 20.990 | 0.704 | 39.200 | 0.534 | 0.535 | 0.088 | 1.60 | 1.66 | 0.260 | 2.06 |
| 159 | 0.500 | 59.93 | 0.893 | 22.890 | 0.743 | 39.040 | 0.617 | 0.586 | 0.089 | 2.15 | 2.24 | 0.330 | 2.11 |
| 100 | 0.501 | 60.34 | 0.862 | 32.100 | 0.910 | 28.240 | 0.769 | 1.137 | 0.171 | 10.90 | 10.98 | 8.500 | 2.07 |
| 101 | 0.505 | 60.10 | 0.797 | 35.720 | 0.925 | 24.380 | 0.696 | 1.465 | 0.321 | 15.10 | 25.10 | 17.000 | 2.06 |
| $10{ }^{\text {c }}$ | 0.502 | 60.04 | 0.869 | 29.550 | 0.855 | 30.540 | 0.724 | 0.968 | 0.148 | 5.79 | 6.14 | 1.040 | 2.11 |
| 163 | 0.563 | 60.18 | 0.705 | 41.600 | 0.947 | 18.580 | 0.557 | 2.239 | 0.700 | 29.10 | 29.70 | 37.800 | 2.04 |
| 104 | 0.334 | 75.17 | 0.415 | 60.000 | 0.990 | 15.170 | 0.297 | 3.955 | 2.340 | 143.00 | 143.20 | 98.000 | 1.97 |
| 165 | 0.336 | 14.92 | 0.566 | 40.380 | 0.940 | 34.040 | 0.562 | 1.201 | 0.555 | 11.35 | 11.11 | 51.700 | 1.97 |
| 160 | 0.333 | 75.02 | 0.512 | 48.130 | 0.985 | 26.890 | 0.514 | 1.790 | 0.887 | 63.50 | 62.50 | 375.000 | 1.96 |
| 107 | 0.334 | 75.32 | 0.508 | 35.000 | 0.885 | 40.260 | 0.528 | 0.871 | 0.410 | 4. 51 | 4.42 | 28.700 | 1.96 |
| 168 | 0.335 | 75.13 | 0.604 | 27.750 | 0.823 | 47.380 | 0.447 | 0.586 | 0.280 | 2.00 | 1.97 | 10.500 | 2.06 |
| 169 | 0.337 | 50.37 | 0.707 | 17.070 | 0.865 | 32.600 | 0.584 | 0.542 | 0.180 | 0.81 | 2.89 | 0.720 | 1.88 |
| 170 | 0.329 | 49.90 | 0.625 | 23.300 | 0.930 | 26.600 | 0.626 | 0.876 | 0.350 | 7.72 | 7.70 | 9.800 | 1.94 |
| 171 | 0.331 | 50.27 | 0.550 | 29.050 | 0.970 | 21.220 | 0.573 | 1.369 | 0.632 | 26.00 | 26.00 | 32.900 | 2.00 |
| 172 | 0.331 | 49.82 | 0.466 | 34.410 | 0.972 | 15.410 | 0.423 | 2.233 | 1.220 | 38.50 | 38.00 | 62.000 | 1.90 |
| 173 | 0.500 | 49.95 | 0.025 | 34.800 | 0.783 | 15.150 | 0.346 | 2.297 | 1.100 | 6.60 | 6.57 | 8.900 | 2.02 |
| 114 | 0.496 | 50.00 | 0.720 | 29.900 | 0.837 | 20.100 | 0.535 | 1.488 | 0.495 | 6.57 | 6.53 | 8.270 | 1.99 |
| 175 | 0.505 | 50.15 | 0.909 | 19.750 | 0.756 | 30.400 | 0.635 | 0.650 | 0.077 | 2.44 | 2.67 | 0.210 | 1.88 |
| 176 | 0.500 | 49.85 | 0.915 | 21.750 | 0.821 | 28.100 | 0.721 | 0.774 | 0.080 | 3.98 | 3.98 | 3.870 | 1.99 |
| 17i | 0.502 | 50.30 | 0.644 | 25.900 | 0.804 | 24.400 | 0.757 | 1.061 | 0.190 | 6.57 | 6.52 | 8.120 | 2.04 |
| 178 | 0.498 | 75.35 | 0.752 | 39.950 | 0.780 | 35.400 | 0.531 | 1.129 | 0.355 | 4.00 | 3.99 | 4.480 | 1.83 |
| 179 | 0.309 | 75.30 | 0.792 | 32.100 | 0.701 | 43.200 | 0.482 | 0.743 | 0.220 | 1.95 | 1.96 | 1.850 | 1.89 |
| 180 | 0.503 | 75.10 | 0.770 | 36.300 | 0.745 | 38.800 | 0.514 | 0.936 | 0.290 | 2.82 | 2.82 | 3.130 | 2.02 |
| 161 | 0.500 | 75.00 | 0.850 | 30.400 | 0.738 | 44.600 | 0.567 | 0.682 | 0.140 | 2.22 | 2.26 | 0.830 | 1.81 |
| 182 | 0.665 | 74.90 | 0.966 | 36.000 | 0.615 | 38:900 | 0.651 | 0.925 | 0.052 | 2.31 | 2.37 | 0.740 | 1.91 |
| 183 | 0.667 | 75.45 | 0.975 | 29.650 | 0.532 | 45.800 | 0.545 | 0.647 | 0.027 | 1.35 | 1.40 | 0.120 | 1.84 |
| 184 | 0.670 | 74.90 | 0.930 | 39.300 | 0.617 | 35.600 | 0.617 | 1.104 | 0.123 | 2.69 | 2.70 | 2.200 | 1.89 |
| 18: | 0.665 | 74.60 | 0.872 | 43.100 | 0.620 | 31.500 | 0.538 | 1.368 | 0.280 | 3.14 | 3.14 | 2.920 | 2.04 |
| 186 | 0.662 | 60.20 | 0.866 | 36.510 | 0.650 | 23.750 | 0.551 | 1.537 | 0.320 | 3.81 | 3.81 | 3.920 | 1.99 |

TABLE E-2 (continued)

| Run | $\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\mathrm{f}}$ | $\begin{gathered} Q_{f} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $x_{0}{ }^{+2}$ | $\begin{gathered} Q_{\mathrm{O}} \\ \mathrm{cc} / \mathrm{sec} \end{gathered}$ | $Y_{u}$ | $\stackrel{Q_{u}}{\mathrm{cc} / \mathrm{sec}}$ | E | $Q_{0} / Q_{u}$ | $\frac{Q_{0} Y_{o}}{Q_{u} Y_{\mu}}$ | $\frac{Q_{0}\left(x_{0}+z_{0}\right)}{Q_{u}\left(x_{u}+z_{u}\right)}$ | $\frac{Q_{0} x_{0}}{Q_{u} x_{u}}$ | $\frac{Q_{0} z_{o}}{Q_{u} z_{u}}$ | $\begin{gathered} \text { Solid } \\ \% \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 187 | 0.007 | 60.00 | 0.975 | 26.420 | 0.577 | 33.640 | 0.612 | 0.785 | 0.032 | 1.81 | 1.89 | 0.330 | 2.11 |
| 188 | 0.669 | 60.00 | . 0.980 | 29.800 | 0.632 | 30.200 | 0.693 | 0.987 | 0.033 | 2.62 | 2.75 | 0.364 | 2.04 |
| 189 | 0.070 | 60.10 | 0.911 | 33.700 | 0.637 | 26.400 | 0.611 | 1.277 | 0.180 | 3.20 | 3.20 | 2.920 | 1.81 |
| 140 | 0.663 | 60.10 | 0.723 | 48.300 | 0.581 | 11.800 | 0.215 | 4.093 | 1.940 | 7.08 | 7.06 | 9.300 | 2.04 |
| 191 | 0.667 | 49.90 | 0.842 | 30.250 | 0.602 | 19.650 | 0.477 | 1.539 | 0.400 | 3.26 | 3.28 | 3.420 | 1. 36 |
| 192 | 0.67 C | 49.95 | 0.940 | 24.950 | 0.600 | 25.000 | 0.610 | 0.998 | 0.100 | 2.35 | 2.36 | 1.910 | 1.90 |
| 193 | 0.668 | 50.25 | 0.932 | 23.100 | 0.602 | 27.150 | 0.653 | 0.851 | 0.023 | 2.10 | 2.18 | 0.340 | 1.91 |
| 194 | 0.600 | 50.26 | 0.980 | 16.360 | 0.486 | 33.900 | 0.460 | 0.483 | 0.018 | 0.92 | 0.95 | 0.150 | 2.04 |
| 195 | 0.663 | 59.70 | 0.888 | 33.500 | 0.619 | 26.200 | 0.561 | 1.279 | 0.240 | 2.96 | 2.96 | 2.860 | 4.03 |
| 196 | 0.606 | 60.10 | 0.963 | 28.920 | 0.609 | 31.240 | 0.642 | 0.926 | 0.056 | 2.28 | 2.31 | 1.830 | 3.93 |
| 197 | 0.606 | 60.08 | 0.988 | 26.060 | 0.580 | 34.020 | 0.627 | 0.766 | 0.017 | 1.80 | 1.93 | 0.390 | 4.07 |
| 198 | 0.655 | 60.45 | 0.862 | 35.650 | 0. 022 | 24.800 | 0.524 | 1.437 | 0.318 | 3.27 | 3.30 | 3.030 | 4.16 |
| 199 | 0.498 | 15.55 | 0.802 | 31.950 | 0.725 | 43.600 | 0.515 | 0.733 | 0.199 | 2.14 | 2.22 | 0.995 | 4.00 |
| 200 | 0.500 | 75.00 | 0.706 | 37.000 | 0.700 | 38.000 | 0.406 | 0.974 | 0.407 | 2.30 | 2.34 | 2.540 | 3.76 |
| 201 | 0.502 | 75.0 C | 0.669 | 41.050 | 0.698 | 33.950 | 0.364 | 1.209 | 0.572 | 2.69 | 2.68 | 2.990 | 3.94 |
| 202 | 0.501 | 60.23 | 0.925 | 27.580 | 0.855 | 32.700 | 0.774 | 0.843 | 0.074 | 5.43 | 6.24 | 0.770 | 4.07 |
| 203 | 0.459 | 59.95 | 0.920 | 28.620 | 0.886 | 31.330 | 0.804 | 0.914 | 0.081 | 7.30 | 7.71 | 2.840 | 3.94 |
| 204 | 0.500 | 00.13 | 0.896 | 24.850 | 0.778 | 35.280 | 0.654 | 0.704 | 0.045 | 2.84 | 3.22 | 0.200 | 4.03 |
| 205 | 0.501 | 80.04 | -0.616 | 34.620 | 0.928 | 25.420 | 0.727 | 1.362 | 0.270 | 15.52 | 15.40 | 17.300 | 3.96 |
| 200 | 0.493 | 60.16 | 0.737 | 38.600 | 0.931 | 21.560 | 0.614 | 1.790 | 0.470 | 19.22 | 18.96 | 25.100 | 4.01 |
| 207 | 0.497 | 59.60 | 0.884 | 30.660 | 0.912 | 28.940 | 0.795 | 1.059 | 0.135 | 10.66 | 10.74 | 8.600 | 4.08 |
| 208 | 0.663 | 50.11 | 0.958 | 28.180 | 0.713 | 21.930 | 0.740 | 1.285 | 0.076 | 4.29 | 4.54 | 1.460 | 3.83 |
| 209 | 0.667 | 50.17 | 0.984 | 25.000 | 0.647 | 25.170 | 0.711 | 0.993 | 0.025 | 2.77 | 2.84 | 1.490 | 3.78 |
| 210 | 0.665 | 49.90 | 0.897 | 30.110 | 0.687 | 19.790 | 0.628 | 1.521 | 0.229 | 4.34 | 4.34 | 4.240 | 4.00 |
| 211 | 0.670 | 49.95 | 0.785 | 37.030 | 0.083 | 12.320 | 0.392 | 3.054 | 0.960 | 7.57 | 7.47 | 8.490 | 3.88 |
| 212 | 0.669 | 50.30 | 0.991 | 21.200 | 0.567 | 29.100 | 0.614 | 0.729 | 0.011 | 1.68 | 1.79 | 0.330 | 3.90 |
| 213 | 0.605 | 75.25 | 0.860 | 44.750 | 0.622 | 30.500 | 0.521 | 1.467 | 0.330 | 3.35 | 3.36 | 3.260 | 4.09 |
| 214 | O.ȯbí | 75.40 | 0.871 | 43.000 | 0.610 | 32.900 | 0.531 | 1.307 | 0.280 | 2.96 | 2.97 | 2.870 | 3.84 |
| 215 | U.670 | 74.85 | 0.950 | 34.600 | 0.570 | 40.250 | 0.585 | 0.860 | 0.075 | 1.90 | 1.92 | 1.480 | 3.85 |
| 216 | 3.668 | 74.85 | 0.910 | 38.750 | 0.591 | 36.100 | 0.564 | 1.073 | 0.166 | 2.38 | 2.38 | 2.050 | 3.88 |
| 217 | 0.301 | Su. 00 | 0.841 | 28.000 | 0.931 | 22.000 | 0.758 | 1.273 | 0.215 | 16.55 | 16.93 | 9.720 | 3.72 |
| 218 | 0.504 | 50.32 | 0.811 | 24.060 | 0.790 | 25.660 | 0.601 | 0.961 | 0.230 | 3.75 | 4.51 | 0.089 | 3.95 |
| 219 | U. 497 | 50.25 | C. 791 | 22.750 | 0.745 | 27.500 | 0.531 | 0.827 | 0.238 | 2.58 | 2.98 | 0.048 | 4.08 |
| 220 | 0.500 | 50.11 | 0.781 | 30.660 | 0.942 | 19.450 | 0.687 | 1.576 | 0.364 | 21.20 | 21.26 | 19.300 | 3.91 |
| 221 | 0.498 | 50.08 | 0.670 | 36.000 | 0.964 | 14.080 | 0.517 | 2.557 | 0.859 | 48.70 | 48.30 | 58.400 | 4.06 |

TABLE E-2 (continued)


## IBM 360/40 FORTRAN PROGRAM

(TABLE E-2)
SEPARATION EXPERIMENT
PROGRAM 1
DIMENSION COL (17)
EQUIVALENCE (QO;COL (4)), (YF, COL (6)). (YU, COL (8)), (Qu, COL (12)),
1 (QF,COL (15))
FLAG=1.0
INCT $=48.0$
CONTINUE
READ (1, 5000) COL (1), COL (2), QO,YF, YU,QU,QF,RUN
IF (COL (1)) 300, 200,300
200 CONTINUE
IF (FIAAG) 210,220,210
210 CONTINUE
FILAG=0.0
WRITE (3,5200)
LNCT=LNCT+ 2.0
GO TO 100
220 CONTINUE
STOP
300 CONTINUE
FTAG $=1.0$
READ (1, 5500) WATER, OILSO, OIL, SOLID, PSOLID, IRAN
NRUN=RUN
IF (NRUN-IRAN) $325,800,325$
CONTINUE
WRITE $(3,5600)$
GO TO 220
800 CONTINUE
$\operatorname{COL}$ (3) $=\mathrm{COL}$ (1) -COL (2)
COL (5) $=\mathrm{COL}$ (3) *COL (4)
$\operatorname{COL}(7)=\operatorname{COL}(5) / \mathrm{COL}(6)$
$\operatorname{COL}(9)=\mathrm{COL}(8)-\mathrm{COL}(6)$
COL (10) $=$ COL (2)
$\mathrm{COL}(11)=\mathrm{COL}(9) / \mathrm{COL}(10)$
COL (13) $=\mathrm{COL}(11) * \mathrm{COL}(12)$
COI (14) $=\mathrm{COL}(7)+\mathrm{COL}(13)$
COI (16) $=\mathrm{COL}(14) / \mathrm{COL}(15)$
$\operatorname{COL}(17)=$ COL (4)/COL (12)
IF (LNCT-48.0) 900,850,850
CONTINUE
WRITE $(3,5700)$
LNCT $=0$
LNCT $=\mathrm{LNCT}+1.0$
LNCT=LNCT+1.0

```

WRITE (3,5100) NRUN, COL (2), QF, COL (1), QO, YU, QU, COL (16), COL (17),WATER IOILSO, OIL, SOLID, PSOLID
GO TO 100
5000
FORMAT (8FIO.3)
FORMAT(' ',I3,F8.3,F8.2,F8.3,F9.3.F8.3,F9.3,3F8.3,F10.2,F10.2.
1F10.3, F8.2)
FORMAT ('0')
FORMAT (6X, F6.4,2F12.3, F12.4,F9.3,15X,I4)
FORMAT('PHASE ERROR')
FORMAT('l'/'0'/'0'/'0')
END

TABLE E-3
SUMMARY OF PROCESSED DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\mathrm{f}}\) & \[
\begin{gathered}
Q_{\mathrm{f}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+\mathrm{z}_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & Yu & \[
\begin{gathered}
\mathbf{Q}_{\mathbf{u}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} X_{f} \\
c c / s e c
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{f^{\prime}} x_{f}}
\] & \(\mathrm{E}_{\mathbf{S}}\) & \(\mathrm{E}^{\prime} \mathrm{E}_{\mathbf{S}}\) & \[
\left(\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right)_{I}
\] & \[
\frac{Q_{0} x_{0}}{\left(Q_{0} x_{0}\right)_{I}}
\] & \[
\underset{\mathrm{cm} .}{\mathrm{d}}
\] & EVF & (\%) \\
\hline ᄃ & 0.341 & 60.00 & 0.710 & 17.50 & 0.812 & 42.50 & 0.412 & 0.480 & 20.44 & 0.608 & 0.856 & 0.561 & 0.856 & 0.710 & 8.17 & 0.12 & 6.71 \\
\hline \(c 2\) & 0.341 & 60.00 & 0.721 & 19.50 & 0.842 & 40.50 & 0.482 & 0.550 & 20.44 & 0.688 & 0.954 & 0.577 & 0.954 & 0.721 & 7.64 & 0.14 & 8.36 \\
\hline C 3 & 0.341 & 60.00 & 0.712 & 21.50 & 0.867 & 38.50 & 0.559 & 0.593 & 20.44 & 0.749 & 0.973 & 0.609 & 1.000 & 0.749 & 6.91 & 0.19 & 11.34 \\
\hline c 4 & 0.341 & 60.00 & 0.696 & 23.50 & 0.888 & 36.50 & 0.644 & 0.620 & 20.44 & 0.801 & 0.923 & 0.672 & 1.000 & 0.801 & 6.12 & 0.24 & 16.00 \\
\hline \(c 5\) & 0.341 & 60.00 & 0.679 & 25.51 & 0.909 & 34.49 & 0.739 & 0.640 & 20.44 & 0.847 & 0.872 & 0.734 & 1.000 & 0.847 & 5.19 & 0.31 & 22.86 \\
\hline c 6 & 0.341 & 60.00 & 0.654 & 27.51 & 0.925 & 32.49 & 0.847 & 0.640 & 20.44 & 0.880 & 0.821 & 0.779 & 1.000 & 0.880 & 4.43 & 0.38 & 29.67 \\
\hline \(c 7\) & 0.341 & 60.00 & 0.628 & 29.51 & 0.938 & 30.49 & 0.968 & 0.630 & 20.44 & 0.907 & 0.771 & 0.817 & 1.000 & 0.907 & 3.69 & 0.46 & 37.46 \\
\hline C. 3 & 0.341 & 60.00 & 0.605 & 31.51 & 0.952 & 28.49 & 1.106 & 0.618 & 20.44 & 0.933 & 0.720 & 0.858 & 1.000 & 0.933 & 2.94 & 0.55 & 46.83 \\
\hline c \({ }^{\text {¢ }}\) ¢ & 0.341 & 60.00 & 0.581 & 33.51 & 0.964 & 26.49 & 1.265 & 0.598 & 20.44 & 0.953 & 0.670 & 0.893 & 1.000 & 0.953 & 2.32 & 0.63 & 55.96 \\
\hline c 10 & 0.341 & 60.00 & 0.557 & 35.51 & 0.973 & 24.49 & 1.450 & 0.570 & 20.44 & 0.968 & 0.619 & 0.921 & 1.000 & 0.968 & 1.60 & 0.73 & 67.24 \\
\hline c 11 & 0.341 & 60.c0 & 0.533 & 37.52 & 0.980 & 22.48 & 1.669 & 0.535 & 20.44 & 0.978 & 0.568 & 0.941 & 1.000 & 0.978 & 0.90 & 0.84 & 79.21 \\
\hline C 12 & 0.341 & 60.00 & 0.511 & 39.52 & 0.988 & 20.48 & 1.929 & 0.500 & 20.44 & 0.988 & 0.518 & 0.966 & 1.000 & 0.988 & 0.19 & 0.96 & 93.10 \\
\hline C 23 & 0.341 & 60.00 & 0.487 & 41.52 & 0.987 & 18.48 & 2.247 & 0.450 & 20.44 & 0.989 & 0.467 & 0.963 & 1.000 & 0.989 & 0.00 & 1.00 & 96.32 \\
\hline C 14 & 0.500 & 60.00 & 0.849 & 20.19 & 0.677 & 39.81 & 0.507 & 0.470 & 30.00 & 0.571 & 0.673 & 0.698 & 0.673 & 0.849 & 6.67 & 0.20 & 14.05 \\
\hline c 15 & 0.500 & 60.00 & 0.850 & 22.26 & 0.707 & 37.74 & 0.590 & 0.520 & 30.00 & 0.631 & 0.742 & 0.701 & 0.742 & 0.850 & 6.13 & 0.24 & 16.62 \\
\hline c 16 & 0.500 & 60.00 & 0.851 & 24.33 & 0.740 & 35.67 & 0.682 & 0.570 & 30.00 & 0.690 & 0.911 & 0.703 & 0.811 & 0.851 & 5.60 & 0.28 & 19.49 \\
\hline c 17 & 0.500 & 60.00 & 0.864 & 26.40 & 0.736 & 33.60 & 0.786 & 0.640 & 30.00 & 0.760 & 0.880 & 0.727 & 0.880 & 0.864 & 4.89 & 0.34 & 24.54 \\
\hline C 18 & 0.500 & 60.00 & 0.869 & 28.47 & 0.833 & 31.53 & 0.903 & 0.700 & 30.00 & 0.824 & 0.949 & 0.738 & 0.949 & 0.869 & 4.34 & 0.39 & 28.72 \\
\hline c 19 & 0.500 & 60.00 & 0.871 & 30.54 & 0.884 & 29.46 & 1.036 & 0.755 & 30.00 & 0.886 & 0.982 & 0.769 & 1.000 & 0.886 & 3.62 & 0.47 & 35.83 \\
\hline c 20 & 0.500 & 60.00 & 0. 840 & 32.61 & 0.905 & 27.39 & 1.190 & 0.740 & 30.00 & 0.913 & 0.913 & 0.810 & 1.000 & 0.913 & 2.85 & 0.56 & 45.15 \\
\hline c 21 & 0.500 & 60.00 & 0.807 & 34.68 & 0.921 & 25.32 & 1.369 & 0.710 & 30.00 & 0.933 & 0.844 & 0.841 & 1.000 & 0.933 & 2.11 & 0.66 & 55.21 \\
\hline c 22 & 0.500 & 60.00 & 0.769 & 36.74 & 0.926 & 23.26 & 1.580 & 0.660 & 30.00 & 0.942 & 0.775 & 0.851 & 1.000 & 0.942 & 1.40 & 0.76 & 64.76 \\
\hline c 23 & 0.500 & 60.00 & 0.732 & 38.81 & 0.925 & 21.19 & 1.832 & 0.600 & 30.00 & 0.947 & 0.706 & 0.850 & 1.000 & 0.947 & 0.82 & 0.86 & 72.69 \\
\hline c 24 & 0.500 & 60.00 & 0.704 & 40.88 & 0.935 & 19.12 & 2.139 & 0.555 & 30.00 & 0.959 & 0.637 & 0.871 & 1.000 & 0.959 & 0.09 & 0.98 & 85.73 \\
\hline c 25 & 0.506 & 60.00 & 0.671 & 42.95 & 0.931 & 17.05 & 2.520 & 0.490 & 30.00 & 0.961 & 0.568 & 0.862 & 1.000 & 0.961 & 0.00 & 1.00 & 86.23 \\
\hline c. 26 & 0.500 & 60.00 & 0.645 & 45.02 & 0.936 & 14.98 & 3.006 & 0.435 & 30.00 & 0.968 & 0.499 & 0.871 & 1.000 & 0.968 & 0.00 & 1.00 & 87.13 \\
\hline 627 & 0.50c & 60.00 & 0.623 & 47.09 & 0.947 & 12.91 & 3.648 & 0.385 & 30.00 & 0.977 & 0.430 & 0.895 & 1.000 & 0.977 & 0.00 & 1.00 & 89.48 \\
\hline C 28 & 0.500 & 60.00 & 0.601 & 49.16 & 0.957 & 10.84 & 4.536 & 0.330 & 30.00 & 0.984 & 0.361 & 0.913 & 1.000 & 0.984 & 0.00 & 1.00 & 91.34 \\
\hline C. 29 & 0.500 & 60.00 & 0.579 & 51.23 & 0.962 & 8.77 & 5.842 & 0.270 & 30.00 & 0.989 & 0.292 & 0.924 & 1.000 & 0.989 & 0.00 & 1.00 & 92.36 \\
\hline c 30 & 0.500 & 60.00 & 0.556 & 53.30 & 0.948 & 6.70 & 7.955 & 0.200 & 30.00 & 0.988 & 0.223 & 0.895 & 1.000 & 0.988 & 0.00 & 1.00 & 89.55 \\
\hline c 31 & 0.667 & 60.00 & 0.978 & 11.14 & 0.404 & 48.86 & 0.228 & 0.260 & 40.03 & 0.272 & 0.278 & 0.934 & 0.278 & 0.978 & 8.91 & 0.09 & 8.33 \\
\hline c 32 & 0.667 & 60.00 & 0.980 & 13.21 & 0.421 & 46.79 & 0.282 & 0.310 & 40.03 & 0.323 & 0.330 & 0.939 & 0.330 & 0.980 & 8.17 & 0.12 & 11.24 \\
\hline c 33 & 0.667 & 60.00 & 0.981 & 15.28 & 0.440 & 44.72 & 0.342 & 0.360 & 40.03 & 0.374 & 0.382 & 0.943 & 0.382 & 0.981 & 7.44 & 0.16 & 14.69 \\
\hline C 34 & 0.667 & 60.00 & 0.982 & 17.35 & 0.461 & 42.65 & 0.407 & 0.410 & 40.03 & 0.426 & 0.433 & 0.946 & 0.433 & 0.982 & 6.89 & 0.19 & 17.73 \\
\hline c 35 & 0.667 & 60.00 & 0.983 & 19.42 & 0.484 & 40.58 & 0.479 & 0.460 & 40.03 & 0.477 & 0.485 & 0.948 & 0.485 & 0.983 & 6.17 & 0.23 & 22.23 \\
\hline C 36 & 0.667 & 60.00 & 0.983 & 21.49 & 0.509 & 38.51 & 0.558 & 0.510 & 40.03 & 0.528 & 0.537 & 0.950 & 0.537 & 0.983 & 5.62 & 0.28 & 26.19 \\
\hline C 37 & 0.667 & 60.00 & 0.984 & 23.56 & 0.538 & 36.44 & 0.647 & 0.560 & 40.03 & 0.579 & 0.589 & 0.952 & 0.589 & 0.984 & 4.92 & 0.33 & 31.82 \\
\hline C 38 & 0.667 & 60.00 & 0.984 & 25.63 & 0.569 & 34.37 & 0.746 & 0.610 & 40.03 & 0.630 & 0.640 & 0.953 & 0.640 & 0.984 & 4.37 & 0.39 & 36.81 \\
\hline c 39 & 0.667 & 60.00 & 0.985 & 27.70 & 0.605 & 32.30 & 0.858 & 0.660 & 40.03 & 0.681 & 0.692 & 0.954 & 0.692 & 0.985 & 3.69 & 0.46 & 43.67 \\
\hline c 40 & 0.667 & 60.00 & 0.989 & 29.77 & 0.649 & 30.23 & 0.985 & 0.718 & 40.03 & 0.735 & 0.744 & 0.966 & 0.744 & 0.989 & 3.12 & 0.52 & 50.54 \\
\hline C 41 & 0.667 & 60.00 & 0.989 & 31.84 & 0.697 & 28.16 & 1.131 & 0.770 & 40.03 & 0.787 & 0.795 & 0.968 & 0.795 & 0.989 & 2.45 & 0.61 & 59.01 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\text {f }}\) & \[
\begin{gathered}
Q_{\mathrm{E}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+{ }^{\text {a }}\) 。 & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Y}_{\mathrm{u}}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} x_{f} \\
c c / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{L_{E}}}
\] & \(\mathrm{E}_{\mathrm{s}}\) & \(\mathrm{E} / \mathrm{E}_{\mathrm{S}}\) & \[
\left|\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right|_{I}
\] & \[
\frac{Q_{0} x_{0}}{\left|Q_{0} x_{0}\right| I}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~cm}}
\] & EVF & \[
(\%)
\] \\
\hline C 42 & 0.667 & 60.00 & 0.972 & 33.91 & 0.729 & 26.09 & 1.300 & 0.775 & 40.03 & 0.823 & 0.847 & 0.915 & 0.847 & 0.972 & 2.07 & 0.66 & 60.55 \\
\hline C. 43 & 0.667 & 60.00 & 0.936 & 35.98 & 0.735 & 24.02 & 1.498 & 0.725 & 40.03 & 0.841 & 0.899 & 0.807 & 0.899 & 0.936 & 1.67 & 0.72 & 5 A. 11 \\
\hline & 0.667 & 60.00 & 0.907 & 38.05 & 0.749 & 21.95 & 1.733 & 0.685 & 40.03 & 0.862 & 0.950 & 0.721 & 0.950 & 0.907 & 1.35 & 0.77 & 55.44 \\
\hline c 45 & 0.667 & 60.00 & 0.896 & 40.12 & 0.795 & 19.88 & 2.018 & 0.690 & 40.03 & 0.898 & 0.996 & 0.693 & 1.000 & 0.898 & 0.83 & 0.85 & 59.10 \\
\hline C 46 & 0.667 & 60.00 & 0.858 & 42.19 & 0.785 & 17.81 & 2.369 & 0.605 & 40.03 & 0.904 & 0. 892 & 0.678 & 1.000 & 0.904 & 0.14 & 0.97 & 66.08 \\
\hline c 47 & 0.667 & 60.00 & 0.837 & 44.26 & 0.811 & 15.74 & 2.812 & 0.565 & 40.03 & 0.928 & 0.788 & 0.717 & 1.000 & 0.926 & 0.00 & 1.00 & 71.67 \\
\hline & 0.667 & 60.00 & 0.818 & 46.33 & 0.844 & 13.67 & 3.389 & 0.525 & 40.03 & 0.947 & 0.685 & 0.767 & 1.000 & 0.947 & 0.00 & 1.00 & 76.68 \\
\hline C 49 & 0.667 & 60.00 & 0.801 & 48.40 & 0.890 & 11.60 & 4.172 & 0.485 & 40.03 & 0.968 & 0.581 & 0.835 & 1.000 & 0.968 & 0.00 & 1.00 & \(83.48^{\circ}\) \\
\hline c 50 & 0.668 & 75.00 & 0.977 & 22.58 & 0.466 & 52.42 & 0.431 & 0.420 & 50.08 & 0.441 & 0.451 & 0.931 & 0.451 & 0.977 & 6.65 & 0.20 & 18.82 \\
\hline c 51 & 0.668 & 75.00 & 0.982 & 24.59 & 0.486 & 50.41 & 0.488 & 0.465 & 50.08 & 0.482 & 0.491 & 0.947 & 0.491 & 0.982 & 6.15 & 0.24 & 22.39 \\
\hline C 52 & 0.668 & 75.00 & 0.984 & 26.59 & 0.506 & 48.41 & 0.549 & 0.505 & 50.08 & 0.522 & 0.531 & 0.951 & 0.531 & 0.984 & 5.65 & 0.27 & 26.03 \\
\hline C 53 & 0.668 & 75.00 & 0.987 & 28.60 & 0.529 & 46.40 & 0.616 & 0.548 & 50.08 & 0.563 & 0.571 & 0.959 & 0.571 & 0.987 & 5.15 & 0.31 & 30.20 \\
\hline C 54 & 0.668 & 75.00 & 0.986 & 30.61 & 0.552 & 44.39 & 0.690 & 0.585 & 50.08 & 0.603 & 0.611 & 0.957 & 0.611 & 0.986 & 4.66 & 0.36 & 34.34 \\
\hline C 55 & 0.668 & 75.00 & 0.984 & 32.62 & 0.576 & 42.38 & 0.770 & 0.620 & 50.08 & 0.641 & 0.651 & 0.952 & 0.651 & 0.984 & 4.18 & 0.41 & 38.66 \\
\hline C 56 & 0.668 & 75.00 & 0.985 & 34.62 & 0.604 & 40.38 & 0.857 & 0.660 & 50.08 & 0.681 & 0.691 & 0.955 & 0.691 & 0.985 & 3.69 & 0.46 & 43.71 \\
\hline C 57 & 0.668 & 75.00 & 0.985 & 36.63 & 0.635 & 38.37 & 0.955 & 0.698 & 50.08 & 0.720 & 0.731 & 0.954 & 0.731 & 0.985 & 3.33 & 0.50 & 47.62 \\
\hline c 58 & 0.668 & 75.00 & 0.997 & 38.64 & 0.682 & 36.36 & 1.063 & 0.765 & 50.08 & 0.769 & 0.772 & 0.992 & 0.772 & 0.997 & 2.68 & 0.58 & 57.40 \\
\hline C 59 & 0.668 & 75.00 & 0.985 & 40.64 & 0.708 & 34.36 & 1.183 & 0.775 & 50.08 & 0.759 & 0.812 & 0.955 & 0.812 & 0.985 & 2.36 & 0.62 & 59.40 \\
\hline C 60 & 0.668 . & 75.00 & 0.964 & 42.65 & 0.723 & 32.35 & 1.318 & 0.760 & 50.08 & 0.821 & 0.852 & 0.892 & 0.852 & 0.964 & 2.07 & 0.66 & 59.10 \\
\hline c 61 & 0.668 & 75.0c & 0.932 & 44.66 & 0.722 & 30.34 & 1.472 & 0.710 & 50.08 & 0.831 & 0.892 & 0.796 & 0.892 & 0.932 & 1.83 & 0.70 & 55.44 \\
\hline c 62 & 0.668 & 75.00 & 0.896 & 46.66 & 0.708 & 28.34 & 1.647 & 0.640 & 50.08 & 0.835 & 0.932 & 0.687 & 0.932 & 0.896 & 1.63 & 0.73 & 49.90 \\
\hline C 63 & 0.668 & 75.00 & 0.868 & 48.67 & 0.702 & 26.33 & 1.849 & 0.585 & 50.08 & 0.843 & 0.972 & 0.602 & 0.972 & 0.868 & 1.39 & 0.76 & 45.37 \\
\hline c 64 & 0.868 & 75.00 & 0.842 & 50.68 & 0.695 & 24.32 & 2.084 & 0.530 & 50.08 & 0.852 & 0.976 & 0.543 & 1.000 & 0.852 & 1.10 & 0.81 & 43.89 \\
\hline c 65 & 0.668 & 75.00 & 0.819 & 52.69 & 0.690 & 22.31 & 2.361 & 0.480 & 50.08 & 0.862 & 0.895 & 0.536 & 1.000 & 0.862 & 0.57 & 0.90 & 48.09 \\
\hline C 66 & 0.668 & 75.00 & 0.802 & 54.69 & 0.693 & 20.31 & 2.693 & 0.440 & 50.08 & 0.875 & 0.815 & 0.540 & 1.000 & 0.875 & 0.01 & 1.00 & 53.89 \\
\hline c. 67 & 0.668 & 75.00 & 0.788 & 56.70 & 0.705 & 18.30 & 3.098 & 0.410 & 50.08 & 0.892 & 0.734 & 0.558 & 1.000 & 0.892 & 0.00 & 1.00 & 55.84 \\
\hline c 68 & 0.666 & 75.00 & 0.976 & 30.40 & 0.545 & 44.60 & 0.682 & 0.565 & 49.96 & 0.594 & 0.608 & 0.929 & 0.608 & 0.976 & 4.85 & 0.34 & 31.71 \\
\hline c 69 & 0.666 & 75.00 & 0.980 & 32.44 & 0.573 & 42.56 & 0.762 & 0.610 & 49.96 & 0.636 & 0.649 & 0.940 & 0.649 & 0.980 & 4.34 & 0.39 & 36.59 \\
\hline c 70 & 0.666 & 75.00 & 0.981 & 34.47 & 0.601 & 40.53 & 0.851 & 0.650 & 49.96 & 0.677 & 0.690 & 0.942 & 0.690 & 0.981 & 3.85 & 0.44 & 41.51 \\
\hline 671 & 0.666 & 75.04 & 0.986 & 36.51 & 0.637 & 38.49 & 0.949 & 0.700 & 49.96 & 0.721 & 0.731 & 0.958 & 0.731 & 0.986 & 3.34 & 0.50 & 47.63 \\
\hline c 72 & 0.666 & 75.00 & 0.968 & 38.55 & 0.675 & 36.45 & 1.058 & 0.745 & 49.96 & 0.763 & 0.772 & 0.966 & 0.772 & 0.988 & 2.84 & 0.56 & 53.94 \\
\hline C 73 & 0.666 & 75.00 & 0.985 & 40.59 & 0.710 & 34.41 & 1.179 & 0.777 & 49.96 & 0.801 & 0.812 & 0.956 & 0.812 & 0.985 & 2.36 & 0.62 & 59.42 \\
\hline c 74 & 0.666 & 75.00 & 0.960 & 42.62 & 0.721 & 32.38 & 1.317 & 0.752 & 49.96 & 0.819 & 0.853 & 0.881 & 0.853 & 0.960 & 2.09 & 0.66 & 58.13 \\
\hline c 75 & 0.666 & 75.00 & 0.928 & 44.66 & 0.719 & 30.34 & 1.472 & 0.700 & 49.96 & 0.829 & 0.894 & 0.783 & 0.894 & 0.928 & 1.85 & 0.69 & 54.23 \\
\hline C 76 & 0.666 & 75.00 & 0.895 & 46.70 & 0.711 & 28.30 & 1.650 & 0.640 & 49.96 & 0.836 & 0.935 & 0.685 & 0.935 & 0.895 & 1.63 & 0.73 & 49.74 \\
\hline c 77 & 0.666 & 75.00 & 0.863 & 48.74 & 0.699 & 26.26 & 1.856 & 0.575 & 49.96 & 0.342 & 0.976 & 0.589 & 0.976 & 0.863 & 1.41 & 0.76 & 44.77 \\
\hline C 78 & 0.666 & 75.00 & 0.835 & 50.77 & 0.688 & 24.23 & 2.096 & 0.515 & 49.96 & 0.849 & 0.967 & 0.532 & 1.000 & 0.849 & 1.11 & 0.81 & 42.99 \\
\hline C 79 & 0.666 & 75.00 & C. 868 & 52.81 & 0.672 & 22.19 & 2.380 & 0.450 & 49.96 & 0.854 & 0.886 & 0.508 & 1.000 & 0.854 & 0.60 & 0.89 & 45.33 \\
\hline C 80 & 0.666 & 75.00 & 0.785 & 54.85 & 0.657 & 20.15 & 2.722 & 0.390 & 49.96 & 0.862 & 0.805 & 0.485 & 1.000 & 0.862 & 0.07 & 0.99 & 47.81 \\
\hline C 81 & 0.667 & 75.00 & 0.971 & 21.01 & 0.456 & 53.39 & 0.405 & 0.395 & 50.02 & 0.420 & 0.432 & 0.914 & 0.432 & 0.971 & 6.91 & 0.19 & 17.01 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathrm{f}}+\mathrm{z}_{\text {E }}\) & \[
\begin{gathered}
Q_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+\mathrm{z}_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
\mathrm{Qu}_{\mathbf{u}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Q}_{0} / \mathrm{o}_{\mathrm{u}}\) & E & \[
\begin{gathered}
Q_{f}{ }^{x_{f}} \\
c c / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{f} x_{f}}
\] & \(\mathrm{E}_{s}\) & \(E / E_{s}\) & \[
\left(\frac{Q_{0} x_{0}}{Q_{f} f_{f}^{x}}\right)_{I}
\] & \[
\left|\frac{Q_{0} x_{0}}{Q_{0} x_{0}}\right| I
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}}
\] & EVF & (\%) \\
\hline C 82 & 0.667 & 75.00 & 0.977 & 23.68 & 0.476 & 51.32 & 0.461 & 0.440 & 50.02 & 0.462 & 0.473 & 0.930 & 0.473 & 0.977 & 6.40 & 0.22 & 20.35 \\
\hline C 83 & G. 6667 & 75.00 & 0.974 & 25.75 & 0.494 & 49.25 & 0.523 & 0.475 & 50.02 & 0.501 & 0.515 & 0.923 & 0.515 & 0.974 & 5.90 & 0.25 & 23.48 \\
\hline C 84 & 0.667 & 75.00 & 0.977 & 27.82 & 0.516 & 47.18 & 0.589 & 0.518 & 50.02 & 0.543 & 0.556 & 0.932 & 0.556 & 0.977 & 5.39 & 0.29 & 27.40 \\
\hline \(\stackrel{5}{6}\) & 0.667 & 75.00 & 0.978 & 29.88 & 0.539 & 45.12 & 0.662 & 0.558 & 50.02 & 0.584 & 0.597 & 0.934 & 0.597 & 0.978 & 4.89 & 0.34 & 31.49 \\
\hline C 86 & 0.667 & 75.00 & 0.980 & 31.95 & 0.565 & 43.05 & 0.742 & 0.600 & 50.02 & 0.626 & 0.639 & 0.939 & 0.639 & 0.980 & 4.40 & 0.38 & 36.09 \\
\hline c 87 & 0.667 & 75.00 & 0.980 & 34.02 & 0.593 & 40.98 & 0.830 & 0.640 & 50.02 & 0.667 & 0.680 & 0.941 & 0.680 & 0.980 & 3.90 & 0.44 & 40.94 \\
\hline C 88 & 0.667 & 75.00 & 0.983 & 36.09 & 0.626 & 38.91 & 0.927 & 0.685 & 50.02 & 0.709 & 0.721 & 0.950 & 0.721 & 0.983 & 3.40 & 0.49 & 46.61 \\
\hline C 89 & 0.667 & 75.00 & 0.986 & 38.16 & 0.663 & 36.84 & 1.036 & 0.730 & 50.02 & 0.752 & 0.763 & 0.957 & 0.763 & 0.986 & 2.90 & 0.55 & 52.75 \\
\hline C 90 & 0.667 & 75.00 & 0.986 & 40.23 & 0.702 & 34.77 & 1.157 & 0.770 & 50.02 & 0.793 & 0.804 & 0.958 & 0.804 & 0.986 & 2.41 & 0.62 & 58.90 \\
\hline C 91 & 0.667 & 75.00 & 0.974 & 42.29 & 0.730 & 32.71 & 1.293 & 0.780 & 50.02 & 0.824 & 0.845 & 0.923 & 0.845 & 0.974 & 2.07 & 0.66 & 61.03 \\
\hline 692 & 0.667 & 75.cc & 0.947 & 44.36 & 0.738 & 30.64 & 1.448 & 0.745 & 50.02 & 0.840 & 0.887 & 0.840 & 0.887 & 0.947 & 1.80 & 0.70 & 58.80 \\
\hline c 93 & 0.667 & 75.00 & 0.913 & 46.43 & 0.732 & 28.57 & 1.625 & 0.685 & 50.02 & 0.847 & 0.928 & 0.738 & 0.928 & 0.913 & 1.58 & 0.73 & 54.17 \\
\hline c 94 & 0.667 & 75.00 & 0.880 & 48.50 & 0.723 & 26.50 & 1.830 & 0.620 & 50.02 & 0.853 & 0.970 & 0.639 & 0.970 & 0.880 & 1.36 & 0.77 & 49.12 \\
\hline C 95 & 0.500 & 75.00 & 0.812 & 25.25 & 0.658 & 49.75 & 0.508 & 0.420 & 37.49 & 0.547 & 0.673 & 0.624 & 0.673 & 0.812 & 6.90 & 0.19 & 11.63 \\
\hline C 96 & 0.500 & 75.00 & 0.802 & 27.29 & 0.673 & 47.71 & 0.572 & 0.440 & 37.49 & 0.584 & 0.728 & 0.604 & 0.728 & 0.802 & 6.44 & 0.22 & 13.05 \\
\hline C 97 & 0.500 & 75.00 & 0.794 & 29.33 & 0.689 & 45.67 & 0.642 & 0.460 & 37.49 & 0.621 & 0.782 & 0.588 & 0.732 & 0.794 & 6.14 & 0.24 & 13.92 \\
\hline C 98 & 0.500 & 75.00 & 0.787 & 31.37 & 0.706 & 43.63 & 0.719 & 0.480 & 37.49 & 0.658 & 0.837 & 0.574 & 0.837 & 0.787 & 5.69 & 0.27 & 15.53 \\
\hline C 99 & 0.500 & 75.00 & 0.775 & 33.41 & 0.721 & 41.59 & 0.803 & 0.490 & 37.49 & 0.690 & 0.891 & 0.550 & 0.891 & 0.775 & 5.40 & 0.29 & 16.15 \\
\hline C100 & 0.500 & 75.00 & 0.770 & 35.45 & 0.742 & 39.55 & 0.896 & 0.510 & 37.49 & 0.728 & 0.945 & 0.539 & 0.945 & 0.770 & 4.95 & 0.33 & 17.93 \\
\hline 6101 & 0.500 & 75.00 & 0.759 & 37.49 & 0.759 & 37.51 & 0.999 & 0.518 & 37.49 & 0.759 & 1.000 & 0.518 & 1.000 & 0.759 & 4.66 & 0.36 & 18.60 \\
\hline C102 & 0.500 & 75.00 & 0.739 & 39.53 & 0.767 & 35.47 & 1.114 & 0.505 & 37.49 & 0.780 & 0.946 & 0.534 & 1.000 & 0.780 & 4.12 & 0.41 & 21.99 \\
\hline C103 & 0.500 & 75.00 & 0.714 & 41.57 & 0.766 & 33.43 & 1.243 & 0.475 & 37.49 & 0.792 & 0.891 & 0.533 & 1.000 & 0.792 & 3.61 & 0.47 & 24.89 \\
\hline C104 & 0.500 & 75.00 & 0.693 & 43.60 & 0.765 & 31.40 & 1.389 & 0.450 & 37.49 & 0.806 & 0.837 & 0.538 & 1.000 & 0.806 & 3.08 & 0.53 & 28.44 \\
\hline C 105 & 0.500 & 75.0 C & 0.677 & 45.64 & 0.775 & 29.36 & 1.555 & 0.430 & 37.49 & 0.824 & 0.783 & 0.549 & 1.000 & 0.824 & 2.42 & 0.61 & 33.72 \\
\hline C106 & 0.500 & 75.00 & 0.657 & 47.68 & 0.775 & 27.32 & 1.746 & 0.400 & 37.49 & 0.836 & 0.728 & 0.549 & 1.000 & 0.836 & 1.89 & 0.69 & 37.76 \\
\hline c107 & 0.500 & 75.00 & 0.642 & 49.72 & 0.781 & 25.28 & 1.967 & 0.378 & 37.49 & 0.852 & 0.674 & 0.561 & 1.000 & 0.852 & 1.33 & 0.77 & 43.27 \\
\hline C1C8 & C.5co & 75.00 & 0.628 & 51.76 & 0.787 & 23.24 & 2.227 & 0.355 & 37.49 & 0.868 & 0.620 & 0.573 & 1.000 & 0.868 & 0.67 & 0.88 & 50.40 \\
\hline C109 & 0.500 & 75.00 & 0.615 & 53.80 & 0.792 & 21.20 & 2.538 & 0.330 & 37.49 & 0.882 & 0.565 & 0.584 & 1.000 & 0.882 & 0.11 & 0.98 & 57.24 \\
\hline c110 & 0.500 & 75.00 & 0.602 & 55.84 & 0.799 & 19.16 & 2.915 & 0.305 & 37.49 & 0.897 & 0.511 & 0.597 & 1.000 & 0.897 & 0.00 & 1.00 & 59.71 \\
\hline c111 & 0. 5.00 & 75.0C & 0.591 & 57.88 & 0.307 & 17.12 & 3.331 & 0.280 & 37.49 & 0.912 & 0.456 & 0.613 & 1.000 & 0.912 & 0.00 & 1.00 & 61.35 \\
\hline C112 & 0.5 .00 & 75.00 & 0.580 & 59.92 & 0.817 & 15.08 & 3.973 & 0.255 & 37.49 & 0.926 & 0.402 & 0.634 & 1.000 & 0.926 & 0.00 & 1.00 & 63.42 \\
\hline C113 & 0.503 & 50.00 & 0.766 & 11.40 & 0.575 & 38.60 & 0.295 & 0.240 & 25.13 & 0.347 & 0.454 & 0.529 & 0.454 & 0.766 & 3.92 & 0.09 & 4.69 \\
\hline C114 & 0.563 & 50.00 & 0.789 & 13.43 & 0.603 & 36.57 & 0.367 & 0.308 & 25.13 & 0.422 & 0.535 & 0.576 & 0.535 & 0.789 & 8.16 & 0.12 & 6.92 \\
\hline c115 & 0.503 & 50.00 & 0.810 & 15.46 & 0.635 & 34.54 & 0.448 & 0.380 & 25.13 & 0.498 & 0.615 & 0.617 & 0.615 & 0.810 & 7.39 & 0.16 & 9.77 \\
\hline 6116 & 0.503 & 50.00 & 0.833 & 17.50 & 0.675 & 32.50 & 0.538 & 0.462 & 25.13 & 0.580 & 0.696 & 0.664 & 0.696 & 0.833 & 6.62 & 0.20 & 13.54 \\
\hline C117 & 0.503 & 50.00 & 0.849 & 19.53 & 0.720 & 30.47 & 0.641 & 0.542 & 25.13 & 0.660 & 0.777 & 0.697 & 0.777 & 0.849 & 5.86 & 0.26 & 17.96 \\
\hline C118 & 0.503 & 50.00 & 0.863 & 21.56 & 0.771 & 28.44 & 0.758 & 0.622 & 25.13 & 0.741 & 0.858 & 0.725 & 0.858 & 0.863 & 5.10 & 0.32 & 23.13 \\
\hline C119 & 0.503 & 50.00 & 0.868 & 23.59 & 0.824 & 26.41 & 0.893 & 0.690 & 25.13 & 0.815 & 0.939 & 0.735 & 0.939 & 0.868 & 4.37 & 0.39 & 28.45 \\
\hline C120 & 0.503 & 50.00 & 0.861 & 25.62 & 0.874 & 24.38 & 1.051 & 0.735 & 25.13 & 0.878 & 0.980 & 0.750 & 1.000 & 0.878 & 3.62 & 0.47 & 34.95 \\
\hline C121 & 0.503 & 50.00 & 0.837 & 27.66 & 0.911 & 22.34 & 1.238 & 0.740 & 25.13 & 0.921 & 0.898 & 0.824 & 1.000 & 0.921 & 2.62 & 0.59 & 48.39 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathbf{f}}+\mathrm{z}_{\text {E }}\) & \[
\begin{gathered}
Q_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+z_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} x_{f} \\
c c / s e c
\end{gathered}
\] & \[
\frac{Q_{\mathrm{o}} \mathrm{x}_{\mathrm{o}}}{Q_{f} \mathbf{x}_{f}}
\] & \(\mathrm{E}_{5}\) & \(E / E_{s}\) & \[
\left(\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right)^{\prime}
\] & \[
\frac{Q_{0} x_{0}}{\left|Q_{0} x_{0}\right| I}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}}
\] & EVF & (\%) \\
\hline C122 & 0.503 & 50.80 & 0.806 & 29.69 & 0.941 & 20.31 & 1.462 & 0.720 & 25.13 & 0.952 & 0.817 & 0.882 & 2.000 & 0.952 & 1.65 & 0.72 & \(63.69{ }^{\prime \prime}\) \\
\hline C123 & 0.503 & 50.00 & 0.771 & 31.72 & 0.962 & 18.28 & 1.735 & 0.680 & 25.13 & 0.973 & 0.735 & 0.925 & 1.000 & 0.973 & 0.82 & 0.85 & 79.03 \\
\hline C124 & 0.503 & 50 & c. 732 & 33.75 & 0.974 & 16.25 & 2.078 & 0.620 & 25.13 & 0.983 & 0.653 & 0.949 & 1.000 & 0.983 & 0.03 & 1.00 & 94.47 \\
\hline C125 & 0.503 & 50.00 & 0.691 & 35.79 & 0.972 & 14.21 & 2.518 & 0.540 & 25.13 & 0.984 & 0.571 & 0.945 & 1.000 & 0.984 & 0.00 & 1.00 & 94.49 \\
\hline C126 & 0.503 & 50.00 & 0.648 & 37.32 & 0.949 & 12.18 & 3.104 & 0.440 & 25.13 & 0.975 & 0.490 & 0.898 & 2.000 & 0.975 & 0.00 & 1.00 & 89.83 \\
\hline C127 & 0.503 & 50.00 & 0.603 & 39.85 & 0.892 & 10.15 & 3.926 & 0.320 & 25.13 & 0.956 & 0.408 & 0.784 & 1.000 & 2.956 & 0.00 & 1.00 & 78.41 \\
\hline \(C 128\) & 0.664 & 50.60 & 0.986 & 15.60 & 0.482 & 34.40 & 0.453 & 0.450 & 33.19 & 0.463 & 0.470 & 0.957 & 0.470 & 0.986 & 6.40 & 0.22 & 20.91 \\
\hline C129 & 0.664 & 50.00 & 0.997 & 17.65 & 0.518 & 32.35 & 0.546 & 0.527 & 33.19 & 0.530 & 0.532 & 0.991 & 0.532 & 0.997 & 5.63 & 0.28 & 27.25 \\
\hline C130 & 0.604 & 50.00 & 0.995 & 19.71 & 0.552 & 30.29 & 0.651 & 0.585 & 33.19 & 0.591 & 0.594 & 0.985 & 0.594 & 0.995 & 4.89 & 0.34 & 33.30 \\
\hline C131 & 0.664 & 50.00 & 0.997 & 21.76 & 0.593 & 28.24 & 0.771 & 0.650 & 33.19 & 0.654 & 0.656 & 0.991 & 0.656 & 0.997 & 4.14 & 0.41 & 40.67 \\
\hline C132 & 0.664 & 50.00 & 0.996 & 23.81 & 0.639 & 26.19 & 0.909 & 0.710 & 33.19 & 0.715 & 0.717 & 0.990 & 0.717 & 0.996 & 3.40 & 0.49 & 48.57 \\
\hline C133 & 0.664 & 50.00 & 0.994 & 25.87 & 0.690 & 24.13 & 1.072 & 0.765 & 33.19 & 0.775 & 0.779 & 0.982 & 0.779 & 0.994 & 2.67 & 0.58 & 56.93 \\
\hline C134 & 0.664 & 50.00 & 0.980 & 27.92 & 0.735 & 22.08 & 1.265 & 0.790 & 33.19 & 0.824 & 0.841 & 0.939 & 0.841 & 0.980 & 2.10 & 0.66 & 61.68 \\
\hline C135 & 0.664 & 50.00 & 0.932 & 29.98 & 0.737 & 20.02 & 1.497 & 0.720 & 33.19 & 0.842 & 0.903 & 0.797 & 0.903 & 0.932 & 1.69 & 0.72 & 57.20 \\
\hline C236 & 0.864 & 50.00 & 0.890 & 32.03 & 0.740 & 17.97 & 1.782 & 0.650 & 33.19
33.19 & 0.859 & 0.965 & 0.674 & 0.965 & 0.890 & 1.37 & 0.77 & 51.63 \\
\hline C237 & 0.064 & 50.00 & 0.850 & 34.08 & 0.736 & 15.92 & 2.141 & 0.570 & 33.19 & 0.873 & 0.947 & 0.602 & 1.000 & 0.873 & 0.83 & 0.85 & 51.37 \\
\hline C138 & 0.604 & 50.00 & 0.815 & 36.14 & 0.731 & 13.86 & 2.607 & 0.490 & 33.19 & 0.887 & 0.825 & 0.594 & 1.000 & 0.887 & 0.01 & 1.00 & 59.25 \\
\hline C139 & 0.664 & 50.60 & 0.784 & 38.19 & 0.724 & 11.81 & 3.234 & 0.410 & 33.19 & 0.902 & 0.703 & 0.584 & 1.000 & 0.902 & 0.00 & 1.00 & 58.35 \\
\hline C140 & 0.334 & \(50 . c c\) & 0.501 & 10.00 & 0.708 & 40.00 & 0.250 & 0.150 & 16.69 & 0.300 & 0.599 & 0.250 & 0.599 & 0.501 & 10.66 & 0.04 & 0.96 \\
\hline C141 & 0.334 & S0.0c & 0.609 & 12.15 & 0.754 & 37.85 & 0.321 & 0.300 & 16.69 & 0.443 & 0.728 & 0.412 & 0.728 & 0.609 & 9.43 & 0.07 & 2.94 \\
\hline C142 & 0.334 & 50.00 & 0.692 & 14.29 & 0.309 & 35.71 & 0.400 & 0.460 & 16.69 & 0.592 & 0.856 & 0.537 & 0.856 & 0.692 & 8.40 & 0.11 & 5.87 \\
\hline C143 & 0.334 & 50.00 & 0.733 & 16.44 & 0.862 & 33.56 & 0.490 & 0.590 & 16.69 & 0.722 & 0.985 & 0.599 & 0.985 & 0.733 & 7.43 & 0.16 & 9.36 \\
\hline C144 & 0.334 & 50.00 & 0.723 & 13.58 & 0.896 & 31.42 & 0.591 & 0.650 & 16.69 & 0.805 & 0.943 & 0.689 & 1.000 & 0.805 & 6.39 & 0.22 & 15.11 \\
\hline C145 & 0.334 & 50.00 & 0.696 & 20.73 & 0.923 & 29.27 & 0.708 & 0.675 & 16.69 & 0.864 & 0.879 & 0.768 & 1.000 & 0.864 & 5.36 & 0.30 & 22.81 \\
\hline 6146 & 0.334 & 50.00 & 0.662 & 22.87 & 0.943 & 27.13 & 0.843 & 0.675 & 16.69 & 0.907 & 0.814 & 0.829 & 1.000 & 0.907 & 4.36 & 0.39 & 32.16 \\
\hline 6147 & 0.334 & 50.00 & 0.621 & 25.02 & 0.953 & 24.98 & 1.001 & 0.645 & 16.69 & 0.930 & 0.750 & 0.860 & 1.000 & 0.930 & 3.41 & 0.49 & 42.09 \\
\hline C148 & 0.334 & 50.00 & 0.583 & 27.16 & 0.962 & 22.84 & 1.189 & 0.608 & 16.69 & 0.948 & 0.686 & 0.887 & 1.000 & 0.948 & 2.60 & 0.59 & 52.27 \\
\hline 6149 & 0.334 & 50.00 & 0.548 & 29.31 & 0.970 & 20.69 & 1.417 & 0.565 & 16.69 & 0.963 & 0.621 & 0.909 & 1.000 & 0.963 & 1.68 & 0.72 & 65.29 \\
\hline C150 & 0.334 & 50.0 C & 0.518 & 31.45 & 0.978 & 18.55 & 1.696 & 0.520 & 16.69 & 0.975 & 0.557 & 0.934 & 1.000 & 0.975 & 0.87 & 0.85 & 79.05 \\
\hline C151 & 0.334 & 50.00 & 0.489 & 33.60 & 0.985 & 16.40 & 2.049 & 0.470 & 16.69 & 0.985 & 0.492 & 0.955 & 1.000 & 0.985 & 0.05 & 0.99 & 94.51 \\
\hline C152 & 0.340 & 75.00 & 0.648 & 28.50 & 0.850 & 46.50 & 0.613 & 0.523 & 25.47 & 0.725 & 0.939 & 0.557 & 1.000 & 0.725 & 6.68 & 0.20 & 11.15 \\
\hline 6153 & 0.340 & 75.00 & 0.645 & 30.56. & 0.870 & 44.44 & 0.688 & 0.555 & 25.47 & 0.774 & 0.897 & 0.619 & 1.000 & 0.774 & 5.94 & 0.25 & 15.56 \\
\hline C154 & 0.340 & 75.00 & 0.631 & 32.62 & 0.885 & 42.38 & 0.770 & 0.565 & 25.47 & 0.808 & 0.856 & 0.660 & 1.000 & 0.808 & 5.37 & 0.30 & 19.53 \\
\hline c 155 & 0.340 & 75.00 & 0.614 & 34.68 & 0.896 & 40.32 & 0.860 & 0.565 & 25.47 & 0.835 & 0.814 & 0.694 & 1.000 & 0.835 & 4.67 & 0.36 & 24.80 \\
\hline C 156 & 0.340 & 75.c0 & 0.596 & 36.74 & 0.907 & 38.26 & 0.960 & 0.560 & 25.47 & 0.860 & 0.773 & 0.725 & 1.000 & 0.860 & 4.12 & 0.41 & 29.35 \\
\hline 6157 & 0.340 & 75.00 & 0.578 & 38.80 & 0.916 & 36.20 & 1.072 & 0.550 & 25.47 & 0.881 & 0.731 & 0.752 & 1.000 & 0.881 & 3.44 & 0.49 & 36.55 \\
\hline C158 & 0.340 & 75.00 & 0.558 & 40.86 & 0.921 & 34.14 & 1.197 & 0.530 & 25.47 & 0.895 & 0.689 & 0.769 & 1.000 & 0.895 & 2.91 & 0.55 & 42.24 \\
\hline C 159 & 0.340 & 75.00 & 0.540 & 42.92 & 0.928 & 32.08 & 1.338 & 0.510 & 25.47 & 0.909 & 0.648 & 0.787 & 1.000 & 0.909 & 2.37 & 0.62 & 48.73 \\
\hline C160 & 0.340 & 75.00 & 0.519 & 44.98 & 0.929 & 30.02 & 1.498 & 0.480 & 25.47 & 0.917 & 0.606 & 0.792 & 1.000 & 0.917 & 1.86 & 0.69 & 54.82 \\
\hline C161 & 0.340 & 75.00 & 0.502 & 47.04 & 0.934 & 27.96 & 1.682 & 0.455 & 25.47 & 0.928 & 0.565 & 0.806 & 1.000 & 0.928 & 1.32 & 0.77 & 62.36 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathbf{x}_{\mathbf{f}} \mathbf{+ z}_{\mathbf{I}}\) & \[
\begin{gathered}
Q_{\mathbf{f}} \\
\text { cc/sec }
\end{gathered}
\] & \(x_{0}+z_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathbf{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
\mathbf{Q}_{\mathbf{f}^{K} \mathbf{f}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{f} x_{f}}
\] & \(E_{3}\) & \(\mathrm{E} / \mathrm{E}_{\mathrm{B}}\) & \[
\left|\frac{Q_{0} x_{o}}{Q_{f_{f}}}\right|_{I}
\] & \[
\left\lvert\, \frac{Q_{0} x_{0}}{Q_{0} x_{0} \mid I}\right.
\] & \[
\underset{\mathrm{cm}}{\mathrm{~cm}}
\] & EVF & \[
(\%)
\] \\
\hline 6162 & 0.340 & 75.00 & 0.482 & 49.10 & 0.930 & 25.90 & 1.896 & 0.415 & 25.47 & 0.929 & 0.523 & 0.794 & 1.000 & 0.929 & 0.82 & 0.85 & 67.78 \\
\hline C163 & 0.340 & 75.00 & 0.462 & 51. 16 & 0.923 & 23.84 & 2.146 & 0.372 & 25.47 & 0.928 & 0.481 & 0.773 & 1.000 & 0.928 & 0.34 & 0.94 & 72.53 \\
\hline C164 & 0.340 & 75.00 & 0.442 & 53.22 & 0.911 & 21.78 & 2.444 & 0.325 & 25.47 & 0.924 & 0.440 & 0.739 & 1.000 & 0.924 & 0.00 & 1.00 & 73.90 \\
\hline C165 & 0.350 & 75.00 & 0.423 & 55.28 & 0.893 & 19.72 & 2.803 & 0.273 & 25.47 & 0.917 & 0.398 & 0.686 & 1.000 & 0.917 & 0.00 & 1.00 & 68.56 \\
\hline C166 & 0.340 & 75.00 & 0.401 & 57.34 & 0.860 & 17.66 & 3.247 & 0.210 & 25.47 & 0.903 & 0.357 & 0.589 & 1.000 & 0.903 & 0.00 & 1.00 & 58.89 \\
\hline C167 & 0.340 & 75.00 & 0.379 & 59.40 & 0.811 & 15.60 & 3.808 & 0.140 & 25.47 & 0.884 & 0.315 & 0.444 & 1.000 & 0.884 & 0.00 & 1.00 & 44.44 \\
\hline & & & & & & & & & & & - & & & & & & \\
\hline C168 & 0.333 & 50.00 & 0.630 & 13.10 & 0.772 & 36.90 & 0.355 & 0.350 & 16.65 & 0.495 & 0.787 & 0.445 & 0.787 & 0.630 & 9.14 & 0.08 & 3.59 \\
\hline C169 & 0. 333 & 50.00 & 0.641 & 15.24 & 0.802 & 34.76 & 0.438 & 0.422 & 16.65 & 0.586 & 0.915 & 0.461 & 0.915 & 0.641 & 8.40 & 0.11 & 5.04 \\
\hline 6170 & 0.333 & 50.00 & 0.646 & 17.37 & 0.834 & 32.63 & 0.532 & 0.490 & 16.65 & 0.674 & 0.978 & 0.501 & 1.000 & 0.674 & 7.62 & 0.15 & 7.31 \\
\hline 6171 & 0.333 & 50.00 & 0.651 & 19.51 & 0.870 & 30.49 & 0.640 & 0.558 & 16.65 & 0.762 & 0.914 & 0.610 & 1.000 & 0.762 & 6.38 & 0.22 & 13.43 \\
\hline 6172 & 0.333 & 50.00 & 0.645 & 21.65 & 0.905 & 28.35 & 0.763 & 0.608 & 16.65 & 0.838 & 0.850 & 0.715 & 1.000 & 0.838 & 5.16 & 0.31 & 22.46 \\
\hline C173 & 0.333 & 50.00 & 0.637 & 23.78 & 0.942 & 26.22 & 0.907 & 0.650 & 16.65 & 0.909 & 0.786 & 0.827 & 1.000 & 0.909 & 3.94 & 0.43 & 35.61 \\
\hline \(C 174\) & 0.333 & 50.00 & 0.609 & 25.92 & 0.964 & 24.08 & 1.076 & 0.643 & 16.65 & 0.947 & 0.722 & 0.890 & 1.000 & 0.947 & 3.07 & 0.53 & 47.21 \\
\hline \(C 175\) & 0.333 & 50.00 & 0.574 & 28.05 & 0.976 & 21.95 & 1.278 & 0.610 & 16.65 & 0.968 & 0.658 & 0.927 & 1.000 & 0.968 & 2.13 & 0.65 & 60.61 \\
\hline 6176 & 0.333 & 50.00 & 0.541 & 30.19 & 0.984 & 19.81 & 1.524 & 0.565 & 16.65 & 0.981 & 0.594 & 0.951 & 1.000 & 0.981 & 1.32 & 0.77 & 73.65 \\
\hline 6177 & 0.333 & 50.00 & 0.506 & 32.33 & 0.984 & 17.67 & 1.829 & 0.505 & 16.65 & 0.983 & 0.530 & 0.953 & 1.000 & 0.983 & 0.45 & 0.92 & 87.54 \\
\hline \[
C 178
\] & 0.333 & 50.00 & 0.476 & 34.46 & 0.985 & 15.54 & 2.218 & 0.445 & 16.65 & 0.986 & 0.466 & 0.955 & 1.000 & 0.986 & 0.00 & 1.00 & 95.52 \\
\hline C179 & 0.333 & 50.00 & 0.451 & 36.60 & 0.990 & 13.40 & 2.731 & 0.390 & 16.65 & 0.992 & 0.402 & 0.971 & 1.000 & 0.992 & 0.00 & 1.00 & 97.06 \\
\hline 6180 & 0.334 & 60.00 & 0.559 & 15.42 & 0.744 & 44.58 & 0.346 & 0.260 & 20.06 & 0.430 & 0.769 & 0.338 & 0.769 & 0.559 & 9.44 & 0.07 & 2.39 \\
\hline \(C 181\) & 0.334 & 60.00 & 0.622 & 17.43 & 0.783 & 42.57 & 0.409 & 0.375 & 20.06 & 0.540 & 0.869 & 0.432 & 0.869 & 0.622 & 8.67 & 0.10 & 4.24 \\
\hline C182 & 0.334 & 60.00 & 0.681 & 19.44 & 0.832 & 40.56 & 0.479 & 0.505 & 20.06 & 0.660 & 0.969 & 0.521 & 0.969 & 0.681 & 7.89 & 0.13 & 6.90 \\
\hline \(C 183\) & 0.334 & 60.00 & 0.714 & 21.45 & 0.877 & 38.55 & 0.556 & 0.610 & 20.06 & 0.764 & 0.965 & 0.632 & 1.000 & 0.764 & 6.88 & 0.19 & 11.85 \\
\hline C184 & 0.334 & 60.00 & 0.699 & 23.46 & 0.900 & 36.54 & 0.642 & 0.640 & 20.06 & 0.817 & 0.915 & 0.700 & 1.000 & 0.817 & 5.93 & 0.25 & 17.62 \\
\hline C 185 & 0.334 & 60.00 & 0.675 & 25.47 & 0.917 & 34.53 & 0.738 & 0.650 & 20.06 & 0.857 & 0.865 & 0.752 & 1.000 & 0.857 & 5.16 & 0.31 & 23.57 \\
\hline C186 & 0.334 & 60.00 & 0.648 & 27.48 & 0.931 & 32.52 & 01.845 & 0.645 & 20.06 & 0.887 & 0.814 & 0.792 & 1.000 & 0.887 & 4.41 & 0.38 & 30.31 \\
\hline cibz & 0.334 & 60.00 & 0.623 & 29.49 & 0.944 & 30.51 & 0.967 & 0.637 & 20.06 & 0.916 & 0.764 & 0.834 & 1.000 & 0.916 & 3.56 & 0.46 & 38.45 \\
\hline 6188 & 0.334 & 60.00 & 0.594 & 31.50 & 0.953 & 28.50 & 1.105 & 0.613 & 20.06 & 0.933 & 0.714 & 0.859 & 1.000 & 0.933 & 2.94 & 0.55 & 46.88 \\
\hline \(C 189\) & 0.334 & 60.00 & 0.569 & 33.51 & 0.963 & 26.49 & 1.265 & 0.590 & 20.06 & 0.951 & 0.663 & 0.890 & 1.000 & 0.951 & 2.33 & 0.63 & 55.65 \\
\hline C 190 & 0.334 & 60.c0 & 0.545 & 35.52 & 0.971 & 24.48 & 1.451 & 0.560 & 20.06 & 0.965 & 0.613 & 0.914 & 1.000 & 0.965 & 1.61 & 0.73 & 66.54 \\
\hline 6191 & 0.334 & 60.00 & 0.528 & 37.53 & 0.977 & 22.47 & 1.670 & 0.525 & 20.06 & 0.962 & 0.563 & 0.931 & 1.000 & 0.962 & 1.07 & 0.81 & 75.50 \\
\hline \(C 192\) & 0.334 & 60.00 & 0.500 & 39.54 & 0.985 & 20.46 & Lis 933 & 0.490 & 20.06 & 0.985 & 0.512 & 0.957 & 1.000 & 0.985 & 0.29 & 0.95 & 90.49 \\
\hline \(C 193\) & 0.334 & 60.00 & 0.479 & 41.55 & 0.9991 & 18.45 & 2.252 & 0.450 & 20.06 & 0.992 & 0.462 & 0.974 & 1.000 & 0.992 & 0.00 & 1.00 & 97.41 \\
\hline 6194 & 0.334 & 60.00 & 0.460 & 43.56 & 0.999 & 16.44 & 2.650 & 0.410 & 20.06 & 0.999 & 0.412 & 0.996 & 1.000 & 0.999 & 0.00 & 1.00 & 99.60 \\
\hline C195 & 0.334 & 60.00 & 0.448 & 19.90 & 0.723 & 40.10 & 0.496 & 0.170 & 20.03 & 0.445 & 0.994 & 0.171 & 0.994 & 0.448 & 9.19 & 0.08 & 1.35 \\
\hline C196 & 0.334 & 60.00 & 0.446 & 21.94 & 0.731 & 38.06 & 0.577 & 0.185 & 20.03 & 0.489 & 0.952 & 0. 194 & 1.000 & 0.489 & 8.64 & 0.10 & 1.93 \\
\hline C197 & 0.334 & 60.00 & 0.445 & 23.99 & 0.740 & 36.01 & 0.666 & 0.200 & 20.03 & 0.533 & 0.901 & 0.222 & 1.000 & 0.533 & 7.88 & 0.13 & 2.95 \\
\hline C198 & 0. 334 & 60.00 & 0.447 & 26.03 & 0.753 & 33.97 & 0.766 & 0.220 & 20.03 & 0.580 & 0.850 & 0.259 & 1.000 & 0.580 & 6.93 & 0.18 & 4.78 \\
\hline 6199 & 0.334 & 60.00 & 0.438 & 28.08 & 0.758 & 31.92 & 0.880 & 0.220 & 20.03 & 0.615 & 0.799 & 0.275 & 1.000 & 0.615 & 6.19 & 0.23 & 6.42 \\
\hline C200 & 0.334 & 60.00 & 0.425 & 30.12 & 0.758 & 29.88 & 1.008 & 0.205 & 20.03 & 0.639 & 0.747 & 0.274 & 1.000 & 0.639 & 5.63 & 0.28 & 7.55 \\
\hline C201 & 0.334 & 60.00 & 0.415 & 32.17 & 0.760 & 27.83 & 1. 156 & 0.195 & 20.03 & 0.666 & 0.696 & 0.280 & 1.000 & 0.666 & 4.89 & 0.34 & 9.46 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathbf{x}_{\mathbf{E}} \mathbf{Z z}_{\mathbf{E}}\) & \[
\begin{gathered}
Q_{\mathbf{f}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(x_{0}+z_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathbf{Y}_{\mathbf{u}}\) & \(Q_{u}\) cc/sec & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} X_{f} \\
c c / s e c
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{\mathbf{Q}_{f} x_{f}}
\] & \(\mathrm{E}_{s}\) & \(E / E_{s}\) & \(\left|\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right\rangle_{I}\) & \[
\frac{Q_{0}^{x_{0}}}{\left|Q_{0} x_{0}\right| r}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}} .
\] & EVF & \[
(\%)
\] \\
\hline 6202 & 0.334 & 60.00 & 0.404 & 34.21 & 0.759 & 25.79 & 1.327 & 0.180 & 20.03 & 0.690 & 0.645 & 0.279 & 1.000 & 0.690 & 4.16 & 0.41 & 11.38 \\
\hline C203 & 0.334 & 60.00 & 0.399 & 36.26 & 0.766 & 23.74 & 12.527 & 0.178 & 20.03 & 0.723 & 0.594 & 0.300 & 1.000 & 0.723 & 3.38 & 0.49 & 14.76 \\
\hline C204 & 0.334 & 60.00 & 0.396 & 38.30 & 0.776 & 21.70 & 1.765 & 0.178 & 20.03 & 0.757 & 0.543 & 0.328 & 1.000 & 0.757 & 2.59 & 0.59 & 19.38 \\
\hline c205 & 0.332 & 75.00 & 0.650 & 23.10 & 0.809 & 51.90 & 0.445 & 0.440 & 24.94 & 0.602 & 0.926 & 0.475 & 0.926 & 0.650 & 8. 19 & 0.12 & 5.63 \\
\hline C206 & 0.332 & 75.00 & 0.643 & 25.20 & 0.825 & 49.80 & 0.546 & 0.470 & 24.94 & 0.650 & 0.995 & 0.472 & 1.000 & 0.650 & 7.90 & 0.13 & 6.25 \\
\hline C207 & 0.332 & 75.00 & 0.637 & 27.30 & 0.842 & 47.70 & 0.572 & 0.500 & 24.94 & 0.698 & 0.953 & 0.525 & 1.000 & 0.698 & 7.15 & 0.17 & 9.00 \\
\hline C208 & 0.332 & 75.00 & 0.630 & 29.40 & 0.859 & 45.60 & 0.645 & 0.525 & 24.94 & 0.742 & 0.911 & 0.576 & 1.000 & 0.742 & 6.42 & 0.22 & 12.54 \\
\hline C209 & 0.332 & 75.00 & 0.620 & 31.50 & 0.876 & 43.50 & 0.724 & 0.545 & 24.94 & 0.784 & 0.869 & 0.627 & 1.000 & 0.784 & 5.68 & 0.27 & 16.99 \\
\hline C210 & 0.332 & 75.00 & 0.610 & 33.60 & 0.893 & 41.40 & 0.812 & 0.560 & 24.94 & 0.822 & 0.827 & 0.677 & 1.000 & 0.822 & 5.10 & 0.32 & 21.60 \\
\hline C211 & 0.332 & 75.00 & 0.598 & 35.70 & 0.909 & 39.30 & 0.908 & 0.570 & 24.94 & 0.856 & 0.785 & 0.726 & 1.000 & 0.856 & 4.37 & 0.39 & 28.07 \\
\hline C212 & 0.332 & 75.00 & 0.586 & 37.80 & 0.925 & 37.20 & 1.016 & 0.575 & 24.94 & 0.888 & 0.743 & 0.774 & 1.000 & 0.888 & 3.65 & 0.46 & 35.75 \\
\hline 6213 & 0.332 & 75.00 & 0.570 & 39.90 & 0.938 & 35.10 & 1.137 & 0.570 & 24.94 & 0.912 & 0.701 & 0.813 & 1.000 & 0.912 & 3.08 & 0.53 & 43.02 \\
\hline C214 & 0.332 & 75.00 & 0.554 & 42.00 & 0.950 & 33.00 & 1.273 & 0.560 & 24.94 & 0.934 & 0.659 & 0.850 & 1.000 & 0.934 & 2.39 & 0.62 & 52.49 \\
\hline C215 & 0.332 & 75.00 & 0.540 & 44.10 & 0.964 & 30.90 & 1.427 & 0.550 & 24.94 & 0.955 & 0.617 & 0.891 & 1.000 & 0.955 & 1.70 & 0.72 & 63.77 \\
\hline 6216 & 0.332 & 75.00 & 0.523 & 46.20 & 0.974 & 28.80 & 1.604 & 0.530 & 24.94 & 0.970 & 0.575 & 0.921 & 1.000 & 0.970 & 1.14 & 0.80 & 73.95 \\
\hline c217 & 0.332 & 75.00 & 0.510 & 48.30 & 0.989 & 26.70 & 1.809 & 0.515 & 24.94 & 0.988 & 0.533 & 0.966 & 1.000 & 0.988 & 0.55 & 0.90 & 87.06 \\
\hline 6218 & 0.332 & 75.00 & 0.491 & 50.40 & 0.992 & 24.60 & 2.049 & 0.480 & 24.94 & 0.992 & 0.491 & 0.977 & 1.000 & 0.992 & 0.01 & 1.00 & 97.44 \\
\hline c219 & 0.332 & \$5.00 & 0.455 & 52.50 & 1.000 & 22.50 & 2.333 & 0.450 & 24.94 & 1.000 & 0.449 & \[
1.000
\] & 1.000 & 1.000 & 0.00 & 1.00 & 100.00 \\
\hline C220 & 0.499 & 60.00 & 0.861 & 22.20 & 0.713 & 37.80 & 0.587 & 0.535 & 29.95 & 0.638 & 0.741 & 0.722 & 0.741 & 0.861 & 6.12 & 0.24 & 17.20 \\
\hline c221 & 0.499 & 60.00 & 0.870 & 24.42 & 0.755 & 35.58 & 0.688 & 0.603 & 27.95 & 0.709 & 0.815 & 0.740 & 0.815 & 0.870 & 5.40 & 0.29 & 21.73 \\
\hline C222 & 0.499 & 60.00 & 0.882 & 26.64 & 0.807 & 33.36 & 0.798 & 0.680 & 29.95 & 0.784 & 0.889 & 0.765 & 0.889 & 0.882 & 4.67 & 0.36 & 27.36 \\
\hline C223 & 0.499 & 60.00 & 0.905 & 28.85 & 0.876 & 31.15 & 0.926 & 0.780 & 29.95 & 0.872 & 0.963 & 0.810 & 0.963 & 0.905 & 3.91 & 0.43 & 35.12 \\
\hline C224 & 0.499 & 60.00 & 0.894 & 31.07 & 0.925 & 28.93 & 1.074 & 0.818 & 29.95 & 0.928 & 0.963 & 0.850 & 1.000 & 0.928 & 3.15 & 0.52 & 44.25 \\
\hline C225 & 0.499 & 60.00 & 0.851 & 33.29 & 0.939 & 26.71 & 1.246 & 0.780 & 29.95 & 0.945 & 0.889 & 0.877 & 1.000 & 0.025 & 2.39 & 0.62 & 54.19 \\
\hline C226 & 0.499 & 60.00 & 0.803 & 35.51 & 0.942 & 24.49 & 1.450 & 0.720 & 29.95 & 0.952 & 0.815 & 0.883 & 1.000 & 0.952 & 1.67 & 0.72 & 63.57 \\
\hline C227 & 0.499 & 60.00 & 0.762 & 37.72 & 0.945 & 22.28 & 1.694 & 0.660 & 29.95 & 0.959 & 0.741 & 0.890 & 1.000 & 0.959 & 1.05 & 0.82 & 72.74 \\
\hline C228 & 0.499 & 60.00 & 0.721 & 39.94 & 0.942 & 20.06 & 1.991 & 0.590 & 29.95 & 0.961 & 0.667 & 0.884 & 1.000 & 0.961 & 0.34 & 0.94 & 82.84 \\
\hline C229 & 0.499 & 60.00 & 0.690 & 42.16 & 0.951 & 17. 84 & 2.363 & 0.535 & 29.95 & 0.971 & 0.594 & 0.901 & 1.000 & 0.971 & 0.00 & 1.00 & 90.11 \\
\hline C230 & 0.502 & 75.00 & 0.877 & 23.45 & 0.669 & 51.55 & 0.455 & 0.470 & 37.62 & 0.547 & 0.623 & 0.754 & 0.623 & 0.877 & 6.92 & 0.19 & 13.98 \\
\hline C231 & 0.502 & 75.00 & 0.872 & 25.57 & 0.690 & 49.43 & 0.517 & 0.505 & 37.62 & 0.593 & 0.680 & 0.743 & 0.683 & 0.872 & 6.43 & 0.22 & 16.08 \\
\hline C232 & 0.502 & 75.00 & 0.864 & 27.69 & 0.710 & 47.31 & 0.585 & 0.535 & 37.62 & 0.636 & 0.736 & 0.727 & 0.736 & 0.864 & 6.12 & 0.24 & 17.33 \\
\hline C233 & 0.502 & 75.00 & 0.856 & 29.81 & 0.732 & 45.19 & 0.660 & 0.563 & 37.62 & 0.678 & 0.792 & 0.710 & 0.792 & 0.856 & 5.64 & 0.27 & 19.46 \\
\hline C234 & 0.502 & 75.00 & 0.845 & 31.93 & 0.753 & 43.07 & 0.741 & 0.585 & 37.62 & 0.717 & 0.849 & 0.689 & 0.849 & 0.845 & 5.19 & 0.31 & 21.46 \\
\hline C235 & 0.502 & 75.00 & 0.837 & 34.05 & 0.778 & 40.95 & 0.831 & 0.610 & 37.62 & 0.758 & 0.905 & 0.674 & 0.905 & 0.837 & 4.87 & 0.34 & 22.88 \\
\hline C236 & 0.502 & 75.00 & 0.818 & 36.17 & 0.793 & 38.83 & 0.931 & 0.610 & 37.62 & 0.786 & 0.962 & 0.634 & 0.962 & 0.818 & 4.59 & 0.37 & 23.20 \\
\hline C237 & 0.502 & 75.00 & 0.781 & 38.29 & 0.790 & 36.71 & 1.043 & 0.570 & 37.62 & 0.795 & 0.982 & 0.580 & 1.000 & 0.795 & 4.19 & 0.40 & 23.51 \\
\hline C238 & 0.502 & 75.00 & 0.747 & 40.41 & 0.786 & 34.59 & 1.168 & 0.530 & 37.62 & 0.803 & 0.925 & 0.573 & 1.000 & 0.803 & 3.68 & 0.46 & 26.27 \\
\hline C239 & 0.502 & 75.00 & 0.720 & 42.53 & 0.784 & 32.47 & 1.310 & 0.495 & 37.62 & 0.814 & 0.869 & 0.570 & 1.000 & 0.814 & 3.17 & 0.52 & 29.54 \\
\hline C240 & 0.502 & 75.00 & 0.699 & 44.65 & 0.789 & 30.35 & 1.471 & 0.470 & 37.62 & 0. 830 & 0.812 & 0.579 & 1.000 & 0.830 & 2.62 & 0.59. & 33.96 \\
\hline C241 & 0.502 & 75.00 & 0.679 & 46.77 & 0.793 & 28.23 & 1.657 & 0.443 & 37.62 & 0.844 & 0.755 & 0.587 & 1.000 & 0.844 & 2.07 & 0.66 & 38.81 \\
\hline
\end{tabular}

TABLE E－3（continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathrm{E}}+\mathrm{z}_{0}\) & \[
\begin{gathered}
Q_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+\mathrm{z}_{0}\) & \[
\begin{gathered}
Q_{0} \\
c / \mathrm{sec}
\end{gathered}
\] & \(Y_{u}\) &  & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
\mathbf{Q}_{f_{0}} \\
\operatorname{cc} / \mathrm{sec}
\end{gathered}
\] & \[
\frac{0_{0} x_{0}}{Q_{f} x_{f}}
\] & \(\mathrm{E}_{s}\) & \(E / E_{s}\) & \[
\left|\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right|_{k}
\] & \[
\frac{Q_{0} x_{0}}{\left|Q_{0} x_{0}\right| I}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}}
\] & EVF & (\%) \\
\hline C242 & 0.502 & 75.00 & 0.063 & 48.89 & 0.800 & 26.11 & 1.872 & 0.420 & 37.62 & 0.861 & J． 6988 & 0.601 & 1.000 & 0.861 & 1.40 & 0.76 & 45.79 \\
\hline C243 & C． 3 CL & 75.0 C & 0.048 & 51.01 & 0.810 & 23.99 & 2.126 & 0.353 & 37.62 & 0.079 & 0.642 & 6.620 & 1.000 & 0.879 & 0.82 & 0.86 & 53.06 \\
\hline c244 & 0.502 & 75.00 & 0.635 & 53.13 & 0.823 & 21.87 & 2.429 & C． 375 & 37.02 & 0.397 & 0.505 & 6.640 & 1.000 & 0.897 & 0.12 & 0.98 & 63.13 \\
\hline C245 & 0.502 & 75.00 & 0.622 & 55.25 & 0.835 & 19.75 & 2.797 & 0.335 & 37.62 & 0.914 & \(0.52 E\) & 0.672 & 1.000 & 0.914 & 0.00 & 1.00 & 67.20 \\
\hline C246 & 0.667 & 60.00 & 0.960 & 26.00 & 0.572 & 34.00 & 0.705 & 0.010 & 46.00 & 0.637 & 0.536 & 0．939 & 1.650 & 0.980 & 4.34 & 0.39 & 36.61 \\
\hline 6247 & 0.667 & 60.0 C & 0.982 & 23.05 & 0.610 & 31.95 & 0.675 & 0.063 & 40.00 & 0．65z & 0.701 & 0.946 & 0.701 & 0.982 & 3.65 & 0.46 & 43.74 \\
\hline C248 & 0.667 & 60.00 & 0.984 & ． 30.09 & 0.652 & 29.91 & 1.006 & U． 115 & 40.00 & 0.740 & 0.75 ： & 3． 051 & 0.752 & 0.984 & 3.09 & 0.53 & 50.12 \\
\hline C249 & 0.667 & 60.00 & O． OEL \(^{\text {c }}\) & 32.14 & 0.697 & 27．86 & 1.153 & 3． 1005 & 4 cosc & 0.789 & ）．00， & 11.746 & 0.803 & 0.982 & 2.43 & 0.61 & 57.92 \\
\hline C250 & 0.667 & 60.00 & U． 943 & 34．16 & 0.752 & 25.82 & 1.324 & \％． 210 & 42.02 & 0.440 & U． 354 & －9．948 & 0.854 & 0.983 & 1.87 & 0.69 & 65.45 \\
\hline C251 & 0.667 & 60.00 & 0.981 & 36.23 & 0.813 & 23.77 & 1.524 & 1．：35 & 40.00 & －． 3 48 & 3．sen & c． 944 & 0.906 & 0.981 & 1.31 & 0.77 & 73.15 \\
\hline C252 & 0.667 & 6G．cc & 0． 962 & 32.27 & 0.889 & 21.73 & 1.781 & －．tis & 41．．60\％ & 0.939 & 0.927 & 0.946 & 0.957 & 0.982 & 0.65 & 0.88 & 83.65 \\
\hline C253 & 0.667 & 60.00 & 0.530 & 40.3 ？ & 0.585 & 15.65 & 2.645 & － 0 －\({ }^{\text {a }}\) & 42.00 & c． 945 & J．984 & c．t． 33 & 1.000 & 0.945 & 0.36 & 0.93 & 77.87 \\
\hline C254 & c．te7 & 6c．0c & 0.363 & 42.36 & 0.917 & 17.04 & \(2.44{ }^{2}\) & \％． 0.340 & 40.0 .3 & 0.915 & 3.352 & C． 726 & 1.000 & 0.919 & 0.02 & 1.00 & 72.30 \\
\hline C255 & 0.667 & 60.00 & 0.236 & 44.41 & U．d16 & 15.54 & 2.846 & 9．303 & \(4 \mathrm{C.O}\) & 12．423 & 3． 780 & 0.725 & 1.000 & 0.928 & 0.00 & 1．00 & 72.40 \\
\hline C256 & 0.667 & 60.00 & 0.310 & 46.45 & 0．525 & 13．53 & 3.425 & e． \(\begin{gathered}\text { ci }\end{gathered}\) & 4 c .0 Ci & 3． 541 & \(\therefore .677\) & 0.738 & 1.000 & 0.941 & 0.00 & 1.00 & 73.80 \\
\hline c257 & 0.667 & 60.00 & 0.753 & 4．3．50 & 0.001 & 11．nc & 4.217 & － 0 里里 & 46.06 & O． 0.6 .2 & 0.375 & c．éco & 1.000 & 0.962 & 0.00 & 1.00 & 19．9］ \\
\hline C258 & 0.665 & 75.00 & 0．989 & 39.54 & 0．0．3 & 35.35 & 1．11； & － 100 & 45. & 0.70 .3 & 2.152 & 0.966 & 0.792 & 0.989 & 2.60 & 0.59 & 56.94 \\
\hline C259 & 0.665 & 75.00 & 0.988 & 41.62 & 0.737 & 33．3i & 1.247 & \(\because\) & 4＇3．90 & 0． 524 & 1.934 & C．965 & 0.834 & 0.983 & 2.10 & 0.66 & 63.41 \\
\hline C260 & 0.665 & 75.00 & 0.986 & 43.74 & 0.783 & 31.26 & 1.400 & － 6.94 & 45.50 & 6． 964 & 0.377 & c． 955 & 0.877 & 0.986 & 1.61 & 0.73 & 69.83 \\
\hline C261 & 0.665 & 75.00 & 0.986 & 45.97 & 0.035 & 23.13 & 1.574 & 3．004 & 45．50 & D． 360 & 0.917 & 0.957 & 0.919 & 0.986 & 1.11 & 0.81 & 77.27 \\
\hline C262 & 0.665 & 75.00 & 0.931 & 47.99 & 0.006 & 27．心1 & 1.717 & 1．703 & 45.50 & 2．845 & 3.902 & 0.793 & 0.962 & 0.931 & 1.07 & 0.81 & 64.55 \\
\hline C263 & 0.665 & 75．cc & 0.875 & 5 C .12 & 0.757 & 24．39 & 4.013 & \(\checkmark \cdot 0=0\) & 44.50 & 2.879 & 0.952 & 0.635 & 1.000 & 0.879 & 0.94 & 0.83 & 53.03 \\
\hline C264 & 0.665 & 75．00 & 0.840 & 52.23 & 0.734 & 22.77 & 2．＜¢ 4 & 9．345 & 44.30 & ： 3.579 & J．437 & 0.601 & 1.000 & 0.379 & 0.54 & 0.90 & 54.22 \\
\hline C265 & 0.665 & 75.00 & 0.809 & 54.36 & 0.715 & 20.04 & 2.633 & i． 46.0 & 45.0 & －．cel & J．E22 & c． 569 & 1.000 & 0.881 & 0.03 & 0.99 & 56.61 \\
\hline C266 & 0.665 & 75.00 & 0.781 & 56.48 & 0.686 & \(1 \varepsilon .52\) & 3.049 & －．350 & 45 & נ． 3 ¢ 4 & 0.73 d & 0.528 & 1.000 & 0.884 & 0.00 & 1.00 & 52．85 \\
\hline C267 & 0.665 & 75.00 & 0.754 & 58.60 & 0.65 C & 16.40 & 3.573 & －．31i） & 49.90 & 3.385 & 0.653 & 0.474 & 1.000 & 0.825 & 0.00 & 1.00 & 47.44 \\
\hline 6268 & 0.667 & 50.00 & 0.991 & 28.75 & 0.772 & 21.25 & 1．33う & 5，34．3 & 33．3\％ & ソ－4．3 & 3． 862 & 0.974 & 0.862 & 0.991 & 1.67 & 0.72 & 10.07 \\
\hline C269 & 0.667 & 50．0C & 0.993 & 31.16 & 0.873 & 18.84 & 1.654 & C．915 & 33．34 & C．4125 & 0.935 & 0.979 & 0.935 & 0.993 & 0.85 & 0.35 & 83.20 \\
\hline C270 & 0.667 & 50.0 C & 0.971 & 33.57 & 0.955 & 16.43 & 2.044 & シ826 & 33.34 & 9.970 & 0.986 & 0.933 & 1.000 & 0.978 & 0.10 & 0.98 & 91.02 \\
\hline C271 & 0.667 & 50．CC & 0.898 & 35.99 & 0.928 & 14.31 & 2.56 t & 3．750 & \(3 E .34\) & 0.970 & 0.841 & 0.892 & 1.000 & 0.970 & 0.00 & 1.00 & 49.16 \\
\hline C272 & 0.667 & 50．0c & 0.855 & 38.40 & 0.956 & 11.00 & 3.310 & （i． \(6: 10\) & 33.34 & 3．953 & 0.696 & 0.933 & 1.000 & 0.985 & 0.00 & 1.00 & 93.34 \\
\hline C273 & 0.501 & 50.00 & 0.765 & 20.10 & 0.677 & 29.90 & 0.672 & 0.425 & 25.03 & 3.614 & 0.803 & 0.529 & 0.803 & 0.765 & 6.15 & 0.24 & 12.51 \\
\hline C274 & 0.501 & 50.00 & 0.789 & 22.34 & 0.732 & 27.60 & 0.80 é & 0.315 & 25.03 & 0.704 & 0.893 & 0.577 & 0.893 & 0.789 & 5.35 & 0.30 & 17.15 \\
\hline C275 & 0.501 & 50.00 & 0.818 & 24.58 & 0.307 & 25.42 & c． 967 & 9．020 & 25.03 & 13． 304 & 0.982 & 0.636 & 0.932 & 0.318 & 4.38 & 0.39 & 24.56 \\
\hline C276 & 0.501 & 50.00 & 0.845 & 26.83 & 0.897 & 23.17 & \(1.15{ }^{\text {c }}\) & 0.733 & 25.03 & 0.905 & 0.928 & 0.795 & 1.000 & 0.905 & 2.95 & 0.55 & 43.36 \\
\hline C277 & 0.501 & 50.00 & 0.830 & 29.07 & 0.956 & 20．33 & 1.389 & 0.765 & 25．c3 & 0.963 & 0.838 & 0.913 & 1.000 & 0.963 & 1.83 & 0.70 & 63.48 \\
\hline 6278 & 0.501 & 50.00 & 0.778 & 31.31 & 0.964 & 18.08 & 1.676 & 0.695 & 25.63 & 0.973 & 0.749 & 0.929 & 1.000 & 0.973 & 0.91 & 0.84 & 77.95 \\
\hline C279 & 0.501 & 50.0 C & 0.728 & 33.55 & C． 963 & 16.45 & 2.040 & 0.010 & 25.33 & 0.976 & 0.659 & 0.926 & 1.000 & 0.976 & 0.11 & 0.98 & 90.64 \\
\hline 6280 & 0.501 & 50.00 & 0.687 & 35.30 & 0.970 & 14.20 & 2.520 & 0.535 & 25.03 & 0.983 & 0.569 & 0.940 & 1.000 & 0.983 & 0.00 & 1.00 & 04.05 \\
\hline C281 & 0.501 & 50.00 & 0.649 & 38.04 & 0.970 & 11.96 & 3.181 & 0.450 & 25.03 & 0.985 & 0.479 & 0.939 & 1.000 & 0.985 & 0.01 & 1.00 & 93.94 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathbf{x}_{f}{ }^{+2}\) & \[
\begin{gathered}
Q_{\mathrm{f}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{\mathrm{o}}+{ }^{2} \mathrm{O}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Y_{u}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{array}{r}
Q_{f} x_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{array}
\] & \[
\frac{Q_{0} x_{0}}{Q_{E} x_{f}}
\] & \(\mathrm{E}_{\mathbf{s}}\) & \(E / E_{s}\) & \[
\left|\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right|_{I}
\] & \[
\frac{Q_{0} x_{0}}{\sqrt{Q_{0} x_{0}} \mid x}
\] & \[
\underset{c \mathrm{~cm}}{\mathrm{c}}
\] & EVF & (\%) \\
\hline C282 & 0.333 & 60.00 & 0.668 & 19.50 & 0.828 & 40.50 & 0.481 & 0.490 & 19.99 & 0.652 & 0.975 & 0.502 & 0.975 & 0.668 & 7.91 & 0.13 & 6.61 \\
\hline C283 & 0.333 & 60.00 & 0.661 & 21.54 & 0.850 & 38.46 & 0.560 & 0.530 & 19.99 & 0.712 & 0.961 & 0.551 & 1.000 & 0.712 & 7.15 & 0.17 & 9.47 \\
\hline C284 & 0.333 & 60.00 & 0.653 & 23.57 & 0.874 & 36.43 & 0.647 & 0.565 & 19.99 & 0.770 & 0.910 & 0.621 & 1.000 & 0.770 & 6.19 & 0.23 & 14.48 \\
\hline C285 & 0.333 & 60.00 & 0.644 & 25.61 & 0.899 & 34.39 & 0.745 & 0.598 & 19.99 & 0.826 & 0, 860 & 0.696 & 1.000 & 0.826 & 5.38 & 0.30 & 20.55 \\
\hline 6286 & 0.333 & 60.00 & 0.632 & 27.65 & 0.922 & 32.35 & 0.855 & 0.620 & 19.99 & 0.874 & 0.809 & 0.767 & 1.000 & 0.874 & 4.43 & 0.38 & 29.19 \\
\hline \(C 287\) & 0.333 & 60.00 & 0.616 & 29.69 & 0.944 & 30.31 & 0.979 & 0.630 & 19.99 & 0.915 & 0.758 & 0.832 & 1.000 & 0.915 & 3.64 & 0.46 & 38.57 \\
\hline C288 & 0.333 & 60.00 & 0.593 & 31.72 & 0.958 & 28.28 & 1.122 & 0.618 & 19.99 & 0.941 & 0.707 & 0.874 & 1.000 & 0.941 & 2.88 & 0.55 & 48.41 \\
\hline C289 & 0.333 & 60.00 & 0.568 & 33.76 & 0.969 & 26.24 & 1.287 & 0.595 & 19.99 & 0.959 & 0.656 & 0.907 & 1.000 & 0.959 & 2.15 & 0.65 & 59.08 \\
\hline c290 & 0.333 & 60.00 & 0.548 & 35.80 & 0.985 & 24.20 & 1.479 & 0.578 & 19.99 & 0.982 & 0.605 & 0.956 & 1.000 & 0.982 & 1.39 & 0.76 & 72.94 \\
\hline C291 & 0.502 & 60.00 & 0.877 & 20.99 & 0.700 & 39.01 & 0.538 & 0.525 & 30.12 & 0.611 & 0.697 & 0.753 & 0.697 & 0.877 & 6.37 & 0.22 & 16.64 \\
\hline C 292 & 0.502 & 60.00 & 0.866 & 23.05 & 0.725 & 36.95 & 0.624 & 0.560 & 30.12 & 0.663 & 0.765 & 0.732 & 0.765 & 0.866 & 5.86 & 0.26 & 18.84 \\
\hline C293 & 0.502 & 60.00 & 0.863 & 25.11 & 0.758 & 34.89 & 0.720 & 0.605 & 30.12 & 0.720 & 0.834 & 0.726 & 0.834 & 0.863 & 5.19 & 0.31 & 22.60 \\
\hline C294 & 0.502 & 60.00 & 0.864 & 27.17 & 0.797 & 32.83 & 0.828 & 0.655 & 30.12 & 0.779 & 0.902 & 0.726 & 0.902 & 0.864 & 4.66 & 0.36 & 26.05 \\
\hline C 295 & 0.502 & 60.00 & 0.869 & 29.23 & 0.847 & 30.77 & 0.950 & 0.715 & 30.12 & 0.843 & 0.971 & 0.737 & 0.971 & 0.869 & 4.11 & 0.41 & 30.42 \\
\hline C296 & 0.502 & 60.00 & 0.869 & 31.29 & 0.898 & 28.71 & 1.090 & 0.765 & 30.12 & 0.903 & 0.961 & 0.796 & 1.000 & 0.903 & 3.33 & 0.50 & 39.76 \\
\hline C 297 & 0.502 & 60.00 & 0.837 & 33.36 & 0.917 & 26.64 & 1.252 & 0.745 & 30.12 & 0.927 & 0.892 & 0.835 & 1.000 & 0.927 & 2.57 & 0.59 & 49.62 \\
\hline C298 & 0.502 & 60.00 & 0.798 & 35.42 & 0.925 & 24.58 & 1.441 & 0.700 & 30.12 & 0.939 & 0.823 & 0.851 & 1.000 & 0.939 & 1.85 & 0.69 & 58.97 \\
\hline C299 & 0.502 & 60.00 & 0.762 & 37.48 & 0.931 & 22.52 & 1.684 & 0.650 & 30.12 & 0.948 & 0.754 & 0.862 & 1.000 & 0.948 & 1.15 & 0.80 & 69.08 \\
\hline C300 & 0.502 & 60.0C & 0.728 & 39.54 & C. 934 & 20.46 & 1.932 & 0.595 & 30.12 & 0.955 & 0.685 & 0.869 & 1.000 & 0.955 & 0.54 & 0.90 & 78.39 \\
\hline c301 & 0.502 & 60.00 & 0.697 & 41.60 & 0.938 & 18.40 & 2.261 & 0.540 & 30.12 & 0.962 & 0.616 & 0.877 & 1.000 & 0.962 & 0.00 & 1.00 & 87.69 \\
\hline C302 & 0.334 & 75.00 & 0.602 & 27.75 & 0.823 & 47.25 & 0.587 & 0.445 & 25.08 & 0.666 & 0.947 & 0.470 & 1.000 & 0.666 & 7.19 & 0.17 & 7.96 \\
\hline \({ }_{6} 6303\) & 0.334 & 75.00 & 0.598 & 29.77 & 0.839 & 45.23 & 0.658 & 0.470 & 25.08 & 0.710 & 0.906 & 0.519 & 1.000 & 0.710 & 6.63 & 0.20 & 10.56 \\
\hline C304 & 0.334 & 75.00 & 0.594 & 31.78 & 0.857 & 43.22 & 0.735 & 0.795 & 25.08 & 0.753 & 0.866 & 0.572 & 1.000 & 0.753 & 5.89 & 0.25 & 14.57 \\
\hline C305 & 0.334 & 75.00 & 0.589 & 33.80 & 0.874 & 41.20 & 0.820 & 0.515 & 25.08 & 0.793 & 0.825 & 0.624 & 1.000 & 0.793 & 5.16 & 0.31 & 19.55 \\
\hline C306 & 0.334 & 75.00 & 0.584 & 35.81 & 0.894 & 39.19 & 0.914 & 0.535 & 25.08 & 0.834 & 0.785 & 0.682 & 1.000 & 0.834 & 4.43 & 0.38 & 25.93 \\
\hline C307 & 0.334 & 75.00 & 0.577 & 37.83 & 0.913 & 37.17 & 1.018 & 0.550 & 25.08 & 0.870 & 0.745 & 0.739 & 1.000 & 0.870 & 3.84 & 0.44 & 32.62 \\
\hline C308 & 0.334 & 75.00 & 0.570 & 39.84 & 0.933 & 35.16 & 1.133 & 0.553 & 25.08 & 0.906 & 0.704 & 0.799 & 1.000 & 0.906 & 3.11 & 0.53 & 42.00 \\
\hline C369 & 0.334 & 75.00 & 0.559 & 41.86 & 0.949 & 33.14 & 1.263 & 0. 5163 & 25.08 & 0.933 & 0.664 & 0.848 & 1.000 & 0.933 & 2.41 & 0.61 & 52.15 \\
\hline C310 & 0.334 & 75.00 & 0.544 & 43.88 & 0.961 & 31.12 & 1.410 & 0.550 & 25.08 & 0.951 & 0.623 & 0.882 & 1.000 & 0.951 & 1.85 & 0.69 & 61.14 \\
\hline C311 & 0.334 & 75.00 & 0.525 & 45.89 & 0.967 & 29.11 & 1.576 & 0.525 & 25.08 & 0.901 & 0.583 & 0.900 & 1.000 & 0.961 & 1.32 & 0.77 & 69.65 \\
\hline C312 & . 0.334 & 75.00 & 0.505 & 47.91 & 0.974 & 27.09 & 1.768 & 0.500 & 25.08 & 0.972 & 0.543 & 0.921 & 1.000 & 0.972 & 0.69 & 0.88 & 80.81 \\
\hline C313 & 0.334 & 75.cc & 0.493 & 49.92 & 0.982 & 25.08 & 1.991 & 0.475 & 25.08 & 0.982 & 0.502 & 0.946 & 1.000 & 0.982 & 0.15 & 0.97 & 91.99 \\
\hline C314 & 0.334 & 75.00 & 0.479 & 51.94 & 0.991 & 23.06 & 2.252 & 0.450 & 25.08 & 0.992 & 0.462 & 0.974 & 1.000 & 0.992 & 0.00 & 1.00 & 97.40 \\
\hline C315 & 0. 334 & 75.00 & 0.463 & 53.95 & 0.995 & 21.05 & 2.563 & 0.415 & 25.08 & 0.996 & 0.422 & 0.984 & 1.000 & 0.996 & 0.00 & 1.00 & 98.43 \\
\hline C316 & 0.334 & 75.00 & 0.448 & 55.97 & 0.995 & 19.03 & 2.941 & 0.380 & 25.08 & 0.999 & 0.381 & 0.997 & 1.000 & 0.999 & 0.00 & 1.00 & 99.67 \\
\hline C317 & 0.334 & 75.00 & 0.431 & 57.98 & 0.994 & 17.02 & 3.408 & 0.335 & 25.08 & 0.996 & 0.341 & 0.983 & 1.000 & 0.996 & 0.00 & 1.00 & 96.28 \\
\hline C318 & 0.334 & 75.00 & 0.414 & 60.00 & 0.983 & 15.00 & \(4=000\) & 0.285 & 25.08 & 0.990 & 0.300 & 0.948 & 1.000 & 0.990 & 0.00 & 1.00 & 94.85 \\
\hline C319 & 0.332 & 50.00 & 0.702 & 17.67 & 0.870 & 32.33 & 0.547 & 0.590 & 16.60 & 0.748 & 0.968 & 0.610 & 1.000 & 0.748 & 6.94 & 0.18 & 11.23 \\
\hline C320 & 0.332 & 50.00 & 0.674 & 19.76 & 0.892 & 30.24 & 0.654 & 0.610 & 16.60 & 0.803 & 0.905 & 0.674 & 1.000 & 0.803 & 5.94 & 0.25 & 16.93 \\
\hline 6321 & 0.332 & 50.00 & 0.649 & 21.85 & 0.914 & 28.15 & 0.777 & 0.625 & 16.60 & 0.855 & 0.843 & 0.742 & 1.000 & 0.855 & 4.94 & 0.33 & 24.71 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{X}_{\mathrm{f}} \mathrm{Cz}_{\text {f }}\) & \[
\begin{gathered}
Q_{\mathbf{f}} \\
c c / \mathbf{s e c}
\end{gathered}
\] & \(\mathrm{x}_{0}+z_{0}\) & \(Q_{0}\) cc/sec & \(\mathbf{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
\mathbf{Q}_{f} x_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{f} x_{f}}
\] & \(\mathrm{E}_{s}\) & \(\mathrm{E} / \mathrm{E}_{\mathrm{S}}\) & \[
\left|\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right|_{I}
\] & \[
\left|\frac{Q_{0} x_{0}}{Q_{0} x_{0}}\right| I
\] & \[
\underset{\mathrm{cm}}{\mathrm{a}}
\] & EvF & (\%) \\
\hline C322 & 0.332 & 50.00 & 0.621 & 23.95 & 0.934 & 26.05 & 0.919 & 0.625 & 16.60 & 0.896 & 0.780 & 0.801 & 1.000 & 0.896 & 4.09 & 0.42 & \(33.29{ }^{-}\) \\
\hline C323 & 0.332 & 50.00 & 0.592 & 26.04 & 0.950 & 23.90 & 1.08 .7 & 0.610 & 16.60 & 0.928 & 0.717 & 0.850 & 1.000 & 0.928 & 3.12 & 0.52 & 44.58 \\
\hline C324 & 0.332 & 50.0 c & 0.561 & 28.13 & 0.962 & 21.87 & 1.286 & 0.580 & 16.60 & 0.950 & 0.655 & 0.886 & 1.000 & 3.950 & 2.18 & 0.65 & 57.20 \\
\hline c325 & 0.332 & 50.00 & 0.530 & 30.22 & 0.971 & 19.78 & 1.528 & 0.540 & 16.60 & 0.965 & 0.592 & 0.912 & 1.000 & 0.965 & 1.38 & 0.76 & 69.70 \\
\hline C326 & 0.332 & 50.00 & 0.502 & 32.32 & 0.978 & 17.68 & 1.828 & 0.495 & 16.60 & 0.977 & 0.529 & 0.935 & 1.000 & 0.977 & 0.57 & 0.90 & 83.84 \\
\hline C327 & 0.332 & 50.00 & 0.472 & 34.41 & 0.977 & 15.59 & 2.207 & 0.435 & 16.60 & 0.979 & 0.467 & 0.932 & 1.000 & 0.979 & 0.00 & 1.00 & 93.19 \\
\hline C328 & 0.501 & 50.00 & 0.903 & .9.75 & 0.761 & 30.25 & 0.653 & 0.635 & 25.05 & 0.712 & 0.788 & 0.805 & 0.788 & 0.903 & 5.40 & 0.29 & 23.67 \\
\hline C329 & 0.501 & 50.00 & 0.912 & 21.90 & 0.819 & 28.10 & 0.779 & 0.720 & 25.05 & 0.797 & 0.874 & 0.824 & 0.874 & 0.912 & 4.63 & 0.36 & 29.79 \\
\hline C330 & 0.501 & \(50 . c c\) & 0.391 & 24.05 & 0.860 & 25.95 & 0.927 & 0.750 & 25.05 & 0.855 & 0.960 & 0.781 & 0.960 & 0.891 & 4.09 & 0.42 & 32.44 \\
\hline C331 & 0.501 & 50.00 & 0.830 & 26.20 & 0.861 & 23.80 & 1.101 & 0.690 & 25.05 & 0.868 & 0.954 & 0.723 & 1.000 & 0.968 & 3.43 & 0.49 & 35.22 \\
\hline 6332 & 0.501 & 50.00 & 0.763 & 28.35 & 0.843 & 21.65 & 1.309 & 0.595 & 25.05 & 0.864 & 0.868 & 0.686 & 1.000 & 0.864 & 2.84 & 0.56 & 38.30 \\
\hline C333 & 0.501 & 50.00 & 0.710 & 30.5 C & 0.826 & 19.50 & 1.564 & 0.510 & 25.05 & 0.864 & 0.782 & 0.653 & 1.000 & 0.364 & 2.11 & 0.66 & 42.85 \\
\hline C334 & 0.501 & 50.00 & 0.668 & 32.65 & 0.812 & 17.35 & 1.882 & 00435 & 25.05 & 0.870 & 0.695 & 0.626 & 1.000 & 0.870 & 1.34 & 0.77 & 48.19 \\
\hline C335 & 0.501 & 50.00 & 0.630 & 34.80 & 0.793 & 15.20 & 2.289 & 0.358 & 25.05 & 0.875 & 0.609 & 0.588 & 1.000 & 0.875 & 0.57 & 0.90 & 52.73 \\
\hline C336 & 0.502 & 75.00 & 0.789 & 30.40 & 0.693 & 44.60 & 0.682 & 0.465 & 37.69 & 0.637 & 0.807 & 0.576 & 0.807 & 0.789 & 5.91 & 0.25 & 14.61. \\
\hline C337 & 0.502 & 75.00 & 0.787 & 32.79 & 0.719 & 42.21 & 0.777 & 0.498 & 37.69 & 0.685 & 0.870 & 0.572 & 0.870 & 0.787 & 5.42 & 0.29 & 16.73 \\
\hline C338 & 0.502 & 75.00 & 0.780 & 35.17 & 0.742 & 39.83 & 0.883 & 0.520 & 37.69 & 0.728 & 0.933 & 0.557 & 0.933 & 0.780 & 4.94 & 0.33 & 18.55 \\
\hline 6339 & 0.502 & 75.c0 & 0.770 & 37.56 & 0.765 & 37.44 & 1.003 & 0.535 & 37.69 & 0.767 & 0.997 & 0.537 & 0.997 & 0.770 & 4.62 & 0.36 & 19.48 \\
\hline C340 & 0.502 & 75.00 & 0.757 & 39.95 & 0.788 & 35.05 & 1.140 & 0.543 & 37.69 & 0.803 & 0.939 & 0.578 & 1.000 & 0.803 & 3.86 & 0.44 & 25.40 \\
\hline C341 & 0.667 & 75.00 & 0.981 & 29.65 & 0.539 & 45.35 & 0.654 & 0.560 & 50.01 & 0.582 & 0.593 & 0.944 & 0.593 & 0.981 & 4.91 & 0.34 & 31.71 \\
\hline 6342 & 0.667 & 75.00 & 0.985 & 31.85 & 0.569 & 43.11 & 0.740 & 0.610 & 50.01 & 0.629 & 0.638 & 0.956 & 0.638 & 0.985 & 4.39 & 0.39 & 36.84 \\
\hline C343 & 0.667 & 75.00 & 0.980 & 34.13 & 0.595 & 40.87 & 0.835 & 0.642 & 50.01 & 0.669 & 0.683 & 0.941 & 0.683 & 0.980 & 3.89 & 0.44 & 41.04 \\
\hline C344 & 0.667 & 75.00 & 0.967 & 36.37 & 0.616 & 38.63 & 0.942 & 0.655 & 50.01 & 0.703 & 0.727 & 0.900 & 0.727 & 0.967 & 3.42 & 0.49 & 43.98 \\
\hline C345 & 0.667 & 75.00 & 0.939 & 38.62 & 0.622 & 36.23 & 1.061 & 0.630 & 50.01 & 0.725 & 0.772 & 0.816 & 0.772 & 0.939 & 3.13 & 0.52 & 42.63 \\
\hline C346 & 0.667 & 75.00 & 0.905 & 40.86 & 0.619 & 34.14 & 1.197 & 0.585 & 50.01 & 0.740 & 0.817 & 0.716 & 0.817 & 0.905 & 2.87 & 0.55 & 39.71 \\
\hline C347 & 0.667 & 75.00 & 0.877 & 43.10 & 0.618 & 31.90 & 1.351 & 0.545 & 50.01 & 0.756 & 0.862 & 0.632 & 0.862 & 0.877 & 2.60 & 0.59 & 37.28 \\
\hline C348 & 0.666 & 60.00 & 0.976 & 26.42 & 0.577 & 33.58 & 0.787 & 0.613 & 39.97 & 0.645 & 0.661 & 0.927 & 0.661 & 0.976 & 4.16 & 0.41 & 37.86 \\
\hline C349 & c. 666 & 60.00 & 0.979 & 28.61 & 0.619 & 31.39 & 0.911 & 0.670 & 39.97 & 0.700 & 0.716 & 0.936 & 0.716 & 0.979 & 3.58 & 0.47 & 44.04 \\
\hline C350 & 0.666 & 60.00 & 0.961 & 30.80 & 0.644 & 29.20 & 1.055 & 0.680 & 39.97 & 0.740 & 0.770 & 0.883 & 0.770 & 0.961 & 2.95 & 0.55 & 48.12 \\
\hline C351 & 0.606 & 60.00 & 0.925 & 32.98 & 0.650 & 27.02 & 1.221 & 0.640 & 39.97 & 0.763 & 0.825 & 0.776 & 0.825 & 0.925 & 2.63 & 0.59 & 45.40 \\
\hline C352 & 0.666 & 60.00 & 0.886 & 35.17 & 0.645 & 24.83 & 1.417 & 0.580 & 39.97 & 0.780 & 0.880 & 0.659 & 0.880 & 0.886 & 2.34 & 0.62 & 41.13 \\
\hline C353 & 0.066 & 60.00 & 0.855 & 37-36 & 0.646 & 22.64 & 1.650 & 0.530 & 39.97 & 0.800 & 0.935 & 0.567 & 0.935 & 0.855 & 1.92 & 0.68 & 38.74 \\
\hline C354 & 0.666 & 60.00 & 0.827 & 39.55 & 0.645 & 20.45 & 1.934 & 0.477 & 39.97 & 0.818 & 0.989 & 0.482 & 0.989 & 0.827 & 1.60 & 0.73 & 35.19 \\
\hline C355 & 0.666 & 60.00 & 0.797 & 41.74 & 0.633 & 18.26 & 2.285 & 0.410 & 39.97 & 0. 832 & 0.912 & 0.450 & 1.000 & 0.832 & 0.91 & 0.34 & 37.76 \\
\hline C356 & 0.666 & 60.00 & 0.769 & 43.92 & 0.616 & 16.08 & 2.732 & 0.340 & 39.97 & 0.846 & 0.803 & 0.424 & 1.000 & 0.346 & 0.16 & 0.97 & 41.08 \\
\hline C357 & 0.666 & 60.00 & 0.744 & 46.11 & 0.593 & 13.89 & 3.320 & 0.270 & 39.97 & 0.859 & 0.693 & 0.389 & 1.000 & 0.859 & 0.00 & 1.00 & 38.94 \\
\hline C358 & 0.666 & 60.00 & 0.724 & 48.30 & 0.573 & 11.70 & 4.128 & 0.210 & 39.97 & 0.875 & 0.584 & 0.359 & 1.000 & 0.875 & 0.00 & 1.00 & 35.95 \\
\hline C359 & 0.668 & 50.00 & 0.980 & 16.36 & 0.484 & 33.64 & 0.486 & 0.460 & 33.39 & 0.480 & 0.490 & 0.939 & 0.490 & 0.980 & 6.15 & 0.24 & 22.13 \\
\hline C360 & 0.668 & 50.00 & 0.983 & 18.67 & 0.520 & 31.33 & 0.596 & 0.530 & 33.39 & 0.550 & 0.559 & 0.948 & 0.559 & 0.983 & 5.36 & 0.30 & 28.11 \\
\hline C361 & 0.068 & 50.00 & 0.985 & 20.99 & 0.562 & 29.01 & 0.724 & 0.600 & 33.39 & 0.619 & 0.629 & 0.954 & 0.629 & 0.985 & 4.43 & 0.38 & 36.33 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{1}+z_{\text {f }}\) & \[
\begin{gathered}
Q_{\mathrm{f}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(x_{0}+z_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathbf{Y}_{u}\) & \[
\begin{gathered}
Q_{u} \\
\mathrm{cc} / \mathrm{sec} \\
\hline
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} X_{f} \\
c c / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{0}}{Q_{f} x_{f}}
\] & \(\mathrm{E}_{\mathrm{s}}\) & \(E / E_{s}\) & \[
\left.\left\lvert\, \frac{Q_{0} x_{0}}{Q_{E} x_{E}}\right.\right)_{I}
\] & \[
\frac{Q_{0} x_{0}}{Q_{0} x_{0} I}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}}
\] & EVF & \[
\underset{(\%)}{\$}
\] \\
\hline 6362 & 0.668 & 50.00 & 0.975 & 23.30 & 0.600 & 26.70 & 0.873 & 0.645 & 33.39 & 0.680 & 0.698 & 0.924 & 0.698 & 0.975 & 3.68 & 0.46 & 42.38 \\
\hline C363 & 0.668 & 50.00 & 0.930 & 25.62 & 0.608 & 24.38 & 1.051 & 0.605 & 33.39 & 0.713 & 0.767 & 0.788 & 0.767 & 0.930 & 3.19 & 0.52 & 40.68 \\
\hline C364 & 0.668 & 50.00 & 0.892 & 27.93 & 0.616 & 22.07 & 1.266 & 0.565 & 33.39 & 0.746 & 0.837 & 0.675 & 0.337 & 0.892 & 2.68 & C. 58 & 39.08 \\
\hline C365 & 0.668 & 50.00 & 0.844 & 30.25 & 0.602 & 19.75 & 1.532 & 0.480 & 33.39 & 0.764 & 0.906 & 0.530 & 0.906 & 0.844 & 2.36 & 0.62 & 32.94 \\
\hline C366 & 0.665 & 60.00 & 0.988 & 26.06 & 0.583 & 33.94 & 0.768 & 0.630 & 39.90 & 0.645 & 0.653 & 0.965 & 0.653 & 0.988 & 4.17 & 0.41 & 39.24 \\
\hline C367 & 0.665 & 60.00 & 0.968 & 28.46 & 0.608 & 31.54 & 0.902 & 0.645 & 39.90 & 0.690 & 0.713 & 0.904 & 0.713 & 0.968 & 3.63 & 0.46 & 41.97 \\
\hline C368 & 0.665 & 60.00 & 0.929 & 30.85 & 0.615 & 29.15 & 1.059 & 0.610 & 39.90 & 0.719 & 0.773 & 0.789 & 0.773 & 0.929 & 3.17 & 0.52 & 40.34 \\
\hline C369 & 0.66 & 60.00 & 0.896 & 33.25 & 0.622 & 26.75 & 1.243 & 0.575 & 39.90 & 0.747 & 0.833 & 0.690 & 0.833 & 0.896 & 2.82 & 0.56 & 38.69 \\
\hline C370 & 0.665 & 60.00 & 0.862 & 35.65 & 0.623 & 24.35 & 1.464 & 0.525 & 39.90 & 0.770 & 0.893 & 0.588 & 0.893 & 0.862 & 2.38 & 0.62 & 36.40 \\
\hline & & & & & & & - & & & & & & & & & & \\
\hline C371 & 0.500 & 75.00 & 0.799 & 31.95 & 0.722 & 43.05 & 0.742 & 0.510 & 37.50 & 0.681 & 0.852 & 0.599 & 0.852 & 0.799 & 5.60 & 0.28 & 16.59 \\
\hline C372 & 0.500 & 75.00 & 0.752 & 34.22 & 0.712 & 40.78 & 0.839 & 0.460 & 37.50 & 0.686 & 0.913 & 0.504 & 0.913 & 0.752 & 5.40 & 0.29 & 14.82 \\
\hline C373 & 0.500 & 75.00 & 0.713 & 36.50 & 0.702 & 38.50 & 0.948 & 0.415 & 37.50 & 0.694 & 0.973 & 0.426 & 0.973 & 0.713 & 5.18 & 0.31 & 13.31 \\
\hline C374 & 0.500 & 75.00 & 0.649 & 38.77 & 0.702 & 36.23 & 1.070 & 0.390 & 37.50 & 0.712 & 0.966 & 0.404 & 1.000 & 0.712 & 4.85 & 0.34 & 13.79 \\
\hline C375 & 0.500 & 75.00 & 0.667 & 41.05 & 0.702 & 33.95 & 1.209 & 0.365 & 37.50 & 0.730 & 0.905 & 0.403 & 1.000 & 0.730 & 4.16 & 0.41 & 16.44 \\
\hline C376 & 0.499 & 60.60 & 0.898 & 24.85 & 0.782 & 35.15 & 0.707 & 0.660 & 29.96 & 0.745 & 0.829 & 0.796 & 0.829 & 0.898 & 5.13 & 0.32 & 25.19 \\
\hline C377 & 0.499 & 60.00 & 0.917 & 27.14 & 0.845 & 32.86 & 0.826 & 0.755 & 29.96 & 0.830 & 0.906 & 0.833 & 0.906 & 0.917 & 4.37 & 0.39 & 32.25 \\
\hline C378 & 0.499 & 60.00 & 0.912 & 29.43 & 0.898 & 30.57 & 0.963 & 0.810 & 29.96 & 0.896 & 0.982 & 0.824 & 0.982 & 0.912 & 3.68 & 0.46 & 37.25 \\
\hline C379 & 0.499 & 60.00 & 0.870 & 31.72 & 0.917 & 28.28 & 1. 122 & 0.785 & 29.96 & 0.922 & 0.941 & 0.834 & 1.000 & 0.922 & 3.07 & 0.53 & 44.20 \\
\hline C380 & 0.499 & 60.00 & 0.821 & 34.02 & 0.922 & 25.98 & 1.309 & 0.730 & 29.96 & 0.932 & 0.865 & 0.844 & 1.000 & 0.932 & 2.33 & 0.63 & 52.84 \\
\hline C381 & 0.499 & 60.00 & 0.776 & 36.31 & 0.925 & 23.69 & 1.533 & 0.670 & 29.96 & 0.941 & 0.789 & 0.850 & 1.000 & 0.941 & 1.59 & 0.73 & 62.20 \\
\hline C382 & 0.499 & 60.00 & 0.739 & 38.60 & 0.933 & 21.40 & 1.804 & 0.617 & 29.96 & 0.952 & 0.712 & 0.866 & 1.000 & 0.952 & 0.83 & 0.85 & 73.92 \\
\hline C383 & 0.667 & -50.00 & 0.986 & 21.20 & 0.568 & 28.80 & 0.736 & 0.610 & 33.34 & 0.627 & 0.636 & 0.959 & 0.636 & 0.986 & 4.39 & 0.38 & 36.88 \\
\hline C384 & 0.667 & 50.00 & 0.984 & 23.25 & 0.609 & 26.75 & 0.869 & 0.665 & 33.34 & 0.687 & 0.697 & 0.953 & 0.697 & 0.984 & 3.66 & 0.46 & 43.96 \\
\hline C385 & 0.667 & 50.00 & 0.983 & 25.31 & 0.657 & 24.69 & 1.025 & 0.720 & 33.34 & 0.746 & 0.759 & 0.949 & 0.759 & 0.983 & 2.93 & 0.55 & 51.87 \\
\hline C386 & 0.667 & 50.00 & 0.967 & 27.36 & 0.696 & 22.64 & 1.209 & 0.740 & 33.34 & 0.794 & 0.821 & 0.902 & 0.821 & 0.967 & 2.37 & 0.62 & 55.86 \\
\hline C387 & 0.667 & 50.00 & 0.916 & 29.41 & 0.689 & 20.59 & 1.429 & 0.660 & 33.34 & 0.808 & 0.882 & 0.748 & 0.882 & 0.916 & 2.08 & 0.66 & 49.39 \\
\hline C388 & 0.667 & 50.00 & 0.873 & 31.47 & 0.684 & 18.53 & 1.698 & 0.585 & 33.34 & 0.824 & 0.944 & 0.620 & 0.944 & 0.873 & 1.66 & 0.72 & 44.68 \\
\hline C389 & 0.667 & 50.00 & 0.837 & 33.52 & 0.680 & 16.48 & 2.034 & 0.515 & 33.34 & 0.842 & 0.989 & 0.521 & 1.000 & 0.842 & 1.31 & 0.78 & 40.36 \\
\hline C390 & 0.667 & \(50 . c 0\) & 0.809 & 35.58 & 0.684 & 14.42 & 2.466 & . 0.455 & 33.34 & 0.863 & 0.866 & 0.526 & 1.000 & 0.863 & 0.38 & 0.93 & 48.96 \\
\hline C391 & 0.667 & 50.00 & 0.782 & 37.63 & 0.683 & 12.37 & 3.042 & 0.390 & 33.34 & 0.883 & 0.743 & 0.525 & 1.000 & 0.883 & 0.00 & 1.00 & 52.52 \\
\hline C392 & 0.667 & 75.00 & 0.949 & 34.60 & 0.574 & 40.40 & 0.856 & 0.585 & 50.04 & 0.656 & 0.691 & 0.846 & 0.691 & 0.949 & 3.93 & 0.43 & 36.52 \\
\hline C393 & 0.667 & 75.00 & 0.931 & 36.63 & 0.584 & 38.37 & 0.955 & 0.580 & 50.04 & 0.681 & 0.732 & 0.792 & 0.732 & 0.931 & 3.64 & 0.46 & 36.76 \\
\hline C394 & 0.667 & 75.00 & 0.911 & 38.66 & 0.592 & 36.34 & 1.064 & 0.565 & 50.04 & 0.703 & 0.773 & 0.731 & 0.773 & 0.911 & 3.35 & 0.50 & 36.32 \\
\hline C395 & 0.667 & 75.00 & 0.894 & 40.69 & 0.601 & 34.31 & 1.186 & 0.553 & \(50.04{ }^{\circ}\) & 0.727 & 0.813 & 0.680 & 0.813 & 0.894 & 2.94 & 0.55 & 37.16 \\
\hline C396 & 0.667 & 75.00 & 0.87 .8 & 42.72 & 0.611 & 32.28 & 1.323 & 0.540 & 50.04 & 0.749 & 0.854 & 0.633 & 0.854 & 0.878 & 2.64 & 0.58 & 36.93 \\
\hline C397 & 0.667 & 75.00 & 0.863 & 44.75 & 0.622 & 30.25 & 1.479 & 0.525 & 50.04 & 0.771 & 0.894 & 0.587 & 0.894 & 0.863 & 2.35 & 0.62 & 36.58 \\
\hline C398 & 0.500 & 50.00 & 0.788 & 22.75 & 0.741 & 27.25 & 0.835 & 0.525 & 24.98 & 0.718 & 0.911 & 0.576 & 0.911 & 0.788 & 5.15 & 0.31 & 18.13 \\
\hline C399 & 0.500 & 50.00 & 0.810 & 24.96 & 0.810 & 25.04 & 0.997 & 0.620 & 24.98 & 0.809 & 0.999 & 0.621 & 0.999 & 0.810 & 4.35 & 0.39 & 24.11 \\
\hline C400 & 0.500 & 50.00 & 0.833 & 27.17 & 0.897 & 22.83 & 1.190 & 0.725 & 24.98 & 0.906 & 0.913 & 0.794 & 1.000 & 0.906 & 2.88 & 0.55 & 43.96 \\
\hline C401 & 0.500 & 50.00 & 0.810 & 29.37 & 0.943 & 20.63 & 1.424 & 0.730 & 24.98 & 0.953 & 0.824 & 0.886 & 1.000 & 0.953 & 1.82 & 0.70 & 61.81 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\mathrm{x}_{\mathrm{f}^{+z_{f}}}\) & \[
\begin{gathered}
Q_{f} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{x}_{0}+\mathrm{z}_{0}\) & \[
\begin{gathered}
Q_{\circ} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
\mathrm{Q}_{\mathrm{u}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(Q_{0} / Q_{u}\) & E & \[
\begin{gathered}
Q_{f} x_{f} \\
c c / s e c
\end{gathered}
\] & \[
\frac{Q_{0}^{x_{0}}}{Q_{\mathrm{F}} \mathrm{E}_{\mathrm{I}}}
\] & \(\mathrm{E}_{s}\) & \(E / E_{s}\) & \[
\left(\frac{Q_{o} x_{o}}{Q_{f} x_{f}}\right)_{T}
\] & \[
\begin{aligned}
& Q_{0} x_{0} \\
& Q_{0} x_{0} \mid
\end{aligned}
\] & \[
\underset{c m}{\mathrm{~d}}
\] & EVF & \[
(\%)
\] \\
\hline C402 & 0.500 & 50.00 & 0.760 & 31.58 & 0.947 & 18.42 & 1.715 & 0.658 & 24.98 & 0.961 & 0.736 & 0.894 & 1.000 & 0.961 & 0.91 & 0.44 & 75.03 \\
\hline C4.03 & 0.500 & 50.00 & 0.718 & 33.79 & 0.955 & 16.21 & 2.085 & 0.590 & 24.98 & 0.971 & 0.648 & 0.911 & 1.000 & 0.971 & 0.08 & 0.98 & 89.66 \\
\hline C404 & 0.500 & 50.00 & 0.678 & 36.00 & 0.950 & 14.00 & 2.571 & 0.515 & 24.98 & 0.978 & 0.560 & 0.920 & 1.000 & 0.978 & 0.00 & 1.00 & 92.04 \\
\hline C405 & 0.335 & 60.00 & 0.666 & 13.30 & 0.760 & 46.70 & 0.285 & 0.330 & 20.07 & 0.441 & 0.663 & 0.498 & 0.663 & 0.666 & 9.44 & 0.07 & 3.53 \\
\hline C406 & 0.335 & 60.00 & 0.703 & 15.42 & 0.793 & 44.58 & 0.346 & 0.425 & 20.07 & 0.540 & 0.768 & 0.553 & 0.768 & 0.703 & 8.69 & 0.10 & 5.40 \\
\hline C407 & 0.335 & 60.00 & 0.712 & 17.54 & 0.821 & 42.46 & 0.413 & 0.495 & 20.07 & 0.622 & 0.874 & 0.567 & 0.874 & 0.712 & 8.16 & 0.12 & 6.79 \\
\hline C408 & 0.335 & 60.00 & 0.729 & 19.66 & 0.857 & 40.34 & 0.487 & 0.580 & 20.07 & 0.714 & 0.979 & 0.592 & 0.979 & 0.729 & 7.44 & 0.16 & 9.21 \\
\hline C409 & 0.335 & 60.00 & 0.755 & 21.78 & 0.905 & 38.22 & 0.570 & 0.685 & 20.07 & 0.819 & 0.957 & 0.716 & 1.000 & 0.819 & 6.41 & 0.22 & 15.60 \\
\hline C410 & 0.335 & 60.00 & 0.737 & 23.90 & 0.932 & 36.10 & 0.662 & 0.720 & 20.07 & 0.877 & 0.904 & 0.796 & 1.000 & 0.677 & 5.44 & 0.29 & 23.13 \\
\hline C411 & 0.335 & 60.00 & 0.691 & 26.02 & 0.939 & 33.98 & 0.766 & 0.695 & 20.07 & 0.896 & 0.851 & 0.816 & 1.000 & 0.896 & 4.85 & 0.34 & 27.88 \\
\hline 6412 & 0.335 & 60.00 & 0.649 & 28.13 & 0.943 & 31.87 & 0.883 & 0.662 & 20.07 & 0.909 & 0.798 & 0.829 & 1.000 & 0.909 & 4.12 & 0.41 & 34.13 \\
\hline \(C 413\) & 0.335 & 60.00 & 0.613 & 30.25 & 0.948 & 29.75 & 1.017 & 0.630 & 20.07 & 0.923 & 0.745 & 0.846 & 1.000 & 0.923 & 3.40 & 0.49 & 41.49 \\
\hline C414 & 0.335 & 60.00 & 0.582 & 32.37 & 0.956 & 27.63 & 1.172 & 0.600 & 20.07 & 0.939 & 0.692 & 0.867 & 1.000 & 0.939 & 2.67 & 0.58 & 50.30 \\
\hline C415 & 0.335 & 60.00 & 0.553 & 34.49 & 0.961 & 25.51 & 1.352 & 0.565 & 20.07 & 0.951 & 0.639 & 0.884 & 1.000 & 0.951 & 2.06 & 0.66 & 58.63 \\
\hline C416 & 0.335 & 60.00 & 0.530 & 36.61 & 0.971 & 23.39 & 1.565 & 0.535 & 20.07 & 0.966 & 0.586 & 0.913 & 1.000 & 0.966 & 1.32 & 0.77 & 70.72 \\
\hline C417 & 0.335 & 60.00 & 0.507 & 38.73 & 0.979 & 21.27 & 1.821 & 0.500 & 20.07 & 0.978 & 0.533 & 0. 939 & 1.000 & 0.978 & 0.58 & 0.90 & 84.11 \\
\hline C418 & 0.335 & 60.00 & 0.487 & 40.85 & 0.990 & 19.15 & 2.133 & 0.465 & 20.07 & 0.990 & 0.480 & 0.969 & 1.000 & 0.990 & 0.00 & 1.00 & 96.94 \\
\hline & 0.332 & 50.0 C & 0.695 & 13.40 & 0.300 & 30.60 & 0.366 & 0.438 & 16.62 & 0.560 & 0.806 & 0.543 & 0.806 & 0.695 & 8.66 & 0.10 & 5.37 \\
\hline C420 & 0.332 & 50.0 C & 0.675 & 15.54 & 0.822 & 34.46 & 0.451 & 0.480 & 16.62 & 0.631 & 0.935 & 0.514 & 0.935 & 0.675 & 8.14 & 0.12 & 6.21 \\
\hline C421 & 0.332 & 50.0c & 0.675 & 17.67 & 0.855 & 32.33 & 0.547 & 0.545 & 16.62 & 0.717 & 0.969 & 0.563 & 1.000 & 0.717 & 7.17 & 0.17 & 9.61 \\
\hline C422 & 0.332 & 50.00 & 0.688 & 19.81 & 0.901 & 30.19 & 0.656 & 0.635 & 16.62 & 0.820 & 0.905 & 0.702 & 1.000 & 0.820 & 5.89 & 0.25 & 17.89 \\
\hline C423 & 0.332 & 50.00 & 0.689 & 21.94 & 0.946 & 28.06 & 0.782 & 0.705 & 16.62 & 0.909 & 0.841 & 0.839 & 1.000 & 0.909 & 4.63 & 0.36 & 30.33 \\
\hline 6424 & 0.332 & 50.00 & 0.646 & 24.08 & 0.959 & 25.92 & 0.929 & 0.680 & 16.62 & 0.936 & 0.777 & 0.876 & 1.000 & 0.936 & 3.68 & 0.46 & 40.22 \\
\hline C425 & 0.332 & 50.00 & 0.603 & 26.22 & 0.966 & 23.78 & 1.102 & 0.640 & 16.62 & 0.952 & 0.713 & 0.898 & 1.000 & 0.952 & 2.88 & 0.55 & 49.72 \\
\hline C426 & 0.332 & 50.0C & 0.563 & 28.35 & 0.970 & 21.65 & 1.310 & 0.590 & 16.62 & 0.961 & 0.649 & 0.910 & 1.000 & 0.961 & 2.10 & 0.66 & 59.86 \\
\hline 6427 & 0.332 & 50.00 & 0.530 & 30.49 & 0.976 & 19.51 & 1.563 & 0.543 & 16.62 & 0.972 & 0.585 & 0.929 & 1.000 & 0.972 & 1.19 & 0.79 & 73.74 \\
\hline C428 & 0.333 & 75.00 & 0.699 & 16.40 & 0.769 & 58.60 & 0.280 & 0.360 & 24.97 & 0.459 & 0.657 & 0.548 & 0.657 & 0.699 & 9.41 & 0.07 & 3.93 \\
\hline C429 & 0.333 & 75.06 & 0.703 & 18.44 & 0.788 & 56.56 & 0.326 & 0.410 & 24.97 & 0.519 & 0.738 & 0.555 & 0.738 & 0.703 & 8.92 & 0.09 & 4.92 \\
\hline C430 & 0.333 & 75.00 & 0.695 & 20.47 & 0.803 & 54.53 & 0.375 & 0.445 & 24.97 & 0.570 & 0.820 & 0.543 & 0.820 & 0.695 & 8.45 & 0.11 & 5.83 \\
\hline C431 & 0.333 & 75.00 & 0.685 & 22.51 & 0.818 & 52.49 & 0.429 & 0.475 & 24.97 & 0.617 & 0.901 & 0.527 & 0.901 & 0.685 & 8.17 & 0.12 & 6.30 \\
\hline C432 & 0.333 & 75.00 & 0.672 & 24.54 & 0.832 & 50.46 & 0.486 & 0.500 & 24.97 & 0.661 & 0.983 & 0.509 & 0.983 & 0.672 & 7.89 & 0.13 & 6.74 \\
\hline C433 & 0.333 & 75.00 & 0.659 & 26.58 & 0.846 & 48.42 & 0.549 & 0.520 & 24.97 & 0.701 & 0.968 & 0.537 & 1.000 & 0.701 & 7.19 & 0.17 & 9.09 \\
\hline C434 & 0.333 & 75.c0 & 0.647 & 28.61 & 0.861 & 45.39 & 0.617 & 0.540 & 24.97 & 0.742 & 0.927 & 0.582 & 1.000 & 0.742 & 6.64 & 0.20 & 11.82 \\
\hline C435 & 0.333 & 75.00 & 0.636 & 30.65 & 0.876 & 44.35 & 0.691 & 0.557 & 24.97 & 0.780 & 0.887 & 0.628 & 1.000 & 0.780 & 5.91 & 0.25 & 15.91 \\
\hline C436 & 0.333 & 75.00 & 0.624 & 32.68 & 0.891 & 42.32 & 0.772 & 0.570 & 24.97 & 0.816 & 0.846 & 0.674 & 1.000 & 0.816 & 5.20 & 0.31 & 20.91 \\
\hline 6437 & 0.333 & 75.00 & 0.611 & 34.72 & 0.907 & 40.28 & Q. 862 & 0.580 & 24.97 & 0.850 & 0.805 & 0.720 & 1.000 & 0.850 & 4.63 & 0.36 & 26.06 \\
\hline C438 & 0.333 & 75.00 & 0.595 & 36.75 & 0.919 & 38.25 & 0.961 & 0.578 & 24.97 & 0.876 & 0.765 & 0.756 & 1.000 & 0.876 & 3.94 & 0.43 & 32.60 \\
\hline C439 & 0.333 & 75.00 & 0.580 & 38.39 & 0.932 & 36.21 & 1.071 & 0.575 & 24.97 & 0.901 & 0.724 & 0.794 & 1.000 & 0.901 & 3.37 & 0.49 & 39.25 \\
\hline C440 & 0.333 & 75.00 & 0.564 & 40.82 & 0.942 & 34.18 & 1.194 & 0.565 & 24.97 & 0.921 & 0.683 & 0.827 & 1.000 & 0.921 & 2.70 & 0.58 & 47.70 \\
\hline C441 & 0.333 & 75.00 & 0.551 & 42.86 & 0.957 & 32.14 & \(1-333\) & 0.560 & 24.97 & 0.945 & 0.643 & 0.872 & 1.000 & 0.945 & 2.12 & 0.65 & 57.06 \\
\hline
\end{tabular}

TABLE E-3 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline RUN & \(\boldsymbol{x}_{\text {f }}+\mathbf{z}_{\text {E }}\) & \[
\begin{gathered}
Q_{f} \\
\mathrm{ce} / \mathrm{sec}
\end{gathered}
\] & \(x_{0}+z_{0}\) & \[
\begin{gathered}
Q_{0} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Y}_{\mathbf{u}}\) & \[
\begin{gathered}
\mathrm{Q}_{\mathrm{u}} \\
\mathrm{cc} / \mathrm{sec}
\end{gathered}
\] & \(\mathrm{Q}_{0} / \mathrm{Q}_{11}\) & E & \[
\begin{gathered}
Q_{E} x_{f} \\
c c / \mathrm{sec}
\end{gathered}
\] & \[
\frac{Q_{0} x_{o}}{Q_{f} x_{f}}
\] & \(\mathrm{E}_{s}\) & \(\mathrm{E} / \mathrm{E}_{\mathrm{s}}\) & \[
\left(\frac{Q_{0} x_{0}}{Q_{f} x_{f}}\right)_{I}
\] & \[
\frac{Q_{0} x_{0}}{\left(Q_{0} x_{0}\right)}
\] & \[
\underset{\mathrm{cm}}{\mathrm{~d}}
\] & EVF & (\%) \\
\hline 6442 & 0.333 & 75.00 & 0.534 & 44.89 & 0.967 & 30.11 & 1.491 & 0.543 & 24.97 & 0.961 & 0.602 & 0.902 & 1.000 & 0.961 & 1.56 & 0.74 & 66.40 \\
\hline C443 & 0.333 & 75.00 & 0.519 & 46.93 & 0.979 & 28.07 & 1.672 & 0.525 & 24.97 & 0.976 & 0.561 & 0.936 & 1.000 & 09.976 & 0.91 & 0.84 & 78.65 \\
\hline 6444 & 0.333 & 75.00 & 0.503 & 48.96 & 0.987 & 26.04 & 1.881 & 0.500 & 24.97 & 0.986 & 0.520 & 0.961 & 1.000 & 0.986 & 0.36 & 0.93 & 89.76 \\
\hline C445 & 0.333 & 75.00 & 0.490 & 51.00 & 1.000 & 24.00 & 2.125 & 0.480 & 24.97 & 1.000 & 0.480 & 1.000 & 1.000 & 1.000 & 0.00 & 1.00 & 100.00 \\
\hline
\end{tabular}

IBM 360/40 FORTRAN PROGRAM
(TABLE E-3)
```

C SEPARATION EXPERIMENT - PROGRAM 2
REAL MIN,MAX
TOL=0.00001
H=16.1
DOL=0.025
PI=3.1415
WRITE (3, 5700)
LNCT=0
CONTINUE
FLAG=0.0
MAX=0.0
MIN=100.0
CT=0.0
AVG2=0.0
CONTINUE
READ (1,5000) COL2, QO,QF
IF (QO) 400, 200,400
CONTINUE
IF(FLAG) 900,300,900
CONTINUE
CALL EXIT
CONTINUE
CT=CT+1.0
AVG2=AVG2+COL2
FLAG=1.0
IF (QO-MAX)}600,600,50
CONTINUE
MAX=QO
CONTINUE
IF (QO-MIN) 700,800,800
CONTINUE
MIN=QO
CONTINUE
QSAVE=QF
GOTO150
CONIINUE
QF=QSAVE
COL2=AVG2/CT
WRITE (3,5100)
LNNCT=LNCT+2.0

```
```

    DIF=MAX-MIN
    J=DIF/2.0
    DEL=DIF/FLOAT (J)
    MIN=MIN-DEL
    J=J+1
    IF (QF-52.0) 1000,1000,1100
    1000
CONTINUE
QF=50.0
GOTO1400
1100 CONTINUE
IF(QF-62 .0) 1200,1200,1300
1200 CONTINUE
QF=50.0
GOTO1400.
1300 CONTINUE
QF=75.0
1400 CONTINUE
DO2 900I=1,J
MIN=MIN+DEL
QU=QF-MIN
COLl 7=MIN/QU
READ (1, 5300) ICT, COL16
IF(ICT) 1550,1550,1600
1550 CONTINUE
WRITE (3,5400)
GOTO300
1600 CONTINUE
A2=MIN
A3=QU
A4=QF*(1.0-COL2)
A5=A3/(QF*COL2)
A1=COL16+((A2*COL2)/A4) +(A5*(1.0-COL2))
COL1=(A1*A3-A4*A5+A2*A5) /(A2*A3/A4+A2*A5
COL8=(A2*COL1-A2+A4)/A3
COL24=COL2*OF
COL25=MIN*COL1
COL26=QU* (1.0-COL8)
COL27=COL25/COL24
COL28=COL26/COL24
YF=1.0-COL2

```
```

IF(COL17-(COL2/YF)) 1610,1620.1630
1610 CONTINUE
XO=1.0
YU=1.0-(QF*COL2-MIN)/QU
GOTO1640
1620 CONTINUE
XO=1.0
YU=1.0
GOTO1640
1630 CONTINUE
YU=1.0
XO=1.0-(QF* (1.0-COL2)-QU)/MIN
CONTINUE
EI=((XO-COL2)/(1.0-COL2))* (MIN/QF)
E2=((YU-YF)/COL2)* (QU/QF)
COL29=E1+E2
COL 30=COL16/COL29
COL31=(MIN*XO)/(QF*COL2)
COL32=COL27/COL31
D=0.1
DO=D
DD=0.25
1800 Z=H-D
X=1.5*Z/H
XX=2.25*Z*Z/(H*H)
CS = (COL32* (XX-0.03)) +0.03
QOL=(QF+QU)/202.22
CF=(2.25*H)/(XX*Z)
T=(CS-0.03)*CF/(2*QOL)
DC=(2:25*H-(XX*MIN*TC) %(PT*(2.25-0.03)))/2.25+XX+1.5*X)
IF(DC) 2700,2300,2300
2300
CONTINUE
C6=D-DC
IF (ABS (C6) -DOL) 2800,2800,2400
2400 CONTINUE
IF (C6) 2500, 2800,2600
2500 CONTINUE
DO=D
D=D+DD
GOTO1800

```
2600 CONIINUE
        DD=DD/2.0
        D=DO+DD.
        GOTO1800
2700 CONTINUE
        DC=0.0001
        CONTINUE
        A=3*DC/16.1
        B=-3*(DC*DC)}/(16.1*16.1
        C=(DC*DC*DC)/(16.1*16.1*16.1)
        VF=1.0- (A+B+C)
        PER=COL 30*VF*100.0
        WRITE (3,5200) ICT, COL2,QF,COL1,MIN, COL8,QU,COL17, COL16, COL24,
    1 COL27, COL28,COL29,COL30,COL31,COL32,DC,VF,PER
    IF(L.NCT-45.0) 2770,2750:2750
    CONTINUE
    WRITE (3,5700)
    LNCT=0
2770 LNCT=LNCT+1.0
2900 CONTINUE
    READ (1, 5300) ICT
    IF (ICT) 3000,100,3000
    CONTINUE
    WRITE (3,5400)
    GO TO 300
5000 FORMAT (10X, 2F10.8,30X,FlO.0)
5l00 FORMAT ('O')
5200 FORMAT ('C',13,F7.3,F7.2,F7.3,F7.2,F7.3,F7.2,F8.3,F7.3,F7.2,5F8.3,
    1 F9.3,F7.2,F8.3)
    FORMAT (2X,12,5X,F10.3)
    FORMAT ('PHASE EFFOR')
    FORMAT ('1'/'0'/'0'/'0'/')
    END
```


## APPENDIX F

## TESTING THE PROPOSED MODEL

It is evident that prior to the utilization of Eq. 44 and Eq. 51, the liquid particle size of the dispersed phase must be known. In Eq. 51; both the air core radius " $a$ " and the air core velocity $V_{o}$ must also be evaluated. In the absence of any elaborate measuring apparatus on hand, high-speed motion pictures were taken for a particular run and the results are described as below.

## Reduction of Mathematical Equations

The air core radius, measured by the movie film, was found to be about 0.132 cm in comparison with the known radius of the discharge apex -0.150 cm . The proximity of these two values seems to concur reasonably well with the observation made when the cyclone was in operation. The film also revealed that the liquid (oil) particle is about the same size as the solid (polyethylene) particle. Since the solid particle is believed to be practically indivisible in the cyclone and the exact size $\left(2 \sigma_{s}=0.298 \mathrm{~mm}\right)$ is already known, the liquid particle radius can be approximated to be about ${ }^{2} \sigma_{l}=0.030 \mathrm{~cm}\left(\right.$ or $\left.\sigma_{l}=0.015 \mathrm{~cm}\right)$.

Substituting this value into Eq, 44 and assuming a range of $t$ from 0.01 to 1.00 sec , it is discovered that the first term of Eq. $44, \mathrm{Z}_{\mathrm{m}}$ is negligibly small (less than $10 \%$ ) in comparison with the second term, $\mathrm{Z}_{0}$, which contains the quantity $Q_{0}$ (ranging from 20 to $60 \mathrm{cc} / \mathrm{sec}$ ). Hence Eq. 44 can be reduced to

$$
\begin{equation*}
z=\frac{Q_{0} t}{\pi\left(b^{2}-a^{2}\right)} \tag{44}
\end{equation*}
$$

Selection of the Appropriate Model by Experimental Data Phase Separation by Combined Streamline Elow and Centrifugal Action: At the onset of fitting the experimental data into the proposed mathematical model (Eq. 5l), a computer program was written to evaluate both the air core tangential velocity, $V_{o}$, and the turbulent length, "d", by a double trial and error procedure. Unfortunately, many hours of computer time and human effort failed to fit even one set of runs into the model. A brief recount of this model-fitting endeavor is given as follows.

First, a particular set of runs was chosen (Set No. 10 or Run C-140 to C-151). The basis for such a selection was:
a) oil, having a density less than water, is a dispersed phase. (Note: if otherwise, then both $\bar{v}_{r}$ and $\bar{v}_{o}$ components, represented by Eq. 21 and Eq. 22 respectively, could not be neglected).
b) The throughput or feed rate $\left(Q_{f}=50 \mathrm{cc} / \mathrm{sec}\right)$ is so low that emulsification should not be a prime concern. The computer program was tailored to the trial and error procedure for two "loops"; the ."inner loop" was aimed to converge the fixed $t_{1} / t_{2}$ with the calculated $t_{1} / t_{2}$ at a certain $V_{0}$ while the "outer loop" was to converge the assumed turbulent length with the calculated length. After the initial effort, which failed to converge both desired variables, a correction factor (CF) was arbitrarily assigned to the first term of Eq. 51. This factor can be justified only on the empirical ground that the first term in Eq. 5l, representing only the streamline flow, predominates over the second term which is incorporated with the centrifugal influence. However, it was soon discovered that the correction factor is quite sensitive and a value less than 1.80 would help to converge only the calculated $t_{1} / t_{2}$ with the fixed $t_{1} / t_{2}$ within the "inner loop," but not the turbulent length of the "outer 100p." An attempt was also made to replace Eq. 52

$$
\begin{equation*}
\frac{\left(c_{0}\right)^{2}-a^{2}}{R^{2}-a^{2}}=\frac{\left(\dot{Q}_{0} x_{0}\right)_{\exp }}{\left(Q_{0} x_{0}\right)_{i d e a l}} \tag{52}
\end{equation*}
$$

by the following expression

$$
\begin{equation*}
\frac{\left(C_{0}\right)^{2}-a^{2}}{R^{2}-a^{2}}=\frac{\left(Q_{0} x_{0}\right)_{\exp }}{\left(Q_{f} x_{f}\right)_{\exp }} \tag{F-1}
\end{equation*}
$$

183
The tabulated results showed that only two pairs of adjacent runs (Cl42-143 and Cl43-C144) converged for both $t_{1} / t_{2}$ and "d" values but failed to converge beyond these two pairs. The following is a segment of computer results:

C142-C143

| $Z$ | $(Q / L)_{1}$ | $(Q / L)_{2}$ | $t_{1} / t_{2}$ | $V_{0}$ | $t_{1}$ | $t_{2}$ | $t_{1} / t_{2}$ | $d *$ | $d$ <br> (calc) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8.10 | 0.32 | 0.33 | 0.94 | 578.8 | 0.16 | 0.17 | 0.94 | 8.00 | 9.07 |
| 7.20 | 0.32 | 0.33 | 0.94 | 522.5 | 0.12 | 0.13 | 0.94 | 8.90 | 9.27 |

Cl43-Cl44

| 8.10 | 0.33 | 0.34 | 0.96 | 397.5 | 0.3 | 0.40 | 0.96 | 8.00 | 0.55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.60 | 0.33 | 0.34 | 0.96 | 325.6 | 0.0 | 0.01 | 0.96 | 12.50 | 12.1 |

*Assumed turbulent length.

Here both $t_{1}$ and $t_{2}$ of approximately 0.01 second seemed to be unrealistic since they represented the time required for the dispersed particle to reach the air core from a radius $C_{0}$ by way of a streamline flow path.

## Phase Separation Controlled by Centrifugal Action:

After the initial failure of fitting Eq. 51 with the experimental data, it was postulated that the separation was dominated by the centrifugal action alone and hence Eq. 49a was applied instead

$$
\begin{equation*}
t=\frac{9 \mu\left(C_{0}^{4}-a^{4}\right)}{8\left(\rho-\rho^{\prime}\right) a^{2}\left(\sigma_{\ell} \cdot V_{0}\right)^{2}} \tag{49a}
\end{equation*}
$$

where $\sigma_{\ell}$ and $V_{o}$ are the dispersed liquid particle radius and the air core velocity, respectively. In order to simplify the calculation, values of both $\sigma_{\ell}$ and $v_{o}$ (average) from the previous trial and error procedure were used. Therefore

$$
\sigma_{\ell} \cdot \mathrm{V}_{0}=0.005 \times 400=2.0 \mathrm{~cm}^{2} / \mathrm{sec} *
$$

Substituting "a" $=0.132 \mathrm{~cm}$ with other constant. values into Eq. 49a yields the following expression

$$
t=0.613\left(c_{0}^{4}-a^{4}\right)
$$

Unfortunately, no run ever converged for $d$, and any correction factor applied would be unreasonably large because $t$ decreased rapidly as $C_{o}$ was gradually reduced during the trial and error routine.

Phase Separation Controlled by Streamline Flow: Now, it appeared that the only alternative would be to consider the streamline flow as the controlling mechanism, so only Eq. 46

$$
\begin{equation*}
t=\frac{c_{0}^{2}-a^{2}}{2(Q / L)} \tag{46}
\end{equation*}
$$

*If: $\ddot{\sigma}_{\ell}=0.015 \mathrm{~cm}$ were used for the previous double trial and error procedure, the resultant $V_{0}$ would be $167 \mathrm{~cm} /$ sec since $\sigma_{l}$ and $V_{0}$ both appear in the second term. The product of $\sigma_{l}$ and $V_{0}$ would remain the same. Qualitatively, it also seems reasonable that under higher air core velocity, the liquid particle would be smaller.
should be applied. Since $\mathrm{V}_{\mathrm{o}}$ was no longer needed, the trial and error procedure was reduced to seeking a single converging value for the turbulent length, d. A correction factor designated as

$$
C F=\frac{b^{2} H}{\mathbb{R}^{2} Z}=\frac{2.25 H}{R^{2} Z}
$$

was applied. Eq. 46 was then written as

$$
\begin{equation*}
t=\frac{\left(C_{o}^{2}-0.02\right)(C F)}{2(Q / L)} \tag{46a}
\end{equation*}
$$

while both Eq. 35 and Eq. 52 remained unchanged. This correction factor is justified on the ground that the time required for a particle following the streamline path until it reaches the effective region is proportional to the ratio of total volume of the cyclone to the volume of the effective region (measured by Z). In other words, Eq. 46 without the correction factor simply overlooked the fact that a particle might encounter delay caused by turbulence prior to its arrival at the destination--the effective region. Therefore, in reality, it seems logical to apply the correction factor (always greater than 1.0) so that the total residence time of a particle in the cyclone was prolonged by the "intensity" or turbulence which could be partially attributed to rotational flow. Consequently, d values for all the runs were converged. The detailed trial and error procedure is listed
in the FORTRAN program in Table E-3. A segment of the intermediate computer results is repeated as follows:


RUN NO. $\mathrm{C}-1$

| 16.00 | 2.22 | 1.587 | 0.507 | 1.019 | 1.38 | 0.10 | 4.10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7.87 | 0.52 | 0.380 | 0.507 | 8.965 | 2.98 | 8.13 | .8 .17 |

RUN NO. $\mathrm{C}-2$

| 16.00 | 2.22 | 1.610 | 0.497 | 1.019 | 1.610 | 0.10 | 3.90 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .8 .38 | 0.61 | 0.480 | 0.497 | 7.104 | 3.39 | 7.73 | 7.64 |

Here, only the last column "d" (calculated) is shown in Table E-3.
*In lieu of Eq. 47

$$
Z=H-d
$$

the $d$ is calculated from the following volume balance

$$
\mathrm{V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{d}}
$$

where $\quad V_{z}=$ the lower conic volume with a height $Z$.
$\mathrm{V}_{\mathrm{H}}=$ the total cyclone volume with a height H
$V_{d}=$ the upper truncated conic volume with a height d .

The details of mathematical manipulation are presented in the computer program in Table $\mathrm{E}-3$.

However, it must be emphasized that the abandonment of the centrifugal term in Eq. 51 neither implied an absence of centrifugal force nor negated its influence within the cyclone. In analogy to an ordinary mechanics problem, when the trajectory of a projectile is prescribed, it is difficult to determine exactly all the contributing vectors present in the field. In the case of the hydrocyclone, when the streamline flow pattern is postulated, it is impossible to isolate all the contributing forces interacting in a highly irreversible state.

## APPENDIX G

REFERENCES

1. Bird, R. B.. Stewart, W. E.o and Iightfoot, E. N.. Transport Phenomena. J. Wiley, (1960).
2. Bradley, D., United Kingdom Atomic Energy Authority Report, AERECE/M. 177 (1956) "The Hydraulic Cyclone as a Liquid-Liquid Contractor and Separator."
3. Bradley, D., The Hydrocyclone, Pergamon Press (1965).
4. Breeze, J. C., "Design and Performance of a Dual-Clone Liquid Separator," Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S. AEC CF-56-3-171, (March, 1956).
5. Crainer, H. E., "The Vortex Thickner," Rev. Indus. Min. Special Issue, No. 5, pp. 627-43, (April, 1951).
6. Driessen, M. G., "Theory of Flow in a Cyclone" Rev. of Indus. Mining special Issue, No. 4, pp. 449-61, (1951).
7. Ellefson, R. R., M.S. Thesis, Northwestern Univ., (1952).
8. Fontein, F. J., "Separation by Cyclone According to Specific Gravity," Cyclone in Industry, p. l18, Elsevier Publishing Co. (1961).
9. Goldstein, Herbert, Classical Mechanics, p. 135, Edison-Wesley Co. (1950).
10. Hitchon, J. W., U.K. Atomic Energy Authority Repprt AERECE/R 2777, (1959) "Cyclone as Liquid-1iquid Contractor-Separators."
11. Kelsell, D. F.. "A Study of the Motion of Solid Particles in a Hydraulic Cyclone," Trans. Inst. Chem. Eng., Vol. 30, 87, (1952).
12. Klein, F. G.., M.S. Thesis, Northwestern Univ., (1950).
13. McCracken; D. D, and Dorn, W. S. . Numerical-Methods and FORTRAN Programing, John Wiley, (I964).
14. Mixon, F. O., "An Analytical Study of Separation in a Liquid-Liquid Cyclone as Applied to the Sweet Water Process," Final Report for Office of Saline Water, U.S. Dept. of Interior, (1967).
15. Molyneaux, F., "Extraction in the Hydraulic Cyclone." Chem. \& Process Engineering, Vol. 43, p. 502 (Oct. 1962)。
16. Neumark, Stefan, "Acceleration Resistance of Rectilinear Moving Body in an Ideal Fluid," Zeit, Für Arqevante Mathematik Und Mechanik, Vol. l6, p. ll7, (1936).
17. Rietema, K., "Performance and Design of Hydrocyclones," Chem. Enq. Science, Vol. 15, pp. 298-325, (1961).
18. Simkin, D. J., and Olney, R. B., "Phase Separation and Mass Transfer in a Liquid-Liquid Cyclone," A.I.Ch.E. Journal. Vc'. 2, No. 4, pp. 545-551, (1956).
19. Sweet Water Development Co., Final Report for Contract No. 14-01-0001-341, (1967).
20. Tengbergen, H. J., and Rietema, K., "Efficiency of Phase Separations," Cyclones in Industry, p. 23, Elsevier Publishing Co., (1961).
21. Tepe, J. B., and Woods, W. K., U.S.Atomic Energy Commission Report AECD 2864 (Jan. 1943), "Designing of Ether-Water Contracting Systems."
22. Vallentine, H. R., Applied Hydrodynamics, p. 28-29, Butterworths Scientific Publication (1959).
23. Van Rossum, J. J., "Separation of Emulsions in a Cyclone," from Cyclones in Industry, Chapter 9, Edited by K. Rietema and C. G. Verver, Elsevier Publishing Co.. (1961).

## APPENDIX H

NOMENCLATURE

A the lighter component of a system to be treated by a cyclone.
a radius of the air core (cm).
$B$ the denser component of a system to be treated by a cyclone.
b
$C_{o}$ radius of a hypothetical cone with a height $z$ from the apex of the cyclone (cm):

D differential operator of a vector.
d length of the turbulent region extended downward from the upper base - this region is completely ineffective for separation (cm):
e base, natural logarithms $=2.71828$.
人 a unit vector in curvilinear coordinates.
E overal] separation efficiency (dimensionless).
$\mathrm{E}_{\mathrm{s}}$ ideal overall separation efficiency (dimensionless).
EVF effective volume fraction - complementary volume fraction for ineffective separation determined by "d".

F
a function analytical in a complex plane. gravitational acceralation ( $\mathrm{cm} / \mathrm{sec}^{2}$ ). gravitational conversion factor (dimensionless).

H height of a cyclone including the distance extrapolated from the apex (cm).
$h_{1}$ height of the cylindrical (vertical) section of a cyclone (cm).
$h_{2}$ height of the conical section of a cyclone (cm).
I a unit vector in a x-direction of Cartesian coordinates.
今 a unit vector in the $y$-direction of cartesian coordinates.
$k \quad$ a viscous term $=6 \pi \mu \sigma$ when the particle reaches its terminal velocity in a continuous phase.
$K^{\prime}$ an arbitrary constant.
$\hat{\mathrm{K}}$ a unit vector in the z-direction of cartesian coordinates.
L average length of an element normal to flow in a cyclone (cm).

M
mass of the liquid displaced by a solid or a liquid particle of a dispersed phase (gm).
m
m' slope of a line.
$m_{0}$ the apparent mass of a particle moving in a fluid (gm).
$\mathrm{m}^{0}$ abbreviated for $\mathrm{m}-\mathrm{M}$.
$n$ an exponential order.
P pressure ( $\mathrm{gm} / \mathrm{cm}^{-} \mathrm{sec}^{2}$ ).
$Q_{f}$ volumetric flow rate of the feed (cc/sec).
Q volumetric flow rate of the overflow (cc/sec).
$Q_{u}$ volumetric flow rate of the underflow (cc/sec).
$r$ radius in cylindrical coordinates (cm).
$R$ radius of the conic section of the cyclone (cm).
s
shape factor for the moving particle displacing the fluid.
$t$ time (sec).
$\overline{\mathrm{v}}$
relative velocity of a particle with respect to the continuous fluid phase in motion ( $\mathrm{cm} / \mathrm{sec}$ ).
$V_{0}$ tangential velocity at the outer perimeter of the air core ( $\mathrm{cm} / \mathrm{sec}$ ).
$V_{r}$ radial velocity ( $\mathrm{cm} / \mathrm{sec}$ ).
V $\theta$ tangential velocity ( $\mathrm{cm} / \mathrm{sec}$ ).
$\mathrm{V}_{\mathrm{z}}$ vertical velocity ( $\mathrm{cm} / \mathrm{sec}$ ).
W a function of designated variables.
$x$ volumetric fraction of the lighter liquid, component.
$y$ volumetric fraction of the heavier liquid component.
$Z$ height of the cyclone effective in separation (cm).
$z$ volumetric fraction of the solids in the flow.

## Greek

$\sigma$ radius of the particle of the dispersed phese (cm).
a apex angle (degree).
$\Delta$ gradient of a potential.
$\nu \quad k i n e m a t i c$ viscosity ( $\mathrm{cm}^{2} / \mathrm{sec}$ ).
$\theta$ angle (degree).
$\mu \quad$ viscosity (gm/cm-sec).
5 a reduced dimensionless quantity $=\frac{(Q / L)}{\nu}$ (dimensionless).
$\pi \quad 3.14159$.
$p$ density ( $\mathrm{gm} / \mathrm{cm}^{3}$ ).
$\Phi$ cyclone performance $=\left(E / E_{S}\right) \times$ EVF (dimensionless):
$\psi$ streamline function orthogonal to the potential function. $\omega$ angular velocity (radian/sec).


[^0]:    *Estimated from high-speed motion pictures.

