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CHAPTER I
PRELIMINARIES
Introduction

0111 Lehto and K. I. Virtanen (24) defined normal

functions in 1957 in the following way. A meromorphic
 funct1on f(z) is called normal in a simply connected domain:
G, Af the family ff(s(z))§ is normﬁl, where z' = S(2z)
" denotes an arbltrary one-one mapping of G onto itself. This
definition relies on the definition of a normal family, |
which was introduced by Montel in 1912, A family F of
functions {fu(z)}. meromorphic.in a domain D, is said to be
normal in D if every sequence {fn(z)} C F contalns a sub-
‘sequence which converges spherically uniformly on every
compact saubset of D. Thus the nbrmality.of a function f(z)
1s defined in terms of the normality of the family of
functioﬁs {£(s(z))}. This condition of normality will
enable us to describe more accurately the'boundary behavior
of a meromorphic function in the unit disk. Although the
study of normal functions is relatlvely'new in the field of
complex variables, its importance 1s more evident when one
examines the Journal articles published since 1957.

This dissertation is an'erfort to bring together the

major results on normal functions since Lehto and Virtanen's



original work.‘ Inciuded here W1il be characterizations of

- normality, sufficient conditions for normalitj. necessary
condltiOns for nbrmality. and examples of normal and non-
normal»funcflons. In addition. we will take a brief his-
torical look at the period between 1907 and 1957, noting the
main normal family results which appeared during this tihe.
We will also look at what progress was made in the develop-
ment of normal functions dﬁring’this fifty year period.

| Since normal families are basic to the definition of a
ﬁormal function, one section of Chapter I will be devoted to
the Historical deVelopment of normal families. Inclﬁded
here will be several of Montel's theorems, Marty's thebrem.
aﬁd‘Lindelaf's theorem. The dévelopment gf'normal functions
includes the work of K. Yoslda and Kiyoshi Noshiro.

Although neither man formalized the definition'of'a normal
function, both men obtained results which were to parallel
some of Lehto and Virtanen's later results.

The formal beginnings of normal functions are found in
Lehto and Virtanen's "Boundary Behavior and Normal Meromor-
phic ?unétlons”. Hence, Chapter II will be devoted to this
| paper. We will find that if f(z) is a normal méromorphic
function defined in a domain G, then the existence of an
asymptotic 1imit at a boundary point P implies f(z) has’
angular limit a£ P, Two more results will be proven. Ona'
characterizes normal functions in terms of the quantity
lee(z)l /(1 + ’f(z)lz) and the other generalizes a result due
to Lindeldf.
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Chapter III will contain some of the more elemeﬁtary
properties of normal functions. Also included here will be
several-exampleé of functions, including the elliptic |
modular function, which 1s normal, and Valiron's spiral
function. which is not normal.

Chapter IV is an attempt to present the ma Jor results

on normal functions which have been published since 1957.
These results have been grouped into five major areas:
(1) results related to uniform p-d continuity; (2) genérali-
zations of results from Chapter II; (3) clustér sets and
normal functions; (4) charaéterizations involving the
spherical derivative; and, (5) results related to the
Lindeldf theorem, Fatou points; and normai functions.

A brlgf summary and some open questions concernlné’nor—

mal functions can be found in Chaptér V.
Normal Families

quhal families are an important part of this pfesénfa—
tion because the original definitionbof normal funcﬁions
'relies on normal families.b But ﬁormal families are aléo
'1mportant in thelr own'right.. Many results related to nor-
‘mal familiesihave been obtained. Normal famllies have
played a role in the proofs of such important theoréms as
‘. the Riemann Mapping Theorem (11, p. 157) and the Big Picard
‘Theorem (11, pp. 302-303).
~ Before discussing the history of normal'families'one

' needs an understanding 6f the spherical (chordal) metric



(See (11, pp. 8-9)) and spherical uniform convergence. The
spherical metric is a distance function on the extended éom-
pléx plane, ¢”, which exténds continuity propertles to func-
tions assuming the value o, To give an intuitive feeling
for this metric, we represent C¢* as the set S in R3.

S = {(xl;xz.xB) e r, xf + xg + (13 - i)z ='i}{ -
Let N = (0,0,1) be the north pole on S and let S intersect |

Figure 1. The Set S

¢ at the point (0,0,0). For each point z € €, consider the
‘straight line in R’ through z and N. It intersects the
Sphere in exactly one point 2 ¥ N. As |z| 9 », clearly

Z é Ni hence, we ldentify N with the point =, Thus there 1is

a one-one correspondence between C° and the sphere S.
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Fof points z, z' € c™, the spherical distance between 2
and z', d4(z,2'), 18 defined to be the chordal distance be-
tween the corresponding points Z and Z' on the sphere in R3.

In (11, pp. 8-10) it is shown that

' I - z'| A '
a(z.2') = T TRk (20 2 € 0)

and
d(z,=) = TTf:—%ETZT%.

Definition 1.1. A sequence of functions ffn(z)} de-

fined on a set S converges spherically uniformly on 8, if
given any ¢ > 0, there exists an N = N(¢) such that
a(f (z),f (z)) < €, my n >N, |

for every 2z in 8.

Paul Montel began his work in normal families in 1907
(18, p. 243). His early work dealt with analytic functions,
but 1ﬁ 1912 he made the extension to meromorphic functions‘

_and- obtained the following definition,

'Definltion,;;g. A family F of functions {fa(z)},

‘meromorphic in a domain D is saild to be normal in D if every
sequencé {fn(z)} C F contains a subsequence which converges

spherically uniformly on every compact subset of D.

'The next theorem, sometimes referred to as the Montel-
Carathéodory theorem (18, p. 248), is frequently used in

-determining whether a family 1s normal.

Theorem 1.,1. A family F of functions {fa(z)}




meromorphic in D 15 normal in D if there are three fixed
numbers a, b, ¢ such that none of the equations
fq(z) = a, fa(z) = b, fn,(z) = C

has a solution in D.

Definition 1.3. A set F of analytic functions is

locally bounded if and only if for each compact set K C G
there 1s a constant M such that

l£(z)| s ™M
_ for all f € F and zGK.

The following theorem, also due to Montel, charac-

terizes normality for analytic functions.

Theorem 1.2, A family F of analytlc‘functions 1s nor--
mal if and only if F is locally bounded.

It 1is meaningleés to try to consider the loéal bounded-
. néss of meromorphic functions. 1In order to discﬁss the
normality of families of meromorphic runctions.Aone must
introduce .the quantity [f'(z)|/(1 + |£(z)|?). However, if z
is a pole, f'(z) 1s meaningless. In this case, we take the'
limit of the previous expression as z approaches»the pole.
This expression will be known as the spherical derivative of

f(z).

Definition 1.4, If f(z) is a meromorphic function on

the region G then we define p(f): G - R by
p(f(z)) = [£2(2) /(1 + |£(2)]?)

whenever z 1s not a pole of f, and



p(f(m)) = 1im [£9(2)| /(1 + l£(2)|?)
. zZ9a
if a 18 a pole of f.
In 1931, Marty extended the previous theorem to include

meromorphic functions by using the spherical derivative (11,

p. 154).

Theorem 1.3. A family F of meromorphic functions is
normal in the space of continuous functions 1if and only if

{p(f): £ € F} 1s locally bounded.

A result fbf normal functionsvslmilar to thé.above
theorém, which will be proven in Chapter iI. will illustrate-
how the spherilcal derivatiyevprovides the needed restriction
tolinsure that a meromorphic function wil}"be normal.

| The next two fesults we conslder here are Lindeldf's
theorem (13, pp. 79-81) and Gross' generalization of
Lindel6f‘s theorem (10, p. 42).

Theorem 1.4. Let f(z) be analytic and bounded in -

|z| < 1. If.f(Z)-ﬁ a as z » e84 along some arc L lying in

lz| <1 and terminating at 9199. then f(z) - « uniformly as

eieo inside every angular domain lying in lzl < 1 and

ie

z -

having e "0 as vertex.

Theorem 1.5. Let f(z) be meromorphic and non-constant

in Izl <1, et f(z) omit three distinct values a, b, and c¢
in |21 <1, and let a be an asymptotic value along some path
L terminating at a point eieqs then f(z) tends to a uniform-

ly as z = eleo'inside any angular domain lying in |z|'< 1
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and having e~ “0 as vertex.

' The proof of Theorem 1.5 can be based on the elliptic
modular function whlch is discusse@iin Chaﬁter III, Example
3;1. This proof is given following Example 3.1.

Lehto and Virtanen were successful in extending

Lindeldf's Theorem 1.4 to normal meromorphic functions in

1957.
Early History of Normal Functions

K. Yosida (38) began laying the foundation for normal
functions in 1934. His work was confined to the complex
plane C._ He defined a new class of functions which he.
calléd class (A), now known as the Yosida functions. A
meromorphic function f(z) is in cléss (A) 1frand only if for
every sequence of complex humbers {aj}, the faﬁily
{r(z + aJ)} is normal'bn compact subsets of the plane.‘
Yosida proved that f(z) 1s a Yosida function if and only if

sup {lf'(z)l/fl + |f(z)|2)s lz] < qJ-< oo,

| Kiyoshl Noshiro (30) tried to prove results for the

" unit disk similar to those Yosida obtained for the plane.

He made the following definition for the unit disk: & func-
"tién f(z), meromorphic in the unit disk, is in ciasa (A) |
(known today as normel functions) if and only if the family
{r((z -_aJ)/(l - 332))}¢ |aJ| <1, is normai in |z| < 1.
-Paralleling the above result by Yoslda, Noshiro pfoved that

f(z) 1s normal in the unit disk if and only if
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sup {(1 = 121t (2) /(1 + 1£(2)1%)s 1zl <1} < =,
~ Lehto and Virtanen were to later include this result for
normal functions in their 1957 paper. The proof they use is
essentially the same as that of Noshiro and will be dis-

cussed in Chapter II. We will discﬁss one more theorem from

Noshiro's paper and we need the following definltion:

Definition 1.5, The pseudo-distance between two points

ay and a, lying inside the circle lz| <1 1s defined by
D(a,,a,) = |a1 - a2|/|aia2 -1},

The pseudo-circle Cp(a) with pseudo-center aland pseudo-

radius p ig the set of all points whose pseudo-distance from

a is p.

Theorem 1.6.  Suppose that w = f(z) is a meromorphic

function of class (A) in lz| < 1. Let L:i ¢ = &(t), 0Stc 1
be é continuous curve inside the unlt circle sﬁch that

{(0) = 0 and 1lim |§(t)|= 1 and denote by A the dqmain con-
siSting of algq;oints interior to any pseudo-circle Cp(a)
(p‘béing fixed, 0 < p < 1) where the pseudo4centér a
_descrlbes:the curve L. If w = £f(z) has an asymptotic.value'
a élong L, then w = f(z) converges uniformly to a inside the
domain A, as the modulus of thé variable z tends to uhity.

and moreover the normal family {fa(z),=af((zu- a)/(1 . -az))}

- generated by w = £(z) admits at least one constant limit.

Proof. Let L: [ = t(t) (0 £t < 1) be a continuous

curve lying inside the unit-circle such that {(0) = 0 and
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1im l:(t)l = 1., We will call a an asymptotic value of
ta1

w = f(z) along L provided that 1lim f£(¢(t)) = a. Suppose
ts1

that w = f(z) 1s a function of class (A) and has an asymp-
totic value a along the curve L. Let {tn} be any increasing
‘sequence such that 0 < t, <1 and t 2 1 and set §n = {(ty,)
(n=1,2, 3, ...). Consider the sequence of functions
{gn(z)} defined by ,

8n(2) = fp (2) = £((z - £))/(Lz - 1)).

Since w = f(z) belongs to class (A), we may select from the

z-plane

Figure 2. Image of lz'| = p

sequence {gn(z)} a subsequence fgﬁ(z)} which converges uni-
fqrmly to fo(z) on every compact subset of D, The image in
the z-plane of the circle |z'| = p (p fixed, 0 < p < 1)
forméd by the trénsférmation ' |

z = (20 - /@2 - 1), @F < ek
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. : X . " K

is a_pseudo-cirole‘cp(ln) with pseudo-center [(t,) of

. ' * '

pseudo-radius p. Denote by g(tﬁ ) the farthest point from

the origin of the points of intersection of L with Cp(fg)-

Setting '

k# k#* k k k¥ ‘

25" = (gt - o6/ @Eeek) - 1),

we have

it

1im gﬁ(zg*) 1im f((zgi - fg)/(fgzg* - 1))
k00 . Koy 00

1im £(L(t5")) = a.
koo

‘ " Thus the limiting function fo(z) has at least one a-point on
lz*] = p, since all zE" 11e on lz'| = p. Since p was arbi-
ﬁrary, the Identity Theopem'gives us‘thatfo(z)bls identical
“to the constant a.. It then follows that the 6rigina1
gsequence {ftn(z)} converges to the cqnstaﬁt a, else 1t would
conﬁaln a subsequence which converges to some constant c £.a.
But the same arguemernt abovevwhich showed {gﬁ} converges to
a, proves this new sequence has a subsequence which con-
verges to a also, which i1s a contradiction. Hence given

¢ >0, there exists a positive § = §(€) such that

th(t)(z) - al <€ in |z ] Sp <1, pbeing fixéd but arbi-

Noshiro came very close in the above theorem to
‘extending the Lindeldf theorem to meromorphic functions. .
For under the assumptions of the previous theorem, we may

state the following corollary:

Corollary 1.1. If f(z) is a meromorphic function
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i

belonging to class (A) in |z| < 1 and if the curve Lclies in

"a Stolz angle, then f(z) has angular 1limit in Stolz angles.

The proof is not difficult. Gi#en any Stdlz angle
‘containing L, there exists a domain G consistingzof.all
points 1nterlot‘to any pseudo-circle Cp(a). 2 €L, 0<p<1,
such that A £G. Then by Theorem 1.6, f(z) has uniform
1imit in G and hence angular limit in A.

It was not until 1557 that normel functions were really
given their rightfuvl place in complex variablés when 0111
Lehto and K. I. Virtanen published thelr paper "Boundary
- Behavior and Normal Meromorphic Functions". Their original
‘motivation in the paper was to investigate the boundary be-
havior of meromorphlc functlons defined in |z| <1. In
perticular, they considered "the conditions under which the
existence}of an asymptotic value 1mp11esvthe exlstence of an
‘angular 1imit". It is here that the definition of normal
meromorphic functions as functions generating a normal
‘family {f((z - a)/(1 - az))} entered in a very natural mah-
“ner. For with this definition, Lehto and Virtanen were sble
to prove that a normal function does indeed have the
Lindelof property, that is, if f(z) has en asymﬁtotic Valﬁe
at o boundary point eie. then it has this limit in ahy Stblz

angle approach. to eie.



CHAPTER 11
THE LEHTO-VIRTANEN PAPER
An Idea Whose Time Had Come

..0111 Lehto and K. I. Virtenen's (24) article "Boundary
Behavior and Normal Meromorphic Functions" is probably the
most important paﬁér in the theory of normal functions. .
'Although.the concept had previously been 1ntfoducedvby.K.
Noéhiro. it was not until 1957 that normal functions wére
cet asidé as a separéte class of functidns.
| Lehto and Virtanen discovered normal functions in their
investigation of the Lindelof property and meromorphic '
functiongs., A function f(z) has the Lindeldf property in a
ddmain G if, given some érc L lying in G and terminating at
‘A pbiht E on the boundary of G, with f(z) tending to o as
7 - ? along L, then f(z) 2 « uniformly as z 4 P inside any
angular domain lying in G and having P as its Vértéx;
‘Lindelof dlséovered that analytic and bounded‘functions~do‘
indeed have this property. However, this need not be the
 casé for meromorphic functions (See Example 3.4). _

In Lehto and Virtanen's first theorem, they study the
situation that 2 meromorphic function possess an asymptotic
limit o along a path T" at & boundary point P but not the

engular 1limit o at this point. Under these conditioms there

13
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are certain "last" curves terminating at P near T on which
f(z) still tends to @. This first result is £hen used in
finding the conditions under which the existence of an asymp-
totic 1imit implies the existence of the angular limit. It
is here that the family {£(S(z))}, where S(z) is the family
of coﬁformal rappings pf the unit disk onto itself, enters
in a very natural way, for if {f(S(z))} is a nérmal family,
then the angular 1imit does exist. Thls gave rise to the
definition of normal meromorphic functlions as functions |
generating normal families. In Theorem 2.3, they obtain a
characterization of normal functlions using the quantity
l£7(2)] /(1 + 1£(2)|?). Theorem 2.2 is then restated in
terms of Theorem 2.3. Finally, we will look at a result of

Lindeldf that Lehto and Virtanen generalize using normality.
The Underlyling Theorem

We first collect some definitions and notatlion that will
be used in this section. Let f(z) be a meromorphic function
in a simply connected domain G bounded by a Jordan Curve,

The function f(z) may not be defined at a boundary poiht

z = Z,, SO we denote lf(zo)l = 1im sup |[f(z)| for every
boundary point z,. If f(z) 2 a'zzzg_a P along a Jordan arc
. in the closure of G, we say that f(z) has asymptofié value
a- Let Y'LJB = T be the boundary of a Jordan domain G.
Then by w(z1y,G), the harmoni¢ measure of z with respect to

G, we mean the harmonic funetion of z in the region G that

| has‘boundary values 1 on ¥ and boundary values 0 on the
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complementary arc B. This function is the unidue golution
to the corresponding Dirichlet problem, We will define an
sngle to be a domain A with vertex at P with thls property:
If Q 15 some other boundary point and w(z) fhe harmonic -
measufe in G of one of the arcs PQ, then A 18 a domain whose
‘points satisfy the condition ¢ < w(z) < 1.; €, ¢ > 0. 1If
f(z) converges uniformly to o as z - P inside every angle A
as Just described, we say f(z) possesses the angular limit «
at the point P. |

| We will now state and discuss Lehto and Virtanen's

first theorem.

Theorem 2.1. Let the function f(z), meromorphic in G,

have the asymptotic value zero at a boundarj point P'along a
Jordan curve T 1ying in the closure of G. If f(z) does not
have angular 1imit zero at P, there exlist for any given

| € > 0 two curves in G with endpoints at P, such that f(z)
tends to zero on one curve but not the other, and such.that-

the hyperbollic distance between these curves is less than €.

In proving this theorem, Lehto and Virtanen first per;
‘Tormed a series of conformal mappings on the region G to
simplify it and the curve [\ Under the above assumptions
they discovered there is a zone D, bounded by I" and a curve
c, oﬁ which f(z) does not tend to zero, but within which
f(z) has Zero as angular 1limit. Then for every € > O,'they
vnote one can find two curves tending to P, namély a curve

C!' in D and the curve C, such that f(z) - 0 on C' but not on



16

C and the hyperbolic distance betweén these curves is less
than €. Thls last statement about the distance needs some
clarification. Let ¢ > 0 be gilven and C and C' be the pre-
viously mentlioned curves with parameterizations Cit 2 ”Hﬂt)'
0 St< 1, and C's z = Ap(t), 0 =t <1. Then the hyper-
bolic distance between C and C' 1s less than ¢ means there
exlsts a hbmeomorphism T: C = C' such that vsﬁp plAL(t),
telo,1)’ *
'T(Al(t))) < €, where p(z1,zz), the hyperbolic distance
between zy and zp, will be discussed 1n detail in the proof

of the theorem (See p. 21). Therefore.'for each point on C

there 18 at least one point on C' within hyperbollc distance

N

Although the main importsnce of Theorem 2.1 lies in the
role it plays in Theorem 2.2, the proof of Theorem 2.1 con-
tains a very important result which is frequently referred
to in later theorems. T will first state this result as Lem-
ma 2.2 and then Lehto and Virtanen's Theorem 2.1 will follow
more readily. Beforg_proving Theorem 2.1, i will also state

and prove the following lemma.

Lemma 2.1. Let f(z) be a meromorphic function in a
‘simply connected domain G bounded by a closed Jordan curve.
If_lf(zo)| tends to zero as Z, On the boundary approaches a
point P, then there exists a Jordan curve in G with endpbint

at P, on which f(z) - 0 as z = P,

° Proof. Let [ be the boundary of G. Since |f(zo)| - 0
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as z_ 4 P, z, € I, we know for a given 1/n, there exists a

closed subarc ay, C T such that P € int(ay,) and lf(z )| < 1/n

for every z, € a,, But since !f(z N = lim sup |f(z)\
there exists 8, = 8(z,,n) such that lf(z)| lf(z )|+ 1/n.
for every z € G, |z - zol < Szo. Combining the above

inequalities yields: If(z)| < 2/n, for every z € G,

- §

[z zol <38, | , |
Consider Eg [B(zosﬁzo) N T). Clearly it is an open
| 2, € ay | YR

cover of d,, Since a, is compact, there exists a finite set

T Q.{zoz_zo € an} such that a, c U [B(z ;8 ) N T, Con-
' ' z T
sider U [B(z‘; ) nGl. It ma? not be connected but
‘ z &7
consistg of at most a finite number of separated regions,

6
Zo

Take U to be the component of U [B(z, ;5 ) A G| whose
2o €T

boundary contains a,. Then U is open and connected.

A

‘\»;U

/'Ns/

i

Flgure 3. Neighborhood of P

Without loss of generality, we may assuhe U c U s Slnce

n+1
*
if not, we may'replace Uh+1 with Un+1 = Un+1 N Un‘
For every n, there exists Gﬁ > 0 such that B(P.eﬁ) NG
Q.Uh. Let €, = mlnfl/n.eﬁ}. Since B(P.en)f\ G may not be
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connected, we take B*(P}en) to be the component ﬁf B(P,¢,)
NG which contalns P. We then have B*(P,€,) N G S U . 1In
each B*(P.en), we pick z , thus obtaining the sequence {zn}.
Since every B*(P.en) 1s connected, there exists a Jordan
curve L;(t). 0 £t =1, contained in B*(P.cn) such that
L,(0) = z, and Lp(1) =z .

For every n, define f (t) = n(n+ 1)t - (n® - 1),
(n=1)/nSt<n/(n+ 1), n=1,2, 3, .... Set L = Ly(f)

and let L = U L,. In particular, we see L, 1s the image of

1
[0,4] and L1?3§ = Zy) Ly(3) = 2,1 L, 1s the image of [%,2/3]
and L,(%) = 2,0 Lp(2/3) = Z43 etc. We also note that
Ln(t) C B*(P.en) € B(P,1/n) for every n. Hence we have
zZ = L(t) 9 Pas t=o1 sinoé |L(t)<- Pl'< 1/n for (n - 1)/n <
t < 1. Finally, we need to show that f(L(t)) » 0 as t - 1.
For t > (n - 1)/n, we have L (t) € B"(P,e,) C U . But
(L (t))] < 2/n for Ly(t) EU_. So as t o 1, we have

L(t) » P and |£(L(t))] > o.

Lemma 2.2. If f(z)
(1) 1s meromorphic in 0 < arg z <‘ﬂ/2,
(11) 1s defined and continuous on.the positive reai
axis with lim f(x) = 0,
X-¥+o0

(111) does not converge to zero uniformly in some
angle 0 < arg z <#w/2 - 28§, 1.e., for =mome & > 0
there exists {zn} such that 0 < arg z, < n/2 -
28 and 1im f(zn) # 0,

N co ‘
then given ¢ > 0 there exist two disjoint paths Al and A2
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lying in 0 < arg z < w/2 - § tending to « such that f(z) 4 0
_ori-/\1 but not on A, as z 9 ~ and the hyperbolic distance

_ between_A1 énd A2 is less than «¢.

Proof. By condition (11i) we know that given any three
non-zero values a, b, and ¢, there exlsts in arg z <m/2 - §
an infinite number of polnts, clustering at infinity, at
which f(z) assumes at least one of the values a, b, or c,
For if this were not true, then f(z) would omit three
values, a, b, and ¢ in (arg z < #/2 - §) n (lz| > R) for
sufficlently large R. But then f(z) would converge uniform-
ly to zero in arg z < 7/2 - 26 as z 5 =, by Theorem 1.5,
thus contradicting the hypothesis that £(z) does}not con-
verge to zero in this angle. |

We now introduce a famlly of similar triangles 4,
deflned as follows: The base of A lies on the real axis,
the other two sides are of equal length, and the vertex
angle equals §/2. Giﬁen three non-zero values a, b, and c,
we construct ali triangles A of the above kind containing no
polnts at which f(z) takes one of these values. Since
f(z) » 0 on the real axis, there exists x, such that for
x >x,, f(x) £ a, b, nor c. So there does exist a component
in the unidn of these triangles and it is an unbounded
simply connected strip domaln bounded by the coordinate axis
and.a polygonal curve, If necessary, we cut the tops off of
the latter curve to be certain that it lies entirely within

the angle arg z < n/2 - §; we denote this curve just
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Figure 4. Domain Formed by Union
of Triangles

obtained by C and the corresponding strip domain by D. So
we have that f(z) omits the three valuesla. b, and ¢ in D,
by construction, whereas on C there is an infinite number of
points at which f(z) assumes these values.

In the domain D, we again apply the generalized
Lindeldf theorem to f(z) énd conclude that f(z) does have
angular limit zero at 1hr1n1ty. If w(z,D) denotes the har-
monic measure of D which vanishes on the real axis and
equals 1 on the rest of the boundary, then f(z) - 0 on every
le#el curve w(z,D) = A)FO <A< 1.

We now claim.these level curves have 8 bqunded hyper-
bolic distance from the polygonal curve C and that this
bound tends to zero as A= 1. Let P(z = u o+ 1vo) be an
arbitrary point on C. Let w(z,A) denote the harmonic

measure of the triangle A with vertex at P, which vanishes
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on the base and equals 1 on the remaining boundary. Consl-
der u(z) = w(z,A) - w(z,D). Since the triangle A is con-
tained in D, u(z) 2 0 as z approaches the boundary of A.
The Minimum Principle guarantees that u(z) > 0 1n the in-
terior of A, glving us w(z,A) > w(z D) for every z € A,

Let Ql(u + 1v ) and Qz(u + 1v2) denote the points at which

o
the curves m(z.D)_= A and w(z,A) = ) intersect the stralght

line z = uy + 1v. Then the Euclidean distance of Q; from P
is less than the Euolidean distance of Q, from P. For since
Q(QZ.A) = A and w(Q,,D) = B < A, in order for w(Ql.D) to
equal \, Q ﬁust'be closer to P, where w(z,D) = 1.

We will make use of the hyperbolic metrlc for the first
quadrant and briefly consider 1ts derivation. We first ob-
taln dp = laz|/(1 - |z|2). the differential invariant under
one-one mappings of the disk onto 1ltself, by considering
Aw - w,) /(1 - ;;") = 1%z - )/(1 -2z z) and taking the
1imit as z - z, and w'e w . Then f dp =f ]dzl/(l - |z[‘?'
taken along the geodesic from z, to zz. is the hyperbolic
‘Aistance in the disk between z, and z,. To obtain the .
'hYperbolic metric for the,helf plane,‘we map the half plane
_onfo_the dlsk by z= M{ - a)/({ - a), IAl = 1, and compose
this map with dp = ’dzl/(i - lez), obtaining dp = ldtl/

2 Im (. Hence the hyperbolic metric for the half plane 1s
p(P Q) = fQ la¢l/(2 Im ¢). Finally, mapping the first qua-
-drant onto the half plane by ¢ = ﬁz.'and composing this with
the differential for the half plane, we obtain

;‘ldgl/(z_:m £) = (2lwllawl)/(2+2uv)
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= Véz + v2|dw|/(2uv) %V{/u + 1/VP law |,
where w = u + iv. Thus, for P and Q in the first quadrant,
P
p(P, Q) = fé %vi/u + 1/v lawl.
Set w = u_ + iv. Then dw = idv implies |aw| = lavl.

:Therefore, , : _ v
p(P,Q) < j © 3 A/E 4 1P av (@
since integrating along any'path will yield a value greater.
than or equal to the integral along the geodesic. Now for

afg w <n/2 - §, v/uO = tan arg w < tan (#/2 - §) = cot 6.

Hence (v/uo)2'+ 1 < cot2 § +1 = c302 ) and‘V{/ug + 1/v2 =
1/v;w4v/u0)2 + 1< 1/(v sin §). Combining this with (1), we
obtain

) \ v O v

r(P,Q) < % 1/sin & j;l av/v.
‘Integrating, we have % 1/sin § jzf av/v = % 1/sin §
"103'(v0/v1) < % 1/sin 8 . log (vo/vz). Thus

p(P.Qi) < 3 1/sin 8 * log (v /v3),

Since the triangles A afe similar, we can show vo/v2 =

k(A) is independent of the cholce of P and depends on A

only. Let AP and A be two éimilar triangles, where~AP has

P!
‘base [0,1]. vértex at P, ahd, AP' has base [a}b], &ertex at
P'. Conslder the mapping W(w) = adw + 8 from AP to AP"
where @ = b - a and £ = a. Clearly, 0 - a, 1 5 b, and

P o (auo + a) + 1(a#o) = P'. lLet w(w;(O,l).AP) and
uKW;(a.b).AP.) denote the harmonic measures on AP'and AP"‘
equal to 1..on (0,1) and (a;b), respectively. Then since

'.harmonic measure 1s invariant under conformal mappings,

w(W;(a b).AP.) = w(l/d(w - 8)31(0,1), 4 ). Let L
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Wy =9aw_ + B = (c'xuo + B) + i(av). So for any two.similar
trlangles AP and-AP,, we have

ImP' _oavo _ Yo _ ImP

Im W, =~ av v T Imwy ©
So the ratio v /v, 1s dependent on A only.

As A4 1, Q= P and vo/v2 = k(A) » 1. Hence
log (vo/vz) -+ 0. Therefore for a given ¢ > 0, there exists
A = Al¢) such that % 1/sin § * log k()\) < ¢. So the hyper-
bolic distance between the curve w(z,D) = A, on which f(z)
5 0, and the curve C, on which f(z) # 0, 1s less than
3 1/sin 8+ log k(A), which tends to zero as A\ - 1. Thus we
conclude that given € > 0, there exist t&o disjolnt paths
lying in O‘<Iarg z < m/2 - § tending to o such that f(z) + 0
on one path but not the other, and such that the hyperbolic

distance between these paths 1is less than e.

Theorem 2.1. Let the function f(z), meromorphic in G,
have the asymptoticAvalue‘zero at a boundary_point P along a
Jordan curve [ lying in the closure of G. If f(z) does not
. have tﬁe angular limit zero at P, there exist for any given
€ > 0 two curves in G with endpoint at P, sﬁch'that f(z)
ténds to zero on oné curve but not on the other, and such

that the hyperbollc distance of these curves 1s less than e.

Proof.  w1thout loss of generality we choose the domain
"G to be the right angle 0 < arg z < n/2, since the given

simply connected bounded domain G is conformally equivalent
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to 0 < arg z < #/2 by the Riemann Mapping Theorem. The
Riehann Mapping Theorem also allows us to assume the bound-
ary point P lies at z = oo, By_Lemma 2.1, we assuﬁe that the
asymptotic path I, along which f(z) tends to zero, lies
‘énttrely within G. Finally, we assume that T staffs.at z=0
so that it divides G into two distinct parts GlAand G2: and,
we let G, denote the part of G bounded by I" and the imagl-
nary axis..

Since f(z) does hot'converge to zero uniformly in every
angle, there éxists an angle A1 § < arg z < n/2 =~ 28,8‘> 0,
cohtalning an infinite nuhber of points which cluster at
infinity and at which f(z) doesn't have the limit zero.

This must also be true in at least one of G, N A and Gé N Aj
we assume 1t 1s true in G1 N A.l

A In order to avoild difficulties érising frbm the possi-
‘ble compiiéated structure pf the asymptotic path T, we use
the Rlemann Mapping Theorem to perform the conformal mapping

w = w(z) which maps G, onto the right angle 0 < arg w <n/2,

1
keeping fixed the boundary points O and c. This mapping

///////
Figure 5. Mapping G1 Onto the First Quadrant
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takes the curve I" onto the positive real axis., Moreover,
the folloﬂing argument wlll show the image of Gl-ﬂJA lies
in the angle arg w < w/2 - 28. Consider the harmqhic
measures w(z;T,Gl)-and w(w(z);Re,G), where the harmonic
measure on Gl’ m(z;F.Gl). 1s 1 on T and 0 on the imaginary
axis, and, the harmonic measure on G, w(w(z);Re,G), 18 1 on
the real éxis and 0 on the_imagihary axls., We see that
w(z;Re,G) = 1 - 2/m arg z by néticing that 1 - 2/m arg z 2 1
as z -+ real axls and 1 - 2/m arg z =+ 0 as z - imaginary axis,
and by applying the Maximum Principle. Hence, arg z =
n/2(1 - Q(z;Re,G)). Rewfiting arg z S 7/2 - 26 in terms of
w(z;Re,G), we have n/2(1 - w(z;Re,G)) £ /2 - 28, or ,
w(z;Re,G) 2 b/, So to show arg(w(z))r{w/Z-Zﬁv z€GiNA,
we need to show w(w(z);Re,G) 2 48/w. Since harmonic measure
1s invariant under conformal mappings, we know w(w(z);Re,G)
= w(z;rucl). Next, consider G as an extension of G1 across
r‘E‘Fr(Gl). Then by the Extension Principlg of Carleman
(28, p. 68), we have m(z;Be,G).S_w(z:P.Gl), z éﬁGi. So for
z € Gy N A, we have that w(w(z)tRe,G) 2 w(z;Re,G) 2 48/,
Therefore, arg w(z) < /2 - 28 for z € él N A.

Now consider the w-angle: O < arg w <m/2 - 28. Since
" has been mapped onto the positive real aiis. f(w) - 0 on |
the»positive real axls as w9 o, while in the‘region arg w
< w/2 - 26, f(ﬁ) doesn't possess the angular limit zero.
Therefore, by lLemma 2.2;'for every € > 0, there exist two
cufves in 0 < arg w < /2 - 8 gstretohing to oo such that

f(w) - 0 on one curve but not on the other and so that the
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hyperbollc distance befween these curves with respect tb G is
less than e€.

Let Pg denote the hyperbolic distance with respect to
Gs 0 < arg w <m/2 and let pG1 denote the hyperbolic dis-
tance with respect to Gl' Since the hyperbolic distance is
1nVar1aht under one-one conformal maps,‘pG(w(zl).w(zz)) =
'pGl(zl,zz), where w = y(z) maps G, onto G in a one-one con-.
formal manner. On the other hand, G

1
ple of Hyperbolic Measure (28, p. 49)

€ G, so by the Princi-

PG(zl,zz) < PG1(ZI'22);
Thus, pG(zl'ZZ) £ Pd(wifwz)' and we haye that, for any
€ >0, there exist two curves in G.‘stretching to %, such
that f(z) - 0 on one curve but not thé'other. and such that
the hyperbolic distance between the curves with respect to

G 1$ less than ¢. .
Lindeldf Property Extended

‘Using Theorem 2.1, we aré'noﬁ able to derivé a condl-
tion ﬁnder which the(ex;stence of an.asymptofic value zero
at the boﬁndar& po1nt P implies the‘exlstencébdf the ahgulaf
1imit zero at P. wé éssume thé'cbnditions of Thebfem 2.1
f(z) is meromorphic in a Jqfdan domain_G; f(z) has asymp-

- totic value zero at a boundary point P, along a Jordan curve
lying in the closure of G such that f(z) doesn't have angu-
lar 1imit zero at P. Then Theorem 2.1 1mplies’there exists
a Jordan curve L € G‘with endpoint at P on which f(z) = 0, ‘

and, there exists a sequénce of points {zn}, n=1, 2, ¢..
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such that z - P and f(z,) = a £ 0, and so that the points

z, have a bounded hyperbolic distance less than M from L..

.The a refers to the proof of Lémma'2.2'1n which_the function
f assumed at least one of the nonzero Valués a,.b, and ¢
.-_1nf1n1tely man&"tlmes.oh the polygonal bounda?y c.

Fix'aﬁ arbitrary z, € G. Then for every Zp» define

3

ht G =2 G by Sn(z) = z', where Sy 1s a one-one conformal

mapping of G onto G, Sn(P) = P and Sn(zo) = Z,.

Figure 6. Simply Connected Reglon G

Let XK = {z1 p(z,,2z) <M + 1} denote the hyperbolic disk

" whose qentér lies at z = z and whose radius in the hyper-

o
bolic metric 1s M + 1. Since the distance between {zn} and
L is less than M, for every n there exists z,» on L such

that p(z,,z,#) < M. Then since the hyberbolic metric is
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" “Anvariant with respect ﬁo one-one conformal mapplngs, we
‘have'p(Sgl(zn).Sgl(zn*)) <M <M+, implying every trans-
formation‘z = S;l(z') maps one or several ares of the curve .
I inside K. For large ‘values of n; the fuhétioné'f(sn(z))»
are small on these image'arcs since f(z),a 0 on L, Also,
£(8,(z,)) = £(z,) = a # 0 for every n. | | |

Suppose the family of functions {f(Sn(z))} 1s normal.
We recall that a family of meromorphic functions 1s normal
in a domain G if every sequence'of its functions contains a
subsequence which converges spherically uniformly in every
compaét’subset of G. | |

Thé space of meromorphic'functions and the function .
g(z)As a;is closed. Since the functions_f(sn(z)) are smail
on certain arcs 1n.K for large values ofin, they can't tend
to o, Therefore. since {f(sn(z))} is normal, there exists a
subseqhence {f(Sﬁ,(z))} which convergés sphericdlly uniform-
"1y to a meromorphic function &#(z) on the compact set K.

Consider the images of the arcs of L mépped inside K by
vthe functions.z = S;}(z'). Of the arcs assoclated with each

s-1

n#¢ there ié_at least one arc that intersects the circles

p(z,2,) = M and p(z.zd)’='M + 1. Pick one such arc and call
1t L ,. Consider the circles p(z,z;) = M + 1/, § = 2, 3,...
‘fFor every J, each of the arcs 1n'{Ln*} intersects p(z.zo) =

M+ 1/, For each h*; prick one Suéh point and‘name it Bn*'

Then {B,+} 1s an infinite subset of the compact set p(z,z,)
=M + 1/) and therefore has a limit point By. Now, as n* 5

w0, we have f(Sn*(ﬂn*)) > 0, or ¢>»(33) = 0, since £(z) + 0 on



29

L as Izlal.. As ) 4‘w, the‘olrclés p(Z,ZO) =M+ 1/] ténd
 to the circle p(z,zo) = M. On every circle p(Z.Zo) =

M + 1/), we have a point Bj such that ¢(BJ) = 0, Again .
since {BJ} 1s an infinite subset of the compacﬁ set K, there
exists g € K, {BJ,} Q:{BJ}, such that.f,, + B. Therefore
_¢(z)'é 0 on K by the Idéntify Theorem. But f(Sn*(zo)) = a
£0 for evgfy n*s hence ¢(zO) # 0. Therefore wevﬁave a con-
tradictioh,and obtain the following result: If ffz) does
not possess the angular limit zero, the family {f(Sn(z))}

" cannot be normal.
We now introduce the definition of a normal function.

Definition 2.1. A meromorphic function f(z) is called

normal in a simply connected domain G, if the family
' {f(s(z))} is normal, where z' = S(z) denotes an arbitréry

. one-one mepping of G onto itself.

In terms of thils definltion,‘the contrapositive of the

above result becomes:

Theorem 2.2, Let f(z) be meromorphic and normal in G

and let f(z) have an asymptotic value a at a boundary point
‘P along a Jordan curve lying in the closure of G. Then f(z)

possesses the angular 11mit o at the point P.

Lehto and Virtanen made the remark that if the asymp-
totic path T liles on the boundary, a normal function f(z)

:idoes not only possess the 1limit o in every anglé A, but 1t
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also tends to « uniformly in the part of G lying béfween A
‘and the curve |. Let us investigate the reasoning behind
this statement. Take a« = 0 and let f(z) 2 0 uniformly with-
'in an angle A with vertex at P, as z 9 F. Let N = {z € G

lz - P} = e} and ' be a simple path in A with endpoint at P.

G

Figure 7. Neighborhood of P
: Restricted to D°

" Take D' to be the reglon bounded by T, T'* and N. The
Riemann Mapping Theorem allows us to map D' onto 0 < arg z
< w/2, taking the point F to % and the curve I onto the
pdsitlve axis. Suppose f(z) does not converge to zero uni-
formly in some angle 0 < arg z < w/2 - 28, Applying Lemma

2.2, we have there exist two curves Fl and Fz tending to P
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in D' such that f(z) 5 0 on I, , but not on Fé and such that
the hyperbolic distance between Vi end Tz is less than €.

There exlst én € rz such that z - P and f(z)) = a £ 0,
where the a 1s that referred to in the proof of Lemma 2.2.
Fix an arbltrary z € D'. Now {f(Sn(z))} is & normal family,
where Sn maps D' in a one-one conformel manner onﬁo itself

ﬁith”sn(zo) = 7z, Sn(P) = P, Proceeding now exactly as in

n
the proof of Theorem 2.2, we arrive at a contradiction to
the assumption that f(z) does not converge to zero uniformly
in some angle 0 < arg z < n/2 - 28. Therefore f(z) must

tend to zero uniformly in D' as z - P.
Normal Meromorphic Functions and p(f(z))

Lehto and Virtanen's next step was to characterize nor-
“mal functions in terms of the spherical derivative, p(f(z)),
of f(z). If f(z) is a meromorphic function on the region G,

- then we .define p(f): G > R by

1 (z)]

i

whenever z 1s not a pole of f, and

£ (2) |
L TTT()T2

p‘(f(a))

~1f a is a pole of f. It follows that p(f) is a continuous
function.

Thé geometric meaning of the quantity p(f) glves us
some insight into why Lehto and Virtanen sought to relate
p(f) to normal functions (i1, pp. 8-9, 15#). . The spherical

distance between two points is given by
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o lf(z) - r(z)]
(A2 02D = T AT v (e TR
Then |
a(fr(z),f(z*)) Jf(z) - f(z*)]|
= 11 <
%%Tz zZ - 2z' z'fz - z'|
1
C T F I T2 T2 IT2Y72
lfr(z
=T% Jf(2)T2"
Therefore,
a(r(z),0(2*)) = L Zlo 1z - 2t 14 e(lz - 2* 1),
where €|z - z'| 2 0 as z' 5 z. Since p(f(z)) = [f'(2z)|/

(1 + If(z)lz). we see that the spherical distance .

d(f(z),f(z')) is approximated by p(f“‘(z))'| zZ - z']. " Thus
fyp(f(z))ldz| is the spherical length of the 1magé of the
arc v under f(z).
In proving Theorem 2.3, we willl use Marty's result that

a family F of meromorphic functions is normal in a domain G
if and only if

sup p(f(z)) < o

feF
in every compact set in G (11, p. 154). This condition will
Assume a much sharper form when applied to the family

{f(S(z))} which is conformally invariant.

Definition 2.2. A family ¥ of meromorphic (not neces-

‘sarilylnormal) functions in a-simply‘connected domain 1is
called conformally invariant if f(z) € ¥ always implies
" £(S(z)) € %, where S(z) 1s any conformal one-one mapping of

. G onto G.
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IFor the moment, tale G = {z: lz] < 1}. Then the one-

one mappings S(z) = z' of G onto G take the form

S(z) = eiq_g;tf_ (areal, 11 < 1).

p(r(s(2))) = L8RSzl

_ler(z/azt ) | 1 - |£l2
ST+ (212 " 1T+ ¢z 2

Then

[

by simply evaluating S'(z). Now taking z = 0 (hence z' =

af (e2%C) /a (e128)| - 2
e DAL -1 -

(1 - 181%)p(r(el%)). (2)

el¥r) yields

p(£(5(0)))

it

- Therefore,

p(£(e1¥) = r—fpr2 + p(£(8(0)).
Let ¥ be a conformally invariant class of functions in

|zl < 1. Then for £ € ¥, z = 1%,

p(£(2)) = 7=lyzy2 p(£(5(0))) = L1572 A(F(0)),
for some F € %, (3)

' Suppoqe ?:E,q(f(z)) = «, where z is fixed but arbitrary.

~Then there exists {fn} C ¥ such that p(f (z)9 a. By (3),

'thefe exisgts {F } C ¥ sueh that 1/(1 - ‘z‘z)p(F (0))-+ d. 

C Thus a €1/(1 - [zI?) sug_p(F(O)) and su; p(f(z)) <

1/(1 - 1z1%) sup p(F(O)) Similarly, suppose sup p(F(0)) =

f. Then there exists {F } C % such that p(Fn(ﬁ)?:é B.

Again by (3) there exists {fn} C ¥ such that (1 - | z12)-

< _ 2
p(f (z)) 3 £. Therefore g < (1 - [z]°) ?gﬁ,p(f(z)). and
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sup p(F(O)) (1 -‘zl‘) sup p(f(z)). Hence we conclude
Fefr FE} : '

gup p(£(2)) = T_:'Tz—l'z gup p(£(0)).
Denoting dp(z) = ldz1/(1 - 1z12) for the hyperbolic'elémenf
of length, the previous line becomes

sug_p(f(z)) ldz' = sup p(f£(0)) dp(2), - (4)
which holdgcgor [z] < 1.

Every domain in the complex plane is bonformally equiv-
alent to the unit disk_(hyperbolic type) or:the>punctured v
plane (parabolic type) or the wﬁole éxtended plane'(elliptlc_
type). We claim that

fF p(f(0)) =
in domains G of elliptic or parabolic type. if the confor-
mally invariant family,; contains non-constant functions.
We can assume that G is either the whole extended z-plane or
the punctured plane, z ¥ ©. 1In either case, S(z) = z' = éz

+ b is a one-one mapping of G onto itself, where a # 0 and b

are arbitrary complex numbers. For f(z) meromorphic in G,

we have . .
( \ F=.ldf(az + b)/d(az + b)l lS'(z)f;-
p(ris(z))) = 1+ [f(az + D)2
and :
| ,
p(£(8(0))) = 'gf+b édb’ al _ = lal p(r(e)).

Therefore p(F(0)) = lal p(f(b)) for some F € F. Since we
may choose S(z) such that a - o, and since f nonconstant im-
plies p(f(b)) £ 0, we have the above assertion.

We now prove another lemma.
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‘Lemma_2.3. A conforﬁallj 1nvar1ant,class7§'cohtainihg
non-constant functions is a normal family in a domain G 1f
aﬁd only if its functions satlsfy»the 1nequa11ty

p(f(z))laz| £ cdp(z) (5)

where C 1s a fixed finite constant.

Proof. If # 1s a normal family, then by the above dis-
cﬁssion'and Marty's result we conclude G must be of hypef-
o bol;c type, else sgg;p(f(o)) = +03 and thus we can 1ntr6dude
a hyperbolic metfng. Since Marty's result guarantées
sup_ p(£(0)) < =, we set C = sgg,p(f(Q)); Substituting this

re¥ re¥
in (4) ylelds

sup_p(f(z)) ldzl < Cdp(z).
ret
Hence (5) holds for every f € §.

Conversely, we suppose (5) holds. Then

qup p(£(2)) < 4R - oy < w0

in every compact subset of the disk. By Marty's criterion,

% 1is a normal family.

'Wé'are‘now able,fo state and prove Lehﬁo and Virtanen's
Theorem 2.3 in which they characterize normal functions in
terms of p(f). This theorem was proven 1n-1939-bj Noshiro
in essentlially the same way as by Lehto and Virtanen, but of
course was stated in terms of his clags (A) instead of nor-

mal functions.

Theorem 2.3. A non-constant f(z), meromorphic in a do-

mein G, is normal if and only if the condition (5)
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~

p(f(z)) lazl < cdp(z)

is satisfled at every point of G.

Proof. 1If f(z) is normal, then the conformally in-
varisnt fémily‘{f(s(z))} is normal. Then Lemma 2.3 implies
- plf(s(z)))lazl £ cap(z) for some fixed C and each function
f(s). In particular, taking S(z) = z.,p(f(Z))ldzl £ cdp(z).

Suppose now h(f(z))’dzl < Cdp(z) at every point of G.
Since 1/(1 - 1z[?) p(-f(s(o))) = p(£(2)) by (2), we have

Clazi(1/(1 - 1212) p(£(3(0) = lazla(e(z))
< Cdp(é).

or
p(f(s(o))) < C.

Thus (4) gives us

| p(f(S(Z)))‘dz| < sgp p(f(S(Z))),dzl

sgp-p(f(S(O))) dp(z)
< Cdp(z). |
‘Hence Lémma 2.3 implies {f(S(z))} is a hormal'famlij and

f(z) i1s a normal function.

We remind ourselves here thst although we préved the
resuits in this section for the disk, they can be extended
to every domain G of hyperbolic type since dp(z) and
o(f(z))lazl are conformaily invariant,

We can now restate Theorem 2.2 in terms of the spherl-

cal derivative.

Theorem 2.2'. Let f(z) be meromorrhic in G and have an

'ésymptotic value 4 at a boundary point P along a Jordan



curve. lying in the closure of G. If

f(z dz o

1lim sup <, (6)

zaP aplz

then f(z) possesses the angular 1limit a at the point P.

Proof. 1If (6) 1s valid, there exists a finite C such
that_p(r(z)5ldzl.$ Cdp(z) in a G-neighborhood N of P. Since
N C G the Frinciple of Hyperbolic Measure (28, p. 49)
1mplies dpg(z) < de(z) Therefore o(f(z))ldzl < Cdpg (2)

' S:Cde(z). Hence Theorem 2.3 implies f(z) is normal in the
neighborhood N, ahd by Theorem 2.2, f(z) has angular,limit

in N at the point P.

. We wlll see that by adding normality'to meromorphic
functions we extend some of the properties previously pos-
sesced only by bouhded and analytiec functions to meromorphic .
functlons, as in the following boundary theorems of Lindeldf

(29, p. 200) and Lehto and Virtanen's (24) Theorem 2.5.

Theorem 2. L. Let G be a simply connected domain‘

bounded by a Jordan curve [, and let f(z) be an analytic
funotion in G which satisfies:
(1) If(z)l < 1, for every z € G,
(11) f(z) is continuous at all boundary points { of T
with the exception of a single boundary roint
{,i and, |
(111) as {'4 Ié on [, the boundary values of f(z) tend

to a well-defined limit a = 1lim £({).

>{,
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Then f(z).ls'continuous at z = fo, 1.e;, 1im f(z) = a as the

point z € G tends to {,.

Theorem 2.5. Let f(z)'be meromorphic in G and approach

4 1imit @ a8 z < P in an arbitrary manner along the boundary.
Then f(z) tends to a uniformly as z - P in the closure of G

Af and only 1if the condition (6), namely lim sup gpzz |dzl

z3P
< oo, 18 fulfilled.

Proof. Suppose condiiibn (6) holds. Then there exists:

a C < o, such p(f(z))ldzl £ cdp(z) in a neighborhood of P by
'T the Principle of’Hypérbolic Measure, as,in the proof of
Theorem 2.2°, Therefore f(z) 1is normal'gn'a neighbdrhpod_of
P, by Theorem 2.3. 'Theorem 2.2 and the remark.following it
'v imply f(z) - « uniformly in the closure of G. |

To simplify proving the converse, we assume Gb='

laz!
2AIm z

perbolic element of length with respect to G (See p. 21).

{Imz> 0} and P 1s z = 0. Then dn(z) = is the hy-
'Let dpR(z) denote the hyperbolic element of length with
respect to R = {|z| < r} n {Im z > 0}. Then by mapping R
“onto lzl < 1 by z'='§§.and making this substitution in
T—%g%%T2.<we have dpp (L) = %EE%£+%%£L. We then have ddp :
is bbundod in every smaller semicircle lzl < r-6,5>0,

since

d z)  4rilzl Im z
' _-gl}] 4 =.-—r - lZ'u— < ooe .
In particular, we write Qﬁﬁ o < k(§) or‘%@pn(z) < dp(z) in

~ every smaller semicircle. Suppose (6) is not valid in G.

Then there exists {zn} - P such that for every neighborhood
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M of P, there exists z, € M such that

p(£(5(2y))) lazl > Cap(zy). |
But then p(f(S(zn)))Idzl > C;% de(z). Theorem Z;j implies
f(z) is nbt normal in any semicircle [zl < r. Now f(z)
can't omit more than two values in any’helghbdrhéod‘of P,
for if 1t dia, each~funcf19n in the family {£(S(z))} would
" omit the same three values and Montel's thebrem would'lmply’
{f(s(z))} is a.normal family. But this contradicts f(z)

tending to « uniformly as z < P. " Hence (6) 18 valid.



CHAPTER III
PROPERTIES AND EXAMPLES
Sufficient Conditions for Normality

In this chapter_We attempt to_put the reéder at_ease"
with normal functioné by considering gome of the more éle-
mentary properties of normal functions. In each of'the
following properfies, unless étated otherwise, Glis?a simply
vcohnected domain 1n C@. f(z) is a meromofphic funcfion
defined on G, and S(z) = z' denotes an arbitrary one-one

mapping of G onto G.

Property 3.1. If f(z) omits three values, then f(z) is

normal.

Proof. If f(z) omits three values in G, then all func-
tions of the'form £(S(z)) omit the same three values. By
Montel's theorem (18, p. 248), {rf(s(z))} is a normal family

and hence f(z) 1s a normal function,

Property 3.2. If f(z) is analytic and omits two finite

values, then f(z) is normal,

Proof. This follows immediately from Property 3.1

since the third omitted value 1s infinity.

Lo
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Property 3.3. 1If f(z),ls analytic and bounded, then

" f(z) 1s normal,

1

Proof. Since f(z) omits three values, f(z) is normal

by Property 3.1.

Property 3.%. If f(z) is normal and g(z) is bounded,

then f(z) + g(z) is normal.

Proof. Let K be any cémpact subset. of G and {f(Sﬁ(z))
+ g(Sn(z))} be a sequence from the family {r(s(z)) +
g(S(z))}. Since {f(S(Z))} 18 a normal family, there exists
a subsequence {f(sn'k(z))}‘of {f(sn(z))} which converges
spherically uniformly on K to éome function fo(z). Since
{S(S(z))} is also a normal family, there exists a subsé-.
quence {g(Sn,k,l(z))} of {S(Sn,k(z))} which.converges'
spherically uniformly on K to some function go(z). Tﬁus the
'Sequenge {f(sn'k.l(z)) + S(Sn.k.l(z))} convefges sphgrically
uniformly on K to fo(z) + g,(z), which is not an indeter-
minate form because g(z) 1s bounded. Hence'{f(sn(z)) +
g(Sn(z))} has a convergent subsequence, implying {f(S(z)) +
g(S(z))} 18 a normal family and therefore f(z) + g(z)‘is a

normal function.

Propérty 3.5. If f(z) is normal then all powers
(f(z))", u real, are normal. If u 18 not an integer, we

1supposé £f(z) £ 0, o so that (f(z))" will be single-valued.

Proof. Consider the sequence {(f(Sn(z)))”} from the
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family'{(f(s(z)))“}. Since {f(s(z))} is a normal family,
there exists a subsequence {f(Sn'k(z))} of,{f(Sn(z))} which
converges un1form1y to g(z) on compact subsets of G. There-

fore, (f($n k(z)))’l + (g(z))" on compact subsets of G,

inplying {(f(s(z)))”} is a normal family and hence that

(f(z))* 1s a normal function.

The technique used in the proofs of Properties 3 4,
3.5, and 3. 6 1s quite common and we include these: proofq to

emphasize 1ts importance.

Property 3.6. If f(z) is normal ard R is a rational

function, then R(f(z)) 1s a normal function.
?

_Ezggg.. Consider the sequence {R(f(Sn(z)))} from the
family {R(f(5(z)))}. Since {f(5(z))} 1s a normal family,
there exlsts a subsequence {f(Sn’k(z))}vof {f(Sn(Z))} which
converges ‘uniformly to g(z) on compact subsets of G. Since
a rational functlion is continuous with respect to the
chordal metrlc. we have R(f(Sn k(z))) 5 R(g(z)) on compact
subsets of G. Hence {R(f(s(z)))} 1s a normal family and

R(f(z)) 1is a normal function.,

Property 3.7. If f(z) omits 0 and o and takes some

third value « only a finite number (n - 1) of times, then

(f(z))l/n

and f(z) are normal.

Proof. From the above assumptions, (f‘(z))i/n is
single-valued and omlts at least three values:s 0, %, and

one of the nth roots of «. Therefore (f‘(z))‘l/n is normal
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by Property 3.1 and f(z) = ((f(z))l/n)n is normal by Proper-

'ty 3.5. 'v

Property 3.8. If f(z) is a schlicht function in a

domain Ghof hyperbolic type, i.e., G is conformally equiva-

lent to D, the unit disk, then f(z) is normal.

Proof. Let {f(Sn(z))} be a sequence from the family
{f(S(z))}. Since G is of hyperbolic type, there exists an
_analytic function g such that g is one-one and g(G) = D.
Hence the family {S(Sn(z))} is normal because g(z) is bound-
ed. We will need the following result from (11, p. 151)1
If F, a familyiof analytic functions defyned on G, is normal
and ( is an open subset oflc such that f(G) € Q for ever& f
in F, and 1f g1 Q2 € is analytic, then {g(f): f € F} 1s

1 exists and 1s

normal. Since g 1s one-one and conformal, &
analytic, We>now apply the above result and conclude the
ramily {g"'(&(s,(2z)))} = {5, (z)} 1s a normal family. Ap-
plying thié result a second time, we have the family

{f(Sn(z))} is normal. Thus the original family {f(s(z))}

is normal as must be. the function f(z).
Examples

The abundance of examples of normel functions is 11lus-
trated by the numerous properties of normal functions in the
previous section. We present here some concrete examples of

functions which are normal and some which are nof normai.

Example 3.1. The first éxample of a normal function is
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the elliptic modular functlon-(13. pp. 54-57), which 1s best

understood by an 1llustration. In the figure below, let -

Figure 8. The Elliptic Modular
Function

regldn 1 be the closed triangular-shaped region 1n’1z' <1

e1"72' 617”76’ e111ﬂ16

" with vertices z = and whose . sideg are

, o ,
arcs of a circle which intersect |zl = 1 at e! /2, e17ﬂ/6'
e1117/6 ¢ right angles. Then let w = G(z) map region 1 in

" a one-one conformal manner onto thé positive half plane Im z

1n/2 17n/6

>0, with G(z) 3 2 as z3 e » G(2) > 0 as z5 e

111m/6

y and
G(z) 21 as z9 e . Neit. region 1 1s reflected
about each of its three sides obtaining regions 2, 3, and 4.
Then by analytic continuation by means of the refléction |

principle regions 2, 3, and 4 are mapped in a one-one
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conformal manner onto the negative half plane Im z < 0 with,

in/6

for example, in region 2, G(z) > 0Oas 2z e y G(Z) 5 oo

1"/2. and G(z)'e 1 as z = eilln%é. By continuing

as Z.-) e
this proceés of analytic continuation by means of the reflec-
tion principle the domain of G becomes the entlire open diék
lz| <1, with w = G(z) analytic Iin D. There are an 1nf1n1té 
nﬁmber of;regions in D which are mapped onto the negativé:
half plane and onto the positive half plane, Thus the
elliptic modular function, w = G(z), assumes every value in
the complex plane, except 0, 1, and oo, 1nfin1tely‘often in
D._ Since G(z) does omit three values, the elliptié modular
‘function is normal by Property 3.1. |

The elliptic modular function is part of a more general .
class of functions called the Schwarzian triangle,functioﬁs,
whlch are also normal. For a discussion of this class, we
refer the reader to (8, pp. 173-194).

As an application of the elliptic modular function, we

give the proof of Theorem 1.5.

Proof. Without loss of generality, we may assume f(z)

omits 0, 1, and =, for if not, we consider the function

r(2) - £53 - {EH

which would omit 0, 1, and «», Let w = G(z) be the elliptic

. modular function on the unit disk. Then G(z) is analytic
and omits 0 and 1 on lz] < 1. Let z = h(w) be the inverse
of the elliptic modular function G(z) and select a glven

branch h,(w). Consider the function F(z) = ho(f(z)). Each
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branch of h 1s analytic and slngle-valued, locally. Since

f(z) omits the only "bad" points for h, and since |zl <1 1is
simply connected, the Monodromy Theorem implies F(z) is ana-
lytic and single-valued. We also note that |F(z)| <1, and
F(z) tends'to ho(a) as z 9 eieo'on L. Since,the conditions
“of Theorem 1.h'are‘satisf1ed. F(z) tends to h,(a) inside aﬁy

16,

angular domain at e . Finally, f(z) tends to « inside any

angular domain at-eleo.

Example 3.2. Lehto and Virtanen remarked that the sum

of a normal funétion and a bounded function 1s a norhal
function. (See Property 3.4.) The natural question as‘to
whether the sum of two arbltréry normal functions is normal
was answered negatively by Peter Laﬁpan (19) in 1961. BHe
alsb proved that the product of two normal functions need

A ﬁot be normal. To prove these results, we néed the fdllow-

ing lemma by Bagemihl and Seldel (2, p. 10), which appears,

with proof, in the following chapter as Theorem 4.3.

Lemma 3.1. Let f(z) be a meromorphic function in D,

~ and let {zn} and {zﬁ} be two sequences of points in D such

that 1im p(z,,z}) = 0 and 1m Iz | = 1. 1Ir
N9 : nHoo
lim f(zn) = o and lim f(zﬁ) =8 (a#p8),
N9 n< oo

then f(z) 1s not a normal function.

Theorem 3.1. Let f(z) be a normal meromorphic function
in D with an infinlity of poles. Then there exists a

' Blaschke product Be(z) such that h(z) = £(2z)B,(z) is not a

normal function.
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Proof. Let {zﬁ}‘be a_sequencé of;poles of f(z) with
-thé property that ff (1L - Izr'll) < o, This sequence exists
because the 1nf1n12:1set of poles of f(z) must have a 11m1t‘
point and this 1imit point cannot be in D. Since the poles
of f(z) are isolated,. . we may choose another sequence of
' pointé {zn} in D such that 'an > |zﬁ|, f(zn) # oo, and
1im p(Zn,ZA) = 0, Thus EE (L - ‘zn|) < oo andvke_may deflne

nsoo : n=1
the Blaschke product

nolzl _zn - 2
B.(z) = 1 Ty,

3.

which is analytic and bounded in lz| < 1, with zeroes {zn

The function Bf(z) is normal in D (10, pp. 28-31). Define
h(z) = f(z)Bp(z). Then h(z) is meromorphic. For n 2 1,
h(z,) = 0 and h(z}) = =, and therefore by Lemma 3.1, h(z) is

not a normal function.

Lemma 3.2. Let f(z) be a normal merbmorphlc function

in D, and let g(z) be an analytic function in D such that
0 <M < lg(z)| < M,, ‘
where M; and M, are finite constants. Then the function

h(z)~= f(z)g(z) is a normal meromorphic function.

Proof. The proof is a direct verificatlion that h(z)
satisfies the definition of a normal function. For example,

_ the proof 1s similar to that of Property 3.4.

Theorem 3.2. Let f(z) be a normal meromorphic function

in D with an infinity of poles. Then there exists a normal

meromorphic function g(z) in D such that h(z) = f(z) + g(z)
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is not a normal function.

Proof. Since f(z) 1s normal with an infinite number of
poles, thére exists a Blaéchke product Bf(z)'such that h(z)
= f(z)Bf(é) is not normal. Set g(z) = %(Bf(z)'- 2)f(z).
Since le(z)l <1, we have ° o

| 1 < |Bf(z) - 2| < 3,
and g(z) 1s normal by Lemma 3.2. Thus
h(z) = f(z) + &(z) = B.(2)f(2),

which 1s not normal by Theorem 3.1.

David Bash (5) has shown necessary and sufficient con-
ditions for the sum and the product of two normal functions

to be normal.

Theorem 3.3. Let f(z) and g(z) be normal funétions in
D. Then f£(z) + g(z) 1s normal in D if and only if for each
sequénce {zh] in D such that f(zn) < oo, g(zn) 4+ %, and
.ff(zn) + g(zn)}-converges to a complex value « (possibly =),
the sum {f(zﬁ) + g(zﬁ)} converges to a for each sequence

{zﬁ} close to {zn}. that 1is, %im p(zn.z;) = 0.
. w©

Theorem 3.4. Let f(z) and g(z) be normal functions in

D. Then f(z)g(z) is normal in D if and only if for each
~ sequence {zn} in D such that f(zn) = 0, g(zn) 5 o (or if
£(z,) 3 o, g(zn)vﬁ'o) and ?f(zn)g(zn)} éonverges_to a com-
plex value o (possibly o), the product {f(zﬁ)g(zﬁ)} con-

verges to « for each sequence {zﬁ} close to {zn}._

We see that Bash has essentially just eliminated the
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"bad case" where the limlts of {f(zﬁ) + g(zé)} and

{f(zé)g(zﬁ)} may be undefined.

Example 3.3. Spiral functions were first introduced by

Valiron in (36). We say that f(z), analytic in |zl L 1, is
a spiral function if f(z) is unbounded in lz] <1 yet remalns
bounded on a spiral path. A spiral path 1s a boundary path
"S1z=s8(t), 0t <1, of Izl <1 where arg s(t) = +% or
arg s(t) » -was t 5 1. Valiron showed that if f(z) is a
spiral function then there exists anothér.spiral in iz| < 1
along which f(z) » = as lz| - 1. . _

Lehto and Virtanen (24, p. 53) have proven that a nor-
 ma1 meromorphic function has the Lindelﬁflproperty..which
has been defined on p. 13. Vallron functions lllustrate
that the converse of thls statement need not hold. Valiron
functions do have the Lindeldf property since there do not
exist any paths ending at a point e1® at which f(z) has a
limiting value. 1In order to seé that Valiron functions are
not normal, we refer the reader to Theorem 4.19 and note
that for a glven Valiron fuhction f(z), there would exist a
Koebe éequence of arcs {Jn} such that f(z) » azalongi{Jn}

but it is not the case that f(z) = o,

Example 3.4. A function f(z) 1s sald to be of bounded

characteristic if f(z) can be expressed as the quotient of
two bounded enalytic functions (28, p. 187). Functions of
bounded characteristic are not neeessarily normal functions.

A function which 1llustrates thls is
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6(z) = (z - 1)exp((1 + 2)/(1 - 2)), Izl <1,

To prove that é(z) 1is of bounded characteristic, we
write ¢(z) = ¢4(z)/$,(z), where ¢,(z) = z - 1 and ¢2(2)-=
exp((z + 1)/(z - i)).  Then |¢1(z)‘ < 2'and_|¢2(z)| = |
exp(Re((z + 1)/(z - 1))) < &% in D. Hence ¢(z) is of
bounded characteristic. |

A previously mentioned theorem (Theorem 2.2) by Lehto’
and Virtanen gtated that 1f a normal meromorphic function
possesses an asymptqtic limit o at a boundary point P then

f(z) must possess the angular limit o« at P. As z < 1 along

Figure 9. Illustration of the Function
w(z) = (1 + 2z)/(1 - z)

the Jordan path !z - 3| = %, lexp((1 N 2)/(1 - 2))| = |
exp (Re((1 + z)/(1 - z))) = e. Hence the funcfion ¢(z) has
' asymptétic value 0 at 1 along this path. But consider noﬁ
~the 1limit of ¢(z) as z 5 1 along the radius of the unit

disk. Since |exp((1 + z)/(1 - 2))| + o much more rapidly
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thén [z —‘1| - 0, we have ¢(z) - o, Hence ¢(z) déés'nbt
have angular 1limit at 1 and the above theorem implies ¢(2z)
is not normal.

We also see that normal functions are not necessarily
| of bouﬁded characteristic by éonsidering the elliptic

modular function (24, p. 57).



CHAPTER IV

MAJOR RESULTS ON NORMAL FUNCTIONS
SINCE 1957

Results Related to Uniform p-d Continuity

A well known theorem states that a family of functions
meromorphic in D is normal if and only if the functions‘are
spherically equicontinuous on each compact subset of D (18,
p. 244), We wish to usé this result to obtain a similar
theorem for normal functions, Which 1s referred to in the
‘literature as Lappan's uniform p-d continuity (21, p. 155).
A meromorphic function f(z) 1s normal in D if and only if
the family'{f(S(z))} is normal, where S(z) = z' denotes ar-
bitrary one-one conformal mappings of D onto D;; By the
above theorem, this is equivalent to the functions f(8(z))
being spherically equicontinuous on compact subsets of D.
Thus the definition of spherical equicontinuity (18, p. 242)
. glves us that at each point z, of D, for every € > 0, there
exists a §' = 5'(zo.e) such that

a(£(S,(2)),1(S4(z,))) < e )
for z € D, lz - zo| <&§', and for every . .Then there
:éxists a 8 > 0 such that (1) is true for z € D, p(z.zé) < 6.

'Finally. taking S (z) = z, and Sx(Zy) = Zas and noting the

52
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non-Euclidean metric is invariant under the mapping S, we ‘

obtain the following theorem by Lappan.

Theorem 4.1. The function f(z), meromorphic in D, is
normal if and only if for every ¢ > 0, there exists a § > 0
such that d(f(zl).f(zz)) < ¢ for each pair of points in D

satlsfying p(zl.zz) < §.

The next theorem (20) follows directly from Theorem 4.1.

It 1= sometimes referred to as Property C.

Theorem 4.2, The function £(z), meromorphic in D, 1is

normal if and only 1f.for'every pair of sequences {Zn} and

{zz} in D with p(z,2!) > 0 then d(f(z,),/f(z})) » 0.

Theorem 4,3. Let {zn} be a sequence of points in D for

which |z,| 5 1 and let f(z) be a meromorphic normal function
in D such that f(zn) % c¢c. If {zﬁ} denotes any sequence of

points in D for which lim p(Zn.Zﬁ) = 0, then also f(z}) » c.
n+< oo '

The proof of Theorem 4.3 illustrates an important tech-
1n1due. The proof 1is, ;n fact, very similar to the proof of
Theorem 1.6 already included in Chapter I. ‘This technique
~1hvolve‘s the composition of mappings of D onto D wlth

f(z) to yléld a normal family {gn(t)}. Thén we use thev
hormal familly definition to obtain uniform convergence of a
subsequence of {gn(t)} on an appropriate sequence of poihts.
which will be equivalent to the convergence of f(z) on the

sequence {ZA}.
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Proof. Let g (t) = f((t + z,)/(1 + E;t)). Then each
mn(t) 1s meromorphic in lz| < 1, with
1im gn(O) = 1im f(Zn) = C, (2)

n-oo ¢ n-oo : . .
: : " -
Setting t, = (z} - z,)/(1 - z z!), we note the linear traps.

[}
N

formation z = (t + z,)/(1 + E;t) carries t = 0 into z

QO

Figure 10. The Mapping 8,(t)

and t = t, into z = zg; Therefore p(O.tn) = p(zn.zﬁ) since
the hyperbolic metric 1s invariant under one-one conformal
mappings of D onto D. Thus, applying the hypothesis, we
have 1lim p(O,tn) = 0, which gives us

n-9oo
o ) N-00 ) '

Since f is normal, the family {gn(t)} is a normal family in
lt] < 1 and must have a subsequence,{gh.k(t)} which con-
verges spherically uniformly to some function g(z) on every
compact'subset‘bf lt]| <1. By (3) we may pick k sufficient-

1y large so that the points t k'11e in a small neighborhood
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N of zero, and (2) and the continuity of g in N imply

d(g(tﬁ k),c) < ¢/2 for large enough k. The uniform conver-
1] .

gence of {gn.k(t)} implies we may agaln pick k, so large

that d(gnok(tn,k)’g(tn,k)) < ¢/2 in N—. Combining these

inequalities ylelds

1im gn,k(tn,k) = C,

o Kox ,
Thus 11m-gn(tn) = ¢, else for some sequence'{tn'J} we would
. N=c0
have 1im g j(tn.J) = d £ ¢, which would contradict (2) and
J¢m ? R .
(3). Hence since.gn(tn) = f(zﬁ), we have 1lim f(zﬁ) = C.

n3oo
The essence of this theorem is essentially the same as

the'following theorem by Lappan (20)..

Theorem 4.4. The meromorphic function f(z) 1is non-

normal if and only if f(z) has property D, i.e., there is a
sequence {zn} such that for any a in €%, there is a sequence

{z

n} with p(z,,2}) - 0 and f(zﬁ) % a.

Gauthier has characterized normal meromorphic functions
"Ain terms of a speclal type of sequence called p-points. Be-
'fore @ffi;ing,at this characterization, we must first define
p-points'and anbthérysequence known as,P-points. We will
also look at the historical development which led up to this

important result.

Definition 4.1. Let f(z) be a meromorphic function in

the unlit disk. A sequence of points {zn} of the unit disk
is called a sequence of P-points for the function f(z) if

for each r > 0 and each subsequence {zn.k} the function f(z)
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assumes every value, with at most two exceptions, infinitely
often in the union of the disks

Dk ’-—' {Zt p(Z.Zn,k) < I‘}. k = 1' 2. L)

Definition 4.2. Let f(z) be a meromorphic function in

the unit disk. A sequence of points {zn} of the unit disk
is called a sequence of p-points for the function f(z) if

there are sequences {Ln} and {rn}. where

(A) Ly > Ly, >+ > L, > eee, L, > 0, for n - x,
and
(B) ry > Ty > cee > > eee, rn-a 0, for n 4 <,

and there exlsts a sequence {Dn} Qf_oﬁén disks, Dn = {és
p(zﬁ.z) <‘rn}. heving the rollowing'propértjs '

(C) 1in each disk D, n =1, 2, ..., the function f(z)
assumes all values of the Riemann sphere with the possible
exception of two sets of values En and Gn whose chordal

diameters do not exceed Ln'

V. I. Gavrilov (16) has shown that a function f(z),
| enalytic in D, is normal if and only if f(z) does not pos-
seés a sequence of p-points. Gavrilov also Obﬁained an
analagous'resu1t7for_meromorphic fundtions by showlng that a
merombrphic function in D is normal if and only if 1t does
not ppssess a sequence of P-points. 1In this same'papef it
was shown fhat there 1s a strong relationship between se-
quences of p-points and sequences of P-poLnts for analytic
functions. If {z } is a sequence of p-points for an

n

analytic function f(z), then {zn} i1s also a sequence of
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P-points. 1If {zs}'isla sequencé of P-pointé for f(z), then
.there'lsva subséquence of {zn} which 1s a sequence of p-
 points for the function f(z). In 1968, Paul Gauthler (15)
extended_the notioh of p-points by 1ntroducing'Def1n1tion
L,2 and proving that a sequence {zn} of points in D is a
sequence .of p-polnts for a meromorphic function f(z) if and
only if {zn} 1s o sequence of P-points for f(z). From this
equivalence and Gavrilov's criterion for normalcy, we obtaln
a new criterion for normalcy; A function f(z), meromorphic
in D, 1s normal if and only if ;t does not possess a se-
quénce of p-poihts. To prove these last two results.we need

~ the following theorem.

Theorem 4.5. A sequence of pbints {zn}'in.D is a |
sequence of P-points for the function f(z) if and only if
there is a sequence of points {wn} in D and a positive num-
ber r such that

| p(zyw ) » 0, for n 5 =, and

cd(f(z,).f(w,)) >r, forn=1, 2, .... (4)

ggggg. Suppose {zn} is a sequencé'fOr which there 1s
no corrésponding sequence {wn} satisfying (4). Then for any
positive number r, one can find a éequénce'of indices
‘n(1) < h(2) < ves ¢ n(k) < sen, andvaiﬁ(r) >0
such that for all sufficiently large k,
d(f(zn(k)).f(z)) < r, for p(Zn(k),Z) < 6(r).
In particular, we take r to be any positive number which 1is

smaller than the dlameter of the Riemann sphere. There
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exists a subsequence of'{zn(k)} whose lmages under f(z) con-
verge on the Riemann sphere and hence this subsequence can-
not be a sequence of P-points. But from the definition’of
P-points 1t 1s clear that ahy subsequence of a sequence of
P-points must also be a sequence of P-points. Therefore the
original sequence {Zn} is not a sequence of P-polints.
Conversely, suppose there is a sequence of points {wﬁ}
. for which p(zn,wn)‘é 0 while d(f(z,),f(w, )) is bounded away
from zero. Let F be the family of funetions {f(gn(z))},
where gn(z) = (z + zn)/(l + E;z) and gh(z) maps D onto
“1tself. We cléim the family F of functions 1s not equicdn—
tinuous at z = 0. Let r be such.that a(f(z,),f(w,)) > r for
every n and let s be any'positive number. Then for |
'p(O,ggl(wn)) < s, we have d(f(gn(O)).f(gn(gal(wn)))) =
d(f(zn),f(wn)) > r and the claim is proven. By a charac-/
terization of normality (18, p. 244), for every r > 0, F 1is
‘not a normal family in the set {z: p(0,z) < r}. So b& |
~ Montel's theorem (18.,p, 248), the family F must assume éach
~value of the Rlemann’éphere, with at most two exceptions,
infinitely often in {z; p(0,z) < r}. Therefore f(z) assumes
" each value Qf Qhe Rieﬁann sphere,.with at most two excep-
ltions. infinltely often in the unlion of thé dlsksl{z:
,P(vaZ) < r}. n=1,2, .... Since the same argument can.be
applied for any positive number r and any subsequence of

{zn} 1t follows that {zn} 18 a sequence of P-points.

Lemma 4.1. (15, p. 280) A sequence of points {zn}of
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the unit disk 1s a sequence of p-polnts for the.functioh
‘f(z). meromorphic in the unit disk, if ahd only if for each
r > O; there are.sets E(r,n) and G(r.n) whdse chordal diam-
eters do not exceed r, and there 1s an integer N(r) such
that in each disk {z: p(z,,2) < r}. n > N;‘the function f(z)

assumes all values of the Riemann sphere with the exception

of the sets of values E(r,n) and G(r,n).

Proof. The proof 1s rather stralght forward and we

refer the reader to (15).

Theorem 4.6. A sequence {zn} of pdints of the unit
disk 1s a sequence of p-points for a function f(z), mero-
morphic in the unit disk, 1f and only if the sequence {zn}

is a sequence of P-points for the function f(z).

ggggi. Let {zn} be a sequence ofvp~points aﬁd r> 0 be
given. Thén there exist sequences {Ln} andn{rh} decreasing
to zero, disks D = {zz p(zn,z) < rn} with the property in
each Dn' f assumes all values of the Riemann sphere with the
possible éxception of sets Gn and En' of chordal diamete;

less than Ln’ For every n, pick w

n in Dn such that

d(f(zn),f(wn)) > r. Then we have a sequence {wn} such that
_p(zn.wn) - 0 as n 5 %, but d(f(zn).f(wn)) > r. Hence {zn}
is a sequence of P-points by Theorem 4.5.

Conversely, suppose {zn} 1s not a sequence of p-points.
Then there exists an r > 0 for which the condition of Lemms

4.1 1s not satisfied. Therefore there exlsts a subsequence,
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which for convenience we denote {zn}. such that for every n,

1f,Dn is the non-Euclidean disk with center z_ and radius r,

n
then thé set of values of the Riemanh sphere not assumed by

f(z) in Dn can not be contained in two sets whose chordal

Figure 11. Twa Sets. of
Radius r/2

‘diameters do not exceed r. Thus f(z) omits three values 8y

' " b,, and ¢, In D such that |

d(a,,b,) 2 r/2, d(ay,c ) 2 r/2, and d(b,,c,) 2 r/2
n=1,2, .... For otherwise f(z) would not omit any value
¢, outside the shaded reglon in the above figure. _But this
~ contradicts the omitted values of f(z) being contained in
two sets of chordal diameter not exceeding r. From {zn} we
may choose a subsequence, which we agaln denote by {zn},
,such that‘{an}, {bn} and {cn} converge respectively to

(necessarily distinct) values A, B and C. Let fn(z)

f(g,(z)), where g (2z) = (zn + z)/(l + z§;) and g (0) = z

nl
Then for every n, fh(z) omits 8, bn and ¢, in the disk
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{z: p(0,2) < r. By a result in (8, p. 202).:{fn(z)} is a
"normal family of functions. Hence, there exists a sub-
sequence, which we continue tonenote {fn(z)}. which con-
verges spherically uniformly on {z: p(0,z) = r/2} to a
function which i1s either meromorphic or identically
~ infinite. Since the behavior of fa(z) in {z: p(O.z),S r/2}
13 the same as that of f(z) in {z: p(zn.z) =< r/2}, we have
for evefy g8 > 0, there exists an integer N and_R > 0 such
that | “
~d(f(z,),f(z)) < s, for n > N and p(z_,2) < R.

Thus by Theorem 4.5, {zn} can not be a sequence of P-points.

Theorem 4.7. A function f(z), meromorphic in the unit

disk, is normal if and only if f(z) has no sequence of

p-polnts.

Proof. This follows immediately from Theorem 4.6 and

Gavrilov's criterion for normality.

Generalizations of Results

From Chapter I1II

In this section we wish to investigate generalizations
of seversl results found in Chapter 1I. These results use a
new distance called the Fréchet distance, which we consider

now in some detail.

Deflnitioh 4,3, Let S1 and 82 be two curves inside the

-unit disk, Slx zy = z(t), 0 £t < 1 and 32: Z, = z(t),
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0 <t<1, with 1im lz(t)| =1, and T be any homeomorphism .
ta1 '

be tween 51 and 82. Then we define the Fréchet distance

between S1 and S2 to be
B(S 'S ) = inf (SUP P(ZOT(Z)))-
1°'%2 T -
z€8q -

" By takling the infimum over all possible transformations,
we eliminate the dependence of this distance on different
paramaterizations. If we consider the first illustration in

the following figure, we see that the Fréchet distance does

" Figure 12. BExample of Fréchet Distance

not only 1ndica£e closéness near the boundary but is some-
what global in that the distance between‘two'curves S, and
5, 1s never less than the non-Euclidean distance between the
initial points of S; and S,. In fact, even though in the .

second 1llustration in Figure 12 the curves are identical
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near the boundary, we still havecﬁ(sl}sz) 2 p(Sl(O).Sz(O))

> 0. The next two lemmas elaborate on what is meant by the

Fréchet distance.

Lemma 4.2. Let S; and 82 be two curves inside the unit

disk, defined by S, zy = z(t) and 8,1 Zy = z(t), 0 £t <1,

with 1im lz(t)| = 1. Then H(s,.8,) < € if and only if there
t-1 ' _ »
exists a homeomorphism T: Sl > 8, and an €4 wilth the

property that 0 < e, < € and p(2,T(z)) < €

1 I €, 2 € Sl'

1

Proof. Supposeiﬁ(sl.sz) = d < €, Then there exists a

-homeomorphism T s S, » S, such that sup o(z,T,(z)) <€. Thus
ZéSl :

Az, Ty(z)) < €, < € for every z € 8 for the fixed trénsfor~

1
mation To and for some 61 > 0.

1

Next, suppose the condition of the converse statement

holds. Then sup p(z,T(z)) < €, < € and inf (sup p(z,T(z))
zeSl T ZESl
< €, Hence.ﬁ(s1,82) < €,

Lemma 4.3. The Fréchet distance 1is a metric.

Proof. Let 31 and 32 be two curves inside the unit
disk, defined by 81s z, = z(t) and 52‘-22 = z(t), 0 <tc1,

with 1im |z(t)l = 1. We claim 8; = S, 1f and only if
: Lt
(8,.,8;) = 0. If 8 = S,, then clearly £(S, ,S,) = 0. To

prove the converse, we suppose the contrary, that is, there

exists a point z, on S1 such that z, 1s not on S,. Then

o
there exists a dlsk Do = {2: p(z.zo) =d, 4 > O} such that
D, N 8, = @g. Let T be any fixed but arbitrary homeomorphism

from S1 to 82' Then
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Figure 13. Two Non-identical
Curves

sup p(z,T(z)) 2 r(zy,T(z,)) 2 Anf p(zo,z) 24 >0.
ZFS1 zeSZ
Since T was arbitrary, this 1nequa11ty is true for every

transformation T. Therefore

inf (sup p(z,T(z)) 2 4 > 0,
T 2E€84
and we have proven.ﬁ(sl.sz) # 0.

We next show that #Xsl.sz) < £KSI,83) + ﬁXSB.SZ). lLet
M = ﬁxsl,SB), N = fKSB,SZ) and € > 0 be glven. The previohs
characterization of the Fréchet distance definition implies
there exist homeomorphlsms T1 and Tz, Tl' 81 - 83, sz

.83‘-9 S?." and values € and €5 0<e, < M+ € and 0 < €5 <

1

“N + €, such that p(z.T (z)) < e, (z€ Sl) and p(z.Tz(z)) <

1
€, (z €8 ). Consider now the homeomorphilsm Tz(T ) 81 5

-SZ. Since p is a metric, we have
p(Z Tz(T (Z))) = P(Z'Tl(z)) + P(Tl(z)oTz(Tl(Z)))d

Thus p(z,T5(T,(2))) < €, + €5 < M+ N + 2¢ (z € 5,0

1 .
Therefore Lemma 4.2 implies fKSl.SZ) < M+ N+ 2¢. 3Since ¢
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was fixed but arbitrary, P(S,,S,) < M + N and the transitive
property does hold for the Fréchet distance.

The symmetrlc property is not difficult to verify.
Since p(z,T(z)) = p(T(z),z), 1t follows that |
Anf (sup p(z,T(z))) = inf (sup p(T(z),z)), or ﬁKSl,SZ) -
T zE8y . | * z€S o
§(8S,,8,). Therefore the Fréchet distance 1s indeed a

metric.,

The first theorem using the Fréchet distance 1s one by
Bagemlﬁi and Seidel (1, p. 264), which generalizes Lehto and
Virtanen's Theorem 2.1. We refer the reader back to Chapter
II, especially to Theorem 2.1 and the paragraph foilowing
this theorem on page 15. By_stating that the hyperbolic
distance between two curves, S, z1 = z(t) and Spt 2, ;.
Z(t), 0 S t<1, is less than € in the Lehto-Virtanen sense,
we mean there exlsts a homeomorphism T: Sl'» S, such that
sup P(Zl'T(zl)) < ¢. This distance between the curves Sq
2338.2 1s dependent on the fixed homeomorphism T. Since. the
Fréchet distance between S1 and SZ is the infimum over all
possible homeomorphisms between the curves, we.see that the
Fféchet distance is less than or equal to Lehto and
Virtanen‘s hyperbolic distance between two curves. Before
| proceeding with Theorem 4.8, we need the following defini-:

tions.

Definition 4,4, A boundary path 1s a simple continuous

curve, z = z(t) (0 £ t <1), in D such that lz(t)] = 1 as

t-1.
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Definitlon 4,5. The initial point of a boundary path

A 1s the point z(0); the end of A 1s the set of 1limit points

of A on C,

Theorem 4.8. Let f(z) be a non-constant meromorphic

function in D that tends to ¢ along a boundary path A whose -
-eﬁd E contalns more than one point. Then, given € > 0,
there exist boundary paths_Al and Az whose ends are con-
taineq 1n‘E, such that A, A1..A2 are mutually exclusive,

fXAl.Az) < €, and f(z) - c along A4 dut not along Ao

Proof. Let G denote the simply connected region D - A{

The initlal point z_ of A is the impression of one prime end
| o

o
of G. (We refer the reader to (10, pp. ;67-18?) for a dis-
. cussion of impresslons and‘prime ends.) Every 6ther point
~of A 1s the impression of two prime ends of G. we will con-
sider two cases. | -

Suppose E = C. Then E is the impression of a single
- prime end P of G (9, p. 9). Let ¢(z) = z* map G onto the
“unit disk D' in a one-one conformal manner such that the
initial point of A and the prime end P correspond, respec-
tively.,t§ -1 end 1. The function defined in D' is F(z').=
f(¢'1(z')). Now f(z) 1s not constant and f(z) -+ ¢ along
A. Therefore there exlsts {zn}‘; G.'lznl - 1, such that
f(zn) - b £ ¢. Otherwise, we would have that at each point
el® on the set E of positive measure, there would exist an

~angular domain in which f(z) - c¢, which by Privalov's

Theorem (10, p. 146) would imply f(z) is constent.
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Figure 14. The Composition of f(z) and ¢'1(z‘)

‘Therefore there exlsts a sequence {z;} C pv, z; -1, sﬁgh
that F(zg) -+ b. Some segment S5' of D', bounded by a suit-
able chord and an arc M of C', both having an endpoint at 1.'
contains infinitely many points of this sequence. We now
have that F(z') - ¢ as z' - 1 along M, but F(z') # ¢ as
z' > L in S*. By mapping D' onto the first quadrant, with
" the 1magé'of 1 and M being o« and the positive.real‘axis,
respectively, we can apply Lemma 2.2. Thus glvenve > O.'
there existbtwo disjoint boundary paths A, Aé in 8', whose
ends are the point 1, such that the hyperbolic distance
| between A{ and Aé 1s‘1ess than €, and F(z') - c'along AL,
but not along A). But then the Fréchet distance,
Bgi(A;A)), 1s less than €. Since ¢7l: D' 5 G, the
Principle of Hyperbollc Measure (28, p. 49) gives‘us_
pglz,T(2)) = ppo(w,T(w)) £ pge(w,T(w)),
~where w € A}, T(w) € A}, ¢"1(w) = z €A, and ¢7H(T(w)) =
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T(z) € 42. Thus

1nf (sup p;(z,T(z))) < inf (sup pgq, (W, T(w))).
ZEA. T ZEN
and hence if(Al,A —-I?.(Al.A ). By the Principle of

_Hyperbolic Measure out conclusion follows since fKAl,Az) <
B (AL AS)
| Next, we consider the case where E £ C, in which case E
ils the impression of two prime ends P1 and P2 of G. Again
,we let G =D - A and ¢(z) = z' map G in a one-one conformal
manner onto D' such that the initial point z,, of A, the

prime ends P, and P, correspond to -1, -1, and 1, respec-

2
tively. Denote by F(z') the transplanted function in D',
namely F(z') = f(¢'1(z')). Let A'.‘A{ a?d Aé be the open
subarcs of C' which have initial and terminal points -1 aﬁd
i, -1 and -1, and 1 and -1, respectively. Then under ¢, A*

corresponds to the arc C - E, each of the arcs A{ and Aé

Figure 15. Another Conposition
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correspond to one side of A minus 1ts initial point. ThereQ
_ fore, as the point 1 (or -i) 1s approached along A', then
46‘1 approaches a limit, namely, an endpoint E, (or El) of
the arc E. Since ¢~! is analytic and bounded in lz'| < i.

the Lindeldf Theorem (10, p. 42) implies ¢'1(z‘) -+ E_ (or

2
iEl) as z' - 1 (or -1) 1inside the angular domain {z':

|z'| < 1, Re(z') > 0}. As in the first part of the proof,
sinée f(z) is not identically constant, Privalov's Theorem

19. where

(10, p. 146) implies there exists {zn} caG, z =€
el® 15 in the interior of E, such that f(zn) - b #£ é.
'Thérefore there exists a sequence of polnts {zé} in D' tend-
ing to 1 or -1 (say -1) such t?at F(z;) T £(z,) » b as

n - = - We know that Re(zéb <;b because the image of the
points 1in ﬁe(z;) 2 0, under ¢-1, tend to E, or E,, which are

distinct from the point 619

in the interlior of arc E by
Carathéodory's correspondence theorem (10, p. 173). Now we
heve F(z') - ¢ as z' 5 =i alongkA;. but F(z') $ ¢ as

z' 3 =1 on {z's z' € D', Re(z') < 0}. Lemma 2.2 can now be

applied to D', and the conclusion of the proof is identical

to that in part 1.

Theorem 4,9. Let f(z) be a normal meromorphic function
in D and suppose that Al'and A, are boundary paths for which
‘£XA1.A2) is finite. If f(z) - c along Ay then f(z) » ¢

along Ao«

The counterpart of Theorem 4.9 in Chapter II is Theorem

2;2. The proofs are almost identical. Theorem 2.2 uses the



70

hyperbolic distance whereas Bagemihl and Seidel (1) use the

Fréchet distance.

Corollary 4.1. If a normel meromorphic function f in D

tends to a limit aldng a boundary path whose end contalns
more than one point, then the function is ldentically con-

stant.

Proof. Suppose f 1s not identlcally constant. Then
Theorem 4,8 implies for every ¢ > 0, there exist paths A1
and A,, whose ends are contalned in E such that A, A,, and
A, are disjoint, S(AI.AZ) < & f(z) » c onA,y, buf f(z) » ¢
on A,. But since EXAl.AZ) is finite..and f(i) > cC Qn Ai"
Theorem 4.9 implies f(z) 4 ¢ on A,, s contradiction. Thus
T 1s ldentically constant. _

The final theorem (2, p. 105 we consider is similar to
' Theorem 2.2, but differs in that the approach to the bound-

ary 1s not e path but rather a sequence of points.

Theorem 4.10. Let {zn} be a sequence of points in D
which converges to a polnt P € C and is such that Pn =

P(Zn' ) 5 0, and let f(z) be a meromqrphic normal func-

zn+1
tion in D for which 1lim f(zn) = ¢, where ¢ 18 finite or

"infinite. Then f(z) has angular limit c at P.
 Proof. Let L be the curve‘consisting'Of the non-

Euclidean gsegments connecting the points Zyer Zi,qo fOT

'k=1, 2, .... Suppose there exlsts a sequence of points on
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L converging to P on which f(z) fails to have the limit c.
Then there exlsts a subsequenge, say {zk.} such iim f(zk.) =
d # c. Without loss of generality, we may assumeqthe pointé
of the sequence {zk.} are all distinct from the points of
-the sequence,{zk}. To each k there corresponds an index
n(k) such'that.zk. lies on the segment of L that connects
Zn(k) with zn(k)+1' Then we have

| | ”(zh(k)'zk')_ S P (Zn(k) Zn(x)41) = Py(x)

By hypothesis, pn-+'0. Hence lim p(zn(k)'zk') = 0. By
: Koo '
Theorem 4.3, 1im f(zk.) = ¢, which 1s a contradiction. Thus
: ko ,
Theorem 2.2 implies f(z) has angular 1limit c at P.

. |
Cluster Sets and Normal Functions

Cluster sets describe the behavior 6f a function héar
the boundary of a region and hence it was only natﬁral for
Paul Gauthier and Leon Brown to try to chéracterize_ndrmal

functions in terms of cluster sets. Beforevpresenting_thls
vand sevéral_préliminary results, we make the~follohing‘

definitlons.

Definition 4.6. For a set S € D, and number r > 0, we

define

H(S,r) = {z1 p(8,z) < r} = {z: Anf p(z',z) < r.
z'cS

Definition 4.7. For a set S € D, we define

n
lzn\ -+ 1 and f(zn)'e w}.

c(fr,s) = {w € €™ there exists {z_} C s,

The set c(f,8) 1is celled the cluster set of f restricted to
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the set S.

Definition 4,8. Let S be a Stolz angle or a'segment in

D with only one endpoint on C and let A vary over all Stolz
angles properly containing S. Then we define

8(f,8) =NC(f,a).
A

We note thaﬁ
€(r,8) = Qe (s,r)). | (5)
The next definltion 1nvolves p-polnts, which have already

been linked to normal functions in Theorem 4.7.

Definition 4.9. A subset S & D is called a p-set if

there exists a sequence {zn} of p-points for f(z) with

anS'n=1p 2’ U I

Theorem 4.1 Iet w = f(z) be a function meromorphic

211.
-

in D and let 8 C D. Then elther S is a p-set or

c(£,8) = 6(1,9).

Proof. Without loss of generality, we.assﬁme that
S NC £ @, for otherwise
c(r,s) = ¢(r,s) = g.
Suppose that C(f,S) # C(f.S). Then since C(f,S) € C(f S),

there exists a point w, in G(r.s) for which w, 1s not in

c(f,S). 8o from (5), for every integer n > 0, W, 1s in

“C(f.H(S.lyn)) and therefore one can find a point z in

.H(S,1/n) such that |zn| >1 -1/n and

a(r(z,),w ) < 1/n, . (6
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Since z_ is in H(S,1/n), there exists z'

" n in S such that

plz ,z;) £ 1/n. For large n, we must have d(f(z,),w,) 2 M
>0 sihce w, 1s not in C(f.s), Hence by (6) we have that
‘p(Zn.Zé’ 3 0 and d(f(z,),f(zp)) > B, (7)
for n =1, 2, ..., and for some fixed pqsiﬁive number R. It
" follows (15) from Theorems 4,5 and 4.6 and (7) that {z;} is
a sequence of p-points for f(z) and hence that S is a'p-set;
Gauthier (Theorem 4.7) has also shown that a meromor-
rhic funcfion'is normal if and only if f(z) has no sequence
of p-points. Combining this with Theorem 4.11, we obtain

’the following corollary.

Corollary 4.2. Let w = f(z) be a/ndrmal meromorphic

function in D and let S € D. Then

2(r,8) = c(f,s).

Definition 4.10. Let S,, S, € D. We shall call S, and

S, equivalent sets if for each r > 0, there isa 8, 0 < &
<1, such that

s, n{ze lzl 5 1 - 8} € H(s,1)
and

8y N tze Izl > 1 -8} ¢ H(S,,r).

Corollary 4.3. Let w = f(z) be a meromorphic function

in D, end let S, and S, be equivalent subsets of D. Then

1
"6(f,si) = 6(:,52)._

Proof. Suppose « 1s not in G(r.sl) = N C(f;H(S1.r));
- r>0 =
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Figure 16. Equivalent Sets

Then « is not in C(f,H(Sl.ro)) for some ry > 0 and hence

there does not exist a sequence {z } in H(Sl.ro) with |z

n nl

- 1 and f(zn) - «. Since S, 1is equivaleht to S,, given
r = r, /b, there exists a § = §(r,/4) such that

3 (ro/l&)} & H(8,,r /4).

Now since H(S,,r /#) < H(S,,r_ ), we know there does not

Sl2 N {zs [z > 1

exist {zn§ in H(Sz.r /4) with 'z | 1 and f(z ) » a. Hence
als not in c(f, H(Sz.r /4)) and therefore cannot belong to

o(r, 82 Reversing S; with S, gives the desired equality.

The next theorem follows 1mmed1ate1y from Corollary

4,2 and 4.3.

Theorem 4.12. Let w = f(z) be a normal meromorphic
function in D, and let S, and S, be equivalent subsets of D.
Then |

,C(f.st) = C(f,8,).
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We now come to Brown and Gauthler's (€) characteriza-

tion of normal functions in terms of cluster sets{

- Theorem 4.13. A meromorphlc function w = f(z) is nor-
mal in D if and only if the cluster set of f(z) 15 the same

on Any two equivalent subsets of D.

Proof. We first suppose C(f'sl) = c(f,sz) for any two

equivalent subsets 31 and S, in D. Then there do not exist

2
two sequences fzn} and {z;} with p(zn,z;)-+ 0 as n < %, On
which f(z) converges to different values in €°. Thus
Theorem 4.2‘1mplles that f(z) is a normal function. The

 other.ha1f of the theorem is Theorem 4.12.

An example (7, p. 26) of a nonnormal function that has
unequal cluster sets on two equivalent sets is: f(z) =
exp(1/(1 - z)). We consider the sequences obtained by
zh =1 - (27m)'1 and z; =1 - (21nr1)"1 + 1n'2. Since
h(zn,z;) > 0, the gsets fzn} and {z;} are equivalent. Clear-
ly C(f.{zn‘) = 1 since f(z_ ) = 1 for each n, while f(z') =

3 2 2 i 2.2 2 2 i
“exp(27in"/(n” + 4wn”)) ° exp(-4»°“n“/(n° + 47°)), which tends

~to infinity for large n. Hence_c(f,{zﬁ}) = oo,

| Characterizations Involving the

Spherical Derivative

In Theorem.z.j we saw Lehto and Virtanen's characteriza-
tion of normal functions in terms of the sphericsal deriva-

tive: A meromorphic function f(z) defined in the unit disk
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D 1s a normal function if and only if

sup {(1 - 1212yl e (2) /(1 + le(z)13)s lzl < 1} < oo
In 1972, Ch. Pommerenke (32) asked the following question:
If M > 0 1s given, does there exist a finite set E such that
if f is meromorphic in D then the condition that (1 -.|zl2)
. h(f(z)) < M for each z € £~ 1(E) implies thaﬁ f is a"nbrmél
function? :Peter Lappan (23) has shown the answer is éfflrme
ative and that the set E can be chosen:£o be:ahy gset con-
 31st1nq of five complex numbers. In‘proving this result, we
make use of the following theorem of Lohwater and

Fommerenke,

Theorem 4.14. If a non-constant meﬂomorphic function f

is not a normal function then there exist sequences {zn}'and
{Pn} with z € D, lznl 21, p, >0, p,/(1 - lznl) + 0, such
that the sequence f(zn + pht) converges locally uniformly
_to a non-constant function g(t) meromorphic in the complex

plane.-

For the proof of thls theorem, we refer the reader to

(26).

Theorem 4.15. Let E be any set consisting of five com-

pléx numbers, finite or infinite, If f 1s a meromorphic
function in D such that ‘ v
sup {(1 = 1z1%)p(£(2))1 z € £7HE)} < w,

then f 1s\é normal function.

Proof. We prove the contrapositive of Theorem 4.15:
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If f 1s a meromorphic function in D such that f is not a
normal function, then for each complex number A, with at
most four“exceptions. | |
. sup (1 - 'Z,z)p(f(Z))t z € f'l(h)} = 9o,
Since f is not normal, Theorem 4,14 iﬁplies there exist
sequences {zn} and {pn\, z, € D, 'zn' 21, py > 0,
pp/ (1 - 'Zn')'* 0, and there exists a nonconstant function
g, meromorphic in €, such that gn(t) < g(t) locally uniform-
ly, where Bn(t) = f(zn + ppt)y n =1, é,.... There exists a
vcompléx number ), finite orvinfinite, for which g(t) = )\ has
a solution t_ which 1is not a multiple solution, because g
being non-constant guarantees the existence of a to where
q'(to) £ 6. By Hurwitz's theorem (18, p. 205), in each
neighborhood of t_, gn(t) assumes the value X (once) for éll
but a finite number of gn?s. Thus there exists a tn such |
that gn(tn) = A, for sufficlently large n in every neighbor-
hood of to, which allows us to pick a sequence {tn} such
ﬁhat tn + t, and gn(th) = X. Since g, » g locally uniform-
ly, we have p(sn(tn)) > p(s(to))-
| Let s =z, + ppt,. Then plg (t))) = p * p(f(s)),
ama
PUEs ) (1 = Is 1) = (g () (1 - s 1) /op
= ple, ()01 = T2, /p)
. (1 - 1s, /(1 =tz ). (8)
We claim p(f(s, ))(1 - fs |) » » as n » o by considering (8)
above, First, p(gn(t )) - p(g(t )) £ 0, and (1 - lz l)/pn

s . Also lz,l 5 1 and ry/ (1 = |zn‘) - 0. Hence p,t, + 0
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= Z, + pnt , we obtain sn - zn

- 0 and therefore the last term in (8) tends to 1. Thus our

since tn-a to ¢ D. Slnce 8,
claim 1s proven, and 1ﬁ fact, we have p(f(Sn))(l - Isnlz)
+ >, We have now sh0wn.that if the equation g(t) = XA has a
solution which is not a multiple solution, then |
sup‘{(l - Iz]z)p(f(z))r z€ r ()} =
However, there can be at most four values A for which all
solutions to the equation g(t) = A are multiple solutions
(See (18,'p. 231)). Thus the proof of the theorem is com-

pleted. -

kTheqrém b.,15 gives s sufficient condition for a mero-
'morphié function to be a normal function: It.follows_from
the definition of.a normal function that‘th;S'cqnditlon is
also‘necessary. Thus we obtain the follbwing characteriza-

tion.

Theorem 4.16., If f is a meromorphic function in D,

then flis;a normal function 1f and only 1f there exist five
distinct values A, Aps Ags My, g such that
sup {(1 - lzfz)p(r(z)): z €D, f(z) € {Al')2'x3'

perglh <,

Before concluding this sectlion, we note another theorem
(25) which 1llustrates the usefulness of Theorem 2.3 and the

spherical derlvatlvé in determining normality.

Theorem 4.17. If f(z) is analytic and schlicht in

. . \ i )
|zl < 1, then f'(z) 1s a normal analytic function in Izl < 1.
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Froof. From the proof of Koebe's Distortion Theorem
(18, p. 351), it is known that
leve(z)l/ler(2)] < 6/(1 - 1212).

Thus |

Uo7+ Te(2)1?) < 6/((1 - 21%) -

(/12 (2)] + 1t ()

- 3/ - z1?)- |
2/((1/18(2)) + 10 (2)).

Therefore

levv(z)l /(L + o)l ?) s 3/(1 - 121%)
and (1 - lzlz)p(f'(z)) is bounded in Izl < 1, giving us

£'(z) is normal in lzl < 1.

The question which immediately comés to mind 15 whether
- the derlvatlye. or the integral, of an arbitrérj analytic
normal function 1é'norma1. Hayman and Storvick (17) have
glven simplé examples to 1llustrate that-this'néed not be
the case, Congider the functions

f(z) = exp((z + 1)/(z = 1)), and
z) = (-2/(z = 1)2) exp((z + 1)/(z - 1)),

defined on the unit disk. The function f(z) is bounded by

i

one, analytic, and hence normal in D. By considering the
image of D under the mapping (z + 1)/(z - 1), we see f'(z)
~has two distinect asymptotic values at z = 1

1im ff(z) = o ags z 9+ 1 along |z|'= 1, and

i

lim £*(z) 0 as z » 1 through real values.
By Theorem 2.2; £'(z) is not normal and thus f(z) 1llus-

trates that the derivative of a normal function need not be
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normal.
We next consider the functions

g(z) = ((4 + 22)/(1 = z))-exp((2 + 2)/(1 - 2)),

. fé(z) dz = 2(1 - z) - exp((2 + z)/(1 - z)).
The image of D under the mapping (2 + 2z)/(1 - z) 1is
{z; Re z > é}. Since lg(z)l > e% in D, g(z) musf bé norﬁal.
Now fé(z) - oo as.z~¢ 1~ through real values. Oﬁ the other
hand, if z = %(1 + ele). 0 <6 < 2w, ‘exp((z +2)/(1 - 2z) =
eZ since the image of the circle z = %#(1 + el 0 <0 < 2m,
nunder the mapping (2 + z)/(1 - z) 1s the line Re z = 2, and
we also have 2|1 - zl = a¢§_:-§ZZ§_3 = 2lsin 8/2]. In this
‘case, l]é(z)l = 2e%lsin 8/2! 5 0 as 8 » 0. Theorem 2.2
implies jé(z) is not normal and thus g(z) shows that the

integral of a normal function 1s not necessarily normal.

The Lindelof Theorem, Fatou Points

and Normal Functions

It 1s not always the case that properties for bounded, .
énalytic.functlons hold for meromorphlc functlions. However,
they frequently can be extended to meromorphlic functions if
the functions are also normal. We have already seen two
examples of this in Chapter II. Lindeldf discovered that
analytic and bounded functions have the Lindeldf property,
which is defined 1ﬁ the following way. A function f(z) has
the Lindeldf prdperty in a domain D if, given some arc L

lqug in D and terminating at a poilnt P on the boundary of

D, with f(z) tending;to o as z » P along L, then f(z) » «
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unifbrmly ns 7 - P inside any aﬁgular domain lying in D and
having P as its vertex. Lehto and Virtanen (24) extended
tﬁls result to normal meromorphic functions in Theorem 2.2.
We refer the reader to Theorems 2.4 and 2.5 for other ex-
.amples in Chapﬁer 11.. Before dlscussing.another‘extension,

we need the following definitions.

Definition 4.11. Let A be an open arc of C, possibly C

1tself. A Koebe sequence of arcs (relative to A) is a
sequence‘of’Jordan arcs {Jn} in D such that (a) for some.
sequence (cn!-satisfying the conditions 0 < €n < 1 (n=1,

2, 3, ves) and €_ 2 0 8S N & %, Jn lies in the ¢_-

n n

‘neighborhood of A (n = 1, 2, 3, «es), and (b) every open
sector A of D subténding an arc of C that lies stfictly'in-.
.terior to A has tﬁe property that, for all values of n
except fof at moét a finite number, the arc Jn 6ontains at
least one Jordan subarc lying whoily in A eicept for 1ts two

end points which 1lle on distinct sides of A.

Definition bh,12. If f(z) is a meromorphlé function in
"D and ¢ 1s a constant, finite or », we say'that f(z) » Q'
along a Koebe sequence of ares {Jn}. provided that, for some
sequence of positive numbers {nn}. where nn'a 0 as n =< o we
have, for efery z € Jn (n=1, 2, 3, «0.), If(2) -cl < Mn

or lf(z)l > l/nn. accordlng.as ¢ 1s finlte or infinite.

Definition 4.13. A Fatou point of a funetion f(z),

meromorphic in D, i1s a polnt { € C such that, for some
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complex number ¢ (possibiy w©), a8 2z 2+ { in any Stolz angle

at {, f(z) » ¢; ¢ 1s then called a Fatou value of f(z).

Theorem 4,18. Let f(z)'be an analytic and bounded
function 1n D. If f(z) -+ ¢ along a Koebe sequence of arcs

7}, then f(z) = c.

ggggi. Suppose the contrary, that is, f(z) 1s nét con-
stant. Let the arcs-{Jn} be deflined relative to an arc A.
By Fatou's Radial Limit Theorem, we know f(z) has a radial
1imit almost everywhere on the boundary C and thus on A.

For every point z_ & A where the radial limiﬁ exists, the

o
radial segment intersects the arcs {Jn} and, hence, there
must exist a sequence of points on the radius tending to z,
such that f(z) ¢ ¢ on thlis sequence of polnts; Therefore
£(z) has radial 1imit ¢ on a set of positive measure on C.

Thus Riesz's Theorem implies that f(z) = ¢, which contra-

dicts the assumption.

The broof of Theorem 4.18, originally done by Koebe,
cannot be duplicated if we allow f(z) to bg meromorphic
gince Fatou's Radial‘Limit Theorem and Rlesz's Theorem can
be applied only tb analytic and bounded functions. However,
if we add the condition that f(z) is normal, we §bta1n the

following theorem of Bagemihl and Seidel (3).

Theorem 4.,19. Let f(z) be a normal meroﬁorphic func-

tion in D.» If f(z) + ¢ along a Koebe sequence of arcs

{g,}, then r(z) = .
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Proof. Without loss of generality we aséume ¢ =0, for
otherwise we consider the normal meromorphic function
f(z) - ¢ 1f ¢ 1s finite, or 1/f(z) if ¢ = =,
| Let the given sequence {Jn}’be a Koebe sequence rela-
tlve'to an arc A and consider the arc B =.{zi lzl = 1,
qq < afg z < qzk strictly interlor to A. Denote by A the
open sector of D with vertex angle g at the origin, subtend-

1ing the arc B. Call the sides of A s; and s,, where these

Figure 17. Mapping Dw_OntoI7n

z = ¥ (W)

segments terminate at eiql, eiq2. respectively. 1In view of
(b) in Definition 4.11, there 1s no loss of generality in

asserting now that for every n, the arc J, containe a Jordan

(1)

subarc Fn lying wholly in A except for its end points Py
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Péz). which lie wholly on Sy S respectively. Then {Fn}
i1s a Koebe sequence of arcs relatlive to B.

Set

r. = min fz'. R

n n=max|Z' (n:l. 2’ 3’ ooo)

zel! zET;1
Then it follows frgm (a) in Definition 4.11 that
im rp = 1im R = 1 - (9
Forn =1, 2, 3, ... we defilne the Jordan curve Kn in the
following manner. Let the clrcle lzl = Rn 1ntersect7s1 and
s, in the respective points Qé%); Qéz) and denote the radial
segments Pél)le). Pﬁz)ng) by tél) and tg2) respectively,
_ where these segments may be degenerate. Then 1if Bn is the
open arc of the circle lzl = R which lies in A and B; is
the complimentary arc, we set
_ (1) o (2)
K, =t, ' UB Ut UFn.
The interior of K, will be called 9, and we set G, =
,{z: lzl < Rn}.
The Jordan domain Gn is an extension of the domain Qn
' (1) C e(2) o g | ‘
across t, ) Tn U t," < Fr(ﬂh). By taking z = 0 and
-applying Carleman's Extension Principle for harmonic measure
(28, pp. 68-69) to G, we obtain |
wh (0,B.,G.) = o= [T 44 = s/2m. Also, the additiv
ere 1Ol = o7 6 = N 80, e e
property of harmonic measure (28, p.:7) gives us
w(o.tél) ur u téZ).nn),= m(o.tgl) U tAZ).nn)
+ (U(O.rn,nn)-

An inequality due to Ostrowski (14, p. 42) gives us
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\

(1) (2) . N
| w(0,t,"" Uty .ﬂn) S Lb/m arc sln'VQHn Tn)/Rn.
Thus by (9), 1tm w(0,t{1) U tl®) 0 ) 2 0. Hence
. n3oca
lim inf m(O,Fn,Q ) > B/2m.
n
: n-o0 .

The Riemann Mapping Theorem allows us to map Dw con-
formally onto!1n by means of the function z = wn(w), where
¥,(0) = 0 and the point w = eldl corresponds to the point
(1) '

n "Since harmonic measure is invariant under con-

z.= P
formal maps, each arc Th, for n suffiéiently large, is the
image of an arec of C_, of harmonic measure at least B/Z% and
hence of 1ength'at least B/2, with its end point of smaller
argument at ei91,
If we set !

gn(Ww) = flp(w)) (n=1,2, 3, ...) (10)
then gn(w) (24, p. 57) is a normal merombrphic function in |
D,. Since f(z) is normal in D, there exists a finite posi-
tive constant ¥ (24, p. 56) such that for every z in D, |

(1 - lzI®) v /(1 + 1£(2)12) < v, (11)
Now from (10) we obtain |

(- lwlZ) g (w1 /(1 + lgy(w)1?) =

(1 = Tl Blerw, o) | yn (0 1701+ Le@y ) 12).(12)
According to (33, p. 133), if Dl(z) denotes the radius of
.univalence at the point z =\pn(w) of the region Qn. we have

(1 - lwl®) Iyl (0] < 4Dy (2), | (13)
Sinée.ﬂn lies in D, we also have

Dy(z) €1 -zl £1 - (212, )

Combinlng statements (11) through (14), we find that

(1 -’|w|2)|5;(W)|/(1 + Isn(W)lz)-S
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w1 - 1z12) el 701+ 1£(2)] ) < by, (15)
Let S denote the subarc of C, whose end point of |

srmaller argument 1is 6191 and whose length is g/2. vThe v
hypothesis that f(z) 9 0 along the Koebe sequence {Jn}
implies that 1lim gn(w) = 0 uniformly on S. ‘A result in (24,
p. 64), toget:;;,with (15), shows that the sequence {gn(w)}
tends uniformly to zero in every compact subset of D,.
We now show that f(z) = 0. Suppose the contrary, that

is, f(z,) £ 0 for some z. € D. By (a) in Definition &4.11,

@

Zq E'Qn for all sufficiently large values of n. Let w =

¢,(z) be the inverse of the function z = y, (w). Then using
(10), |

| Enldn(z)) = £(z )

for large enough values of n. Since {gn(w)}‘tends uniformly

. to zero on every compact subset of D but f(zo) £ 0, we

wl
must have 1lim |4 (z )| = 1. But, if we fix p such that

na o
lz | < p < 1, then Schwarz's Lemma (11, p. 126) implies

o
| < _
‘ ¢n(zo)|._ lz | < lz 1/p <1

for large enough values of n, which 18 a contradiction.

Hence f(z) = 0.

The next two theorems are concerned with Fatou points
and normal analytic funétlons. Theorem 4.20 (i) guarantees
- the existence of at least one Fatou point for every normal
_énélytic function. We include Theorem 4.21 (3) for 1its
'proof more  than for the content of the theorem. The‘proof

illustrates the techniaque of using a nested sequence of

regions converging to the boundary to enable us to pick a
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path tending to a point on the boundary.

Theorem 4.20. 'Every normal analytic function in D has

a Fatou point.

Proof. Let f(z) be a normal analytic function in D.
If f(z) is bounded in D, then by Fatou's Radial Limit
Thebrem and‘Lindéléf's théorem. almost every point of C is a
Fatou point of f(z), Suppose that f(z) is unbounded in D.
' Then f(z) tends to a 1imit along some boundary path A (27).
Corollary L4L.,1 implies the end of A 1s a single point (-G‘C.
Thus f(z) i1s normal, meromorphic, has an asymptotic limit at_
{, and by Theorem 2.2, must have angular limit at (. Hence

f(z) has a Fatou point.

Theorem 4.21. Let f(z) be a normal analytic function

in D and A be an open subarc'of C. If the set of Fatou
boints of f(z) on A is of measure zero.‘then A contalins a
Fatou point of f(z) at which the corresponding Fatou value

ig oo.

ggggg. Let Aube an open subarc of C and { a point on
A. Then f£(z) can not be bounded in any neighborhood of‘C}
because 1f otherwlise, Fatou's Radial Limit Theorem and
Lindelof's theorem would imply the set of Fatou points on A
‘1s of positive measure, contradicting the hypothesis. Thus
there exists a & > 0 such that the region H = D N {z1
lz - ¢l < 8} satisfies the condition that EN C S A and f£(z)

is unbounded in H. There must exist a sequence of points
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., ! . ) . oo
fznj in D such that z 9 { and Mn = |f(zn)| 5 0 as n» ®,

where 1 <M, < Mz < eee < Mn < seee Forn=1,2, ..., let

1 :
Vn be the open set of all points in D at which l£(z) | > Mn -
1, and denote by Rn that component of Vn which contains the

point zn.’ Then |f(z)| = Mn - 1 at all boundary points of Rn

that lie in D. By the maximum principle, ﬁ; NC#£@. Ve

claim as n - ©, the dlameter of R_» 0. Let r = mig_‘z
n n zZER,
Then since f(z) is analytic in D, we must have T, = 1. Sup-

pose the diameter Of'Rn does not tend to 0 as n = %, Then_
we could find a Koebe sequence of arcs aiong which f(z) < 0o,
and by Theorem 4.19, we have f(z) = %, which is a contradic-
tion. Thus the diameter of R » 0, and there exists a
natural number N such that Ry S H. - Set G4 =.RN.

We shall now show that f(z) is unbounded in G,. Let Gj
be the smallest simply connected region containing G, and
let z = ¢(w) map D, conformally onto G;. Set B* = E; ne,

which is nonempty since we showed ﬁg N C is nonempty.

*
1

from the region G:. By Fatou's theorem, ¢(w) has a radial

Denote by B, the set of all points of B that are accessible

‘1imit almost everywhere on Cw' Put

¢f(e1”) = 1lim ¢(rei“)
. ral o
for every u for which the limit exists. The set

B, = {ot# " ()] = 1]
is a Borel set and therefore measureable. We have
" " ( i
| ,B1={¢ (e.lﬂ)seMEEl}.
Consglder now the function

g(w) = f¢p(w))
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in D . We will show g(w) 1s unbounded in D . Suppose g(w)
is bounded in D,. Either m(E,) > 0 or m(E,) = 0.

Suppose first m(El) > 0. By Fatou's Radial Limit
Theorem, there exists a Borel subset E_ of positive measure
of L, at eaéh point of which g(w) possesses a radiél'limit.
Let'Bz be the image of E, under the map z = ¢(w). An appli-

cation of an extenslion of Ldwner's theorem (35, p;‘322)

shows that B; 1s a measureable subset of B; with m(Bg) > 0,

*
1

'§6 and this path is the image, under the mapping z = ¢(w),

Let {0 < B¥ Then there exists a path in G, terminating ét

pe
of a path‘in D, that terminates at a point eiMo € Eg. Now
¢*(31“°) = {,, and g(w) has a radial limit at the point elfo
Therefore f(z) tends to a limit along a path in G; terminat-
ing at { . By hypothesis, f(z) is normal in D, and conse-
quently, Theorem 2.2 implles {, is a Fatou point of f(z).
Finally, ginceico was an arbitrary point 1n,BZ:and‘m(B;)'> 0,‘
~weé have contradicted the hypothesis that the set of Fatou
points of f(z) on A 1s of measure zero. |

Suppose next m(El) = 0., Every boundary point of G: is
» boundary point of Gl’ since G, o G;. We recall from the
first parsgraph in the proof that If(z)! = Mn'- 1 at all
boundary points of Rn that lie in D. Also, E1 i1s the set
of points of measure zero on Cw that are mapped to boundary
points of R 1lying in C. Thus g({w) = £(¢(w)) has Fatou
‘value equal to MN -1 1n modulus almost everywhere on Cw.
By considerlng-the Poisson integral repreéentation Qf

, ” . |
.g(reit) = %% ‘L"Pr(e - t) g(eit) dt, we see lg(w)| < MN -1
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throughout D_. But then | r(z)| < My - 1 = L throughout
61 = RN. contrary to the definition of RN.

" In elther case we obtain a contradiction and so g(w) 1s
unbounded in D_, which implies f(z) is unbounded in GI and .
hence 1niGi. Thus the open set of all points of G, at which
|f(z)| > L + 1 is not empty. Letting G, be a component of
this set, we conclude as above that f(z) is unbounded in-Gz.
Continuing in this manner, we obtain a sequence of nested
subreglons Gﬁ 2 Gy, such that fér n=1, 2, 3, cees if(z)l
L + n, for z é:Gn. We pick zléE G1, z, e_GZ:"{Z1}’ ooy
z, & Gﬁ - {zl, ceny zn-l}' ..., Next we Jjoin z; to z, by-a
Jordan arc K.1 lying in Gl' Join Z, to zB‘by a Jordan arc K2
lying 1in G2 and‘havlng no point except z, in common with Kv,

and in general, Jjoin z_ to Zoe1 by a Jordan arc Kn lying in

n

G, and having no point except z, in common with Klkj K2 U

. [¢ 6}
ces U Kn" Thus we obtain the path P = L}Kn in D with

n=1
initial point z,. The path P converges to C since 1lim min
1 )
ns» zeKy, -
lf(z)l = oo while f is analytic in D. Therefore P is a

boundary path in D whose end 1s a single point along which
'f(z) e w, ~Finally, Theorem 2.2 implies f(Z) has a Fatou

point at which the corresponding Fatou value is oo



CHAPTER V
SUMMARY AND OPEN QUESTIONS

Normal famllies had their beginning in 1912 with Paul
Montel. Although ﬁormal functiohs are defined in terms of
normal families, they did not have theirjformél beginning
until 1957 when Lehto and Virtanen extended the.Lindelaf
property‘tb meromorphic functions by requiring.them to be.
normal. For this reason we devoted Chapter II to the study
of thelr important paper. 1Is is an_atteﬁpt to 1mprove_the
readablility of the Lehto-Virtanen paper and to make it more
accessible to graduate students in mathematics. Besides the
theorem involving the Lindel6f property and another theorem
which acts s a 1emma‘for this result, this chaptér contains
two other theorems, both of which characteriée nérmélity in
termé of the'spherlcal derivative. Many of the simpler
properties of normél functions found in the Lehto-Virténen
» paper are contained in Chapter III, as well as examples of
functions which are normal and some which are not..

The major results on normal functions which have been
publicshed since 1957 are contalned in Chapter IV. Rather
- than discussing them chronologically, we found it more
natural to divide them into flve categories. Included in

the first category are those results related to Lappan's
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(21) equating normality to uniform p-4d continuity. as well
as Gauthler's (15) characterizastions involving p- and P-
points. Results of Bagemihl and Seidel (1,2) which genera-
lize and shed further light on several of the theorems in
Chapter 1I make up section two. The next section lncludes
several results which lead up to Brown and Gauthier'sv(é)
relating normal functions to functions which have equal
cluster sets on equivalent sets in the disk. Another sec-
tion 1s devoted ﬁo characterizations of normal functions in
terms of the éphérical derivéti?e. with emphasis being Siveh
to Lappan's (23) five-point theorem. A final seétion con-
tains several miscellaneous resuits. vIncluded here are two
theorems ﬁhich extend results for bounded and analytic func-
tlons to normal meromorphic functions. S

We list below some of the questions which have arisen
dufing the preparation of this dissertation and which have

not yet been answered.

. Question 5.1. Let f(z) be mérOmofphic and nprmal in
lz| < 1 énd let‘n(f) denote the number of poles in lz| <r.
Is 1t true that

n(r) = 0(1/(1 - r))

where r tends to 1 from the left (32)?

Question 5.2. Let f(z) be meromorphic in lzl < 1. 1Let

8,(2z) denote the radius (measured as the angle from the cen-
ter of the sphere) of the largest schlicht disk around f(z)'

on the Rlemann imesge surface, consldered as a-covering of
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the Rlemann sphere. It is known that supfﬁf(z): lz| < 1} <

7/3 implies that f(z) is normal. Is n/3 best possible (32)?

Question 5.4. It 1s an open question whether the

existence of a nonconstant function f(z), meromorphic and

normal in D, implies there do not exist sequences {zn} and

{py) with z_ €D, p, 2 0, p, = 0", such that
lim £(z, + p &) = &(¥)
n-=oo ’

locally uniformly in €, where g({) is a nonconétant mero-

morphic function in €, the finite complex plane (7, p. 51).

Question 5.5. Must a function which is harmonic and:

normal possess asymptotic values on a dense set of the unit

circle (21)°7

Question 5.6. If the answer to Question 5.5 is affirm-

ative, then must a function which 1s harmonic and normal
have Fatou polnts? If so, must the se cbnstitute a dense

subset of the unit circle (21)?

_ Ne.note here that the answer to Question 5.6 is yes for

normal andlytic functions (3).

Question 5.7. A function f(z) anaelytic in D 1s uni-
formly nofmal if, for each M > 0, there exists a finite num-
bér K > 0 such that for each z, € D, p(z,z ) < M implies
‘i |f(z) - f(zo)| < K. Let u and v be hérmonic functions. If
u and v are both normal, then is f(z) = u(i) +1v(z) uniform-

ly normal (21)?
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‘Question 5.8. If u and v are harmonic functions and if

f(z) = ﬁ(z) + 1v(z) is uniformly normal, can anythlng be
said aboﬁt the asymptotic values of u(z) and v(z), or about
the Fatou values of u(z) and v(z), in addition to the

answers to Questions 5.7 and 5.8 (21)?

In ﬁiew of the open questionsvahd the'articles re-
searched in this thesis. there appear to be several trends
-ih the gtudy of normal functions, The first one is to
investicate what properties are posseéssed by normael harmonic
funqtions, and in particular, to extend, if possible, the
properties of normel snslytic functions to normal harmonic
..fuhctions. -Also; in the mathematical joﬁrnals more emphasis
ls belng given to the many vériationévof‘normalitj, such as
»a—normai (12), neo-normal (34), finitely nofmal (31’.-very
normal. (4, 22), and weakly normal (24), which though beyond
, the sobpe of this thesis, may well achieve more prominence

in the future.
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